Skip to content

Latest commit

 

History

History
328 lines (230 loc) · 15.8 KB

CONTRIBUTING.md

File metadata and controls

328 lines (230 loc) · 15.8 KB

介绍

Ascend ModelZoo,欢迎各位开发者

贡献要求

开发者提交的模型包括源码、readme、参考模型license文件、测试用例和readme,并遵循以下标准

请贡献者在提交代码之前签署CLA协议,“个人签署”,链接

如您完成签署,可在自己提交的PR评论区输入/check-cla进行核实校验

说明: 本仓子模块如下:

TensorFlow TensorFlow贡献子仓
PyTorch PyTorch贡献子仓

使用者和贡献者可以直接克隆子仓,也可以克隆主仓,如果基于主仓操作相关指令参考: 克隆:git clone --recursive https://github.com/Ascend/modelzoo.git 提交: 1)子模块提交 cd your_submodule -> git checkout master -> git commit -a -m "commit in submodule" -> git push 2)主仓提交 cd .. -> git add your_submodule -> git commit -m "Updated submodule" -> git push

一、源码

1、训练及在线推理请使用python代码实现,Ascend平台离线推理请使用C++或python代码,符合第四部分编码规范

2、参考sample

3、贡献者模型代码目录规则:"modelzoo/框架/contrib/应用领域(nlp、cv、audio等)/网络名_IDxxx_for_TensorFlow"(以tf为例,社区管理团队会在贡献完成进行整合)

4、从其他开源迁移的代码,请增加License声明

二、License规则

  • TensorFlow

    迁移场景

    1、迁移TensorFlow模型中若源项目已包含License文件则必须拷贝引用,否则在模型顶层目录下添加TensorFlow Apache 2.0 License TensorFlow License链接

    2、迁移TensorFlow框架开发的模型,需要在模型目录下每个源文件附上源社区TensorFlow Apache 2.0 License头部声明,并在其下追加新增完整华为公司License声明

    # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ============================================================================
    # Copyright 2021 Huawei Technologies Co., Ltd
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    

    开发场景

    1、基于TensorFlow框架开发模型,需在模型项目顶层目录下添加TensorFlow Apache 2.0 License TensorFlow License链接

    2、基于TensorFlow框架开发模型,需要在模型目录下每个源文件附上源社区华为公司Apache 2.0 License头部声明

    # Copyright 2021 Huawei Technologies Co., Ltd
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    
  • PyTorch

    迁移场景

    1、迁移PyTorch模型中若源项目录已包含PyTorch License文件则必须拷贝引用,否则在模型顶层目录下添加PyTorch BSD-3 License PyTorch License链接

    2、迁移PyTorch第三方框架开发的模型,需要在模型目录下每个源文件附上源社区PyTorch BSD-3 License头部声明,并在其下追加新增一行华为公司License声明

    # BSD 3-Clause License
    #
    # Copyright (c) 2017 xxxx
    # All rights reserved.
    # Copyright 2021 Huawei Technologies Co., Ltd
    #
    # Redistribution and use in source and binary forms, with or without
    # modification, are permitted provided that the following conditions are met:
    #
    # * Redistributions of source code must retain the above copyright notice, this
    #   list of conditions and the following disclaimer.
    #
    # * Redistributions in binary form must reproduce the above copyright notice,
    #   this list of conditions and the following disclaimer in the documentation
    #   and/or other materials provided with the distribution.
    #
    # * Neither the name of the copyright holder nor the names of its
    #   contributors may be used to endorse or promote products derived from
    #   this software without specific prior written permission.
    #
    # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
    # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
    # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
    # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
    # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    # ============================================================================
    

    开发场景

    1、基于PyTorch框架开发模型,需在模型项目下添加PyTorch BSD-3 License PyTorch License链接

    2、基于PyTorch框架开发模型,需要在模型目录下每个源文件附上源社区华为公司Apache 2.0 License头部声明

    # Copyright 2021 Huawei Technologies Co., Ltd
    #
    # Licensed under the BSD 3-Clause License  (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    # https://opensource.org/licenses/BSD-3-Clause
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    
  • MindSpore/ACL

    1、迁移或开发场景下MindSpore/ACL模型顶层目录下需要包含华为公司 License 华为公司 License链接

    2、迁移或开发场景下MindSpore/ACL模型,需要在模型目录下每个源文件中添加区华为公司Apache 2.0 License头部声明

    # Copyright 2021 Huawei Technologies Co., Ltd
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    

关于License声明时间,应注意: 2021年新建的文件,应该是Copyright 2021 Huawei Technologies Co., Ltd 2020年创建年份,2020年修改年份,应该是Copyright 2020 Huawei Technologies Co., Ltd

三、readme

readme用于指导用户理解和部署样例,要包含如下内容:

  • 简介:

1、模型的来源及原理;

2、模型复现的步骤,含训练、eval、在线/离线推理等,入口请封装成.sh.py

  • 关键要求:

1、模型的出处、对数据的要求、免责声明等,开源代码文件修改需要增加版权说明;

2、模型转换得到的离线模型对输入数据的要求;

3、环境变量设置,依赖的第三方软件包和库,以及安装方法;

4、精度和性能达成要求:尽量达到原始模型水平;

5、预训练checkpoint、结果checkpoint请提供归档OBS、网盘链接,如来自开源需明确来源地址

6、数据集说明

  • 不允许直接提供数据集的下载链接,可使用词汇:用户自行准备好数据集,可选用“XXX”,“XXX”,“XXX”

