-
Notifications
You must be signed in to change notification settings - Fork 700
/
Copy pathFFT (Iterative).cpp
412 lines (307 loc) · 11.6 KB
/
FFT (Iterative).cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
//Credits: https://codeforces.com/profile/neal
//neal_wu's Iterative FFT: https://codeforces.com/contest/1334/submission/76217102
// This is noticeably faster than std::complex for some reason.
// This is noticeably faster than std::mycomplex for some reason.
template<typename float_t>
struct mycomplex {
float_t x, y;
mycomplex<float_t>(float_t _x = 0, float_t _y = 0) : x(_x), y(_y) {}
float_t real() const { return x; }
float_t imag() const { return y; }
void real(float_t _x) { x = _x; }
void imag(float_t _y) { y = _y; }
mycomplex<float_t>& operator+=(const mycomplex<float_t> &other) { x += other.x; y += other.y; return *this; }
mycomplex<float_t>& operator-=(const mycomplex<float_t> &other) { x -= other.x; y -= other.y; return *this; }
mycomplex<float_t> operator+(const mycomplex<float_t> &other) const { return mycomplex<float_t>(*this) += other; }
mycomplex<float_t> operator-(const mycomplex<float_t> &other) const { return mycomplex<float_t>(*this) -= other; }
mycomplex<float_t> operator*(const mycomplex<float_t> &other) const {
return {x * other.x - y * other.y, x * other.y + other.x * y};
}
mycomplex<float_t> operator*(float_t mult) const {
return {x * mult, y * mult};
}
friend mycomplex<float_t> conj(const mycomplex<float_t> &c) {
return {c.x, -c.y};
}
friend ostream& operator<<(ostream &stream, const mycomplex<float_t> &c) {
return stream << '(' << c.x << ", " << c.y << ')';
}
};
template<typename float_t>
mycomplex<float_t> mypolar(float_t magnitude, float_t angle) {
return {magnitude * cos(angle), magnitude * sin(angle)};
}
namespace FFT {
using float_t = double;
const float_t ONE = 1;
const float_t PI = acos(-ONE);
vector<mycomplex<float_t>> roots = {{0, 0}, {1, 0}};
vector<int> bit_reverse;
bool is_power_of_two(int n) {
return (n & (n - 1)) == 0;
}
int round_up_power_two(int n) {
while (n & (n - 1))
n = (n | (n - 1)) + 1;
return max(n, 1LL);
}
// Given n (a power of two), finds k such that n == 1 << k.
int get_length(int n) {
assert(is_power_of_two(n));
return __builtin_ctz(n);
}
// Rearranges the indices to be sorted by lowest bit first, then second lowest, etc., rather than highest bit first.
// This makes even-odd div-conquer much easier.
template<typename mycomplex_array>
void bit_reorder(int n, mycomplex_array &&values) {
if ((int) bit_reverse.size() != n) {
bit_reverse.assign(n, 0);
int length = get_length(n);
for (int i = 0; i < n; i++)
bit_reverse[i] = (bit_reverse[i >> 1] >> 1) | ((i & 1) << (length - 1));
}
for (int i = 0; i < n; i++)
if (i < bit_reverse[i])
swap(values[i], values[bit_reverse[i]]);
}
void prepare_roots(int n) {
if ((int) roots.size() >= n)
return;
int length = get_length(roots.size());
roots.resize(n);
// The roots array is set up such that for a given power of two n >= 2, roots[n / 2] through roots[n - 1] are
// the first half of the n-th roots of unity.
while (1 << length < n) {
float_t min_angle = 2 * PI / (1 << (length + 1));
for (int i = 0; i < 1 << (length - 1); i++) {
int index = (1 << (length - 1)) + i;
roots[2 * index] = roots[index];
roots[2 * index + 1] = mypolar(ONE, min_angle * (2 * i + 1));
}
length++;
}
}
template<typename mycomplex_array>
void fft_iterative(int N, mycomplex_array &&values) {
assert(is_power_of_two(N));
prepare_roots(N);
bit_reorder(N, values);
for (int n = 1; n < N; n *= 2)
for (int start = 0; start < N; start += 2 * n)
for (int i = 0; i < n; i++) {
const mycomplex<float_t> &even = values[start + i];
mycomplex<float_t> odd = values[start + n + i] * roots[n + i];
values[start + n + i] = even - odd;
values[start + i] = even + odd;
}
}
inline mycomplex<float_t> extract(int N, const vector<mycomplex<float_t>> &values, int index, int side) {
if (side == -1) {
// Return the product of 0 and 1.
int other = (N - index) & (N - 1);
return (conj(values[other] * values[other]) - values[index] * values[index]) * mycomplex<float_t>(0, 0.25);
}
int other = (N - index) & (N - 1);
int sign = side == 0 ? +1 : -1;
mycomplex<float_t> multiplier = side == 0 ? mycomplex<float_t>(0.5, 0) : mycomplex<float_t>(0, -0.5);
return multiplier * mycomplex<float_t>(values[index].real() + values[other].real() * sign,
values[index].imag() - values[other].imag() * sign);
}
void invert_fft(int N, vector<mycomplex<float_t>> &values) {
assert(N >= 2);
for (int i = 0; i < N; i++)
values[i] = conj(values[i]) * (ONE / N);
for (int i = 0; i < N / 2; i++) {
mycomplex<float_t> first = values[i] + values[N / 2 + i];
mycomplex<float_t> second = (values[i] - values[N / 2 + i]) * roots[N / 2 + i];
values[i] = first + second * mycomplex<float_t>(0, 1);
}
fft_iterative(N / 2, values);
for (int i = N - 1; i >= 0; i--)
values[i] = i % 2 == 0 ? values[i / 2].real() : values[i / 2].imag();
}
const int FFT_CUTOFF = 150;
const double SPLIT_CUTOFF = 2e15;
const int SPLIT_BASE = 1 << 15;
template<typename T_out, typename T_in>
vector<T_out> square(const vector<T_in> &input) {
if (input.empty())
return {0};
int n = input.size();
#ifdef NEAL
// Sanity check to make sure I'm not forgetting to split.
double max_value = *max_element(input.begin(), input.end());
assert(n * max_value * max_value < SPLIT_CUTOFF);
#endif
// Brute force when n is small enough.
if (n < 1.5 * FFT_CUTOFF) {
vector<T_out> result(2 * n - 1);
for (int i = 0; i < n; i++) {
result[2 * i] += (T_out) input[i] * input[i];
for (int j = i + 1; j < n; j++)
result[i + j] += (T_out) 2 * input[i] * input[j];
}
return result;
}
int N = round_up_power_two(n);
assert(N >= 2);
prepare_roots(2 * N);
vector<mycomplex<float_t>> values(N, 0);
for (int i = 0; i < n; i += 2)
values[i / 2] = mycomplex<float_t>(input[i], i + 1 < n ? input[i + 1] : 0);
fft_iterative(N, values);
for (int i = 0; i <= N / 2; i++) {
int j = (N - i) & (N - 1);
mycomplex<float_t> even = extract(N, values, i, 0);
mycomplex<float_t> odd = extract(N, values, i, 1);
mycomplex<float_t> aux = even * even + odd * odd * roots[N + i] * roots[N + i];
mycomplex<float_t> tmp = even * odd;
values[i] = aux - mycomplex<float_t>(0, 2) * tmp;
values[j] = conj(aux) - mycomplex<float_t>(0, 2) * conj(tmp);
}
for (int i = 0; i < N; i++)
values[i] = conj(values[i]) * (ONE / N);
fft_iterative(N, values);
vector<T_out> result(2 * n - 1);
for (int i = 0; i < (int) result.size(); i++) {
float_t value = i % 2 == 0 ? values[i / 2].real() : values[i / 2].imag();
result[i] = is_integral<T_out>::value ? round(value) : value;
}
return result;
}
template<typename T_out, typename T_in>
vector<T_out> multiply(const vector<T_in> &left, const vector<T_in> &right) {
if (left.empty() || right.empty())
return {0};
if (left == right)
return square<T_out>(left);
int n = left.size();
int m = right.size();
#ifdef NEAL
// Sanity check to make sure I'm not forgetting to split.
double max_left = *max_element(left.begin(), left.end());
double max_right = *max_element(right.begin(), right.end());
assert(max(n, m) * max_left * max_right < SPLIT_CUTOFF);
#endif
// Brute force when either n or m is small enough.
if (min(n, m) < FFT_CUTOFF) {
vector<T_out> result(n + m - 1, 0);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
result[i + j] += (T_out) left[i] * right[j];
return result;
}
int N = round_up_power_two(max(n, m));
vector<mycomplex<float_t>> values(N, 0);
for (int i = 0; i < n; i++)
values[i].real(left[i]);
for (int i = 0; i < m; i++)
values[i].imag(right[i]);
fft_iterative(N, values);
for (int i = 0; i <= N / 2; i++) {
int j = (N - i) & (N - 1);
mycomplex<float_t> product_i = extract(N, values, i, -1);
values[i] = product_i;
values[j] = conj(product_i);
}
invert_fft(N, values);
vector<T_out> result(max(n, m), 0);
for (int i = 0; i < (int) result.size(); i++)
result[i] = is_integral<T_out>::value ? round(values[i].real()) : values[i].real();
return result;
}
template<typename T>
vector<T> mod_multiply(const vector<T> &left, const vector<T> &right, T mod, bool split) {
if (left.empty() || right.empty())
return {0};
int n = left.size();
int m = right.size();
for (int i = 0; i < n; i++)
assert(0 <= left[i] && left[i] < mod);
for (int i = 0; i < m; i++)
assert(0 <= right[i] && right[i] < mod);
#ifdef NEAL
// Sanity check to make sure I'm not forgetting to split.
assert(split || (double) max(n, m) * mod * mod < SPLIT_CUTOFF);
#endif
// Brute force when either n or m is small enough. Brute force up to higher values when split = true.
if (min(n, m) < (split ? 2 : 1) * FFT_CUTOFF) {
const uint64_t U64_BOUND = numeric_limits<uint64_t>::max() - (uint64_t) mod * mod;
vector<uint64_t> result(n + m - 1, 0);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
result[i + j] += (uint64_t) left[i] * right[j];
if (result[i + j] > U64_BOUND)
result[i + j] %= mod;
}
for (uint64_t &x : result)
if (x >= (uint64_t) mod)
x %= mod;
return vector<T>(result.begin(), result.end());
}
if (!split) {
const vector<uint64_t> &product = multiply<uint64_t>(left, right);
vector<T> result(n + m - 1, 0);
for (int i = 0; i < (int) result.size(); i++)
result[i] = product[i] % mod;
return result;
}
int N = round_up_power_two(n + m - 1);
vector<mycomplex<float_t>> left_fft(N, 0), right_fft(N, 0);
for (int i = 0; i < n; i++) {
left_fft[i].real(left[i] % SPLIT_BASE);
left_fft[i].imag(left[i] / SPLIT_BASE);
}
fft_iterative(N, left_fft);
if (left == right) {
copy(left_fft.begin(), left_fft.end(), right_fft.begin());
} else {
for (int i = 0; i < m; i++) {
right_fft[i].real(right[i] % SPLIT_BASE);
right_fft[i].imag(right[i] / SPLIT_BASE);
}
fft_iterative(N, right_fft);
}
vector<mycomplex<float_t>> product(N);
vector<T> result(n + m - 1, 0);
for (int exponent = 0; exponent <= 2; exponent++) {
uint64_t multiplier = 1;
for (int k = 0; k < exponent; k++)
multiplier = multiplier * SPLIT_BASE % mod;
fill(product.begin(), product.end(), 0);
for (int x = 0; x < 2; x++)
for (int y = 0; y < 2; y++)
if (x + y == exponent)
for (int i = 0; i < N; i++)
product[i] += extract(N, left_fft, i, x) * extract(N, right_fft, i, y);
invert_fft(N, product);
for (int i = 0; i < (int) result.size(); i++) {
uint64_t value = round(product[i].real());
result[i] = (result[i] + value % mod * multiplier) % mod;
}
}
return result;
}
template<typename T>
vector<T> mod_power(const vector<T> &v, int exponent, T mod, bool split) {
assert(exponent >= 0);
vector<T> result = {1};
if (exponent == 0)
return result;
for (int k = 31 - __builtin_clz(exponent); k >= 0; k--) {
result = mod_multiply(result, result, mod, split);
if (exponent >> k & 1)
result = mod_multiply(result, v, mod, split);
}
return result;
}
}
4 Call FFT with MOD: http://p.ip.fi/ultI
Single Call without MOD: http://p.ip.fi/f1Zh
//Problem 1: https://www.codechef.com/problems/COUNTWAY/
//Solution 1 (Divide and Conquer): https://www.codechef.com/viewsolution/19144054
//Problem 2: https://codeforces.com/contest/993/problem/E
//Solution 2: https://codeforces.com/contest/993/submission/40115289
//Problem 3: https://codeforces.com/contest/954/problem/I
//Solution 3: https://codeforces.com/contest/954/submission/40926618
//Problem 4: https://codeforces.com/contest/1096/problem/G