forked from Prinsphield/Wechat_AutoJump
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
67 lines (54 loc) · 3.03 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import tensorflow as tf
import numpy as np
import os
import cv2
class JumpModel:
def __init__(self):
self.img_shape = (640, 720)
self.batch_size = 8
self.input_channle = 3
self.out_channel = 2
def conv2d(self, name, input, ks, stride):
with tf.name_scope(name):
with tf.variable_scope(name):
w = tf.get_variable('%s-w' % name, shape=ks, initializer=tf.truncated_normal_initializer())
b = tf.get_variable('%s-b' % name, shape=[ks[-1]], initializer=tf.constant_initializer())
out = tf.nn.conv2d(input, w, strides=[1, stride, stride, 1], padding='SAME', name='%s-conv' % name)
out = tf.nn.bias_add(out, b, name='%s-biad_add' % name)
return out
def make_conv_bn_relu(self, name, input, ks, stride, is_training):
out = self.conv2d('%s-conv' % name, input, ks, stride)
out = tf.layers.batch_normalization(out, name='%s-bn' % name, training=is_training)
out = tf.nn.relu(out, name='%s-relu' % name)
return out
def make_fc(self, name, input, ks, keep_prob):
with tf.name_scope(name):
with tf.variable_scope(name):
w = tf.get_variable('%s-w' % name, shape=ks, initializer=tf.truncated_normal_initializer())
b = tf.get_variable('%s-b' % name, shape=[ks[-1]], initializer=tf.constant_initializer())
out = tf.matmul(input, w, name='%s-mat' % name)
out = tf.nn.bias_add(out, b, name='%s-bias_add' % name)
# out = tf.nn.dropout(out, keep_prob, name='%s-drop' % name)
return out
def forward(self, img, is_training, keep_prob, name='coarse'):
with tf.name_scope(name):
with tf.variable_scope(name):
out = self.conv2d('conv1', img, [3, 3, self.input_channle, 16], 2)
# out = tf.layers.batch_normalization(out, name='bn1', training=is_training)
out = tf.nn.relu(out, name='relu1')
out = self.make_conv_bn_relu('conv2', out, [3, 3, 16, 32], 1, is_training)
out = tf.nn.max_pool(out, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
out = self.make_conv_bn_relu('conv3', out, [5, 5, 32, 64], 1, is_training)
out = tf.nn.max_pool(out, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
out = self.make_conv_bn_relu('conv4', out, [7, 7, 64, 128], 1, is_training)
out = tf.nn.max_pool(out, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
out = self.make_conv_bn_relu('conv5', out, [9, 9, 128, 256], 1, is_training)
out = tf.nn.max_pool(out, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
out = tf.reshape(out, [-1, 256 * 20 * 23])
out = self.make_fc('fc1', out, [256 * 20 * 23, 256], keep_prob)
out = self.make_fc('fc2', out, [256, 2], keep_prob)
return out
if __name__ == '__main__':
model = JumpModel()
out = model.forward(tf.zeros((1, 640, 720, 3)))
print(out.get_shape().as_list())