forked from hate-alert/HateXplain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
testing_with_lime.py
404 lines (313 loc) · 14.8 KB
/
testing_with_lime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import torch
import transformers
from transformers import *
import glob
from transformers import BertTokenizer
from transformers import BertForSequenceClassification, AdamW, BertConfig
import random
from transformers import BertTokenizer
#### common utils
from Models.utils import fix_the_random,format_time,get_gpu,return_params
#### metric utils
from Models.utils import masked_cross_entropy,softmax,return_params
#### model utils
from Models.utils import save_normal_model,save_bert_model,load_model
from tqdm import tqdm
from TensorDataset.datsetSplitter import createDatasetSplit
from TensorDataset.dataLoader import combine_features
from sklearn.metrics import accuracy_score,f1_score,roc_auc_score,recall_score,precision_score
import matplotlib.pyplot as plt
import time
import os
import GPUtil
from sklearn.utils import class_weight
import json
from Models.bertModels import *
from Models.otherModels import *
from sklearn.preprocessing import LabelEncoder
from Preprocess.dataCollect import get_test_data,convert_data,get_annotated_data,transform_dummy_data
from TensorDataset.datsetSplitter import encodeData
from tqdm import tqdm, tqdm_notebook
import pandas as pd
import ast
from torch.nn import LogSoftmax
from lime.lime_text import LimeTextExplainer
import numpy as np
import argparse
import GPUtil
# In[3]:
dict_data_folder={
'2':{'data_file':'Data/dataset.json','class_label':'Data/classes_two.npy'},
'3':{'data_file':'Data/dataset.json','class_label':'Data/classes.npy'}
}
model_dict_params={
'bert':'best_model_json/bestModel_bert_base_uncased_Attn_train_FALSE.json',
'bert_supervised':'best_model_json/bestModel_bert_base_uncased_Attn_train_TRUE.json',
'birnn':'best_model_json/bestModel_birnn.json',
'cnngru':'best_model_json/bestModel_cnn_gru.json',
'birnn_att':'best_model_json/bestModel_birnnatt.json',
'birnn_scrat':'best_model_json/bestModel_birnnscrat.json'
}
def select_model(params,embeddings):
if(params['bert_tokens']):
if(params['what_bert']=='weighted'):
model = SC_weighted_BERT.from_pretrained(
params['path_files'], # Use the 12-layer BERT model, with an uncased vocab.
num_labels = params['num_classes'], # The number of output labels
output_attentions = True, # Whether the model returns attentions weights.
output_hidden_states = False, # Whether the model returns all hidden-states.
hidden_dropout_prob=params['dropout_bert'],
params=params
)
else:
print("Error in bert model name!!!!")
return model
else:
text=params['model_name']
if(text=="birnn"):
model=BiRNN(params,embeddings)
elif(text == "birnnatt"):
model=BiAtt_RNN(params,embeddings,return_att=True)
elif(text == "birnnscrat"):
model=BiAtt_RNN(params,embeddings,return_att=True)
elif(text == "cnn_gru"):
model=CNN_GRU(params,embeddings)
elif(text == "lstm_bad"):
model=LSTM_bad(params)
else:
print("Error in model name!!!!")
return model
class modelPred():
def __init__(self,model_to_use,params):
self.params=params
# self.params["device"]='cuda'
self.embeddings=None
if(self.params['bert_tokens']):
self.train,self.val,self.test=createDatasetSplit(params)
self.vocab=None
vocab_size =0
padding_idx =0
else:
self.train,self.val,self.test,vocab_own=createDatasetSplit(params)
self.params['embed_size']=vocab_own.embeddings.shape[1]
self.params['vocab_size']=vocab_own.embeddings.shape[0]
self.vocab=vocab_own
self.embeddings=vocab_own.embeddings
if torch.cuda.is_available() and self.params['device']=='cuda':
# Tell PyTorch to use the GPU.
self.device = torch.device("cuda")
deviceID = get_gpu(self.params)
torch.cuda.set_device(deviceID[0])
else:
print('Since you dont want to use GPU, using the CPU instead.')
