-
Notifications
You must be signed in to change notification settings - Fork 50
/
hmi.c
599 lines (525 loc) · 17.6 KB
/
hmi.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/*
* hmi.c
*
* Created: Apr 2021
* Author: Arjan te Marvelde
*
* This file contains the HMI driver, processing user inputs.
* It will also do the logic behind these, and write feedback to the LCD.
*
* *** MMI controls ***
*
* The 4 buttons have the following functions (GP_BTN_x):
* 0 - Enter, confirm : Used to select menu items or make choices from a list
* 1 - Escape, cancel : Used to exit a (sub)menu or cancel the current action
* 2 - Left : Used to move left, e.g. to select a digit
* 3 - Right : Used to move right, e.g. to select a digit
*
* The rotary encoder (ENCA, ENCB) controls an up/down counter connected to some field.
* It may be that the encoder has a bushbutton as well, this can be connected to GP4.
* ___ ___
* ___| |___| |___ A
* ___ ___ _
* _| |___| |___| B
*
* Encoder channel A triggers on falling edge.
* Depending on B level, count is incremented or decremented.
*
* The PTT is connected to GP_PTT_IN connects to Microphone PTT switch (active low).
* A separate PTT output (GP_PTT_OUT) is used to signal other system components (active high).
*
*
* *** Display layout ***
*
* TFT 320x240, divided in 4 areas:
* +--------------------------+
* | V USB S9+20 | ---> Rx/Tx, Modulation, S-meter
* | +----------------------+ |
* | | 1 4 0 7 4 . 0 kHz| | ---> Frequency of carrier
* | +----------------------+ |
* | | \
* | | |-> Four body lines:
* | | | gain, vox, AGC settings etc.
* | | /
* | v < > x | ---> Button labels (Accept, Left, Right, Cancel)
* +--------------------------+
*
* In the main HMI state only tuning is possible:
* Left '<' and Right '>' buttons to select digit
* Encoder to change value,
* Accept 'v' button to commit change.
*
* Use Cancel 'x' button to enter the parameter settings.
* In parameter settings:
* Encoder to change value
* Accept to accept the shown value
* Left/Right to change parameter
* Cancel to exit parameter settings
*
* Parameter Values
* ------------------------------------------
* Mode: USB, LSB, AM, CW
* AGC: Fast, Slow, Off
* Pre: +10dB, 0, -10dB, -20dB, -30dB
* Vox: NoVOX, Low, Medium, High
*
* --to be extended--
*/
#include <stdio.h>
#include <string.h>
#include "pico/stdlib.h"
#include "hardware/timer.h"
#include "hardware/clocks.h"
#include "hardware/gpio.h"
#include "uSDR.h"
#include "lcd.h"
#include "hmi.h"
#include "dsp.h"
#include "si5351.h"
#include "relay.h"
/*
* Some macros
*/
#ifndef MIN
#define MIN(x, y) ((x)<(y)?(x):(y)) // Get min value
#endif
#ifndef MAX
#define MAX(x, y) ((x)>(y)?(x):(y)) // Get max value
#endif
/*
* GPIO masks
*/
#define GP_MASK_IN ((1<<GP_ENC_A)|(1<<GP_ENC_B)|(1<<GP_BTN_0)|(1<<GP_BTN_1)|(1<<GP_BTN_2)|(1<<GP_BTN_3))
#define GP_MASK_OUT (1<<GP_PTT_OUT)
/*
* IRQ event flags
*/
#define GPIO_IRQ_ALL (GPIO_IRQ_LEVEL_LOW|GPIO_IRQ_LEVEL_HIGH|GPIO_IRQ_EDGE_FALL|GPIO_IRQ_EDGE_RISE)
#define GPIO_IRQ_EDGE_ALL (GPIO_IRQ_EDGE_FALL|GPIO_IRQ_EDGE_RISE)
/*** ***/
/*** HMI logic in a state machine ***/
/*** ***/
/*
* Events are generated by the different buttons and encoder.
* Depending on state the event leads to a certain action.
