From cd3605bf107b6b89170c005370337627b4033fed Mon Sep 17 00:00:00 2001 From: LelielC Date: Sat, 6 Apr 2024 17:20:04 -0500 Subject: [PATCH] =?UTF-8?q?eliminaci=C3=B3n=20carpetas=20vac=C3=ADas?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../Cuadernos/Pendientes/Curso_Compass.ipynb | 33 - .../Pendientes/Instalacion_mongo_mac.ipynb | 33 - .../Pendientes/instalacion_mongo_ubuntu.ipynb | 61 - .../Intro_Tensores_II-checkpoint.ipynb | 1123 ---------------- ...41sicos de probabilidad)-checkpoint.ipynb" | 604 --------- .../Prob_Conceptos_Basicos-checkpoint.ipynb | 504 -------- ..._Distribuciones_continuas-checkpoint.ipynb | 515 -------- .../Prob_Var_Prob_conjunta-checkpoint.ipynb | 517 -------- ...Prob_Variables_Aleatorias-checkpoint.ipynb | 1145 ----------------- ...\263n-Lineal-Pyton-Copy1-checkpoint.ipynb" | 612 --------- ...si\303\263n-Lineal-Pyton-checkpoint.ipynb" | 635 --------- .../am_intro_regresion-checkpoint.ipynb | 833 ------------ .../ti_Teoria_Informacion-checkpoint.ipynb | 661 ---------- Inicio/Cuadernos/Consideraciones | 349 ----- readme.txt | 1 - 15 files changed, 7626 deletions(-) delete mode 100644 Bases_de_datos/Cuadernos/Pendientes/Curso_Compass.ipynb delete mode 100644 Bases_de_datos/Cuadernos/Pendientes/Instalacion_mongo_mac.ipynb delete mode 100644 Bases_de_datos/Cuadernos/Pendientes/instalacion_mongo_ubuntu.ipynb delete mode 100644 Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Intro_Tensores_II-checkpoint.ipynb delete mode 100644 "Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Conceptos_Basicos (Conceptos b\303\241sicos de probabilidad)-checkpoint.ipynb" delete mode 100644 Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Conceptos_Basicos-checkpoint.ipynb delete mode 100644 Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Distribuciones_continuas-checkpoint.ipynb delete mode 100644 Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Var_Prob_conjunta-checkpoint.ipynb delete mode 100644 Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Variables_Aleatorias-checkpoint.ipynb delete mode 100644 "Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Regresi\303\263n-Lineal-Pyton-Copy1-checkpoint.ipynb" delete mode 100644 "Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Regresi\303\263n-Lineal-Pyton-checkpoint.ipynb" delete mode 100644 Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/am_intro_regresion-checkpoint.ipynb delete mode 100644 Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/ti_Teoria_Informacion-checkpoint.ipynb delete mode 100644 Inicio/Cuadernos/Consideraciones delete mode 100644 readme.txt diff --git a/Bases_de_datos/Cuadernos/Pendientes/Curso_Compass.ipynb b/Bases_de_datos/Cuadernos/Pendientes/Curso_Compass.ipynb deleted file mode 100644 index ca6bdf83..00000000 --- a/Bases_de_datos/Cuadernos/Pendientes/Curso_Compass.ipynb +++ /dev/null @@ -1,33 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "id": "2f5eb4f9-be85-4139-be5e-7b758edd8097", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/Bases_de_datos/Cuadernos/Pendientes/Instalacion_mongo_mac.ipynb b/Bases_de_datos/Cuadernos/Pendientes/Instalacion_mongo_mac.ipynb deleted file mode 100644 index 93d2379c..00000000 --- a/Bases_de_datos/Cuadernos/Pendientes/Instalacion_mongo_mac.ipynb +++ /dev/null @@ -1,33 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "id": "cf460f54-715f-46f6-a5f1-c1d1cabb35c9", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/Bases_de_datos/Cuadernos/Pendientes/instalacion_mongo_ubuntu.ipynb b/Bases_de_datos/Cuadernos/Pendientes/instalacion_mongo_ubuntu.ipynb deleted file mode 100644 index 0dd562fc..00000000 --- a/Bases_de_datos/Cuadernos/Pendientes/instalacion_mongo_ubuntu.ipynb +++ /dev/null @@ -1,61 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "20597c68-135e-4a8b-99d9-1553987cb4b0", - "metadata": {}, - "source": [ - "Instalación: traducir de [mongodb.com](https://www.mongodb.com/docs/manual/tutorial/install-mongodb-on-ubuntu/)." - ] - }, - { - "cell_type": "markdown", - "id": "b2ebecea-1de0-4ac4-af15-ac53f80db294", - "metadata": { - "tags": [] - }, - "source": [ - "### Inicializar base de datos" - ] - }, - { - "cell_type": "markdown", - "id": "c5ab006e-ae34-441a-bd49-9565887f4f97", - "metadata": {}, - "source": [ - "```bash\n", - "sudo systemctl start mongod\n", - "```" - ] - }, - { - "cell_type": "markdown", - "id": "61a76e57-bd34-4024-abbf-dbfc77d85761", - "metadata": {}, - "source": [ - "Para detener poner la palabra `start` por `stop`" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Intro_Tensores_II-checkpoint.ipynb b/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Intro_Tensores_II-checkpoint.ipynb deleted file mode 100644 index d3f4a79e..00000000 --- a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Intro_Tensores_II-checkpoint.ipynb +++ /dev/null @@ -1,1123 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#
Tensores
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
Introducción
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "Fuente: Alvaro Montenegro" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introducción" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En esta lección aprenderemos los conceptos básicos de tensores y como los usamos para manipular imágenes usando tensores." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Tensor" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Un tensor es un concepto matemático que generaliza los conceptos de escalares, vectores y matrices." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "Fuente: Alvaro Montenegro" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En términos muy simples, un tensor es un objeto dinámico (*matemáticamente diríamos que es una función entre espacios vectoriales*) que vive dentro de una estructura. \n", - "\n", - "Pero no vamos a hacer un tratado matemático aquí. \n", - "\n", - "Lo importante en esta clase es entender que en realidad, escalares, vectores, matrices pueden verse como tensores fijos y eso será suficiente para lo que sigue." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Rango" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Diremos que los escalares tienen rango (*shape*) 0, los vectores tiene rango 1, las matrices rango 2 y el tensor de la derecha rango 3. \n", - "\n", - "El rango corresponde al número de índices que se requiere para identificar de manera única a cada elemento del tensor.\n", - "\n", - "Observe que por ejemplo, en el último tensor, requiere (fila, columna, cajón). \n", - "\n", - "También podría ser (cajón, fila, columna)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Redes Neuronales" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La siguiente imagen muestra el estado en un instante de una una parte oculta de una red neuronal profunda." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "Fuente: Alvaro Montenegro" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "El proceso puede modelarse en forma simplificada usando matrices y vectores como se ve a continuación." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$\n", - "W_{12}L_1 = L2 \\to \\begin{pmatrix} -1 & 0.4 & 1.5\\\\ 0.8 & 0.5 & 0.75 \\\\ 0.2 & -0.3 & 1\\\\ \\end{pmatrix}\\begin{pmatrix} 2.5\\\\ 4 \\\\ 1.2 \\end{pmatrix} = \\begin{pmatrix} 0.9\\\\ 4.9 \\\\ 0.5 \\end{pmatrix}\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Observe por ejemplo que: \n", - "\n", - "$$-1\\times 2.5 + 0.4\\times 4 + 1.5\\times 1.2 = 0.9$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En la fase de entrenamiento de la red neuronal, los pesos de la matriz se van modificando hasta que se encuentra un óptimo local. Este proceso ocurre en toda la estructura de la red.\n", - "\n", - "Por lo que no parece extraño que las GPU y las TPU pasen todo el tiempo haciendo operaciones de este tipo, que al final se reduce a sumas y multiplicaciones.\n", - "\n", - "Por otro lado, lo que ocurre es que los objetos que se procesan no necesariamente son vectores como en el ejemplo, y esto lleva a la necesidad de generalizar los conceptos.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Producto tensorial" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La operación más ejecutada en aprendizaje profundo es el producto tensorial.\n", - "\n", - "Vamos a suponer que cada elemento en los tensores de rango 3 se indexan mediante coordenadas (fila, columna, profundidad) y que los tensores de rango 2 se indexan como (fila, columna).\n", - "\n", - "La siguiente imagen ilustra la forma de un producto tensorial. \n", - "\n", - "- A la izquierda (azul) se tiene un tensor de tamaño digamos $n \\times p \\times s$. \n", - "\n", - "- El tensor que está operando en el centro (rosa) es de tamaño $p \\times r$. Este actúa operando en este caso sobre cada capa del tensor de la izquierda haciendo un producto usual de matrices. \n", - "\n", - "- Por lo que el tensor resultante (verde) a la derecha tiene tamaño $n \\times r \\times s$\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "Fuente: Alvaro Montenegro" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Explicación del producto" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La explicación del proceso es la siguiente:\n", - "\n", - "Cada capa frontal del tensor azul es multiplica por el tensor rosa y el resultado es colocando como una capa frontal en el tensor resultante (verde).\n", - "\n", - "Cada multiplicación es entre dos matrices (azul * rosa) y el resultado es una matriz (verde).\n", - "\n", - "Cada multiplicación de matrices se hace por la fórmula fila (matriz azul) * columna (matriz rosa).\n", - "\n", - "Vamos por ejemplo a suponer que una capa roja es $ azul = \\begin{pmatrix} 1 & 2 & 1\\\\ 3 & 4 & 1 \\\\ 4 & 5 & 0\\\\ \\end{pmatrix}$, $rosa = \\begin{pmatrix} 5 & 10\\\\ 20 & 30 \\\\ 4 & 1\\end{pmatrix}$\n", - "\n", - "Entonces se tiene que:\n", - "\n", - "$$\n", - "azul \\times rosa = \\begin{pmatrix} 1 & 2 & 1\\\\ 3 & 4 & 1 \\\\ 4 & 5 & 0\\\\ \\end{pmatrix} \\times \\begin{pmatrix} 5 & 10\\\\ 20 & 30\\\\ 4 & 1\\end{pmatrix} = \\begin{pmatrix} 1\\times 5 + 2 \\times 20 + 1 \\times 4 & 1 \\times 10 + 2\\times 30 + 1\\times 1\n", - "\\\\ 3\\times 5 + 4 \\times 20 + 1 \\times 4 & 3 \\times 10 + 4 \\times 30 + 1 \\times 1\n", - "\\\\ 4\\times 5 + 5 \\times 20 + 0 \\times 4 & 4 \\times 10 + 5 \\times 30 + 0 \\times 1\\end{pmatrix} = turquesa\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Imágenes a color" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "De manera clásica una imagen a color está compuesta de tres colores primarios: rojo (*Red*), verde (*Green*) y azul (*Blue*). Para generar una imagen a color un computador maneja tres planos de color, los cuales son controlados desde tensores tridimensionales. Considere el siguiente ejemplo." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "Fuente: Alvaro Montenegro" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Cada pixel (*punto*) de la imagen es representado por una valor numérico en el rango de 0 a 255, o en rango de valores reales entre cero y 1." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Construcción aleatoria de una imagen" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Considere el siguiente código Python." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[[ 98 63 41 163 142 77 39 87 226 95]\n", - " [252 174 172 68 12 62 54 234 45 234]\n", - " [194 82 212 71 220 65 164 126 34 252]\n", - " [ 37 81 104 248 192 22 86 176 165 53]\n", - " [164 222 12 21 163 85 171 168 156 204]\n", - " [ 95 163 28 156 125 146 171 223 7 242]\n", - " [ 90 64 58 234 80 158 155 88 81 10]\n", - " [201 217 185 13 62 166 117 9 172 224]\n", - " [ 52 131 103 100 205 139 106 158 9 208]\n", - " [248 86 130 80 170 10 245 95 229 17]]\n", - "\n", - " [[ 52 9 111 120 51 167 84 213 110 47]\n", - " [236 139 185 48 178 139 183 253 238 7]\n", - " [166 133 246 117 163 69 228 175 241 111]\n", - " [ 18 191 88 124 229 226 21 217 179 224]\n", - " [207 38 205 198 83 7 222 52 74 49]\n", - " [164 151 252 148 219 175 225 60 83 169]\n", - " [176 80 247 89 121 52 208 219 61 23]\n", - " [ 90 178 179 68 55 34 55 151 215 28]\n", - " [ 86 238 5 211 214 164 153 180 150 32]\n", - " [198 58 92 167 3 31 137 83 252 60]]\n", - "\n", - " [[ 52 214 29 236 200 25 193 140 248 207]\n", - " [ 83 58 166 231 215 10 35 163 167 195]\n", - " [ 32 190 33 83 25 189 171 89 204 103]\n", - " [ 81 43 231 64 10 68 215 112 104 212]\n", - " [162 92 107 184 147 86 58 90 217 245]\n", - " [124 70 78 217 237 182 238 216 172 214]\n", - " [ 88 187 246 92 174 44 110 115 32 250]\n", - " [106 166 145 148 65 17 68 138 223 77]\n", - " [ 52 222 63 237 136 209 16 11 220 51]\n", - " [102 107 36 78 244 22 247 60 33 248]]]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "I=np.random.randint(0,255,size=(3,10,10))\n", - "print(I)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Este tensor representa una imagen de tamaño $10 \\times 10$. Son tres planos de color $10 \\times 10$.\n", - "\n", - "Observe que la primera dimensión corresponde a cada plano de color y las restantes dos dimensiones a las intensidades de cada color para cada punto.\n", - "\n", - "Renderizar (dibujar en este caso), nos lleva a la siguiente imagen." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAMq0lEQVR4nO3df6zV9X3H8dfLe+V3W2pauwqu4OZ0hLTD3LUo1SZQt/4wkrVblUUXxYVtrYLGzWGXRWf2M+tsO2vsKGqy+WsNsJQ2xuJa3aK2TAQzRZRRtHCRhts4wFL5cfW9P+5twoDL/XL4fPq9953nIzHh3HN8+871Pvmec+73fq8jQgDyOKXtBQCURdRAMkQNJEPUQDJEDSTTXWPouO7umDR2bPG5084eU3ymJP1k70+Lz3xl24TiMyXpjF+ZXGXu3v0HqsyNU/ZXmXv6/5b/0t0W+4rPlKRz31P+a+GHO1/Xj3fv97HuqxL1pLFjNX/GjOJzlz3yvuIzJempNc8Un3nNtbOKz5SkWx74rSpzH924ucrcQ5O2VJm75OunFZ/5uf7/Kj5Tkp64/rziMy9YuGrI+3j6DSRD1EAyRA0kQ9RAMkQNJEPUQDKNorb9Mdsv2d5ie2ntpQB0btiobXdJulPSxyXNkLTAdvlvQgMoosmR+oOStkTE1og4KOkhSfPrrgWgU02iniJp+2G3ewc/9v/YXmR7ne11+/v7S+0H4AQ1ifpY55cedbmUiFgWET0R0TOuu8rZpwAaaBJ1r6QzD7s9VdKrddYBcLKaRP20pLNtT7c9RtLlklbXXQtAp4Z9nhwR/bavlfRtSV2S7omIjdU3A9CRRi9+I+JhSQ9X3gVAAZxRBiRD1EAyRA0kQ9RAMkQNJFPl1K8Db0zXDzb+c/G5q+/9/eIzJem+g/cUnzlz5XXFZ0rSBZetqTI3bthVZe7dK/6kytzJC/uKz5z/4T8uPlOSfu+Sfyg+8+Xtx7yQqCSO1EA6RA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kQ9RAMlWuJtr/7s3ateA3i8996/1/V3ymJN124TXFZ35l4VPFZ0rS+x/8yypzJ39gb5W5v3jVnCpzX/n3rxWf2fueq4vPlKSZl+0oPvOJF4f+/8WRGkiGqIFkiBpIhqiBZIgaSIaogWSIGkhm2Khtn2n7MdubbG+0veTnsRiAzjQ5+aRf0o0Rsd722yQ9Y/vRiHih8m4AOjDskToidkbE+sE/vy5pk6QptRcD0JkTOk3U9jRJsyStPcZ9iyQtkqTut3WV2A1ABxq/UWZ7kqSVkq6PiKNOPI2IZRHRExE93eN5/w1oS6P6bJ+qgaDvj4hVdVcCcDKavPttSXdL2hQRt9dfCcDJaHKkniPpSklzbT87+M8nKu8FoEPDvlEWEU9I8s9hFwAF8I4WkAxRA8kQNZAMUQPJVLnw4HtPmaHPj/9O8blf/dNDxWdKUtfF5xWf+Y1fXlB8piStPLC0ytxbvzq9ytxLn1xUZe4v9c0uPvOy9XVOwVj/fPkLGv70yb4h7+NIDSRD1EAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kU+Vqoof2HlDfo1uKz/3+be8oPlOSnt3zVPGZ35+7p/hMSbp98f9Umbv5b3+9ytxFOz5VZe6srXcUn/lHXT8pPlOSfnDFA8Vn/vebFw55H0dqIBmiBpIhaiAZogaSIWogGaIGkiFqIJnGUdvusr3B9rdqLgTg5JzIkXqJpE21FgFQRqOobU+V9ElJy+uuA+BkNT1Sf0nSTZLeGuoBthfZXmd73b7+3QVWA9CJYaO2fYmkXRHxzPEeFxHLIqInInomdk8utR+AE9TkSD1H0qW2X5H0kKS5tu+ruhWAjg0bdUTcHBFTI2KapMslfTcirqi+GYCO8H1qIJkT+nnqiHhc0uNVNgFQBEdqIBmiBpIhaiAZogaSIWogGUdE8aGTzxoTF/31u4rP3dNb5wqdXWu+WXzmxrv/pvhMSfrI2adVmXvhQ1dVmTvpr26qMnfcazuKz9xx2+PFZ0rSLX92cfGZ+3e+pjcPHPKx7uNIDSRD1EAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kc0K/S6up/bvP0uaVy4rPfcc1C4vPlKTFC14rPnP1rDuKz5Sk39l0TZW56ppdZezu5XOrzN3wBy8Un7lv30eKz5Skvs/uLD7zw/84Z8j7OFIDyRA1kAxRA8kQNZAMUQPJEDWQDFEDyTSK2vZk2ytsv2h7k+3zay8GoDNNTz75sqRHIuK3bY+RNKHiTgBOwrBR2367pIskXSVJEXFQ0sG6awHoVJOn32dJ6pN0r+0Ntpfbnnjkg2wvsr3O9ro3D+wuvSeAhppE3S3pPEl3RcQsSfskLT3yQRGxLCJ6IqKna+zkslsCaKxJ1L2SeiNi7eDtFRqIHMAINGzUEfEjSdttnzP4oXmSyv+IDIAimr77fZ2k+wff+d4q6ep6KwE4GY2ijohnJfXUXQVACZxRBiRD1EAyRA0kQ9RAMkQNJFPlaqITztinX/uLp4vPvePcW4vPlKSvrF5VfObvPvFk8ZmStP8z06rM/dC4XVXm3nzvqVXmfuOq3yg+884p3ys+U5I+u+bi4jO37ds85H0cqYFkiBpIhqiBZIgaSIaogWSIGkiGqIFkiBpIhqiBZIgaSIaogWSIGkiGqIFkiBpIhqiBZIgaSIaogWSIGkiGqIFkiBpIpsqFB6f2na6//6dri8+dd+u/FZ8pSfvm3lh85jn/ubz4TEl64/Rbqsw9d/xzVeZ+YuHKKnP/ZdljxWde+dinis+UpC3/Wv7Cgxs+dHDI+zhSA8kQNZAMUQPJEDWQDFEDyRA1kAxRA8k0itr2DbY32n7e9oO2x9VeDEBnho3a9hRJiyX1RMRMSV2SLq+9GIDONH363S1pvO1uSRMkvVpvJQAnY9ioI2KHpC9I2iZpp6Q9EbHmyMfZXmR7ne11r73RV35TAI00efr9TknzJU2XdIakibavOPJxEbEsInoioue08e8uvymARpo8/f6opJcjoi8iDklaJemCumsB6FSTqLdJmm17gm1LmidpU921AHSqyWvqtZJWSFov6bnBf2dZ5b0AdKjRz1NHxC2S6vwgL4CiOKMMSIaogWSIGkiGqIFkiBpIpsrVRF99/Q39+X+U/1b2d947tfhMSTrtD79WfOb5N1xXfKYk3bWzzuegb+mbVeb+wuLNVeZ+8eJPF5/5ve46P9Iw84HyLex9aejzvzhSA8kQNZAMUQPJEDWQDFEDyRA1kAxRA8kQNZAMUQPJEDWQDFEDyRA1kAxRA8kQNZAMUQPJEDWQDFEDyRA1kAxRA8kQNZAMUQPJOCLKD7X7JP2wwUPfJenHxReoZzTtO5p2lUbXviNh1/dFxDF/EXyVqJuyvS4ielpb4ASNpn1H067S6Np3pO/K028gGaIGkmk76tH2y+tH076jaVdpdO07ondt9TU1gPLaPlIDKIyogWRai9r2x2y/ZHuL7aVt7TEc22fafsz2JtsbbS9pe6cmbHfZ3mD7W23vcjy2J9teYfvFwc/x+W3vdDy2bxj8Onje9oO2x7W905Faidp2l6Q7JX1c0gxJC2zPaGOXBvol3RgRvypptqTPjeBdD7dEUvnfoVrelyU9EhHnSvqARvDOtqdIWiypJyJmSuqSdHm7Wx2trSP1ByVtiYitEXFQ0kOS5re0y3FFxM6IWD/459c18EU3pd2tjs/2VEmflLS87V2Ox/bbJV0k6W5JioiDEbG71aWG1y1pvO1uSRMk1fml1iehrainSNp+2O1ejfBQJMn2NEmzJK1teZXhfEnSTZLeanmP4ZwlqU/SvYMvFZbbntj2UkOJiB2SviBpm6SdkvZExJp2tzpaW1H7GB8b0d9bsz1J0kpJ10fE3rb3GYrtSyTtiohn2t6lgW5J50m6KyJmSdonaSS/v/JODTyjnC7pDEkTbV/R7lZHayvqXklnHnZ7qkbg05ifsX2qBoK+PyJWtb3PMOZIutT2Kxp4WTPX9n3trjSkXkm9EfGzZz4rNBD5SPVRSS9HRF9EHJK0StIFLe90lLaiflrS2ban2x6jgTcbVre0y3HZtgZe822KiNvb3mc4EXFzREyNiGka+Lx+NyJG3NFEkiLiR5K22z5n8EPzJL3Q4krD2SZptu0Jg18X8zQC39jrbuM/GhH9tq+V9G0NvIN4T0RsbGOXBuZIulLSc7afHfzY5yPi4fZWSuU6SfcP/uW+VdLVLe8zpIhYa3uFpPUa+K7IBo3AU0Y5TRRIhjPKgGSIGkiGqIFkiBpIhqiBZIgaSIaogWT+D07S0rmme25TAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# conda install -c conda-forge matplotlib\n", - "import matplotlib.pyplot as plt\n", - "\n", - "plt.imshow(I.T)\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Observe que " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(10, 10, 3)" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(I.T).shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Porque Python maneja las imágenes en este formato: Fila, columna y plano de color." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Imagen real" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Vamos a trabajar ahora con una imagen real." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAEgCAYAAABIE1IQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZBtyZ3fh31+ec65+72119vf69eNbgCDATAzACEAImlTpDxSiBNUOBQytZimN1pimHbYkixaDitI2VLINEWGLFo0aQdDlGnuFk3JpsSwhyOMQM5whhgMlga6X/d7/faqV8vd17Nk+o/MPJV1+lY3ejgYvB7Vr7te1b33LHky8+bvm9/fJsYYLuVSLuVSLuVSLuVSfrOI+lE34FIu5VIu5VIu5VIu5ddTLsHNpVzKpVzKpVzKpfymkktwcymXcimXcimXcim/qeQS3FzKpVzKpVzKpVzKbyq5BDeXcimXcimXcimX8ptKLsHNpVzKpVzKpVzKpfymkktwcyn/0CIi/4aI/N9+vY/9Aa5lROQTvx7XupRLuZRLqYqI/Eci8r//UbfjUj66XIKbS3mfiMjvF5HviMhcRA5F5E+LyOZFxxtj/h1jzP/oB7n2Rzn2Ui7lUj7+IiK/V0T+vojMROTI/f0HRUR+1G27lN+8cgluLuWciMi/AvwfgH8N2AC+DNwB/r8iUltzfPwb28JLuZRL+biIW0/+feD/CFwFrgD/EvCPAuvWk+g3tIGX8ptWLsHNpZQiIj3gjwJ/yBjzXxhjMmPMQ+CfxQKcf1FE/oiI/HUR+QsiMgZ+v3vvLwTX+X0i8khETkXkfysiD0Xkd7nPymNF5BVnWvrvichjETkRkf9NcJ0vicgviMhQRA5E5E+tA1iXcimX8vKJiGwA/xbwB40xf90YMzFWvmmM+ReMMStn9vnTIvK3RGQG/A4R+adE5JsiMhaRJyLyR4Jr/n9E5A9V7vNtEfmnxcqfdOzQyL3/4+6Ypoj8e25dGonI10Wk6T77a46hHonIz4vIZz7gmX63iPyqW5P+noh87ofRd5fyDy+X4OZSQvkq0AD+k/BNY8wU+M+Bf9y99XuAvw5sAv+P8FgR+THgPwT+BeAalv258SH3/a3AJ4HfCfybIvJp934B/C+AXeAr7vM/+NEf61Iu5VJ+BPIVoA78zQ857p8H/m2gC3wdmAG/D7u+/FPAvywi/7Q79s8D/6I/UUQ+j11f/hbw3wJ+O/CGO/e/A5y6Q/848AXsGrcN/K8A7T77z4HXgX3gV6isacG9fgr4c8D/BNgB/gzwn4pI/UOe71J+BHIJbi4llF3gxBiTr/nswH0O8AvGmP+XMUYbYxaV4/4Z4D8zxnzdGJMC/ybwYQXM/qgxZmGM+RbwLeDzAMaYbxhjftEYkzsG6c8A/41f26NdyqVcym+wvG89cWzHUEQWIvLb3dt/0xjzd916sjTG/JfGmO+4198G/hJn3/u/CbwuIq+71/9d4K+4tSbDAqRPAWKM+b4x5kBEFPA/AP7nxphnxpjCGPP3jDErAGPMn3Os0gr4I8DnHetUlf8x8GeMMX/fXePPAyus6f5SXjK5BDeXEsoJsHuBH8019znAkw+4xvXwc2PMnLPd00VyGPw9BzoAIvKGiPy/HWU8Bv4dzgDWpVzKpbzcckplPTHGfNUYs+k+8/rn3HoiIv+IiPyciByLyAjro7Przl8BfxVrIlfAPwf8391nfwf4U8D/GXghIn/Wmdp3sYz0/WoDRSQSkX9XRO67Neah+2jdOnMH+FccOBuKyBC4hV3zLuUlk0twcymh/AJ2J/LfDt8UkTbwTwI/6976ICbmALgZnNvEUri/FvnTwFvA68aYHvBvAJcRFpdyKR8P8evJ7/mQ46rryV8E/lPgljFmA/i/cP57/+exZu/fCcyNMb9QXsiY/5Mx5gvAZ7DmqX8NuylbAq+tufc/79r3u7Am9Ffc++vWmSfAv22M2Qx+WsaYv/Qhz3cpPwK5BDeXUooxZoR1KP4PROSfEJFERF4B/hrwFLdD+hD568DPiMhXnfPvH+XXDki6wBiYisingH/513idS7mUS/kNFmPMEPv9/w9F5J8RkY6IKBH5CaD9Aad2gb4xZikiX8ICkPC6v4D1l/n3CNYkEfktjvVJsH47S6Awxmisr8yfEJHrjq35ivOV6WIB2CnQwrLDF8n/FfiX3D1ERNrO+bn7EbrlUn6D5BLcXMo5Mcb8MSxD8sexwOLvY3csv9PbqD/k/DeBPwT8ZSyLMwGOsAvIR5V/FbuwTbALy1/5NVzjUi7lUn5E4taT/yXWgfcIeIH1nfvXgb93wWl/EPi3RGSC9dn7q2uO+Y+BzwJ/IXivh10nBsAjLGD54+6zfxX4DvDLQB+b7kK56zwCngHfA37xA57lH2D9bv6Uu8e7wO+/6PhL+dGKGPNhvp6Xcim/dhGRDjDEmpbe+xE351Iu5VJ+E4iI/D7gDxhjfuuPui2X8nLKJXNzKb/uIiI/IyIt56vzx7E7poc/2lZdyqVcym8GEZEWlt35sz/qtlzKyys/NHDjfDbeFpF3ReQP/7Ducykvpfwe4Ln7eR34veaSIryUH4JcrjP/9RIR+WngGGve+os/4uZcykssPxSzlNgU2vewSd+eYu2c/5wx5nu/7je7lEu5lP9ayuU6cymXcikXyQ+LufkS8K4x5oFLrvSX+fBwwEu5lEu5lI8il+vMpVzKpayVHxa4ucH5xExP+fAU/JdyKZdyKR9FLteZS7mUS1krP6yKzuvympyzf4nIHwD+AECtVvtCt7tFLVHUajG60Eync8aTOYVOAVDEiMRIeSFDFEXU6xEGzXKRoaKIXrdFq1lHRRGIuIbI+Rb5loTvieCPtjcxIHL28tzvs+POP6g/wrj/DcYY966pHBleQ3yfICJnR0jYVCmv4Zt31hPBc8nZdd7fzvOdYM6d/H6xJsvwADl/v/BZJPhd9pu/se+P8CpB643rt3K8Kk9WbcLaNofP4842508561v3bjh+/t5ll8n5k13n+j6xvwyhWffcZ+EDh6002l3OUBQFWTony6YYnZfva23ICygKiJI67fYG9VodpdS5IQzH/Wx+Bf0Z9IwYKfvUt9nPz/L1ufZePD/OzWV378MXxyfGmL33H/1DlQ9dZ2DdWtOlVquRJAlaa6bTKZPJhKIo/PGVuYJba+oYY1gulyil6PV6NJtNlFJrz1nb4OCYj3p89f33zz24yM1g3X1/0DZX71G9bvU61Wt+mOtD9Tn8+Rfdb13bP+o9q+f9oMdXj/tBzruo79d9Xr1u+PuDxntdO8LPiqIgTVPSNC2vZYxBa43WmqIoiOOYdrtNvV4v5/RFz/pB97uoDeva+lHmhn/94sWLH2it+WGBm6fYtNRebmKdS0sxxvxZnLf7j336U+bf/xN/gnpNoXXKt7/5ff7KX/p5vvvmO8zNAZqUmmzQSvaJpIY2OSKK7kaDf/S33qbdFn7plx9xeDDnq1/5FP/oV36Snd1toiQGpRAVuXvahVihQBSlQhVtgZOyRJYohTJg0IiAiCrBjyg/ORVKKRQgcgYCBEFrgzEZusjQOkcXGsQ4PW8QpRAUSkBFEXGUIKKI4zpRJPZ+aHs12wDAIPg2A1rQFBRFjtZu8miIIiFOEuI4Io4T+yyiUFFA0hkoityeUxi0zkEpMGKfGcFQYIxGF/apTAnvXEdKBGK/AEpFiIqIoggVKSJl+0YwKFFoozFGg/aLsu1brfOydJ3BlIDSttUDKXuu63072ZUBE4HR7nN3XZ1jjELrzIIHXSASYYwmUnZ8FTFGNCJRCcT8OCgFkVKuz+xzeVipTYHRhqLQFEVOUWh0UaCzrPziFjpD5zlGi2ubwYggRmHygsJk5HmG0bBcLTg6eIfH7/4ck+H3wAhaR+RFwWJRMJ1oBhPDIhU+9dnP8YUv/Hb2rl2z3Y5y42HHxM43gzF2zDC2vQiYQkA0Rtt+Msb+rXVBlucUuiDLNXme24XOuCsbC5KM0Wjj3z8DSUYbtLFzFFPwv/vj/8GjX+Na8Q8jH7rOwPm15tOf/rT5k3/yT1Kr1dBa861vfYu//Jf/Mm+++SZpmqK1Jo5j6vV6CSBEhF6vx1e/+lXa7Tb/4B/8Aw4PD/nKV77CV7/6VXZ2dkiSxK4Hbg3xc2KdMguP87/Dz/zx4bnrlI2IoLXGGEOe56USqx7jf6LIfkdFhDiOy7+rx4avw2cpiqJUhr6tSZIQxzFJkpTvRVEU9j15bktL+XPD6/o+9orWvx+e79vl+83/Hcfxuff8tXyfVK8dXldrfe7c8Dn9s1eBlr+OUqq8nm9zURTl+9XrhuPnx6Ha7mo7fF8XRUFRFOR5Xvaj/9wfUwUA/n3/nV6tVhwcHPDOO+/Q7/fPtXmxWDCZTJhOp6Rpymc/+1l+y2/5LVy5cuXcOIb9FoKjsM/C8QvnjJ8DWmuyLCv/Xgd8qv1a/dwYwx/7Y3/sB1prfljg5pexxc3uYpMj/V4qWSZDSZKEN157lfl8ynvv3eett59x+HyGIkJJDW1SCpwS8UreQF4URLWE/esdXn8j5fTkPY5PhswXC3aVnUSoGKXELs4G7O5boyJxu3mnpBGUEqdIwYjbeavY7fDd5BP3ZQMEjagIowv7WgSNATFlW8EQRTHGFMHC4b+wIMp9aSVGBLTRDnz5RSmyx+PbqzAUSGQVNQiioChSoihGRBOpyCpz/5/Y1kZKYQBdZFZB6twqbWPQRYYSq8wtkLMKVJTGaOVxIEYEJHJXdkBAKQcOLCio8kMCJSj0VIgxghixStgIGo1gEFHoQp9faLUpyQjtxscWDAejtW2rKdy1tXsOnNHVthclDrTY8fb0lwR/OzLGAgTsuNpraRQRBYUbM4VoO84SKyjsFzIiRmLBaGPPp8CgEKPQyjbZYBeVdDlj2H/CbPoexmQO3KRobed3pCCOAJ3y4MF3uXL1Np3eBs1OA5QDoaLsQ0puZ4cSTC6ogJLSythjlJS42IgFj1FkxycS0FFk+8nkGAdgCp3bc4wCXYBWFuy42ejZRPMRdv+/zvKR1hmwa80nPvEJ5vM57733Hvfu3ePw8PDcfAuVoxe/s7169Sqvv/46p6enHB8fM5/P2dvbK4FCFEUURXHueusASxRF71vAQ7BxESOyTvmGSsVfVyn1PnBVVbLrPq/eJ2y//zt8Pq+o/WdV0OaVfqiIPcAJ2xD+9m2o/q4Cm7Bvwmfxzx5+5sc1lPB1CEr9b9+P1eP9b98WY0zZNj+GVYATPksVKPkxrI5BdQ7EcVyCVw88wn4M7+OPK4qC1WpFv99nPB6fewY/jh70aq25f/8+V69epdvt0m63zz1/tW3+/HV9GI5jnudEUVT2UxX8+nb6z6vjFMpHYRp/KODGGJOLyP8U+NtABPw5YzPXrhUBVASrdMnz50e8/VYfXdTstTB2d05BoVdEUVLu4ItckxeaXm+Du68JRydjJM7IiwUiEImya78SFAqtnULELzaRZXYcK4MpUKIwbtEWidzm2LEnYs8xjlWxyjDYiXj2we16lSirSIy2rJDxg+O+iEbAKLQGIts2JR5MWaBVAjLRzswTlUAIUSgVYbRBKauolSRESoEYvI7TpiBGOWVlzR5FCGx8k5UpAZ4xgRFMDArBuHad3TtBxKAi5ZQ+7r7iu6tkR0DZfjNWyRpdYIxld4xgQYRjCcSBO8/YYASjC9dOg8kLRAmCZV8QZ4oRx6I5BkhUDMbe2TgAe2Z7csDGtUkDUgCiUcRoMSBuwVGuD5Q93g6v2J/IAkbREUaKcpztvE0oEVPhgC4xeZ4xnZ4wHryLzhcopGS3TGF7XcUQx1CLYDI84d13v8ve/nWut24hStu5ZQxKIFKRu02BRBKwZBHKFHY74OabMQojdv5GRmNI7PcrV+RSYHSEpQKFSOyCVGDvo9EYUSi0HYvSPPejATcfdZ3xEkURaZpycHDA22+/vXYx9UrZKw6vnHu9Hq+++irHx8dEUUSe5+9T9FVlEyq/EEBdpODXARt/nfDvqkILFS2cB1VetNbnFONF116nZENmInzmddcPgUwIbKqMlu/rUNaxSb7NVcaj2ldVAFFlF6ri21sFQCG7cdF4hG0MFXa1LdW/fV/45/D3qDI5/jmqbQwBon8dPnN4rzzPmUwm9Pv9kvnxbfDt8OAmiiKGwyHvvvsuV65codlsvm+O+ucM2+Tb4u8ftt23Jc9z4jg+N6b+uxOCmmr7Q/mgcVwnPyzmBmPM3wL+1g9yrDaGLEspTE4UR7Q6NVQcEakEVcRuZ56jxXeiPS/XKVmhqdUa3LjZ5EvKMB6PiGuWmo/iCJTvLEGp2E1aq4m1419EIsTt+MWxLhpxZiqvLMvWEiu7Y9baTZazjbJVVBj3r0FJjCZHlaYd30E45eoGG4V4xV/uyv059seyNsayI2IBhQFQChXV7LNgr6uUM0GIZQIKbdkBQ4EuNKbQzrRQoI1BETngY9kKYwfRtVVjiFxXaFDWZKMU7rdlcESFrJY3Y4CdZoWjfvw1je8EPBSwfYBlXJzJw5qD/Be6OGPWjEKpAkFZtkO0AztiWRoEwTMvxrEW1nRjsdCZ+cXPD1EWRBqxYECJgsj3tX+22H7JlH0ubc7mpNY41sa9NgW6KBwDBkKEAvJsyXj0jMX0GZCVE8Jo0MbOMSUQCajIIEbz+PG73Ln7SXb39mh32pYREkOklGsDFig7xjESZXGkscBSm8Iyfm5e2ZmXgM7xcQVSgBKhkAJdWL5Qq8KyVAbLgBZuLpRzXF+4GP1GyEdZZ7xkWVYuzq1Wq1zYg2sC5xmMPM8pioJarcbNmzcREUajEbWa3YR5E0lVufrreLmIIamap7z496s7+6rZZd374fNcpPzXKeLwdVWxV/sqBHNVkw1Qmk9C09C6dlf7rNpf/sczNlVWZB3jEyr9al+Gss4kUh2/kA1aB6bWSdgnoamlCoAvYkdCMOmv56/l+9RLCFZCEJJlGcPhkMlk8r52VZ/Pn/Po0SPu3r3L3t4enU7nA9vj219tixf/WRzH5fvhM4YMUjgGngGtyo+cufm1SBwlNBtNbt++yle+cov+SZ/JJELlsdNNBVpnSBSB0tQaMXvXt7h6dYt2p0mjWSeJhdN+hM4LVqsFnU6XKI4cDa+sElcWbRqJELHveWUszg/HDl6JHKxiEu8rY5UXIsSRZRs8bwOgTY6HOmKcMnXP6BU/RGgMCo01iTnFqRSRiGWbUGC8g6NjGJyviMEyLOIUsCmBkmcWTGly83POMkFuodHWH8VoY8GKY2cMEEls3zO2bUYXaI0DfSDOzOH9f0RZs5g1R50BAfsEgYOw0bZ9Yk0qiCDGAlvLYhWuR6wJyC4uzm9FF+6ZdNlOxPagoSjvYpzdRzCY0kTmzZEaY5QFcCbHD6NnxZREGK0QqaH9WCs/9m7sjGVrrP9O4YxOth+MNqjIsmJ23BRF4dqijfXDUfbv2XzEePgIXcwcUNMl0Cq7HiFShkhBomAyGfPwvXd45fYn6XS7RJHtKwt2I/sM1FAmp9DK+SU505HWzi/KMklFnttnE4HC9r3FhILkZ+Y9NCVzqXHUuQJlIqxZUJXQ++MkURTRaDS4desWX/7ylzk9PWU8Hpfmk1CxKaWo1WpcuXKFK1eu0Ol0aDQaRFFEv9+nKAqWyyWdTqfcmcL53TScV7b+tb9+9bhw5x6CihAQhDt+ryTWMS7rFLK/7zqAsI5tuMiUVW03cA7gVH+qwCVkI/y1qn0Uvg5NPuueqaogq+31bFwooRlkHbBZ1zcfNI6hYg/9oarMDVAq/CpYC691kd9LyI75Z6u21RjDbDZjOByuBQpV/yn/M51Oee+997hz5w6dTqccpxA0xXFcgqx1zF0IwkIQE4L0kEmq9ncIovw5H2SuWicvBbgRhCwtyJaadrvNJ9+4xcmX+/RPT5k9O4bSkVbT2qxx/VaHW3e2uH1nl1fuXKXb62AwNppBCy+Oj6klm2xt75KomrOEKJQRdOEYBABj6XYjCjHaAYbIEyXW7BA21OCUgvEeKRZUiAbtzSkKY7fwiCi7kxfLTCiU8+Ux4LxMItsBFiSIIJFjMkyGN+UIWI2nVemjg2MCbAd6pieY2IB2yl450442ugQraKdUjTNxOObEsz3GnC2Yxt3fGDBaUJE3WEnQVxa8iAkmqhgH3jyYcUyUwZnsMjcU1sRk/WfAaKtgtS6s06p2zI44U5UoB2f0GaBypjTPtllHbwtmjDGgsZF3xgJTwe+q7HgXkqMkxkQFSocslDdbUprxMMYBOs8aWYCEUYgDXd40hcTWaZucCGG5WDAevmA2egx6hSNcMJkJQLJflEsiCjGaJ0/f4/DoKXtXdml0mnb8HYDxZjkjisiZuSQy1n9JWdOoKVlL2+cmUvietJSRBb2RAaOEwuSIcSZbsaZOQdDilYEuQfPHSbIsI01T2u02b7zxBsfHx5yenvL06dNzCrXX63H9+nVu377NrVu3uHv3Lt2uLQBdr9fRWnN8fEytVmN7e/uc4lxH11fBRaiM1zEroRKv0v3+GlVF7qW6Ow5BSBUkfJAyr5rTQgW8zjQS3i8ENev6oHp+tR1+B19lrD4IaKz7LOy/kIHwbfC/q/1UZcvCa4V97tsYAtoPulbIwFTbGSr08D4ezKwDc9U+8OdmWcZoNGI4HL7Pv6sq4bgaY3jy5AkvXrxgf3+fTqfzvmeugm4PtkOWah2AT5Kk3ECEz1uNVKyC8+rvH0ReCnBTFAXff+sBT58cU6ulRCrnyl6X117b5fjkmHQ+ojAranXFK6/0+PxP3OTGrV22dzfodDqoOKIoclQsqFgxmY447Z9yZ3WLRrNhQQbKmouiwDTilYhzRrUgwnW6CMYIxvk2OHrHWUzykg2yPiqO9dH+S1JY8w7gHWoBCnM2gPY+kQVLUeQcc91NEMd+OLYDryhNicvQxvp/etDkYZj3P/Ev3Z++Td6Pxxh/fX9L26YC7UwrWIbHaHRu0HnObDLm6eP7TCcntJst9q/ssLd/jfbGDoWGWr1NlLRsPymneCNnwnCgwvvvaG0cYWScv4llWLyPlffjUEQYyd0Y2vdFvOKPXN8WlJcvv/uO8dHGRjVpjaZwjFjJv1kgJQE7hsEo40ClAwN2WjhmpSinjyjlODjrWI4xiPEmPcd/iItcMtaslq5mTEbPyJZ9C4qxRI8fjVKJYMkXEWueShRMxwOePL3Pnbuv0ui0rB+NY7LEeFBnTbF+/lp8Z8BEiNZBhJPl1gwFoqy5TJRCR5pCBJNb5k4rC2hFGaTAmjnLsHILeD7CevMjl6IoePvtt3ny5EkZ4bS3t8drr73GyclJGXVUq9W4c+cOn/vc57h16xbb29t0u93SqTOOY+I4ZjKZcHp6yq1bt0ofBTjbeV6kiL2EJo9QcYSMzEUKNmRF/PXD+/tjQzaoGqmzrj3r7uklZGXWnevvXY2GqbbFvx+CC7/TL4qCyWTCkydPGI1GtFot9vf32d/fp9frobWm0WiQJMn7FGFV+a4DYRexM9XnrYK66hisY6tC/6KLxr3KqFX7rtpO/7kHAp49Wde/fv4aY1itVgyHQ5bL5bm+qIKPcGz97/F4zJMnT7h7967VsRWzXDhPfRuqfV1lXKrgLfTX8tde166w3z4Ke/NSgJssz/m5n/0W3/jGAbXaiq2tiGbDMJvmRJIgkiCk5HnGaDzj6GgCIiwXGbt7OVs7G9TrCdJssbW5xeZmnyxbspjP2drawgilX0LkzDhW4ePAy5kiiyJx7AuOjtc+KNsafdxuVVnNiI8qMsY48GLVlAUVDqQ45sHRRPb8yNro4ygmUpE1CSgplbMpcYdVw+VEEoMog1KJ24R7M5DDNd7vAscQGZyitmYWCu3AjI0IQnR5jDFgnI+I1obZeMzxwWMm4xMGw0PGk1NqiaLVrKHaXdLFmKMn79Eb7dBs7zDWivkipdncpb25T6e7Sz2u22czXglGGGUjowoijKdLjTkPzMR1pRJHbTin48iZBsXgXaLs6LgdGRohRok4fyJNXmSWFRIFyoWBg2NwnPO47wNdWOds52Nkx8I2SDszGdgQdwQk8uZAL/6LHZg7I8vMrVYZy7kFN7meETlWzD7iGVPjAalxrE0UG6JMMEXO02ePGA767Oztk9Rs+K0uI/HO2ijey8s6X1kTIOKG25RsjlKRBeIqQkeGmATyHBOBKLvLQiwAIxEobJSiIC5KzzJYHxfJsoyf+7mf4xvf+AZJkrC5uUmj0WA2m51T+HmeMxqNOD4+RinFYrFgb2+Pra0tGo0GAFtbW2xubpJlGXO31qxjWUJFGiqFMFKm6rcA5wGKl1AJeFn3eVUpV0FN1T+oykhUzw9ZpKoJ5iIGouqMGx4X/mhtcw0dHBwwGo0YDAaMx2OSJKHRaNBsNpnNZjx+/JiNjQ3a7XYZxtxut+n1evR6PRqNxlqg42Wd4/JFrFkViFX9YqpKuhq6HfZv+DtsV9g/65izi8ayKuFc8L5faZoyn88ZjUZrTa1VIOKvH8cxeZ6TZRlPnz5lMBiwt7dX+pZV2cgqkAyBd+ijU2VyvAk3ZGxCE5d/HYbYh6aqH0ReCnCzWqW8+Z1nDE8y0mLOw/szjFmxXE7IM00kdQqzYJnNeXj/mOODlGYzYnO7yac+e40vf+XTXL22DQhKYnY3t5gtMparBTrPiJLEMiwSUVgHEotgxUbsAIiKENF2t4shUtZZ1O/AxVH5pWJzCtgrEsTtlsntLl47Z1gDIjZE25uYVGUXZRW1j67SUGin5y2bYhc+H4rumB3AMy9GSzDhLPtgj1BA4T7LSoBgBAvgjI16SVdLxoMhabqg0WqwXC05ePaEp4/eZDo5ptfp8tonXuPTn75Bs9mg29mk1qiRrVLS1YrVKuXk9Ij5bEGaFyzm32eZGjq9fV7/1Je4dus1kqRmTSOFBXpGY51THYgsfX+c/wclzvHmPKdQnc+RHauArTGObRGFz21jtKbIM4oiB61tqDyxHT8FGBfm7UyRHjxawsw4wGf70bixNMb6BFnAacGljzCzgMqa9JRoiCI7H4DIzbPZrM9i+oLI2DxHxhTe8Hjmv6LPXrigN5QCKeD0+AWHLw65efsV6o2aBUc6dmyK7yNxQWARyrE1Gut8XGCIjDgTVYKRAhXZhTaKnH9bhPuOCBJppCisj1GubdCXc6bX2jkZ648PuEnTlG9/+9tl9MiDBw8wxibmy7KsVCBpmvLw4UOOjo5oNptsbW3x6U9/mq985Stcu3atvN7W1haLxYLVakVRFCWbAOd37OtMRv79i/xuwmMv+l114K0qSw9swhw3VWATSsgirVOkdp5Ea5+nCl78tcKoGs8mpGlKo9FgtVrx/PlzHj58yHg8ptvt8olPfIJPfepTNJtNut1ueZz/OT09ZTqdUhQFs9mMLMvo9Xp86lOf4tatWyRJco4V8kBinYljHVtTHYN1x3pFG7IoYe6ZqsKv9u86k2C1/6rtWjcmodmq+gw+OaV/7yIGad0cADg5OeHw8JDbt2/TaDTOjWn1GtXre8AXmtNCP5xwDnmQ6c9RSpFl2YV+TD+ovBTgZrFY8exgSCxdlNjdYrpYkuuizLUBBm1SsmLFcp6ynMOwvwAV8/rrV9nb3WDcn/De/UMmkym1RMjzJbooaNTraCUURhMpyt032u6stdjdp1KRUxCAOCBC6HTsgIMzQZwll7P0vhLBRtCkIGKVptZ2Z43bOeEUa2lakRLgGArHEljHWWWcM7TBsTo+nNlqf+8jA96ko8ttv+0y69zsgYPCkiCeFsqzjBfPHnN0fMBkNGS1GDCbDcnSKXESsdFr8uqd17h65QY7e/s2q2ut7vxahEhi6s0OjTwnqc/Q6pRsPLFJ7vIVJy/e5uTFfa5cfY2r1z/BxvY+23vXEYkDMxnWDwrjTEuOSfNfZMdEKOUBpZSmEDEGkRjv3wQ4kOOTXfkxFIrSSdj3t2Pc8IuBKfvVRls5oGsi54MEYtQZ6+N8zs92cR5UWNOVVoIygkiMiWzWbZ3nzGcDsmxQIhbRNly7wFCGsXMGavxUjZSNdV7MZhw+f8x8/ll6m9turuZuPkTlOUYKdy1rRoqUco7Tvn8VaB/XF6GMwRQgUY1INGK0BTemQMT/5LbPSjCqXULEj49daj6fc3BwUCp67xDslZIXrW0StMViwWKxYDAYAPD666+zu7vLYDDgwYMHTKdT4jgmyzKKojiX/C+k5f3CXvU1gDMFEfqChJ/B+5XrOpYhVOhh6HSosC+K6Kq2owqifJ/A+xkQ/1kVVHkxxjrVPn/+nBcvXjAej5nP58xmM9I0JUkSOp0Ot27d4tq1ayVTUKvVzin1ZrNJmqZlH/u8LVmWcXh4yOHhIdeuXePGjRtsbm6yv79/jgEIn8G3seoL4/uuaoIJpepbFf4Ojwn7e12/rBuLKoMWjls4rr7tVfOnBwh5npf96+/l2+AZkioLWAXIs9mM58+fM5vN2NzcfN/8C88L+yFsa9gv4RwJzVKhGTMc7zRN39f/6wD3RfJygJt5xiKa0Wo3XHSKKhkKpWLEJZED0CYDcQyE0SzmKYtlynKx5PBgwNe//g6zScqNG002ujvcvrZCdVrWNGBsiK7RhsKxJYURpySducE5XIo2WAfZgjD/nA+ZNka7XCucmY4cwLAMjouUUtgIKIPzqbERRpE3Rym7g/cMhPeJEBGn7N09AtRujEFToMossa5x2MgZQdA6twpIBO+7Y80uLvdB/5R33/5Vnjx6ExUlTCYTdLFExTmdVpNbN6+zt7dLt9ul2WyRrRboIifNVrQ7GyT1GnGSkGcFsRJqvR6YHFMULGczl0CxxaB/yuP3vsWjh99hb+8uN26/wf61u3R624iK0DpzgVku8qykYmw4/xmY81PCuP63bxifzM9YqkcpKRW8zfujMUohuP6OFD6M3qLaGAsOnV+JyxxtQZCUfj5GCaItEC7HQsRPU8fegYjBOKauTLmDkBtDnq+YTQ/R2dw90hljY+ce5WvjQIm7fAl2iqzg+cFTxuMxV65qokShjVsA9BnYBhvSjQ5MXq4vtcEBHUErhWiNUjUKUuvLJYIYRSTRmeM5isKDbGNZThFDJDEFZ1EPL7ssFgvm8zmdTud9u+HqzjiMJDHGsFgsWC6XLJdLXrx4wS/8wi8wmUy4fv06vV6PGzdunPNPqEbirFNa/rPwt5eLlGL42v/2isNHsYT+E+sy4q67drUfqgpwnc9F9TMv/nWe5wwGA9566y0ePXpEFEWMx+Nyh95ut7lx4wb7+/turbEAxpcL8H5O3lwSRVHJzHjmptVqoZSi3+/z4MED3nvvPa5cucLt27e5cuUKGxsb7wMD1X78IPBYlXBehMd7EOJ/QqasGv0Tgp91JkIv63yjLpq34Tzy+W08G1mVixigUDwgHY/HXLt2rZxbodmpyuasA8Xhc3xQP4TzKGRy/PNdFB5+kbwU4CZNc4oiRRtr+4+ixA2WtgnrUAiW4tcmQ5vcZS+OWC5yFrOU4emEhw+PePJgQrrKGQ0X7Owe8cYn5mzJpjUFYfUZkaC0DWONtVD49PV+QHxUjxgEm6vGJu5zWXSDXbW4UG6MjaBBO4XsduXaFEQqBmwkDYh9PmWT3ynlvyRShtm6wBe323ZmME8VOPbIKzSfl8Y3SLuyCeBJAFNmJs6yjOHpgO9/91c4ePoWnXZEEudg5ty5tUVS26bVbNNstIniGJ0bpuM5q0VOp9um3W2hEptJd7XI0emKLM/I8wIVxaSLCfPpEJwTbb7SbPQ2WTVS5rMJx0fvMB4d8PzZO+xffZUbt9+g2erZSe8YM+N8g3w0E7jEgrgsxi6jsaentE+QWPaN96dx/Rb5MgsJKopKBsyhTXzIu41eNyVgsV8oV7bCgwePZMABGhx75hdAwaJo/yyWvSu0pjA5q9WM5WzgQFgNIQEFmhnKxJhYUEWOFN5ny7joedsmGwEGg9MThqMBeZYTJXVAocQ4K5vxuNC1R1AuR4/WumSb7A0C8GgEkQQks+cYsd8Vo1DK5WoSF7lCatsjdlzs/P54iFecoVkhZCxCqQKS5XLJfD6n3+/z8OFDHj58yHK5ZDgcsrOzwyc+8Ql2dnbOKZuQsfEKuSqhYljnuPlBclFElVcuPi9MCHD856GCrEZFreuHKkuwzqTir59lGf1+nzfffJPHjx/TbrdLE8XNmzeJ45hWq0Wr1SqBy2QyKcPqfWi9Z1182n4PcBaLBdPptGzHarViY2Oj9J86PDxkOByyvb3N1atXuX37Nq1W6319us4kWB2XdaxEyD6ErEkIcsK55YEBnGdfwnaE1/4gxqg6X0LfLD8mfq6GYxteO0w4WZ0z4dzo9/uMRiOyLDuXhC/MsB22JzTT+fZUQUo4z8M2V0H5uk3HutD4i+TlWZVsxjGUxKgksREcyu4cPcCxeYpTtM6RuIFITLbSHL+YEBXCvbdOSBfWjDGbLHn0+Jj+oM+1a3vUk4Y1LxlDYXLbeUZROD1n3EJtwOXDceYol37/bBoWUEbpGOAsPDjXLlupUwQqsjWqlHLp/7HKVTlmSinn5Otz3RjBKKxxQYSoPO9MGWkNxgg2L4yj+SjQ2pd5MK6vLGtT5DnEinS55Oj5M779rV/k0Xtv0qxDLdng6tV9uj27KBSp9ctJlwtm2RSDTYS4tbkJusZqMaFmmtSSmDiJMVEDlUfo6YzFfAISsbt3neVyQf/0lMlqzDKD+WJGHNdBFJPpKdP5iMODt3nvnW/y+qe/xN6V2zTaPaKkBhJhyGwfq3JwkBJcuAzRBvCJDo22JiMfbWac/5NjASPlzEliypB7wEYYiR1v/EJTOmO7X9rhFQcWLGthmTrE2NB+LBuEyR2b5D5HKExh521RMJuPWM6HFjRJjTjeojBLJMtQouhu3GE+HzA8eYaIZf3gDEiD/aLPF3P6g1PSLKUhDWKpOf+gwjrAiykBMtj5p4yNhNJGQwRGRxQOhImyZi1lFEZszSVvurUJto37XmDv4UL8rRnXRgd+nCRcSMP6RNWsxH6n7xVBmqYcHR0BcO/ePZbLJcYYptMpjx8/ZjAYcP369XOKrGo2qtL0sJ6VqbI869ofAppQyYZA5SKGwN+nehyc9+MJ2xy2a53fjc9Cu1wuOTw85Fd/9Vd58OAB9Xq9LF2xsbFBvV4ny2zyytVqxXQ6La+5ublJu91msVhQr9fLAqceAM1mM+bzOSLC3t4ey+WSk5MTVqsVeZ4zn89LQDeZTJjNZjx79ox33nmHT3/601y5coV2u/2+8g3rQE1V1rFdVXNQCBrWMSzrHJirc3Jdmy5qRzXE27M23uznx9MXifUAtdfrMZvN6Pf77wO14fzyJtk0TUuGzN+3yuD5e1XBYDVCKzzmgxzjqyCuevyHyUsBboyhTNSG841QcQyZp+WV1TDGYExGYVJr9tEZ2SrmnbdOeFIf8vjhAFv7xl7r9GjEaX9Enmc0pGHzf4ixhQzNGVtgU3gEYEYVZxS/4HLVKGc4sBDI+Mgo22SMaCKnhbzZw2bHDWouKZcBWeyO3ju2WkBko1oisRFMkXJh4g7YOBLGsljmjLkRZ54RrPlAKZdgT3u7qiZLUwaDY/7O3/nPeP70LSLJMXnCRjshX0yh1YTc3mc+m7JaLpjMJuTpkq3NHYbGsFos6PR6NDotut0uZr5gPp3YZISRDcXXxYo4qSMmt8nnEgGXv2U2t9dbpXMa9Q5GYDY94N73fo5nj3dod67y6id/go3tfQvqREqHasui4frca3yfmwdsSQFfELUkIizIwYJTxOXaceDH9qkvaWE81WEBJNbnxOjUgu3CGx5dVmhjARfK+zwVoGI3hhZ4FQ7oamNzzdiImhFpNkEQkvo2ne6rrFYDivGSjd27fOaLv5vh+Ihf+bt/kfHqtCyB5R4fy98Z0ixnOBqwypYgm25RENCRnU9a45GR8lm9xQJ7BRRG4/yk7XWNLTmS68KCbHHmVay/kVIRUphyLERLCQY9QfRxkSrAqGbcrUroZ5KmKffu3ePx48c8evTo3M716OiIfr9PlmVl1E4IDtYpxXU+NlUw5N+rSlVBVne8VbBSVbbrTFfhtUXknG9GFYh50Of/9selacpgMOBnf/Znefz4cekc2m63S6drf93pdMpqtWIymZCmKZubmwAsl0t6vR6tVoterwdY51itdQlyvPO2B0VJkpRJ4byTcdU/58033+TRo0f0ej3eeOONMrqtqjjX9f06oFFlW9YxIFX27iJmqMrorTOTVf2p1jFL3ldsPp+XPiv1ep2NjY3SmXtnZ4cvfOELjMdj/u7f/bvlcdX5JSJlhuPQ2T78fN154TNUWR3fxmqkWAiyq9Fd1eN+UHkpwI2l8DXa5EGodWwZD7FFJW3hQlcJ26RokznnY83Tx0MAitQlksP644zHKUdHQ2azOa12y22/7bV92La4LDGFyRGJXU4SSkdT4/8GR+P73brneQq/ybcTWQRU5BwtsUAtcoUmxZkXlPP7sE48pdnLK0+RGO+AjAGUBzHK7aSt74wYe65dXExpHtPO/GUMqDhiPBpzeHDAvXfeYTA4YbObUKttcnB0zGBwwkb3GRLBagWdToetrS12dvaII8vQtJsNeltbdHobbO9eIY4joqSG0TmjYZ/peMRo0CeKFIvpjPl8RhxHtJoNVLdOrR5xfHxMrqDeaFDkKbk26GzAYnbIfHqF4+SENF/x2Z/4rbS7PVdOwml1kbNQ7nOaVBwm0eVzK49uBGv2wbiUOWLHrixtYQGO9vW7jBtvF7ZvTIZoQRXaFikV5bIziwNR1u/KAyptNBEWJHi/KW/utE6PS1aLKUW2RFTC1Ts/yVd/+r/Pw3e/yTf/y7/AlZuf4vM/9Tvoj4+5//bXmJye+scoH1mJ/SHXTEd90lWGMRrjimIaN0exT+36wkfZWRBoS4Z4P66giyNnQiuAyFigZKzvjTKWwVFRTKS1Lcbpct4Y7XIYfYzEK5OQZl8HCkL2xi+6T58+BSgXe78IT6dTXrx4wXw+p91uv0/BeQl37x9kclr3WfW9UCEAF7IG68wBIUPglXSoPPyxXhFVzQ3r/o7jmNFoxOHhIffu3eP09JRer0eSJLx48YJ+v0+v1ytre7Xbbba2ttjd3S39ahqNRplTaG9vr3xfa12WERgMBkRRVLI4/rwkSajVanatyXPq9fo5s9Z8Pmc6nXJyckKapvzkT/5k6XsV9slF4eHhOKxjfarMzjrz0joWzB/n59k6h+5qX1clzBOUpimLxaKMOLp9+zY//dM/zbvvvsvP//zPc+PGDb74xS8yGo14++236ff754BuOLe01oxGI1ar1YXgLDz+IiBSBfXw/ozRIXvlzV7VfEkf9J2pyksBbiiVj5TKJ05qrJac0fHYnB7GFM7vxkVpGIPOnAOv4HbOFsAsFxnPn58yHI7Z2dlFRa6zjQuZdoyRiDWBmcA6cWaX8IPkwYPLI2JsXht7vEaVIeVecUQuAsspRsGa2sT7fAjialnhWQblkxpJ2Q5ranEmFRc5VUhBJGDEZfUVl9XEnJkILD2ZMp2MefzwHb7xy1/n6PgFk+ECk2tu7kXcunmdKI5RGGqNCKWErc1t2u0Nt4tXqEiIazVm0ylFkbOYjWl2OtTrbYzOUVFMp7tJUm8yGY3RZobGsJgtaDSa5KkhXSzpdFvEScR8PqfRilEqZrGKSBQYveLKdoc8PeHBO3+fV175DN2t60RxwzJtrj9NmdTQmU0MeIdiDwQsOPQO6RaM2LIJwWQznnWw88BoP8a+XIW2JZdwflGSWLYNVyZB2Sg6AccEuhkjzsTlZ5AxjtEqyLOcLF1giowoqvO5L/80P/GVf4zbb3yaB9//Ou3uLju715Ekpt7oEdVqqDyDheHMv8fPT8PE7XqNEcew2HpUWml0Xrg551gqI471sk7O4utNid3pRirCmIhYrJO8LqzJyjj/Ha20TY2gDIWKUUpb4KYz148/OFX8o5Z1O82wbEJ4zDrmxZtTws+VsnlwDg8PGQwG7OzsvK/QYUjLrwMQ/riLdr5VRVJ9ltCRNQRp1Z12eHz1/apJJDRzwXmlX1U6eZ4znU55+PAhv/RLv1RGRWmt2d/f59atWyVAajQaKKXY3Nyk0+mcKxxZr9fLMG8PFBuNRskUdTodarUao9GobIN3Ks6y7FwpjNlsRrPZJIoilstlqTB3dnZKFu7u3btsbW2dmwPrGLWQOfkw9iKUKrAJFbr/LKz0vc4hvHqPMHdMOD89kMvznNVqVfbZl7/8Zb7yla/wxhtv8NZbb9Htdtnd3S3zCIWs17rnmpZrzRnb6MFwtbTERfPVz6fQfOqPCwF/CMJD0P1RzFFeXg5wg0eJtnq1ZdQVUVwjKmrkemkf2ghGNNpFZ4j7z/6tLJvjfTIQTCEcHg0YDMdk+Yp6VMcYTWEyu+YbP4B+665c6jOxfIwz+dg/fMh1gS5c6K1H5U5fitvB2+gnwZcJEHBlG+wu3+AYHsnx/jsidig8+1OyC0Zxpj1dbhfA+qY4Hw/jTWFCoQtWqznpaslsMubg2SPee3iPR4/fYzJesVzC4dGKIn1GPdG8cvdVehtbNg+KQLvZo93skjQiknqNKIqpNRooFaOUkBeG589fMBy8Q72W0Kg12NndochzJpMRs8mU8eiUPNPM5zPSLKW7uUmr0abXa5NmTabjObVag1q9xnjYZzQcMhmP2NzeJ4k0b73ZZ3vvNW7e/SyNVtf2RSRn0W7ixtuZ3kqbnettS3Y5ExJnlaz9eBttzTI2q689xzN2nsbxCltrAzloldsEd9hoI1+Q9YyFs+YewbI/GuvsrR3AyfOULEudy3ON5XiGKaDIMnSmiVTdzWUDRERxiziZYR18bTOte5YgYlgt5qTLZZlkWhufNda4BJPG+ZgpV+QTtHFMDo4mdlXCUT6KUIiMNf+iFYVkNrLPxLaApvjvnAXlIgotBaY474j7Mss6Je99b8KQYS8XUePVBGhaa168eHEuh0sVHH2YIqzuzKuL+kVAZd3rddf9oNfrzGbrPvfimSyfe2Y6nfLs2TMePHjA48ePS4V4dHRElmUkScKrr75amplEhHa7TavVKn1rfM0vPyZaaw4ODuj3+9Trder1Ojs7O2UG48lkUjq7ejOMT8rY6/XIsozxeFxeP0wQuL29TRRFvPnmm+zt7XH37t0yw3SVvfPjG/qKXDR2XtaxNr7fLlLUYUI7D7Y8oKi2qxqFF/q1+CR8vg3epBc6ZIft9exY+H4INJbLZQluqukAqv20bm5VWZsQ6Od5fg7seQBUdUD+INbqInlJwI0LsXZMiV1Fz/wgynpPYBdtluR6SaycI6VTcOK2uMp6klLonJPjCcenA5bLJbV6DXzmVvE5bCxzI37R8kyRTzHvMwwbF4JiLGtjKywnLtGfseHG4qCWGJukLnLK108YdMAiWGVsTAElkPFlH9x9wOUrAVxmZYzzNBHw9YAQTZ6vyJYrlqs5eZZyePCMwckhWbai3W4yny/IM2+CEVYFPD+e09s4Romh0WxDFHE6GKIR9jr7KIT5aMRiMqHWbBE36iAR3c0erW6bSClW8xkP3v0e3/n2dxhOVuxsbdNoRMSRodPdoN1sWL8O8Vl7C27evsm9773DYrFke3ubza095ssprXaH/mDIdPKYh+894uD5Af/Ib/snqTfbblDEKdXEZRKOHJMGtpCjceMrzhnZdr1ygMSbkIyiBALi8g6dFREFnwfIhtKDEUG0ULhSBUZnRCY6Y9p8MU/jOCUJ6usUuaVXc02ep2hdYMi5/51vsrHxdzg8+D6z4QlpOmexmDGb+MiEBkqtEDLbfxaDELnplGcpWbbCGE1cT1AmZjmfu+AvQWvcT+F8cOycsb7AbhelIge2nZ8WOYU21vymC9e3jqkU5UqE2M2HuOSLoqOyvz4OUlU6H7Y4h2aZD1JYRVFwcnJSOrf6LMZequetu45vxzrGqOqoWTV7rDNZrbt/qBxDX5Dw3uv6JLy+zw20Wq3IsoyDgwNOT09ZrVa02+3S58VfK89zjo+Py5BsX3jU5w7yjqreAbjRaFCv1wFb38tHWi0WC+7fv8+3v/1tRqMROzs71Ot1oigqk/2F7TXGcPv2bd566y3m87ldazY3WS6XtNtt+v1+WSTy+fPn/Lbf9tvOXcP3+7osu9XxD8dpHfBdNyZhH1fnVpiZtwpw1p3rmRsPYPI8L9v95ptvsr29zfPnz0vwPZ/PmUwm5HlOkiRlPhz/DL69IjbfTJqmGGPKcZnP5+eYnOoc9M+yLvop7Jd1Pjbh8SHY+ijABl4icGMTi9nMr2Dt+ypKrP8NtoK3ZTHsYmv9bjRRWYbAR6k4cGQMSmrMJimHR6dMpzN6va69vi+8aLwJw4W1+nIKpnA5a9wO3uMsnTkWxmpIm5zPKlRvDrOxvdYpGm2ZJmNye3xkQUzJLhkfkuxZIuN211gHTq+QRM7IG88UaZf4zhSslta5d7WYs1hMmU5HZNmK3kaHvGgwGPSp1yKajYgoMmgD7VadJG6zTBOKQhEpobfZpdHuki4zDp8fohRESmh3e0ieUqOGoIlMQbZcMF/YDJgnx0fEjTYtaoznc477M1qthDip0Wm3mE9HzMaAEur1hGfD+5wOBxwc9Gn1ttjqtVBRTJ6m5HlunQ/TguPjBzx99DavvP7jxEnNYUTLLGgBRYyWAkyBkOBLaFjM52hOR3sopVwZDHEgSTlA4k02ngFy9LufR67oqbVI5mUaAC0G5SuZGwsPjGiMljLaSKKELE3RWU6hc3d+QcGS/vF7/IOv/SfM5yfk6ZTFdMzB04ccnz5lNZujVK0Ey2JARYYIIdagIiEv7O5MxYqNjR3yomC+mKGLgiiOHGDOQUpjGmgHvo3PrWTrmp2ZVxLHanpToOcxbR/ZfJHWN8dGTHlT2EdbdH7UUlU+oUNtuFMMd+3hQl1lSbxims1mHB0dMZ1O6fV6axfm6rWrZotwJ+7bFr4OFXfVHLCOEVgXPhyyT/751j1b9Tiwzr7T6bQMNZ5Op2U+mlarxWAwoFarlQDGGEOz2SSO4zIMP4yKWi6XZVJFpRSdToc8z8+VUvA+JJPJhKOjI2q1Gt1ul9lsxunpaWlaabfbZVZeEetIOx6PGQwGPH/+nG63W5qs0jQtHZ3TNOXw8JCHDx/y+uuvvy/L9Lo5Ue336nwKx6sKTMPrrjM3hkxMFbxWkw7647wfkwc14Tw6Ojria1/7WjlWk8mEZ8+ecXJywnQ6fR/wUEpRq9XwZifPBPlx8yZDHx1XnTPVeR2amsL59kGAPJz/oT/YBzGfVXlJwI31P7Esit15R3GdOG4QqTmFSi0Vjg0TNhTO+bggMi5KBQ9OsKYaVxCxSOH5sz7j8YwrVwriOMIm58OZt1xJAEuTWEDjiyOWbI2/nrMzG+8TY9yuVc4sGm6Xi1eIBhd9A6pwk1cZPFoxYpBCl86gPmRZ4coIiDc5uUiVEkgZ8ixltZgzngyYDPocv3iCMQXtbpd6PSFSMYmOWdRrbG50GW0OWa5Sdja7JEnEl7/84zx9+pyj0xOm04g8W3HtVoM4glpSoyhy4tiGESZxjXSVEtUSao0G9XoNrVfIWFOrtfiJn3oDk1tfkMGwz2Q8YjZP6fU20cogKiFSCaPZEHREt9fi4OiUX/zFb/P5z77G/pVtUIbVakY2HTBbZojU+M63vs7u3g229q+fLcyRYwywjIp1IC97x/arA6o2JMg7ZmvH4igLKAFT+IXbVkgvFxLxMFvOLF7G2Ge2nB+a2NZhUgqjLPNoS1oYkqRBFNVZrlJmqzF5nllgZQyGnHQ1ZDp6ziobk+czBidPePetb3J8+pjF9BhRTShLZVhPozgyJJHYLNu6QOuceqNJp9Nlma4wBtI8pRW3yignYwST2/po/jmMNkgU24SExoCcRZQZBwALbSgKB9a8870SJDIYP189+PuIO6ofpVSVjTcBeFp+3e48VGBVViNUZFmWlUnPrly5cm7hD4FEeH7Vb6IKUqogxr+3jmlad354jIiU5oTwulVWp8oOeJPGcrlkPB6XTsNaa7rdbsmeaK1ZLBZsbm4yHA5ZrValP8uXv/xlnj59WirULMvK83ylaP93HMesViuSJClNSlprxuMxtVqNn/qpn6IoCqbTKYPBgMlkwnw+LwGlV4g+xLzb7aKU4hd/8Rf53Oc+V2YuXi6XzGYzFosFSil+9Vd/lb29vfLz0IyybuzCPqqOhQcMIchZF7ZdPTdU/H6svInKm3CqZpywz3xIfNhmn4vJg59+v89bb731geAGzhzUfVsajQadTqdkeUJwEx4Xgm8/ruEc8z/eYTj8Cb9XSqnSF+gicPlB8pKAG6vsrf7wifvsDltFCRTiMu9ahWZzeuRok2NIsMyJS14nfrIZFDGYgqMXI05OB9y+cwMVxQ4kOR8aHx2jbZI4W/tIY8shO2regRZd+OzDRQlwbGmGolSw4nwtcDS/EGGUEElkFYwYjPYh3i76qvS18P/aWkqIcz4T72htf+siQ2tDulww6B9x8uIpLw4fUxQrur1N4kjRqDWIopjFYs5kOCTPFvQ2mpixYXOjw0987lNc2d/j+o3rHDx/ymw65vj0mP5wQKPZplZv0m63URgoDN3NHo12m0hFTEd9sjRntSqoNzvc/cQucRyRpzn1pEMjEXa2tyyVPF+ytXmVosg5OjkCXWe5mrNKp1y7ssWwvWI4HbOzu0OjXmexSMgWE6BguVpx761vcPP2p/nCzj61Wt2xKuLzLbs+8yYXiwQsAMUmtUM7PyhVQh9xJsnC2GriRudobdA6d5HcGqUEW9oBB2wKMN4fzC/69ousJCorqVvySJEkLeJanXg2ZpUuWS4Xdr4Zy7YVxZJVOibPZmi9Yjx4xnv3foXx+DnpakQSx5T4GmuSkkhQztFZaw1K0Wz1qNXrZIUt+ZHlBUVhiCJlS04YbaP7XOoDhUuD4PJKidhtQ2GgKAxF4SKEijNsb02+ClunLEJi7cLKIzv/P2bMjRe/2FYp/3AhDQGDPy5cvENWxxgbEn56esqdO3fOLepwXjlWHXKr1H4Isqo7+HXX9OJD20PzxofteKumg7CAoVdWy+WSfr/PixcvODw8JMsyNjY2iKKoBCmLxaJUor1ej/F4TK/X4/Of/zz7+/vcuHGD58+fM51OOT4+ZjAY0Gw2qdfrtNvt8lk3NzdptVplNuMsy1itVjSbTV577bXSjJIkCUmSsL29TRzHZfHSoig4Pj4GKM1nV69eZTKZMB6P2dnZodFolBmn/XFvvfUWd+7cYWdnpwRU63w9qsybZ07C8QmBY5Ulq453FVyErEX4XpVJ820IcwF5k1M4r7TWpQmxKAoGgwH37t0ro6B8Ucwq4PfAwpvI/Fh50OV9qcJ5vo6ZqoI4D4I8CAsrqVf7OQwfr5rlPkxeCnAjIvgtalyzrIXOIlQUu11rVAIeb36yoa5neUZsZI9zhkRKZVagGPTnHB6dspgvadSbGPLSYdTuZB1B4ycemrLykDEUOrdMiik4y4BLGbZuaRxvEtE2G44zM4mxO2UtEEW6NIPYmlG20OFZwjWrQHBh4Tglbev6UGZQTrPUApvBC56+9xbD/iFgE+7lWcpoOGS+WJAkCVmWkxUZSRKztdGjWYvZ7NW5fesOo9Ept27f4MrVa2i9S5oXTIdDVARJUmNze4s4aTKfTTh4+13iesLGxg6L+QxdZDSbTZJIyBY5mau6XmiNkKNMQZaldDfabG9vcXJ0TGs+oz/oM5+P0CZDDOz0GmgDg/6QV1+9hQDz2RyTjRBj/VR+6e/9be689mNcv/UaUawskFAaZVwpUseoeVOfOHOef++s2KadPTbE3il3QOsIYzK3EPiM0ha8eobOnh/64rgSGMTnXE4Mto5T5BabOK6R65zFco4ujLVEFtpG/OklmhXGZKTpmPHwkOVyYK8iNZSKrX+LAoktfRPnEEXWATiuNWg2W0RJgkQJcRST5Tl5kRPHDQts8AwOLtO1W3DEIETWL8eFdBdGl6yNFm0TQWLzDdm0PgnarKyDcWywGTALx/x8/MSbH0Iny4uAQHXxDgFEuJPu9/scHR3ZqEAX5VO9RlU5VUFO+J4/7yLmKPx7nTLxUmWk1inT6s4aKCOQBoMBDx8+5PT0FKCspzUcDlmUa01W5p/Z3NykXq/T6/W4ffs2w+GQ27dvc/Xq1VKxjUYjlLLM8NbWFrVajdlsxve//33q9TpbW1ul+cODndVqVQKSsG89oNre3ubk5ITZbMZgMGA+n5fKeGNjA2MMg8GAV199FbC+Iz4ZY5ZlfP3rX+e1117j1q1bZQj6unlQ7ccqAxOaYsJ+9ffxSn2dObA6LnCeCQrv6SOs/I938q4eF47xarViMBiU/RiOuQc2fox9+2q1WplN2gPoMN9QGPEVAraQEawyO9VnXNd/oa/bRym9AC8JuAGotWpcf6XLzas9RkPDs6eGlThGQ7Csje8sFElcp91tUWSgcyl3l9rvLksfCsVynnF4YE1TG72udUQVZyIwgq8wjbufcgrSFLm7n1s0wDpa+ksbrCOx3Ri76BsbrmzcTk/5zLjGKhBn/XLXEedqIzadnHX0wRM54gAUgM9jkxcFi/mE0ekLDp69y6h/yHIxIy80jVYbY5YslyvMGFrtDTY2OrQaCbdv3AQKsmxFs5Hw4vA5SRLz/PEzbt19BYkT8kyz0dsmqcVEoogixXK1oNZoce3WBsv5lHSxpMhTFosV7z24x2I2YKO3RbO1SXdjm6SWENdiut0u7XabpFZneDpitcrZ2dvHYJhPhzZjrgOhjVaDJBHGwxHjwRHTyZTJdEK91aTb69EfPOdXf/lrXL1+x/reRFj2oQClbKI8C1TcHMFY/xpxiRh9ghgtIH5sLJsm2CzCUlhw7QtwWtOTj26z19FGu/IaLmTcCFq5HRUulbGBOLH+BiqKiGJbemOxXNpkWcb5jpmCQmcUxQJjUkwB6WpMli1AGzRZMPftZIuiGBUVRMqyOM1Wh3qjZVMOoIjjBK0L0nRFUoutAzARxoNob2gzkU10WWSlObT85QCdTY/ggrEKlxRQtAM4msgYC85FwccrQTGNRoNbt25x9epVRqMRBwcH7wuDDpVNHNv57JV3uCsNlZY3dRwcHDCZTMqcLnDelBTep8oAhbIOwPjz/Hv+3FBJVu91EZVffY5QQXvQ58tNPH36lNPTUxaLBUVR0Gq18KHGo9GITqdTlj+4efNmqcQbjQbPnz+nXq/z5MkT7t69SxRFJfPji2P6cO16vc7t27fLgqVZlrFYLHjw4AGz2ax0MO71emVxzU6nQ7vdplarlUp7b28PsGHMXpRSpX/OaDSi3++XbE6r1WJjY4PhcMgv//Ivc/369ZKVCIFIlZ2pMhXrzCdVU4x3oq0q8ovGp2rOCueAb2NY9X2xWJxzEPZO8SFT4pmcKqvixYMY74/mo9r8PPMZj9M0pVarvc+fJmw/QNVc5QFQ9fiQoaluHj6qvBTgJq5F/PZ//BO8/toOksP3vzfk4NnKZfGNEZcvRoqodBDtdFrcfmWTLBOePhxh8iDKSIzd6RpBcjCFcPCiz3A45Nq1XWIRn8/PKi3HCCnH4mijKYzPgeJS1nvjkdVqiLG7e7TPvQJGFc6fOHdZXzVGckQLJlIuwsd507sKzoZwIXIMkDoLA7eQyilXnTNfzDh6/h7PHn6f6aTPfLkgTZfEkfX5mOdTFumMVrvH7u4V2s06ydV9lM7I8hWdVpfuRo/Hjx5Sq9WZTGa88/Y99vf3SWp1ikIzH4/J8wXNZput3T22mk3yLENFOUq1ieN9iqJg7/o+y8WCyWBEUqtRr7fQucZkOcViyXiVgopRUczG5hbD0Sl5Zr90g+EJ9VqddCkwq5MuLeMjKuHW7bss8ow0WxIjpOmCb//q1/jJ3/Lf5PbdT2Kw/iAiOOduVz1dO9OkOetNy6YVKK0cy+PKW7hxBBt6r5SLsNJn72tjnGI3Z2MtOEOiG58iR1Rsx1FsBFec1Imi2LJEUUycJGRFRppmFlwZTYFxACHCGJ/UaklRLLAV01PrgIwLAY8EFUFs8RaNRoONzV3iOMH6+RSoyJqcFqslzWabOFEQQWSc8zTern+Wm8cyidrNNWdiEQVKo42NhFISWZOt6xMLfmzx17McQR8PSZKE3/E7fgevvfYaRVHw9ttvc3BwAJz541Sfp91uc/v2bfI859GjR+9bqL0C9DtZX9fo6tWr7wNN6wBMaD64CIj4Y/3vUFn632EJgKrTZlVJhm1axz5orcsK6g8fPmQ8HpcmHg/YfNRUu91mb2+PVqvF1atX0dpm5PaA57333qNerzOZTHj77bfZ39+nVquVId1ZZlng3d1dms1m6Vvii2YWRcG1a9dKs1etVivNIz6nS5qmpSLe2tpiOByWZhV/jneG9pE/IsKdO3dK52Kw5SB+5Vd+hS996UvcvXu3BANVFqbKdvm/q5FR1blUBTTrmLh1r/38qIaIe3ADZyZJb4YK51fYPs+CZFlWAp8QSIRAScQ6Zm9ubpYZof29wZrzms0mSZK877vj+6k670LTXBUQVs14/jrr8v18mLwU4GZnu83v+Zmvgl7ynW/d5/nzGTpTKJU4FkY5MKCc341CIuH69S6tZp10lfPi2QwKQ1SL2dptsrnRZDLKGJwqstRwejxjMLQ2xjipUQIJx7gYF/IN2N+6OAMeJePinRAsQ2PNHX7CWhhis/wrW4nZmbpsRJYpTWDe58c47xG7q6b0jTjz58mtwjWgdc5yueDJe2/x/On3mU36rFbW7mx0hhZYLucsVnMa9RbbWzs0GwlxpKi1e9y5E5HnBVmRk6cprWaL6XRKLY5Is5THTx4RO9o3imrUm7Zadm1aJ1styfIUBFq9HqbQJElEfWOLotNla3MLU2hWC0thZ3kOWWYLohrj/HkNeaHZ3rlGlhZMp0vSIqeuEoo8ZTic0mx36PbqNOoNrl1/hYcP3mK1mlFrtJnPx7z5rb/HzdufIEpiB2icE7k5i1AyHoC4CCgJcs9Y85VgnMeOUi7niwesbhRt1J5xEWmAZ9Q4M3dZNi7IR+RMiUpFNuGdsWMZiaJea5EkdUTFFkSYgkhimp09snRClvVBhHqzi1GaVTqhyFfoIicSyCOIYxBliGNIasL1W7fY3t3HoMly6/AbRbbQ52q5Iss1Sc1mTLZmX/ccgHI+ZT4kXlA23N2xhShl57EyUNi0B0iEiI0qLEyBcqY7ozQfJ5eb7e1tfuZnfgZjDN/5znc4ODgozVIXJU6Loohr167RbDZZrVYcHByUdPzOzg69Xo/JZEK/3ydNU05OThgMBqVTbJUVCZ2QqyaDKuMS7nL9+dXPw+usc4CtHrtOqo6sy+WShw8fljlrlstlaaZRSpXV0Wu1Gtvb22V0VKfT4c6dOyXQ8xFJ0+m09JV5/PhxGd3jc9sAZRkGn/3Zs0NxHJcRUpubm6WT7HK5LMsseEUdPoNP1ueTAnoH1X6/X7I/9XqdGzducP/+/bJcw2Kx4Jvf/Ca3b98+l8U6BKLVPgslBADrWJGqhNcMpWrW8cf6z6pJ7kJmKmRDfBRaCOJ8n3s20vePBzfePJUkCbdu3WJ3d7c8Hs6cjZfLJXmelwzcOnYyZHX8e769VaYm3DB4UBn6M33sfG46nRa3b13jnXvv8Pa9Y06OUgyW4lcuPNwyKzHeZyVdpdQbNe7c3QUl/HJ6SJppXnm9y+t3d6HQvP39PoPTGVoXDAcLnh0c8cnxnGazZUsieBNQ6Zhq0OQWZHiw4yOovGOOiDUxuaguXwTT7/a9acQXejR4peo9US3Fb8TYyuSmcAUeoxJcGZNjJHK7fNuGNM148vBdDp6+TZHOqdebKIlJV1OWyzFGC8tlTlKP2OhtonXKfDqmyOYoEWpJzGq2oNAF48mIYf+I/skRe1ev0OtsglKk2Ypao06jUbMmDmJGwz61RGg2u0RxwnQ0Jtc5jaSGNgWm0GSrgkynpKsV6SqzPkHpik6va9/LlkQqIqk1GI/7jEczFosVs/mC0TDHGIiTmOF4yWzZ5FOf7DCaHhInLU4Pj+lt1EjTFW+/9U2+8OXfxdXrt+0XXhTK2MSFPpOzz9Qs4jJOYx1prXO3tbNoMYjSBCSPBTnio9Eco+LCzPHReAJoN+ba+q2gNDZVkS+wKiCR9a/RFpzWa3UazQ6xLwgbJbR71/j0j/8TLFZ93vzWKaaAW3d/itlixIN7p6SLGabIEAGfWDsWIU6Edifmjdd/nP29q0RxVDqhR1GNOI6Y5SlpltKWdplfiHLHqKwJVcV26otjIfLCgRvH5HjeS1z6StuZ1rxnxG06oCiZrY+HdDodbt26xbvvvsu9e/dKx1M4z2KEoMHnrXnllVcQkdLB9dVXX+XVV19Fa829e/fo9/torUtT12QyodFonMt+e5G5KNxdhwpsHcBZJ1UfmpBl8J9Xw4j9/cL3vDnp0aNHPH78uIxqEpHS38UzA7VajV6vV2Yn9un+kyQpzVeTyYTT01NOT0+5cuUKnU6nNEv5kPEksdnnPcPiQ8d9hmPv3OvNID5yK/x7Y2OjVN4+lHk4HJaM02w2K68Xx3GZZPBTn/oUk8mEWq3GixcvyhpMb731Fl/5yle4fv36OeUbmlHC/gv7Mxy7qq/UurlWHfdwPKvAuFqywL/nrxf2qW93r9fjs5/9LMvlkm9+85sURcGrr77KfD7nrbfeKgEKnI+UiuOYdrvNG2+8wf7+/rl57H18fJj4OvAWtj0EW+t8Z9bNfy/+3I+lz41SinSV8/jhMe/cG1MUjbPSBco5EkuEInG7TEt7rjLN1s4mnY0OtWYNUYo7t3ZoNxPeu/+C/mCB3XwbVsuCg+cDRuMp27vbZ4u9X9Cdg7HCUfBux6995WRitMmtG4QKnZ0spFGSOKUqJQiKlA3ltptmH9LtlYc5q2ukrc+GiJ/EzonKJfgzuuDg6Xs8eOeb6HxOb2ODdLFklk5YLqaslnPSNKdeb7O9eYWaiiEvSJdz0kWGLgqKPGO1XCFiWC4XjEcHzGcDBieabLVge/saEQnTyZzVYkWjFlOvpSglZLFCSOhuNmg2mqyWS/Iss5XBBUyWU0sadHsb5EWBiiNGwwlpuiKuw6B/SpqtmE3nrPKMNDVkOubwhf1bKXF+NBn1zozlKqWWJIgoJrOMZToCo6kfPufBve+xf+X6GbviHIQVCqNs6DIeNGKVeaRdhJsHLoDT8HZMxc0vl5PIglyNaDtm2oMWY1kdrYpyDpQO7tr6o0RRnVq9ZtklrREVE8V1akkNpdw1TJNEdWjEGygUkaqT1Btsbd2k1ugS17vk2YQo0hgp0BpiBBUrImPYbG/z2us/ztb2Do1miyLPyu9LktTJi4zVakmhNXFiv+LaaBCbYTmKlI24U9r6IRlcIkzbP5bZAp/pWzngZqOwPOjGgbcgwebHQJSy1b0fPnzIu+++e243WY2W8uLZge3tbXq9XplF99atW7RaLR48eMBwOCwXX+93Mx6P2d3dfZ+pwss6MBXS8h7QhOG/1WPD51p3/dCMUvXNCY8JlfTTp0+5d+8eeZ6zsbFR+nD46CLPcGxtbZ0zgywWi9LMsVgsEJEyDHkymZQOwTs7O4hIyQj57MMeQIlI6b/j7+eZAaB0VPahyGHUjy9e6sGWZyZ8pmTPTGitabVaJfvkQ8e9k62vj3XlypVzfR+ye6F5pdqX6yRU9NVouar/Uxidty6ayoMPX3HdX9ezLeHxURSVz+ij27a3t2k2mzQajXMh3f5ZQnDz+uuvs729Tb1ePwfWvCOxB7z+dQiqwxpRVbBe/R6E30H/fmiuXceSfZC8FODGGMN8NeXF6ZDpNEOMzSRcWgJUhFIxkbiwb+x6mpuMpFbnytVd9va30MbQSBKeP33Bew+HnB7PXWfG6Fx4dnDK8WDAtdU+dVUnlshWtS69M9xaL8Zulwu/W7KLuTIJdncONhetZWHOEqIp56Ng3zPo0qxki20WVvn6SeRzsRixOXcEIh/Z45kCo1ks5zx68D2KYs7G9i4UBYvljOViZKOzIoWKoFaPiRLNYjmi3WpipCBPl0ynY2Il6FwTRQpMRqNeR3da5NmCFwdTCg07O9aUlWVLlmnOKp0j5NRqbSSKEZWQrpyzKta5VimI1Vkk0ZVrV+lsbhPFNV4cHjLq96k12jx59C56NiHLV84Px7Cx1eDwcMFwlLOxKWxtxeztbTEaDVGiybM5rWbEdJZTFJrD5wd873vf4PNf/AqNRtOCBWtXcmYXp4iNcaUa7FgZpRz74OyC4W6YiILcsRgGFTvFbayvlXEJGX32YuP8d8QIWuEcYtw8FkNcS1yIas1WBk9TIiUktbr1j5EcmDOZPOZ73/8vyPM5i1mfNG5y8Pwe88WAdD4njjfIkwTMqZ0Xyia2jI2wf+MT3Lz1CZqtOpGyle5tJJ1YJ2CjWSxnZLkFmvY7YJxZ1bGMgjWJinbzVKxXjTkD/CIutw221IfCOHBoc1JpZ/IqzXcfE1kul2WOjyq7ES6y4SLsGYSrV6+yt7eHMTZb67Nnz3j06FHJAHnTx7Nnz+j3+1y/fp1ms1neex374h1Mq6aEdTt5f3zVR2Gd+GuGO95qBE54bWNsyPf9+/fJ85ytra3SBDSfz0uF6xVkHMcsFgtarRZgQeBsNiv7wD9Do9EoHbIPDg7QWpfh2J4F8z4iPqzcAx2vlH2fhCUCrl27xubmJnEcl3W9Go0Gjx49AijrHvnkc77e1cbGBltbW+zt7TEejxGRsmSGf86DgwPefPNNvvjFL5ZgtupPEppSfP/531UGLhQ/ZmHEXRjqXQUAIXgKr+XZE+9/5NtUr9dLNgwoK6Lnec5sNiOKIp4/f858PmexWJTXCcGXB0rXr1/n1q1b5xIxhs/v54fNqn5mwqtKFchX+zLsEy/h/PbPt858d5G8FOBGBBqNOnfv7vHa68c8vm93kaKtgoqIKCRCJEYkph4Ld+5ucu1qj6SuaLZqbGx0yLVm2B9z8GzM/XunFCtjfV8kIpIap0cTXhweM7t7m1otQUfeiVK53bvLRuyiZlTkQQilz43WygIKB1rEKRXjSiucmaqMt1QhzuXBuJ2/VQa6NHmF1yt0jkRRaR4xGMbDU06OH1OvR5i8YLmcUBQpUVzHZEvqtQbNZpdaUgOt6Ha2aLU6JHENTE6706XbaZOvVqA1aV6n1WyS93aYTcccHj7i+PAZeTaj29kmiWOazTatTptaPSZL57b2SywUeUZSq1FrtsjSlMV0xmI5RUXCVq3B8dGpLZegI27eukMUx8wmM2r1Nkol1Osx08mQ0XBCkRZsbQutTowSRT2GdD5kNFL0Om2UErq9Nqt8TlTkJHXh+OgxWWp3e8a4el1UdsCmcNbGs3IWWisKbcGotkgHcHlOcMkSXSkGC45wUWw+GirCUDimjjJ832cnRgRRCXHSJIoSojhCZxqlcMnJakRxDSTGGMjyCcP+e+giwxib1O/5o18lzVN0viKqd0rneaVsmH8kCmLFtRufYnvnCrVag0iBjhIiWboFJ0KhmC+WpOmKRrOOFpf9u6weagF4oX1ph4Qiz1x27MhGdhcFEkXWMV6DLTUB2gjKZsC0/e13IB8j8Sam1157jYcPHwKUkSTVnXKtVuPOnTtcuXKlDIfd2NhAa81gMODg4IB33nnHRsIFi/Tp6SmHh4fcvXu3rJsE7w99BcpFvarg/PFVILMOkFV9M0KfBuB9ijM8JgRRw+GQ4+PjUmF6k4X3l6nX67RardK5tIyKdNEz7XabTqdT1iLK85xms8nGxgaz2YyDg4MyT453GPbgx4eT12q10uThzSw+s64vgOmrfzebTYwxZej2dDotwYh3Yh6NRqRpytbWVlmx3RfWHA6HZZK/jY2NMsOvr2Tun3kdkKwyEGHfh3lbQpATXiMER+FYhWBz3X38HPX5bUIH8jARor9GnuecnJyUbVqtVjx8+LDMPhxGQXnGxjMzN2/eZHd3twSdYXi4/574qLYQxIcSAmwfQh7Oew/Cq4xV1Rfpo7A28JKAG2Og0+7yxut3mY2W/N3igEcPbSbYKKpRRCsibc0UgqLXrfPanW12tmsU+ZzFskYtSVDYfAf94Zz5uLAX1i7Ph45YzFccHPaZTqZ0e228y41SVrEZlK10bYRcZ9ZpUizQMS5hGz68WGz5hcgt+hb82OexuW5U+Wze2dQg1uxhQExEYWzWY200ou1FxIUq27T/FigdPntIni1J4obNYaIS4qRBki+ZT6eoKKLdbFPkKUW+oN3eJ1ulVvGqmGazxkZvE1NkYDTawGw2IVtlNJs98jxlPB6RRDEmXzCZLlgtmkyGCd3NDbZ3dknqDcbDCRubm9STDnHdVpKN6zENaZEuF8xnMza2d3jv3Xe4cu0m88UU8pzORpOt+Raj0YjjJ+8xm89JlxkYQ1KLbb8Ugi4MmIw8W7BKFZEoWq0WWyZi2B/Qbjbo9Vrui2vOVKoxzufGlGMBUppLRLCMFc7/xGfcxUejifWBimLKchtaXIFNx/Tgkwba+9ipoG12YveeUhFRFLvwb1CO+bBrgSs8aZw50lom8ckftS7I8zlFkZamTkRchmq3EChb/qLb26TRaBIp4VyGYLcYaAxp6uzoxue3cWYmE0Q8uV7QxqYloHQd0x65ufOcSRWfI8ea5RQWMIa7rY+DeKp9MplgjCl3+mG0iVdC3W6XO3fusL29TZ7nZU4XoMwXMpvNgDMAoZRiPp9zeHhYlmLwEgInv3CHi3t1dxq+Vy14uE7RVgHOOpAUMjZVJufp06ekaVqCC69EffiwDwv2itGXUPBKyQOZMKJsNpuRpinNZpMsyxiNRuX1p9NpGQW1ubnJ7u5u6S/jc9/4qtXeNOV9aLa3t3n33Xe5fv16mc+m2+2yvb3NcDjk8ePHpSnNGFOOmzedgdUXq9WqbPv29jb9fr8EsVU2our7FL4fghZ/n6rJyotnSqogKByni0w4IYsVRjWF5suwXd75PTTz+PFbZx4K2xeaYcM5668NlGHlVeBeBSPr5naV9fL9F/ZFeO+Psta8FOAmSzMOn51gTMGd29ssfnLFanXC0ycZEqnSodfS6GLDledzJpMx3VmbRqtOp9UmjhNazYSbtza48/om73zvCJMbTGF9V/Lc2JDw0ZgrV/dRom2+D4ldon7lcru5AoneSVicEcpYhahEyp2/TUZnWSW0p/+tX1BQ+xNwSf/ER6g4IGOMM2EVrlinrWZtyz3aCxyfPCQvVkSqi1CQFyuazQZZWmNr+4q1HzfbjEfHNFstyFMmsynL1YJmo83O7i7ZYkEcC/V6izzXxColqll/iZ29m8RJjSiu0+ls0Olq5tMRjWaNZqODzg1b13bZ3N7j4PF9lvM5re4mzXaXZquNUQXjwYgkqbNYLdGScP/eW+zs7zOfTdBFztb2Nv2TPo+1MJumRHHEcllQLzTNRBjMDO12E20MJycnTEZDjMTE9Q55uiTPATGcnjxjMu7TancRFZUKWhx7UxYyxaUEKCOlQiBgXF0yt3PC1giLVIwxhfWxcf5USIRR9ngpEwQKRgqMivEJAlWJDMqpYRcn4/1WpMRbVpE5XxUBJXUKMocvFIYcW7Qyd3PDNh+xYDVJEkQJhba+YXmuyfKsfA3WyVo7ny0lznRkHCjzlimxGbz9OZ6dtM1yOX6MX2w9q+DraIHGAtBC5z/0NeLXS9I05eDgoNztf/7zn2e5XPLs2bNzOWmAkg5fLBZMp1NmsxmtVouiKIjjmGazyc2bN3n11Vd56623ykyrYJkgXyX8ypUr55lFJ+FONXwvbEPIrHhFVWUA1u30wxDx6rHrWACv9E5OTs6ZyIqioNlslj5H3ldlOBzSbDYpioLZbFaGBO/s7JSRVfV6vYxE87WK9vb2Sr+QTqdDt9tlOp3SarVK/4+rV6+ys7PDo0ePmM/nJTvkzV9haDfAvXs2lcVsNqMoijKRnzGG6XRa+vp45sHntTHGcHp6ymQyAaxJzDspiwgnJyeMx+OS7blIwv70/R2+HwKfkAEKx77KXqybK6F5rnr/kCGq+ghVX4cVvasALDzfs0Chj1AYQh5GjRljSqAVMlfVebeOuQyvHwI7f154jY+dWWowmPI3/p9/n82tmI2ewuQFW90ah9HC2fy9w6ctwTCazHnz+0+p1Tu025tsbdkUJLooaLabvHJ3j8V8yWKx4un9kV0QUIhJOD0eczoYsUwXdJIWEYlb6I1VKmL9SCyLY3e02u/ZnSNlYQqUiTGi0IVBKZfUTDnzFoCrPuQdkymLM4rzwfERKcGOS5ziAbwtrMgzppMxBqEwOXm6xBibmG57e9dOuDxDMPR6G4gRFosxp/0BYjKK1ZRWLaJXU5gsYjFdkOUpeZZbf428ICahu7FDukgRbZPQbW7VydIFOtfoGA6fPKbZbrN/4xXm0xmT0YTJcEq9Vae7YevLjEcDEEgzYb7MWD59TqNeZzI+pdmyoZdb2x3G4ylZptnYrpOn0G42eOONK+zv7XJ4+ISjFwdkRU6cxORFznyxZHunQ6dXZzg44r13vsO16zbDqLZ2ROv6akqHkTLrtDY2pB9twakxlAxMYRwbZwAiq+TFFYYscpc02wfqu9HyA+Tmo2d+HPqw88X56hRGHEASICpBjTaqrBklRCjVRNQCH5UlYn16pKxhhmtjgVKJZRQde2Q8E+R+LFMjzowUuUR+oCXC1yfT2vl0uDlmmc0zMGi71CWt9MpQXHSYQ0eW8XTO8XJm33/ZZTAY8Df+xt9ga2urLNK4sbHB4eHhuUXU/z2ZTMqMue12u1TwRVHQbre5c+dO6bvw8OHDc8nZjo+P6ff7Nv2Eo/qr7MpFfhvrlEE1o214nQ/y/QivF55bNU/lec54PC7fC0114XMDZR2nxWLByckJQOkj40GKrw7uiy56Jmhzc5PFYlGyKdvb22VWXa01T58+pd1uc+PGDabTKcPhsARTm5ubNBoNRqMRItZXZrlc8vTpU+r1OqPRiFarZdearS3G4zFpmrK5uVmaTj75yU+yv79/zkTmnWEXiwXb29t0u136/T7vvPMON27cONfPXqr9H9btqvZ/yKL5z/zYh2aai35XGRn/d5X58Z+HdaHC470ZKJx/F4lnh8JnWTdPQ9ZxHZCuzvd1ADA8PpSqCe+DQGZVXgpwM52mfP2/ekIcQ7Nt6HZqLGYxeeFidcV3nrJRS1rz4mTEt7/7hKvXr3H9Rs6gP2K1ykAb4kS4eXOHH//sjNk4pX+0QOscEcV4tODkeMBqmdJpdm0YNrgFOyJCu2zDoJVL9W98KDh4pVJgwYr9XCPKlV0Qm5nWKkKDTdLmji3rM9vSERjHNBDmSzGOobIvtS5sojgD2XLC85NHtNqbXL/5Ku1my/oBZRm6yEgSWE6nnA5OmM+XGK2pb3SIRZGIYj6bMJmNncKKbKZbYnRhqNdaUIts9eqVdZYs8pT5dEikElq9NovFnLwwzn9EsVotmB6PmA4HbF3ZZLGYkWU5cdKkyGCVLVkulhy/eA5mTrO1gSlSkiRiOitod2psbnTY3dmn00pYLVNajTbdXovhcEG9UafQsLu7SbvTQZGTLRd8/7u/zE988R+j1enaL5zGOdZi/WSMddbW2tGoxjoYa5eJ2jMrpdlFFwF8cSUHSvOTyzgdhIQr5WuTqXLulDsyND7cn5LtUNaMI/EZCEKhVM3577is2hKjIsA5uqPElT4wDnAULjtS4pJb+mfxC41dDBr1Jlo7mto7jIl1jBatneO7BSw2gs/ljcTNV2x4O+4ty+oohAIjkQN7Gl+Yk+IH3039qGU6nfL1r3+9jARpt9ulSSPcVfsF29cp+u53v8u1a9e4cePGudT1cRxz48YNPvOZzzAej0vfBqUUk8mEk5MTVqtVWTsJ3q+8QpNEqESq4GRdZFdYzXyd8qneJ3ztJXRk9vdYrVacnJzQ6XS4efPmOadhb+aYzWb0+/0ySmpzc7NkCnzF8NCkBpxL1+9/PBjyRRy73W4ZSu7rR3kn8NFoxP7+/rmq1L7a+GKx4MWLFxhjK5F735n53PoMbm5usrOzU0ZJeROaB07e0bndbqOUzeHyne98hy9+8Yt0Op2yf0KfkHDs1gGYcEzg/Y7DoawzEa1jfNYxQSG4WQcyquxgFSxUzZnVe1bnlz/Hlxipgu0QxKz7XoXPG94vlHWbgI8SDv5SgButDXlWkOWG2SKnf5ITRXUKF6arVIRSCYlqEEudDBvCOx7NGfQXzKcrBkcTvvPdZ2Qr2Ntv0e3UUIWi3akzOF0iJkLpmHS54uhkxHy2ZHvLBD4zbrd7VlUKCkFLXu5WcTtxY2wJBoxxPgsuhkts+LcYXDHBwO/G3cOgHYTyoMbt9HF+Oo7VUSZywEeRxA1OJu8xZ4UBklrLXtRY4FNv1olUg2QBJy+eMZ1NOTycUq9H3Lh6hW6vixIhqdXI+guMEeK4SaZTmu0N6rEtELksrB+MJBHpcoWKrOMgAovpgqge0T86pchzG5kVg85XTJaaqJ6QxC2Gpwe0uhGrNGc2XWHMgsVyyfGLI9qNQ1YaxNgaTs+fj2i3lswmEzY3NplOhuS6II4NcU2II0Wz3SZOGojEDAenjCZLnj1/yng8oNZs2ugzrPlECbZfBXA+M0LkCqzaYqdAybgUJrf+TT5LrxTesmQXIW0LSqJdYVRlx9jibb9YyJmrisEqe+8NZOw8yvKM+WzFZL4izSKUiQBf78oCJm1WKOkEXj1Okbm7GLHspcVk7nlKvyOfbFARRTGdbs+ZGWOXj8mUYNnWXPOMl00/YJQg2s9Ha1ZFclsk1CgotI1YDGgkbwqsrEcvvYT+BovFgtPT03MJw7xy9v4M3tQ0Ho8ZDAZMp1NOTk548803SdOU3d3dUvF1Oh0GgwFA6aPio7J82HS4E13HzqxTeKEiDIFCdde9bldbVS7V64f9AhaseV8koHSm9e1sNpul4j86OmI2m3F4eEi9Xufq1av0ej1sSoKkdCr2dah8baIQxMVxXJqxvE/MbDYrHYa9r41nfnzoti+10Ol0ytBvY0wJcMK6Xlprnj9/TqtlE5dubGwwmUxK86J3ym232yXDNhwOmU6nZZV377jsxzYEBxeBSj9GHviEppzqGIefrwMK686pAimgLJkxn8/L8grV+XGR78o68+hFZiD/Xel0OufGLnzmqp9ONQQ+fM7ws3VpDcJn/EHlpQA3gAvH9SYb8EnzjHE0rzMRKImsQjCGNMuYjJYM+xOOX4z55i8/ZTJMqTcSOr2Eei1hNFhict+ZClNEHB8PWS5SikKfK9kubrdsG3QeleOqhofZXLWf0NgdtriaUqLELf64yCfvQyFWsbkds7dNRK5Ssz3POYA6vxulNM1Wk3w1J4ptaHmtFrGcD1jNhXqtQavdpdPtoLOU2XzGbDKn319y7UaPWNXZ2dmHYkV3YxNd5AxOj4mUZjIdkcRNao2IuBaTLgzLNEXnSySKMalBmRY0GhhjWE6WFNmS2WTEMrIOZ1m+IktnzKcTrt1+A601o8EYDQwHxxidMh2PmE5ToqjOfLlkPMlBQ7cTIVHEbJ4ymhxS5Dndbsz2zi55vkSiiCSxC2OazZnMZuQ5TGdTloulreRu/BfCgQ7EARaDLqwjsDE2cZ8ygopitDM3imdoDKUTt80rZMiLHB8pp01h552xCSXtXHEgwfm1WPbGMkPaGJSxgCRNM54/O+CXvvErvPXmd0kHfXbbBTsKkthG663SFelKUyQrh79q/ktgAZN2gNrYyK7SZweXJNKnTdAW2NVqvnKvBR82waA1nxq/0OCLjiqUixBXyiXlc1XR0ZZBimPL0Njs4BpbF81+BwtTrF2IXmap0ttV34h1u9k0TRmNRgwGA46Pj/nGN77BaDQqI328E2zIAHnWZ7lclor0IhPDOvbGH7Nuxxy2OzRFVPOMhNe46NnC4zyr4aNiPPOxWCzKaLFut1syLZPJhMFgwLVr14iiiJ2dHYqioNfrURRFCR59huJGo0G9Xi9LOfjq3j7E2IMSn6dmPB6Xzq2+1MJ0OuXOnTsURcFwOASsuVFrzWQyYTablWHqk8kErTWdTqdklCaTCXme0+l02N7eLoFtmJTOH+MdnsNxCSObQqfwcEzgvCmlOtbhGHoGy18vnCNVpqMKdsP3sizj2bNnfOMb3+C73/1uCf6874yfxx50VudSCDz8NdcBjfCe3tncvx8Wuqz2R8gYhb4/IRhaZ7aqMlM/qLw04MaCGUHrAqVs3hdtCow+cwIVt3v1x+d5xmAw4ehwwPPnQ6bjFUWumU80s8nCZTd2Ib5irxFJQv90ykl/yK07N0iMBS6Cz+mh3E4+L301jPaJ2pxRyWhEbK4XqzwsI6MpiLCJ7ZRXnrqEOfY5xJZuMM5XRMTv+m15giiKHBNk7SdKYlqdTZqtLsYsadQT0BmT0SmNeouknoBo0DAZjeifTlhl0O3FNOo1cqNpdzp0W/voPKdVbxIrYTqZ06w3yfMFca6otxrsbe2ySJdkqyWoGE2OmILx6aFjDRT1Zp3NrU3y1Yr5fMro9DmFNkyGQ0QUy+WUVCsKDYv5kPl0wmq5YjxOMdTobXWR/il5bmgCmxsJp6cL5vOUJIJYxWTpkulsRqetadbbZE6xqCjGWio1w9MXXL1xx7EfZ/kiMFAUuWU48twyOspF+siZz4B11ramQO9Ea0FObqu4F9r+uAKcGmv6UhEU4nMZuezAxhmxjK9DZqUoCo5PTvna13+Ov/bX/6qNwog0r+wp3pAJUbxFlk4Z9E/J8hWNZowoQ66X1OsxutCexrHPZ5RjhkLw736cT1FRFORZTppm1Goa75SOMUEiYXPmQyZgCm+lswyPBUA+nYE7SXBlKuzf3ownnPFHHwcJF0q/gw1p8XW7SqBUpC9evODw8PCc8ptMJmsVmVKKk5MT+v0+d+7cOcfSfNhuvKpk/N/r/ChCs1L4jOskZB+q4el+J95ut0tzkdY243KYLC5kstI0pdvtlsf68/M8L6NsfHi2973xUUk+v03Y/tPT0/J1o9Eoj5vNZpyenqK1ZjgcIiJllJbWujSDLRaL0m9oc3OTwWBQ+rT0er0yus0DTc/6tNttGo0Gq9WqBFS+X/r9ful3UwUWoaOtH5+L+n2dOcaDtnWRVSGwCO+7jvHzQPrrX/86f/Wv2rUmjmP29vZKkOpLg/iSGN7PqtFonDP3rJuDVeDt/a/SNC2TLIbHhhL2iR8L3x8XRZN5+YfZOL0U4EbE7VJLU492obg+/Nr6KHin4tJ0YFJOToc8eNDm+HjEcjUnkgY+0Z7PPeNRhKAoTMFsknH44oTZdEajltgMaSggKmtBWXOBrXpsw7ddYjgHSrzjqnhTlPN3sMwLLmNtDOKNXMqRQgZjFLgIE3E+DvZa1kRhlY9NnCZi6HU3aLXaYBIWswFKCZnYtP6KiPlkzGIy5sXRE6azKUmjzuZmE2MyWq0ujUaTVtuG9Jm8YGtnj2fPHjEdbpLl2u3SIpq1OrtJA6Ui8jwj1ymzyRBUjTRPrc8ImtVqSVyz3MWkljCfzYhURP/wMapWZ7FKmc7nGJPQP5lRaM10WpCmE1vGIVJEypkEjXDr5hUWqxVIwY1rt1gsRsznC0RiCmNYrpYMh3MajTp5pukfD3n2+F0++eM/Cb6MAN7HxYLkIl/ZUG6n3IUIiUquxva3MkgZkq1LBa91QVF4mriwYxklKNE29BmByDsmq9IEKY7RU85HbLXKePjwAT//X32Ng4MjdAFLsSHi7eYCJafkqxPm0wUqUagoBQy5zoAVYgqKwieWdDsjz+qVUVjWaVjElP5h88WU+XxOs9F17cOxOoL1qfF0kPMuUgoptDNXnc1DASIVOX81Ssdq40qFlM7UrFekHwfxi6xXMFWzkRetNaenpzx48KD0owkZkYvAyGw248WLF0yn03P5RPzCvo5hqYKc0O/B726rbQsTwvlr+fPX3eci6Xa7ZU0nn/DN555RSjGbzd73TJubmxhjyoindrtdZrPd3t7m2bNnZSFLX23ah3h7BetLNfjXvo2r1arMXjwej8s2vXjxooyY8qH4x8fHZZ9752FvXvT9fvPmzTJhoC/GOZ/Py/ulacpwOCxz65yenvL48WM+85nPvK/f/Th51ikEHOF4+HGrVhYPQYIHOf7cUPH7a6xj3vx7PnfN1772tbL2mf/MA5nVasVkMjmXjM8ft44trJoyfT+G7/kEj81m89zxVT8df3zIelXnov+sOpc/SoRUKC8FuLGh3t5pV0MBWp0t1oit3KzFKkMlNYQF2uT0T0bkC5gvFxQ6JlKeKYGyxhCaSGoYMUSmRrpc0D8dW499tsBFliC2jIIui1pKaXryPjJg/S28QUqVDpkuRFxpMJHVtSVosdEonmUQbVBR4op1Orq/RPMeiGkUERIZtnY26G5sgk5JVxOWizmbW1dRUY3VcoZQkK6W9PunNuGaKKbTBc1mnW67TRInLllWiySpodQ+G9t7jPqntqJ4UiPPMvLFnG5vh1q7S54tSdM5+XKFBtI8I08zVBSRZSnz6YTZeEgjUrw4OqBeazBeLMh0hsmX5CtbbiFd5awyIcshS3MG/ZllOAohjhLSrIDpzFVxh8Pnz0mzJfNZiqgaEi8QcuIkYTiYgRiyPOX+w7f46nJFu10Hb7Z0lII2NtmejWpT1jHXzwvxSsNPPq+MrFnJAhrrpGwKl4MIF9VQ5ERE1s9K2Wgha0ZV1khl7FzWRqO0Yjge8879e0ymU1rtJrPJAm1gsjA8P53avjcr6srQbBvyPEOJkBWaOMstE5NbZgUNmgxMbs2gcPZjDNptBrQxrNIVy3SBoUCJDWFHzmqeGWOdlI3xmMfRxb4iugfp7vrKmbVKM5j20VkGbbwp6+MjIVPjfWqqwKCqRDyr4OsreTOT/yw8LzzfK0gfHRSG5lYX8eqOObx/eP0wOiUUkfPRMKGy8NetArHwHt6s1Ov1MMaUjMn29jZRFLFcLktFenp6Wl7PMzPe/8KHyftIqO3t7XOFRL2/U6/Xo91ul7t/DzryPC+rfPusx+PxuAQ19Xq9zCTsjw0js/x7p6enAOVY+Wv5/jg8PCRNU+bzOUqpkq1JkqQ0d2VZxv3791kul3Q6nbVgNJxT68x+HwQ6Q/YmPD4MDQ8Zu5DlCn/G4zH3798vw+pDHyQPxv0Y+3xDHkh63xwPMqum0VDCdmutz5m5wo1BePw6gLOOpQzP9c8d5kvyr39QeSnAjfe1sTtshc5tll6f18PowlYf1oVLZOYqg0vBMpuRjyyQiVXjjAHyu0qNy1ljgY6YCF1EjEYLZvOlq95sSp8FrdwAGqvkbDJWn6XWbaFto1EqPqP2tcEoW5tKSWzz3KAc62RAqTIXinW7cc6uyhYszClcW32ytMLG4+iMWi2m025xcjwkqbeJixytDcvFGKPrmCLldHBEnhcsF4YoiVgsCra32mxtbZIkthCmkoh6rUUc16klLWpJG601cZyAUszHfer1Fu3uJvX2Bnk+ZzmbsFrNyTJbeFJFgi5AFxnpfMp0MuD4+JDFbE6O8OLoGfP5lKeHz1nOj4mjiP64wGgL3AanK5rtiOm0YLmEa9e6LIo5i2VKmhY0moqNzTZxElHkGUVeoCRmc7ODQTMaLgHDdDp3TJkux0C8+cYzE9p4POqgqh0/D1dx46OLwtZIdeHX2iX5s6Sf98txLA4GiC0oFYVSWHbQJ8pzYeBpkTIa9dGF5stf+u0cHj3jyeOHPD88IJ0vGc4KZtOcbs1wbUswhdv1iXJ/2zZp11JtrOO6zu3Y4zJYa8duGg9KjN0UKCJbJVz5OegZTOVMpcr62/joMO18cgqvAP1C7Kqq401hLuIMmwzS58/5uElonvFKxAOP0Acg3IH6Xb0x5n3AxF+zuqP2Jpz5fH5ut151rlzn71BVGNWdtH/fSwhSvIQ+ECGzsA5UFUVBrVaj0+mUIMIrfO93orWm3++fS2i4XC7Z2tpia2urdM4VkfJ87wBs1xrryzMej6nX6yVT5EPHV6vVuSKOntnwvjJHR0clsDk6OmKxWHBwcMBisSCKIkajUdmXg8GgrEi+Wq24cuVKydT4zLxbW1ulr4031W1sbGCMYTQaAZRRX+F4+H5bx9ity0PjP/PKutr36/x41rF2VWbQA7zRaESe53zpS1/ixYsXPHr0iBcvXpzL0eSfNzSBhbmZvPjPw8R8oVkqbLtnBUNWJ2x7aPL0/etBWgjoqkD9onutA1wXyUsBbkBs0rRCU+SZXTB1joptuQXLZHjnSUf7O+uQJrPMj/haT1bpGKwZyRb2sxlhVSQoFaMLGA3GTKYTe78ktrttsaDCOGBjjNePEVHpwOkKMvqJbbT1J1UK5SqC2yApp3AdW+CVa8kEeBZILIiLjGDISxbL5joxKGKsYrL0sK2u3USbnHQ1I4pguVyQpYbxaI6Khel0bq+tDZ12ByWKiJg4qmGMkGY5ebpAophWu0kSN0Gg1eqiiKg1WkTNFjV6NNpbZMsZWboijuvE9YbNAVMU6DxjuRixf+Muk/GQKK4znU8Z9k+4eXLI40fvcO/+U5BTVmnKfK5ZpgaMzda7WKU8fNKn2VTEkSKK7JdEEOKoDqyYzUeYQtHubNHttImUsFppDg+fM5tOaLU7dk4486P2uWuw2Z0t1DkzRZXFTTHlWBuTl+HgPlmkUT4CDlzSYmtmdGyeaINyWaRRhSONPACyJqt6rc4nP/XjvP7Gj6EEZvMpD+6/zbe+8ys8uP8Wp8+PYWHYaBkadSHWGnxKAXNmfbIMi6HIDZnJrC8O3hik3KbAtlXwWMbnunH5aJxzsX0OQWvrbOM5IPF+NAoofCoCD/IcK2UEXWgK7XM2+cX948Xc+IXWL+webKyLILloB15lPfzffhH2i70HA95HJ8ySG0bShIpyHaPjf6p+GOuYghBYVX01qmaBi8Qn3/PmJZ8EzxeyHI1G+HB3L95pN2RBfNFRpVQZLQWUZoxGo0Gj0QAosx17J2MPiHziuOVyyY0bNxiNRudC0U9OTspCqJ5Z8iUBfK0rnwvHm6r8eBtjyjbNZrPSb6jb7eJ9cnym6TCc34/hunkQzoV1Y1gFmCF4qY5NCIar9wqBVa1W45Of/CRvvPEGIsJ8Puf+/ft861vf4v79+7x48aI0H/kxrbYzBF6+z6tMyUXzPtwghM8bmqaqprbweasmMf/cobPyRwE28JKAG0GIogRT+GRGLhxbG6s4AJyzr1IxylU3Nk5B+cW1IMW4ukLiHHfBZQ92PjKYgkgZdFGQZza7K1gFWLicNdpgk75p62Nx5lyJ0xyU/gYGD0yc4nAK1Q6yKW0HIlICHKsSrY+IuKKc9qDI+YTY59ei0blhNtOkmfU9SWoNalGMyTJybX0y0ixnNk9ZLK2/SZoVtFt1Ou0OnXaPosjRaBtJdXTIZDTA6ILuxh4b23s0m5pGs0WtYW2zKqnZ9kUxSqDWtE7WUb1BUm9TrOZolWF0TqPRJam1aLQ20MbQ3dqnu7HF7rVbvHL3x3j908948O493r3/Ng8ePGM5KsgKaLfBzCEvLIiMaxFJAvWGzb6bpjZMu95KkDgmTafkWcbuzhbj6ZI4jlCRGxdte9Robauve9ZBuXwuOD8ug2PFfBSVdSY3rlCUDR2HWNkoIaMUhS4QhUsA6Bghp9i18+8RbQO77RfVAielFJ3uFlf3c1Rk2NndIY4iXn3lVba3t4iV4lfGv8RiMGO+Enq5Ic8NcWJ9bDxI8oik0Jo0SynwTsz2a2EkCB0tGRxQEQFzQ9kPlGZPt9gYsBXpnXXPeDBkzatFQcnWiIsmw7E2tg2CT3nwcZFwUQ0VRRgO7o9bR7GHf1d3qlVa3d/L0/++/o43A1Rpfi8X+cWsUy7rnIzX/Q5lHWjzjrk+KqlWq5U1pvxPlmVlSQOgrB3VarXodDqlgpzP52XtJq01GxsbbG9vl345jUYDESnBngeWvn/8vX3NLq01jUajjNjS2ubV2djY4Nq1a9y9e5dPf/rTvPPOO9y/f58HDx6UJip/TQ9mPaPk2+D9rRqNxjkAt7e3V/qoeDaqaoYK+zP8LASeobKunu/nmJ9/YY2x6tiE7FEVWHW7Xa5du4ZSip2dHZRS3L17l+3t7TK831dP96kQQgfxcC6EjMo6qc49DxSrju1VwLLu/JCNDIH+RQzZR5GXAtyULIvY6ssmL0qflUidlbq3nXdWD6jMMOIWdgBN4XxYQmdiZzrQOUo0rY0mr37iOhsbHes3gTljghxrA5Gl7ZUNmgXsa62CrLjW50ZFsWNv3C4YKNPXY01V1sRgq0+L2yJbq4ejHbVNiqZdRmM74QVtclbLJU+fPmAyHBMnY7JFjTi2P8s0Z7laMhgNUTWFGE2zFVNLYna27SRP05wXz56QZjn1Zpvezj7dzV3SVcrg9Ijnk3cp8hX1RpOrN+6yc+Um9VYHyVcQx9YnyTFrOsuso65LgCcqRowQ1SBfLTAC9WaPwkBWaLa398huF9SbTfb39znuD1hlK3Sx4NvfP2UyNUxXmm6asbPdQIli2J/izUJxomi260SR0G43aHe3KcyQZnOLWr1OrCJyU4DJHQtTOCBjnD4Xa17SbtYowGgKk1OGNjtArMTnsjFERpVMoA/LJgRGuC+dLpxJTBCl8X47Wa5ZLheMJgPq9Rq7sk+9VmdjY4Od7V26vQ1q9QYTM2O2glUm1HPQNq2MnY9iQYT1azHk2paGKP2yRBCj0Mabkay5Fj8vxSkNwfsPkxuby8hn3wYHWtAO2CjL6vjvpbK5l0S7elhln7gF5wIl/HEQv5iuM+dUF2ov1YW6KlVl1O12efXVV+n1eu8r7xDu4qu73qrZyr9Xpf/D9lZ3ytU2V01cYTFD347lcsmTJ0/K+k/e9OSdUJfLJcPhsAzP9s7B29vbiNiMwc+fPyfLMhqNBltbW2xubp7L+eMjsW7cuMH+/n5plvImqxAQhn3gmRbvSCwiZf6ZoijY2dkp8+ns7+9zenpasg9vvfVWWSYiyzK2trZQSpW+NWBz/Hh2qdPplL5HPnw9zHt0kV9K1aTo2xaObWhiqs6bcCyr1w6zX4eAwOf/GY1G1Go19vb2aDQadq3Z2aHb7Z5j4LIsK19XgU1okvL39PerPmM4z0P2pspQVc1sFz1nyF6tY3IuAvwXyYeCGxH5c8DvBo6MMT/u3tsG/grwCvAQ+GeNMQP32f8a+B9iM4v9z4wxf/tD74EQqYQiyhzZYf1R/G5a50XpkKuUIpIaioTCmYg8E2JDcXNiqXv1A2DZHFFgUnqbCZ/5yTt89rOvsrOzC0Q2cCnCnW/T02uzsg694nOaODZJjGUHlM0yLI6piZQFQ4hyuXI8ALMgSAREu120Uo5sOpuoSiUOCNkEhTg/DlH2mnmmyQvA5EzSgkbTYPQKiebkuSaKExpxjXmxIKrF5GnO7t6uvQ6K7tYe3c1tuhu7NJsdGq0uEsUUqfed6XN8+JiDx28zHr5g7+pdGs0mST0hqjXduOQU2YIsnWMU5HlKnhb0XzxjMh4yX8xAItJsxXQ2Js0N/f4p/cEpy9WCOGly7UqLLF8wmw1pt8f0RytWmWE4KFhkS4oiot0SxCXQi5yZLRJFq6NJ0z7j4YzXPvGTNOoNQFDGOsZqbfPnWLbjjDVDO98abc1G4u03zt4U1hTTYueTZeDOxlIZMB7wBF+0olSOOcYpjDTNmC9nLJcL4siWdZiMRyznQv/UZlldLFIHvIRFalhmQiPTxI4VykxBoQ2u1ilaWUYnLzRZtnIg2ENk5zdjPFB3wFkXFrgYy7hYXxv3fVAOtGFKYKRi+x2yvkziwEzu2DUH8csoQjkzu/4adlVr14HfgLUGzpt9qotm6IMQRiatAwtVc4H/7d/r9Xp87nOf47Of/Sy7u7vl9cNFPQRYIfjw7arucv3noTIJZd0O+aJnXed87AGKZ2A82+RNbd5c1Wg0mE6npaOufz6wIdieVfGsjvex8L4zBwcHPHr0iMFgwNWrV2k2m6VvDnDOpOXNQ1mWcXR0VPow+fd9Tpx+v3/Ocfnq1atlFFa73S79Uk5OTspn9CYxDx59LapWq8Xp6Smj0YgvfOEL55IZVseuyuj59ofAYR1TGI5TyGBUrxWObajofSj2fD4vq6UbY8qosn6/z3A4LAuH+rH1P75d/prexybMJl1NBLhunvnrVIGXb+M6ltC3tfqsoQNxtX8+qvwgzM1/BPwp4D8O3vvDwM8aY/5dEfnD7vW/LiI/Bvxe4DPAdeD/JyJvGGM+1MVZqQgpnDnGaJSxgEeUss7FOsd5FBBJgpI62qwwFBRmQSRNjCkoTIpI1yksb0LIEdFs7df4/1P3Z0GWJel9J/ZzP8td48aaS+RWmVmZlbVlVXV1V6EbQPeQINAACIAABJIayoykSTQbymzMZDLTg6QX6WnM9DJjpheNbMxkptGIEsUFMhJc0KSRaBJgd6PR3eju6lqyMiszK9fI2CPufhZ3Pbh/53qcvJFVTYGYKu/Oioh7zz3Hjx+//v39//2/73v9C8/z6mtXWF8/QZLGlKakKEoX3ouTTwr/UmmHVcAS4XfIyjmlUBDhagFVBtX4pHGyxxcj4oURynr3gZ7piNwuHFedWseebQKDptXp0Wx1GQwO2dvzQtq9KUkMSaKJEpfITyvFdJgTxQ20ilhaWsEqN1mb7QWSRgNsSZZPyQ5yimzKdDKmzEdEOqG3skZveZlsMmX/YJNOvsBCbwmlY3Tkshhn0yFZNqY0lslkxOSgz2gyBB3RXVqjtdAjabQoTAYqYjKZsrnxgFs3fszND3/CZDplYWGJVnOBpaUODzemxBZUCaOJYTxWdNsxVhvK3LC/6wBlkir6w4zx+IBWs8GZMxeJo4iyyJwguCwoy8IhAGYRU0qpILzfMw7KsRXGlFU1cefO8dl8/TwT8GA9UyfJGY3xYnDP6FljXL5gM6OLm80O58661PVlkZEXOePR0D1XrTHGl3NQimlpmUzBtN11URYduQzNZebuw1inu7GlIc8yp3tCIvAcw+fcRYaizAHlc3kAytfNslKw1QGbmVvXaby0d41aqzCUFMYlwNEi2FbORau1xRjQ2vrK6Z9iFfl07f/On8NaUzckInSFoyyGAIgQjITgJAQl4U4dYHV1lddff53XXnuN9fX1KtmZgIN5fZr3s/5aaBxDgzKvPcsVIO/X+yIFKsWlBFQ5UyR8u91uE0URo9GoYltWVlaq8Wu321WhTKkCLpoZidJZXV1lZWWlYoLyPK+yG4vhkzw4ImiWPDZKKZaWlqqQczGg0+mUjY0Nbty4wY0bN5hMJvR6PdrtNktLS2xsbFQMymQyYTweV+CmLEsODw8rt9VwOGQ0GlUMkwBB+RdW1A4BRwhKw98FCMvxn2SwQwA9D/SEUU0CIM+ePVu5nAT81V2wEkkWMivicquHtAvADHU34RwPzyF5g+ous3rou8y5MFQdZvlvQqAn4xXq036a9ongxlr775VSF2sv/ybwF/zv/z3wTeB/61//+9baKXBHKXULeBv49jMvovwX0Xq9hHUGyShDHLkvjzMeLilJpBtolcw2jDLYPjmesbmPWorAlqAK1k71ePPt57n+2vOcXl9DxxGmtJRFQaYVaeRKL7jzOMGk5NSxGBftpCKfydbv5kkcI6M01ufEQXlXEzIh3fHaJ/2TjLZKBeyORPB441tNIAU6iuktrZKmMaPBkNG49OHekMfOFdLqFCwsthgNBkSpxlhLd8GL4jREkaIocqbjMTubmzx5vMmTzS0OBn3HUpiclaUllhYWWFlepru4gI4ippMhjXaLuExR2mIN5MWE8XTEeDxiOhwx2N2nUO4+ImNBD0Bp4rSBjjRxN0WfXkdriOKUu3c+wNqIKErpdlrErpg6zQiqOhZaE0fQHzhaOk1dYPxkYphMDd1ug9PrZ10m4SJ3miJTUpa5i3byTxHlMkK70GcjKi3n0FQerFjjExM7t6gxjoGZ0T4e5kQuw7FFzSrGm9mcs8aBVmNKkiim1WkTRz6E2rqq3eN2h0jHHB4ecOrkSeI0JY4V+QQmhaMfolhhUMSxj3aalITm2qqS6dRVWq8WjIr2LSvADTPxqdIaVbgklSigVD7Cz431jOjSPpGf9ZsLVxldG4PVrr6WtdaVYvBfOwPoPyPm5s9jrZnHZoBbQJMkOUKly27+WUaozroopThx4gRf+tKXuH79Ouvr68RxfMQo1kFKaAxhxsyEhq3ej3DxD+9DPh+ee16rgzFwRm5paYk0TSvjLsdJmQRx14xGo0ovIwJcAYLiJtne3mZjY4PNzc2qpINoZaSw5eLiYiX4lfBxMWQCiCSXTehCEoOnta5y8AhbIwDp9u3b1X1JaQVrbSV2luMkgzJQgVxxwXW7XdbX17HWVmyPuILq7Th3Uh1MhyAgfAb1eVD/OwQIMkbiSgtz4xRFQafTIYoiDg8POXnyJGmaEsdx5ZaScZB7lrGo674k7UH4PZnHrIRsovRPjg/HR+5HAE4YmShjE47jcTqeT9P+YzU3p6y1j/3FHiulTvrXzwLfCY574F97ZlNoGmmKNROmQJV9VSmMcQ8tilKsNUSk6GJaVQh30UtlpYuphKNaClYWrK51ePNLl3njtSusnz1J3GhgSkNBDtaJRm0ZuRw1IlxW2pdBcPt32clHUQIYRITq8u4orHbsjUYAkXeX2chra7wbQcWujIMHL8r6yC4xSlZcJjPWodnoYGzK4WFBaZ0YtCgcc6RjB7qGgz79g0Oa7Q7NZoNTa6dpNxo0Gi3Akk3HbD6+z7e/9S0e7BzSWjzBg7sfOjahMLz04ku8/MJVstGYbr/HqdOnMHFCmeeAJUra5OMhRZEzGg/Z391mf2uX8WTCeDhk0B+QNjsMxxmgiZOURrvJ4uICyytLWAOLvRXWzzzPzvYT8iKj22r7WkeGJHJakyKHRiMl1lNWVhLnZTKA0nS7rnzD2fOXOLN+gSybuMghazBl6Z5jtTA4l6JVohGRMXWzREAlPiQaX99rBnD9MYrKJYln4cRcKJ9ewBXKdFoY4zMFTyY507xPrDXtVgtX9ykiSRO63QWX1bWRkqQp/cmY0dRSFHrGxOBBi7+Y08woTGmZjId+9zW7FywOxPmq80rhqoMLO6Os85gajVFOY4R27j+lvM7Y/3MbBOXKVaiSEoVSliiK/dy3WA3WOEG3Y6H+k7U/27VGqSoKx5+zWlTDnay8HiaUk+PnnTNkbN58801ee+01zp49+9S1RDQahnbLOeohxJ+2/k/d0ITGsd7C9+psg7W2cr8cHBwcYavC/gyHQw4ODuh0OpXGQ6JwQgblW9/6FltbWywsLPDxxx9XBUpffPFFrl27VrExp06dqvLfAFV4uYAkiYgSkNPv92k2mxWLkyRJVQRTQp0XFxc5d+4c29vbFEVBu92uxkOMuGhPhEkKmYhut8tkMuH8+fOcOXPmiKtOonjqIKTOpNV/D8Hmccb6uGdaB0KhS0zKWGitqyg0KbkgwLPRaFTjOp1Oj7Ax9X7LGEgIfhgSHs6jOnAJ+xuyRvPmYQjc6iHu0n+5TniePw9wc1ybt02Y2xul1H8B/BcArWaPN750go1Hhhvv71GW2q221rMnCqCs3AU6SoiKFE1M6cOnJW+JK5DowQMFC0spr795keuvPc/J0yfcjlhrDyr8BDFQWkOiYiRhikgSlAcgWjmq3ukxPDOjfCI3vPZBHrAYHeujTlDOXaIccHM7aM8OePcTIpD2ieGcu8Sgoog4bRAlyxBpljopeZaRT0sfJmzJM8PhwS7NpoukUdpy5vQZkjgmTWPiOGE6GLD9ZIPBcMBrr7/F9bd/gf/h//p/4MKFq3xw80POXb3O6Reusnvj+0QqYy/WLLFKZ3GJ0roxLfMJeZ4x7g/Z29hiZ2eL0XRCI23Q7i1x66O7vP/hDTa39zh1+hRLqydRpuDMyRUuXbpEUUyJdUyz2SEfZt64K6YZJDE0I4XVCqNi2p0GSZExzgq0dqAwSWO6vTZf/dovuYiJsqxcUaZ0oMJKXhZtHKOgqQCLp9lcgVK8UQN5AH78PV2vY/9Fcs/JpVV0x2obe9Dk/UVRXAmL8yxj/3DA9t4ht27fZLG3wguXL7K6suDKN2hNHCc0my1a7UW6Cxmj0SMmuWEytXSNcgVAS4gifDSXQ8ul/2JPJxPy3JWJkHsS8F0tECgvAXMh4QbRdvi5bRVaC8PoCmNiygpMWpujtCKyPvrHL+jaRzKW1lTX5RnMxn/C9h+31rRafOELX+DRo0d8+OGHTyXxq9Pf87KyVheruYZ6vR5vvPEG169f5/Tp09WOGI6KKkNdQ0jD1w1g3SiEf8/LpSI/5wGg+t914yJNQrCF7RB9hoxRURRPFaaUulLCDoQZjF977TXefvtt/tv/9r/l4sWLfPDBB1y5coUrV67w0UcfHTFkvV6vuo5obAaDAZubm2xvbzMej6vcOLdv3+bGjRtsbW1x+vRpVlZWsNZy6tQpLl26VJV6EG2QuNQkzDwEl51O50jIugDghYUFvva1r9FutyvmLXQJhc9i3rjPY2zCFn5uHkCtfyYE4UqpyuW3t7fH7du3WVhY4MqVK5VYWkLym80m7XabXq9XhchPJhM6nc6Ra8k8Dee6PP95rrQwMlCeY+iCCxmZeQL5EDzX3VChVudZYP1Z7T8W3DxRSq37ndQ6sOlffwCcD447BzyadwJr7X8H/HcAz124ZH/+Zy/xwx+U3PrwMaYYugy+3o2jfYp95bUtLtTXl0iQiCjcamdsiVU5yiZ0egmvXb/A69evcubMadJGhNZK0tAQq4gCVdUQMj53iXvbV/CVQbeWCJfrxoEPl/Iev9OVQooiOLUS6q1cBJb2NavwhmXWZ5e4TSFhy4AAKJVgrTMob3zxy9y7+w7ajogWYvoHQyYjS1ZY9vZHNFJNliuW0gZYWFlaIkkbpGmjYpxOra/zs50eWjVJRvtcOn+J27c/4OxKzKkTJ7nw3POMH94ijRW9lS5JHGGKEpPn5JMBZT5lMjigv7fHYb9PfzBh7eQJEhWxeOEl7m7ssn75FT7e/Ba91RW+9ou/zoc33+X9H/0xGxsPeeHaNbCGRjOlP7CkaUSzFTMYugSGVluKaUE2NTTWlkntiNG4j45jtFKMBlOWV5a5eOEyyuBDv13uIGNzB8Jw80Pj2TQcE2d9bTEl0VNeXWUsaCNAU890NtYBBxUAVDHs7jumZzlpFFjtKn2PR1M+3rjHD37yLrdu3eHkyYts7ezx8tVznFxdAxxYS5KENEloJClxHJFNDZPcgRoVOdCktPKZkr3uxwPuLB8zHh9SFDlRLNmt/TgYn5vGs4EOwFjJMei/JVFVmkL5+hOK0um9XGE0X23dgnaA2UoeqIpV9EOm5uKJP8v2Z7vWPPec/cpXvsIPf/hDPvrooyMamGdR33VXUv24TqfDq6++yvXr1zl79mzFCMiinSRJ5Q6og6J5OgM5f92g1O7rKT1Cfbc8j6Gp970OrL74xS9WLp2FhQUvgB9TFAX7+/ukaVpFHAEsLi5W4AGcm+P06dOVkHg6nXLx4kVu3brF6uoqJ06c4OLFi2xsbJAkSZVIT9x24joZDAbs7+9zeHjIYDCo6iSdPXuWx48fc+nSJR4/fszy8jK/+Iu/yIcffsiPf/xjHj9+zLVr17DWRTr1+33SNKXValUJAJVSVXbdtbW1KgJLAKlkZn7uueeAo+4Y+f1ZzEV9jOtg5dOwgfXnHgJwgNFoxMbGBj/+8Y+5detWFSH2wgsvsLq6Wp1HhNph1FsoHq6zUSGrk2VZ9ezFrRfOvbBf0mdJiljX2xzH4IR6JDnfcczPTwNw/mPBzT8F/jbwf/I//0nw+v9LKfXf4ER+V4HvftLJOp0mvcVFtnen5LmiiuzwOginPUkwpauKHUctojJFlymKSXUe5xSKgIJWx/LK9fO8+eZVzp9fp9lquq1eZNFR5JkhS2T9jt9KNVYHQAxmxtCEBk3hjckM2ACz932GWrdY4I0qlbvBxyI7uyF0HMpFYSn/8LwGRynHXMVKc/b8VZ5/4Qu8++M/pNWMyEvNOCvIMmfAxhNDux2RZxmtVoMkjkmSmFazDSqikSzQ7a1y8rS7b2s1X/v5X+ZnvvwXmAwPWVxoM7x3g7XlRdJ2QmdpiSpKrLSUZU5WuuRYg2Gf3FjWz52DPOfMcy+yfO45Tq2f5ObN3+e580ucPXeZpWbKxVMnyc+dZzA6ZDoe0ul26SwsMZkMKIqCXidlZ2eKcqQJkdYU2YQkaWBMyWi0S344pSxc5M/qapve4rL3uxivg/HuQaMrgKK0dytWhTNUBVYl76+xPiO2d0lF4J6PElFx8Fw1voyBuIEsELmyDkpRGlcPbZJnHPT3iJlw6fwyaTvm4weP2d3b4+rFdc6dXsF6X7mlJDdTUJAZmOSWonSgWWsorQdOFYBwYKfIXNHSvCjcXMb5kyyyA9NY3OKile87yol6vJ4MFVNaB85mblR8oVrlGB8f0We1cq/7jMzGli6qj9KncPhPytz8ma41Ii6Voo/h4hruQOU1yXFS11iEgKDVavHqq6/y5ptvcuHChSqvSihGFkMiDEDIHhzX6jv68HWlZqHc9aic8LzzQEz4d/29JEk4f/48165d40c/+hHNZvMI4JA8MK1WiyzLqigncQ1prWk0GvR6PdbX16u+ffWrX+XLX/4yw+GQhYUFHj58yMrKCq1Wi6WlpSP9l2zB4rYqy7ISyz733HOcOXOGU6dOcePGDc6fP8/58+dpt9usr6+zv7/PcDhkPB5XLpnxeExZlnS7XXZ3d48ASWFyjHE5fg4PD6tnvbq6ytLS0pHjQzApmpV5z7E+1iHAnHfMcfNArhVmmhaX1HQ6rdyH586do91uc+/ePXZ3d7l8+TKnT59G9C2hTkhccqGIN2Rhwj5LIsS6EP5Zuhv5O0zANy+qrA566gLi+tz/aUovwKcLBf9/4wR9a0qpB8D/EbfQ/AOl1N8B7gF/zXf4XaXUPwDeAwrgv7SfKnpBc//+AXdvD9yXwUJpMmLdAGtcvSddOFxQgCS/8+rTyghHpGigmcZce+k0b7z+POcvrNNqNYi0W7ClvAG+5o7WoMqyEmU6SgBfJNKHCXu3hIQFOyWD64e4PVw16BJs5He3TmBsrHMDVBQwPnBXGBxvJ5VyBmhWcBPvZojQytDtLPDWV/4SD+7f4fHD22TjktHEEmlFkUO75WBYlo1ZXV1yiaqSBBSkSUrUarjbsxAlKUmScuq883P39zbJh4eUWU4arxCnMUmcUpS5FxI7g5fnGXmeMZ2MiNOU3uIyqyfWSHRMvv+YL11/g9NLy+xsP6ERtzH9PZpFRreZ0G6tkEQx3YUOzXaDYb/DqD9iudflYTrAFJY0dT66PC8oioxup4OycHiQk2eWKFasnjhFo9FCKVydJ+tyG2ntNFhVwiKonpvyol6rNMp4LVcFUJ3A27khlccuge5GiVtLHoicVyKpHGCKtMYoTa+3wGsnTvPWF16lKAv6gyHvvH+TH713l2w6otuKaTaiKvokSjTtbotsWjDOLNOJIW67yCiML1tRyj04dsvYkvF4QJZNq6gUqYdVFl4f4UuDuFQC7jxKKZeTSfmFwgv0nWvUFYgV/ZFWLkuzkfIKKqqio9x9G1xSIMcU/Vm0P5+1RvHgwQPu3r1bLZ5hBFTd2MzTRIRGqdFo8MILL/D6669z/vz5qhK2/As/p7WeG3lSNyyftFP9pKiR49gauR/5uw6EQjfNV77yFe7fv8/Dhw8rnYbWutKpCPOxsrJS6TkEHIWJCpMkIUkSzp07VzE/o9GILMuI47hiE+pATZLNjcdj0jRlcXGREydOVCLZN954g9XVVba3t0mSpKqlJAkC4zhmYWGBVqtFv99nOByyuLhIkiQVuJR7EAGutS6MWkDc2toajYZbN8NnFz6veeBznvtS7q3urgrnWd3IS6szGPLMer0ea2trfOELX6AsSwaDAe+99x7vvfce0+m00kHFcVz97HQ6lUYny7IjzA3MMlOHfZbnL2uN/AvLZISbg5B5qYOc+jwM3XL1KMV6GPlP2z5NtNTfOOatv3TM8f8V8F/9NJ0o8pKbHzxhOHBGyoXCOuq8zAuiqIGKYowdg99Ra6Jqd40XgkZEpDFcurzGa69d4uLFs3S7Cz5qBQhAivZCXlcjSPn8NoWLBPFskTN0tsq/KoHbptrn+mOsewWlnF8BxxconOajir4Rt4acT/mzqFlW4ipkudqNO4MTpykXLrzAb/7Vv8M//d3/gTu3PkBHU6w1NFKn04gUNJKETrPtIm2IiKOYRqNFkjSJk6ZjpfKS0uQU+SFFnqNtSZI2idMmqIgkVWCnRC6TDyrSFKagyAoXCdTsMu0PyPMpWimStEkUaRrGcOn8ac6eXsWgKfISooyT2Tq5Kem2WqyeXCU3E7oLS+ztHdLrtmgkinFhiSKItKUsDePxhNWVJdIkQasppYHl3iI/8/bXvJvQeySVJY4SjCkxSp6OBydK3IV+1D3T5lwy7oliLZFS1byCoyUbrNdgqRli8uA48AN7hk+rBr3lNU6cXKPba1PkJYcHh0wmI27eeUDkgYW1hk67y9UrV1g/tc729hPeeeeHZP0hkxxapQNyoiETL6bBoozCGLyoeIq1XX9v1gmqUX6nJ0ActEoplSs1IRFj+Lnmkh66Y13ySieWl5xPWOXLgIDRCmV8ZmYUShkk8uzPov25rDVFwY0bN6p6QcCRna0Ufgzze8xzSQn9fvHiRV5//XUuXrzIwsLC3GKa8jOM/KgDC3n9WS6o49wU0upurfD69dfEqMzbsSdJwnPPPcdf/at/ld/93d/l1q1b1RiJHgeoCmSK1kLKNQhgkcgpyZci2g1hegQMhe4WYbfEyLZarQpwiItF2KHz589XkUziBpHcNu12mxMnTlCWJQsLC+zt7dHtditwI1oqa11xydXV1apPxhiWl5f58pe/fOSZ1aPY5o1r/fnMM+if9FxhBjylzQPAy8vLnDx5koWFhaq+1GQy4c6dO0dcrZ1OhytXrnD69Gm2t7f58Y9/zHDoghJEJ1XvU9iP8XhcPTt5P2SBwr7N09bIeyGoDkFS+K8+jvPm+Kdtn4kMxcYatnaGjg53qYmd66RKQObYHRdp5Ix9pBIilTpXgYcckVKcXF3g+quXuXjxHN2Frnct4Y2SO1arCKMULv+NJlKxzxNiiaoIKbf4o1z/lHIxywJUlIiXce4FY0uUndF2rvyDdgwRLnMwys6y2focJ+73SirtOuqpHNHyaOX0OHGccOnyNb72C3+ZOEn46IN3GI0nJIki1ZBGikaS0mokbueuIUmaJFFCrCMirYjiBjaylHmBVjGNpqbbcwm4FGBNQTY6YHg4rHb5xlhMmWNMgY5ioiRCY7B5SRInpGnsDWpMq9MhtfjSBQbdiEk7bcaTCWmc0Ol2mExjonifJI5pNRMaqSbPLHGkSFJNHCvKMiPLpzQakGdeC/DWW1x6/mWUjqu8R6p6Pp5fUYkHA9bjFeXnlT/WmIolM9Z4ZgO0jpG8Me7/pROBV8ycTw9QJfxzkUwyv7SO0KnsGpPZYp+mnFpb4/q154i1ctlY8zGtZpPnzl8my0Ys9ha4e+8jtvaHZDmURvkvppr9V7xhfnqWZcl06sI0EfenxQE3a7BWGEpxuykPZizWz3tHeHj3qZFEgF5/Zn1EhvUwTwHGuUAt2mU4RkDiUYP6WW7GmKqi9Tzqu747Dn8Pd+pKKVZWVnjllVcqYDNPdxFeI3RN1fU083bz89o8d0D9Z/0cdRdJeHyd4ZH+xnHM5cuX+YVf+AWSJOH999+vNClRNGMeQ22RGEoBKQIURagrrFboXpGkfiFwEEAkWiWlVAU8QzAkbIt8TkozTCYTkiSpWArph5RvEGYmZI2yLKPZbFaZeb/4xS9y5cqVp+ZIfd7MY2Dk9RAEheCoDkBDvZQwHfL5sMnntHbh78JQyXg3Gg1OnDjBtWvXqnxDRVHQbDZ57rnnmE6nLC4u8vHHH1eAse4qkv6EgEXckvOKftYBSci+zAMpIfAJtUvzaliFwPKT3Hfz2mcC3MRRxMvXT3P//g6jcYzWsafD3fvWGpe3JopRWmMLEXi6wpqWAmsL0jjj8voiz51dpddrOy+SMt7t4CuDE/n6Q05DoLRLmIZVrraU0o49kvwl1oX7Wgpcenvjd/QuWsR6vQY+l4pL3ScPwnpXic+PolxuHKu9pcLOqoC7PTei66kmh7A72hvRKOb662/RaneJI8324wfY6RPKqaGZaNqthM7CEhbxolnv3nIGONIRKo6IVUQjSTEUaO1qdSmlmA73GE1cAqhIxxRlTmRy8skI4xcdUxQ00pQ8m1BmGXGni07cORJiSut0TNNpTqvZJlqNmE4n5NMJeTalzH0yuSihkTaINa4WktK0Ek1RGrKsZDx2hexQcOHCOf7Kb/4NuguLDphoUJ6pcASOSwugvFE32kepeXBmrXXV3ZWbA9q7m+RZzXRVHtQSC3Xny2044OlmRTn7rAc/SmmajRZxnDAaZ0wyDwaxLPZ6XH/pKlNvHA4PJo5fihRxkhIlMVEcO91NZilKRQqzApkGHz0HQhqWRc50MiLLJw6sCZjz96u0dc/BlG7++rIeUhhUwJpSgDEzFqcq5eAAuvKieDcHrc+SbT2wizCq+DNjbv48WhzHvPLKKzx48IDRaHQEbMi/eRFSdfYmiiLOnj3LuXPn6PV6T4EUaaGuIGQmwtfCYz/JlfRpWt11Vn+9bizqx8rfcRzz+uuvV+zMxsZGlYhPBLoLCwsATxl8GcO6/ic0mqPRiOl0CsyyJYsbJMwnk6ZpJYLtdrtHyjCIcRRwsrq6WrldQl2JAILw2UpiRRHNimE+f/48v/3bv10Vz5R0AOHzOa7NA5/PYnnqoLnuwqofKz/D0G6JZgMXcfbyyy9XbkTJLyQsmYBOuW+pjn6cq9Na6zdS04o9k/EM+ynP67iw7fr8Cu9X5kvd7VcPt/9p22cC3CRJxFtvP8/GxjZ/9AeHjEcKUxZISQUvC/DiSe8W8KyGsCAJJUtqwEo0oq2tY0rwk0XNdvFUziWFZEeT4oNYcTc5kDMDMV77UIEdv3NV4PxOPomfK2IEvsaPA0cFkU2QMg3CDFAVIXQFMpVRLkrFloATibrzqQrsaO3O0e70ePGlNxgc7HH35jts3CmIbIG1Oe3mAmtrp9AqdoCuMG43nxuMyiBqEumUMrLYbOrDfw22NOg4Ic9GlPnEAbk4caxRWRIrHypcZOTZFKug1UwpMgdYkjh2JSiwJHECfiF3UQgjbJFjo4iyLChLF9nkanF5Ng3I85I40uTG6W4m4z7T8ZSV1QX+Z3/zb3P2/EUHGK1y9Qi0wqoSSve7MT78Ged2NEp5UOfG3FiFy8DrwIL2Br2y3p6Vs9Yzc56tEO2NRL1JlFGkI6yxLimycezPJLcMh4cMx1MasWap63azS71FRknMZDJ1iQeLgtK4f+CAp7EwzSHPPKCJPSfpuuV+t64fpTVMp2Py6YS00aDKDeVLSpiypCh8BXFvP40Hg5VAWXm3GwE1zGwckN9tEB1irf8GKie6jxRBKNZnviVJwltvvcXGxgb//t//+ypRHRw1TPUcM/XFOWQm6szMvIX4OB1GeO6QhQj/nufeCD97HBAK2aG6Ea2fP+yH3B84AfYrr7zC4eEht27dqrRK1joh9draWnVuMXBiOAUUWTtL7S+C6jChXAjyxDAKsJGsuc1m84hOJHSFCQMjEU/1TMJh6L3cn2RKFmAkxUBXVlb4m3/zb3LhwoXq+LouJWRl6uNXB8khY1M36PVnOe/8YR/Cwpqif+r3+4zH40pjFMcxi4uLFXCUgq0CUmAGRCXcvu4CC/si9y3ZoiVvUz13Uz2lQvh7vdXdUPPel8/LGIuA+5P0ZmH7TIAbC5xZP8HP/MzzPLq/xY9+sEM5dSnlC3A5baIYpSKiKKYQ14H18fFW01OGZTOFzYeMth5QnjyBbTRAp57LlysZFDFWlUhl7ljHlORVXSntQ0jcjtyr1PHJ0CxU9XdC4GQDF4KPSHGukNgZHr/XJzJB1A2z17X1O2Yf7SPbcGUd2+K20l5Lo2m1Olx/42dYWlzmfTuk12qwt7eFMYaFhR5RmmLLAmtKiukEnYBSBpWWiNDWWIMpMhc1ZB1QMEVBnDawyu+kipIycTYuiiIiFRGnMWVWEilFOZ1Q5hMaUQdlrGcQXG2sWMWgCtI4IU0TppMxRZZRFjllVqCMY3TKwrEmRQFZaYk0jEcTDqOCooz5+q/8Om++9VWXuFGL4Fv7UHBdzaHIu13csKmKnbE4d2CE+4y4dpSCiAQHCYSRU9WzFPpLNMq6ipZzDEhp8aDUAfGiLLDFlCzLMXlBqWIf4eeYrCIvmIxHjCdjsjzDlL4AqXUC4BKXqXhaOK1vlcDQ4qKycPcEbvHIphPyoiCKEyx+t6wiSlu48Hbral+5wqDeePiyFMgcs6K9ER2Nu6hgPY07h/GbDIkOrPQ71vpOfj6atZb19XXefvttHj58yJ/+6Z8e2fmKdkMMp2gN5rES+/v7bG9vc+LEico9M6+Fhi3UetSNSt0AhqzPs+5HPgtHRcLzXCp1kBb+hKPuOAEQcRzzxhtvsLy8XIEaqfbd6/UqBkSAgoSE110eYckCcT2FOpd6fiFhGwSICBsTJlkMGRU5XkCOJN6T6wpTUWcapOhkURT88i//Mm+//fYR0BiCjXpCw/pY1p9FCNzqbpa6oa6D0vC5hdeXUGvRMQlADDP+ihhbkiGGLIj0Q5it+pyrzzcBN2HElJRbqIOz8LOhkPhZ9ytN+h4eF957/b1Pap8JcDMcTrhzewNbWE6utWmkMdOhuG5whTMTx5hgneGyftVXVtHCsKwnLKCY7ozo373P9PR5Gq0mcZTMnA8WX1LBJxUSEgWIdEJeZJTGkvjrurXfgSGJonLZW0s0kRN4+ozBAkRAO8MZaGe83NQbRh/Bo/yXwx8mGZYjnXpCyFc2V5KYT/uMs67WVqQjVtZOEycJ8WgbihGXr1zl8b27NLRzOUHkGLDECYpdYcQSnbYh9dYdjS5yimJMMSl9tFaDoiwxeeHy1BlLFMfEOgVGtBpdhv1N+nlJM2lj8gLbkB2YcykWRQ6RAxORjolVjLaWIsvIJlMwYIqCQf/QuVGsM6SFz/WSFyVYzRfe/s/4pV/5qzSaTT+KfjyUpsQdo7UbV6mfhHJuQOMNMNYX17QWFfkINu3uXWbArJK8PPcZ+FSevXAuQk/TEBQ3RKF0hFIJcRyx1Ikp2ylJFJEm7rw6K1GRc91pHRNHqXMP+WAka91Zp7kDN0Vh0QlVHVDsLC7JHW/Ji4xsOiFJmu7zVvQ2+Hkn+jU/v6qdpUNOVpIZIkJ27wrWEcq6EHpjjL9nH2FmhUV02htK0PHTmXQ/q200GnH37l2MMayurpKmaVWHB2ZUeN24SAvDw/f393n48CHr6+tHhLXymeNcDyK0DRfqeQzKs3a3x7nBjssXUnd7wMxAz3N7hAZZa83a2hpJklQ5T5Ik4f79+xU7Gxp+cX+IDiY8t9Q+CvOsCAABqh26jKUk4RP3lBjjcEcvjEY9GZyUUJBjpHaUjIEAVznnl770JX71V3+1qjdVd0WFY1kHV9L341xw9Wc3j705jvGrHx9qmrrdblXJXELaw+SRAsbD5yN9l+cgeqY62yLjKyyPFCSVe60D9HnAY94crgPHOggOPxc+T7n3T9s+E+Bmd2fIP/j736XRsDx8cECWFX6xBazCGFc7KI5jb7jcjl1ZSxPFmio5qTQtFZNlip2PPmbtzBlaCz3ipImKU+fKUC581yWUd6nkUepoUkADs0gZP9CSG4QZawA+FFmSwwESiqz0TCKscOfGp+oXBkaMqlWmig0XwacrHWF8aYJZjgWlZGI4NkJrRbe3xLkrLxNle8RpxNLCEmhXdNEUs7TZtsixyuf3UQrdXkDFMabYZHy4zbC/Qz4Zk7S6KGKKfIoxJYmO0RqUsZDnpCqmQUo+yRgXIzDQbKQ0GimNbgeF9vWcCvAi3SLLKXOnzykzRzUXZU5hSrLpmFRDDsSRc01Nppb1M2t86cs/w2/+9t9meWWNKvwe5cGM01JJ/iDnUlHelelG3ogA3KFDV99BKZRn/Cpw53PeWDMjbQTf4nO+zF7zAKBKX+2edaRTGg0nKFbKsThxHBNHjh0sjXO1lkXBZDqh0WhS2oKizKjclEBuIfN1prD4uk2OTVLWkZB4xsSUJXmeUZrC17USF65zbxpyP8dd56013p0qrllhMmX++RBvrz3DlEhSQH8IEM2YS+P7Zp6us/NZbTs7O/yDf/APaDQaPHjwoNr1huBGdsd1gCPARrQbeZ5z9+5d1tfXq0icevbbOsgJjV59hxq2ea6isD2Ldakb1uPYm3kALDxPeB9aa3q9Hs8//3yluQkLXYZgTUCGnF+Er1Khu9/vM5lM/HdFPVWNWgyvACthDYxxRS0bjUb1WTGydVeLsDTysyzLqnK2sD/yvjB5v/M7v8Pq6upTYxqe/7jxlDkjf0v/61Fx8tl5KQHC5zavhc9HBMXhtUNGS+axjLMAvPCZh6zWPBAdAg1h5cISFOF41FkhYVnmAbbwuxEeM09AHbI+zwL789pnAtzkeclHN/awpmQ0Hfk09+49ATiAX7gjn4NtSoylqzJWdcGS8rkVsIx2MvZufEh7eYWk08Y2ms44oLzWwy3IfkjROiK2UChFaXKMjYi0r+hY9UMBvv5U1ZwgmGC8lQdQoKpqyrZyJ9iKsamMgwW0RRM5g4KIksGjLm9UDEq7MEhHYDm+KI5jeicvoPoapQzt8y3Goz7D4ZgS7XK6KENWjkl10xUkHR1gpkPyYZ/+1n32tx4zONijvbCC0iWNRuwXGl+Z3boIgjhNSXJXnFHpiEYzpshztp9skjQikmaLREdoHZM2uhBFLm2/ozwwxtV/yqaOMp7mU2yZY4oZc1EWlk6nzV/4S1/nL/3yb7G6esoZZWUrVgUPYpSyR4CeVLqWXNEqcpEVztj7z1qwiOFSVBIoDETaM2tBLSkPCtAzoAn+i+grwbtwaoOONFHsalqVpqiu64pcFl4r4IW7pnDuH2uwVkqIQG5cdJgpNMY4kFNaLw5Xfup71tK5unIKCVs21utqXP4j5wJRnu3xINyzkVpFvkimB4JYB6a1xihXUBbldG7Gu7aQbNo+ysxSoozh86S5yfOcDz/8EGvtkcKQ8+j4+gIs0TuyewXY39/n9u3bLC0t0W63q9pMsiCLgYMZQJKfoWGuC0jrRiMEH/N2+qGbJLxGeB/13f+8FjI2IROllHNPnThxguFwCDjh7XA4ZDgcHjE64voRcXCWZYxGI7a3t9ne3ubg4IBut4uEdEvfQ4ZJWBoZ90ajUZV+kCgtcfGJSzAUsooxF12PuB7rrrF2u81f/It/kV/91V9lbW3tKeYi/D0cu3lshDRrZ0UpQ+YhnBfHgdXw93CO1J+fMDd1d4+AD9ElwdHQ6/BYY2ZVv+X1uj6pfmwIhuS8ci35nAC3ZzFfdUZJ3gt1R3XAN+87+qz2mQA3WOvSw7g89p6xcAbcRb8ApUFFPoOwLdFMWWLCqs5YVQmJiikx5LagLDW7tzdprXxAq7dEo9EmjXqoxLkXFE7wi7Zo6103ShEpV2zTGEusAe20CJoIF3UilZKNF7PaKhsxniHQweAbZXymGE/7c3RxqnKleHeXUn6XbX0iP3zYstKe9bHoyCeUcyoLZ8wbHWy2TGIPaaQtugsL6J19hv0dptMxSRyj4oRIJ2STAUUxosxyJoMhBztP2Hr8GJVGLHU6RD6yLE4i0CVaRXRW1onTBuPBLippokeHYCGyTkC8sfUIG5XEjRZLi0skqaYsCuKog45ibFlQ2oLSGPJiSl6WlJ5VabVaLLSnqNwwmBiWFzr89l//n/L13/jPaTbawYRW3jCDUj7XipJoNVu5/VxBVeXGUnQmpvTMh/JV2d2TcJFYPoLIs2LGg2Bhe9xI68rNU0UeKZdvxhrjQ8+FqXOfcGLyEldpW1XPzIIjAK11n7e2cvdYHJiZFpDllmYJEr3kJS8YDaV1INHtpqYU+RSUlKEwFWumtXLadmtn/8wMBFYz1c85fMoBN+9cPiDR0yitK81SKdom6143P8Vu6n/sJrtaafOATQge5Pcw/DnUzBhj+Pjjj+n1enS73crohkLjugslXOQFANV3qfKZ43a+YZuXAyW85icZhPq1jgtZBqpQanDup4WFBXZ2dio2JmSvBFgURcFwOGRnZ4eNjY2qbpVcR3Q3YVXywWBAHMf0+/3K1QKwublZAZper1eBHnkuIbMghlvGvNVq0W63yfOc8XhMr9fjr/21v8Zf+St/pWI36vOgbqBDl9g89kyMc2iow3PJNeqJ8kLWLTx/CNaexVyEAChsMkfrIEk+I0yXgHJ5XfoUznNxTYUMkYCPcE7XBdjHzbnw+xECrPrcDcf9c8fcgMKULoGfJkLrhFmZAr87Ll2NI5sXaDOmqyasqBFrKiVWrvaUMCYlMJ1qtj+4S3t5jWa3h05i4qiFirTLR6OMsxTWRzl5TUturIswiRW29BFRyu1qtRbXkX84eHOlxBiqymAoFR0xHsq7T5QNkvThMttaf4wO3FcSGaW8Udc+z49c+4ih1UD3BOOdIYmC7kKPbrfkYH+LfJqTJ7nbYaOI7RQLZJMRo0Gf7SePGY6nnDtzhSSOKMdjMguRT7tekpNMhuTTCdk0ZzLO2N/dx2urmU6GFEXJ7t4++s5HRBcv0ekuoOMEwwhjFUWWg1Fkk4wi99FbxtJIW5w9c4FWs8Wdh7u8/OJzvH79Vf7SX/7rtJsLSNhyZXwBz4N5QOHDvYVgUyoAhjGx0k4oPKtQ4KKorOuDwgHHaty966sCG76ieJV/SMAVkfckWu/i8fleLEiNsKpKldUeaAG4siIzR6YL9y5LU92eAfIS8sIBG4y4SAMC04VMAZaiyMmzDB2n/j3AOqAe64hUJ5TWuPIQPiGgEakRPnGfEl1YEEnoxyLSLquzUobSC4S0ckU8ZRbrz1GeGziaxyN0GcjiKcYwjLSRqJy6QbPWCVWFvel2u0dyj0ibx8II2KlHgcj7oiMJqf660QxdR/VWZ2/q2oVwNx3eU32HHd6r1pp2u83+/j5aa7rdLt1ul729vSMMCVBFOkk17ydPnjAajbh8+TJRFDGdTrHWVSIXECJh3NOpK/Wyt7dXGUqJhJJCkZJfKGQoREcTurKsdWHjZ86codls8uDBA65du8arr77Kr/3ar9FqtY7c6zxW5ji3zTzdUt0Yh0a7zorUn1EdbIcsUR3gfBLwrYOL0A1Vf60e6SQ/Q9Aheinpd3hf4hYLRb8h8ySfmcfmhOcIrx2O53Hs6rPaZwTc4CpuG1tVAtIqoiwyVBSjdITJC4piBPkhSww4qUYs64SYiKkP6XaOFJctprQw3s3ZfvcntBcXiZspOo6JGg2MdedF4aOE3MIeRxGFKSoBM1Z0CMoV1JRstVp5UbMDZBKNo/C5P6xBQsKVQzZ+YicV6yOZkZVy0VKG0tcBip3DyefIUVq5412GOpSS90GyzVsLKkrQy+fZ2fqY/d2PGQwPybKcaZwRj8eYJKIoclTugOJoOGD78T0OR1MuX/8CC50OGkMZw+Fwj7vfu4G1sLp+hvGJCUorxsMRTzYesvHoIaPRkFan4/qlNVZphuMRG4/usX7mAkmjhYpzcu/XzicZRVmSZVNX1bwoaDYa9FpnSJKUF669wcmT67zwpV+gt3TClwegYhiMf1bONSPiXmZsmVKVNsqVvFAuhBpcNmttUMaJyDG4ktu2gqdQGXfEqeiYOetRUcW6eZNufNIxZTC2cKHlkURuyTl9B6uTuudmjMGUomWZLQAKh1ky48BNaWx1iioc3OBLJfjvjWdxKHMHVPx8cAPk+ifzGFw1c2V9yDgaHcliXFYp+Vxcu/LXKZH1RCn3rEvjitkaSp9r6PPX6gBBIkHkd8mqWwc24aILM9BycHDAzZs3qyKSYTRJvQI4zEJ7Q+NRBxnhZ8PfQ2BWN3TyM9R/yDF1ej9kD0JAVWeA5DPS4jim1+uxs7PD7u5ule1WdvVJklRjaIxhOBzy+PFjBoMBr776Kt1utwKPw+GQ73//+xhjWF9fZ21tDa11BYYePXrEcDisKljLPUwmEx4/flzpT8TwTiaTKkJIQscll0u73SZJEq5du8apU6d48803WVpaOmKQ5b7rhjcct/o8qke8hUZdwPGzGId5YyytzhYJ2A2fZdjn+nwQgBKer+6aqgOeeX0Iz1UHHPV+zLufEDDX3wtF2vVxEfAXsjiftn0mwM0sWZ7Xl/itqikLBx5Ki8lzFBnd8oAzep/TGjQpQ2P8bhsS5WJpXEZWx9AMHgzYeu8d0t4CcbOFjmNUknhAYWfXA8/QKAqbU5Ze3yLlENTsWPlb26ha2JVMfOV2u1YyEuOyGyvZ4SvHMFnR7siiQoRSUWUArfWLkQKlPJOllAdSImB2YydZlaNGm/TsNbLxIfH+Fjx+HxNZJvmYolBEWkFmGPcHPHl0l0LB1de/xNLyIpFVlHmOShNakeLCq9fARhS5YWvjMdPxmMP+IaPJGKM0upkyNTmxjmmkKY1Wi87CApN8yv7uLosnT4DJMUaRZVP6gwNG4wF5mVX32O206bV7nFhbR0URp59/hVPnn/cA0iMCWfhFUCyAxP90zy7ySelEg+MLZHgwihUI47QmMo4QLlZKMCfeW1WxGKqqNSU7sRIduaSPyifHi8K54o+W81uZM1b67xgjt6g6A2ACZiqziryUnDZggjNiXZkFY0uX78aUnvWUeSqdtzORNH6h9RFf+LIJVfJJDEpHYIKMxOABkB8FyRaOK1fhgL0XbX+OQsFhZpBCAyFGQ3ayspAmSVLVUgqNQGho5bWNjQ1u3LjBwsICzWazck+Fre5yCEOS5X14mpE5zsDWXUfHGZZ5rpR55z+OCaob/EajwZkzZxiPx+zv71dJ4wRMCEgcDAY8evQIYwyvvfYaKysrgNM+ifvqpZdeqlwkkiiw3+8zGo2AmStMXF6SPDDPc3Z3d6syC+I6kdwvYbHTTqdDp9OpKotfvHiRc+fOHRm/OtMxz3Af93c4XvU5Mo9pqbte5o21AJEQVMu8rT+jee4haQIOQvdUyFLW89TU2Z+wL/Vjwr7WXV71Y+pgZd441z8TirLr0Vyf1D4T4MY1r0sxLqLH1XiKsEXhDLcdsVAecFLtcVrDYhQxtYqRBIPg2RE0hS0p/G63LCL2bz2ivfweaXvBFY3sOqbBfci6KG9VeiPmjaHFZQ+WRUw5HYeVfDYqwaUxK52GR7lQdSWiVhV7EBIRIJEqksplVxbAYnyJBb8rRIEWxsBFiGntsjNXE9c6gxSJgfauFYhoLaxgyoLRVoKOIrTPoouCUhsO+js0lha5evUV2p22K6mgU+easzE6n7LUaaO02xGlieZwa4e8zNBNTWEN00mCsU44lyZNGo02cdyg0ekwLTL6+3u0ugsYIsbjMcPRgEk2pbTGlapQEZSKvMyJ0zaXXnmb81dec2HF1oB1zInRpXMTeZsNCmvFgeIXCFsGuiZm/IPNnXvIG3vR4Ihhl3XNndc9v0hFRFVyQadvcuH/XoOCZ4WMItKG0iq0dVosFQAaLWU8lNOJuXBxD0etMJQWg8/EWs4YkMJaskJRFNV0nP3UeNDsbsntvDK0drowN4UspXEpC2wABGeLjESUWRlFzy65cPDZ7s6Ng8Il/4uiuFrgVCVI9qzm56zNMxhhoT5hShqNRpXHpf55OYcs6kVRcO/evUpcnCQJ7Xb7iDEKd+LSZHcva014rPSv/rm6oaz3Lexj3RAed3zICIU6oJA5qIOpbrdLWZZsb28fyf4rxx0eHrKwsMCVK1fodDpHMhcLayDVxCXvzc7OTqWjEVeV9WuNgE0pryDFODudDuAYHSnMGfZdWAetNS+++CJXrlyZq4uqj3PdmB4HbEKd1Lx2nC5qnq4pBAmhcZfX667U48BrCErkvGHUVDhv54GN8HzyvQ+jwMJzzHOZ1VmXkH2psz7hOAJHXI3zXKSfpn0mwI0wEG7FNe6nt+3GjGlEEUu2zwm1x4ou6eqIVBkKG80ydfgClyInKP2OVwH5MGLn3ZskvSXidpt2EpHo2CcCVlVCP5lsRV76ekXa28PSRYdYKkMFJVYpr4PxklYVueKNFVNgvUGTBcsDFyQ6xbMPGKx1IEhcIxi349ca75rSLpeKFg4j8uJlESz7vCMAXmRblBlad4liTRIlLnQQyKc5zW6HIs8Zj6Y0mmASHzmjI2LdotFcoNHtYcqSTrPH4olTnJyMyCZjxtMJ/cEBWZb7LLgF2JzxdMAkg167w3gwQCUai2I0OWQ8GTCdSnRKTHdxkSvXv0gSJ5w6d5Xe0ikvsyqRWlAuzF5KJfgxlSKjRlWMQaR0FVJfeY0806CUcyGqKoGNx4FeSeMArMVa5/50IEhhNWgbOxBibeUSw4MHfG4d98XzC4tnbxxsKCoFC5bq2esKQHuGsfSLSPB9MLhkhqVx+XnCL0opBtXgo+3c7qvSCXk9kYvC8tXuFUiiPjdPZL4oIl+53n1WHGplBcYlb45kQFao6lxY69muT7/gfFZafVcuC7ToZcLIqE8CFKEBnEwm3Lx5k16vV7E3df1NCCYke+y8HXndjRTueOdF7MwzeuHn5/W7zh6EwCY0vnW2aJ6eQ8YsiqIqV0yWZRUIGY/HFRsmRktCmjudDsaYKuuxVKKeTqf0+/0qWZ0YUXm/0+kwHA4rhkwS10l+G6Vc9exXX32VOI45d+4cy8vLT91DCA7qrNc8oz0PAIWGuw4ywudjq3XjaUanbujDPslnwudzXKszOPNAtbwuLsT65+W5hsAlBEah6+04t1I4X8L5XAdeIbCBWc6g8Dl9LsGN24U6gGLF+pQl1k6IzYgVcs7rAV1tiUnQShFRuJgn5aNJrLMgUiu8wNXWsUqjLEx2Cnbfe59Gb5GomRLFKVo3nbfHqkqb6koI5M5wKIhU5DfguqoDVQkvrZ+8+LT8yvosttZZWaX961LXx72sK5DjzquVuLe8G0Upl9nWgzZ87aLIJ+/z22ycm8UBHDm5sDjaa0qsKYjiLmmjSdJMSaKUE2fPo6OYbDzl/s0P6R8OObF+mt7iMq3OAmncwEQam2ka7R7pSheT50xHh4xGA/TBPspqRnrMcOzKNRRFjhlPKTE0Ww26shvDkmVTsqIkShLKosDYgpW1dV5+42tEUez4AV8KofTRQWhQRgUlLfwX1vowayWG2SXyA9FHOT5ECbL1M0wRsDoKV04CB3ocA+TCkYSlqx6Hcf1RqnSJAL3TS/nIPgdifE4meX6VsCf2r9vqnFbYJ880gRf12vC74NxSeQ5p5J+2dEnwMD7s2wNrI2U0ECYrJtIuwaEsOcqKy0mE69qPja1KTTg9WeSyTysfNeXBvZvyBi23ihuDo+kRPvutvqjWU8dLHps60DiO8ZDzibZif3+fDz/8sIqeque+CSNmwurj4THzduD1xb1uIOsApm7MPo0LS14XUDbv+Pp4hNExcRxXeWiiKGJ9fZ04jplMJty6dYt+v8/p06dZXFys2C2pwi5/F0XBaDRiOBxycHCAta5yN1DpaSaTCdZams1mxfxYaysQJOfJ85y1tTXeeOONIzokuZ/Q5VEHr6FbKByneQCh3uqgJvxc+LPuFgtZjTq7EbaQjak/n7oGKOznvAimsAr7vPsL+zbvd/nMcYC/LoQP+ynHhVqesMlc/GldUvAZATfgBcXWEhETWU1BQWIzeuqQdTXlpFZARGFBEqhpVfEeVRZipRRYRWktuRXDoLAmon9vn3TpPZq9ReJmk1RDlDZQVlGakki7ekzKKooix9omxhriKHbZgbWuct9ItmTrtRpYxwVYD2y8PJQSJ2italIJwNFOHOxNse+76EFczR6LRunYZ7/12g9PILgJ4os7+mfu7JNBK4jjhmcUNCrS3oDHNBptWs0eeT6l2eiwuLzKN//FN1g8cZqrz11m5fRpGiql1Vqk2XBVdG1ZQBQzGU2YFFMGwz79/h77B3uMBn129ja5cftjTq4s8pd+4+ucOX+OyX6f7tIKg+EhSaPlQudLl+nYTHIWV08Sx5IvxIE4xyA44GaMYwsckFQz606gkzIeagrAQ7RIs9/B70YtVcJFp+mR2mGi85Iq2n5sPQjRtgStKE2waFjnTpLcSfIZ+ZhzR/prVWU5fD8tPnOyixB0hsvv0BDmzpKXisxrz62tiBTHUnpmxrE/UJQZiXEMg6767+XBSkbQgV4fHIXVGmMLkOrhnrVR2iUYKPxFbRVFJm4qZj+VrxL++cI2R5iQsAnzIFl1BVSEgtB5LEi48MoC/fjxY27dusXCwkKl2QkLPYbgIMwdEu7K68ZRfq/3oQ5+6gYy1BeF/Q7PKT/r7E/9Z3gt6V8IGkJDLsAjyzIajQbLy8v8/u//Pqurq1y6dIlTp05V1atD918URZVrSaqG7+/vMxgM2Nvb46OPPmJ5eZlf//Vf5/z58xweHrK4uMhwOKxy3oixttaysrJS5Saa98zqET1h+2mYgvqzmgc26sfW2aI6yzEP8Mybu3XmpA7IQpal/rkwXH4eiKq7XkUsf9w8kd+lvxIFFQKccL7Mm6+f5Cb7NO0zAW68CgVlLZFRxFaDKmmrPqfVgLVI09ARmezqJaIKS6QkBNy1CKe7ya2hsLZyT2kFZRZxcPMB7ZUPSRZ66KSJjhK32BuLVS6hn7UuHNyWxgEDA2iLNT7PjvavKeOcQjbyBk17xsfzBN4wuZt0UTwOqOhKzSBGW+mZEVdSOFMptI6q5GrOeAWZinGuGeMLG7prOyOVpG3iRhelNEmUYq1EH0HcbKDjhGw45PyVq/zl/8lv8WCvz3OvvMHqqUWmG7ukyyv07zyENGX0ZMfVg2qkHOzuYrUmz6aknYjHj7f58Qcf0O0s8OWv/gwXrlwiSRKapxZodjqMxkMHWnSMUi7TtAVW1k57zYaADDd+Ls7MRT1ZX2Zjlq3agRKXtdcBolglWEqsUeAjf5SnZ5RnFxygdIyaA4aeiSPc2brnpnziReXZERsplHFlL9wuzhL5GWe0xfk2HfOkPLPj0I7TDlmrZ8ykIFMLZWFcGHhROFEuypcDcX0sLExzS+pBj4Bi362A1i0oi4gizjGlj3gSjOjzJGkvXq7E1TIp5WR+nLSvo2bkd+2rhJcW5DlAldfG3Uo4yT8fbZ5xD/PYhJW7w8/UDVHIxNTBj2QvXl5eptPpVO6aOnMjxqWuiwjdQvUdr/xej/gK+xsCpWfdd/heaGznsUgw26mHRRjTNK1KMAjQkTGR7MQSAv5bv/Vb7Ozs8Morr3DixAm2t7dZXFzk/v37NJvNKqQ8SRL29vZQSjGdTmm1Wjx+/Jh3332XTqfDz//8z3P58mXSNOXEiRN0Oh1Go9GRsRPDvLa29pSLR8aoDmrCY+p6ERljYenqbq1w3OvjWn9W4bWkhSUkQrdM6MapP7d5z7UODMIiouHr8lkRYoeReccBnTB0fN656ixY2O958zWcb6GrKgR388DTp2mfCXADuEKHxhJbQ68NvVZCd39KN9O0lCYGsmqsnTtBVCba75OdnNYbA2fyvLHEu2ws2SHsvPsh6dIySadDlCaotOEMJyIGdpmMrbVoJdoWB2pA+cKXxhswR/fLFasHoOSh+7P63TemrFgCKwyQAqrrOKDjvHNOZ4PspqRCuoqc+8tra2bWzJelQBHFKc12jyzbpiybJEmC9WHL1hp0FBM3GhRZxoUXX2Th4WP6O5sUJxdYe+UaSavH0umzLFy4xt6td7B5QWNthY1bN4jaXQ62n7C5eZ/4ySP+ws/9PC+8eIXu2gJoTdxssbC4wmRwgDGWyXjqrhknlKMpaaPN8toZlHf5ueHTGFP4yT1jcAToWYQN8eNi8BFnCm1jbOSPssaTOGGOGvCqcSIVVWH1wkBUXxmlnFgYi/IiWe2BktYRJcrni/FAyLiooQp8qdm5VOX2EUCqn04n4MVECjx4mOGE0kBRQmH8l7Q6DgrjEk2aoCCmM5CO1TEeKEZKz8bMgyStfUZQQOvIs49WJqxHfiBIWKOwkdc/VYuYARt5MFii9Sxj7+ehhYtou92m3W4zHA6fYlQ+6Rx1o18HOMPhkA8//JCFhYXK5ZIkyVPH1ZmfOqioG+X69UPjV+/TvN1uPTS9zhiFBio85jh2Q5LySaRUWDgz1NZkWca1a9d49OgROzs7rK6u8sILL9BqtTh58iTnzp3jzp075HnO8vIyd+7codVqsb29zdbWFhsbG3z1q1/l2rVrrK6uVuddWlpiMBgg7ith26bTKc1mswovD5sY2hA4zru/kNUKx6w+fsexF+F56s9hHtMRXmcey3Lc/KwzH/Vzz3st/B6E7E04FgK8Q/AdVn+Xdlwh0XB864kL63Ozzkh9ksvtk9pnB9wYZxAWVyNeeOk5TjTXmd7O2f/Rh+gM8FqHWRA0FY0v/52RJH5gPbhR4MsfOHQ43Bix+8EHNJcWiVtt0sgbWVz2YqUUtigp8xybNiX5rDPAla4GlE6o0tKjwBis0riMuNKPQAeiolnaelxhS0keh9yF9qJT7VkNb/GsN0LOXVOQl4Yiz8nynCIvyacZeOOrtftyF6oJhd9FgWcHDGWZe5zmtR86orO2hHq8w+TGXUaTiN6FLjpNMMM+7ZVVdJyiVUJn5SRoxZPBIewc8NrzL5O2m9gG6EbDnau7gsJVVM6mU8qyQEWaMnMZSxdPnaPdXfRskxs7Y43/wpgjAlcteiaUjzTz7hnxSXqGpoo0i5XPGu2/SOKKsk4oKloXAUtSJ0yy81pb+uKqqgq5N1UGGA9+lHbP2ueKEUDmQJqq2DOqHZDvo3epuWKr+LkhYdq2AjYWx9zkOWQx6Ejmr8xxp7dBzXaSRVlQlkXF2BiB9oK1lcLawoNsAzau0JL1ZSCUinzSQTccGkVp3dgqrAdN3qAiC5ut2MfPS5Od98rKCi+88AKdTod79+7x/vvvz9UkSJsHMo4zNODm7/b2Nrdu3WJxcZFms8nCwsLcnbbUa5oHYObt4EPDFLbw82JM6tcLjWSdpQmvK+eXLLaSbXg6nVb9FtZL2Kq6QDR0Y4AzTqurqzx58oS7d+9SliVnz54lTVPG4zHLy8uV3keEv6PRiIODgwoIhVmQu90uQJXTRvokeW9OnDhBt9t9imkIo4bkteNASv1vGZtwfOvjLL/Pewb1ca6fd941QwZpXobt8Pf6PdRBcF2/Is9JXILhdeX4cD6ELFAdWMvcmsd8hiApbHXW8Thg97llbmILK2spb37lAi+/cp5OlPFkycLBHsOPNimNLyYomgkcyIj8brvwC3CkNNpnNS4RUbHQ537gioj9jx7RXL1J2ltCJTE2ST348K4nn5HV7Y4V6MjX99HOsOKTAKKw3oDh2ZVIqcqFIAnTpLq3wy+OPVBe++EYBuUTFnqy3+/2jTGYrGTUnzI4HHDYP+Rgf5/BYMx0PGY8HrtaTXlBkU19mDVgS3qdiDeuLrKw4MR9RZyT55Y4SnAlukqMyUEpokZKstIj3x7Qf/8j2JvSWF6iSHbJxkN0mpAPRgz298iLDLu5TTxVTKOM8TSj21pERQlpo4NWEdPBgOHhgMFwRG5cn4qiJMst6xeu+d2h1xr4Z2NE1mEFHBisVEX3AEjYLQuIGBuqalzOUGv/ZfNzy1pLqQpv0BXKlK44aaWBso59UwprnLjYYUoParRyhUMFEoVUq59zzjjIbBYtkDuHAFilVJWUUbIkY7V3z3kQ5qYIxvgCmsZitPJVzd2bLjrNHW6Vy3ujSpd5mSq6qawYI+VZRNcnTamEMXLPwMN/sBZjc4TvkimNaLeU3235FMcuJ07AfH0OmiyQy8vLvPXWW7z88sskSVLt/u/fv3/k+YafmWfwQsMhoClsZVly//59lpaWWFhYcMVUg6rNYdFJ+fxxLIG0uhsgfK1+bMi+hLv30GUl7wuQGQwGVYFL0bqMx+NKByNAJzR67Xaba9eu0ev1iOO4ChmW30MgJuO9v7/PrVu3Ks2MVB1P07QSExdFwdbWVmVM5X0J09faJfzr9/sMBoMj2aXzPOfChQtzBal1lqYOCuYZ03nszzxGLRz7MMN0eMw8wBleO3w9ZE3m6aLCOTjvmdeZl3nXFnBdTzgY6m1CcBW+HoLwsP910PIswDKPxTkO5Hza9pkANwrodGJeefMsb779MqdPLTMe7TAdXyZ7c5+N4bcYPToQk+G4GlVWdaciwKUEcYty7I86Yi6CDaYB8qFm972btFZWSNptktVVVJxU7gEpLCjRLSLLdEngYq+DkRso0NZpdAxFRSE5Nsg6Ma11eh6lI//T19CKZIGJ0JFCakgVhWU8nLKzvcfu1i79wz6jYZ8smzCdjsnyElPmFHnGdJqRF25XZcrcGzLNwZ7ixIKl13OJ9oo8I9aW0uTe4OGiqpTFFoq41aR1fpFoqumdOEdj7RTZ9hamnDJ5vE02GBHFMdNRwbQoGNkJuSlppV3iNCaOUxqNFiYrGB0MGQ4HDIcDLJaiMEyyjGZniTMXX6I0s3Am506yVHIVYTC8y874Z6xUoCGw1oNNx2ZVgmBx0XnWbFaDykoskT/WGWbHxHnnjf+c8YUl5TquZIKtSj4cSVpnjWcULUipCD/Zqm7g3Zhe9q6UX8QQEIJ3v6mqXxYojKUsFWUEkZ2xNhD44B3Km7FHFSekfYmImZtW5qOAHeszKxupFG7dGBtbpUF0/dcO/CkPPiOduDlk5TpHw0g/663b7XL9+nXeeustTp8+zXA4ZDwec/36dcbjMVtbW9Wx8wBN3YjA8YuuuEo++ugjlpaWaDabLC8vP1VYcd7n60YKju7g52k+wt1z3dUUuqPCaLCyLBkMBuzs7LC1tcXh4WGVdViik+Sf1IsKE7/JuRcXF1lYWKjqPCmlKnE2UF2zKAqazSbr6+sURcHa2horKyvs7e0xGo3Y3NxkNBoRRS5HloAppZxIWSKspK7U4eEhg8GgKoQq2YlbrRYXL16cK5ad546qj30o7J7HtszTl3waZi+cL/Vzh32r90uAzjy9y7xrzWNujmty3nkAfR478yzwH4Kc8HjRFIWfC0HnPCGxgOPjntOz2mcG3Jy/1OPVL7zA2fOn0VHJZKJpLi2ycvVFsoM9Rgd/An3jBcSOtdHKEHt5p/LnccDEhwkLc4N1PLtf5hVgrWayPWHnvfdJFhZZarSJ0qaYH1x9Ih8JEntgoxOX6E5LLhP3XymKqbSFMsIol2BPebeDwvkVlNbV5x17o6tkb470sRRlQf9gxNbmPrubWxz2D5iMRxR5Tl5mjIYjhsND9g8P2N/f4eBgj/5oyCSbkk8ztxNXkGhFK01Y6n2F82da9LpddByRF5o4m6IbPiMyjkHQkcIWEXHaIkoVk2yPwZ0NzGiCiloUylKmETZWlIWBboKdpkQKOp0F4jhBxxGlLRmODhgMD+gPDsmKAmsV0+mEPDO8+MW3aHd6Xvehvb5FvgiRd/eoYOw0orgBvGvkaDq+SHudzswH4xkhPNPiGB/3Wc+siYHyWYNmC4BzKUqSPSsh1jY4py9LYErj3Vf+p9ep2Or8AmA8eFLe3+MLt1prffK+sHSDawYojKLIwUQuIaXWUODuw/hkiG7Bc2XVXbbjwlEu4vqyyoMyi1KxAzJ+5Fz0VOHTKQSslCkd4yhgkwhs7iqam1ArJpqvzxN346pZf+ELX+D8+fNorasiipcuXaoYi8FgcGSxrrtu5PVPYm9kbu/u7vLRRx9V0VOh9mYeuAnBSdjqhiN8rX6M9DkEMuGOuCxLDg8P2dzcZHt7m8PDQyaTSeV+kkglYXCExZECiqHoNU1TOp0O6+vrFUNVlmUVKRWCM+lXo9Gg0WgwnU75+OOPmUwm1dhJraI4jmm1WtW9Se0uicCRquTD4bAq6Cn5cd588006nc6R5IzynI5z54TjGgpbw3F9Fpsw79zheeYxcCE7Uwc2YvwFFNQZp3oLr1vvs4zPPPASuhBl3tXZmbrovd7XkN0Jxyn8ftQjpubNe3GPyXFhX36a9pkAN1GseOW181y4sE6r3SKbDkBZ4kaDzskTrLz4CsMnTyh+dBcXmWtRqsRYF6IdK42ypdt5Wp+czQOZEuuqMqsZtHELu8GWMYOPn7C/8j5Jr0fUSolV1+1OlTNWpbEkyrEtR9ZwHx3lHpwfdB2DMr7QoPK98KDKW+RIR6jI7dJ1JLlzNGVhGPZzNp/ssL25Sb9/yGQ8YTJxu8qt7Sfce3iPB4/usbO/y2g88m6zow9cmK1IQSvV5PkQY2EwHLs8OSiKJCWxFsqcSCfYuCBSQJmT5wOMjlAmoqAgj6cok5NFI1QnpigzygZEJiUyCWkjIY4VURyDdn734WCf3cMthuMRRVkyzcdMJxkLK6e5+MIbrpdCdIgbyspE9hmK4ajLSc30MUrcPdW9u2cgOW+cS8t/oZQTWXuCA63jmR7GPxcbPFeRLVvjaHBjJSGeokpoV0EQB5+c+8dW/QndYe7kZcDmScZiCemWfnnKyvsuLZbCuHw3ZQkmdm9JNJZolExZEsVRpdmxliqZoDjStIoq/ZBWDpyYcubaFYG0SwDoI9WUn0vWnSXWbqnIbVndtxvDo1W2P+stiiKuX7/OhQsXaLfbTCaTytCura1x+fJltra2eP/9958yijBbfMM2bzc77/2HDx9W7IaEh8s5wbmwQtbjWeeqh4vX2QN5XxiieUzNkydPKqZGMvtOJhO2t7d5+PAhDx48YG9vj/F4/JSGIrymMDSSs2cwGFQGVECcuKnqRS5D0ANU7qc0TTHGVBFsUh9KshQLAyTAazQaVWBqMpmwvLzMCy+8MHcM62MWPoPjBKv1e3+WNit8Bp+kFakb+vq/eqsDj/C514HPcS6refcY6m7CzM1wVFRc137VzxdeMwRW9bF+FlgJo7bCMQ3H69O0zwS4aTZjrr50ieXVReJYUUwVkYrROkI3Ujrr66xef4XR1haD+0OodtLu85HnbcToiC7DARu3CxY7471MiEHMx5q9G7dJF5eJ2y1apxQ6baK0roCDY3H8zs33udJQYF2iQAXY0me1dWnvtRcM4/PXaB0kAtSea7KQ5wWH+zn37z1gZ3sTUxim0wn9/gG3br/Pj9/7MY82HzPJpp+IXmUMDDM3w/LqMoODAa1mw+Es7Yp4OoNVEMUxGkXcjMmzqSsqai1YQ9Jokk9GqBjK6ZiyhHw8JJ+OaDdTGu2URpKCVZi85HBvm/7BHoPxiKJ0X4jpOMNGCa++9Yu0Wt0qL4o1PqLI4kXaTmztDC0+tLokUm6auszF3r2jtXdfHQU5FkPpYvf9RTzDJkyKwbNl1udadBNDtEqS9RcBM4A1ymcqdhmVZqyPMDHe7elfrYBM9VQcyyH5d7wvyc8fNym1ErbKAQbl529RKsrST17/0bKUxcWJryMrYE/Gzuu88IHqVkTZvrvGoLWAtXCxsBUOj4gpbYGWqEAApYj8rk0rKH0sorBOn4fWarV48cUXWV1dPWLwhX04ffo0165dY3t7m42Njepz83ah9b/nuRrCNp1OuX37dpW9eG1trQqhljYvkdo8d4MAm3q/QnamXmgTnPD28PCQe/fusb29TVmWVS2njz76iHfffZeNjY2q5MGz2jzGYmVlhcPDwypDsQAa0XKEZSayLKtez/OcRqNRsTciDpZMxM1ms4o4E7C0t7fHwcEBo9GoMsyTyQStNW+99RatVusIi3Ac0/VJz+04t+G8MQhbeM0QGITvy+fmMSThOcN+hUzQcS61T3qt7uYRdqgusq4Lh+e5zOaxRSFLU3c31ftxXLqDeZ//3EVLtdpNzl5Yp9FMsSb3O0mnfUEpkm6HpUtXmby+Q7b3x9gROFVAVO3IFcpXhwas3+174xU8BipXgX8lspDvTdl57wOixUWiVpt0OSKKUowpKIoMiyWK/G7Ki47DJkoggxcIW+N0Gi5z3Azdao1SsXNfabcVLwrNYD/j1gc3GQz6lLZkMh5z8+YHfPv7f8jHD+9RmJ9+Z2wtlNa5KlrtNqA4HAxZ0G10pNHjPmncJI48/Zs0MGWO0k1cckGD0ppymhFFvkBioomUIW2nJAsNVKRR2mAKS5ZNKGzBaDRmODykNCWT6ZjhaMhwNOK5l3+W9bOXvUsFJMJMKb/YaC20g2dW8ELfiNIaIrzQWyLVlDPXRp6xFV2MP8b6L6S4t6zLiVTlaNGK0hq0jRABsbIuBYDUtjJKXDMKZSOvTTEeS4VfaOvnmY86ClySszni2Sn5rI+oUsq5zJywPJyl7o/cupDw0sqX1YWf28oNN1sUizLH2gIhE6us2toJpS0WjKbA5Roycm8K8AtxpH0RUusi1aooMvm++Mfk5roHZ8Xnh7lptVqcP3+eRqMxd4fbbDa5cOEC+/v79Pv9uUa+bhzD9kmAQKqHd7tdms1mJaQVTYvoDOouL3h6sa/vjENGJ6zzJP+E6bhx4waHh4cAjEYjbt26xXe/+10ePHjwH83Cyc5eXEji1hPdTCikFpdVs9k8wl4J2AmjdgTUhDmCxCUmWYyl/pT8/eKLL3Lu3LkjRlqAy3GGP3SpzBNbf9KzfZa76Dg313HsjLBrIQCRZxuOd3ju4/pTnz8hm1dvoVg4dF3V+ylAKHwtZAvrQK1+3Dx3bMgAyWsCfMPjf5r5+ZkAN41m6kIkATyr4US3EnWiaS2tsXL1JYYPHzH4yUfgw4NdnptZqKxTNCgipfzOf8ba4BkeZxC8zkUpMBGjR3sc3PyQ5tIKqtFC6RhroPTI1U1yv/P2hgOlZobIXw8rTI9s5b2BVU4sbJXb7SsU1mpG+xM+eO8DBv0BeZHR7+/zR3/8TX7w4+8znk549lJ5tMndOVedItGaIsuxxrCytsbj+4/o90dI6LkmIYlbztUXORdQpCw6bpI0W5RFTpb0KaaabBphiSitJckmLuxYuSR042xIXhZMJxNGgyFFOQWrmE6mDAdjjIo5deayY6/8WJZGSlJYqnpd2qKIXS4erCuLIcMYOdATORTinqL8x7M88h0SgXAlVPZsj8uvaB0a9s9QKmNjRdfjnDUGl/RQCqE6yBH5MHMBTu58WvIOVW5KB9yslTDz2QKutWeofL0PiybSEXEUz1hBBc2mduLviaUwLu+NnmmcvY9KVcyUe33WU3Eb+ekOlH4DgM/srVyVEzM7p4idtXLMXamcDsoYx46ZyjXnDaY//bNo989aazab9Hq9IwatHha9uLjIxYsX2djY4ObNm0cMcJ1iD3ee80BQaFilbW5ucufOHRYXFyvmRtwC8rl57jD5Oc8VUD+23kdjDP1+n/fee4/Dw8OqYve3v/1tfvjDHzKZTH6qcQx36cLOiFtqbW2NBw8ePKVbkppSAnIEyIkweDKZVGJhcPN5Op1WBq0sy6rat7BNMu7j8ZjhcAjAmTNnjoxj3SCGwCV879OA2DqzUmdAwuPmfX4eg3EcUzMPMB3nVgrfl3ucx+4IixY+l2azWYHLOrg5zk32LMaqDliOY3zC71NdMB9e7z92fflMgJs4jhybUTUPAJQzGBZQDU1z7QTLL71Cvr1N8ahfrd2RZ25kf+ltl/tSW+udROKmmR0z2x8rTBZzcPMe6coKcadHlCYYC5maUmQZSZJ6xkBVLikrQIlgd+ANpI5iH11rK72O1jFSy6goSlpRgw8//BH9/iFlWbKzs8m/+Ff/X27euw08rbz/pCaGrUK6xpLlGWWZozCsn1/no5u3mE4nLC8uEqmUNG6hjcam3hWSZU6jEjXQOiIipjAu67MxzpBGOnIshdKMhxOyPGOSFxwO+pTG+dZHwwH9/oCsLGl0uyyurFG5A+1MTzPLRGSRSuDukVh5iA6MGUA7Z5/CJ7CzwiqUnk3woyDiXn9eAVHgoqOklpiOBAbIMc4NVfqMz34w3ed8SoBqfCvgYPzcKrGVHkUFLEz4/PyCZ20FxESTpcVNiSWONKtryyhVcvDkgKywGNHdWOvZLwnFdtczQZ+tKUG5ulbaO/KUr8NlEVDn7s1phZybTopsusnqwY6V2i4llJ5lUrP+WzODU5+HFuZcgZkBCw1GkiSsrq5y5coV9vb22N7ePnJ82OpGaJ6Lo/4ZyV68tLRU5W2R4yUkN/zcvFDi0CCGu+wwxDy8Xpqm3Lhxg36/T1mW7O7u8vu///vcuXOn+txPo2eoG96yLKsoKqUU586d4+bNm0ynU5aWltBaV8n9JJ9PlmUAFdiZN5ahm04ip7Isq8K+JQ+OCJ273S4rKytH+vosHU39vkOWJdQHha+H9/2sMZHfj4tAkvMdBxzqcyn8TNgEvNbbcYxT3Q0qCRE3Nzcr19Q8cBP2L2Rm5oHrUBNUB2fS6oLhEIyFzOS879SnaZ8JcDNDeA58OHDiEbUyjhkvFVGzSffCBfLrr7Ld/xPMgausHVnhccT84NUNljIIVBVTNoM0YK2vDYVlemA5uHGT9upJ4l4bmzbBlJgidzoIWwKxq4NkShROaGwrwaiPfNLOXGodgY5mEMizNkU+Zbm3wve+9SMODw8w1rC7t80/+f1/yO17HyMcwqc1GUrNCnxaa4gjRSPSNJKISCtMnjs2J21y8eJFPr53j83tHUzhrtNpdInzlETHRHEDnTRQcYJSlihOSZIWkWpSmpJyPPJ1tiLGkyGDUZ/RdMrB4QHjyYQ0bTDOxhwc7jHNCpJWg2ZrgbTRdtW7wQEPDdjIV19XuOzO8cxwWhd6bY2tFiGXS8i5haRAqQK0dcyYxtUIA2/4vX6mAp/KhTOXyhDrxDMdxrNd2l/XuPPZiLLKw0N1TqFNXN4iByws3tjYwLduQBL0wWwBMx5AVYulLZ3oWUvxTffcO91FkkRzuNunGJfkJcSuUBnWQlHk3g3VxBpxC1inZ6qYKDfnImV9wmb/DVGu+GUJvs7nrFZVhdt0jPI7PFvKt8W7XtGV8FhH2vu3Ph8t3E2Hi2fI4hhjSNOUM2fOcO3aNYbDIYPBYO7nwwU3XPCfpdMA57a5ffs2y8vLdLtdkiSpkqPVjUFdbxD+HQKgefeWZRlLS0t85zvf4fDwEGMM+/v7/PN//s/5+OOPf6rNk5w3BAviZpKkehK2m6Yply5d4uOPP2Zzc7NipSSUO4qiiqUJI6TkPKKfketNJhOGwyGTyYTDw8Mq341oiLIso9ls0mw2aTQaR4p51l0z4b3U3St1JqE+PiHbcBxACY26AJt5Br7OUswDNeHx8tpxx9WBYf3z8+YNzCLQdnd3j7A3cq8CWuV+5N+8fta/E/P6Py8irA7+wvuog6BP2z4T4AblsvIanGZCaUXkU7q7JdUBCKOgubTKytWXyXZ22P3hTVTuXFC6AiwuuFd7+kbBLNlY5ZpyzeJS4kdV1W7NZOOAw9s3SJZWiE+uodst8tz53XUUY60vceDFwe6KUSVWljw1Wml0nGADJwmANYZuu8Pje1ts7+xSlo5S/bf/7ve5ff9jZqb06eZcCg4gaa2II0UaxzSbsbtr61G3T0qXxBFR7Ao0oiCOIhaXlrmcxjy894CNrW1XhmGlQSMvSdopabOLThroKKGcjjFliYoTX88pIkkVqpyQTQdMxgWTSc7B4YD+cIjFUmQl+4f7ZKYgTROU0vSWT5KmLhzUwU/la3lZz+I4l5H2sUAuoke5kGRmtbSqEGf/CD1H5v8Qn7mqcuhYHy4tSegEqGicQXfuTAcKEUaCCJdc0CDFup3LS0LT1exFP7dcKQzlNSySBdnVo1LK9bGsNEaSCmAW6htHEXGUVHmT3OKg6XR7JM2E6bh0ImI/MUqflwY8qFGlByU+L02Vy1t7dsa7TQl89TiNWqkUyhoPcuSeQPsxRPnxtPoIk+WYSO1E4T+FyO+z0MIaPkqpIwtrCA4WFxe5fPky+/v7vP/++0/V1Kl/BuYbpOOO397e5t69eywuLrKyskKz2axcO3WDGPZR3gsBTchwhEan0+nw4MGDI+Lhf/tv/+0nAhs5b+h2iuO40slYO4uAkj6FeUwk782VK1e4d+8em5ub1TFSokHqTomAuM4YCODL85zJZFIBGym1kOd55WKTCKrl5eUjoeehbiPUscgzqNcRqwObupEOx11YDjk21MHU2Z55rsQQXM1j/8IW9m/eMXVgW39PnqG4BeuARyrYi55J3gvnex2MhXNt3rXDftZdt6HQO9TSHMd+ynP63AmKFY4eF+whYkzlDblVxQy6JJrWqZOsvPQqk61dBh/votA+t82Mk5F8NQIrjDdIwu8Iw+PcWu7ahQWbaYZ37hOvnmSh2aCRJi5kt7ROfewXfCXgSVdODce3KHC56102XI1zEeANz3QyoRE1uXnjFvk0w5bw45/8Ce/ceOfYxSbSmlhrlld7PP/8ReI45snGJns725jSUEy9CNtPhqx02ZU7LSjzzAmFgTRuQKRpljlnnzvHI/2ABxsbaOXCoy1L2FZEYiwFY4psgslyrFIYk5NnU2wUUxYwGk3Y3dtkd3+X/f6ALM/JpxnD8ZgodbkpdBRhrWJl7QxpnLoIHeMjkJRMYMd2aRshbh3rs03HKnagwNoqmkl7Iyvyp1kqQPkSOPeLy3sjkNfV1FKe7THGEElovwc21jqWz3omw0hGYmFgfGSXwbhoK88iSauyAxvrchopV9nc4Tdhe5xLyAl9VZXIsSwKxxj5cwmD1FtYZKHXZXIwqWpNRVGwuAnDRemYF6xnrtw8FPbTuXdNVerCjYfkqDEY40o3GCOLVkRJCcbfh5UcOqb6XUm5cqOI9GdiGfmpWn0HPg+MxHHM2toaV69eZXd3l4cPHwJHDYm048BMnZYPi2UWRVFlLxY2o74rlr6G15D+huCjblzEjZMkCTdu3KiM1jvvvMP7779/7FojRnBlZYVLly6RpikbGxvs7Owg4dthHyRTcavVqnb4wBEG5sKFCzx48IDHjx8/NU5iPCXzsRj8LMuqsRuNRuzu7lbRUZKkbzQaEccx7Xa7Cl9eW1s7oumpG1hp89iNeYZXnpl8pj5WIQAI2Zrw93mh/SHbE4KJ8Prh8wzbvL7XmZQQ9IZzRFiZ+nklRYG4Leu5ZuYxRvNqUYX9mddfGS+ZJ0qpiu2TZxZmQBZAI+efx/Ac1z4zq5LbEYufzk8mrHc9+JpItkBZSNtNWmfPsvjSNcZ738PsFZVbqu528inYql2vbLzDJlcT1me6O2H/9k2ilVWSXpeimGBMjjXaR8K4kGBH3FQW0uMaYQKstzEiHjWYogRyHt1/wv7BIUVesLe3xX/4kz8in6MCj7W7hjFOO3r9+kucPnWafr/Po/sPKfOSvChcdWm/c8e6zLYArcYse681BhVFJGkDyZZ88tRJirLkzoOPOewfcmKxz0JnkUar5XUh1pUj0E5gW5Q508EBo9GQ7Z1ttnb32NnfZjQek+U5mS1pNtukSYTWikhritJidVoNvkSTae3KBbjxAaUsxmiwpTvGGD/KM9ePss4woyM3porqWWOhtC5s3LmMCm/0fRTTEXCh5CM+d46fIz4k3Hgw5UCWz6AHzhWjwXFMPtzcGkpbov21lMe3EmJtBQ/jWCfr6465c7s0AAeH+4zH/eq5uy+1odPusrp2gt0nOxSFe5ZuaIyvI+XD4K1zwbmFo6Q0Lv+NLR1QdKJhWzFXzo3ld51SUd46F6C798yxXdrn74HqWWGFEfL3r9338vPU6ouxvBbuZmVxbTabnDp1isuXL3NwcMD+/v5Tu+S6Wypsx4EI+YyEZS8uLtLtdiuAICzHvH6Hrqh6/8WoiIG4f/8++/v7Vej0d77znbkRJ8IiSn9fffVVTp92a82DBw+qaK6QaRDjA1TRZyG7Ia9prTl16lRViqLf71fV0iVkXM4nfSiKoir5sLOzw87ODru7u1XYtzGmcnFJ30MmKRzjEOhICzUh9ePrwLL+DEPQU3cr1V0089o899E8V1cdOBx3neOYnvo953nOwcEB4/H4yHFFUdButzl58iTb29vV/A/FwPW+hrlvQnfqvH+hK2veuWSc5+mPwu9Znc38pPYZATcKqYGjJUTWGz1rvNDVV0KOPGBoLC+yeOUak90dxn9yA+21kOLWcVJklzdFhJeS5bYqm+isqmN5tEF7g2NL6D/YIV2/T/vESezaKWwp6Ny5nlCqgkNKKQ9qnCnWesYfOcNmsEZxsLfD8vIK9+68T14YSmO4fe89BsODo6OhFK0kpjSmAj2XLpxl/cwptrY2OTjoMxyMyPKCrJgZJ6zLyOyigpyb5GAwBaW8tsMSJxJ+aen2ljhtFVo94eHDhzx88JClVoe1E6s0Gk3iOHEaHKXIi5w8yxmNBmxvb7G9t8PuwS7j6YjMliSNFq3GAo0kQUeRZ2lcErp3f/KA4bjBa69do9Nto3Fh8JUGxzoxq9aKoiwqwKIFHCoXoq1wguCIEnAAR/ncONaLZXObOxalAlMz92Tl9xGAa7XLYO2BoeMxHFsoWQbdgqucWwb8DJtV43aLi3/WklNH1jSFK5Ra9VP5dADOnRnpCIWlzHKUMcRxRJa7cVAKOu02585dYuvJY4Yb+xSFYwodw+JE0QZHIIVsjlbaw3QB3tqXlIgpPGhzLIxzsRpTehecc2FacCxnaUC5XZXMZa0URI6Vsrb0RNCn94P/j91CxiN8rb7zDXe3vV6Py5cvc3h4yI9+9KNKP1I/r3xWfh63qw1BiDGGx48fc+LECVZXV1lbW3tqZx32tx4tNY+xsdayt7fH8vIyd+/erUDJ3bt3K+1QeG5JmCf39dxzz3HmzBm2traOZCUWl1logENAI9FR0n9xFckYCniRBIGdTocTJ05UyfnEXRIyM9vb2+zu7rK/v89kMqn0UMLWCEsj/X/vvfcYj8e8/vrrdLvdIyAgfLbHReqEx4ZtHrtXd2eF419/LnVgVT/ncT/DeRT+fRw4lzGuz3N5TZ5hHMcVU6a1pt1uc/bsWTY2NioXpjBvIQg5DnzUWbH6Z8PPhwBc7kdAch2c1uuCff40NwCepRGRplKzfCYGtzu01rgEc1oTNVK6Z06Tv/IqBw83GH58gLZUDiefWq36r/H/XIyOv57s+r0piDwEMijyARzcuUt3/SwLp9d9YjiDMQrlc9RIFJQs/jqKqrNWXwTPROV5xoc/fpef+eovsHcwoMwzsmLCnbs3j4xCEscsdtqMx0OK0omDz50/wf/y7/7P+fDDG0wmIw4O9xhPxq6oopXSA871JtrOyNu1e4+36Y+nnEBhi4KyyInTBqmvidTutDlx+hRxI+XunTt8+PgB7969SRo3SKKINElc0UgFRWno9w8ZjIdkZYbFkLbadFpt4iQljlK0tsSx03Nkk4xxFmGzgtsfPWDryTZvfvEVzp07i4qMZ2L809IKjKvIra1z2zjXiYuKirwvSiMRUv6epZaXVmC8YFcQhnJsYBXd5kEGHvhp5fPkWLBoZ9gl6ghhLTxY9sBoBpGZ9SdSDgz5oqdVoUlbOM2PmzlUrlccgImTmGYjYWV5mUb7Rc48d5HDfp9Ip1w4f44XrrxAaUoGw33eGXyXbFJACUVhnRvJAxVU7AGJCy13JJH1KMtrvqyl8Jqs6p9xoNCJoS2mDHZVSBh44euoGZT1OZ6U8nNCUZaGfI6x/7y00AiEzI21tsoV02g0OHnyJFevXmVjY4P79+8/dY6whYt/HezMa6PRiPv373Pq1ClOnjx5ZAcbGqywv/NYGzluOp3yzjvv8LWvfa1ibYqi4O7du0f6EMcx3W63ykAcRRFnz57l7/7dv1tFOvX7fcbj8VM77nksxaNHjxiNRgDVbl4iwax1xTVPnTpFmqbcuXOH+/fv89FHH1UuubAqelmW9Pt9RqNRVTag2WweKb8gYmaYubWm0yl37txha2uLL37xi5w9e/aI7kbGLozOEYZinmA1ZBakb6E7KgQf4bwJn/e8+VDX2oSgqA5k6vO0PudC9qh+PelvkiQ0Gg2Wl5erXE8HBwfEccz58+e5evUqxrhyFt///vcrt6AwM/NYyfD69SZrTJi/KWSBwnOGYD4cg7q+JtQ4fZr2GQE31tXnMfIAwefYBUrnkird+1p5ulZp4k7MwrnnWHn1Zfq7f0LZdwYkFJ26M9kZlAknHQAKrazPDeMMPhaMUYweHzC4/zHZpSuYPMeaDjoWyKQ8RU8FxJzxjBCxqRMXO/3Gx7cfsb19wPBwynQyoTQOKNy+d5/x1NX3ieOIM6dOsre7Q14aui3N2edO8rf+5v+CbnuBxxubjCcDiumU6bSgLE2VFE+YB2lKOYHovUc7fPv773Hh3HlMUVJmUycMbC04t0UDMJYoSYgiTae9wc7+Hts7uxxs7TEcHFJkmas8rSHWMUkjpdPp0ev2aLQbVfVpF0XltE/Gu5Xe/+AGH2/d4C/+/K9gzCn+3Te/x7WXdnj9tRdpNBIPRiWE2ufRVaCME5kH8GI2W6y86p6qRlchycr7H10ItPHPQAUFIl1mY6NKV5YDx7xU4+jXNhW4vbTGhZ0rW4EVpRzz4so7OFAh5TAcWeSAZ5jhwKLBukSOkXaRIu2FLt1ul9XVk/SWltw5Suh0OpxeP0eSpjRbTfZ2Nnn44UcUhaUoDYUpkChsW0riQTe/nbsq8qjNYH35CVOCKS1lAWUxq+ptSheG5frsE1A6Z7Bb4CiJrEbFvjSGB6VlWWBLUwG/z0N7Fq1dX4DF3SE72zNnzvDCCy+ws7NzhNo/DrSELTwmzEEi13ry5AmPHj3iwoULT0VMSd/Cc4SAR84vxujOnTtsb29XSQilhtTdu3erCKQ4jjl9+jS7u7tVIcvz58/zt/7W32JhYYHHjx8zHo+ZTqdHImjmGVAxro8ePeJ73/se58+fr9gXESGHxkyASbvdrkLtt7a2GA6HVdJE2bU3Gg06nQ6dTod2u10ZvdD4yTP74IMP2Nzc5Gtf+xrGGL75zW/y4osv8vrrr1f5hI5z6YQMxDx24FkRO3X2IgQqdVAwzyVTf4bz+lY39PMitObNbRlHAbKdTofV1VWWlpaqZyo1wdI0pdVqsbOzw61btypwUgci9WvO+zt0V9U/Hx5bZ7FkXh9XnfzTfNekfSbAjV+DUT65mbIKjK5cU6YsfMSPrVgSpVyG1NbiCivPv8hgY4OdH93FlE6fEalgI+0NngSIuxYgXzSRssTKkFsLvhinmSjGDzeY7h/gSg0psLGn532uEOVyvrjEZ+L5cCGyook4HGS8893v01pM2d3dd9Sgshwe7DKeTlEKGknEhXPn2d3dZDLN6LQjXnzlMr/5W3+V5y9c5e/9/f8nk9GYYpozmRTkZelcAzwNbABi7dxtk6zkH/2zP2Q0mvI3fufXOXu2RZTnJCqi0W6TF1PSpIWKLMlaSiNtsjI4xYXzE/r9Q/b2D9g/2Gd7c4PxZEhvYZlOt0ur1aKZNJ2g2jhmIvLlJpRxLo2iKHi0tc+fvvuAB48e84v/2S/z0rXrvPPjm2xv7vKzP/cmi4sLYCW02EUJGSv5VgSSWj++xodjO+DihtoJXlHKV2x3XwJjrQMoHiIrS8W0GOWescNI2hehFG2Xm5DWeHeUw7Ce/XBlQZxbyoX4Y6CwxiU3LA1ND5gQFtF6VkcAmWeU3K6zQaPhirWurp3g1Kl1UFT1XVZX10hbHV548VW+8IWfo3+4z96DbbLMYEqwpqQsCz9m4TwX0GbcOFmXYbospbpziSlLD/b8QmrAVsyNZzBs4dhJnHvYFIUfjMh/Zw2FKSnN54u5CQ0VHDXUstMMd49iIBYWFrh48SKbm5t88MEHR0SRdddW2EJDFQKm0A1SFAWPHz/m8PDwmUnnhBkIW8hMDAYDvv/979Nut9nd3a1YD6kfJW6oc+fOsbu7y2Qyod1u89JLL/Fbv/VbPP/88/y9v/f3GI1GZFnGdDp9Sk9Rb6I9ybKM3/u932M8HvM7v/M7nDt3rnJ9iOA4TVOiKKrcUWtra1y4cIHDw8OqOOeTJ0+YTCaVDqnVah0BJyHrEuo+Njc3eeedd3j48CG/8Au/wLVr13jnnXfY3Nzk537u51hcXHzqec9rdQATgoz63JH365qZ8NmH5zgODMwThQtbVJ9fIZtSB7x1UCRzWELvtdasra1x+vTpat65tWa1Kk3y5ptvcnBwwMbGxhFgG4p76/dZdzsVRfFU9XjpU+iqCsc5/D6G9yd/h0LkT9M+E+DGNYvjWLwQVJc+okZTFv5mMURx5JK5WYPSMTqN6ayf5OSrrzHZ3Obg/tALOiUmysqGtmJUZq4GkIwyGpfvxh3imR+rmO7sMt5+wnQ8oLO87N0P2slJPWPj3AHWV1f2FJv1roDCcu/jLW7euMGXf+Ft8qnLvosxjCau2FsziTl5YpUkUhwORvQWU9586zpf//pf5s3X3+Yf/+N/yMONJxgzZW9vj8ODaZBZ9mlgk2hFHOvqmP3DMf/0X32bm3ce8dd+65d45cUXWF1eYWFxmUarC4yweU6SpERJTGehIM8zptMJp6YTsmnG7s4WOzs7oGKSNCbWbhzL0mIKQ2FLNzRoCptRYhiOJjzcOsBYy5PdbX73X/wjvvzkIT/35a/x8JHhX37jD/jZr3yRc2fP+Dwz1rmZUIh2WFx8Mx2N9UUgrWNCKFHa5xuyM3ozMtozKsLeOBGshSpHy8xB6aOc5AoeiFhjiLTyWaWVn5/i6vH0qoFJYSFxx7mzWo9vLFSuKB+K7ZP9Ka9f0TqmNDl56QyqVdZFcuHcgCp3KemvXn2Jnd1Nvtv/d4zyjGk2pSylqKdEahlfQNO5KpXykTnWeDDjGFDjQZGAodliUzq+NAQrPj+O8box993wvnR/7c9T4UxpoZ9f/g4XXQER4W4yjmNOnDhRsTePHz8GnjaWzzKeoWGuG6b9/f2KFVpcXKwMU2j85mk7xNiIYPeDDz7gq1/96pHSEVJYMk3TKqKo3+/T6/X40pe+xNe//nXefPNN/tE/+kc8evQIa10lc8mNc9x91UPADw8P+cY3vsHt27f57d/+bV566SVWVlbo9XoV85JlWZXjZmFhgTzPWVtbq+pIiYBYKVW5rIC5hjLLMqx16TQ2Nzex1rKzs8Pv/d7v8fjxY372Z3+WR48e8Y1vfIOvfOUrnD179inAEYKWZwEUOCq8DnPp1BMpzot8mjc/wmcnIKR+XDgv8zw/Uj6hzqDVryPvC3sjTEq1TgZjm+c5URTxwgsvsLu7y3A4JMuyIwAnBFhh38N7rQuI6/WqQpASjns4ZnVAX//cp2mfCXAjdLiUTBD5L9a5AUrP3ESxD9/1O3WsQWlF0m7TXT/D0rXnGe3+mGIIStnZeZRAJyrA45pHhVajVEGkrdft+CgeoBxYxltPmI5Gnqnxafa1M8BKtDrrSAABAABJREFUKVQU+yKM7vwKxd72NlFkKcoGh/sPiZuQxvJlcv0pyxKtFMuLPS6cO8dP3n2fdjvmrZ/5Ar/0S7/K9VfeYHDYZ29/SKwT9vu7TKcFk6lUrH56sUkiTSOuYoiw1jLJSxqF4d0P73Lzv/m/sdzrsry8yLkz65xdP8na6hK9hR4LvS6LvR6dbptmq0Wj1aVVuBDSpeUlllfWGI5GFHmGMpbCl1zIirx6JoUpmeYFe3uHfP8nt9nYngkYx9Mpf/jH/56t7Sf8yi/+Bkqv8M1/+8d88a1XuPbCFef+kfgoIzSYuE/8AqvcMS7XEEhRUqU0isgxSNpnIkahVOLOpyInLy/xrsISPKjx+NQLliplupuZ1ml5SlX4kGcF1uW8tlYxKQwFMd3OAs1Gq4oG85SIvx8BTj7Lj3IlGCqDhfaLTkGcJBQ2J1YJSRwTRQlJ2mRxZZVXXn6Tg8MD7t75gMNBn/FkTLvTRVsHxIwpffZlx7IURYZk+HYAxwMYLyZ20Vs++Z+dhXk7vY1nJ5VxzJz1UVJKo3wiRVO6KuL2cyQoloXyuB21LPIihg0BRBRFtFotTp8+zaVLl9jf32c8Hh9Lldd30mELAYG0yWRSgZu6Qa27PmC2M9/d3a2us7OzQ5qmVTbgOtuxuLjI+fPnee+992i1Wrz99tt8/etf5/r161WF7TiO2d/fZzqdMp1Oj4xT/R5C0bC1Lutwo9Hgxo0b/Nf/9X/N4uIiy8vLnD17ljNnzlRAZ2FhgcXFRTqdDq1Wq2J2jDEsLS2xsrJS6W3kuUwmk6dEqEVRsL+/zzvvvHMkk/RkMuHb3/4229vbfP3rXyeKIv7gD/6AL33pS1y7du0IUKxrPua1ukg3BL0hAJW+iRD2OH1O3R0mf9dFzvIZATbW2irK7NPkfKkzkBJVVpZlVdNM3JSie1peXubll1/m4OCA27dvV6xfp9N5agMQgo5wrs0TE4fgJARI4bMIzxkyVvOYnk9qnwlw44iMskoGpjylryzORWVxu1MiZ3Qi5UoESIivVkQLXRYvXWW8tcXeuw8pC13tscOlJ8xvI68Yn1lYo4i1IS9n4eS2hNHGE6aH+5RFQZQmSLI35a/g1alVVuQ8z/jWH3yDL/7MW5w7d4ad5ZzOoqJ/uMf6KU2sE0qboZXl1OoiS0sdkkiByvnS22/wS7/0l3nhyoskccw3v/c9ijIiL6YM+n3KXJFl+VxgE0eKRqzQkSLRkTdqkBUFWa5J0BSlYrC5zaPtXd6/9THgmIIoUcTKRTk10wYryz2WV5Y4cWKVs+vrnDlzglYauWrikcvAWw6HFEXJJMvIsimHgxE7u3vcuPWAD+5ssT/MnFYqaEVpePfDDzjsH/Ibv/I7rK2s8Ud/9H3GoyHXX3uZOIocA+arVhsjIm+fGNEnK1RaE2kXSSVFK7XSnvWwxNpFC8koaaVcbSRKx+opTWlyLLlL1RskvgvzxrjYKMfslUUBWtIyKqZlQWZiOotrLC8skTbSCrwoCgej5Tye5ZiFonu/qWelsmwyyy3hRdFaR3Q7HdZWTjCZTsjznC9+4StgNYPBkH7/kG53Aa2aKK+xKiUBIc7VVJrSLxDSF6r7cqqaktIayiLHGkVpC+LIM10ApU+CaRWFLdy9+6JtpS0qd9bnqc2LRpL2rF07UGlFnnvuOfb29rh58+bc6Kn6br4OVua5N4wxlVZG3AVhn0KwJb8XRcEf/MEf8NZbb3H+/HlWV1fp9XocHh5y5syZIwZ3dXWVxcXFKieMMDZXr14ljmP+5E/+pHIpSHkDYUbqLXRzhHlgpDyCJOAbjUZsbm7y4YcfVp+TqCitNc1mk6WlJVZXVzlx4gTr6+ucOXOGNE0r4bAIXYuiYDqdkuc5g8GA3d1dbt26xe3bt6s6U2Ery7IqEvprv/ZrrKys8Ed/9EeMRiNee+21IzlgQv1HXV9TZ1RC1qMOlOvgJXy/XscqZCXqLqrQ5SnPuSxLFhcX6fV6NBqNp57JPNdXHZAZYyodVv3+JBXBZOLWmjfffBNrLcPhkMPDQ7rd7pF7rYvMBeAcF1kVHhcyXiHIDM8Xfi5kjD5t+0yAG2Fp/L62ov4NFoPxVL7oAEqs0V734PQF1gJxRGd9nbVXXmO8tcf00Qi3l4/CCzmbIsDFL/HGChUmcKWCNiiryXb3me7tUk4n0Gy6Eymf58OUEEXIDlnhczw0Y+LEoeHvfe+7TLIRB4MD0kZMlk1RGBY6La5cvkDajNnZ3OdLb13n137tN7h65QVWltbI85yt7V0Gw0P6h/sMBjnaF6+UpgClFbF2jI1oPbC+FIFxxRGzwlW+1lr5XTgYZdAoijIjMjFT6ybdoZqwtXdIefNjF1FTQhRHdFpNTp5Y4dz6GqdPrhBpRX8wZnf/gNv3NniwsctgnJOVzjiLS0nZo64zi+Xe44f8w3/y9/jLv/hrnDt3ie/+8TuMRxPefvsN0rThcgErVelr5J7wYNb96dyH1e5ERZUrE4mQQhgHx8BEKsIYW9WK0ipGaQPGUCqn+9GA8cygsQZtPRNknWDZaE1eluQ2pr2wzMrSIp1Wi9L6hHfCMll80j/X3wrsWANIAiwAQxTFlXvTgSBQOiKJU1aWV12IuikpvSbk3r077O7tsdBbrIyM9f0tbYkVLZEp0TpyWaC1Qhn8PNBVdJQxQW4fDMZITGHpv5sSiec/bP1uylpMWVSs2uehHbfghjtGaSE9Hh4fRREnT57khRdeYHt7m83NzSO7z3qrGzs5b13bYYypEtVNJhOazeaRPtT7LYa50WhU7ps/+ZM/qYpKNhqNSnPT6XS4fPkyaZqyu7vLF7/4RX7jN36Dq1evVuLS7e3typCFYd1hk35LFJS00GDVk7KFYLIuMB0Oh+zs7PDhhx9WO/Moimi32xXYOX36NFprBoMBe3t7fPzxx2xsbFQVwessSP15PXr0iN/93d/l61//OufOneO73/0u4/GYt99+u2K4ws+Hz7xeZLJ+zDwRsTzLMCmjHFuff+F1Q/YmfL7ijltYWGB5eZl2u31krs4DV+H9118PMxTLNcXtKnW5Qt3M/fv32dvbo9frBWvN0wxO/TmEbFFdkxN+3+oMZ/gdkb7U3Vufpn0iuFFKnQf+H8BpnGfnv7PW/p+VUivA/we4CNwF/rq1ds9/5n8P/B3cnvh/Za39xjMvUj2A2e+zCBywtsDlMYn86zO9hKgglNKk3S5Lz11i8OIDBrvvoIcuSlfCwiswIxob38HSR7u4Y43wMUj9ItMfM9reYDoc0FzoOSNUgtKGKNK4OuQO2igdkSQNzl28yoOPb/Lk8cfc+/gBk3FJmmygI4WxLiPt4uKaF9albG4+4vUvfI2Ta2u0my2UNhz290nSlIODbTY2dkjilIO+q3wba02aaNI49oIiZ3istZgSpuRut+2zzk6zkkgrtJ0lRUR5nYiNKDy4c5NHY9UsmZ7FMs1yxpOMJ9uH/PD9OxVgKHzyuDLQrFSPFf+FC/QtYdvb3+WffeOf8Cu/+Os8d+4yP/zRhxR5wc9/7cskSYyxEVr5EGTjQzGtrVw6LqQ6Bl+bydthD1K1BwvMXIlYnDLcZdjVVmGNxmjjo7McCDGUft75WSNfWg9gi9IyKRXNbo+lpRW67Q5aR46lsqCIgEJkvW72+XHVnlmS9yId4UKuPVtkrXOvGf+7UqRJwuryCqYsKKoMo5qd7Sfs7u6SxAmtVhNr/fPzrimLC+N2pU28wcHlJLQmR7hGT436+/TCRVxuJK1kYXL9rjI343LilKXxaRL+/29/LmvN7FpHfg933PVdr7TQELTbbc6dO8eVK1eqcOvQfSTH1zUyobGR18Md9Hg8rlxTCwsLVbkCCUuXnb30LU1TLl68yL1799jY2KgiosIMweDyzJw8eZJGo8HW1hZf+MIXOHHiBK1WiyiK2NvbI0kS9vf32djYqDQ5cr9JkhwBNHI/9Wyy4poKQ6frjEae50cYpfB5yOcnkwlbW1u8++67R1iHZ4Ul141k2Pb39/mX//Jf8vWvf53z58/zox/9iDzP+epXv1rdV9in8DmFQKbuQqnPneOARV1AHubZCcepPm8EDHY6HZaWlmi3208xO3UAWgcZdUBW1y2F10yShOXl5SP6Jq0129vb7O3tVRmhwzGuu5fqczpkNkMAJ30Jy6GEYxIyXdKfnwbcfJoYzgL431hrXwK+DPyXSqmXgf8d8G+stVeBf+P/xr/3nwOvAL8C/F+UpBx+ZlPVT+25E5fsTQMutw0+6sMyS8eHdXoCpRVx2qC1sszS5WssnF8m0RZXdcnviJUY3JkGx3FAGmPVrN6PssRe8IlVmGnJ4NEDhrs7lEXpDZBnE6pQY5fnBu8OaSQJRWFYXTnJcxfPsLq6wpPHTxgM9mk22mAVadohjlOajQYXnjvHubOnSRsxSZpweLjP5uYOZ06f4fHDR4zHLsol0prlxQ4ri23aaYKOXPi19onhtI5J4ghlJauzY00KI+Jf97M0jmXIi5K8LPw/56IoyoKiMJjSOvbBenOslDOMFrLSMMlLd5yV53eM9mAOsNEKOk3F4bDPv/zX/4z7j+6iI807P7nFH/3hd/ykj53LzAuGldaumGO12MQe6MQ+F4sm0v6Ja2FvIjxn4sCzo3pwKEShfH0rpTTa+jIe2hkSl6E3QqnYuWwwGKuZ5JA0uywtrbLQWfCUtao5QN05Z9m2Z4kBtXbuvUgn7r6EsXHIyC0qVtxILit2mqSsrZzk7JnnOHPmLGfPX2DtxClGozE7uzuMxmPyvPD37Hf6RkDOzA1llSQa9DmZlEbrhCiKXcVvP1amNG6elD5DtrEUxkXolWVJlk/Ji8wze39mzM1/8rVm3uIYGqx5/v/65wVULC0tVQnvZId/HHsg567vyuufmU6nPHnyhP39/acWc2FN5LNirNI0Jc9zVldXuXjxIqurq2xsbDAYDKoMwFLHqdFocOHCBc6dO1dpcw4PD9nc3OTMmTM8evSI8XhcgbXFxUWWlpZoNpsVwBLjE+aZCZmEMMdJKESVv+W9kB0Id/MyVtWk8GHlYdTWcSzZcc+30WgwHA75xje+wcOHD4miiJ/85Cf84R/+YWVgxT0TRrTVgU39GdTnTnjNeh9CwBe+Vj9fyHIURUGj0WBpaYlut/vUPDsOiIcgQ+4rBGrSwucj95mmKaurq5VO6vz585w4caIqgxFqoaSF5wifzzwgH86jcL6EfQnZGonY+2kFxZ8Ibqy1j621P/C/94H3gbPAbwL/vT/svwd+y//+m8Dft9ZOrbV3gFvA28++iGe75X/K+ErJ8qbfXVZG0sMbC0rQrudkiDWtk2usvfQyndWYWEGkvOH1oIZgEkiGldL3wQeao5TbfysslIrB/Uf0tx6TT0bIUdprE8TgKuV0Elprzj3/Ens7e/zpD7/LQrfHyROnGA7GvPuTP2V5adHpd5Sm21mg0+3w6vVXObF2gsuXrrLQXWTj8WM+vnubg4N99vb79Hodlntd1pYW6DQTdAQ6jkiiyIWd44CfMSWFKYki5Zkcd5/GQmHcLruwhsK4SC7j5BNgnZvClP41444vjCX3olNhZ5wLyEMZP5Se9HjKwB/XjIWDkSErDPv9Q/7Vv/k9NjcfouOId975kO9853tYU6AjjYosUaSJdJDISjlCRkdUAEHYPileWXXF4m7IWicgtoHwLYzC0jIHnfHXEoWlLDqOQEVMS0Pc6rC0vMZit0cSx574CHYvgGQhDrVRzg1mq4Kr2t9PpGNXu6zCCNaxIsZgTA4emKVpzNrqCU6fPs/p02c5dXqd3uIyg8GQvd1dxpMRZZED7r5KHx2G9UAdXJh+tQh5gI4Adr8oK1cs0xpLUWZuThhXzqEoc/KidPlySkNZOMDzZ9H+XNaaWvu0RrLusgLnslhdXeXq1assLi4+xdwcd876eeqfefz4Mdvb20yn0yMGoW4M5e/Lly+zu7vLD37wA7rdLqdOnWI4HPLOO++wvLxc7ZwlX8z169dZW1vj8uXLVU6bu3fvcnBwwN7eXiX2lYRvoYEM9TVigOYxVnVBab1swzxRqhwnv4f3OA84PGus6+M+Ho/J85x+v8+//tf/midPnhDHMT/5yU/4zne+g7Wz6LgQ4ITXPA5c1q8175/c17y+1w2+uI3KsqwS7/V6vaeAZMiUhPMrbPW5Us/4G/YtBN4CcE6fPl25BhcXFxkOh1UKAZlXdbdU6Eats1Lh79Lvec9eBNQCaMMSD5+2/VTZt5RSF4EvAH8MnLLWPvadfQyc9IedBcIUng/8a88+twcVeGpcigs6JsVHUdnS77SdbkG0FxqIYkmkp2gs9Fi59DwrV54jjaU+kZk5R6xc0zsrrMJYja2S/znlT6RcP7Ca0ZN99j++y+Tw0Bl2n0hQe3ZB65goSt0E0o7u39wdcvXqS+zvH6Aj6PcP+M63/wPLK0vuwRvQNGg12zQbiywtnWZ5cZVuZ5Feb5nHjx5y+/YNrr/2Er/0y3+Bqy89T+LD+UxpvLEpyTJncIqiJM9LSgNWaWIJVQfP0lhKEWgbiR0DjKI0lsKCVJ82BorCiauL0jowVEJZes+QUhWg0bOHWL02/xkfbTJNjbXs7B/wb7/5LxiNDoiihB98/33+9E9/DNYLnmWB9TWrosizHgTRSR6kuGiq2d949sp6ys5KFmM3ef0X2oXyK+1ZQz0rcBlFEUpH5AZU3GRxcZWl3pJLW++jjEIwZQlo7RDyVQuaaIWi6rWyLCnK2Ze3LF2h0rJaiNyi00gbnFo7zZn186yfPc/qiVM0Wx0O+30O9ncZj4YUuUuuhxcRiyPJWuPC6JV21dA1KMkdpQSsu/HSvjCmsl507AtrukUmc6HlpfEgLP+Eb/dP3/6TrjU1ZiY0aHVDES740sT4WGvpdrtcuHCBS5cuHQnRlc9+2haChu3tbe7fv8/h4SEwM1ACLuoMg1IuYuqFF15gf38frTX9fp9vfetbrKysHLnPZrNJs9lkeXm5YgN6vR4PHz7ko48+4vr16/zyL/8y165dq0KHQ+MjDEqYx6TOCIQGsz4OYphDt4MwOCGzM88NcRwz9mla+Dz39vb4gz/4A4bDIVprfvCDH/CDH/ygAjghgBEBdMhYhe04pq7+L7z3EJTUGaCwcnoURSwtLbG4uFi5zurupPB6z2KO6kxJCBTkuYaRTECVmXt9fZ2zZ8+ytrZGs9msouqE4Qtdk/V7roPT8D7rQE8+F+qywjnxZ87cBIPVBf4x8L+21h4+69A5rz0Ft5RS/4VS6ntKqe/t7e+hK8NgwZY+74xPTmWcMbKeHscbbVMWleHSdqbHUUlMe+Ukq5ev0V5tuezHjtfxTIUNOuXkkCUaY2YsQHUT1g2THZXsffQhB1uPKTOXOE17tkYpFznlflcoFfHdP/om7/zwhyTNBdrNlltU0gYf3viAyeSAZqtNWRb02ivEcULaaBBHEf3BiDzPWFpaoz8qiJMu586dRSvN+QvnWFrt+UlumeY5ee4iVgpjXfFMHKsS6wgdHXWVGA+orAczsvMujF9EjDuvKV2NKmvcP+fGmjFckhlX4dxLzi2GY1aOmwF+KJMoIo7ip143Fra2t/l3//5fYkyOjhK+/a0fcuPGTWdsUcQVyFFV2gAqTYtBJon1odqinDI+J42VLyDKa1wsWPliyby0Mw+bBrxrKSstViUsLK2x2FuikTb8l9FfVhZtI0xj+KUVEbETy88iphzgLo0rSmp8/h2LA5R5nlEWEqqtKnYlSWLW1k6xvv4c62fOsnriJI1Gi4PDPof9Q8bjMVmRue+K98NKAmOsVMWyvsioA3Mq8s/RbyYweIaLGUY0kutmFkGliFz25j/D9p9yrdnf3593vSNiz3AXKQtzfVENF+nl5WUuXrzI0tLS0505ZqdZj6YK23Q65e7du2xtbVVJ8I5zc2it+Q//4T/wwx/+kEaj4ZJrNpukacqNGzcYj8e0Wi3KsqTb7VZp+OM4ZjAYMJ1OWV5eZjweV6n4tdY899xzFTCSXbS4j8Kdf+i+mWdwQ2AUGsHjduuheyO8Tt3NMs+lV2/zio9K37a2tvjmN79ZgYJvf/vb3LhxYy7YrV/jOCNev+8QPNQ/H36mzsCELsFer0eapnPHtD424fv1eRKCuxB4Sv8EqNYBeZIkrK2t/f+o+9MnSbLzvBf8HV/CY4/IyH2ryqysvfcGGmg0AIpYCBKkSI1EXvDKdGV3ZiSbL/N3jNl8mm9jY3ZNMmlkprGxMdqVSMq0cEQSANFA7129VHXXkpX7Hvvu65kPx4+XZ3RWo8ErcRrHrCq3CF+Oe/j7nud93udhaWmJpaUlZmdnyWazdLtdut3uOSNTPdLXUI/0/ZGe1/RxT85R+l75VRCbZJ9f5EVCCBv1sPm3Usr/Nf71iRBiMf77InAa/34fWE29fQU4nNymlPJ/kVJ+VUr51ampqbiUgGI7CjBMC8OIV0ha4TWKg1EUk7dQwVwYZswZ1dCBwMo7lBYXKa8tYlqx+i0qsQmRSceQXt+roK2zaoXcGOhsWJFPB/sndI72cUdDtT1hxOiBCogipinLKOLOmz/FisacHW6rxM0IsSyT0bDHBx+8xcx0TR2DyBCFBmEQ0Ol2qNfrHJ+cMB6NmZ+dZX9vh2ajTb/fo1FvMbc4g2UbBIESZPOCEDd48tBQCYehyjgTH+xQEhtrqgAvBQSqBpNwkNRcaJVfiCIRl7RkrA4cv19PXvKh1IQ6LggvT4ZhmCzOzpJJdSmoY5N4kWT/8JC377yOZZmEkeAnP36Lo8PTJAgbhoEpzCd4SHzdojh6a5Qjvsnin42EexIhY0XdGFVJEBRDXXH5xBTViPkrQQQhgnypSrVSJZfNxecbxvOh/ZkgaSOPS18yvk+EYSVCgXqKtLZNJCOCMMQP/JiwK5BRiDse4fseMrkeMeEOyDkOs7VpllfWWFq+RG1mnoyTo9sf0u8P8VyXMPRjYb+4DBUndE+ur+pEFIJ4YWA+4VbJWGhBRkSRXr2H6FZ6TWCLYkf1/1bj7+JZk+72gPN2CBPv+8xq8aLSUDabZW5ujpWVlaeiNzpopoPTJOKRDqInJyecnp4yHo/PHeNkoI2iiDfffBMpJUdHR+dKG6PRiDt37jA9PZ3sTycZnU4n6fQajUbMzc2xt7dHo9Gg1+tRr9dZWFg4J/ymywSThNSLkoiLAnC6LJOeY/31osD9NPTriwQ7w1Bu5PbEs0ajRtouQhuH/vjHP+bw8PAziVT6felgO3nskyWYyURDz8PTSmx6jjQiWK1WyeVy537/ef/0dnT7/OT5pvlO6YQkiqLEZiO9Pf33bDZLrVZjZWWFlZUVZmZmyGQy9Pv9xDJjspw4OVeTCddF5bR04nURcfyiJOhzr/8ve4FQR/AvgU+klP+31J/+DPif4+//Z+BPU7//H4UQjhBiHbgGvPW5+4jxBSklUsQ6JKaFMJ6gIQgUAiMkGLEbsTAxsFQpwVCJhWmoDivTtshUypQvr1Ocy2PE742QCclWT5OQEElDBe9I8RBU55QRB1FVsvDbI9q724x6XVXW0TeUYcadNhFG5CPrO0T1A9pnB9z94BH5Upler0u+kMcwTX76Nz+mVM4qV+wwgsAmY+dotds0W03Ozhp0ewNWllf45mvf5urGdaRv0Gq1CQNBoZxFmFrX5IlHUMJ/MVEBOoqTjXjI1Ot14FcdUk8KOghF3E58oizVdaTLK7GmHVISE1D1faKu0y+79Tzfp9NrszQ3p/gq6b+FEa7v8+DhJzzevkvGsen3Xf7yr35Od9BN7lahfTXidEXEZCqFfIA+oSdU2jAutckYidCSA3EiIQTCsFSSbBpxYm1iGLYyUY0kTrZEuVwln82p+0gG5+6hJ19jtENIFJcljLVnlH2I7pYibtP2fR8ilPBeqD/AuubsEgRhgg4hVZKuEaNcNsvczAJLiyssLC4yPT2LbTv0hkrgL/DDJzys0ItLU/H2ntz96v41jbhMZcSGpbqUR6y7o0nOoNNgIUjazf9bjL+LZ83k0KWIyVJBfDy/lGSqO4lKpRIrKytMT09/5qE9+UCeDI4XcUq63S77+/uJfku67JAukbRaLVqtFmdnZ3z44YcUCgV6vR6FQgHTNPnJT35CuVxOSh1avK3dbifv6/V6LC8v881vfpONjQ3CMKTVaiXtx2kl3smyyCQJNj2vk4EyXdZJJ3vpeZ6cO/395Gr/otdNjiAI6HQ6zM/Pfybp1Mma1snRhOO//Mu/TNrg9fmljyN9DZ92jS9KOtLXNn0fTRJ9oygil8tRLpfJZrNPndunzVM6wUgnnBp9069Ll6CklElZahIp0X/P5XLnWvOnp6exbZt+v5+Up9Jo3OQ86JEuraaPPz2fF70vvTD4ouOLIDffBP4p8F0hxJ343+8C/1fgt4QQD4Hfin9GSnkX+P8A94D/DPyfpZSf+/ST6Ew/JAqUjLwQMbHX0N0fMuENKFNAIHZaNgyU+FvcUWNbDoZpYmUdigsL1K5dxcrGq1GZVuV4wpVQpRHxpBqBKi9o9RqBxPAF3d1d+q26OkZDIxbx2jWSZLbfJfrLf8VXjD7DZpM///f/nu2tI+5/8gg7YyKiiMP9PR48+JjpmWkARGQQ+SrA+Z6P63mYlsHi4gJX1jf44e/8A37vD/4QO5PH9XzK5Rqlaha1IFEaN4YAUxiYlsCKXctVd8vkh1+fb3wDRRqCIU4IooTwCmAIqSwIZJxx663IFMsl/j4pX3zexRYwGI7pdjtcWlw8n+BIGHkh7njM+3feYjTuYmcdjo7r/Oz1NwgCRa5VTtipncn0zmN8JjaAVJE87gAi5moJM0FrMMw4OVX8HfV79TsplIWFmclSLJUp5AsqoEcqQYhCGXNPlJ6QlDJVKot78WSEjBRfxRCqrCYMjRTFcxdPXhS7dGsjStcd43ljEjVliAnKseqphKzjMDu7wPLyJeYXl5mZXcAyM4xHqpspikKlRRNpQ0yF4GikSYlkahsHmXwfrzaQhCitoVgSMU6O9AVXLu1/Ox7EBeO/+7MGzndn6EChA8xkaSX9FfgMJ0PzMRzHYXZ2lvX19QQpuGjl+XkjHbSjKOLw8DDpmppElqIo4ujoiDfffJNCoUC73eZP//RP2dnZ4ZNPPkkctg8PD7l//z4zMzPJMehApFfrpmmyuLjI+vo6v/u7v8sf/MEfYNs2rusmpRF9TulET6vaPq10cNHPk//S55VOHJ+WvPwq8wkwGo3odrssLy+fQ3B0QHddl/fff5/RaITjOJycnPCzn/3sHFn2onviovNJ/z2NpKTPaTJ5Tt93URRh23ZicGkYxrmEY7Ksd1HwTxOX0/M5eS+mk6D0vTCZZKRfqxHK5eVlFhcXmZ2dxbKsRPRPc6fS6Nvnzc3kSL/+ouv/eSXIi8YX6Zb6mZRSSCmfl1K+GP/7j1LKhpTye1LKa/HXZuo9/xcp5YaU8oaU8j/98sOQBIGvjAClajEzhHIhNoSdKNGq1bleNabaZ4nbgU0LwzTUP8PEtGycUoXyyiXys0UiIiVLlp6w+KEdEevdSBlTeqK4LAWmUMJuJuCetBjWTwndWNfCUPsyBJjdM4wHr7N7/1OcfpsXy1n67QZ33n2PpcVlnGyW2ZlZpqen+K//3/9EtVLEskyiMGTUHRN4HkHgEfgeSMn8/Dxzc7M4GZuXX3qFf/QPf4RhZDBNh6mpeUpTWXJ5A9MUcQszWFa8+olJs59JbTQqo28eNKdDf0DiG0rGDUaR7v6JSdaph1EUvyfpCBK/JLHhSULU6Q8YDnusrSyTsczkeCIJw7FPvz/k7XdeJ+MITNPi7kePuf/gUXylniS6ApEcr0oWZOKxpMpFMnH/NjSB1yBuK1elz5hwgmFayq9MqBbzCAikIJsrUsgXsUxVWoqiiNHYpdFs02p1GPUHuMMhoR+gPc1INGQ0YV0RbxWRTz989LXSbfk+GvWRKD0QdzwiTAwtibcVJSrGAoNisczc3Aqrl66wtLTC7MwCwlDlhMD3iCJiVEi9VyVXMcokFPNHX0IpVOnQMkzM+HMkDCORU3iiMfQEF+MzCfTfbvzdPGv4zAp1Ep2Jt/uZAKBHOrDr92nX5cXFRWZmZp66+tQPaH0Mn9dh1Wg0EvPLyXbh4XDI9vY2Dx48YDQaMTs7S7vd5p133mFxcRHHcZienmZ6epr/8l/+S5KgRFFEv99POBaaWKqeNXNkMhlefvll/vAP/zA5v1qtRqVSSTqnnoa0XJSITBJx00lN+hqk51rP1UWoyRdJaCaPQZdPVldXEzK4PqbRaMRgMODtt9/GcZykRVwrKk+e2+T3aZ7QRYKCk4ngJAI4yTvJZrMJ6qa3Ox6PaTabtFot+v1+0oqd3s9k0qWRGj3X6ftMJyHpJEIrE09q0kwmUYVCgfn5eS5fvszy8jKzs7MYhpEQzHWCpd//y1DMNGk7fc316y5K6r/o+G/LBPzbjigiiv2JZCSIogBhKJsCQyjugxJc0ytdI1mNy3j1KATIRHXWjLtcbCwng1OdonhpASsbxYE6/gCRviEEQRQjFHGAeoJpqJ9MBFF3xOD4EH80gkjRVZERVuBSPvqQbBhgANt7PW7VLNZX5tnf2cYdjel1+iytzBMGId1Oi3fffpO52RlkJPFGLmfHdVrtJlJKur0eTjZLNuvgB6qs8v3v/Q7f/95vI6Wtglq+xsLCHLOLVXI5G8sysQwlre4FPk/k9lNTLWPSsOQJeoBuA47nInqi6hulbtBIkiQ3Ip6cJEW64OF28VCvyToOA9fFFBHLiwuYRsKiwfVDJRh4fMr+7hbZrOIlvf4379LrDFRJMNTJi67NCoj5QVKaseeRLkPpB+gTpA4RB3t0ggZSGDFqY6vkIFRCh1knR8bOgIzLeqGk0+3x4NEjHnxyj+OdHVpHhwy7HcLAS1ARjerp806QE4ly4I6d0JWqslDdboEXv1wwGg3pdBp0O126vQGD4RDXcxm7HnqzivcTUSyUmJtZYHnlMguLy1SnZgjCCN9XpPEwCtDeU8gwBl7iVRKSMHk4k5SstMifiVCfpziJ15xrxQ2SCafn12GkH+z64Z0O1OkAAE8k9vXv0sFID/3+TCZDpVJJkgs4z6m4KAA9bRiGUuTVvJtJAmizmeR37O3tJZyf3d1dxuMxnU6HlZUVgiCg1+vx9ttvMzs7mwT04+NjWq0WUkp6vV7SRaXn5vvf/z7f//73k/3m83kWFhZYWFhIhP902UOv2ieHDnQ6yKVX5emgNznn+vtJHs/nJVKfNxzHSbhLaUsKfezj8Zjj42N2dnbI5XJEUcRPf/pTOp3OZ5Kvp6E1k99Plu/SSY++5+CJArJOCLLZbIIw6X12u10ePnzIp59+mog16gR1cs70vtLfX0QU1vwpPUajEe12+xxR+CI0B6BYLDI7O8vKygqLi4uJ6F+aj3VRgqNHGjW9aAGQXmzo3+lz+u/SLfXfc8gogiiITyBQi+u4DVfJlsSuxDoZUUvWmBEj49fHYmgChCmwrAyGaStUwbEpraxRWqlhGSExJQXQ4VQFlwjjHNE4/Q9UicbwQoanx3iDLkKqB3/GH1LcegPn9AGmAfNzUxgZk+rtF/kn//yf8vxzG+xtPWR3e5tWp00h7xBGEe9/8BZCCLJOHhmA3/XptJu43gB3PObs7JRCPk9/MGAwGCIMg//xR/+Ub7z6TXwPhLCYmV1gY+MaaxuXydiZmEMTJVo1fOYhIJPyhgzjOZRp/o5avUtdKpHyiYgfimxsJAiPnhfxJGj/0oeOmnHP96lWS5zUz1iYnaY2VcHJqH2YhqA3HDAaj7j3yR0sS7nBn9VbvPfuHSUcJ/WBkhxLiEZqZAImaG8n5fmkHdvjREpoFeP4e/SNodCfIJIIQ/nbCEM7k6vtGYDwXLxWm+HZKYPGKe5wQBQERFFAEHr4vqsSizAgClHqwmEQc2AU2VcgsC1lkhlpE0opCEOffr/L7t5jDg62OTo64OT4gPrZCc3mGaPRIPVwUNy0YqlMrTZHbXqWamUa01SliaRsFsXdhfEFljEJO4oihG6nkqoLTQgQhsQ0FBpqGmrBYMQPn0g7kQvd7v7rMdJBKh2A0qjIRUFrsnyi36NXnToJsm2bpaUlFhYWPpMw/aqwehAE1Ot1hsNh8v4wDDk+PqbZbCaE2Uwmw7Vr1/jn//yf89xzz7G1tcXu7i7tdpt8Pk8URbz//vtJ+SyKlFeTNsccj8ecnp5SKBQSlEMIwR//8R/z2muv4bouhmEk2jjr6+tkMkr2YpI/9Hlzng706aQnPTfp7egk4CJEaPK1nzd836darVKv15mbm6NWqyVlO8MwGAwGjMdj7t27l1zPRqPBu++++xnkIp28TN5Hk0Fa/y59D8B5zyq9DV161GXOyXPzfZ9Op0Oj0aDVaiUu7zqp0Eicntc0wTeNKKWVpvVxh2FIv99nd3eXg4MDjo6OEq2lZrPJaDQ6d65CCEqlErVajenpaarVanL/T7aF6+s4mfRNfraEEOfQrfRncnIh8UXHlyK5iXwPXBcCDxG7MqsHq620Y0xTGSGmMj3dQKXykggMEql5U5hK/VWImC0D2elpajdukKvaqgwl4yCPppbGZoMy7pYSuuAlEw6OQGJGEaPjE8btFsIbkz++R/mDPyWz8z7SHULoMVWrks9nsToNDn/8F5xu7bF9fxMj8qlNFblx6zoGBq3mKXc+eI/Z+XnV9h6A21ItlxlbSaIPhgMKWYtOp0m73SGTzfF/+D/+n/iN3/wOs/OLTNfmqJSnmJ1boFwtQMKlUdo0TDxQJSLWiokTRw0FJh9AFapUF41en0dqDZ9KaNTvNQdEX4dfXpaSpDgmYcTK6gJ7+/s8e+sWU5UiGdtExghRd9Cn1W6zvbtJoZjDtnK898GnNOqtJEATlyd1mQZhoJV91fFGyNheQxUWY66NsHQEj0tVyh/sSQeV2o4RIxboTvP4bijmHNYvX+LS+mXKs7M45QpGSmTLc316vQHjsacQoihERgFB4OP7HgjVaSSF8pWyLSdx6BZCfYj90KfZPKXdajAaDOj3BjTqDU5Ojuj1lLGhjHk9SIEpLPL5IvlCEct2EKapiM+6PClNdfyxHUUyR5FESlX6jaIwRrVk3HWnHraG0I5rRry2MNVnRX72QfxlHlrtNi1fr5OUdNkg/WBOf4WLhdHSwatarXLlyhWKxSLAueeWHumfJ0sY6XF2dkan08H3fVqtFo8ePeLo6Cg5h1qtRi6XYzAY8MYbb7Czs8PDhw8Jw5BqtcqtW7cAaLVavP/++8zPzyOEIAgCut1uYnLZarUYDAZks1k6nQ6dTodsNss/+2f/jO985zvMzc0xMzNDtVplfn6eSqWSnMfnrajTq/BJ/okeF3UUTY406vOrjDQXZWVlhb29PW7fvk2lUjmX4PT7fdrtNtvb2+TzeWzb5oMPPqBerz81uXpaIpze90Uk6ElSevr3F3GYcrkca2trrK2tMTMzQ7FYPCfo57ou/X6f8XicnGs66Ukfs07e0tdMc3tarVaiQNzv9zk7O+P4+Jher3cuQdJf8/l8MlcXiQOm5wA+S6RPf50kVz+tnPWrlKW+FMaZoevi1uuIeVVSEaaJgQ0i1pMRqpMFAsWaESQcHOJALkWU6G0kt5hQnVFRGGHnslTX1nEbdc7e3YRAJGiEEAIhBaGUBECGWL8l3oWQCrVREc7AO60zPDtC7Nlk63cwxkOEZSpjRST5fIFrl0vk/RbjdgvZ6iLNLL/9u7+FJQRGpsDxQZtWu8E7775OxslxfX2Ns7ND3K5L96RDdjUHqBVEPpej2xuRcwrYlk0+X+QP/9GPyDo59vd26HSbig8SGomwmh9qLs1E4JEQRk+4M1JKlRiSaq+XxDwekzCICCI138lDOp45TcDWOaY2tvy8IdSEYwhBp9PjmdvXaZy1aDebXNvY4OHmJu32EEMoQ8/RaMz9Tz/l2tVbGKbJeODxxlvv8MPf/oHKS5LjidNQmexFYVTJh8yIS1Bx+SmKQBgIGap7KVJmlQqHUI7zkQQZSHwvwDP9mGSubgrTsilNTZEvVSBSZF/DMrEyFlJCq9Vk72CXanWapYUFsrkMhpC47ois45DLZnEyDp6reDZh6BOEthLgc8AwDYXo2BkymSzFYolQz3uglJvDUBHedYdWBGQyOfL5MqZlE2j7hFAiRayhI2NCNCgn8DhhUZw3zWWKy3mxxYguPUWx7pEyr9Wv+6ymxZd5eJ5Hq9VKgshkF05aRG0y+YAnwfyiQKYDSzabZXV1lXa7zccff3zh/FzUAaV/n/6+2WzSaDQ4OTmh1+vhuu65co12KBdCJIaZUkp++MMfYhhKSv/w8JBms8k777xDNpvlypUrnJ2dMRgMqNfrLC8r3cNGo0E+n0/KVNpH6I/+6I9wHIf9/X06nc654DhZYkgPPVdpgcL0alzPmQ726fLJ5DxPJoZfdOj9dTodnnnmGer1Oo1Gg42NDTY3N+l0OkmyNx6PuX//PtevX2cwGDAcDnnzzTf5nd/5nc9FkNLB+6LW/snXXZSk6XvH9/3PJMu2bSeCi3qeLctKylftdpv9/X2q1SqLi4tJl5XneTiOg+M4ZDIZXNdFyvPCePAk4bEsi0wmk+wHSEQa9df0+WQymYQflL4X9Lmmr2G6TDXZhp6ejzQqNkme/lUXUV+K5MYfDqg/+pRZ28EolzEsO7ZeUJ0tZuxqLGUEUdyREvMUiIMRMVlSyghhmefqSaGMyNo22UKR6tUNRienDHYGRFJgxShCvDfCSGU1BhKTMHanjn15MDFFgOwNiOq7ZIpdvF4dJ5vByGRU0I5sDMtieWGBsNvj2qLBc4dD/qbu0jxt8Nq3vsHp8Rm3nrnC7maFze17/PSn/4lK+Y8pFct0Oy3axw3snEN5qsrYHSMMg2bjlPpZk9f/xidfyPHqN7/O97/7Q/YOdvl//uv/B0II3PE4FuDTHlyfTTV08DKE6oBB6sQGQLV/J0v9WDfIMgyC6Em3TvxRjf/XLdW/2kPHEIIwjGi3u6xvrPHo/mO+9srXWVock8t2ODtr4FgZRsMhvV6HnZ1HLC5eJfB8HjzY4SsvnTA/N6fZQk9UgjFjM9C4Dd4wY/QmwhDWk2MVpiqraOaVMJHaLwxACEaDPqdnTU4OjsgXc9iWjWVnsFNkUsvKYJnqQZPN5ck6DsPhgNP6CZ/cu8PCwhLVSoliMa9ePx5g2xbZbI5cLs9w5BL4PkEY4HsunueTDZThZT6Xw7Ls2A24hmVn4nmXsY+WQaRRq0i1ZRvCJJstYlgWrufjeT62nUHKmAQcRUr1GMVBAoXWaFK5/huQ+JNFMiKMlEkmQpGT/SBAO8/Lz9xlX94xGo3Y2trCtu3kwTxJYp3kgEyWG9JIzGSLsf5doVBgbW2Ns7Mzjo6OLgxo6WCYDvTpMRwOk5bt4XB4jpOhg9LS0hK9Xi/pYNnf36der/Otb32L4+NjnnnmGba2tnj8+DE//vGPKZVKFAqFxFPKcRxqtVpi99BoNKjX67z++uvkcjlee+01vve973F4eMi/+lf/CiDhAT0t2UvPRxrhSM9fOmFII2EXzXt6e7/q0MG51Wpx5coVHjx4wNe+9jWWlpbI5XKcnZ1h2zbD4ZBer8f29jZLS0v4vs/Dhw95+eWXmZ+f/6UJ1uT5TB7D5BykXzMYDDg7O+Pw8JBCoZCUj9LEdX29bdtOOFL6fffu3UsQNX1fa2HGfD5PLpdLBPe0IrHrukkilMvlsCyLcrnM1NTUOedwjaoA55IUwzCSJNjzvAQF1H/XCQqcR0Avum/0PTHJ2UmT3icVq3/Z+FIkN+HYZe/t1zGzeWobN8hkHJWkoNRYn8CaOqeJ4vIASCEJCbDIoPwMYt0OI6YAC9BttGYmQ2lpFe92C7/1Ln5Hb0eiTQ3DeLuGCJU2TkxcNgAhQjBgfqXIyzMetcwQWS4iI9UBIwPV5UQkmZ2fpeX6FPJ5vrveQtomwqtQLFQZlUYsLgScHJ6RyWRx3RE/+ev/zO/9/h+SzeYYDbqcbu+DkNi5LJZpkSvkef+d+9y9+5Dr1y9z7cY6nh9gCJN8Ps/B0S7ZkkN/2CcIQ6Xl85QbQRGDBSZK7Vfrl0ikQkIECGkkAnNJbVTEZZn42qhtPUFyvmiQE/JJTXFnZ59vfvsbPH60xfb2Nlevb+B5m8gwot8bghkxGg/ZerzJ+pUbmKbNcDjik3sPmJmpqXIeoPwSlSidLiIqs6g4WAuBJCSSsfieMHnS76OO3tB2FVKJCo49n52dR5w16gkR3TQFlqUePLaZIeNkyeULrF2+yq1btynlc4xGQ05ODoiCgPGoT7/XY35mTq2OTItIKn0hw1S8lyD0MDHxg5Bev4sfugCMRkOiQNJq1imVpsnlQYnoqfMaAmGM1KnbTqErvU6PYX9AaEVxO3g2uTI60VN8LJWcJBwm/ZqYeBURxkhfRBgoTlYYxdYfsWKyTnh/XYbruty5c4dsNsva2lqi/gok8Prn1fXDMMSyrHMoxGSCorc1Pz/P9evX6XQ6CW/moqGRosmAqBOXxcVFMplMAv3r49Bf5+bm8H2fQqFwzjahUChQKpWYn5/n6OgoWb3/9V//NX/wB3+QBMe9vb1zgSqfz/Puu+9y9+5drl+/zo0bNxKl5EKhwP7+PsViMeF9fF7ASSdsOvhfVJKbFAZMvz/9/UVIzi8b+lrt7Ozw7W9/m83NTba2trh+/Tqu61Kr1RJtm/F4zOPHj7ly5UqSINy7d4+ZmZnP8KcuQnLSSUv6fCaPfbIryPM8tre3qdfrn+Fz6STHcZwEqbt16xaFQiEhQ/u+n7S96xZtnXjrbel51vfbYDBI7qPRaJQQ1XXy+7TEI52Y9Ho9BoPBOasOPSZfm05sLrqmaY7QpN/V3+a6fymSGxlFHL//PlapTLZYxM7niIwYcDeMmBwc1/djxEZxI550o0RRqFauWMlKnLjLA6EDdUimUmH62k1Gp6c07+wgQkHcM5OUWsIobgMHYlwDRIghYO5Sld/4na8wXcxhRBEinwXbIhqNCIdjCJUibTabZTQe4RhQdkyer4z4qNnj/Tfe4+ZL12m1m1y/vcrR8QkyDGh1jvnZT/+K3/h738UfDxiPhtS3D8nPVxGYTE3NMDNXJvxgxGDQ4ziuu+cLeRwnx9LSMrVqmdd/+jqjcT+FsHx26NKQlIowqr26IqnmSkYRYSwYJwRxkvBEEFBzc0jQEt0N/MvLUhoUUmmloD8YcLB3xsbVDe5/8oDr165SKhUp5ksc+AdEkXKg7vZ69HstDMvEMG0ePNjh5a8+Rz5fQCE3Mc8GiRAKrRECFYiFEROtZXy/xOeZPGB5wr0hSvhHxVKFW7df4EYQ4ochrjvGHY8Yu0PG4xHNVhO/08a0LMqlKp4fMhiP2T/codk4pVwuY5gGg36bsedSsHIJ1phcCSnxvADDVKqhzeYZjWad/mCAF7vh5vNFVleuUipXIUbK9MMmCANkGCAxEgSm1+twenbA1bVVrqwuxchOlJyzjFSCFyXdZfrhIhPifvIeYjuOKCQIo1hH0CCKgph09Usv+ZdqRFHERx99RLFYJJ/PJytXeNLiPZncTCIK+qGrA0Y64OkSh5RKZXZ9fZ1Go8G9e/c+cyxPK+Xo7aysrPCDH/yAcrkMkHQpua7LcDhMkJ9sNst4PMY0zURsrdfr8dZbb/Hcc8/RarW4efMmR0dHiTrxT37yE37zN3+T8XjMeDxmb28v0cKp1WrMzc3xwQcfMBgMODw8xPf9hF+xtLREtVrlZz/7WcLz+Lygk0alJpObNNk4nQRclET8qqjN5HHpRG5jY4NPP/2U69evUy6XKRaL7O3tEUURnufR6/Xo9XoJWvLgwQO+8pWvnAv4k+emzwX4DP8k/beLyMWgOpBu376dICvj8RjXdRmNRrium4g1askBncwcHBzQaDQS41atGJwuXaZLPlrXSD1rmjSbzeQ96lmT59KlS5RKpXPnqTuz0km1Tm5OTk5YW1tjdXX1XJlpMrFJX/v0v0nC8SQR+iIS8hcZX4rkBilxWyMO3v4FpZlZnGIRZ2YRaamSlGVZ2KaNYcacCiniuJBSp0Wt2JFKpwMpkVK1ugkUpyEMAxwnhzUzx9T1m7inZ4z2lZVCEjRQK1HLBCPm8kggV7BZu73IC6/dplrOEsXlLOGOMXwTAwOZzRMO+hCGCCS2bUEYkrVNagWPqe5dzo6/werRIWtXrrG7v8XsbIl2q4Nh2RzsP+Tddwo89+xtPG/IuD+IyxUhpWKFudkar772UizuVWd6dpEbN29x++Ez7Ow+IpfLUJutUW8+3Y5HoB8iEdrxWlf4RLxKj+IMxBAmGFHsySUTDpLUHVbp7Yov9vBJkBKJIokDB0d1fuPbX2Hz0Sabjx9x9eo1Nrces35lje2tbTBCxuMhZ/UTZmYu4Y7htN7g5PiM9fW84s6okKyuY8wpkZpkQ/wBSmFLEk2AFDHip5MbhQRhGOTzBaqVGoVcHtMwVXkmVG3VnuvS6XUJ/ADbVjwox8nQaLbY3d0h8H3KxTJ2JkMkA+UTFToxyqTEKQ2hZA98b4RpmUTC5Kx+xjvvv0Wv00NYBjG/no/vfcT83DLlsoKMJUobKpPJqtJKnLAp3Z8QQ1iEQYDn+UrbBohiMUGZsoaAFExugAhjOQQUmheEoTJVDYPY2y0mbsdon4hlLn9dhn4gv//++9RqNQqFAtPT0+f0SNLdT3pc1HILny1FCCGSB3M+n2d6eporV64kvJnJY9FBP12qyOVy3Lhxg69//evniLue5yXB0HGcRBkWFFKk1YeLxWKyv4WFBa5cucL+/j5zc3O0221M02R/f5+33nqL559/PiGkarJ1qVRidnaW1157jYODA9rtNrOzs9y6dYtHjx6xvb1NLpdjenqaRqPxhRObyd9NJgDp5GeyjDP52ouQk6ddbyllEuyPjo74jd/4DTY3N9nc3OTatWtsbm6yvr7O9vY2hmEwHo85Oztjbm6O8XhMvV7n5OSE9fX1C0uLv+y8Jr+f1DYyDINCoUC1WiWfz5/bjr4m3W6XIAiSkqfjOLRaLXZ3d/F9n1KplOgYpVvE03wyfQ/pklO9Xufdd9+l0+mcu98//vhjZmdnqVarCfrj+36CHqYTNH2t9HFOJq1PQ+oumheN/ExaMKT386uML0dyA0TSYHDU4fDtNyiUp6gZBmZ1GmFaRCLWokg9BAwpkEKtQoVQrSwRyslbtypHseMxQsQtuRLDtJCOQXF5mdkXXuB0+DZe01N6NSjkRgoVDEwhkCJkZrHE13/7BS5dv4wRKRRHGDah6xONh4hYudYQBhQKBK0OUkZMz89ztn/E3NwqzdGYBXlC82SPwwOHSy/OYBfy3HnvY8bDLvlSlYVLi5SnCxw32sxPVem2G7iDIUPPxbS1iugqubyD7/lMVSuUK2UyGYus49Dt9fD9MU+sBc4PdU5xi1zcCqzEfg2CSD9UnpB0wyhEmTyCZeryVWyiKSWfudVEzNf5JUMnSHbGoFDO4Y7H2HaFS5dXOD1UHAAhJGuX11Tb42hAGEY06mcsL1ylJwxEZPDJvQdcvnwJQ0h1L6TozQkpOIoAJdJH3An3hGisf9azE78/khhCxkEOIMQwTEzTIksGYRiEhZBsLothWDiZrEKJpKTRrFNvnGKZBgiJGSfkvu8r5CNSDzPbysS5uCAMFZZl2Kpr6vLqFWafnyFfysfGpSFZJ8flS9dZvnQVx8kSBB6e55LJ5Mk4mbgDUHVyRVFAp9OiXd9TaEyoVz7EZTsLGZedhHZBJVKfKU3SlvKJX1ckIUyJJcoY/ZNqgWF8OZouv/CQUhkn3rlzh1KphGEYCmWb6GCZJFBObgPOP6z193r1rQPB/Pw8t27dSvRnLhoaGVpYWOC73/0uV69ePfc3z/MYj8dks9nk+HK5HN1uFyklc3NzHBwcMD8/T7/fxzAMGo0Gh4eHPPfcc+Tzed577z0GgwGlUilxea7X69RqNTqdDoPBIFnZLy0tsb6+Ti6Xw/O8c+7UjuPQ6/XO6aRMjsmgmg5wF2nfpBGrSSHF9N+edj1+2dAWGa7rkslkuHz5MoeHh0lZcm1tjXa7nZTaNNFa7/PevXtcunTpM9o76fPQ7dxPC8JPK2XpspFO7tLooSbragHFTCaTbKder1Ov15NjSusO6URBCIFt2+eOUc+HNkp94YUXKJVKSULhOA6XL1/m8uXLOI5DEAS4rpsQk9MjiiI6nQ5nZ2cXIjQXXf/PS3QuSg7T+/pVxpciuZFAIC1EGDHc2uP4vTeQlsnU1VsYpQoiVCiDcp9Wdgz6QSsAGUoQRsx/VcqvUiqejGGoGyXw/YQ3IYFMucL0tVuEvTb1tz9GjgEiVYQyBCIjyJmw+swqL3zrGarVEkIEYJpEno8IxphWFpkvEfS7mE5GdXkFMb/DC8gVCtgZG2HaXF5apz1+xEzjPvt7i+w+2uTmy1/ht3//93j8eBdhONx+9jadbo/t3fv4wRVW52bpts4IXZ+znT1MUzA9O8vS0iytZp/A93j3nTfY3NqhkHVoNh9zetpO8gtdAlFoQcwPjn8OpcSKO6SCKCAInig/a6Kx4lLESI54wq1QgU/GKNAXX0WlR2WqSG0mz+ryOjvbp3ie4Pr1azROTmm3OszNzRPKiFs3b/PRRx9g2RbuyMWyQMgIw7Q5OakT+gGGbZ67tlLG5ZWYMIshlWCeXh1LlbQiLHSJ6snDUxCJEKV6rSwRxu4Iz3NBgBXrvhBBGARgSqS0QFgMBiMOD/fo99pUyhV83yOTsRNTTD/wFTIW22wIqRLH0djFHQ+plCs4ts383Dzrl9eV4WEY4AchwjC5tHqFS5c3yBdLCpYej7CtjDL+C0Nlbhqo1Vk+l8XCwzFcdGu8bmdHWceiW+nVWSt+WhTFC4XoyT9t+HmuZCBjlSnx69UtBU8ekvv7+3z00UdYlsXa2lpSdkgryE6O9IN5sm1c/zypHlssFrly5QqDwYCPPvoIz/OS7QkhErTo2rVrvPbaa1Sr1eS9Wr/EsixV6h6NEo0Z3cGi+Tb696urq4xGI+r1OgcHBzx69IiXXnqJ3//932drawuA5557jm63y87ODkEQsLCwQLPZxPM89vf3sSyL2dlZlpaWEpXkd999l8ePH5PL5Wg2m5yenp47Dz0/k6WXycClk6LPC3zpr5PJz686KpUKMzMzrKyssL29jeu6XLt2jZOTE1qtFgsLC0gpuXXrFh9++GFiKZDuqDs+Pj5ng5E+jnQb/C/7LKSTvvR86eR2NBrheV7yO30MQRAk3wuhFKqPjo7o9XqUy+UEWdGmmDq50WiN3rcuQ2rF6vn5edbW1pienk7Iu/oeWltbO1cCs22bTCaTICsarcnlcsB5FHPy2qXnLM2z0nOW/qd/9zQE74uOL0VyEwG+NMgaEcLz6dx/QJjJQCZL6dIaCOXLY5iqzTaKAtXRJGLujaFW6UJoMzJbBR6hSJu6nqICXoQfuBgZk9LiEvLZF/HbLbr39iFUEHsUQXmuyLPfusnK2jKWAYHvgycRQYgpLAw7g/RdDCeHKJUIO22EbWPYNmYuS+CNMaWkNjfD8eNt5i+vcsMPqTc22d+9S+NxlZ3sRwzGPV548Ta9ns+oP+T4YI92t0O32yaX/TbztQUa9SPckc/Rox3CwGVp5TLlSpZuu86nDx+y+eg+o0GfwbCN73k4GYH75PmJVvsxhMAUKiGxDCPWrlErdNMARaiOlIqteFK+0IiN7sB6MuJynr75IEFvPi/V2dhY4x//4x9x54P3AQM702I4cllfm6Faq9LptFi7sk6v3+P5Wy+wv7dHJJTbdjZnxUBDSLPeYtDrUJ2ejQN1jMYQixMKQ3GHYrQqjBOcJ24Bilj8JIjFH8S4RdwwUMRaCVGofK0C6SIMI9akiZISqGHanJ4ecXCwpQxRZYTnudi2zXg8wnW9JEmUE27c3V6X3f1t1lYvUywU8DwX3xtjmyahoWcZXG9IGPoxcSnCHY8ZRUNMLMbuiOF4yLDfp9dv0+91yWcgP10FacQ8mkAhWjLCEKrTSovwCaGSPgODUESxF1WY3B8S4qRQgBSEWuU4knxJ5LK+0EgHyiAIks4p0zRZWVlJXqcDSbrmD+eDmg4+ab2QtDCbDgA6iPi+T6/X49GjR+d4BDMzM7z66qusra2hpey1MqxeeQdBkLTe9nq9c10zuhwwOzvL9vY2q6ureJ5Hs9nk8PCQ3d1d8vk8g8GAF154gW63m3Bp2u027XabbDbL9PQ09Xod13XZ2toiCAJWVlaoVCq0220ePXrEo0ePkjZp3R2jZff1/OjAPPm9npM0MpMO8ul/Twtiv2ppan19nX/yT/4JH3zwAUD8eRxz6dIlpqamaLfbbGxs0O/3eeaZZ9jd3U32k8vlkuNpNpv0ej2mp6fPnWu65KbPTQhxLuHR90b6a/r89Tb0Oad9rfTv0/NmGAanp6fs7++fKzfpc9Mt35McJiEEvV6P3d1dLl++TKFQSLqcJrlmWkdJ38ua/yOESL7v9/vJP9u2z81N+v6evE6TSc5FiE96fie3+UXHlyK5UR1JYGBiERH1htTv3MHIlcCyyczMIlCr5ihSTGoT5dwcavG2eBi6tTOuMmg7hghl8eD7PlEYYZkZ7HyOyuoawQtfJWx3Ge63KZRsnvnqVW6+eIV81sGSoRIMDBVcbzkFiELi5hzC4RAjm8XIFwmHfYRpE41cTNNCRgFOLk8xn8UbDbl86RJuELLzi8d89N4cB7v3+foPf8CzN5/hp//1x4yEyWDYR0hJsZTn0aOPKL7wDRaWLnFyuMdo6HLy6BiBxfzSIlK6zNRqfPMb38awTP7Dn/87coU+uZxNuzlmPA6IpNLoEXEiKASqQ4rwiVkkMm63FxAGcdAzECLuquHiapMQaX1n0GWdz3vcVCplfvRHf0jOyVEuVTmrtygWa/S6XUxjiaWVJU4PmuQyOfZae1TKZS6tXOKseYJlmRSK+fjDEOD2B7Tf+CtK3/gOVm1B6dfELd8KhwoxDSt2gY/b+aWqq4iYcK4tKNCkYiRCRiqIG0aMCkpEfD0F4oldiBDIIMKNIsZexN7uYzrtBrlsVrVKE+B6Y0bjEVO1OcqVKVUGNG0Mw0r4N2Ho0ek0GUzNks/mGQ5HtDsdpqeHKkELfWzbwh316bWbhIFPq93k4cMH9Lpd/GDMaDSk12vT7bUZDPoIEfHVF77CwswUCa8oESnUKyzdSK8JyrHpnV71RRrJUarFESrBVPeCVDx01LX4dRpSPnECHwwGfPzxxziOg2VZ1Gq1JGnRML0mlqbh8jRyky5HpFelGnXRRN+lpSVu375Nt9vl5OSEQqHACy+8wIsvvkg2m02OTe8nLTKnV/WO45DL5RiNRpimeQ5hyOVySQfN5cuXCYKAn/70p7z//vvs7u7ygx/8gGeeeYa/+Iu/wLIs+v0+AOVymYcPH/LSSy+xtLTE4eEh4/GY7e1tQFkWSCmp1Wq89tprmKbJn//5nyctxq1WK7E3mCzTPa3dWyeX6cD7eS3g6RKX/vmXJTblcpkf/ehH5HI5SqUSjUaDYrFIp9NJ0ImDgwOy2Sx7e3uUSiUuXbrE2dlZwm3R13I0GvH+++/zyiuvUKlUkvNM84TSCXF6XIT2pM8hXYrTCa0ekyRejezs7OwkSalOhnTpUnuB6fsyvX9NKNdaRsPhkE6nk7jZa97WaDSi0+kQBAHtdpuHDx8mvB/dMt/r9ZIusxdffJHZ2dlz1+9pZUR9j092RT2tk+pvm+B8OZIbwFZrRqIohMBk3Oix9/bbiFyO2dvPYRSV+i5IwlAJjokMSRlCEK+chDYjjD2n0D+jvHvcsUIlRIQwDTKlAtW1K7iNE+ToLV54ZYPnvnIDS4YYUQhhCGSQnoeRzyFyGaTrIX0fgQmBT9jvY+YLEJl43Ta2U0COJcF4hGkJClNTtPYPGJ81WalV+M4zi/zJhx9xar3Ix2/dIQp9tnceka2fMDW9iFl1lM2BYfJ462Ne+cq3uHb9FpuPPqU/HLJ/fwt3PGb58mUKBYdSaYOVy+uYhuDP/vz/TbFUJGO3ODpoEQTaT4s4QYyNNg1DwxmYhlDgVuwG/eSGSglqTdygIvWNkUptdN9ZeMGDx3Ec/nf/4O8jjIgPP/6Q+dl5Wu0Rc7MzHB0egVhR2iBHDYQw8AMPP/C5snGF/qBLJuNgmWbsywRRGNLfuocnO3DrVcy12whbefoQB1zFMUl1aRCTow2t4yBiNwaFwAht8xHfUyLW/ZHJykLxUFQJTL0u8EOa9SaHh7tEYUAYhUSeJAw9Wu02hmmyML/C7OwSwpCQ/oAKdR6e69Hpqm6Ig8MD+oNuQiCdnZ3h0tIyxVwGb9xkPGrwYPMRb771Jt12G2kqYrGIYOy6+IGPY9tqnoQkcfxGoZdCqGRFGYLLWKVbcX9kJAhjnk0QhYqvI0y0E7pC6hTypAAk3VX16zN0cNUP08FgwJ07d8hkMty8eTOB2YFz3AX4bFlqchWqh+/7iW6M3mexWEzE/VzX5eWXX+bll19OtqtX5xrq16iMbhOPoijRupFSGUI6jpN0T1mWRaVSSUT7pqeneeGFF3j77bcxTZO3334bgN3dXer1OtPT00kCJYTg8ePHfPWrX+X69esJQvPo0aMkWcrn84lSrmma/Omf/inFYhHbtjk6OjpXbkqXVdLIzSR5Wp/3ZDniaeOi0tRFr3cch3/wD/4Bpmny4YcfMjc3R6fTYWFhgcPDQ4QQrK2tcXR0BJDMs0ZxMpkMlmWdszPY29vDNE02NjZYXl4+pxIMJMnEZHfPZOJ7UfkmfU9dhGLo1/m+T71e5/Dw8JxwXhRFtNttDMNITFAvSgA1f6bb7WLbNoeHhwnXyjCMpHynE+jhcMjm5iZvvvkm7XY7QRKBxA3ccZxzSFW6pDiJzOkxmdik3cwnz3+ym+qLji9FcmMIsIQS0QtCVToJIoPxUYvTO+9i57JkVy8hMwbSMFV7rxFiSQshtPuyWmEbieNxvDo3Y+duYRIGHq6raodGXJ4xLAunNsX0jVvM5AJuXqliDAf4Yxcr72AXckS+Ik36rS5IgZXPQ+AhQ4mUIZHrAQZmMYt/2icwxhimhelkCMcjMtk8hmlg2TbGcMjzq3OEEv7t402OK1/h5sY0K0vLbO/tMhj0qM3MM7d4ibHv4vpD3rnzOq9+5Zs8/9zX+Oju2zQ7bfbuP2bYH7K4toptBTROT/jGa9/l7OyQt995g1K5jO/51E97REr+B9MQWJYZqxNL1VFjRpjoFbjUFBX8uKtGibhdvJJ68kN8CVD5UnT+V8lYWZpHEPDuu+9iWg7Hx3Usq6hU4SIVMIuVMrlCFtsxMU2B6465vHaZ7Z1HWKaB5ypdlihSLd6e5yObx3hv/kfk3qdkn/sNxNQ00rCQmHEHlUq4VHnFRAjV6YMZJzhCBykV8dWDSGvHyPjYVLs8Updroph4LRgNBxwcbtHpNuKuFZ8olHjeGN8PiTyfev2UlZUeTi5HGKruqdFIiWqNXY96o0Wn0yOf26LeaAOCe/c+xbJNfuc7v8mNy+uUCgWkAN/1iXzFq8nac1gZk4xt4YehKhe4Hor0LlWCoy4Y2lhWJ2mKexWSeHShBC/DSCrRxiQAKR6OTnKjUCeJkb4Z/rc+Av7ORhpN0KiKlJKTkxM++eQTstksS0tLSUfJJLyeDtKT5ZV0MA/DENdVZck0ObRarbKxsUEul+Pq1auMx2M8zyObzZLL5RIeTberOh7173QQ0HyeXC5Ho9EAVLDU5pDZrOqes20b13VZX19HSslHH31EuVxmY2ODpaUl9vb2GAwGTE9Ps7i4iO/7eJ7He++9xyuvvMLzzz/Pxx9/nJSjtKt2JpPh9PSUb37zm5yenvL2229TqVTwfZ+zs7MkQdOdZ5rkmg76cH4Fng6GT0Ntnvb90xKhxcVFhBC88847WJbFyclJgtbpYFkul8nn80ki47ouly9fZmtrK2m5T6vu6q6lDz/8kKOjI27cuJEQ0ifPaxK90AlOOiG+CIX6vMAOStRRlxN1h5xuYdelzHq9zmAwSO4d3/cTorQuV3a73XP30L1797Asi+9973uJdYguQfm+Ty6XSzg3GsXUpcn09dWfhYuu9UXIXDqxneRgXaRz86uML0Vyo4dEogSCVb+PEUlGO3s0yh9SEBGZxTmsQlE5h8sQSQZBhGEqjQ+JQmtUuUWqBzxxrVKIxJogMo34YR0iDAPHNpibc1ioLJMJfYLhiMhSXJ0oUCUJ07HxeyPcRgshwcznEIGPISXSCwjHI4RpYBXyeIM+tmUTjT1l/imhurzC4KyBaZsEgy4vrM5y6h7ylwf36S18jX/4ox/xr//lv6Db6zLud9nb+pRcqUK2WGYw6PL6Wz/mhVsv8eqrf4/33vsFB8eHHDzeYdDrsbx+CdfzcbJ5fvi7/4jT0yMebz+kNFVGEtFtjQmDCNsyyNjKUyiMQgKpSivCiKhOV8hli/i+iyEtGo027U4/vi4XD03g1oUp9ZkVF9awBNBu13n7nbdwnBxCOJTLNRYX1tnZOaRULWIaYAqDYrFAxnawrAxhEDA3u8BMbRovUB9S1eqtVHOPvJBrvocdCdi7T/9kB2P5BtmbX8OozSJil/RkFSEg8ZcCpKGSX41SCVT5EVAk5ChS9hsyTpNi9MLAIJLKBLPZOuP4dJ8wDLBti9FozHg0IpPJsbx0lXa7ydb2Jo6To1yu0e006HSahLGRZRT5jEY+zdEAITrJ9PX6YxzHZjAYqgqaUGrcpjDI5rLMzc0ShhGWpVSZPNfDtjO4Y5cwChBGnNxpLlLMvUkCtYxLbHH7fxjFJGzNwxYmgQwTDpVOKnUmJNAcnS/u1PtlG+lgqcXpAGZnZxPTySiKcBzn3EpUv3cSRUijQpMPZr3q1T5NUiqH7snyllaT1a7duVwuKeFoRMg0lXjncDhMuBY6yC4uLtJoNBLV3bW1NQaDAUdHRywsLPDHf/zH/It/8S/o9XoMh0O2trYoFouUSqXEo+qZZ57h1Vdf5d133+X4+Jjt7W16vR5ra2tJMvZ7v/d7nJ6esrW1RbVaRUqZlDLS9gDpAGYYBlNTU+RyuSRRazQaT+0iS8/r067fRYGv0+nwzjvvJCTrcrnM0tISOzs7SVnJMAxKpVKS3ARBwNzcHNPT03iex2g0Opd4DYfDhF90fHxMo9Fgbm6OjY2NpNvuIn5W+uskj0QPnWxP/i79vZSSVqvF0dFRsp/xeJyQzJeXl+l0Omxvb5PNZimXy4lPWJq8OxqNEv6M3odGqwaDwblj1jpKs7OzRFGUWG/4vp8k0JqEnP586K8ajZlMWCZLvOnPjH7f07huX3R8SZIbQSgFZtzETBShLA9AugHdTx8wNiVT1ksUnRwh8apJynhFqsINSBRYY8W/V0iOEcc0tQgPEdJWq9UwwpIBc71NKm4d03ORho2Vy0FoI/2QiBDTMRGOg10q4DbqeE2DrJVBWAIj60AokaMxkethZrO4p6fg2GQrVdxmC2mFZIpFoiCkV29iZPLI8YDvXl+m88FjfvKzn7C+McuNZ27zs5/+FBnByHXhpM7i5cvkK1O0O01+/Iu/5Kx+zPd/8wfc++g9Pv7kA872jmie1lneWEVgsHzpGr/7uz/iX//r/zuDUZfKVJXqFLiDkHazjdZCARCWpFDOMTMzR602ixlbFTiOQ/X0hK3Hj6nXh5/JbgQkyJeJkkBMOqlRXddE50tTEuh0RwijzuryJTAlzz37EifHfcqlIpalLpDrjigW81imwDJNQhlQyOcplUr0h0OGA0WWk1FE4PvsGwUarstCHkQoEcMuPHyP4eEjxPrz5J/7FtLJojrsFL9El2HQ95vU5yVSZSn9G/1gUdYfMgyJZKxjLSXj8ZCT02O6nQ6mZeOOhpyendDtdVi/fJtctsjh6IC33vkb3n7nTbLZAv1hj9npWV587itkswWyTh7D0Ku583MtZdzKHZtv6gTSNC0ymSxRGKhGqCjCMk1s04RMBi+IH8oY6rgTBE7hagqBCYlUlU09TMJQ/T6KER4UYhmJSL1Pc21ioFQtRsIkMfx1GZOogX5wBkHA48ePEUIkirBRFJ3rmklvQyM1kyUXvd2055Lep+u6CQyvA4deXYPy69FKtJrsqxEQ3anium7iG1Sv13EcJwlkWjMlDMMkwRmPxzz77LOMRiNef/11rly5wjPPPMNPfvIToijCdV3Ozs5YXV1NyMM/+9nPODs747vf/S4fffQR9+7d4+DggHq9zvr6OgCXLl3i7//9v8+//Jf/ktFoxNTUFFNTU4njeDogmaZJsVhkdnaWWq2WrP6z2Synp6dsbm7SbDYvvF7pgDmZYMJnUSGAbreLECIRlnvuuec4OTmhVColaNJ4PKZYLCZKwFqbSCd5g8EguX66vXo0GiUJ8Gg0Ymdnh7OzM5aXlxN16PQxX3Qe6XOZHBclAXqMRiNOT0/pdrtJR9fZ2Rndbpe1tTVyuRzHx8e89dZbvP322+Tzefr9PjMzMzz//POJZUMacZzcty4tpkuxpmkmpac0wTmt1K3HRUhLml+j95MW6JtEudLzkD7OL8KzSo8vRXITSQiQWDroSJCxZofAIByMaX1yH1EsYRcLGMUi2E7ykBVCJJYBURTFJamYTxFD8WrRruwFoigkCj1EYDHrHjDttzGlIIoMhfaUC5hBqJKbsYvb7xN5HmYmg2k7hMMBfs8iUymDEBhZG8N3CQMf4WdwylVGzTPsjINdLuL1ewgCcrUK/V6fjz/a54UXVjGCgN+5uczWzx+y9/A+i4sLuIGg0e2RMwWWCcd7OywZBmbOwTAyPN59zJ/8+Z/ww+/9kFptmtffeJ2zszr33/uETr1L4LvMzC3xve/9gD/7s/8Vgcns7Dzzz8xz//4nnB6fYliCcqFAqVShWKxiWTaBb4KpbsT+oMHIHSs3dktA+CToWrYg69gqEYqUyrAf+HiBukkVPVklDnFBJMmNlO2Dg2FneO3V38Q0shQK0B90mJ0pqRZ+fIQJvh8w6PcVz8bOYFgGtp2l2xnEnTsGYTCmPfRpWTBjC0zLQkYSyxaIUZfw7usMBx2yX/9dcArxPWHESIa2jARiPRyhUSf5hEciUHpKqnSjVHmVfYQ6r26ny0n9mCiSmECn1+HgeJfxaMzapWfodDs83nrE1uPHtFpdwkgpAT9z+xbP3X4Zx8mRcRSX6MIhZYyYKC8nhCKDSyLC0EMCpmY9CV1ainkCUZRYK8iYOh5J3f0WJeUlLdyo3NN1IqWUmjEkRiSQUjGqBAaR9JFRHMTFrxeh+ByKx2c5HsPhkIcPHyaOx/l8/hxRNM0nScPpetv65zQPI+3SPAnbF4vFpHXX87yE/5DJZJLEpN/vJ4qxWndEtwaXSiXa7XbSSaUDcrVapdvtcvfuXZ5//nmiKOL555/n7OyMhw8fsri4mDiD6+Tp4OAA0zQT1eadnR3+9E//lN/6rd+iVqvxi1/8ItEHajQa+L7P7Owsv/Vbv8W/+3f/Lmkff+655/j00085Pj5O7BxKpVKSWOh5kFLSaDQYj8fnSlh67rSmjp5rIUSSZKQ5O5Nmjfq6aiK4JkHr+ZmZmTmXsPq+n/CXdOecbdt0Op3kOLVdgeY86cCur9HDhw8ZjUY8//zzn9GCSd8j6fObLD2lz+GixEMT0fW90+v1ODo6YjQacenSJXq9HltbW2xtbdFsNpMk5Pbt29y+fZtyuZyUlT7vs3FRyfBpNhvpzsDJ80gnOmnkaPL80mVd4JyUwuR+f+04N3oIEeMvUqAwAQEEGBgErZDG3U/IlKuUrmxgZbJEkfLoIUZ5MCAIPKJQu4kLNKwghECGITKKEEQIGTA7PKTqHqv9GBYiYyORBL2hCpJWBiPrYBWLRIFH0B9iZOLkptPFsDJYxaJy1c7YRGFA5I7JFQp0Do/xgwDHcojcAMO2EDKiOjvDdHaXcDAEJ4sdCf73X1njw3ETr7DCVKVEuVSj16xTkD4jP+BwZ4tCtUqxXKVUqTAc9Pk3//Zf87WvfoPf+f7v89abP+Puw094/OkjTg5PuPHcTZbXVvmD3/sDDk+O8TyX0XhEeapKoVQgk3FYXFgl6xRx3YDhaEy9UWcw9vD9MeNxn+Goizv2CSNJpOhMZDKCcjVHuVyNOwmUQ3TgRYzGY2QUkrFzIKHebNLpDohCdWNapsWtmzf5znd/wJW1y7hjk5PjBpYdQDSkXJ7GtgycbJ5yaYDr+ozcMcVcIdaUkeScPK2zYdKGLURApVzGDOuEvnrYICQyCIiCAMu2MY8fwINZjJvfIHJyIJSnFiLOBCIJIoqRv/jekzEMJaVCuhTkgzAsojBM7id/NOKkfkKn28MwTXrDLo3mGYN+n3yuQjZbZjDo02g0CUKtDhyL/TXqHB8fEQYe49HwqT1mUioivCrDqsRLxMmMQrCIOwZj75eYH6NKsBFESphS84miSMZmlzFnRipES4bREwuLKEzOX3VXgWnaRDIiCH31eRQhRCLuqPrV6+H//x6fJ7bW7/e5f/8+xWKRS5cuKR2h6LOOzzrJSJcb9DYnHa5155QuQemSjU5GtCNzPp9PAqnuWtGt31rITXMtPM8jn88n3kLZbDYpF0gpk9KaLltIKfnWt77FcDgkn89TrVYplUq0Wq0kcdjd3aVSqVAulymXywwGA/7Nv/k3fO1rX+MHP/gBv/jFL3j48CH379/n6OiIZ555hkuXLvH7v//75zyOtIu1bdssLCwk5Git+KvVlcfjMcPh8JwRJ6jERh+H7lqSUibbiKIoOadGo0Gv10sCqGma3Lx5k+9+97usr6/jeR7Hx8fJvJXL5QSZK5fLyTZ1GVI7u9fr9XPBvlKpJCUZfZxpwcZGo8HOzk7iS5UmEqe5JJ93T+okLq1jBCQojbaFGAwGNBoN+v0+uVwuQWnOzs7Oadzo+Tk+Pk5KUp830v5QkwlXGnmZLCGl28b1uKgElTynUuThyX3pxFGf/yQP54uOL0VyE5f4lTOQ1IiLGZemlDifgcXgYMDZ3TsYxRxWNouwLUzTwEC3NAuiwCfwxurBLON231gDR8RdM0Qw5feYpk7GMjEzDpgCrzcGDEI/UOWJSBCEPnZBYAmTwLEJIw8hTIQv8RptDNPCsG2MjIPhjgk9H+kZlKen6Z7VmZozcSoVZODjd9tY+TwbX7nNsN3k7sN9DtrwvVcvccOwuesOKWWzTC3eoPycSef9t+kPe5wZgkG3Q7fdxDBMMrkcpak5/uN//TM+Xlrjt3/zh8zPr/CzX/w1Z/Uz3vxpk/lHS9x47hluXHuWYqFIEI55986bjF2XH/zWH/Dtb32fjFNgOOrx3nvv8Dc/+UvuP3hI4Es6nQHtThff9dEGiUKoB07GLpDNFsnnyti2gR96hKEkX/QVX8Ap4DgZStU8jx49ptv1QCqF44yVQUTQOGvhhxm6vQ5h6HH16iUs08C0THLZHKVihd2dPQLPo5Av0+0p/yZ3oIhzYSDxXRd/1MUM8hRtM/Ygs4mEKmuGQYBhCmwhEVvvgtuHZ7+LLFQUzwhiImzsKRYnF8JQ/C1haF5W3F2ETSj8mLejSkTdXoeT05O4XTyk32kzHA7IZPKsrl6hUqqyuf2I/qCHjMJEX8c0BPVGg7/+6X9ldmaa/f09hkMXM2Vieu7zIaNYFTqp/CGkKjeFkWrpl6FMOpdC+cQbSqGUoUJYdKlKEidakkj68SdPxJ+P+BOpOUhx+UkR0ME0LUIRYQQy9iX9/Nb/L/NIP3DTpN8gCDg9PeX+/fvk8/mkTTztIA4qEKQDXXpb6RZhUA96Tcg0DCNpodWrVI0O6ARGd0HpIKdtEzSXxfO8BMXQNgizs7OUSiXCMEyC3gsvvECn0+Hhw4c0m02+8Y1vJByebDbLwsIChUKBu3fvKj5bjBDozptsNsvU1BR/8Rd/wd27d/ne977HwsICP//5z6nX6/zN3/wNy8vLPPvss9y8eZNCoUAQBLz33nu4rsv3v/99/t7f+3tJ2/G7777LT37yEx48eJAgR7p7LI2O6WRPE621QF0YhhSLxeTYHMehWq3y8OFDer0eUsoEeQESkrNOfq5evZrMYy6Xo1gsJhYGaQ0hza/RiNp4PE60hnQ5Mn3d9DU/ODjA932uXr16ruvuaaU1fb+kA/ckOqiP//T0NAn42ozVtm1WVlYol8tsbW3R7/fPJROGoZSqf/KTnySO8cPh8DP3px5p8nq6sy3dNZZGm9IJjE5y9P2eTlwmE580yjb5VSc+6ZLvJCfni4wvRXIDurtGEMUKJRJFxDUQGFJ1UxmhRfdxnUztPk6himlniEwbAxNECNIgBDzfxRRWDOXHmbAwCJAgQ0q4LPfPyGQEhuWAVIrCpmUjLAvDFJi5PDIMsEYxD8O0MLM2kechTQlegAw8vJaNM11DGGDmSsioj5QR2UqZ071tCn6JXL5ANA4RhsBrdchO1ei0OmzuRQwDSeuszsLiEtsfvM71xSpvPHzEiy+8xvp3fkDn/V9QPjvhQRSBaREGIe5gQOAfMD2/QqvX4N/++3/DV174Or/xnR/y8d332Xz0gL2tHc6OT7h89TpXb91i/epV/od/+D+RLxZ55pkXyGQLjMc+fih54cVXWV+/webmff7mJ3/Fz3/+Y2qVGW7ffpbReMT+/h6DQZ98Pksmk8Oy8kTSxvUiEBnVhWVkVYu5aSGlyVR1jtmZAb3efrxyDeh02hwdHBAtWAxGbeqnJ9RqeUqlGr4/xvdC/MAj8EOODo7IWg6WabG3v0e7OcB3BUEYEPoB/X6T0O8TeS6GpZyudVksDJXJqWUqBWAz8hFnj3E/8OH2b2BU5xCGjYyF9NS9pu45heKImI0TJYlPJNX9RexXFvoBJ2eHtNpNDCHo9Fu0O22IBMV8mZmZWQrFHFIECu7OOBiGSy7rMDezQKff5tHjbR5tbhNGEYW8w+XVFerNJienreRzIZGEgUSGqjQUCTUHQeDHnVyKG23aFkEYxBRfpeLthwFBELdsa4NZ+YQwrOqQukwVqvOPQDf3BzH3BgxC6YMwMeJPqGVahGGEjPWSfp3GZBlpcmghvb29PapVhVJqufo0MgMkLbTpTpHJwOX7fhJwNYqjkyUdpHUQ1UHNcZzEiVsjRJ1Oh2q1mrxHB5NSqcTe3l6C5OjttNttKpUKnU6H/f39ZPW/sLDAgwcPWF5e5v79+7z00kt861vf4u7du9TrdYbDYZLk6SA/Pz9Pp9PhT/7kT3jppZf47ne/y8cff8zDhw/Z2tri+PiYq1evcvPmTTY2NvijP/ojCoUCzz77bJKohWHIyy+/zJUrV9jc3OTHP/4xP/vZz6hUKty+fTsx8NTIkib66nkGksREBz9dgpudnaXf7yfJRrvd5vDwMPGHOj09ZWpqilKplHSG6eTl4OAgUYne399PFJl18trtdvF9P/FsmkQnJgNxu93m/v37bGxsJN1Uk9yUi8pQk/dlGh06PT1NELZ+v5+QhDWPKZ/PA5DNZpMOvWw2y8zMDP1+n8ePH7O5uUkUReRyOS5duvQZlelJREbPZZqHo+/jdClQfx7Sr5tMQibLVJOfv4ter9+TFsp8WkntovGlSW4UTC4T7RAwYp6M8nhyhMAVBuORQeuTbbLVGaxCHtvJEgkDSYBpWhCYRCJAmEqRVQrlLG6YAiMAG8nS8BQZdhC5GlEYIH0PKZThZjAYYtgmhIESBMznCMdD6LkgDOxcAVkOcetNDGERdLsI28Iu5RGGgZnLEno+Akm+UqFzekbucgGrVCCsuxAFBIM+ZwctItdmqexSKuSR3SbfujJHuTfi8UnExx+8wVdf/R6FF77N+IOfsXh2xF4QqjW2oUolzZMDCqUKs3ML3Pnobbwg4rlnX+WFr86z+eAD6o1T7n98h8OdHU6evc23v/ubLK8s0++2EcMRwrAIo4ggDLAzGZ559ivMzS5zdeManU6ffC7PYNDnpRe/Tm1mBtOSHOzvcnB4hOt6tDpthv0BrjtCiAjbckAYWHaGrJNRyQ9KNFAArjdi/2Cf2vQyg0GHqZrF7Fw+vvoqgRgOhrSaXfYP9ri6fg0pDM5O6vhj8IOAKAzxfY9OY4/ajENRBGTih4dhWcjQRUYhhozVqyOlxmsAxuEDwvYp1o1vINeeR2YcElE6/eDR3UJSKlRChsnPyEAlAVLS7bY5PlHO7MiIVktB7blskdr0LGuXN1hcWELYJpXKHAeHOzx6dI8wiLi0vEGn3+L9D96iFZucLi8t8OpXvs6j7cfUG28RpvygfN8njALVYh6offeGPcIowjQNcvkShjAII4nnevHDVNDr92l3WmSyDraViTnSyi9M6f+IuGssQPFt4oeN1BwkGSdGql1cG5JqPlvM4Uf8miU3n5fUpFu6Xdfl0aNHlEqlBD3QwUg/cNPia3ob6XKEbpnN5/MJcVjvYzQaJd0nWiHWdV0GgwFCiIRs3Gq1ErRHi8vpv2vkp1KpUK/XWV1dJZ/PJ8Tl0WjE4eEhnudRqVQSdOLGjRvU63WOj4+5c+cOr776Krdu3eLu3buJWJw+Tiklp6enFIvFxC08CAKef/55XnnlFe7fv0+9Xufjjz9mZ2eHZ599lu985zusrKwknJ50kpbJZHjuueeYn5/n2rVrtNvtREH55ZdfTgjHe3t7HB0dJbos/X4f13UBEl6LVmnW85Dmbezt7TE9Pc1gMGBqaioRmdPXS3ekHRwcJCTp09PTc23Vvu/TbDaTY9IlE91dlQ7K+joCSQlpfX2dxcXFJLG9KKmZLLmkkY4010afe7PZVM+aXI6pqSnW1taSfVQqFQ4ODnj48CFhGLKyskK/3+fOnTsJYXtpaYmvfvWrbG9v02g0znVpaWVinahoNWudZOh7TxPRdXKjEy6dXE2OdHlOn+MvO+90wndRgvjLxpcrucF8IroWi/qZQhEmDRQLx8LEbXic3f8EZ3qGXLGEkROEMlCEVFMShB5SWDH0HinbAUNtsxr2sVoHyEKOyHORvqlKWYGHZdn4rotpGVgZByuXw7AtzFwenBAZSIgEZjYPZofAdbEyNn67g5mxMbMZZcEAyEiQLxc5PDrC813sUF1wM5cj9Hxsx+TygkcpE5LLOEgCevVjnple4B9fK/O/vP6Yd372n7l8/RWMuSuUzAxTxwc0vDHCNKnE8G+7cUq7Vcd28kSmyRtv/Rcq1XlWlq4yNb3I8dEW3X6T9956nc0Hd3n5q1/nlW++xsLiMlIYmJaD5RTJ5hwGvSEnRwcYhmpX7fcHhFHIzNwsG1evsbSygmGaRGFAu9Vkc/MhD+7f4/Hjh4R+QBAGdHt9kCGeO8b3PQr5LI5lMByNGY8G9HtdDMOjVpU4GSfu5AFhCCxL4A4DPv30HqPRiPXL1+h2+7Safcaup/yTfI9G44DRoE7txgus2hFZO4MQELpjlQQEAdmMUnhUnCzFqLEtk7BzivnpT4n6DeTtbyMd1fmg6i9BXIZ7ArkKqZAcEZd8Ihnhe2NOzo6oNxvISNLr9+h0O4BSor1x/RZraxtUqjXyxSrTtSWubtzgyuUNDg73KOSLVPtl2u0TIvcTDNPk1rVrrK5eotFpYRiCJ88bqTg1cVfacDyk0WoqsmMkiH0zCCOF5qhkVRFYTxt18vkc+UKRaqUa85FN5asVkqBdUsa9UXHdLJKRoh1FBlKGKRLyBIwtpUqqxK9XtxQ8fXWZ/t4wDNrtNo8fP6ZWqyXaHxqR0YRHvT398E07J3c6HQqFQoIE6MChdVXSNgr6qyYNSykTQq0mGfd6PTKZTEI41vsulUocHx+fC7i63TqTyTA3N4fjOLEpraDRaDA9Pc3zzz/PX/3VX/H6669z/fp1pqamEEJwfHyctKkXi0WiKKLZbNJut5NtvPHGG1SrVZaWlpienk68jt544w0+/fRTXnnlFV577TWWlpYAEp5LLpej3+9zdHSUiM71+33CMGRubo5r164lInlBENBqtdjc3OT+/ftsbm4m86hNQ3X3WD6fT3hK2h5ACEGlUkn4Oemy13g85tNPP03a5bvdLs1mM+H0+L5Po9FgMBhw/fr1BE0SQiRJgBaxg/OJrWVZCcF3OBxy5cqVc0TjdBBPfz+Z9Hiex+npaeK+3u/3Ew2kbDbLjRs3WFtbY2pqimKxyPT0NFevXmV9fZ39/f2ERK1Lf6Zpcu3aNVZXV+l2u0nZEz6b9I9GI1qtFu12+xznLIqi5D7T6GG9Xk8I+NVqNZkPeEJGnizfTn79vDLWJCr6RcaXIrmJrR0JJXiR0rmRSAyhEhPVeQNSqHbUIBQ0tusUFx9Snp5WPlN2JtYoAcQTCXkV4JQvVcaULPQbiMDFsQpEQYQwUGTh7phA9gl9H+lHmFkLp1LFzjuY+TxGNgNyTDgcEQ5dMoUSvhgSemMM6eP3+gijgmELlLBghFMsYzpZBmdtqnPzONUK40YTKX3Wry2zenWJ1skJg36H6bk5Bv0e4+Ypr84vYLwwy//rgwPGzbuUZm8i5m+zMb+M/8G7NAd96m4Dw1bGj1EY4fZ6ZCsVhqMhrrfD/u5jKtU5luaWqVbnaLWOGbTb/PS//gXvvfUGa1c3uP7Mc1xaVxoNtpOl2exwdnaAECaBrxK+6tQUyytrzMzMksvlVfeOlWF61iGfL1IuVdi4cpOpqRpT0zMEgcf21iP2drdpNm9wenLE9tYDwvCUjG1Rq+UZDI+xTAtBFssWGKbEcXIEvsfdux+zufWIWnGKQr7M9vYevW5f6fyFHv1+m/rhI0rVHAvVEsu0EESEYaCSyjBESMUPMQxFlNUdUYYBhAHhqIe1/wGeEBjP/CbCcuKOHwMZBURxQqMUsyM074hYuG84GHJyehoLXAU022eEYUC1NMXVK9e4tnGdcqmEjEJMU1IsZrCsKr4/z9jtMhyMsC2DSqVCqVrCMg0WF5YpFkpYtv0ERQKI+TGRVJya4XBEu9dmNB4qtEU4jEcjJQo4HsYPfqVXMxgMOT09Y3FumWKxgmXFnJHIip3UQ+UCHqFQTo1YoQX6NJITJz8yfsgAUogEAYqiX0+dm/RK8GkPzSiK2N/fZ25ujlqtxtTUVLI613/X24InflMa2dGml5orEQRBUj7RCY8mtmp+idbU0UFalxx0wqO7p7TbM5AYZ2ruTblcptVqEUURGxsbrK+vc3Z2lnQL9ft9Wq0Wq6urfOMb3+DNN99MdFtmZ2eZnZ3lww8/pNfrJb5FQMLnKZVKDIdDXNdld3eXarXKwsICU1NTNBoNut0uf/mXf8nbb7/N1atXuX37Nuvr65RKJRzHodVqcXJyAjxxsZ6ammJlZYWZmRny+XyCkMzNzVEoFKhUKmxsbDA1NcX09DS+77O1tcXu7i5Xr17l5OSEra2tZM6r1SqDwSApZej50qW7e/fusbm5SalUolAosLOzQ7fbTYJ3r9fj4OCASqXC1NRUYpGhSeQXeYrpe0H/PB6Pk/Pc2NhIkB89l5P34yRyMRgMOI2fNVqALwgCSqUSGxsbXL16NXH01u32lmXh+35C1tbK1ZVKJXF8n7x/9EgnItqaYTweJ58VLTqpCeH6ntTHOT8/n3TF6TlKoy+T53fRZ1J/TaNcOun7NeTcqIenRBBiPnlQoNrBVeurnawwJQJvBO2Hj6ktLmIVcmSdTFz7j/kTUvn/CAxMK4NlusyJMeVRB7tUVqq8URQL0ak9u8MRliEIXBd/GCBDSeRmsf0AOypiODbCdrHyWdU5E3h4PRfLsHDrp2CY2EWlRiyEqg9m80VG3QHFGZeMUK3kwhS43Ta5mTkyly5T39ujfqxg30bjhGHjlNeuXWZ5qsg7LY97g03s4hVGcg5neolg9JjQ9cgBmLGgHDDqdJheXsb1XPpej53dh5zsPmZ+eo6FlSvMzC3T75zQH/T45KM7PPz0HjPz86xt3GR1/QrCFAjhIiOJ7wUQBWSdAo5tYRqKZxJGauXZ7bTZ39uj12mzfOkyCwvLOLk8kYSlpVW8r3l4Y4+7H73Df/qPf8Ll1UWqtWnyuQKGsECaCmGIfEC1X77/zse89957BG7Eyo2r1Bs9gjBUFgFBwGjQ53TrHla/zcyNZyl0j5GWR2gUEVK1PUehhzCVsalpKQMwGclEkM82TWQQIMKQ6OE7uFae7I2vK8HGyI9LMFHMv1ESAjIRsouQYUSv16Xd7RCFId1unfFoSM4psr62zjM3nmVuZg7DUPdpLpvDtCzCMMA0QciI8WiAgUkhl2d9fYNyqcTMXA3LNjEMJY6ohwRVopIREiPpjDJNi7HrIhCEhqkChB8SBErBWVP0e/0h7U6TWm0Kw8xiSEvp08QJHCjNIilMhBEoNEgbaMq4I0oGSuAv/qxKVBdWGPkkGoG/ZmPyAft5q8LxeMzW1hbz8/PkcjnK5fK51+pgCCSBRaMsmnOhg48eGhXRgUJzIfSKWPNNcrlckijpQK3LVLpNXaNFuuRUq9UQQiRtv/p3q6ur7O/vJyWmRqNBq9Xi9u3bTE9Pc3x8TLvdTkjJU1NT50pB6Q6zbrfL0tISruvS6/XY2dlhb28vke+fn5+n1WoxHA758MMP+eSTT5ifn2djYyOxb9DXQXNZHMdJjlnPg+bP7O/v0+l0WF1dZXFxMbGgWF5eToQNP/roI/7Df/gPXLp0iVqtRi6XS45Xb08nnx999BHvvvsunuexsrKSlGc0EjEcDtne3mY0GnHt2rXEy0sjQEDSJaX5OpPJiU5qoyhiZ2cHIQRXrlw5d9983n2picSaX9PtdhMV6rW1NW7evMns7Gwyl7lcLkG79O+Gw2Hyt7W1NUqlErOzs0liM3nPX4QoaZTL9/2EQ5Z2Htej3+/TbreTuZ9M3tKfs0l+0eR+J4/pIvTnl40vSXITcy4QBNLGJMIUil+iBMdMAqlJnpqfYzI8cWk8ekhuZp5CsaISH13Xk0AUYRpGXOSSTPdPsDI2trAIvQhDumAZRPjYhTyh62GZFjIICaIAf9BDBnE3hCGwKWBmi4SMCPsehjCwhKVWsV6Id3aCEHOYThbDVCaOTi5D8+yMcOAS5g2sQo7AM8lUIGi1saanqS0scLK9w6A3pFws0+l2sC2b9YVFpstDph9t85/vblF35lheepZibprd/U8Y9jvYUoKh2n6lgNbREZEw6Q48/DCiaET06of0W8dM1WaZXb7Cwtwco1GbwaDD8f4eJweHvPPzv6Fcm2Vl7QqzCwtknCzZvEUUuhzsfkq7cUC+UCLj5JAITo9PaDYbVKo1CrkcjpMBfPzxEN9zGY36dLsthBzw4gsvKFEvLCxLfeii0McyBSbgj33efesd3nn3fWwzy8svvsJMbY7xeKRQkzBiNOhxtn+foH7IpYUa1VaT8cERO1M29pUbZA0F7wvDRBhaU1Cp8ErtiyRjcUgJ7mCE77p03/iPCKeEdek6WqhOqVsL5V+GfIJWxH5Wg36f8WiM647p9YcY0ubS8irPXL/N4sIitmXGwUwgMfBHLq1mneOjXQ4Odjg8PiRj5Sjkc7z60tdZvbTKVHUKzw2wTBNDnFdjjcIQGSkEslAosbR0BXfsUa+f0O918NwxY3dMEPj4oY92SLdtlcj4fkAQSKIoTtQQCG0mKzWBOn7wAFIqKUPiTqkojB+4MR8pQpmLCinibf7dPCX+W4/J9m54OiTebDbZ3t4+V56afI/eVrqMpEsYOkhIqRSHdUlKB7+0+q3edjabTRRo00FB80BA6d6kBfHOzs4SPkYul8PzvETgr1qtMj8/z87ODv1+n2KxmDg6Ly0tUalUuH//Pnfv3kUIJYBXKBTY3d1N+D7p1bhGJAaDQcKlaTQatNvtBIUplUpJiWh/f5+DgwN+/vOfU6vVuHz5MgsLC0kLfBiG7Ozs0Gg0EiQK4OTkhEajwdTUVFJ6AhI0Q5s8RlHEiy++SLvdBkgQNo3kCKHsBN5++23eeecdTNPkxRdfZGZmJkEn9LXY29uj1WqxsLDAaDTi4cOHTE9Ps7GxkRDBL1JN1ttIl3o0Anfnzh0cx2FxcTH5G1wsTielTFCy0WiE67qJ0eny8jK3bt06x+VJCxO2Wi0ODw/Z399PWuBzuRyvvPIKly5dolqt4nlech7pfWokRifLy8vLSft+t9vFdd0k0UnrDaXJ8pN+bGnUJY3iXKSdk+680sd0ET/ni4wvSXKju6UUqdg0JKaQWEZMyot9cGSS2qjX+56g+eiA8vIOxWoN07JVWzcGEeoDaBnqwW37PZxAaRmErh9zNFQgCF0Xw46wLBvTsIgsCxk5hL5LMBwhhKFavo0MwrIxnSxBf4CwTZzpKcKxixcEyP4Aw+5ATYBjI0NJqVrFyeYwiQiDESJTxMhkMExTkTTHHplCganFBc52dzGtLHk7S7/ZwLQsqtNzfPv2dWrODn/24JjN7Q7zi7e4df01zlrbHO4/oj8eKXk1IbB8l0EgGUhVyusimLcMigaUe03M+238fBFZnadUnMeTHoN+h26nS/2szaMH96lNz1GeqrK4ssby8iq16Sn8IKDbbRH4p0RE+J6PYbi0Wrvc+7hBuVIlk8limYZq6zYtjEiSyxXI5cr4nkTEJo6B7xJEHplskeFwxJ33f8HxSYP11Zsszq2QyThEkRbq8+j1WrR3P0U2zxgIiTNVJrNfZygjvIpQ2ka2wItcbNNU70UiTMV4jUIf4UtkGEAkCcKIRqtOFEYEwPDu65QXLiEtlQwIKZAEIJRisyY7y0gShD7DQZ9ev8dgMCL0A+ZnZ3nuxnNcXrlELucodoyEyBvRaDfZ3N5id3+Ho8MDHm3eY/9gj7Er2Vhf55WXXuLyyhpONsPp2YlahRsWoLpDpHwismcYBoVciUJ+Cs9XOiftVp3haEC/18P1PFzPxbJsSsUyC3NzFHJ5pqZqGKZ+mOq6eaAWC5HCQpWdBIQiVkGWAiGsJDGMdMt33HUVxkTrJ2rOvz5jMpikW3snh36d7/tsb2+zsLBAtVo9Zy+gt5n2LtKdLLrLRyc4nucl79X7tW37nA6ODjq6HVp3L9VqNcbjcYLipH2roiiiUqkkfJggCLBtOxGl0/vO5/MsLCywv7+f7LvVUoatU1NTPP/88+RyOT744AMeP37M4uIiN2/epF6vc3BwkOik6CQrHeTCMEza5l3XTWwAisVi4lKtiaf1ep0HDx4wPT1NtVpleXmZ1dVVarVa0hmmt6s70rTgn+bQ6PJfOmlM2zro66A1gLRC8/HxMZcuXUoSKx0wdSlKo0RhGFKtVqnX6wBUq9Wk8y3tS6bvIb0NvW/9r9lsJoH8wYMHiYhg+v66SM9F6x1p9+0gCJiZmeHWrVusrq4mreZ6P61Wi62tLfb29jg4OGBzc5P9/f3EY+zll19mdXUVx3E4OztLeGWT97tOWPL5PIVCISFYt1qtRHdJe05pIcm5ubmEb6ORykmyfRp50fuYLOdNol/p3/8qqA18aZIbvc6OPaUIsQyJKQwNgicrTm3NGAJjCbRCWp8+oDI9h5OLS0KJRklM/Isiym6XUrmAbTuIQIn5ScCwHQxsQt/DtB0MA2yymFmHcGwTeC6h6+F3+zH8HmHlc1jFAuN6GxMBIaqF3Lbw2nVExgJZVEFOSMX7yGeJxmMC18V24npyNq88qSIoTNXwRkM6Z2eU8kWsKGDQaiIQ5GfmePHGNRZrFX5yf4f/tPUOorDA9OxVyjeXOG1u8mh/h4HvYwA+oGdrHEkakcQ1DGwhmM2alOWIfmOPqH1AmM2TLcxSnJ1i6I3odBu0Gg3qjVN2t7cp52uUKhXKtRJzS0tq9VTIY9om2WwxFnkzGQ4DAt/DcWxE1sC0DIQJtp3FyWZxPBffG+O7PoNRn9CLOD3eo9PukrHK3L5+CTsmBhPzS1zXp10/wDt6RGbYYzeMWJotk+v0GPc8DEcQhSDDAMPOYCAJwiBu5Q0xIsW9kaFqc5bxdgPfo9NpYgoTX0YEjz4gc/Vlcldux3dbnBRFQVIwRcqYdCzxfZd2q8FwNCKfy/Hs9VtsXF6nWMjFBUL1rvF4wNHhFrtbD+l2e7ijAWHgE3g+va7H7t4BZ40TxuMr2LZJFKjWa8syMYRIDEv9QBltBr6nEg48fNdl0O/QH4xptlscH+/SajUZjXws0+b5Z1/k9tXbzM7PU8jnMC0zRloUt0bqjx2qxVwqHCfuELfA89Uc6BIdAkV5E7H4nzLUlFIqLtyv8Zi0TUivDtM6H91ul83NTaanp5NyUTooaQRFC8VpuwS9itelAN0Krtt1NUKjW5T1Cl0IkQi06TZg/UyzbTuxZtCcHJ1YacTGdd2kzVy3Y0upWqf1arxQKBBFUYJ21Go1bt26Ra1W4969ezx48IB8Ps/s7Cy3b9/m7OyMvb29pFMmjXJpYUEgWflblkW/32c4HCa6NYVCAdd1abfbNBoN6vU6Ozs7ib/V1NQUS/GzRm9D810Mw2A4HCZIkVZTNgwj+VkHY20Y6fs+JycnyXzdvHkzSUz19fY8j7OzM87OzhJ0YnZ2luFwmKgXT5LQ0zwqjdJNCs/5vn/ON2tnZ4fLly+zurr6VC5JGr3zfT9JKrLZLDdv3mR9ff0cemgYBoPBgMPDQ7a2thKejJ6HbrebOMGPRqOklXuyhV3vT8+dTjy0gvNgMKDZbHJycpIQry3L4tlnn+XatWvMz8+Tz+fPIXyT5zNJJJ4kNF+EYKW//irjS5HcCCSGCAliywXVGSUVAZSY94DOMOOLINWD2I5MejsNmjMf45QqlOxljGxWlRSEwJCSUjBkOeeQN+cwhUEmWwHDwDCVGqsSLwsREsIwQIYBUeBCGBGOh4SuhzQE0rCJ/IgokJjZPFZujN/sY+UcjIxFYJlE3RC/3cKwbIxMBmFYGJaJsE0MkcHvDjAtCyMWtDNyDuF4iFkoUKrN4Loj+p0BxWwWzx/h9nvYThanUmP10iX+YbXKtbld/vyTYx4/PiM7tc787HWy2Sr7x5s0+z2krwhvEoklwPNCWn5I1wg4DEPmLIM5ETITGcwaHqHbpi8ydDIVZmZXiXJFhu6QXr+N57qcNU6oN87Y3tzGsjNksg75bJZipUKhWCSXz5HJODjZLBnHxrZMDFMgo4j+YEC/P8B3PTzXZex6uCOfKASBQ7k4h8DCtiwECqUYe2PGww7D4y2KnVPk2OeBF2I6NrOVEuFBC19G5E1JsZBFIPG8IQZFTEMhR0JKRBggLBMMMy7tBAqJif8Fno+RsfA6LYYf/DW55TWMTC5piU5S60hxTxShGIQUdLoNpIQXb7/CtSvXKJUU7yfwlRJxEPj0uj1GsRFdJpOhmC8wMz1NGAZMTbnkcnlcd0yzWScIAzrdPmN3jCViPZX4w97udTk5OyVfKGLZFkhotus0mnVkaEBk0u/1OT1pMxyrY5+u7fHVF14il82CYRCEETLy1acteU5ESBEnLlImKEwU+coNPtRKp1GS/BBpwrFukf81rkvBuQABFz9E0yvKw8NDHj16RLFYZGFhISH/6lZVIFHm1cmLRmMmA59OhIIgSAK+Ril0EqQtCLLZLJ1OJ7EI0B09utU6jQTp4KJLSbrd3HEcPM9LWoi1tYNOhgaDAY7jUCqVWFtbo1arsbi4yJ07d9je3qZarTI3N0cul+Pw8DAhG6fnUqM54/E44YdovyxQXCNdJlpaWsJxnKRsNR6PcV2Xer3O1tZWktRks1kqlQrFYjEhXOuuMo3eaKK15gjpf2nl41KplAR0PTTp9uTkJCn/9Ho9bNtmamoqIWULIZI26LT7ut6W5lTpYK33qb/qDrlut8snn3zCwsLCZ5C/9OvTSaMmOd++fTvRztGIlt52r9dL1K4dx6FQKCRml9VqNZEH0ChSr9djPB5/JkHvdrucnZ0l2k4ArVYrsXPQx3N6esp4PAYUovXiiy8mApRprzSd2DwtwUkjXOlzTid8f5uSFHxJkhttn2AQJyQCxZURMcdGxgrDsatxqOv+gCEM5Fhp32QqVeycQ25mVvFgiKi4I1a7B2S9ERgQSrUuFwZIU51+FIUQBEmig2FgCpNIGJhOCSNnIDIWZiaDYTsKXQgjrFyB0BkRyTA2mZaQyRK5I/x2G7tSxcjlMAT4Q5dMzoEgJBgMsPMCYQpMLCIzIBz1sQslKtPTnPRH9AYu5XKOMAjxBz3MjIOZyVEolvjqszdZW5jmjfs7/JeHD9lv7VKcWuP65a/TG59wcrZLq9vGC8KYQ6EW6UEo6Y58eoZgzxCUTYN5z2DeNJjJjMm4I4b9U8LqFJn8FNNz8zjlKSJh0mo2abWbuN6YQc9j0O1Rr9dVyc6wMEwDQyiVYYS6LmpFZWEYlpLwN0yEITCFpZAdTBVURaQ0XMKAyHcJm4dUOodMDQc8GoXs+BGeENyYqzA6a3Mw9riUMZgtRZiEmIYKzmGoXLYNA6VvYyn+jQwDZTAZqvtIBmAJydjvk8tO4eRz5Ad1ooOH2FeeJ9SBnhidiO9R1XlnkMmY2JbBytwlrl66Qj6bpT/oEgYBXuAT+AGu7zIYjRkMh2QzNrZh4pgmuazD0uyyWn1nMpSKBbrdDsPxkGarxaA3xDQzmIZFGKnAUT+rc++Te3h+QKU6jePkGAxciExy2SyeXyCfL5BxDMZuSBDB0ckZmzubONkcuUIOEIRhRBB4hGEUdziJhGejZGtUKUqrGyMiwkjGCUxstUAYU/pj2U35RN3512Fc1B01acXwtNWkDt6bm5tJd1OtVktepxGASS5BOqCmFWDTPBot3Kd9i3R5R6MjuqySDhKavNztdimVSkkipTk3mhiriceaqKs7sKanpxkOhwwGA0ql0jnbh0wmQ7FY5LnnnmNxcZF79+5x7949ms0mU1NTbGxsJEmBLiHpedDnORqNkgCqURV9jppLVCwWyWazLC4uJoaUrVaLVquVJBrdbjcpDenz0O3W6eR0UmNIJxuT3JJ0UtlutxkOh0lyp1Wa5+fnaTabDAaDpFMrfd/oa6yvz2RJUl9f/VW3jOsE8+TkhNXV1XNloMl7RqNRumNsfX090QPShF6NtIxGI4bDYXLf6MRwbm4u2U6hUEhIya1Wi36/n8ynThzq9Tr37t3D932q1SqO4yRJUzabTUpVGgmMoojT09OkBKmtMnSCk0a7JgnM6e4pfV3+tvyai8aXIrkRMYxvCBFr24Sx67QZa2yQaG0AMZKj36veP2pJ6ncfkKvWsJwsZqGAKSPKrSNoHBFmHLBMZOiDZaL0PnzVL+x7EOguGTAyGSJt7haECMeBICByXaQ5VCtX14WMgVUuMDo6w8RQQamUw4sCwkEXYZnYtoFhm4R+iGHbWAWHaOQS+CMyuSJhEGFmsgTjAeFgQLZUplyb4vDRDsW4C0z6HuFgiHR9pbtmGsxUqnzv5QIl6wF/vdvlTnuTTnuXhcWbXF1/hcHoiLOzfdqdLiNfBX0BBBJEKPFCySiIaAcGjw2o+iZzhkEh8sl6dSJxxtHWA/qGTaFaY/nyFS7dvkmhWCGIJPWzOq1OC9f18DwfP/AUn8VV9hShEfMHDFTZwhBgSYxICSqGfgjCxRICgwjTG5Hv1Sn0TrHdIXvDkI9GIc1Q4gm4vTLDlGUS9jxWLJsZO4JQ4Dh5ZBQSRpC1FQck9F36rToGEqecB2EQ+r4q+5gGRGDZOcKgiT/qYdsRjjGNPPiUaPUmwraSlmhdJouiSCVMBtSqU7z03MsUMjmEKTg6O2Tsuni+jxf4hEFIEPkEYcR45BK4HmPPJQwDLGFiFYpYpo2VMTGESbffQ0potpoMR0MlOJl6GA9HLodHxxRLVYgcSpUMpshSrcwS+D6GECzOX8L3fXK5Dq7nk8mYHJ0cU6pUmKrUsDMWYSgZu0PGI5f+YECvp15rChMR6/mZmLHkglLQFNKKy1eqJCcMlfAZcUYkYuTn13VMkh7TnlBPG71ejwcPHiTcD922PBwOEx0aTRbWgVXD/FqjRT/QdYlAB0VdytKS/kDC08nn8/GCQiRch263m3BytOqx7pbRxGXNtdHlk3RiUavV2NzcpFAoJCUsHez1fqampvja176G4zg8ePCAZrNJq9ViaWkpSXLOzs5ot9vnkBw9jzrQaTsJHeT1uQFsb28jpaRcLrO2tsazzz5LsVgkDMNk2/pcNBdHby+dyADnEBU4z2vRxzUYDBJLBd3lo5GQy5cv4zgO7XY7QYq035QOvGmxQO2ArktFWgBQB+9MJpNcJ82JOj09ZXFxMSE9pxOcdMCvVqs8++yzSeJ6enqatGFrnpYm8I5Go6Qcqflb2qpCc5S0DIHuZJskRo9GI46OjhJ0SHcGViqV5J5cWFhIeExaJuD4+JhyuczU1FRyT2v0TvOG9D2lE7endSdOIj16XETg/rzxpUhu1FC1f1Og/hmWSkAij0BCKM0kq4kUnJPogagfDfoHfRp3PyJbqlBaWaUUDMm1jsD3kaZNJFHqw8JC+h6YFjL0EKEijQqhWrhlEKhkJ1TaJ1GcuQonkyjYRqbAzOawHJtMtcS40SWbVex+Ix8TvUZDQsfGKJQI3QFRmMPI5SECtzvEEBZCGJiZLMI08QZ9RCgp1WbIl+t0uz0WV5YgCpRf0nigNHucDML1KGQdvnJjDc/YxumY/GL3jM2dd8g7VWbmrnJ55QWWlrqcne3RaLYYuL5yRY8nLZTgyghfwMCXHJtgC0HWD5k1DbJCIr2ATv2IXvsYKcEwMswuLLBx7SbXXnweK5PBdQNcz1OdOUGAH6junHEMQYdhQCSl8kOSEVIGGO4Q0W9hDTtkRm0y3gA/iDj2Ih6NIg79CFfRV1goZlkv5Qge1ykZGWwEowguzeSZKpVwe02yuaIqIQmBhYUMffzBANuxMRxbXUcZYkpQFgsRwhAYZLBMk4xl4jUOCDt1jOkFtA+Zutfi2rgQYAhqtWlurN+g2+tSb9UZu55y4A6DJzyECDzfo9Fs0Gg2GQx7+IFCBpVHl0Mul6dcLJPN5hGmgTvy8T0fUwgMQ3urQ8YyyWYciCLGbhdzEJHN5hW6mTEplvKsLCsy5njk4vp9TMOmkC8hQ9VVonRyZIzehHR7Qx48fMj+4ZHynFKd7/HDR30ehYgXHkL5uyUQj4gXFQny8Ks9dL4sQz/Y0101kyO9soYnAfvk5CQx19TdL71eL0kspJQJryZNQk0HWs1L0AkPkKAzuvtEowIa+dD6NXqFrLkorusmiIwOrjoYDwaDJJjYtk0+n2c4HCYli1KpRKfTYWVlJVlpa06NRhocx+HWrVtIqdSKHz9+zOPHj8nlcszPzyct2mdnZzSbzYTfk55DrQ+juTB6/rVQoe4C027cpmkyPz/P9evXefnll8lkMkm5CTgX4EfJsyb8zH41sqGDrSbrDofDJOnQ17VSqVCr1Tg4ODjnSD4zM0OpVErKePoa6oR1MBgk4op63/o1+l7TSVcmk6HdbtPr9ahWq585Xv0eTSK/du0avV4vQbP0eaY5T1oDR6NNOpnWpPRcLkehUCCfz2MYxrnW7nTSoF+vkxPtEq+RqWKxyNLSErVaLSnj6cRb6/qkS2u6ZPbw4UMODg7O6d6kkZw0inkRuvrLEqKLxpcouYk7puKShiEspSsSy8JL/feY8hkhMZXz1BPSZ2DR3TylMHOPfKFA2e9gjEYYtqVgdtNA+oHqhDGESl5kpGD2SCEiGEKZJ0owTOX0HY7HIARhMFTRxrEQmRymrRAgK5/FHI4YDYZksg4YBiKXA3dM2B9h5koIYRKMx1hOBs/1cIcD7JxKdkxhQORhZmzCWE9han6Wk609xiOP8lQFzXM1c1kwBKEXEHgujp3l2lSe0BoSFpZ5b/OU7rDFzt7bZO0C1eoiS3M3WFzwabQOqTca9AdD3DCKjRohiMswYQAukqGAXiSxTIFtCGwEDgaWhKxpEgy7HO58ghuO8MOQzYebmP0+lXwes1TCyuUplatkbIco8LGk0mqJfI/xoEvQOKM8GpDBJ4gkRyGcBZITL6QTRLiRJED5iVUdi/WpPMWDJuNQ0JcRgSm5vJjh0vIU4aCDNx6SL5SVfo6QZOwc0jCQgU84djEyFhgGYRBhSFWGjMIQgY2IAhzHxsllMYVk0DzEmF6EmIdFogaj4dIoRv0k9WadTruFaViKsGuqEp16Nbgjl3qzzu7eFv3+QK06wxCBWmWXS2XWLl9laXGZTMbEskxMQ2AIiW2AG3+QSwXV8VQulDCFxPfGhGEsW2CoI6yUS5RLZSIZEUY+QgoMw1T8LmEo9/AwRIYCAxNDCjzPZdAf4fm/3oTg/y1j8mGZLg1chOCkO0D29vao1WoUCoWk/du27SQh0UnLJPE2XcbQXB2d/Oi2b41O6BW3JiPr0o7mx+jfpZ2tdcuzLh3o12rdF73d8XiMYRjMzc2xvb3NcDhM1GWB5PXa98q27aTTJ5vN8vDhQwaDAdvb22QyGarVKouLiywuLtJsNhN1X73in+SU6PnXCWEaedFftd6MTmIePnyYoE75fJ5sNpsIA6a7ttKITLpkppENjU5p1Ezzo2ZnZ2k2m8l2QLVeLy8vJwmS5t4AiZGmTgh1d5pOwNKEco3MaRJ0u92mWq1+5v7Qx6oTHSFE0mKvE5Z0h5+UkvF4TKPRYG9vL+Ed6XvPsqyER6U5W3ob+h7Uc18oFKjVagk/Sc9R2jRWCwLqOdJIlt5mGgHV79H8Ls3F+bsYX5rkRsa9UtqfGGEgwzBugzWJGQGp16u2cJ1z6jQnGEDj7kPmqlVyRVO1JJuK6yES7Q7AC1W2FPoYGRthWkoQL+OAVJYPCn43kE5I4CnHb2EYCB+MbIBhhICNYVhYOYdhq4udsbAzGdUq7ThEIw/pepiWjd8fYGWzBH6o9EUMQ5WbcgGmYWEYJpGZwe03KVaqjOfHtFttCtUqTrGAlCGBN1KAkmWCYRG6HrVKjWdNi1ynSa8Y8ShyGAUBnhxyWH9E5uwxpVyN0tQccxuLjPwuzXaDTqfHYDgmjCSBVIiZRsfCSOKHEs8UWIbEjUJyTpZ8rkyhOkU2V6DbGtLqdkAqwTA5GjPs9XFlRC+To1TKY2YySCkYj0eMYm0YwpATIegHgo4fMA4jvDAilKrLKwKywmAqY7E6WyTTHHE0DhXR3Ip4Ycnm1koWY9xjOOgpby/TRkbBEz6PkSUcD4g8F0KVQHpBAIGy6gi8MYaIKFdmKOQLCMCUEtFrKe6VoR1xQRKCNFUi7Ev6vR6HR4c8fnSPVuMIU1hksyUsp4CdcbDsLIYpcMcu/jhQyYQQRKHEHY3wvIgokrjuiPn5BQT/P/b+LNiW7D7vxH5rrZz2fObhznWHqlsTwCoAhZkDCGhqAhQlm2LLshWtoR0Oh62O0IPaT34xuxmKkO2w2aG2wi+ku9kkW5RFWoRAghiaAwhwAIkqVBVQ0607nXvms+ed01rLDytX3jwHBRJkk1SBqoW4OEPtnTtzZZ5cX37/7/v+GiUlYaiQygDlw2tdQJxE9Ptder0OyIq29ZDfWowVSKOQUiBkgKgcTUZDnjvr8Dyds1ikjCcTTkZHdaS71t89epk/69GkyN8qc8OP5iLTfG+aprz66qusrKywurp6Svfh3+dv9P4zPFjxjie/Lf8ZURTVbhXPcngnDlCXm0ajUS3U9Zk63iHju1r7MpMHT74s0sxpmc/nDAYDNjY26sXWl9maC5sHb0tLSzXQWlpaqt00vnx0cHBAu92uGQfPKDQZkrP5Qv4JvynI9docvz/D4bBmdMIwrEuAxpi6p5Jnu3zZzS/wQC1ybpZx/DnyYM21nJnWrJWUknPnznHp0iXyPK/Tfr1Au7mge2u0/32z/OjLMUtLS7WuyDNq/vVnNTf+uplMJuzs7NRd3T0I84GHXkjeZLQ8WPLXg/9+c3Oz/u9NINIcnh305ajmNd98bZNF8efUs2d+/ieTCcPhsM4peitm9M9zvG3AjSsLuXwbJWUdpGasQNv62blibhy0kTV17oiYigDEjAsG+YLItIni0FHrUYBNU0yWIawTSQoVIIRbsGQgCFodvyuIKISyqDQGESJPXSsIKREqIEhCB8W0BixSBsTdNvPpgl6v4xgCnEbBpBmyk7CYL4i1dnZ1BLbQBGGIznJMIrGlc2pFcYeiyFjZWOfBPON4b5fVzU0QkOYFk9GU+TQjK1JkCK1OiyhOuLm+yVJ0wudfP+H3jgULG5ALQ2YMR/khxztHRLsJa8sbXNq8SvRIwiwdc3iwz8HxCbP5gqI0tdbE6XItpbEIIzBFytF0h3I+dFR7r4+MQrJpgQwDkk7HgRKpCIQ7n+QleVZwkqXcnU3ICpfZokvXs6iwNSmFABIB7TimLRRL3QA5nFGmhkDAelvwzPmQi2sxsckpFguyomTQ6TvxecVaeFGxDVwZUVi3KFicvVxKhS4NOs2Yjw4JhEbYNYI4wIz3kMZgKBv9lKjKaZo8zzgZHnH/7m3u3/4mJwcPMJoqHymEoE0Ud4iTDkGQUJQFsVom6PaJwwlSHGH1lFyXlHnJZDhmODyhXRSMR2MWsxlF7vQ7voN3WZboPCPPUwf6ca6swhjXT0oLtC7q9Og8d2LDNM9qoeFsMWc2mzObz0mzvO4W/h/7aApQm0/rfpwVeTa/AvUC5V0qfuHwix2cZmq8DdxrTnz5qumkanYHV0rV2/WfI6Wk0+nUbRCaOpAsy2i1WrUuwx+fd+v4EpN/so6iiKIo2NjYYLFYsL+/z8bGBkAtVp7NZqd0P1EUce7cOZIk4eWXX2Zvb++USHexWHD37l2UUqyurtbaHL/94+Nj5vP5qbluHp9ndnz4XVEUtXvHW8o9e+JLih5QeGHwaDSqwUbTvXR2gfYC7m63e6qc0+l0uHz5ct1s0/83b7tvCl89yPGf0QzU84ycb/7pQV0URfW147d31h2U53mdznz37l329/drMOQ/07vJfDJxGIZ1DIGfU38tjkajmskajUa1Td7PU5Ol89egtQ8TpD1g8/PpX+u/LhYLZrNZ/XU2m5FlWQ2w/6LH2wbc2AYvIyr9jZcN+6aBvjRF/V/EQ+Fj9T+wLK8tsz1oEwbSWYG1wcznmDTDFq5jt5UBosxBGGQpsaFBRjGuFYOsxJMB1mpEoJDtNhQlpnAiZBEEICRCSFcCMQYlFRjNYjpz3cqNJQhCbJEjaWO1weQ5MpCY0pVGVCtCSddJ3BQFUihEpLAIisWUjQtbDPf2WMxnJIMl7r74GsO9MfNFyFjH5MISRjP6fcvqWsRyv8vffGKLaw9O+OytCQ9KSaACcqMplCW1KXeP3mT36D79uMPK6jqX1re5ceMGsyxj/2Cfw+Mhw5OKzq2EtQpYk45ZKbMUIyTz2RTmBpNpikyTC+hLSUtIVOD0O9a6OLoDWzItLYvCVklFFUVfnbVAQj9QBCqEUrMkNZdnlsQIwiTg6rrh2mZEN1JgDMUip9AlYRzTavcc7BWuuarRljAJnBNLG2yeI1oxgVRMi7Fr9limRO0OnU7fte7AddSejG7Rnv8BYfsphHUlBiq9irUGqwuydM58PmI+nVLmTl8kKchJycwCy5AoSohbfVpxHxnGGCvBSgKhCKUktzCfFbz55i2OhwckSUyel+zvnzCaZqSlrkXzxycjvv6Nr3PvwT200RS6oMhL8uLhP61LilKjtUFr22ig6ViiGqS9M75lnL3x/lEMjh8e4Kyurtb9pvwC55+Y/U296b7yi93Z+Hv/FO1bLng9iQc4TZbJgyX/9O8zWPwCBw9FvB44eTYkDMN635qOo8Viwfnz59nf32c+n9Pv9/nGN77BwcFBrc/wrEmv12N1dZV+v8973vMe7t69Wzeg9GU5v7Du7e2xv79fu7O2trZ47LHH6p5Lvhmnn6um0BqoWRTfBNPvu59vX2Lxjh8vFvbi47Pnr+lM8+cCHgLQOI7Z2Nhge3u7BoH+M714vDn8vAL1Iu/LeZ7RckL/1qnUZe8Em06ntX7qLLjzLEhTkNssc3ow5EtdHuT4bfljBery3nA4JEkSsiyrO5c3bdsnJye89NJL7Ozs1DopD1CaoY3+mvIsWBP0nAWR/6HG2wLceH2wFJpQuJPnek9Kl61xqiDlNL0P9Te+mOXycpS0XLq8Sjty+gVhDDpdYIsCk86xIkAYC7JE6xwlpdNBRCFYieq0UdLiOkQrV67ColoxIgyxmUS2FTJSTmBaBZhpoymyHBVGZIs5caeDCrpQASpbFIRxhNGue7kQoHVBYBJnkw5CZ88NAmyhMaUhjDrk+Yz+yhLIEG0h7sUE4wBKxdqKZLDeot1vYdDIKCAtUsr5hJsrXdYSy+/dm/PSWDCUEbOiIJCWUkmM0BzmIw7uDYnuOs3GysYWj5zb5ub168wWc06GJxyfjJlPJ8RaM7CWtCiYYwjaHU5OxuSlpq1EFXsn6AoXFqgq9iTVcBfNYW5ZGG/5r1g3KWhHirZyvx3nGpVmvDtSPNULCYOQfg+urAgGsUKKAp1n2NJSGo1G0O+uECctwjhEyZAoqLqyI5EqxOLYMGkjwjAgKzMkgjxbEAdtp6FBuvMShLRzQ+/4kHxwj3y2iSBy1mgL1mrCIGBjeZ3Hrt3E5gtef/VFDvaPMNYSColVCilbtNo9ut0NWu0lVNQiL3KmU5BkyMpineYlk8mc6WReXUOWRQnFGSAyXZR8840dhNhxfy+Ve9BWfzz/4W8j353jrICxqQNpijy/3ZBS1omvfnH1T8l+UfY3eg800jStFzgfBOifxj1gadrAfbfw5j77z/Hba7fbtb7GW4SbQW3w0ILuRcVNMOQX7izL6r5U1traOlwUBb1ej7W1tbqs4stns9msTqe9desWx8fH9SLoXUxAXUa6ffs2/X6fjY0NLl68yI0bN2prsrcngwOBHhwkSVI3jPSlJ6AurfjhgaVnrfx8+a/NefUAdDAYsLq6WrM3a2tr3wJO/La8bd274ZoNVJvnz2ua/Bx4LY7fb5/zY4xhOp3S7/frXmNNcBAEASsrK1y/fp08z3nttdfY39+vAbOf33a7Ta/Xq1m1Jqjz28zznMlkwmQyqefKMzLNa3yxWHDr1q1T167/O3g7AJY/yXhbgBsAISyhdNoDVSW0FlXomitBUbE3oipBeRO4L0a5n+JYsrXWQVmN1a78YQvtgE0lJrbSPf0LBEa7zxAl6CKHmYA4xP3NFIik5RJbrQVbEHQSVLtKQVbKOW9MRf0WOUEQVpRdgSyLKt9FYPMMpUJsViKjBDAUWUbYarm4fVkBnNygdY7JU1SSEEcdyiLDKIvVKecuX2Rtc4u8MKhAo8IQGbg/pMIY5lnAHCiNBq24kYRsyowHJuJu2eLWcEFeWqJIUESCAshLy/50wv3hiPD1V+l3Omysr7K+tsb561cxSqGRFEVGtkhZKg2lLhhslmRZis5zAiNQRRUxLyy5T5EWgrTIaU1mhMbSiSN31gxYKyiKjJO0JNUFHeBDvYCPXYy5stmjFbewOqfIZ9gip8wKhBEgXckyjkI6rTaBcCW9pO+aFIqyBF0gZOAE4ka76yuKsNpQlK7xYxxHxLGzWJosQxhYitpwZ0a+cp9FIUkiR0tjPXgWLC33eerxp1nqDihK2Nn/beazjFBpROA0MmEY0ul2GQzWUEFAnmdIkVMkhjgKsEAwSykKlztjjbtxKGHRVtScpVOW4UqD1LvyzvifObxz5WxC69nxVg6OppjUl3D8k6vPHWkurp4dOMuq+G00SxVNvY4XzJ7NafELrwdGHqD4J3UPpJp6HS8wbpY0mlkp3p7tF2StNRcvXmR9fb3Ww3iWpNkqwh+PMQ/bP/jwvMPDw5ql8gu/L4kcHx/z6quv0u126y7kPpPFl2Q8Y2SMYWNjo7ZuN51XZy3fTb2LF+42AWazXLexscH169fZ2tqqc4E8QGzauf18+ZA6Y0w9l01Bsv9vnhHz58YDVn8uPQvWarXqJqZlWdbOt2a5a3l5mSeeeKJuZrq3t1c3UPWMVRiGdLvdui2ID4L0bI4v8fnz5kF8U3PTvP7/orUxf17j7QFurCs8hVXQmxSuHGSNK0c1ilA0b+1NNseXrNa3uvTbEeQZRZaCNs4VpV1IH0pVNlbXMVoI5WotgCkNkGPLDBmFyCiELEMEodPoJBEyBtWKXKiZvzCMcb2ihHPiWKuZT6f0Oj0HnpCgXc6N1xbJMKQsMnSaO0tyFFXorUQGChvFWKvRi5wgShBxACrEWE0QhURFTpFm2FIThIK41yHLSsJAEgWCeTajXHbptL2Z4qKQ3CTgDwLBy+Oc42mKFc56PwglOhboRJGVhsliyuTNKa/euu0yEkIXXpgkbfor2yTtHlJJusshPVGCtkglUNKB1CAIWaQLtDbI0rCaZYTDMbPxmDRLWeQ5aZGjjSa0oK2lK+Gvrof80PUB64MOUgnyxYR0NkdnZUVXOMZHS1BBwMpgjSSOHMaUijgMKS3VeZWumCklVGm6SklUEJBOjjE6B2swRUkpBVZrROSaVOqjXfKDMWJwDt9LyYEPi7WaIIjo9ZZJ2ifMS8vOqCBdWAJhCZQhmI+ZZJZFIZguMqK47QSN2Qgpc4wpkcIgZelMe8LZ8kvrS3XvjD+v0bToetDwVlqbbyek9D8LIVhfX6fdbteApqnvaIpm/VcPGpqf5xd/vyj5PkneVtzU5sBp/Y5fBH33cc/U+G02GQ6/j81j9tvyr/UMgwdZfj/KsqyBRRRF9Ho90jSte1f5fk++vOXZpTiOOTw8rEtKQP0eoLZj37p1izfeeKMWWYdhWAckeifa8vJyvV0PJDyI8PvmwUm32z3V5NGfGz+PSikuXbrEk08+yfLycm2N9g6qsyxFGIYsLS2dskT7nlRNR5CfM1++860n/DXhy4yeudFa1y0ovPvIn2P/1TudOp1OHTroWR4PcDwgWywWNUD1TrimULvJDDXn4y/r+GPBjRAiAX4diKvX/2tr7f9ZCLEC/BxwBXgT+FFr7Un1nv8T8A9xsOH/aK39lT/ucyKpiQLhFioUCIu2Bm1lxdY8/N6fD6/KMVgk7ol+a7tHYAx6MYcyc4uc4/Hde6SqekQJF6UvnWzH5jkaiQhabh3NXGKuCEJEoTHComRE0Imw2rpylHXOIiEEMggI45jFeEwUJUzGQ/r9JTAGK2TVRRmn0wlDhJCYMkUXGaGMK02HBWFRQiHjmGw2xioLEsrZnKDTRamAII6Jkg5lK6MoC6Ry+hIlBSpMCMOYdtQmDhcEckieCJZaLR7vrXNtPOH3dw758r7g9liTLgrK0lTtlCyRhDiQoASlMZTWoouUPE+Zz0fsHu5ikAgVocIWKowJVUQQxgSV9siYKqm3LCiKnKJMKcqFC8GzlgToImiJSsMTSH7oUodPPrpCt5WQZzPmozHZfEGeuRqkUgIZCFQY0WklBGHIoL+EkRYpJGEYo5TEaEthIAgExui6QzhaEwQuIXiis0pobLC6RIUxqt12V1SxYDGaoO8mZPE9omDdXWW+ZAGAZZHOuLtzh6+/8hrjuaY2HRkQheFoMeL+8YQgfJOwTi/Vbm4pKUuD1oa8tGjX1cBFHHjA/BZ/I395b0Nu/EXda/yi0AQd8O1v9GeBjn/f1tYWwKkyCJwubzV/51mGZsmm6UryIARcyco//TeZJf++OI4Zj8dEUcRoNGIwGJyyrjeBjQc8XhDrFzjPQvnmnP5nn3Dsn/7BuWg8W+Tn0IMR79zxrqN2u81gMODChQu8+eab3L17l+FwWGegNN1hzRRmDwB8uevg4ADgFOhptprwi7TXgXjGzLM9/r3+/f4zH330UZ5++mk6nQ5pmtatC5rnxQff+bKgB29+vpqJ0033lD8WL/ZtOrP8a31OTlmWjMfjWgsVRdEp4OFHmqbcv3+fl19+uU4LbrJ/s9mMw8PDmiHz++CP2QM/vy9NMfRf5vGdMDcZ8DFr7VQIEQK/KYT498DfAj5nrf0JIcR/CfyXwD8TQjwB/BjwJHAO+DUhxKPWhYa89RAQB9bZtoV0OTTG1jf8KlmiEvrWb8EXp5RwNu/ltYjzF1axaYotHTiRQqBw4XFC4MU9YMvK9uzcNFQCYWsNVklsqcFIx/wUGSIMsBToTFZNMhUo6RY94X4XxDGlKQlUQBS3sMJ9ZlHOCWWE0Nql3+LaEggUusgdK2AttbxWgC5KbOGybEgEKo5c/k6WIuMWqpW44w4Swk4Hm2eY+QyQ6Dyj1ekQJwlhoBgGY6bzGUk+4+LmGuc2Vnn07n0+fy9jGnSwR1Oy4ZzUWIamZJ6VZBgklqjSbFsBGoENBVqAFTnaZNjcnYNsAQtd/cFUQFIKQWwtHSBUgo6UbElBbBUPSs0Do1lKFH/n8XU+cmkJWy6YHh8wHc3ICwcYrIEoFoStkFCFJFGbpcEyZZEBmnbSRkYtTFEigwBJ6RxwFVsjLRBUNzYLcdgC63qKxUmHKI5RBNi8QLUTlyA9HVPuSeS1B1j7VC1uFzikZLVlOBzyjdde4d79/RpsOw3Mw5DE0mgXBvnO+E7Hn/+9Bk7lfAB/5M3+7O+aQuKLFy/WC6pnTZoLNzzUPDTLSs1+RL485J0qXmsB1ExL07brS09eNwPUbqqmG6sJpvxnNxf95rH48pRnLTx4aAItD0R8123fHTzP8zrd2OtQvA17a2uLjY0Ntra2ePXVV1FKMRqNGI/H9eLcFKE2BbD+PDWBpwcx3lLePG/N+fZpvr4k53tWJUnCs88+y/Xr1ynLkpOTk5rhaWplvDbHZ/f4efB6m2ZJ0J/Hpk6muS2/796+7c9RkiS0Wi2m0yknJyecP3/+lP6lqQMbDoe88sor3L9//9TxNktKHuS9Mx6OPxbcWDeD0+rHsPpngR8Gvr/6/U8BXwT+WfX7n7XWZsAtIcRrwHPAb3+7z5ACoiBEKFUJPKv+UdZiUVDl2Xj/SLNI1Yz4U1JSLKak+YzIWsfYCAHSoERVupLuCRpdIvwNw1aNM8MEU5RYLarkYgWiAKVQcQC4jtLCWpQ2DuAgQIEQ0rE3YcxikUGRsRhP6PRWKLPcmbqsW62FlKg4gfmMsmoLICP3BCOMwQYKa0tUFCKFIh0NCTsd57rBpetaLLbQTqsjFUYFqCBEhY5SlhiysqSVtLBAGsaM0ylqEbG8tMq7bj5GL7nH128fs3jyPIVI0Pf3WewdkRclC+taJWoLJ6WhNC7NeL8oyAPY2FimNeiT5VPe3DmmNAKlJNudiI1WG7lIMdMFQlj6SrCdCHpSMk9hdyE5lob3rnX40ae3uDyImI4OGR+NGY8t84Wi2xOEkaC9pAjjgHbcpdvpM5+PCcMYq1MipWgPlhiNRoRSIpREVP0cdVk695qVLuPIGBDKaWyUwixy8iInxaICiYxDx7ApSdRukR/OiLM5ZWuOkm2XoiQV1riFYO9gl5dffYXZPK90MQ+DJt8Zf7rxF3Gv8Yu0Z02qzz0FYjwg+aOGXzTP2pmbYWd+O2dLAP6p2peoPDjyT/6+bOPLVL7M5LfpAU8YhjVr5EtTTUeNZy2iKKpf1/wcD648oBFCMJlMaraiOT9N55ZfxJu9ncqyrBkJX6ryoYCPP/44SZJw69Ytzp07B8D+/j6Hh4c1wPGf4/sVedG0EIKNjY362HZ2dursnV6vR7fbrTNo/Nx5Ya13GhVFwfb2Ns899xyrq6uMx2OOj4+ZTCYsFovaZt7tdmttTKfTqW3n/vP6/T6j0aieh2Z+UbME6efVMzxe77JYLOrz5q+VVqvFyclJDZI9IPXnpygKDg4O6vBCP/6ysy5/FuM70twIJ1D5feA68N9Ya78ihNi01j4AsNY+EEJsVC8/D3y58fZ71e++7VBRjBAGY6XrTyglVmg0VE/NOLu3dc/PAJKHCN/LisPAiXpl0kIJ4cogYYiwJVZrrC6dv0pYqPoHIbzNMsAKl+uCLt1CZS3COA2MKXMELay2mCJ1fapsjApdaJoKI4IkJml1mI1GBFJAEKDaEaFOKNKUQClXxrIGoRwbYExJmaaEYeTkIVUZRUUR+XxBELdIllbIhkdIAeFgGWs1ZRWYJKygzFIsGikDgjDEakNQlWgQirlZ0G25vifD6QSDYHmwwqM3LrIyaPPKq68yNAn2xlX0zYu0prt0J8eESmCNZTjNuXeYczIXtBYWsdLjr/3YjzDYuMi9u6/z2f/pNwk6XdbXNxG64NrGFutxm3u//P9DzKYIC4tFyJ1ccL/IyIKcH3h8jU88to3Nxjy4c4d0kpIvJFkRsb3dYnmzTZrNaCVtlnorTGcTWkmH+WzKbHJMJ0ro9pcpC81sdMTKypZzYqkAGQhsUV0pXgBqnA4niEKiJGE+TSm1YGELgjSjTAtE7GqUSbtDcXhMOBLo3pBQ9at4Agdi8yxnb3+f+w8OKBtupYfhBe+MP+34877X+Kfp5oIEnAIh38nwJSSvw/ABff4p+qxwszq2WpxaHcspC3TT5eQXryzLakDhAY4vebRarTo7xZeEvO6kWRJrMkXeZdUUSnuQ5DNS/ALe6/UAahDnS2i+NOf39Wz5zOtkxuMx1lqWlpa4ceMGS0tLvPLKK5RlydWrV7l+/fqp5prePXRwcFDbn3u9Hj/6oz/K5uYmd+/e5Qtf+AKtVouNjQ2MMWxvb9NqtfjCF75Qd6n26cTzuXMhPvnkkzz99NMURcHdu3frLBaf77O5uVl3+h4MBkynU5IkqdszxHFMv9+vy0jLy8v1vHqB8Nm8JF++iuO41t14kXSzNUW73a5Fwv1+/5QDSwhnfd/f369B3TvjOx/fEbipaN7vEUIsAf9fIcRTf8TL3+rh9Vvu+UKI/xz4zwHWez3i5SXS4yFCxSAk2uTVBeCyiyVuofbwxtb8zUObeK+nSEfHhNurJJ0eGI2MA1AtbKkxWYFUEgKJ7HVBayfoVZLFwRHkhqjTRgYxKnaiYVMU2NJpYYSUWFO1bNBgjcboyr2lAlScELUcwFkMj7D9qmGlEKSzMVG0hiw1QihkECFUiClzyjwlLNoQx8ggdJWzKEKEIbrMCeM2cmmN9HgfawzR6gYqChESdFaQDY9d12trKSfKsV5RjLYaqQSBDGjFCYtsQbfTIS/mPNifMugOWOr3uXLlIicnR4TzHfIgYb+7grl6k36ZsWEWWJ1z8WCf+7v7rB1Z4ms3ePf7Pk5nbZPNKzcRnWUm0xGbW+fJs5SD+3tcec9HkLuvcvR7X6bMJGlpUEJxbjnkB566xBMbXfbv73C0P6QsQKmAVjfm4maXzqBDWsyJwpAkSui0+izSBePZEGEL8mHJxrUtZCthdnzkci/CCCc3NmAqsSUu2A/pyofWaAIVECct4BhB4UqPxqCzAlFqZBwThCG9JGJ8/4j+xWOsvgCi4ggtzOcLHuw+YDRZVBe3/TMBNXUbkf+Ix5/3vabf7zMYDBiNRqeo/+9kNAGDb1rZ6XTodrs1G+PLTL6kpJSi0+nUmSVBEHB8fFznoZwV2J7Nw/FgyTtvPEDy/YJ8WrF/rRCi7nPUjN9vhtx5jUyTtfEAJY5jBoMBw+EQYwzLy8u1wDjP8/qzgLoJoxfXeq1KHMekaVqzKnt7e/R6PQaDAY888ghHR0f1nHc6HS5dulQfl9aaw8NDdnZ2ODo64sKFC7z//e9ndXWVy5cv16Wcra0t8jzn/v37PPPMMxwfH/PCCy+cyvBZWVnh6aef5uLFi+zs7HBwcHAqpG9jY4N+v18nPMdxTLvdrkPovFh7bW2ttqN7B1rjej31vQc3fj68ZslfZ56N8WDYByPu7e2xtbV1CiRa65qx7u7uMh6Pv+Xz3hl/9PgTuaWstUMhxBeBvwbsCSG2qyepbWC/etk94GLjbReAnbfY1r8C/hXAY5ev2KUnn+Ho974ChUYbXVP9YAiE60Is7MOoPyGaT8oWKaAdazpdJ6gVSiDjhKATOZZESmxeYKtykhQKIwRhN6BMF5SjCYO1Zcp8hAzbBK1WJUZWlGmJsQUiEC7wTzpnlDXGBfMJgcClGQfdFoONVUyWg9GOOZASJSSL+Yx2r+v6Z3kLo8VtoyydY0oqKHJEGBG02uSjE0ozI+x0aa1vM9+/T5GmRCtrqHYHGwduGxku4TgvsMaQLlLKsqCkJLeWqAyIVEArjphMSwgCJrMZutRVxkMfUxgurK2zPBpy+OYh0+1HSFfPs2RLNjsD4m6LzY0h09WI9Y0tBtvnaQ2WmEzHfPkrv8E3vvES1kB/sIxKWqxcuYF+/csu12ceEEcxH76xRVenfONrb5DllvWtFQaDHkEIQSCxaGbzEf3OMkE3YTw5odQ5YSCZTCdk4wIKRdhpoa1lNh+hgggVho7aEwKDRpe5y9ORVTNUAcJqlAqJkjYyCtFZSSE0ut2lyHKCKELG7lrrddscjKdoPcWIAmGVuxqNZTw+4f6DB6RZ8WcKRf5jBzbN8ed1r3nkkUfsY489xvPPP39KBOxHU5Dpx1sJjuM4rssZTbDh3++BimdJPNPhw9tWV1frRdVrRJplGf9zM5rfM0J+EW2326ytrdVsiv8cIQTz+bzOpGmWyjxI8oDFa3SSJKnbGXjm5ejoiDRN6xYIZxknv1g3LdrNFhNJkjAej+tu1P6zer1ezZqMRiN2d3dZW1tjaWmpzm3x7Eyv16t1O/1+n+l0ype//GVefvllrLW1/fzSpUvcuXMHKWVtlX788ccRQvDCCy+QZRkbGxu1Xdofy3w+r8+jb3zqv/c/+3YU0+n0VDnOnxd/HTXDFuEhwxaGYS1WbrfbZFlWAyQhXDPKyWTyLf2YjDGMx2N2dnbq1grvjO98/LHtfIUQ69VTFEKIFvBx4BvALwF/v3rZ3wd+sfr+l4AfE0LEQohHgBvA7/yROxFFbD/3QVYefxyEptQZ2mic+gaU0FVMXyWhqUTCUrj2CxaBVNDpd1jePEfv/CW6567T3b5Gsv4IYX8JlcTcfu0B3/z66+gsR0lFGAQoJSiHU9rLS0T9LkJJdFGCwDVcDCDsKlqrA1QcEbRjglbimJdKgIzRlX+3Eha3E/qbq5jSkM/mrnljEGFKjS4N6ErsqlzCsTHOgozANe+semGpVoKKEmdPzjPCTof2xjmsLpjt3mGyd5diOsMagUwSZKeN6raRSULYbhN1egRxQiQlk8kJ2WJGvlighGLQ7qGLAiWgNDkqEMzTMccnxwy6XbZ7MU8EBdeKEbPRCd+0EZPzN4kv3qBHisrGSKDX7bC5fd417JMKGQYYUzKbj5mNRyxkB/PIo5x/+hqfeOocYnjA7p0D1jeWeNd7LtNbWaYwJf1B3wU3IukmA1pRiySKsLZkPDnGlJp2q8toCu2lAardIksXrqFfELs0YmPdObCgS5f47Nk/r/oVShKHLYIgAmEoyozFfEqZLlCB0y1JpWgnHYqDPY5u30brBdoUrkN94QLH9g4OKI1jct6BJH824y/iXhOGIe9+97u5fv068FBMe1bI2din+qv/3us9fJLt1tYWm5ubrK6u1rqNN954gxdffLHOHPGsxmQyYTAY0O12azbEl4b8wr60tFQ3umzajz3A8UDGazZ8Fo0v8TQzbM46o5rlN6/J8SJcL1LOsqxOFDbGcHBwUCcXe6bGAxAP6rzORSnFeDyuO3ArpeocF8/MKKXq4L5er1f3XPKC48ViwdraGtvb26eEzb4Du+9s7UtZPiAQ4Ny5czz++OM888wzzGYz7t69y9raGs888wyrq6torWvnk7Uua8Zn/FhrGY/HtX5oNpsxGAxIkqQuY3mWramjOnsN+eFBr3+P74buS41e++V1N3fv3q3zknwZ6+TkhP39/XdKUn+K8Z0wN9vAT1W1cAn8vLX23wkhfhv4eSHEPwTuAP9LAGvti0KInwdeAkrgf//HuRekVKw8+hR6PGW+t8f0/n28fFhgXdNBK88sIrbq/eNeszQIeezp97DWX0VZCaZKJyYDSvLxhL27B4QJrgHmQCGkJNs7wJYF7bVVwCKDwLl0ygLZaSPjCBFWoX1SYEu3iAppMboAqoaK1rmmpIqxEUQ95/RJpyM6g1VUUaCzBdlsTry27BocClU3IbBGuxyeIHAAR2tkFKM6XQeK8gIVloTdHh1pme3ukI5PyNMZUXeNqNsjaMVOY6QUWEtoQBWSQMaIbMowGzOcj2lHMYWUxHGCNhAGCYXO0MCDvQN6nS5BlJClC1b6Ax5tS/aO7jNftNlTbcz6Dd5842VWREhvdZ1uf5nl/oDReIwxLvJ/98EtjkYTzMWnWEonXO+WpIf7hCrm0iOrHE/GvHF7n5WVVS48cokoVOiyRBgJVbdwiSAMY6QMSJI2o+mC2UywcX4VYwXTyQStjWvZIF0Jyho378YYCp0SKFlF1QRgXSpyFEaEocTqHN87y4oAGQUu20hKwigi0ZaD23dZv5ARhy2ssZR5yng8YjiZYuw7bMuf8fgLuNdIrl27Vttnd3d3v6Mda7pUer0eTz/9dN3RGU4nvk6nU+7du1c7a/r9PlLKWkDrU4CbQW8eHDS7NTcD4posk19EmwFuxhgmkwlLS0t1ZP58Pq9zXJrhcX67fnH1bEu73a7ZiqIoagB2cHDAdDqtS00+XLAZzudFxh6ITadTjo+P6/TmZiqyB1y7u7s1a7JYLOrS1eHhYQ0WlpaWeOONN7DWsry8XDd1HI/HNZP14MEDjo6O2NzcpCxLut0uJycnSCl55JFHGI/H3L59m+XlZa5cuUIYhqfAiAcqnoVLkqTujbS9vQ1Q62bO5gT5f74M2RRhNwFMs8ToP8ufaw9+7t27Vyde++vCu8u+nZvvnfHtx3filnoeeOYtfn8E/OC3ec+PAz/+He+FELTWVll5/GlmD+5SjEfMhyOnPRGmUlLYKrbf9Q8Szr+CEC5A7vGnr7LcXkFqgfWhfUmIZU45WzDb2Wc8XnB1deDEyIFgtn9AmS3oXnYKfpPmyDDEFgV1OV9JUCFCioczZgxQIEVVEoJamGwFCCORoSIedCjLjGw6QypF0umRpVOsdvk6Qro8H2MsRrsSlxc5Y53WSMURJo7R8xllNiMMeoTdAZ0NCUe7zOYjUv2AIp+Q9JYJW90K4AjnApLC6UVMQqdVMNQ5WliUkLRVQFYsKAonlo3jhCRRTLIp3VYHbXLGh/dJOn36ScRWp8XyyZCdW29y69Wv8s3BJbqPPYmOeuj5jG6nTVFqBIKDN18luPMy7J5wjOLWUsBSOySISsrplE6vw9bWOoOlVQgVxWzG5OSIpf4qSEGaTghEwXJngAxjTmYj3rh1Qr+f0B70yBYTZrNjhDVEYexS8ALhkI3w9khbXylWuQA+YQOiVuKA3WJGUZREpXXCcOUs4sK6cuhKp8fubIzWc0zYx2IpypLpYspikX7Hl/c74zsbfxH3Gq/FuH79Ovv7+0wmk7rbNJx2SjVFov6flJKnnnqqbljp80P8k/9isWBvb4/JZMLly5cBB0J8ief8ead3zvO8LlM13VX+n39fkznyC1zTwu4Fyr1erxbSegaomSvj3+MX42Z5q2ldPttdvNPpYIzh5OSE+Xxe63Y6nU6dxeP3s+nC8pZxv+8+udjvt2emvFvJGMPh4WENnnwn8J2dHd544w16vR5Xr16t56zdbtfamtu3b7O3t8fh4SFSypoJCsOw1kVtbGywvLxcu5eGw2HN4KRpWpeHfEnqzTffpNfr1a0RzuqLzlyDb+m288xQkiT1nHoA64GQ31a3262bifpteYdV0yX1zvjOx9sioVgIQZC0aG+fY/Xp9zB5cI/0D34PUeQoRNXxWdRtGJRw4kvpYmpYWu7w6OM3EUY7NsVaTLFARCGmWJCNxhw9OGIyK4gQ6FKzODohm0xYuXkdgUQvFlijUZ0WpAoRBpRpisidPViFsbMaK9cIQgQBQgmsKRE2xPoLXgjXbVwZbJETqJjZ8IQwahMpRRDEeEQkZMUI4XQ36IpCVo4NAldGUXGEztKq2WaOigKi5QEiChAHAfPJEG0npNpgtSDqdlGBwgSu5KckhBI6EvKyYL5Y0DIlrThBqjYmz1jogrJ0NvfhfEYnaVOUBUoqssWC0hTYMgdRcmFpQDLa483Xfpvh4W3SG++jNJbN8+erhGDQOxmT/SM2eiXn11dY6fdZWV4hiEPKoiQtSkRZIjGUpWU+HVMWJdo6V5uSMSpqo6KIyWTCnTeP2ds1fPj9qyAV81mVXRH3CCL3VCitdiGCWoMxGFM4Z5xSDh5b7eZcCFfqK0uyrKDTLhCqanVghXudELSUItA5eT4lShyPqI1hkWVkua5Ey++M76bhF9rNzU1u3rzJ3t4eL774Yp1d8u3KUkDNJDzxxBP1kzVwKltmMpmwt7dXp/L6VNnJZMK1a9fqxdQDAA9OfKNHz3I0bddemHw2XbZZmvH7MBwO6wX0bE+qJvjw22qyDb6M4u3k3oI+GAyIoqhOG/aLsNfnNNsANAGhX5y9UNm7f/z2fSnNNwqVUrKoXKD+GNfW1uqSzfHxMRcvXqxdUv41BwcHHB0d1aXCwWDA8vIycRzXLFYzSM93Ofdz4I87CIK6lLW7u8tzzz2HUorhcFi3r/Dn2Z//ptPNz6G/Vprz7ctMzTlvsoEetHmhOTx0t51tAPrO+M7G2wLc1KLbdovOxYusPfNeJvv3mL9+2yUP+4yaM/9AIIXlytUtuqHr21TqHKzF2hJpSorxkPn+AffvDFldSUhaMUESM76/S9KJ0eMU1WuhkhYyCFyjTJlSLjKy0QRjSsIkQSUJYadFELcRgXTGLWOqHamoSF11vxKuhCVFgAwUs/GcNJuyfX6DQLl9s1JVHSQVaNeywd1khNPyVDoRKQNsGCPjBJ3N0XmOkCEyDgm7PboqIIgSJqMDdDonFyOMyYhafYI4wUZA4CzokZS0y5K8LNG4Ro1Gu75LZTGnKBau/YUKGE3GDJaXmU9nrK60mUyntKKEVtwizwu6UYdz6ymjbM439x6QIvjmm6+hjUZPJiwfT+nPIBgI4iSiTBdEgSsxlVY7TUyeshiPnasLy+r6JlJJLDHalAynY9L5lAd3J7z5IGFtSbK6vky+WDCZjShzTdhLkCqEyrZuvSgPp2dy56fKNNKiyhkCrKbIC7K5IW/nLOY5KpgRJnEVmKiIk4SeSRBWV+GKzolWao02pvbtvTO+e4Zf5JMkYXt7myeffJKDgwPefPPNUwuTf+3Zf1euXKkj7psdpY0xdanr7t27LC8v13qOnZ0dOp0Os9nsVOCdL3H4lFwPAnyJyOs1mj2L/GimIPt/Xribpinnzp2rF9Em69QENv79TUbIJ+V6EOIXfi8yjqKoThv2pbOz++odQD50r1nC8YDPAzlRZessLy8znU5ZWVmp82WSJCHPc5IkYX19nSzLODw8xBjDG2+8Uc/5fD5nNpvVLRK8YLfZfNM3jvTH7vtY+fM9mUyYz+fs7Ozw4MEDBoMBa2trNWuT5zm9Xq/OqPFz5pmWP4pl8xb6+XxOu91mNpudEhv769HP1Vnx958kouCd8XC8LcCNqP7PCku4tMTqY+9ifrBPejSknMyqhcQBB4TzS8nqa5KEXLm4STE+RlMh57JALbUp8xOy8Yzx0YSTWc61cz2CMAYLi8kU8hSlIqKsT9BpI5TEaEO5yMmnM7L5jHw+Ailpdfsk6QDT1SivbREgRIC1pQt4Q7sFFQCLFQKhJO2lPne+dpteN2Zlc6PSfrjMFOEOxoULWu2OU0lXZrFghUbEIaqMnatKl5gic+BKKWQS09rYQgQBs5MDisUUTIkwrs2EtSEqiVFhjCGj0+8jlKTMSwcy0BgkRheYIkcoRavbpSjmjI8LQhkyOj7A2IKRNSTtDgudY1SAsZpyPmUQHrF++THSKCLq9HnwlV8nzDOkEhS5xGpbdSxfILUDWt2ki+z2kSog0BqsQRtDlqcs8hnz6ZB0MmN4kLF/1AICrl3tEbdbDIdHzOYTVBgSqbAqRbmvRhtKXWKsISDA2qq/hnBNTq21FfjVFGVJnloW8wUnhw8wZUar1SaKE4J2mzhO6GS2Lj3aiv0xxlQBk+8Am+/m0e/3uX79OsfHxwyHw7r08O1GkiRcunSptuV64a63E/u02el0yvXr12tHzmw2qwPa8jyvBbHeHu4X6Pl8XtuUfenHswVN11QzrbhZ0vJBc7dv36bb7bKxsXGKQWiCnCZbAw8Bne8l5dkGb532Fu+1tTWCIODk5KRmoOAhwPOtBPz8eoDRTPH1mh5rbW0XPz4+RkrJ8fFxDTZ8acvv72KxwFrL+fPn69LbV7/6VRcFUeUO+QaU3hLuS0Ne29NMRPa9p+bzOdPplKOjI46PjwF45JFHaLfbdTmuaZdvirvPaqHOMjP+9x7Qzedzjo+Pa+bOl+fiOK6P7+x739Hb/OnG2wLcAGDBaIsIQ1rb26w+9QzDu7c4/OpXKcsCbICtnpUdsHH/W17r0Q406XSXKFIESRsRQpHOweYspmPGR8d0upJuOyFQASbLsEYSBiGLoyNMoZGjmbtYs5QiXVBq1xZBhQlCa0yWkuPEqYF2+Tk+fNCBrooRqLQ0UgYY6TJ02t0OK+t9Do8mRElIsjSojxmokpKrnlnG1iUuoVyuD9Yg4xhVlJjcukTjUiOUY46klLSWVwnCmPnxHnk+p7QGdE5QdgDhtqVCVChot9qUIsMUJUZYjC2waLfoa8dSJO0OVhuSMMZiMYWhzDLSLKUoS0yeU8wWlNOC7uxV0uVVdBlw9fp18uM9OlHIxTdf5rkbF+h1WgShqkguUTF1lZcf1+rCak0+nzCaj8mmY8r5nMUoZzpRlFpx/Zzg8tVz5EXJNJ2C1YRRmyCMHH+ic6xSlNoVL43RDg4bB0Jk4+aOkNhSIIUkiCxZkZOnc4q8QygVotRgLKrfoSeWSbUHSZ6t8fv+zvhuHV7cur6+zqOPPsr9+/f5+te//i2W2yaAWF5eJgzDOkfGAwq/KE0mE46Pj2vNiG+G6T9rOBzWuhhfcvABeT4nx1qXBuyBlhf7NlsRNJmaZrnJA6P19XWOjo7qULrmaIKZpnOquSB7gAMPu503U4992JxncPx++td4RsozOL6791mLvf8M3+/K26PzPK/nxgOW6XRai3wHgwFFUXD9+nWGw2HdoPPmzZs1iGmOZuqvB24eTPoy23Q6rUXD29vbPPLII3UDSmttnUfUPIZm81M/p83z4/95bZC3hHv9jQe4xpha79MEge+Amv95420Dbiy47tiBApXQOneelaefYfzgHsXt+wjhGgwClUG8clFlE9LJbTqDHmEnQsYCgcEYTTZKmR0eY4qScxerrq5JRDZLiVstwlYLMz5GpylFmpJnC0qdUhY51kqCMCQQAUiBLtNKBexcVogWWJdtI4R0LRiMRIYSU2SVMFiCkKgwYm17iVdfvMPS8sIBIOEXyKACN+ZhhcO6UEBrq6eEqi0AUQhlgTVOg2SKwoEWKZFhQLS8