self.device = torch.device("cpu")
self.model=select_model(self.params,self.embeddings)
if(self.params['bert_tokens']==False):
#pass
self.model=load_model(self.model,self.params)
if(self.params["device"]=='cuda'):
self.model.cuda()
self.model.eval()
def return_probab(self,sentences_list):
"""Input: should be a list of sentences"""
"""Ouput: probablity values"""
params=self.params
device = self.device
if(params['auto_weights']):
y_test = [ele[2] for ele in self.test]
encoder = LabelEncoder()
encoder.classes_ = np.load('Data/classes.npy')
params['weights']=class_weight.compute_class_weight('balanced',np.unique(y_test),y_test).astype('float32')
temp_read=transform_dummy_data(sentences_list)
test_data=get_test_data(temp_read,params,message='text')
test_extra=encodeData(test_data,self.vocab,params)
test_dataloader=combine_features(test_extra,params,is_train=False)
# Put the model in evaluation mode--the dropout layers behave differently
# during evaluation.
# Tracking variables
post_id_all=list(test_data['Post_id'])
print("Running eval on test data...")
t0 = time.time()
true_labels=[]
pred_labels=[]
logits_all=[]
#attention_all=[]
input_mask_all=[]
# Evaluate data for one epoch
for step,batch in enumerate(test_dataloader):
# Progress update every 40 batches.
if step % 40 == 0 and not step == 0:
# Calculate elapsed time in minutes.
elapsed = format_time(time.time() - t0)
# `batch` contains three pytorch tensors:
# [0]: input ids
# [1]: attention vals
# [2]: attention mask
# [3]: labels
b_input_ids = batch[0].to(device)
b_att_val = batch[1].to(device)
b_input_mask = batch[2].to(device)
b_labels = batch[3].to(device)
# (source: https://stackoverflow.com/questions/48001598/why-do-we-need-to-call-zero-grad-in-pytorch)
#model.zero_grad()
outputs = self.model(b_input_ids,
attention_vals=b_att_val,
attention_mask=b_input_mask,
labels=None,device=device)
logits = outputs[0]
#print(logits)
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.detach().cpu().numpy()
# Calculate the accuracy for this batch of test sentences.
# Accumulate the total accuracy.
pred_labels+=list(np.argmax(logits, axis=1).flatten())
true_labels+=list(label_ids.flatten())
logits_all+=list(logits)
#attention_all+=list(attention_vectors)
input_mask_all+=list(batch[2].detach().cpu().numpy())
logits_all_final=[]
for logits in logits_all:
logits_all_final.append(list(softmax(logits)))
return np.array(logits_all_final)
# In[ ]:
def standaloneEval_with_lime(params, model_to_use,test_data=None,topk=2,rational=False):
encoder = LabelEncoder()
encoder.classes_ = np.load('Data/classes.npy')
explainer = LimeTextExplainer(class_names=list(encoder.classes_),split_expression='\s+',random_state=333,bow=False)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=False)
list_dict=[]
modelClass=modelPred(model_to_use,params)
if(rational==True):
sentence_list=[]
post_id_list=[]
for index,row in tqdm(test_data.iterrows(),total=len(test_data)):
#print(row)
if(row['Label']=='normal'):
continue
if(params['bert_tokens']):
tokens=tokenizer.convert_ids_to_tokens(row['Text'])[1:-1]
sentence=tokenizer.convert_tokens_to_string(tokens)
else:
tokens=row['Text']
sentence= " ".join(tokens)
sentence_list.append(sentence)
post_id_list.append(row['Post_id'])
probab_list=modelClass.return_probab(sentence_list)
for post_id,proba in zip(post_id_list,list(probab_list)):
temp={}
temp["annotation_id"]=post_id
temp["classification_scores"]={"hatespeech":proba[0],"normal":proba[1],"offensive":proba[2]}
list_dict.append(temp)
else:
for index,row in tqdm(test_data.iterrows(),total=len(test_data)):
if(row['Label']=='normal'):
continue
if(params['bert_tokens']):
tokens=tokenizer.convert_ids_to_tokens(row['Text'])[1:-1]
sentence=tokenizer.convert_tokens_to_string(tokens)
else:
tokens=row['Text']
sentence= " ".join(tokens)
temp={}
exp = explainer.explain_instance(sentence, modelClass.return_probab, num_features=6, top_labels=3,num_samples=params['num_samples'])
pred_id=np.argmax(exp.predict_proba)
pred_label=encoder.inverse_transform([pred_id])[0]
ground_label=row['Label']
temp["annotation_id"]=row['Post_id']
temp["classification"]=pred_label