    例如:请用户自行准备好数据集,包含训练集和验证集两部分,可选用的数据集包括ImageNet2012,CIFAR10、Flower等,包含train和val两部分。

  • 脚本中不允许提供链接下载数据集,如果开源脚本上存在对应的链接,请修改或者删除对应的脚本

训练ReadMe写作可参考下面两个链接:

Readme example1

Readme example2

离线推理ReadMe写作可参考下面链接:

Readme example1

四、自测试用例

提供模型的自测试用例和readme,提交PR需要门禁及模型测试用例通过,性能和精度检查通过

  • 简介:

1、不同于完整的训练过程和全量数据集的推理,自测试用例的目的是验证提交代码基本功能可用,执行时长控制在10min之内(推理或训练只需执行有限的图片或step);

2、提交PR中训练用例入口train_testcase.sh, 在线推理用例入口online_inference_testcase.sh, 离线推理用例入口offline_inference_testcase.sh

3、提交PR后,会自动触发门禁流水,后台会根据用例入口shell,自动将代码分发到对应执行环境;

4、Jenkins预置账号:登录账号请联系华为工程师/接口人获取,登录之后,可以查看到用例执行日志

5、如果提交失败,请查看日志,修复代码或其他问题后,在你当前的PR中,评论“compile”即可重新触发用例执行

  • 关键要求:

1、自测试用例命名严格按照上述简介2要求来书写,否则门禁会校验失败;

2、用例应当包含功能、精度(Loss值)、性能检查,检查通过打印"Run testcase success!",失败则打印"Run testcase failed!";

3、执行环境已预装软件包和Python3.7.5环境,调用命令"python3"、"python3.7"、"python3.7.5"均可,安装第三方库依赖使用"pip3"、"pip3.7"均可;

4、数据集和模型:小于500M的文件,建议使用obsutil命令下载(已预装),过大的文件,建议提交Issue,注明数据集和下载地址,会提前下载到执行环境上,

已预置数据集&python第三方库: Environments

5、环境和其他问题,请提交Issue跟踪;

6、测试用例开发参考:

五、PR提交

  • 关键要求:

1、请将modelzoo仓fork到个人分支,基于个人分支新增、修改和提交PR;

2、PR标题:线上活动,请在标题注明[线上贡献];高校活动,请注明[xxx学校][高校贡献];

3、built-in用户根据网络状态必须配置modelzoo_level.txt文件,且文件内容包含三个关键字段:FuncStatus(OK-流程通过/ NOK-流程失败,不允许模型代码提交主仓 );PerfStatus(OK-持平GPU/POK-0.5倍GPU/NOK-小于0.5倍GPU/PERFECT-1.2倍GPU);PrecisionStatus(OK-精度达标,POK-Loss拟合但精度未实施, NOK-Loss不拟合,不允许模型代码提交主仓 );内容格式如下所示(注:“:”两侧无需空格,英文格式;):

            FuncStatus:OK/NOK
            PerfStatus:PERFECT/OK/POK/NOK
            PrecisionStatus:OK/POK/NOK

4、contrib用户根据网络状态必须配置modelzoo_level.txt文件,且文件内容包含关键字段:GPUStatus(OK-GPU复现/NOK-GPU未复现); NPUMigrationStatus(OK-自动迁移成功/POK-自动迁移失败, 手写规避成功/NOK-均失败); FuncStatus(OK-基础功能打通/NOK-基础功能失败,不允许模型代码提交到master); PrecisionStatus(OK-精度达标/POK-Loss拟合但精度未完全达标/NOK-精度不达标, 不允许模型代码提交到master); AutoTune(OK-性能持平或高于GPU/POK-性能有提升但低于GPU/NOK-性能无提升或者功能失败); PerfStatus(训练:PERFECT-性能1.2倍GPU/OK-性能持平GPU/POK-性能0.5倍GPU/NOK-性能小于0.5倍GPU;推理:OK-4*310单卡>GPU/NOK-其它); ModelConvert:OK/NOK(仅推理, OK-om转换成功/NOK-om转换失败); QuantStatus:OK/NOK(仅推理, OK-精度损失1%以内,性能有提升/POK-性能有提升但未达标/NOK-量化失败);

样例:modelzoo_level.txt文件

-----仅限训练-----

GPUStatus:OK/NOK
NPUMigrationStatus:OK/POK/NOK

-----仅限推理-----

ModelConvert:OK/POK/NOK 
QuantStatus:OK/POK/NOK 

-----通用部分-----

FuncStatus:OK/NOK 
PrecisionStatus:OK/POK/NOK 
AutoTune:OK/POK/NOK 
PerfStatus:PERFECT/OK/POK/NOK

5、网络名称命名规范:*_for_框架,注:*代表任意内容,如网络名称或网络名称+网络ID;

六、编程规范

  • 规范标准

1、C++代码遵循google编程规范:Google C++ Coding Guidelines;单元测测试遵循规范: Googletest Primer。

2、Python代码遵循PEP8规范:Python PEP 8 Coding Style;单元测试遵循规范: pytest

  • 规范备注

1、优先使用string类型,避免使用char*;

2、禁止使用printf,一律使用cout;

3、内存管理尽量使用智能指针;

4、不准在函数里调用exit;

5、禁止使用IDE等工具自动生成代码;

6、控制第三方库依赖,如果引入第三方依赖,则需要提供第三方依赖安装和使用指导书;

7、一律使用英文注释,注释率30%--40%,鼓励自注释;

8、函数头必须有注释,说明函数作用,入参、出参;

9、统一错误码,通过错误码可以确认那个分支返回错误;

10、禁止出现打印一堆无影响的错误级别的日志;