forked from hate-alert/HateXplain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesting_for_bias.py
290 lines (239 loc) · 10.8 KB
/
testing_for_bias.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import torch
import transformers
from transformers import *
import glob
from transformers import BertTokenizer
from transformers import BertForSequenceClassification, AdamW, BertConfig
import random
from transformers import BertTokenizer
#### common utils
from Models.utils import fix_the_random,format_time,get_gpu,return_params
#### metric utils
from Models.utils import masked_cross_entropy,softmax,return_params
#### model utils
from Models.utils import save_normal_model,save_bert_model,load_model
from tqdm import tqdm
from TensorDataset.datsetSplitter import createDatasetSplit
from TensorDataset.dataLoader import combine_features
from sklearn.metrics import accuracy_score,f1_score,roc_auc_score,recall_score,precision_score
import matplotlib.pyplot as plt
import time
import os
import GPUtil
from sklearn.utils import class_weight
import json
from Models.bertModels import *
from Models.otherModels import *
from sklearn.preprocessing import LabelEncoder
from Preprocess.dataCollect import get_test_data,convert_data,get_annotated_data,transform_dummy_data
from TensorDataset.datsetSplitter import encodeData
from tqdm import tqdm, tqdm_notebook
import pandas as pd
import ast
from torch.nn import LogSoftmax
from lime.lime_text import LimeTextExplainer
import numpy as np
import argparse
import GPUtil
# In[3]:
dict_data_folder={
'2':{'data_file':'Data/dataset.json','class_label':'Data/classes_two.npy'},
'3':{'data_file':'Data/dataset.json','class_label':'Data/classes.npy'}
}
model_dict_params={
'bert':'best_model_json/bestModel_bert_base_uncased_Attn_train_FALSE.json',
'bert_supervised':'best_model_json/bestModel_bert_base_uncased_Attn_train_TRUE.json',
'birnn':'best_model_json/bestModel_birnn.json',
'cnngru':'best_model_json/bestModel_cnn_gru.json',
'birnn_att':'best_model_json/bestModel_birnnatt.json',
'birnn_scrat':'best_model_json/bestModel_birnnscrat.json'
}
def select_model(params,embeddings):
if(params['bert_tokens']):
print(params['num_classes'])
if(params['what_bert']=='weighted'):
model = SC_weighted_BERT.from_pretrained(
params['path_files'], # Use the 12-layer BERT model, with an uncased vocab.
num_labels = params['num_classes'], # The number of output labels
output_attentions = True, # Whether the model returns attentions weights.
output_hidden_states = False, # Whether the model returns all hidden-states.
hidden_dropout_prob=params['dropout_bert'],
params=params
)
else:
print("Error in bert model name!!!!")
return model
else:
text=params['model_name']
if(text=="birnn"):
model=BiRNN(params,embeddings)
elif(text == "birnnatt"):
model=BiAtt_RNN(params,embeddings,return_att=True)
elif(text == "birnnscrat"):
model=BiAtt_RNN(params,embeddings,return_att=True)
elif(text == "cnn_gru"):
model=CNN_GRU(params,embeddings)
elif(text == "lstm_bad"):
model=LSTM_bad(params)
else:
print("Error in model name!!!!")
return model
def standaloneEval(params, test_data=None,extra_data_path=None, topk=2,use_ext_df=False):
device = torch.device("cpu")
embeddings=None
if(params['bert_tokens']):
train,val,test=createDatasetSplit(params)
vocab_own=None
vocab_size =0
padding_idx =0
else:
train,val,test,vocab_own=createDatasetSplit(params)
params['embed_size']=vocab_own.embeddings.shape[1]
params['vocab_size']=vocab_own.embeddings.shape[0]
embeddings=vocab_own.embeddings
if(params['auto_weights']):
y_test = [ele[2] for ele in test]
encoder = LabelEncoder()
encoder.classes_ = np.load(params['class_names'],allow_pickle=True)
params['weights']=class_weight.compute_class_weight('balanced',np.unique(y_test),y_test).astype('float32')
if(extra_data_path!=None):
params_dash={}
params_dash['num_classes']=2
params_dash['data_file']=extra_data_path
params_dash['class_names']=dict_data_folder[str(params['num_classes'])]['class_label']
temp_read = get_annotated_data(params_dash)
with open('Data/post_id_divisions.json', 'r') as fp:
post_id_dict=json.load(fp)
temp_read=temp_read[temp_read['post_id'].isin(post_id_dict['test'])]
test_data=get_test_data(temp_read,params,message='text')
test_extra=encodeData(test_data,vocab_own,params)
test_dataloader=combine_features(test_extra,params,is_train=False)
elif(use_ext_df):
test_extra=encodeData(test_data,vocab_own,params)
test_dataloader=combine_features(test_extra,params,is_train=False)
else:
test_dataloader=combine_features(test,params,is_train=False)
model=select_model(params,embeddings)
if(params['bert_tokens']==False):
model=load_model(model,params)
model.eval()
# Put the model in evaluation mode--the dropout layers behave differently
# during evaluation.
# Tracking variables
if((extra_data_path!=None) or (use_ext_df==True) ):
post_id_all=list(test_data['Post_id'])
else:
post_id_all=list(test['Post_id'])
print("Running eval on test data...")