temp["classification_scores"]={"hatespeech":exp.predict_proba[0],"normal":exp.predict_proba[1],"offensive":exp.predict_proba[2]}
attention = [0]*len(sentence.split(" "))
explanation = exp.as_map()[pred_id]
for exp in explanation:
if(exp[1]>0):
attention[exp[0]]=exp[1]
if(params['bert_tokens']==True):
final_explanation=[0]
tokens=sentence.split(" ")
for i in range(len(tokens)):
temp_tokens=tokenizer.encode(tokens[i],add_special_tokens = False)
for j in range(len(temp_tokens)):
final_explanation.append(attention[i])
final_explanation.append(0)
attention = final_explanation
if(rational==False):
assert(len(attention) == len(row['Attention']))
topk_indicies = sorted(range(len(attention)), key=lambda i: attention[i])[-topk:]
temp_hard_rationales=[]
for ind in topk_indicies:
temp_hard_rationales.append({'end_token':ind+1,'start_token':ind})
temp["rationales"]=[{"docid": row['Post_id'],
"hard_rationale_predictions": temp_hard_rationales,
"soft_rationale_predictions": attention,
#"soft_sentence_predictions":[1.0],
"truth":0}]
list_dict.append(temp)
return list_dict,test_data
# In[115]:
def get_final_dict_with_lime(params,model_name,test_data,topk):
list_dict_org,test_data=standaloneEval_with_lime(params,model_name,test_data=test_data, topk=topk)
test_data_with_rational=convert_data(test_data,params,list_dict_org,rational_present=True,topk=topk)
list_dict_with_rational,_=standaloneEval_with_lime(params,model_name,test_data=test_data_with_rational, topk=topk,rational=True)
test_data_without_rational=convert_data(test_data,params,list_dict_org,rational_present=False,topk=topk)
list_dict_without_rational,_=standaloneEval_with_lime(params,model_name,test_data=test_data_without_rational, topk=topk,rational=True)
final_list_dict=[]
for ele1,ele2,ele3 in zip(list_dict_org,list_dict_with_rational,list_dict_without_rational):
ele1['sufficiency_classification_scores']=ele2['classification_scores']
ele1['comprehensiveness_classification_scores']=ele3['classification_scores']
final_list_dict.append(ele1)
return final_list_dict
return list_dict_org
# In[ ]:
# In[88]:
class NumpyEncoder(json.JSONEncoder):
""" Special json encoder for numpy types """
def default(self, obj):
if isinstance(obj, (np.int_, np.intc, np.intp, np.int8,
np.int16, np.int32, np.int64, np.uint8,
np.uint16, np.uint32, np.uint64)):
return int(obj)
elif isinstance(obj, (np.float_, np.float16, np.float32,
np.float64)):
return float(obj)
elif isinstance(obj,(np.ndarray,)): #### This is the fix
return obj.tolist()
return json.JSONEncoder.default(self, obj)
if __name__=='__main__':
my_parser = argparse.ArgumentParser(description='Which model to use')
# Add the arguments
my_parser.add_argument('model_to_use',
metavar='--model_to_use',
type=str,
help='model to use for evaluation')
my_parser.add_argument('num_samples',
metavar='--number_of_samples',
type=int,
help='number of samples each instance of the data to pass in lime')
my_parser.add_argument('attention_lambda',
metavar='--attention_lambda',
type=str,
help='required to assign the contribution of the atention loss')
args = my_parser.parse_args()
model_to_use=args.model_to_use
params={}
params['num_classes']=3
params['data_file']=dict_data_folder[str(params['num_classes'])]['data_file']
params['class_names']=dict_data_folder[str(params['num_classes'])]['class_label']
temp_read=get_annotated_data(params)
with open('Data/post_id_divisions.json', 'r') as fp:
post_id_dict=json.load(fp)
temp_read=temp_read[temp_read['post_id'].isin(post_id_dict['test'])]
params=return_params(model_dict_params[model_to_use],float(args.attention_lambda))
params['num_classes']=3
params['num_samples']=args.num_samples
params['variance']=1
params['device']='cpu'
fix_the_random(seed_val = params['random_seed'])
test_data=get_test_data(temp_read,params,message='text')
final_dict=get_final_dict_with_lime(params,model_to_use,test_data,topk=5)
path_name=model_dict_params[model_to_use]
path_name_explanation='explanations_dicts/'+path_name.split('/')[1].split('.')[0]+'_explanation_with_lime_'+str(params['num_samples'])+'_'+str(params['att_lambda'])+'.json'
with open(path_name_explanation, 'w') as fp:
fp.write('\n'.join(json.dumps(i,cls=NumpyEncoder) for i in final_dict))
# In[ ]: