-
Notifications
You must be signed in to change notification settings - Fork 1
/
sentence_splitter.py
129 lines (106 loc) · 4.88 KB
/
sentence_splitter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from __future__ import annotations
import logging
from typing import TypeVar
from pytorch_ie.annotations import LabeledSpan
from pytorch_ie.documents import TextDocumentWithLabeledPartitions
logger = logging.getLogger(__name__)
D = TypeVar("D", bound=TextDocumentWithLabeledPartitions)
class NltkSentenceSplitter:
"""A document processor that adds sentence partitions to a TextDocumentWithLabeledPartitions document.
It uses the NLTK Punkt tokenizer to split the text of the document into sentences. See
https://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.punkt.PunktSentenceTokenizer for more information.
Args:
partition_layer_name: The name of the partition layer to add the sentence partitions to. This layer
must be an AnnotationLayer of LabeledSpan annotations.
text_field_name: The name of the text field in the document to split into sentences.
sentencizer_url: The URL to the NLTK Punkt tokenizer model.
inplace: A boolean value that determines whether the sentence partitions are added to the input document
or a new document is created.
"""
def __init__(
self,
partition_layer_name: str = "labeled_partitions",
text_field_name: str = "text",
sentencizer_url: str = "tokenizers/punkt/PY3/english.pickle",
inplace: bool = True,
):
try:
import nltk
except ImportError:
raise ImportError(
"NLTK must be installed to use the NltkSentenceSplitter. "
"You can install NLTK with `pip install nltk`."
)
self.partition_layer_name = partition_layer_name
self.text_field_name = text_field_name
self.inplace = inplace
# download the NLTK Punkt tokenizer model
nltk.download("punkt")
self.sentencizer = nltk.data.load(sentencizer_url)
def __call__(self, document: D) -> D:
if not self.inplace:
document = document.copy()
partition_layer = document[self.partition_layer_name]
if len(partition_layer) > 0:
logger.warning(
f"Layer {self.partition_layer_name} in document {document.id} is not empty. "
f"Clearing it before adding new sentence partitions."
)
partition_layer.clear()
text: str = getattr(document, self.text_field_name)
sentence_spans = self.sentencizer.span_tokenize(text)
sentences = [
LabeledSpan(start=start, end=end, label="sentence") for start, end in sentence_spans
]
partition_layer.extend(sentences)
return document
class FlairSegtokSentenceSplitter:
"""A document processor that adds sentence partitions to a TextDocumentWithLabeledPartitions document.
It uses the Flair SegtokSentenceSplitter to split the text of the document into sentences. See
https://github.com/flairNLP/flair/blob/master/flair/splitter.py for more information.
Args:
partition_layer_name: The name of the partition layer to add the sentence partitions to. This layer
must be an AnnotationLayer of LabeledSpan annotations.
text_field_name: The name of the text field in the document to split into sentences.
inplace: A boolean value that determines whether the sentence partitions are added to the input document
or a new document is created.
"""
def __init__(
self,
partition_layer_name: str = "labeled_partitions",
text_field_name: str = "text",
inplace: bool = True,
):
try:
from flair.splitter import SegtokSentenceSplitter
except ImportError:
raise ImportError(
"Flair must be installed to use the FlairSegtokSentenceSplitter. "
"You can install Flair with `pip install flair`."
)
self.partition_layer_name = partition_layer_name
self.text_field_name = text_field_name
self.sentencizer = SegtokSentenceSplitter()
self.inplace = inplace
def __call__(self, document: D) -> D:
if not self.inplace:
document = document.copy()
partition_layer = document[self.partition_layer_name]
if len(partition_layer) > 0:
logger.warning(
f"Layer {self.partition_layer_name} in document {document.id} is not empty. "
f"Clearing it before adding new sentence partitions."
)
partition_layer.clear()
text: str = getattr(document, self.text_field_name)
sentence_spans = self.sentencizer.split(text)
sentences = [
LabeledSpan(
start=sentence.start_position,
end=sentence.start_position + len(sentence.text),
label="sentence",
)
for sentence in sentence_spans
]
partition_layer.extend(sentences)
return document