From 34670cc941114a85535f4cdffb69de5d841ac89e Mon Sep 17 00:00:00 2001 From: Arne Binder Date: Mon, 22 Jan 2024 19:48:59 +0100 Subject: [PATCH] remove WrappedMetricWithUnbatchFunction --- .../wrapped_metric_with_unbatch_function.py | 48 ------------------- 1 file changed, 48 deletions(-) delete mode 100644 src/pie_modules/taskmodules/metrics/wrapped_metric_with_unbatch_function.py diff --git a/src/pie_modules/taskmodules/metrics/wrapped_metric_with_unbatch_function.py b/src/pie_modules/taskmodules/metrics/wrapped_metric_with_unbatch_function.py deleted file mode 100644 index a681d4213..000000000 --- a/src/pie_modules/taskmodules/metrics/wrapped_metric_with_unbatch_function.py +++ /dev/null @@ -1,48 +0,0 @@ -import logging -from typing import Any, Callable, Dict, Generic, List, Sequence, TypeVar, Union - -from torch import Tensor -from torchmetrics import Metric - -logger = logging.getLogger(__name__) - - -T = TypeVar("T") - - -class WrappedMetricWithUnbatchFunction(Metric, Generic[T]): - """A wrapper around a metric that can be used with a batched input. - - Args: - unbatch_function: A function that takes a batched input and returns an iterable of - individual inputs. This is used to unbatch the input before passing it to the wrapped - metric. - metric: The metric to wrap. It should be a subclass of torchmetrics.Metric. - """ - - def __init__( - self, unbatch_function: Callable[[T], Sequence[Any]], metric: Metric, **kwargs - ) -> None: - super().__init__(**kwargs) - self.unbatch_function = unbatch_function - self.metric = metric - - def update(self, predictions: T, targets: T) -> None: - prediction_list = self.unbatch_function(predictions) - target_list = self.unbatch_function(targets) - if len(prediction_list) != len(target_list): - raise ValueError( - f"Number of predictions ({len(prediction_list)}) and targets ({len(target_list)}) do not match." - ) - for prediction_str, target_str in zip(prediction_list, target_list): - self.metric(prediction_str, target_str) - - def compute(self) -> Any: - return self.metric.compute() - - def reset(self) -> None: - self.metric.reset() - - @property - def metric_state(self) -> Dict[str, Union[List[Tensor], Tensor]]: - return self.metric.metric_state