t0 = time.time()
true_labels=[]
pred_labels=[]
logits_all=[]
input_mask_all=[]
# Evaluate data for one epoch
for step, batch in tqdm(enumerate(test_dataloader),total=len(test_dataloader)):
# Progress update every 40 batches.
if step % 40 == 0 and not step == 0:
# Calculate elapsed time in minutes.
elapsed = format_time(time.time() - t0)
# `batch` contains three pytorch tensors:
# [0]: input ids
# [1]: attention vals
# [2]: attention mask
# [3]: labels
b_input_ids = batch[0].to(device)
b_att_val = batch[1].to(device)
b_input_mask = batch[2].to(device)
b_labels = batch[3].to(device)
# (source: https://stackoverflow.com/questions/48001598/why-do-we-need-to-call-zero-grad-in-pytorch)
model.zero_grad()
outputs = model(b_input_ids,
attention_vals=b_att_val,
attention_mask=b_input_mask,
labels=None,device=device)
logits = outputs[0]
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.detach().cpu().numpy()
# Calculate the accuracy for this batch of test sentences.
# Accumulate the total accuracy.
pred_labels+=list(np.argmax(logits, axis=1).flatten())
true_labels+=list(label_ids.flatten())
logits_all+=list(logits)
input_mask_all+=list(batch[2].detach().cpu().numpy())
logits_all_final=[]
for logits in logits_all:
logits_all_final.append(softmax(logits))
list_dict=[]
for post_id,logits,pred,ground_truth in zip(post_id_all,logits_all_final,pred_labels,true_labels):
# if(ground_truth==1):
# continue
temp={}
encoder = LabelEncoder()
encoder.classes_ = np.load('Data/classes_two.npy',allow_pickle=True)
pred_label=encoder.inverse_transform([pred])[0]
ground_label=encoder.inverse_transform([ground_truth])[0]
temp["annotation_id"]=post_id
temp["classification"]=pred_label
temp["ground_truth"]=ground_label
temp["classification_scores"]={"non-toxic":logits[0],"toxic":logits[1]}
list_dict.append(temp)
return list_dict,test_data
def get_final_dict(params,test_data,topk):
list_dict_org,test_data=standaloneEval(params, extra_data_path=test_data, topk=2)
return list_dict_org
# In[115]:
# def get_final_dict_with_lime(params,model_name,test_data,topk):
# list_dict_org,test_data=standaloneEval_with_lime(params,model_name,test_data=test_data, topk=topk)
# test_data_with_rational=convert_data(test_data,params,list_dict_org,rational_present=True,topk=topk)
# list_dict_with_rational,_=standaloneEval_with_lime(params,model_name,test_data=test_data_with_rational, topk=topk,rational=True)
# test_data_without_rational=convert_data(test_data,params,list_dict_org,rational_present=False,topk=topk)
# list_dict_without_rational,_=standaloneEval_with_lime(params,model_name,test_data=test_data_without_rational, topk=topk,rational=True)
# final_list_dict=[]
# for ele1,ele2,ele3 in zip(list_dict_org,list_dict_with_rational,list_dict_without_rational):
# ele1['sufficiency_classification_scores']=ele2['classification_scores']
# ele1['comprehensiveness_classification_scores']=ele3['classification_scores']
# final_list_dict.append(ele1)
# final_list_dict=list_dict_org
# return final_list_dict
# In[ ]:
# In[88]:
class NumpyEncoder(json.JSONEncoder):
""" Special json encoder for numpy types """
def default(self, obj):
if isinstance(obj, (np.int_, np.intc, np.intp, np.int8,
np.int16, np.int32, np.int64, np.uint8,
np.uint16, np.uint32, np.uint64)):
return int(obj)
elif isinstance(obj, (np.float_, np.float16, np.float32,
np.float64)):
return float(obj)
elif isinstance(obj,(np.ndarray,)): #### This is the fix
return obj.tolist()
return json.JSONEncoder.default(self, obj)
if __name__=='__main__':
my_parser = argparse.ArgumentParser(description='Which model to use')
# Add the arguments
my_parser.add_argument('model_to_use',
metavar='--model_to_use',
type=str,
help='model to use for evaluation')
my_parser.add_argument('attention_lambda',
metavar='--attention_lambda',
type=str,
help='required to assign the contribution of the atention loss')
args = my_parser.parse_args()
model_to_use=args.model_to_use
params=return_params(model_dict_params[model_to_use],float(args.attention_lambda),2)
params['variance']=1
params['num_classes']=2
fix_the_random(seed_val = params['random_seed'])
params['class_names']=dict_data_folder[str(params['num_classes'])]['class_label']
params['data_file']=dict_data_folder[str(params['num_classes'])]['data_file']
#test_data=get_test_data(temp_read,params,message='text')
final_dict=get_final_dict(params, params['data_file'],topk=5)
path_name=model_dict_params[model_to_use]
path_name_explanation='explanations_dicts/'+path_name.split('/')[1].split('.')[0]+'_bias.json'
with open(path_name_explanation, 'w') as fp:
fp.write('\n'.join(json.dumps(i,cls=NumpyEncoder) for i in final_dict))
# In[ ]: