-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMetric.py
353 lines (275 loc) · 12.1 KB
/
Metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import json
import csv
import math
def Completeness(Dataset, Rulset):
with open("json/" + Dataset + "_" + Rulset + "_rules.json") as mon_fichier:
rules = json.load(mon_fichier)
first = True
covered = 0
total = 0
labels = []
with open("Data/" + Dataset + "/" + Dataset + ".csv", newline='') as csvfile:
loadData = csv.reader(csvfile, delimiter=' ', quotechar='|')
for row in loadData:
if not first: # on ne prens pas la première ligne du csv
total += 1
for r in rules:
valide = True
for i in range(len(r) - 1): # la dernière valeur est le label
j = list(r.items())[i][0] # numérot de la colone concerné
if r[j][1] == math.inf:
if float(row[int(j)]) < r[j][0]:
valide = False
break
else:
if float(row[int(j)]) > r[j][1]:
valide = False
break
if valide:
if r not in labels:
labels.append(r)
break
if valide:
covered += 1
else:
first = False
#print(covered, " instance couverte sur ", total, " donc Completeness = ", covered / total)
return covered / total
def Correctness(Dataset, Rulset):
with open("json/" + Dataset + "_" + Rulset + "_rules.json") as mon_fichier:
rules = json.load(mon_fichier)
first = True
covered = 0
total = 0
label = dict()
labels = []
with open("Data/" + Dataset + "/" + Dataset + ".csv", newline='') as csvfile:
loadData = csv.reader(csvfile, delimiter=' ', quotechar='|')
for row in loadData:
if not first: # on ne prens pas la première ligne du csv
total += 1
for r in rules:
valide = True
for i in range(len(r) - 1): # la dernière valeur est le label
j = list(r.items())[i][0] # numérot de la colone concerné
if r[j][1] == math.inf:
if float(row[int(j)]) < r[j][0]:
valide = False
break
else:
if float(row[int(j)]) > r[j][1]:
valide = False
break
if valide:
covered += 1
label[total+1] = r["label"]
if r not in labels:
labels.append(r)
break
else:
first = False
i = 0
correct = 0
first = True
with open("Data/" + Dataset + "/labels_" + Dataset + ".csv", newline='') as csvfile:
loadData = csv.reader(csvfile, delimiter=' ', quotechar='|')
for row in loadData:
if not first:
if i in label:
if int(row[0]) == label[i]:
correct += 1
i += 1
else:
first = False
#print(correct, " instance corectement classifier sur ", total, " donc Completeness = ", correct / total)
return correct / total
def Fidelity(Dataset, Rulset):
with open("json/" + Dataset + "_" + Rulset + "_rules.json") as mon_fichier:
rules = json.load(mon_fichier)
first = True
covered = 0
total = 0
label = dict()
labels = []
with open("Data/" + Dataset + "/" + Dataset + ".csv", newline='') as csvfile:
loadData = csv.reader(csvfile, delimiter=' ', quotechar='|')
for row in loadData:
if not first: # on ne prens pas la première ligne du csv
total += 1
for r in rules:
valide = True
for i in range(len(r) - 1): # la dernière valeur est le label
j = list(r.items())[i][0] # numérot de la colone concerné
if r[j][1] == math.inf:
if float(row[int(j)]) < r[j][0]:
valide = False
break
else:
if float(row[int(j)]) > r[j][1]:
valide = False
break
if valide:
covered += 1
label[total + 1] = r["label"]
if r not in labels:
labels.append(r)
break
else:
first = False
i = 0
correct = 0
first = True
with open("Data/" + Dataset + "/" + Dataset + "-predictions.csv", newline='') as csvfile: #remplacer par les prédictions du model
loadData = csv.reader(csvfile, delimiter=' ', quotechar='|')
for row in loadData:
if not first:
if i in label:
if int(row[0]) == label[i]:
correct += 1
i += 1
else:
first = False
#print(correct, " instance corectement classifier sur ", total, " donc Completeness = ", correct / total)
return correct / total
def Robustness(Dataset, Rulset, delta):
with open("json/" + Dataset + "_" + Rulset + "_rules.json") as mon_fichier:
rules = json.load(mon_fichier)
first = True
total = 0
label = dict()
with open("Data/" + Dataset + "/" + Dataset + ".csv", newline='') as csvfile:
loadData = csv.reader(csvfile, delimiter=' ', quotechar='|')
for row in loadData:
if not first: # on ne prens pas la première ligne du csv
total += 1
for r in rules:
valide = True
for i in range(len(r) - 1): # la dernière valeur est le label
j = list(r.items())[i][0] # numérot de la colone concerné
if r[j][1] == math.inf:
if float(row[int(j)]) < r[j][0]:
valide = False
break
else:
if float(row[int(j)]) > r[j][1]:
valide = False
break
if valide:
label[total+1] = r["label"]
break
else:
first = False
first = True
total = 0
labelPerturbed = dict()
# on reffeer la même chose mai en modifiant data
with open("Data/" + Dataset + "/" + Dataset + ".csv", newline='') as csvfile:
loadData = csv.reader(csvfile, delimiter=' ', quotechar='|')
for row in loadData:
if not first: # on ne prens pas la première ligne du csv
total += 1
for r in rules:
valide = True
for i in range(len(r) - 1): # la dernière valeur est le label
j = list(r.items())[i][0] # numérot de la colone concerné
if r[j][1] == math.inf:
if (float(row[int(j)]) + float(row[int(j)]) * delta) < r[j][0]:
valide = False
break
else:
if (float(row[int(j)]) + float(row[int(j)]) * delta) > r[j][1]:
valide = False
break
if valide:
labelPerturbed[total + 1] = r["label"]
break
else:
first = False
#compare label et labelPerturbed
same = 0
for i in range(total):
if i in label and i in labelPerturbed:
if label[i] == labelPerturbed[i]: same += 1
#print(same, " régle non changer sur ", total, " donc Robustness = ", same / total)
return same / total
def NumberOfRules(Dataset, Rulset):
with open("json/" + Dataset + "_" + Rulset + "_rules.json") as mon_fichier:
rules = json.load(mon_fichier)
#print(len(rules), " règle ont été écrite")
return len(rules)
def AverageRuleLength(Dataset, Rulset):
with open("json/" + Dataset + "_" + Rulset + "_rules.json") as mon_fichier:
rules = json.load(mon_fichier)
total = 0
taille = 0
for r in rules:
total += 1
taille += len(r)-1 # la taille du dictionnaire - le label
#print("la longeur moyenne des règles est de ", taille/total)
return taille/total
def FractionOfClasses(Dataset, Rulset):
with open("Data/" + Dataset + "/featureNames_" + Dataset + ".csv", newline='') as csvfile:
loadData = csv.reader(csvfile, delimiter=' ', quotechar='|')
nbClasses = 0
for row in loadData: nbClasses += 1
with open("json/" + Dataset + "_" + Rulset + "_rules.json") as mon_fichier:
rules = json.load(mon_fichier)
CoveredClasses = []
for r in rules:
for i in range(nbClasses):
if str(i) in r and i not in CoveredClasses: CoveredClasses.append(i)
#print(len(CoveredClasses), " classe sont couverte sur ", nbClasses, " donc FractionOfClasses = ", len(CoveredClasses)/nbClasses)*
return len(CoveredClasses)/nbClasses
def FractionOverlap(Dataset, Rulset):
with open("json/" + Dataset + "_" + Rulset + "_rules.json") as mon_fichier:
rules = json.load(mon_fichier)
res = [len(rules)]
with open("Data/" + Dataset + "/" + Dataset + ".csv", newline='') as csvfile:
loadData = csv.reader(csvfile, delimiter=' ', quotechar='|')
total = 0
overlap = 0
first = True
for row in loadData:
if not first:
total += 1
for i in range(len(rules)):
for j in range(i + 1, len(rules)):
valide1 = True
for r in rules[i]:
if r != "label":
if rules[i][r][1] == math.inf:
if float(row[int(r)]) < rules[i][r][0]:
valide1 = False
break
else:
if float(row[int(r)]) > rules[i][r][1]:
valide1 = False
break
valide2 = True
for r in rules[j]:
if r != "label":
if rules[j][r][1] == math.inf:
if float(row[int(r)]) < rules[j][r][0]:
valide2 = False
break
else:
if float(row[int(r)]) > rules[j][r][1]:
valide2 = False
break
if valide1 and valide2: overlap += 1
else: first = False
#print("FractionOverlap = ", 2 / ((len(rules)) * (len(rules) - 1)) * (overlap / total))
if overlap == 0 : return 0
return 2 / ((len(rules)) * (len(rules) - 1)) * (overlap / total)
if __name__ == '__main__':
dataset = "breast-cancer"
rulset = "lore"
print(dataset, rulset)
print("Completeness = ", Completeness(dataset, rulset))
print("Fidelity = ", Fidelity(dataset, rulset))
print("Correctness = ", Correctness(dataset, rulset))
print("Robustness = ", Robustness(dataset, rulset, 0.01))
print("NumberOfRules = ", NumberOfRules(dataset, rulset))
print("AverageRuleLength = ", AverageRuleLength(dataset, rulset))
print("FractionOfClasses = ", FractionOfClasses(dataset, rulset))
print("FractionOverlap = ", FractionOverlap(dataset, rulset))