*
* The FSM is a 2 dimensional array indexed with state and event.
* Each element contains a function call for changing content and a pointer to the next state.
* The function arranges all parameters for that specific state.
*/
// HMI State definitions
#define HMI_S_TUN 0
#define HMI_S_MOD 1
#define HMI_S_AGC 2
#define HMI_S_PRE 3
#define HMI_S_VOX 4
#define HMI_NSTATES 5
// HMI Event definitions
#define HMI_E_INC 0
#define HMI_E_DEC 1
#define HMI_E_ACC 2
#define HMI_E_LFT 3
#define HMI_E_RGT 4
#define HMI_E_CAN 5
#define HMI_NEVENTS 6
// Define FSM element
typedef struct
{
void (*f)(int event); // State/event function call
int next_state; // Next state in FSM
} fsm_t;
int hmi_event, hmi_state; // Last event and state
bool hmi_update; // HMI values were updated
// FSM function doing nothing
void hmi_nop(int){};
// Handle events when in TUN state
uint32_t hmi_freq; // Frequency from Tune state
int hmi_i_bpf;
int hmi_s_bpf[5] = {REL_LPF2, REL_BPF6, REL_BPF12, REL_BPF24, REL_BPF40};
int hmi_digit; // Active digit
uint32_t hmi_step[6] = {10000000, 1000000, 100000, 10000, 1000, 100}; // Frequency digit increments
#define HMI_MAXFREQ 30000000
#define HMI_MINFREQ 100
#define HMI_MULFREQ 1 // Factor between HMI and VFO frequency
void hmi_tun(int evt)
{
if ((evt == HMI_E_ACC) || (evt == HMI_E_CAN)) // Remove highlight
{
hmi_digit = -1;
return;
}
if (hmi_digit < 0) hmi_digit = 4; // Highlight kHz digit
switch (evt)
{
case HMI_E_INC:
if (hmi_freq < (HMI_MAXFREQ - hmi_step[hmi_digit])) // Boundary check
hmi_freq += hmi_step[hmi_digit]; // Increment selected digit
break;
case HMI_E_DEC:
if (hmi_freq > (HMI_MINFREQ + hmi_step[hmi_digit])) // Boundary check
hmi_freq -= hmi_step[hmi_digit]; // Decrement selected digit
break;
case HMI_E_RGT:
hmi_digit = (hmi_digit<5)?hmi_digit+1:5; // Digit to the right
break;
case HMI_E_LFT:
hmi_digit = (hmi_digit>0)?hmi_digit-1:0; // Digit to the left
break;
}
};
// Handle events when in MOD state
#define HMI_NMOD 4
int hmi_i_mod, hmi_b_mod; // MOD index, backup index
char* hmi_d_mod[HMI_NMOD] = {"USB","LSB","AM ","CW "}; // MOD display strings
int hmi_s_mod[HMI_NMOD] = {MODE_USB, MODE_LSB, MODE_AM, MODE_CW}; // MOD target setting in dsp.c
void hmi_mod(int evt)
{
switch (evt)
{
case HMI_E_ACC:
hmi_b_mod = hmi_i_mod; // Store value in backup
hmi_update = true; // Mark a parameter was updated
break;
case HMI_E_CAN:
case HMI_E_RGT:
case HMI_E_LFT:
hmi_i_mod = hmi_b_mod; // Restore backup value
break;
case HMI_E_INC:
if (hmi_i_mod<HMI_NMOD-1) hmi_i_mod++;
break;
case HMI_E_DEC:
if (hmi_i_mod>0) hmi_i_mod--;
break;
}
};
// Handle events when in AGC state
#define HMI_NAGC 3
int hmi_i_agc, hmi_b_agc; // AGC index and backup
char* hmi_d_agc[HMI_NAGC] = {"None","Slow","Fast"}; // AGC display strings
int hmi_s_agc[HMI_NAGC] = {AGC_NONE, AGC_SLOW, AGC_FAST}; // AGC target setting in dsp.c
void hmi_agc(int evt)
{
switch (evt)
{
case HMI_E_ACC:
hmi_b_agc = hmi_i_agc; // Store value in backup
hmi_update = true; // Mark a parameter was updated
break;
case HMI_E_CAN:
case HMI_E_RGT:
case HMI_E_LFT:
hmi_i_agc = hmi_b_agc; // Restore backup value
break;
case HMI_E_INC:
if (hmi_i_agc<HMI_NAGC-1) hmi_i_agc++;
break;
case HMI_E_DEC:
if (hmi_i_agc>0) hmi_i_agc--;
break;
}
};
// Handle events when in PRE state
#define HMI_NPRE 5
int hmi_i_pre, hmi_b_pre; // PRE index and backup
char* hmi_d_pre[HMI_NPRE] = {"-30dB","-20dB","-10dB"," 0dB","+10dB"}; // PRE display strings
int hmi_s_pre[HMI_NPRE] = {REL_ATT_30, REL_ATT_20, REL_ATT_10, REL_ATT_00, REL_PRE_10}; // PRE target setting in dsp.c
void hmi_pre(int evt)
{
switch (evt)
{
case HMI_E_ACC:
hmi_b_pre = hmi_i_pre; // Exit with change: store value in backup
hmi_update = true; // Mark a parameter was updated
break;
case HMI_E_CAN:
case HMI_E_RGT:
case HMI_E_LFT:
hmi_i_pre = hmi_b_pre; // Exit without change: restore backup value
break;
case HMI_E_INC:
if (hmi_i_pre<HMI_NPRE-1) hmi_i_pre++;
break;
case HMI_E_DEC:
if (hmi_i_pre>0) hmi_i_pre--;
break;
}
};
// Handle events when in VOX state
#define HMI_NVOX 4
int hmi_i_vox, hmi_b_vox; // VOX index and backup
char* hmi_d_vox[HMI_NVOX] = {"None ","Low ","Medium","High "}; // VOX level display strings
int hmi_s_vox[HMI_NVOX] = {VOX_OFF, VOX_LOW, VOX_MEDIUM, VOX_HIGH}; // VOX target setting in dsp.c
void hmi_vox(int evt)
{
switch (evt)
{
case HMI_E_ACC:
hmi_b_vox = hmi_i_vox; // Exit with change: store value in backup
hmi_update = true; // Mark a parameter was updated
break;
case HMI_E_CAN:
case HMI_E_RGT:
case HMI_E_LFT:
hmi_i_vox = hmi_b_vox; // Exit without change: restore backup value
break;
case HMI_E_INC:
if (hmi_i_vox<HMI_NVOX-1) hmi_i_vox++;
break;
case HMI_E_DEC:
if (hmi_i_vox>0) hmi_i_vox--;
break;
}
};
fsm_t hmi_fsm[HMI_NEVENTS][HMI_NSTATES] =
{
/*INC*/ {{hmi_tun,HMI_S_TUN},{hmi_mod,HMI_S_MOD},{hmi_agc,HMI_S_AGC},{hmi_pre,HMI_S_PRE},{hmi_vox,HMI_S_VOX}},
/*DEC*/ {{hmi_tun,HMI_S_TUN},{hmi_mod,HMI_S_MOD},{hmi_agc,HMI_S_AGC},{hmi_pre,HMI_S_PRE},{hmi_vox,HMI_S_VOX}},
/*ACC*/ {{hmi_tun,HMI_S_TUN},{hmi_mod,HMI_S_MOD},{hmi_agc,HMI_S_AGC},{hmi_pre,HMI_S_PRE},{hmi_vox,HMI_S_VOX}},
/*LFT*/ {{hmi_tun,HMI_S_TUN},{hmi_mod,HMI_S_VOX},{hmi_agc,HMI_S_MOD},{hmi_pre,HMI_S_AGC},{hmi_vox,HMI_S_PRE}},
/*RGT*/ {{hmi_tun,HMI_S_TUN},{hmi_mod,HMI_S_AGC},{hmi_agc,HMI_S_PRE},{hmi_pre,HMI_S_VOX},{hmi_vox,HMI_S_MOD}},
/*CAN*/ {{hmi_tun,HMI_S_MOD},{hmi_mod,HMI_S_TUN},{hmi_agc,HMI_S_TUN},{hmi_pre,HMI_S_TUN},{hmi_vox,HMI_S_TUN}}
};
// Determine event and invoke the HMI state machine
uint32_t callcount;
void hmi_callback(uint gpio, uint32_t events)
{
callcount++;
// Determine the HMI event
if (!((1<<gpio)&GP_MASK_IN)) return; // Exit if not HMI control
if (!(events&GPIO_IRQ_EDGE_FALL)) return; // Exit if not falling edge
switch (gpio)
{
case GP_ENC_A: // Encoder
hmi_event = gpio_get(GP_ENC_B)?HMI_E_DEC:HMI_E_INC; // Increment when low, decrement otherwise
break;
case GP_BTN_3: // Enter
hmi_event = HMI_E_ACC;
break;
case GP_BTN_2: // Left
hmi_event = HMI_E_LFT;
break;
case GP_BTN_1: // Right
hmi_event = HMI_E_RGT;
break;
case GP_BTN_0: // Cancel
hmi_event = HMI_E_CAN;
break;
}
// Invoke HMI State Machine
hmi_fsm[hmi_event][hmi_state].f(hmi_event);
hmi_state = hmi_fsm[hmi_event][hmi_state].next_state;
}
/*** ***/
/*** Prepare display layout, printing areas and buttons ***/
/*** ***/
/*
* Left and right margins : 10 pix
* Top line : 0 - 35 max symbol height 32 pix
* Freq window : 36 - 93 max symbol height 50 pix
* Body window : 94 - 205 max 4 lines of 24 pix
* Button row : 206 - 239 max symbol height 32 pix
*/
#define HMI_BGND BGNDCOLOR
#define HMI_TEXT LGRAY
#define HMI_HIGH LBLUE
#define HMI_FREQ LGREEN
#define HMI_BUTT WHITE
// Initialize overall display layout
void hmi_layout()
{
sFONT *sym = &FontSYMs;
// Initialize display layout
lcd_clear( 0, 0, LCD_WIDTH, LCD_HEIGHT, HMI_BGND);
lcd_clear( 15, 36, LCD_WIDTH-30, 58, BLACK);
// 4 Buttons
lcd_clear( 32, 216, 62, 23, BLACK); lcd_putxy( 56, 219, 'A', sym, HMI_BUTT, BLACK); // Enter
lcd_clear( 98, 216, 62, 23, BLACK); lcd_putxy(122, 219, '?', sym, HMI_BUTT, BLACK); // Left
lcd_clear(164, 216, 62, 23, BLACK); lcd_putxy(188, 219, 'T', sym, HMI_BUTT, BLACK); // Right
lcd_clear(230, 216, 62, 23, BLACK); lcd_putxy(254, 219, '@', sym, HMI_BUTT, BLACK); // Escape
}
// Print top line, font Arial Rounded 16x24
void hmi_topline(bool tx, char *mode, int sval)
{
sFONT *sym = &FontSYM;
sFONT *fs = &FontAR;
char s[10];
// Tx or Rx symbol, S-meter
if (tx)
lcd_putxy( 20, 0, 'Q', sym, HMI_TEXT, HMI_BGND);
else
lcd_putxy( 20, 0, 'P', sym, HMI_TEXT, HMI_BGND);
// Mode (state dependent)
if (hmi_state == HMI_S_MOD)
lcd_writexy( 60, 8, mode, fs, HMI_HIGH, HMI_BGND);
else
lcd_writexy( 60, 8, mode, fs, HMI_TEXT, HMI_BGND);
// Signal
if ((0<sval)&&(sval<10))
sprintf(s, "S:%d ", sval);
else if ((90<sval)&&(sval<95))
sprintf(s, "S:9+%d", (sval-90)*10);
lcd_writexy( 160, 8, s, fs, HMI_TEXT, HMI_BGND);
}
// Print frequency window, 1 rows 7 Segment 32x50
// Highlight dig if >= 0
void hmi_frequency(double freq, int dig)
{
sFONT *f7 = &Font7SPP;
sFONT *fb = &FontGR;
char s[32];
int i;
sprintf(s,"%7.1f",(double)freq/1000.0); // Format is important: 12345.6
s[7] = 0; // Terminate to be sure
for(i=0; i<7; i++) if (s[i]==0x20) s[i] = 0x2f; // Replace spaces with correct font char
for(i=0; i<5; i++) // Leading 5 digits
{
if (hmi_digit==i)
lcd_putxy( 20+i*32,40,s[i], f7, HMI_HIGH, BLACK);
else
lcd_putxy( 20+i*32,40,s[i], f7, HMI_FREQ, BLACK);
}
lcd_putxy( 20+5*32,40,s[i++], f7, HMI_FREQ, BLACK); // Decimal point
if (hmi_digit==5) // Final digit
lcd_putxy( 20+6*32,40,s[6], f7, HMI_HIGH, BLACK);
else
lcd_putxy( 20+6*32,40,s[6], f7, HMI_FREQ, BLACK);
lcd_writexy(250,60,"kHz", fb, HMI_FREQ, BLACK); // Units
}
// Print control area, 3 rows Arial Rounded 16x24
void hmi_controls(char *gain, char *vox, char *agc)
{
sFONT *fs = &FontAR;
uint16_t col;
lcd_writexy( 20, 110 ,"AGC :" , fs, HMI_TEXT, HMI_BGND);
col = (hmi_state == HMI_S_AGC)?HMI_HIGH:HMI_TEXT;
lcd_writexy( 110, 110, agc, fs, col, HMI_BGND);
lcd_writexy( 20, 134 ,"Gain:" , fs, HMI_TEXT, HMI_BGND);
col = (hmi_state == HMI_S_PRE)?HMI_HIGH:HMI_TEXT;
lcd_writexy( 110, 134, gain, fs, col, HMI_BGND);
lcd_writexy( 20, 158 ,"Vox :" , fs, HMI_TEXT, HMI_BGND);
col = (hmi_state == HMI_S_VOX)?HMI_HIGH:HMI_TEXT;
lcd_writexy( 110, 158, vox, fs, col, HMI_BGND);
// sprintf(s, "%lu S:%d E:%d", callcount, hmi_state, hmi_event);
// lcd_writexy( 20, 182 ,s , fs, HMI_HIGH, HMI_BGND);
}
/*** ***/
/*** HMI evaluation routine ***/
/*** ***/
/*
* This routine is called on a regular basis from the main loop.
* Test PTT state
* Redraw the display, representing the current state.
* If something changed by HMI, activate in system
*/
#define PTT_DEBOUNCE 3 // Nr of cycles for debounce
int ptt_state; // Debounce counter
bool ptt_active; // Resulting state
void hmi_evaluate(void)
{
int band;
// PTT detect and debounce
if (gpio_get(GP_PTT_IN)) // Get PTT level
{
if (ptt_state<PTT_DEBOUNCE) // Increment debounce counter when high
ptt_state++;
}
else
{
if (ptt_state>0) // Decrement debounce counter when low
ptt_state--;
}
if (ptt_state == PTT_DEBOUNCE) // Reset PTT when debounced level high
ptt_active = false;
if (ptt_state == 0) // Set PTT active when debounced level low
ptt_active = true;
// Redraw display
hmi_topline( tx_enabled, hmi_d_mod[hmi_i_mod], get_sval());
hmi_frequency( hmi_freq, hmi_digit);
hmi_controls(hmi_d_pre[hmi_i_pre], hmi_d_vox[hmi_i_vox], hmi_d_agc[hmi_i_agc]);
// Update frequency corresponding to latest entered values
if (0<si_evaluate(0, HMI_MULFREQ*(hmi_freq-FC_OFFSET))) // See if VFO needs update
{
if (hmi_freq < 2500000UL) band = 0; // Check bandfilter setting
else if (hmi_freq < 6000000UL) band = 1;
else if (hmi_freq < 12000000UL) band = 2;
else if (hmi_freq < 24000000UL) band = 3;
else band = 4;
if (band != hmi_i_bpf) // Force update when band changed
{
hmi_i_bpf = band;
hmi_update = true;
}
}
// Update peripherals according to menu setting
if (hmi_update)
{
hmi_update = false;
dsp_setmode(hmi_s_mod[hmi_i_mod]);
dsp_setvox(hmi_s_vox[hmi_i_vox]);
dsp_setagc(hmi_s_agc[hmi_i_agc]);
relay_setattn(hmi_s_pre[hmi_i_pre]);
relay_setband(hmi_s_bpf[hmi_i_bpf]);
}
}
/*
* Initialize the User interface
*/
void hmi_init(void)
{
/*
* Notes on using GPIO interrupts:
* The callback handles interrupts for all GPIOs with IRQ enabled.
* Level interrupts don't seem to work properly.
* For debouncing, the GPIO pins should be pulled-up and connected to gnd with 100nF.
* PTT has separate debouncing logic
*/
// Init output GPIOs
gpio_init_mask(GP_MASK_OUT);
gpio_set_dir_out_masked(GP_MASK_OUT);
// Init input GPIOs
gpio_init_mask(GP_MASK_IN|GP_PTT_IN);
gpio_set_dir_in_masked(GP_MASK_IN|GP_PTT_IN);
// Enable pull-ups
gpio_pull_up(GP_ENC_A);
gpio_pull_up(GP_ENC_B);
gpio_pull_up(GP_BTN_0);
gpio_pull_up(GP_BTN_1);
gpio_pull_up(GP_BTN_2);
gpio_pull_up(GP_BTN_3);
gpio_pull_up(GP_PTT_IN);
// Enable interrupt on edge detected
gpio_set_irq_enabled(GP_ENC_A, GPIO_IRQ_EDGE_ALL, true);
gpio_set_irq_enabled(GP_BTN_0, GPIO_IRQ_EDGE_ALL, true);
gpio_set_irq_enabled(GP_BTN_1, GPIO_IRQ_EDGE_ALL, true);
gpio_set_irq_enabled(GP_BTN_2, GPIO_IRQ_EDGE_ALL, true);
gpio_set_irq_enabled(GP_BTN_3, GPIO_IRQ_EDGE_ALL, true);
// PTT will be polled, no IRQ
//gpio_set_irq_enabled(GP_PTT_IN, GPIO_IRQ_EDGE_ALL, false);
// Install callback, one function for all GPIOs, and enable interrupt line
gpio_set_irq_enabled_with_callback(GP_ENC_A, GPIO_IRQ_EDGE_ALL, true, hmi_callback);
// Initialize frequency
hmi_state = HMI_S_TUN;
hmi_digit = 4; // No digit highlight
hmi_freq = 7074000UL; // Initial frequency
hmi_i_bpf = REL_BPF12;
si_setphase(0, PH270); // Set phase to 180deg (depends on mixer type)
si_evaluate(0, HMI_MULFREQ*(hmi_freq-FC_OFFSET)); // Set freq to 7074 kHz (depends on mixer type)
// PTT_IN debounce
ptt_state = PTT_DEBOUNCE;
ptt_active = false;
// Initialize HMI settings
hmi_i_mod = 0;
hmi_i_pre = 3;
hmi_i_agc = 0;
hmi_i_vox = 0;
// Update uSDR settings according to HMI
hmi_update = false;
dsp_setmode(hmi_s_mod[hmi_i_mod]);
dsp_setvox(hmi_s_vox[hmi_i_vox]);
dsp_setagc(hmi_s_agc[hmi_i_agc]);
relay_setattn(hmi_s_pre[hmi_i_pre]);
relay_setband(hmi_s_bpf[hmi_i_bpf]);
// Draw HMI structure
hmi_layout();
}