hFAh6mSPYj7D2hm6WsxlnCAjW+mHEgcIlIRckJeF2w8lMUbUotpYuZYTKohQ1tndtS1dnoyUREFIFKYE1hCMjlgOlvnNX/5lJpNjVim5HhmWlgdErRZWl5iyyoUREimp5kdU/UcNiyxlNtyHQlPMNWkq0KVie9ny5Lu2CULF4fCAxXyGwOmXAq+DsoKycDdYjK7YnACkOxVWVJ+HqMIXC9Jc01mKkVIgAoHrnuVC/crFAtGKaYuQfFGxNY67QSqFrBm6d8Z34/CLr5SSzc1NHnvsMfb29rh3795bvt7rRbyV29ugwS1q4/GYk5MTiqLgwoULdS+h+XxOkiQkScJ0OiXLsvqfZzDgYYPL5mLoSz9NxuYsmPEMiAc+YRiyubnJiy++WHfSbpazmmLX5u+aTJB3+fh988yD/29eh+Ot297e7PfJAwH/WqBmcJpBhM398ECt6Szyx9zcprW2tqR/5jOfYTKZEAQBS0tLLC0t0Wq1TjEqzfny8+C7nHuw6VODy7JkeXmZp556ijAMa9bGz2vTKeXt32evkbMAx4OXPM9r11wzGdszSN7y78Gw/+c/853xJx9vG3ADtnYkWQOyk9C+dIm1Z95HOZsx3R8BFompXVMC2FgNWRr0SAYdgpYrLVltMPOMbDImH88I2zGra6uU85Kw02L6YJ8wcjk5SgisEJgyx5gSq43LOxHOIaWE6ztlSidS1kJRhhEiUAilKl2HrVJxDdoWyEAhg9A17pQSXVG8+5OQaH/Oxcc0InbvR1R/yL5OWxps+LB1gKW66ahKYa8CrNBY4dxUWOss5EKBLQk7bRCbSHlENp9iF1NAYAQIlSBkhBBOtKwC18RTlwVKBWCoHGgu1FcFIVjrunvnqZt9vUDnJUWas0hTWkkX21tBLK3wLilpiQ7Pn+wh45hxCG/ODBdVSlCWjqEROB1RoEBV+TNKAAFFkVGmOaKANNMUhWB5YLh2Y4Xe2jKLxYL5fIY2mjAIiaPYgWHh5tc3xHQhQuCaZzpAJ4S3bRussejSUhYGFRa0ej3iVte5qkwJQYgu5qisQxIHMD1xTTD9+VAK9c795rt2NBdyIQStVovz58/z5JNPMp/POTw8fMun8LW1NQaDAf1+v24m6csls9msju1fW1sjTVNarRYHBwffIrRtZtA0Q/6aC6dnOnxo3Nl4fw8MvHbHL4SeRZlMJuzu7nL9+vVTXaybAYE+ZNAfp//qGSlfhmkOz84YY1y2VfX6JsCBh04z/71P6m32T2q2pfCtK5qAz2tlsiyrhcc+B8jPxXA4PNUXy4OjJtPUbDzqf/bb9Z/hwce1a9dYXV2tmR1/juI4PiUQbp6D5nXV1N40y3BN91mn0zl1HfrPD4Kg/kw/3gE3f/rxtgA3PmUYa5FCum7gxhCtrLDxrmcwiznzL36BYFZgCRFIJIJ2BI8+skK73ybstF07A18rni2YnRxjKOmvrdLtDRhOj1BRTJ6ldJbcBUYQYbRxtmERoGRNKCBl4HQrxmCtAlOi89T1L1ISIRQiiRzSMtUFaNz3VlZgTUqsMCzSgluTgKAlMEKgZICULikZa51+p8pNsZVTSiIdV2CqYkgYIkNXwnElsGpHhdOQWAMyhKjXQQYBdhhQTIcUszFBBaAMjuWRYQjGEoQxYZQTRzFpKNGFQWuLMVUcvCnQeYEtiyrnx1BMF2Tasry+RWd1jZcP53SWN5EKLp0fYNbPo1XAzmTEg4nm8nTOk5FhK1aVvqikLF02kFCSII5BqqoxpWNgrLEsdQPWN/osb65Ras1kPiVdTBBWEoaJC+8TAVpbdOaeoqzVFQQWCFuBPmTN2kC1OFAxOsaQTxcENiDoRIRFiZLO/WbSjDCJMce34cq7QIYIERIGCSoI3lHcfJePpnBzMBjw+OOPk2UZX/rSl+ondj+iKOLKlSv0er1aM+PvNfP5nOFwiLWW1dVVer0ei8WCKIrIsox+vw+4hcqDmuYC39TBNEXKTdGtd3k12YFm2aJp9/asRJIkp4DTWwmTm3PRdGL5LJhmo02/v55V8Bk7fgH2gKDJJHnXln99M8HYi309APAaH++c8h3Ay7JkbW2NlZUVdnd3awbE/86HIz548IDj42N6vR6dTqc+dq+9UUrV5UR/HF4P1Ov1WFtbY3Nzsz6nvtzo9TYeOHn3UnMum8d81mHnhzGmtnV7674HpF4E7dtbNAFms9/UO+M7H2+LWfOGI5f4C8YUaF2g4ojlS9cx85zj269z8vIblNqVBiIp2F5L2NpwabUySdwfe1pick02nVOmc8JWSKc/cLoRnJ5F5yVBmGCKgrLUaJ1T6gyJQgXCsTK2qmdIiRQBRhdYK9D5wt2IMFUzxi6S0AX9Wbd9k2dIGzrwI5xDR2tLbmCUUeXwGKexqbQcogI5rjwlnO5GSuemqpG8dPbvotKS2Krnlqz6C5QuRRcZouKE9uoGqQhIJ8cUsxFGa0Jjsa2WCwsUgJIEcYtWXjCLp+TpCfliSiAEIqqApBAIJdB5CdrSHgxYHqwQJQm0utx5cZ9l/Q3CXpv1938fF0PF19+8T7K0jBSwZ0ry4R4fKMesDJYQ1dSiffsKiUwiAhWAEZSlIQgE/UGLle1NgnaXWTpnMjlB64Iw7hOGLZSUTmCttQNKgDBOmO6kPeFDZkv7DsYVW2QhkCCNQacF82KEMpKg10UKQSgUpiwILKiT18lntwi6jyKlIIoDwnduON/Vo7mY+wX3/PnzZFnG3bt3ee211+qFV0rJysoKm5ubJElSl6O8TXc2m5GmKVEU0ev1Tm3bp9p6NsEvpr4E40FO063kGyt6JqQJYM6yMD4vp8nq+P1u6nneqgzV1Hc0S0V+nHUGnXVrefAVx3ENMppW8aYzDKjBhS/ZeV2Nd2E1Bc+e3fJZM154u7u7S1mWdDodnnnmGZRSvPHGG/T7/XpfvabJt3PwYMyzYU1LtxcjDwYDtra2aLVapGlaJxV791pTH3MW1Jy9nppz6H/XBDG+nOUbk3rQBDAej+uGoU2L+jvjTz7eJrNWhd8JhcDpJYy1KBUStvp0L11h9V3vYXZ4RLY7x2IJpODqlQHdTgukwpQGXeTorCCfuzYDVgiSbo+o3UKXhqjbRRc5xhRIqTAYjDWunBMmTpwaKJwd22tpJCbPEFZSLGYIaynSKVKXSCuQKnBGHFHlRQiBlU7zI5REBCHISmkvLak21WJs3fFKBbZyTQXKrbtag1KurKJN9RpR5eIICEMwpSuhSAW4fBtrcM1ChcM7QkqSlVVkFDM/2aVcTDC6IDLLqO4AESksAiEiwigh6fSZT8egQEUCEyhnDRcRmAiVWKRqOX1KEKFabVKruX84Iem2CCXs/tYX2FpdoWNgkaUIIQmUZBh1eX33TYTWTpgZhU6XK4Vr+okDHxZLoaGdKAarA5LeMoXOHWuTLhAyIApjwoo5KfIMU+XSKBmAkA6QqQBJlVkjnSaKsroBWUsUKNqJS5DNS0MgLXk6IwsgDmI3p6YEqwkyy+GDf8/S1YtYBEqqd2443+WjCQb8U3273a7j+4+Ojjg8PAQcGLhy5Upth/YZLXme1y0PwLmDfLic/+pTbZvZLU1NSpMRaWpo/Da9BgMelij8fjd1HR4o+Sd+eNiI86xex28LqN/bzM45q3XxzId/b/NYPCPjw/PCMGQ0Gp0CVk2Rr7eadzodptNp/Rl+LjzL4/ex2aJAa83BwUGdnPy7v/u7rK2tAQ5o+mMXQrC/v48xphaBN0tK/vz7OUqShJWVFXq9Xp2D0wRd/m/dn4umbsaXDs+CxKYgOAxDkiShKIo6TylN0/o6aFq+y7LkwYMHtNvtU3PwzviTj7fJrFU0q7BYA9q47BUVRshQEfX7LN94jNnhHtPhl2EGSSjY3hpg4jbEbcqiQGeGcpGRz6ZkixlWWVQUozpt8llB1AvJZ3NU0ka1EuLBgHhpgCkLByDALfbKPeG7xpgWG8foKEUFimw+oSwy0CVlOql0MxLVUshAYYWB0iAsBDJBqBChJEkS0g4FhTYYXfWVAqwtEUK6fB33i8oW/xBgWWNdGF0gEFoilAMlpiqxuDqacSUfKx1DtVgggxDZTojDAVJKFsNDssWE9CSnJRVB0MdWYuYwjmjpHkl3gCo0vdaSS2u21CUcaV1ndBmFEMbIVszxvX0OR3O20pxO0iK2ljLLuNBf47VFgVQGqUJE3OLNTBLt3iVJYpTqYEtNELkbD0ZQ5gVFbshywdpqh97KBlYppuMJ48kYbSEJ20ilMNaQ68IBGiuQOObLQAWaIgeUhRMIO2bQnR9TFhRGY4wmlAFaaLLSEGQZUbtDaTUSCIVACIWyMcNv3oPBvyNsf5wszVjkZ1w19VX8zvhuGWfLMK6BbLfuXP2Vr3ylZl62t7frBN+iKGpg48sXfpH2abQ+cdb3LfIMhC+5+OG/bwbD+X1ZLBa1LqQpLgZOsTcenHlw4/NTzpbA/OLb7FXlh9+2ZyWaGh9vefcL+9kF3PdK8iyN178sFgtGo1ENOvx7fD8q33PKBwGeZTw8U+U1L/fv3697T/mSW5ZlrKys1PZ8zw7NZjOKoqiFuj6Q0B+3Bxp5nrO6ulq3qRiNRnWfKs+S+bJZ81ydFWn7/W0yOcApW72fO/+5zUaZTcDkE5m73W4tPn9n/MnH2wTcOK2JMV4lXzWWlAIpFCJUtNc3WLn5JEf3bjF98QGdbsL9aYv7L81Z206IshHrg5hWEJJbQ5HOUUFAknQIOl2yw306yy0WJye0Bl0HLqQkaLdBuOA9i7MA44XNpSt3mEIhwwgZuUaW2cSVbkqdu7wTIYmkxNrKrqlciciEQeUMUgShQiqNthZdpFjbqXJtrHMOyYoxCgInFNYaVIipHDxCuPKVC+QTWCRCBFQe+ocLq5BgquCnMoeFRoYRUbdNkJwjGI9JxweU0xFBGCKTBFEJE1tRwmB5k9nokNJa2lGMNRZjHcNlq7RoGUWYICAvC26/fg+ZC+bTlHJ1ibi/zGw6pLe0zMbqAA0cjY85OTji5HjOQlk2FylRECGtJUxipJIUtmQ+G7FIDVIFrG1tEHbapEXBNJtRFCkyCBFBWCUeCbTVYJRrpyHdeRBQ93yyuPKdq4EZp0+yAt/AIwwCKARJIEh1QVm4HCFdZhBGYDQCCKxlcQ/06oLuIyNOxkfM52dvOKICOO9AnO+G0WQegFNMxerqKtevX2dnZ4dvfvObddfmF154ga2tLcqyPFXy8M0qkySh0+lwfHzM0tJS3RiyCTqazIsHC0DNjvgyiWc4mmUev5+e4QCnafElr+Yx+EXZl8HOHic8dCh5YfHZhdmDIv85wLcAoiZA9GxEt9utu4z7cLwwDInjuN5WFEUsLy8zGo1qG/hZG3TzWMqy5I033qht4SsrK3Q6HebzOf1+n9XVVay1jEYjjo6O2N3dpd1us7m5We+773NljKnDDqWUbGxs0G63yfO8tml7sHg2c6Y5b368VSZNk10Dahu4L1F6vZE/b01gt7e3x+3bt7ly5QrD4fBb9F9ngek7463H2wLc+PRhJRWlceJei3vSrnotoOKIeHOdlZtPM9k9Jh6sk1x6gihpcbD/gDu//zqt5S5P3LzCIBpAb4qShmhlCRlH5PmcnkzI04zBxhoyjPH1Gxe851JtDSVo7cS9uqxkNxKRuH0RwoBcQghJvphgdEk+H4IQBLZDEEZgqjiXMkeFEdpYpBR0YsVkVlDmpXuBtc56XHm/HHvkl0eDMEUlSMYBGwtUImNXalGgC6yVFVtRdao17ri0sYi8RMjQgaZIEQ+WUSogHR9RzCaEMkDGIdIKoiggsRGmu0Sa57TykiAMMEJgtaBEuG7oQYAVhgd3bzM6GrEdhHSLjBxBbDTSWkyec+WJq9x87oPs7+7y6V/8eV76+kvslobk/iE/eL6kl/SJK1YqWyyYjiZkheDShWUG65toKxnPRszSFGMsYeROmZLK9c4SAcLa6jQGThSOK8u5OaqCEYXL1nE3Gx9g5sCOURYKd37SzJDNFxRhQhJErtwYOHfF8vIWg8d+iOP5gsPjAxZ58ZbX8jsMznfHaApN4XSeTRRFrK2tcf36dfb29hgMBmxvb9fup6997Wv0+30ef/xxlFJ1uWowGNSLmJSulcDq6uopR9RZ0WlTQOwXdM82NNmTxWJRC2y9w8uzM/DQSt7chmcvvt3x++EBThN4+YXZMwtN3VBz/5uv82DNgzOfh+PZFg9WPCPj8118awNv9W7m5XiAde/evboRZ9Ot5LU/jz/+OO95z3vY3d3ll37pl3jhhRcYDoe0Wi2uXbtWW8T9XI7H49q2v76+jrW2Lkd5sOX3oelkazJczfnz5/AsA9acS8+AKaVqB5g/bn+sQRCwsrLCzZs3mUwmHB0dvSVzc1bz88741vG2ADduiHplsFVpxifaKBmBkqhWTOf8BVYev8b2+RssnTtHeXLEWmAJL10gCBX3X99Bneuj5DKql1AGbchL8rSAoqJ94wTQIELHElUMSP3sbTR1qJ71PztYIVptRBgjgwhOBEU2xxY55WKCxGDavfpwpFLMZiNe/+ar9LsR/UQymYIpjQNvKqjAFcjAuyJwuS1CYIWibsUAuAVZNto+uL1GhUhpXBmtclZZGyDK0pW4jEEb7XJxsES9HqZ0tKjAIqxw1m8R0jJAYsmEIcsXBLKLksKlPwuFrXJ1FrMhD3Z2iELNpRVLb6XLTCrSo2PiUDEfjmEyJJCCd7/3A2yeu8S5c49w95WXuHv/Dl8fLXjSWKI4IkhiRkeHTMcLlpY7XLhyEcKQ6WzOZDYlz3ICFSGDGKXaRGFU2bElyp0kLAorNJgAKQ1CtF1bC2Md+CMACgwuq8dUgm5tXbSAMAJdWLJ5QZlk2HYbGbRcCdAKBudvEHR6zA+PODw8oSwaT7BVn7P6fNjvjL8RjWve1c2oWLl3blh/3uOtFofmYhbHMVtbW9y4cYNz586xvb3NaDQijmMuXbpEGIbcunWLc+dc091Wq1U7gLzexAtS/bbPinL95zcZi+ai6ZkGD1zOlqiax6GUYj6f10xTq9ViOp2ecgo1X9sU7/rtvJWLqrnv/r1nM2rOury81geg0+mc+hkesk8eqHg7tAcRzf2UUjKbzdjZ2SEIAtbW1lhdXUUpxcnJCUEQ1CJcpRTvfe97OX/+PNvb27z22mvs7e2xv7/P6upqXSI8PDys84ouX75MGIZ1SKBn4Zr9sr6dHdvPa3M+zoIND8DOnudmXy0f+OiZou3tbdrtNvv7+3WH9LPX7Z90vNX7/rIDo7cNuKmBhPNSV6F+EimciFbJEIEiXhqw+cQznN+6AmVOJ1bEq316lEx3HmAkXFtbQZd9WhcuEfciJm/epr8yoEgzolaCDFyZx51vCRQ485MDMeBYESEMtiyxOF2KkAohQIUhkg4YixwLinSGzufkVTFEBQlCghaSe7cfcP/OlN4TS0SqxBhLlmvQzhllHUVV2c8FQoXVPlHlqjQWSwvWGsfY2CrJWFY3LYMT08rqtaJKJQaM1pjCfaas7OlBq4OZDLHaOPaj6p1EANa2UUi0LslMSYhCI9HCABpbWvZ375GnOZ2eJQgNK9cvMl17jL1XX0G2+xRFwcraJuPRMVduPMmVq9f5e//4f8diMuKLP/WTvPQ7vwUHY55WEWoesHvvAXQ3efRH/z4dM2O+d5fjwxPmeYmVATJMUEGICpQLFZQSqYQL7DPO4i2txIgqVl4IZ0Srsm4ccpAIFKDIjSEOJVJAmRt0AboUaA2mrGIJQuXmuCywxQJTasajESeHJ14a5U+TA0jClcQ0p/+bpyZF9Vt/S6lDmqv/M9XrbKWl+st96/kPN5rlA3+Db7Ik/vt+v89jjz3GuXPn0Fqf6gm1u7tLEAS1dXhzc5Nut8u9e/dYXl4mTdOagWkChyaIaYqZ/YLnX+P3o9nKYDKZ1GUT/7pm+N+dO3e4e/cuN2/erHUmvmlkU0j7VmWns2CvWRo6W0Jrll3OBs15fUlTS+IDDJu5Op7h8QxJkxVqbr8sS3Z3d0nTtBYmX7lyhaWlJd544426J9P6+jonJydcu3aNRx55hH/8j/8x0+mUn/mZn+H3fu/36saiQRCws7NDq9XiU5/6FEIIDg4OTomI/eu89slrhs66zppzdxbwNcGEF20L8TDjqJn87M9jEySWZcl4PK7bUZz9vOa1fPZ3bzXOXoP+d28FyP6yjLcNuBEI31yhKgWp+nshBVKGTr8Shqxun6fb7ZCNUrqUGAtBUVBYwyMX1knaCbrUKJ0jowQhLctbqxzdukNvbRkAW+TOhq1ckF0NIKTLr3FsjXHhesa4tgg6xwMPISDsO5bGGIPO5pR5gRULwtjpbLQtGQ5LVBgSBy0SNcZYS5GX6DpDInSJtypCxBEOpVDlsgCVLgfzcKb8Yi2EqJklgaycR1VX8epmZqXAEjh3VQmmBBkYRKBQiQNoJs8hCBHCEipVWdoVxpRoa7BWVOm8CoVkPhtxcnSEFJZOEiGigNbKKt0bj3J4/y7x+hr57h797hJbFy5jsARxQgdLu9Xmoz/8Y9z+6m/zylwiDw5oz2Yshik3PvZ99D76nzCcTOlGAdd0xmzvNvnhDnY6wwx3kYsZssgR2mBN4cpO0qCExJS5AxCWCogprBDoMiewD0PX3JxCkVvMvKSYW+YFFEZhS4ASGQSoMKnnv5yPydOUw9ERJ+PJQ4BSQRYlXQVVWxC2ITascg4qTOn2zZFNyCp+x3W3d3OMBdcgXjg9l32nzPVnOZrsSbOM0/zeL/oevHS73VoY6xcgYwwXLlyoXTzeFSOlSzy+c+cOKysr9YLWZE/OAioPEvz3TZbDDx/8ZszpTtFex5PneR1o5xdlr7k5q8nxoMKPbwdsmr87W2LxPzeFwE3w07RNe7Gxt2M3reHNUlSTtfLbmk6ndb8nX4pbWlri2rVr7OzssL6+zv7+Pt1ul4sXLwLUbFm73eaTn/wkX/va15hOp+zs7JDnOaPRiA9/+MO8733vYzKZ8O53v9uFrO7vc3x8zHw+ZzKZ1ExZk33xc+FLZ/53Hvw1m1823+OTkBeLxalz4uew6RJL05Q0TTk5OWE0Gp06T03wfVbb07yuz4LpJivWPL/NqIC/bCDnbQNupKQ62Y7NkJ5ZEaYCHi72XyhFN2wRh4KwGxPnIUWeM80L2v0u62uDqju0QU/GlIlhcfCAcLmFLko6/V71hG2wpUXY6o9bSoSsRHPa24ddU0xEtRqB075ojbEWEcdE3Y7bv2NNoTNMISlZOHao6vRdWAXSEitNWDVwFMKJc61yTimhKneUlFV7B1HjGIFbAa2t2IGiwNYZze731rjQQCGVow+ExVZPhI6WcpyYwDWXlEGIDDTaaGzh5ltFkdMVWYOwgkAEFLqgNCWm2iVrNaPjQ/KiJAkDkijGhIIgabP96GN8/bOfYbS/S3uwxN7O64h+xNrGOUf5hxFGFGzceJKt849z7zd/g+f7IeeHcx65sIFstZkvFvy3/4+fRwUxW+dX2dha4/yld7FybYl2J6KbRKhiDukUW6QwmyCyGfrkiHx4CIsxZj6lnE/RWY4pU1eCQlc0in+6LCnzEp0KCiuYFSFWS7QpQCpUHCPjCGM0WheU6Qnp8Iijgz1m87SaeVdGDATEypX2jLUYC1HgBJTtTky/12dzc5vlpWWK0jXqW6QLijwnL3LSLGW+SMnyjLIwZHlOlhcUpUC7U+cuPb/g/MX9Wf6lG82F+a3YjCbQkFLWC2qv12MymVCWJVmW0e12WVtbqxfm6XRKFEUcHR3VvY98eF8TsJwtBzU/6+zi0mR5pJR1DyZf8vL70rQL+9eeZYz8Z5xNO25+/1b6o7dqDNnc52ZmT3Ohby6eTbdVs89SE0h60bD/7/69w+GQPM/rkpIHStevX+eLX/xiDWzu379Pp9NhY2Oj3n5Zlly9epWLFy/yG7/xG7Xz6MKFC7TbbRaLBT/5kz9JGIacP3+ezc1NLl68yKVLl2i327RarXqOi6JgsVjU4MizaB6wNNsmNK+1OlS2er/fXvO8evG4v07m8zmj0YjDw0Nms1m9Lf/1LFPm3WTtdptut8vm5ibLy8sURVG7+Xzys9f6NNt/+O/PMlPf7WDnbQNusP7m4spSQsiqf09VKrKuUWYURCy3u4j5lG6ckGxvY4ylvbGGmI/oJAG6yImTGBnAfP8OlAusjomioIrrV4gocWwGPCwZWFH1fapWcqSzdyMwNsPjHFN5o+08Q4SSqNvFlgVmuI/WuVuMqhC/JIG80BSlptSOSUg63YohcgBICoEw/nN5WEaxFmFNleGjq+Rgg8sBqgRuSiGMywUSylaslwNISgikUiDASOXIIK0rIbU7rjJ3TTPDOj/H/QEFQeB6LDXs+UpI8ixlNDxBWGi3IuK4hVaCMApZ3d6mv76BWFpi5cJ1DBOO9+5W7SGEcztV+3TjB/4qz//qZwnCOXfbXS62W4z3dujlc4yN2d/NuHvnTYx+nbjVIUxCZGjpdhJWV1o89+GnUGFAnkZkmWBpsM3ajWWWey1asUKZAlWmcHII+3ewu29gh/uAA7bGd13XkBaSWREQICltiVSWIAwQgcCWghIox0eYb/w2s4MHrnFpVVJSQKwk66vLnN8+x/Xrj3Hj0etcvnyFcxcvsrKxTn+wwvLKKnErwRhNmWfk6YI8y0hnU6bzGbPpjPl8ymK64N7OXX7/q1/ly1/5Mvd395yGw0CpRc3kuCrud/fN5z/kaM5dU+fRXOA9qPElplarhbUuhXixWNDpdCiKorYrHx0d1U/u/nd+O28lQPXfny0TndWweEeWUoput4sxhuFwWDMh/sk9juNTrR08IGoeXxOQNJ/6/cLmgdPZJ3rPPDWFz2cZgabd239O052V5/mpcpvfj2ZJxm/fa4xOTk6w1tbhid7qvbm5WadBnz9/Hmste3t7p8CW//qRj3yEz3/+86eya/b392v2a3d3lzt37qC1ptVq1eXHTqfD8vIyH/zgBwnDsC4JLi0tcfHixTpc0AMYLwA+Ojqq7eRvpbVpNhE96wjzTq5bt25xeHhYM0R+BEHA6uoq29vbXL9+nUcffZQrV65w4cIFNjY2GAwGrKys1AJqrwHLsqzuPt9sQnr//n2++tWv8pWvfIUHDx7UguqzbM53473mbQJunLvH9Wdywl6pqoaSRlZKFoOSitwUBMo1LrSzKXmo6Gyu0W4roszZmkUgENai8xHZ0SHd5QGmKEm6XZxw07osmyoJ2HU70FihXUlBuudyfCsE6zt/u/5RVRsnjM6xpUGFCUG7Q7hIsNkCrbPKraPoJBKjq665RhIFkLRinDvKaWTqx3/v3HJoAm2sAzWVkENX2hlLhKWLMZLSuBuOQCNlgRIFMtCIoKQElApQ0tYsg2vvgHNheSEP2gULGsftOAASIJSGUiKFEx2XJmc6GpEucpI4dE+1cYjAMRVhkrD92E2+/ptf5OTBLu3zA5489yGMLl3pTAVVICHceP8HGGytkrBPmES8cjxFTu/SOToiSWKMzcmKDGsF0lrHssxLJsMFH/jI03QGA3YfDGm3W/xPv/YHHO1PENKSxJJ2J6bdjlnbWGL74ipXr97kXc98P8Of/b8RFwu0NpQGpIa0VCwKxaIMaSmXchxGMSqKK7bMUJY5ZTald3KHy+WUWArCbocrly7xzLvezUe+7/t417Pfw4UrV2h32g74qMDpp4SgvjdZgJA4Tmh3u+g8hbVVZBA2iEHH9v3dxYLDwwO+8fJL/MZvfZEvf/m3efXVWxyejCm1O4d1C4m/mD/Sv1Sj6Xhp0vV++MXZL9geXKyvr9dP9PCwm3ae55ycnNSsjQ9h8wss8C0LxlnG5mzZp5mn0tRqNBN+fWlDCFGXyPy/IAhotVqnjhE4xd40NTJ5nteLsQc5flhra/2O354//mYZrylQ9u9rznUTxPjjbCb0Sinr/ffsiAeWSZVC7233169f50tf+hK7u7tsbm7y7LPP1ttuOpze8573sLGxAbgy3sHBAcPhkOPj43qbHuh4ndJsNmM0GvGBD3yApaUldnZ2aLfbfO5zn+Pw8BAhBEmS1AzP5uYm58+f5+rVq3z0ox/ll3/5l08BRQ9qfHsJP2c+O6lZ8vQNWj2z1ev1uHjxIu9+97v53u/9Xp599tlToZJnmbrmdRzHcQ3C19bWTumsmsD58PCQl19+md/4jd/gy1/+Mq+++mrdWPS7FeC8TcCNfVj58eLLiqkxRlcJtsIF5BlLni7o6QJdlEwPDslOjljfGGCz1C0YRiNMCe2qxhwq8tmcKFQIESDDyDlpAhClW3itkM76LVygHH6hp3LAIBDCYq1zcBkLuiwxRQ5GoDptou4yRltsmWIpsbqg1Q4IJWRZgRCWXisgilwWDVCVh2RVTnJuKK0tOi/RReGSh5WinCfMF30m8z7DRcIolYwXJbOycCUjXdIOBSudgG6QsTIo6bQOCaMJYewM5+4PwFI17yLsdlBxgs5SN89FiUyiyl5dPYEJiZUGW0K6WDA8PsZgSaIWQRASqJhQQSRDhFQ8+qEPI1TAeHrM5e95llY7QZcuTVmoqCrxweq5i5y/+QT3vrqPDHM+cnGbN0Y5/+7n/nvuPMiZTDoI2cYgKXVVCsQgrEbFIa98c4ftc6vcfv0Bj3/PNb74K39ImRryHEbDGTDl1usn8FtvsLLS4b/4Zz/C3t4BjyTSnT8jKFNJmisWRUBmQxIKZGCRKkQq13urzDWLxYJFltI3hvdcvc7W+/867/3EX+fJZ59lsLrmACkOODog7G39cAbZ1O41awwqblGLx6u/AbcNSzuMuNTrcfHyI3zsE3+VyWjMyy9/nS9+4XP82ue/wAsvvcx0tkCbCuDYdwTIf5LRvFE3yyBNvYu/8fsn4OPjY8bjMRsbG/VC5RcIHyoXRRHj8bgWyp4Np2syMh5AnQ2F+3b75lmidrtNp9Opf+e35/U3Pq3Xdy73n99swuk1OH4xbbI9vi3CYrGoE5ibtnJjzCmrd7/fr9kOr+XxrJUHdD6wL03TmsHwpZim3qmpO/GsjWfBmgnMUkqee+45pHQtH5566qk6FdqDUj+Pm5ubPProo/zhH/4hYRhy7do1jo+P+fmf/3l2dnaYzWan9EJNwXaSJLz88sucP3+e1157je/5nu/hs5/9LHmeUxQFw+EQIQS3bt3CWsvy8jL/9J/+U3Z2dur2Cv768e/xwNMfk2fEfOkqTVP6/T6PPvoozzzzDB/72Md45plnWF1dPQVgzmptzl47/mdvbX+rvwE/v91ul8uXL/OJT3yC0WjESy+9xBe+8AV+7dd+jZdffpnZbPZdp815m4AbMBisfXhjcboTVbUZ0OBaPrrO1QaUqKKtMejphMxOsGGAyAsoC1QSYhYGaUtkEKJ1SdiKqlA3DYFEGokIAkxZut8roHCtE6h0N8YIVwbSpUsrNs5dhO84jcWUBWQLUAFBnKBNTmksVmvCKKLVVsynKUpK+i1FEIW+ruAuTOEaRgIURUqRLsBIdG4oTZ9pdo3bDxRvjgzHVjExEbQSuit99venCAIQOSbLkPMC0gWrkeJcvMyN1U3W1g7pdE4IgqpWriSm0MgoREUKqyUmLV3PKxNWVTGfwKMojKE0BYv5hMV8jlSKQApUEBGqCKUkkVQoFdAdrPLE930/4+MDzl9/guHhA1fC0wWEprYWCWN5/Hu/lzd/5wvM0gylJI+tLXPjA99H8NIOv/rLv0FWzrhw8QbQQmsQgcVomEwXXLm+zfb2OkWecjKaYLCUxjp9UFkSBpIy18Rxm9lC8+DBMWlRUCpFqUvy1JJNQ1ItmOmAsgKtUkjCpA0qwFjItCZtrdC+8RjR9Xezcv0Jrmydg0Dx4tdfqBa0mCiOaLXbxHGLXm9Ap9cjiCNE4xoXnvmr7PuidlKJGtSDZ3qqsqO0BEqxvLbGBz/8fbzvfR/gP/sH/1u+8ru/zb/5hV/gC1/8dY5OhhS62sY7RvLvaDQXBzjdEPLsa5pjPp/Xnb49mxLHcd0uwbMQXkDbZH+arhsPLJr5MP6zm2yK/9kPDxB8ecW/zoOFdrvNdDqtmRzvtmoeq/88rxXxwmO/Hd+A0gO4JElYWlqq2yVo7QD/yckJeZ7TarVqvcvS0lKtDQLHTDSDCb3mxCcxN/fL76fP85nP56dE0E0w4HOFPvKRj3B8fMy1a9fqbu4ePDTn9EMf+hC///u/X29za2uLp59+mueff55Pf/rTFEVRl7eaLSkmkwnXr19ne3u7BjP+NZ6R8WW1KIpYLBbs7u7WDI237ntbvmdCmqXEplsuDEMeeeQRrl69yuXLl9nY2CAIAl566aUaPHt9jU++7na7NZj2o1lybLI1zXFWk+VLj2tra3zkIx/hueee4x/+w3/IV77yFX7hF36BL37xi5ycnJxytb2dx9sG3NRuKWuRUlXMja21ONhKBCwsUbuNmBukWKCURCIJAGVBhAEiDkFJdDlBqoruy0u3qBiNKaXTn3hbYlhpGawCBaJySqEttshdfp6QWFNUAKByO4QB2uQYnWFTTdBuE7S6lPkCo1MMBpRkaRAwGk5YbgV0ggSXmFP1nTIWQXVx564DtyklZSZZZFd4c3+d1+aKXd0ha8esn1/i8Se3aXVabFxY5t//jy+hgpSP/NWb7N6dsL7V5cu/+jInhxO+drzHK/eOuTne4qmtbQb9N4nbC0RREkhJFFjnmorbjnEyTl+DlM7NE0RYvQANZZmTzsZoa4lkgApid8YkqCB0GUDSAackbsPyKlII4lYHrOsAjinxXbqFkFx897PIXocsy5FBjC0KZDbn6qM3WfrKAUJa/t4/+mGCqM3RwZDuIKbMBWubA/r9LlIKDIaV1QFRErBY5FiM6zWlBYGMUFGLLJuwvz9i0Oqg9YIsL1nMFEUpyYwgNSHaCqywlBJ20wV3DnZ5IHvshgPKlYvoKMYcHFDufR6DA8OlKRzoRThHXOiaAnbbfTrtDhtr22xtnefc+Yusrm/S6XWJ4uihfd9d+NVXcerHGuRYl+EjrAGhCZKYrXPn+OQP/U2+//t+kOef/0N+7uf+B/79r/wqO7uHaFOVHd8Zf+R4K/Fsk373i2K73a7dSX6R8O/xTIV3yfin/yzL6HQ6p7QLTeahyaQ0mRwPMJr74PfJgybPtPgyTbP3lF/wh8Mh7Xa7Bjb+s5ogybMIvlxSlmVdrvHHevnyZW7evEmn0+H8+fP84i/+IgAf//jHuX//Ppubm3zhC1/g6OiIk5MThsMhq6urtWDX758HGl446+fFgyw/P37h9/2d/GLrxdJNLY0HinEcs7y8XIO5pkbIv0dKyVNPPUWn0yHLsjpoMcsybty4wdraGlJK/tE/+ke1HmcwGJDnOZubm/T7/RrsLC8v1yCmeZ58NlKWZezv79daHN+mo9mGoQkK5vM59+/fr3/vAemdO3dqNsj/N3+t+OvOJ2J3Oh3W19fZ2tri/PnzrK2t0ev16mvz7PX9VuPs34EHXufOneNTn/oUP/ADP8Dzzz/Pz/7sz/KZz3yG3d3dbxEgv93G2wLc+KwP4XpcA6LqeaSrwLVKDyKcQ8iWJd4pJGXoLMFao8uCII7ASlQSYoeVAry0mLyAUpMe7GMtqHaHsNtFhEEldAUIIABhFGWWOUZGSNfXSYINLCIMoPD2bIvQBlNOMKmjMsNOjyDqoEtDqXMocgb9Ng/uT1hulSx1HIgQVUaLlApLpa0pLWVWUmRdDg4f4ev7EW/qmFnU59ITm0ymOe/7xGNsXlzi/p0J40lKkAha3Q7HxwuW19t0l1v84I89w/howXw048XfvcMLb+yw++Yxz20+xdrgFr3eHnFgUaFFCacpElI627PRTi8kJEqFBLKgECVl1UHdWlBKopTPvfCZHC6fR1Q3+E6nX4kpI7LFjKjdqU5ypWXCsHr5GvH6FurBPQcuTIGdDFm9ftPdgLTljVv7/LVPfZj3vP8JSl2SJDEvPP8yx0cjDvaP2D63TRhL/tP/zV/l7p090kXGl3/r63S7LW7cuMbXv/5NpqM5u3snbG5epLz7MnlWgHZsYW6cayxMMkYy4zcXhvHuIXphiFdXnPBxdIQ2mlIX5GWKtZW7DrBCE4YJYRBRxB1KDfN5jhRHPNjf5bXb36Q/WKLT6tDvLrG2us7Gxjk2NrcZrK4QhpFrhur1T57Ngcox59NxlGvEimMPlQroDwQf+uCHefrpd/O3/tb/gp/+736aT3/mVxmNp9RdJ94ZbzmaT7bwUH/QbDQJnHLvNNmdLMtqqt8zN/79/t/R0RFAzWz4Rb6p5xFC1ECj+TmeoWjuj2dWfLdwX3Zqsgj9fr92DnW73Xrx8QswUPc1yvOcLMsYj8fs7OzUjNCjjz7KdDrlB37gB7hw4QL37t1jOp3WnbmHwyHr6+ssLy/zIz/yI7Vl+Q/+4A+4ffs2r7zyChcvXqTX69Fut2vw0tTVNIFf83ibYKv5386GDTb1Ot4m70W//jObTMaFCxdYWVnh4OCg/uz5fM6FCxdqdunWrVt88pOf5Lnnnqt1Uy+88AJHR0fs7+9z7tw54jjm7/29v8edO3dI05QvfelLdDodHn30UV588UXm8zl7e3usra3V6cJN55gXRAMcHR0xn8/pdrssLy/TbrdPXUdNsbgfvkSXJEntrDo8PGR3d5fXX3+dwWBAu92m1+uxtrbGxsYGW1tbrKysnOqt9cf9bTTdcEopBoMBH/jAB3j66af523/7b/NTP/VTfOYzn2EymbxtS1VvC3Dj7MwCY7x4ySKsrQSTsiZvMAZrNFJCGCiIEoTRCBOBzF0TRiVRYQCxRM1HKCkQxi3eZZphsgU6TyknQ8rZgLDfQ7XaqChxQSUWyiwjGw6x1q/F1Y2wchy5HkYCqUBGBqtblHqKzmZIFaDiGBbjylllSNouYXm2yGm1quTjskQgMdZSpill5tiALB9wd/cGXx932I2XiZa6fPD9VxmPFnzP965z780xX/yV1zg6OEFryCpQ9fWv3abbS0iSkLXNHu9672WuPXmezlKHOy9v8OLvv8ZvnIx4X/YYa6lgeW0HMze0WhFB5SIrjcUYi1JBVaIraxF1kWfufAjp3F02rPphuc7hKFUFMPqnJYUpC2SgyNOZA4lG1/oUEERJh9UbN5kd3yErFlDk5Hv3WH5uiSQJyaYZX/mt5zl3cYP3fuAJlAwYjyfEcczeyREraysURnPn1Xtcv3GF93/o3ZycDPkbn/p+oigkzxfs/z8fcLg34t7dIe/74Hnmr/0BeZ6hhUFHAtlOoUzZwXKYWEahxBSSZToUaUE+vU+epyzmc7IspbQFYdgCaWm3Evr9dSIVsNrb4Mrl61y8eIm1tU0GSyt0eh2SVoIKXbf3UhfkWcpLLz/PZz73i3STDtevPs7NJ97F+vYWYXS6jPXwAuThEwACIV2KsSRCSk2/P+DDH/oIN2/e5BMf/zj/7f/rX/GHz3+dNCvfKVF9m9FkSM7S+f6/N503vimmX3DjOD6VGbNYLOqne+/0yfOcPM9rl0qn06mfzP3Ckec54/H4lPak6ULy++SZDw9kvK7GAyvPIPjgwPl8Xu+vB2heT+LZHs/WeBC2trbG+973Pk5OTvjQhz7E3bt3+fznP1932Palt+eff77W2WxsbPDMM8/wxBNPsLS0xCuvvMIf/uEf8uDBg7pX09LSUs1KeMeTn9+mBsjPvde8NC3zza9NPU1zEQ6CoE5vPrvYJknCtWvX6rYL/tjf9a531X2wvvSlL3HhwgU+8IEPIIRgNBrV9v719XWMMbz66qvcuHGDD33oQ5ycnPDJT36ybqb6kz/5kxwcHHD37l0++tGP1rk6ft88O+WBrJQufdmDmslkQp7nzOfzGhR59q3dbjMYDGqN05UrV7h48SLr6+ssLS3R6/XqhqkeHGVZxje+8Q0++9nP0mq1uH79Ok888QRbW1vfFuicZXn8vDfDDD/0oQ9x8yL2btwAAOQJSURBVOZN/spf+Sv8y3/5L3nhhRfq8ubbabxNwA3OlmsrVw+BkyEYg9Uaq20FfKrXhBFJr0/SHZAND8nmMywB0eM3UZ025tYr6JN9J9hUAQhL0uuQLPWxpodNc4rpjGx8gs0ywqUVbNugWgkA5WxOuUidm6kK9NPa6WysxAlOpcupEQhEq4ME9HxKPhkTDZaIkw56MsToEiEDkiTk/oFhsAwmKxFSYYWkrBxQxkC2SLi7e5WvjWJ2W+s8+tw2N5+57GJrHgh+5Zde5sH9A0zh2ioIJTHGlfFsrjk5mQKw9+CEO28ccvWxDTa3l7GxIOp2SMOQL4+PeY7H0HbB6so+QgpaQhIEIbo0CGPBFAgRORNbtaBqXaJ1UcUOFVhhMdogQgDlUoRF4ABdJW4d7tyht3mOxWSMLgon0lUVxSwVKoh5/OoVvv5VQVbkUBQwPiSS0OnGTGY5s1nBL/2Pv87+7hFPfc9jrK11CUNJv9/m6OCAOGkxWBpgrWUynSKUpNPrAJp2dwkRJMStHkcnC2z3PNOiZLKYkSWGSSHYn8NubHmgDGkGUgd04i57+ydMZw+YThfkixy0QQRghCAU0OpEPHLlKp/6+N/huQ9+hEvXLpN0XIw6Z0R+py5yBOPpmM9+/tPMJiO++sLv0P6VDo9de4Jnn/0Ajz7+FP2qQ3F1wZ/eRF2+Em4ulUKKnJCYtdV1PvXJv8mzz7yH/89/99P89z/zc+zsH73tbjpvh/FWzqSmBgYeCmc9CzIej+veTt6tcv/+/VpA7EsA3W6Xfr+Pdxh5+60XkzadP/P5vGZM/H41HVCe0fDXU5K4e9RisahbCCRJUm/b58AcHBzUWSf+GD0b4Jmnw8NDDg4OUErxzDPP8O53v7teUD/96U+zs7NTO6aamoyiKDg5OQHgwYMH3Lp1ixs3brC1tVW7c7w13s/j0tLSKct4U3vSBJj++M/mrjRLam9Vannw4AEbGxv1PDfZHg9Cr127xosvvlgLqL2QuNPpMJ1OWSwW/Jt/829q0OP7gg0GAw4ODoiiiKWlpVqLI6Wk1+vhBdMeAPuyYJq6TKsoimoHFlBrcZRSLC0tcXBwwK1bt+pmnp4t8fvebrdrse8HP/hBrl27Vs9xUzNz9voWQjCbzfi1X/s1JpMJX/va1/j0pz/NjRs3eM973sPNmzfr8/LtHFFNsbefT3BA+FOf+hTPPvssP/3TP83P/MzPsL+//7a617xNwI1zmTgXUonFgxxRiYyd9sZ30UZYiukYqXOEcdTdbLagdXJIfKyxowOsKRCRy6mR0hJ228gkRM9KdJ4h2zGJWiWbjMjHx0RV8J2ME6RyGTu2LBGhy4lxLZ0sVpfkWV6XbsIoJmp1kHEbqw0mnVIu5oTtDmGWUeQFKlJ0+y1evC24bkCXGpRF4/pEuT/ogJPxTV6cttmJN3n2Y9dI2gknx1N+77ff5O4be6RZ5lpRKIlFOU2yACstQoQYU1QP95K0yFld7RInisuPbvD+j18nHee8/Lu3ufv123Tz97N38KtsbWYIa2l1Wy7EL88qnVN145cSbSqxt7GYqs+AzyNCCNckNEqgauipjLuZTvcfEKgAK3UlCneMHF4/qyTLF68iQsk8mxMaiR4fgU7pDxJ29yYIAcPjMb/8i1/i93/3df76J9/LxSvrTCYTgkAhpWA4HNPtxuzupKysrzGbTsnznNff2GH3wRgDDIdTDseayWjBvXsjDkeCYyz3As1eakiNYFZAGJQcH++ySEuKSt/u82yKssrICSSdTsiHnvsYf/vv/B16K8tVPzD/6m83vH7Msr+3Azi6fjafcnC8x+8+/yXOb1zguWe/l/d94MOsnzv3EOTUfypnbx5VM1PpIgqklFy5fJl/8n/4L3j2mWf55//X/zt/+PyLpxaH/9iHX1DPzslbaW78AtEso8xmM8bjMdPplMlkcsr94hejOI7rNFrvYppOp0yn0/pzPIshhKiFqU0moizL+onYMzee+fFC1TRNabVadQaLdzHdvn27ZgmawMmDh/l8zvHxMUIIPvKRj9Butzk5OeF3fud3uHXrVs2AeL2Ln4uzDjDvrvJalKtXr/KRj3yE2WzGH/zBH/Dqq68CcHh4WDeo7HQ6RFFUH9tZkPlWgKdZVvNsRjOz5+DgoBb2Nlk5v99SSs6fP1+zO0B97gaDAXt7ewCcnJzwi7/4i/zu7/4uP/RDP8SlS5eqe407v8PhkE6nw4MHD1hbW6vB1K1bt9jd3QVgOBwyGo0YDofcvXu3tlR7NsWXBP32fC+y5jz4kpQH1+9///v5sR/7MVZWVt4yuuCPAhV7e3t1aXA2m3F4eMhXv/pVtre3ee9738sHPvABtra2ToGc5vab3ze1Y0IILl++zD/5J/+EZ599ln/xL/4Fzz///NvmXvM2ATcVkDGmkh1YV8agEvZWglQnSrUIXWIXc8JWQNTrEHQShiYnPdwnbLm+S0L5lDWFFSXaGEScEAQR5SJFTyfE6xsgBNn4kNwIQiEIlUJFCSpaUMwWrp2BDF3ppSq8SOWe8HSZOZGs1QRRC9XugoAynRGYNlG7Q6GP0bag2w04FAu0amF1Qa411gYI6yjZ2fwyLx8m3Cr7zO2C9lIMVvK5X3mR0XSIjQ2djuWTf/u9tNuW4+M5r7y0Q6fTYzQseLCzIIk7rG32uXpjg60rKzz6vksIq3jxq/d585u7LHcirjy9zfzCEnc/9yIXht/D0cmvE60rVK6Jk5CAEK1dY05hHHCx+AaUwjVOMgKBQqCQQjmrflSlO1fgUyLIpkOmOxq5sUo2mxC1OrXVmerV/a2LyDAi0wXCBpTZMeV0xPlLG7z48j2sFZTaLSx7+4f83P/wRT71Ix9kfaNNlmpW17sUWUmepWgrOHn9Pr/9pW9w69V7jEcp1igEBpENeeFn/9+MX7/FKIOJNdwRhntjw6y0zKpGmi1piAVkFieerjQvQkAsIbOCKIn563/lh/lf/Wf/mFarxcOHpj8K2DwcRVEyHB5XosAWukqyTvOUyWzMrbtv8Gu//u/46Ps/wfd+7BOsbm4+fGr6lptY9bOsQhIBa0sGgwE/+IOf4MKFS/xf/uv/is994dedZupP9wf6l2681WLQBD3N7/M8r8Wb3gl0fHxcaz2abii/4Hrg4p/eV1ZWAE6BG6+/iKKI+XxeL+B+kWnm4zTFxl5zAdTpve12u9a0+FyTJkjywwOmvb29upw1GDjm87Of/Wy9kA8GA374h3+YVqvFyckJ3/jGN2i324zHY3Z3d4njmPX1da5du8alS5d45plnEELwta99jVdffZVut8sTTzzB+fPn+dKXvoQxhpOTEzY2Nur59HqhJjvQPA9nxbdN8bEfHgAtFgsePHjAyspKXZI76xLyziP/md7ifvHiRV566aV6fowx7O/v87M/+7P88A//MOvr66Rpyvr6el1uNMZw69atOhNmPB7X56coCv7tv/233L59uz6vPrvGO9D8cTT1R8399XqrKIr4xCc+wT/4B/+gziz6TnQzfniWzSc8+3305dI333yTz3/+83z4wx/mB37gB9jY2DjF0LzV53iA6/djMBjw8Y9/nIsXL/LjP/7jfOELXzh1zf2HGm8TcGPdE7Epq8m3yKq0YfGt7d0CGyAQiwVWp+hcEkYtTJpipxMsAitDRJxg5jMMuQM5MqSYDSlbC4JeC5nE5MMTrC4Jez1MXlAUc8r5CBkFyHYb1U4wZUmZLoDCOYikQgqLitoYU6CkwpSaYj7FFoawXTE4pXPRBEmHMJ2hy5JWKElFTmE0s2KGVYEL5MtzirLL7aNVvpmGjK1FW8vnP/e7bD4WsP50yvkYwjDG6JJ3f/QigZGEScRjT6/TG/QYnkzYvZ/T39omXE4QkSIfZfz6r7xGkFjOLbcod4e8Pko53JuTp5pskpGI8yyNr9BObruU4zygM+iBKJ0zjQrMWFP97ACOEQZdanRYonUJGFTcru3t4PRTxXzK3ou/z+VP/hhlkWKts9G7Bdi9rrOyTtjpkU9nKGuRWE7efI2Ll6/SbikGS32GoxlpaomTmHSe8Ys//+tcf3ybp9/9GGvalQpv397j1Vf3eOmlBxSpYTwcEsYJnU6L1XjB5tEfcu/VW0ysYaIMr+aG/cxSGMj9k7S7FJlZCCV0lSAKBNZYtIXcgEXw3me+h7/1n/6v6S8vURQlIitAOseU7/L+1kDHMZCj42PefP0WvUGflZU1wijAoCunoCRVc2aLGT/3Sz/Fb33lc/zg9/8NPvTRj7G0tuZu5s0nNuxDMbI1IEzl/tMkUcCTTz7BT/xXP85//c//Ob/4S58my/L/6AHOWy2cfvjfN7UzfnHybpj5fA5Q25sXi8UpgfB8Pq9FxHEcMx6PKcuSXq9XsymLxaJ2vPiykl80m4FscRyfyqTxZQ4f5Oc1OEmS1AyAt1j78pMvJXkrsmcVvMPrc5/7HFevXuXatWvEcVwzQx/60Iew1mW9PPXUU/T7fYbDITs7O3UabhiGTCYTPv/5zxNFEaurqxwcHPDGG2+wv79PlmVMp1O63S7z+bzWF/n2FE2dkQeVZ5/8/TnxC2Ycx/V7gFoc/M1vfpNPfOITdR6PH/5cetHufD6vgcSdO3e4dOkSSZKwvLzMaDSqgwPn8zn/+l//ax577LG6/5SUkjt37vDaa6/x0ksv1eGNPivGd2N/+eWX6/2dTCbM5/NT9n4P1Pw58EJhPwceqD7zzDP83b/7d1leXq6BqWfxzmbcvNV1fnJywhtvvFEnF5+NBgiCgMViwS/8wi/wpS99iY997GN89KMfrTN1zv6NnC1febYsjmOefPJJfuInfoKf+Imf4Jd+6ZfIsuyP/Dv88x5vE3AD2rhmkhjX1BEhsKVnbNyN31pDLAoiCZS5K+9kBSJUdLc3SMopxfQEGcWIpI3OKpGTdVkyZj7HxAEydOnHOs8I2n2i/hJ2VKCLgnKRE8UxMggIWgm6yNBFAUZjbeHKQqFTokgVIhCu91A+QwhD0Ooi4o4LrQtCwqSDyTIiYQkDgUagUURRQpAE6DwhHd7gtRPLKOiDgrVrmnD9kLv3C7Jhm3ymXRnKaiZ3PsPH/9pNJvMxZV5y6cpljM7pDwrmB7vc+Z05mxdW2bzYw0wX6LEl6rd49NELzOYpz8/v8crtB+gy54VQ8tHWkxwd3aLbhkBIhKq6axfaTZukcn6VGOPE0KYoKaMMYUKkLqC02CjC5xTZKnRRp3OGL/4hl7/3byA2L6CLHCFDRKW7wVqS3jJJb4XpyRGRjMizAn37Vc7/Jx9g0Gvz1NPXeLB7SBS1OHdpk/HJmG98401e/+Z99u4fsXF+g9u3DsnyBXnmWBFsQJbPWV5a5rFHEvjmlzi8fYuTVHMkDK+UhpmBWAqKqgN9UN0kUmsJhSCRVckPQdRSTBea3FpuXH2Ev/7Jv0XcbrNYZIRhRJoVGFPy/yfvz4MtO+77TvCTefa7v72qXm0oAAWAAEgC3EkQAAWJsi1SoiibovZoa8Ix4ZbdcneMLCvc7vEfHdF/dkQ7HGFbMxqPLYmiPTQti+AicCdAgCQAAiCAKqBQ+/L2u9+zZub8cW6eOlWkKFIoUhCcERXv1Xv3nXu2m/k9v993aTQi/NBHAePxiH5/j8lkxHQyYTablnELccxjX/sK/a0RWaKZjma4vkej1SSMfIQsJx3PjXFkwKn0JBf/5AJfe+zzPHj/3+a+B3+SRrtVm3gEpefSnCdiNEZdXRxcx+XokWP8y//1f2N5aYk/+Pd/SBwn/10DnDqnw1ZdrueA1HkGlqNhQx9XV1erBdXzvAr02AXDesjYBQuoPEza7XZFak2SpKrw2HTrujNwXRVUz46ybRULcOxxhGFY7YdddIBqH4uiYDKZsL29DZRtsfX1dXq9HpcuXaoWYXtvbWxs8P73v5/pdEqaphw9erQCabu7uzz55JOsr69z8OBB4jhmOp2yuLjI8ePHq0yj8+fPV+BwaWmJvb29SqZuAUZdKXZ99MP1Cdq2fXe9B1Caprz00ku8613vYnl5uapc1cNKW61WxZ2Csnpx8eJFfvInf5J2u81dd93FxsYGvu9z8OBBRqMRJ06c4OWXX+by5cusr69z5syZqnpjr5ONZLjppps4e/YsFy5cqMCMNT+sX486af361l8URVW159ixY3zwgx+s+Due51Vg27Y+oawG9vt9xuNxRV63GVKPPvooOzs7lSrOgjDbKrXv7zgOZ8+e5Y/+6I949NFHefDBB3nggQdotVrXfHaub4XVPW+sfcC/+Bf/guXlZf7gD/6gulf/OsZrAtwYQKnSxRZpSqKuKNsbAjkHNmUYZtMoHCjdfHVBHs8wvk+4uoyXFGSjkoSsZhOKdEI+m+EGHjJ0wJ0HHbbbeJ12CW6aGtnwcIsOZjqFPMXkDUTgIH0fN2piDBTZFKPKxV4It/wqnTJs0w9R2ZQ8HiGExA0jjCol5F7URgsfOZvScgXCD/DcEFlIjJBkicO5zSZ7rQPkSrN4PIbOkP7pRUIWOXKoy76DHfYfXWbz8pSLZ8+ysXmFy5fP8+Z73oLrebQXl8iShLVD+3mvH3L+xBVOPr/DmZNbvOs9N6ENtJdCZlnGG995GJA8/+x59grNxSxgKV0jTvulyVaucV2JMLIkmRhNoa8mk4t5V0lTAtKiyFFKI8MIIeZtqvmL8jRGZSlmNJjL/Eu1m6nKzxq/1cJtd5lkKa4Pwmha0106rYilxRaNVsT+A6tEjYhmJyRqeGQq59zpLY7dssaTT56h3Qq57Y6jFLlmNks5f36PTrfDG+5owcWnuXzyBMNMsSc1z6eaVBuaniRWZcilI8rEjUyXwKYhoVAw0RC6Gk8b4sIQBj533/NmlJBsbFymKHLG0w4CuHjpAlublzlz5mXOXzjLYDRkOpuQ5SlFkaMVFEXOZDxhNBggPZ8iLxgX5VPmYHeAHwW0OhFBw527P6c4uUeSxTxzcsypCy/xxDe+woc+9Mvc8cY34VrFg3TLT5FRCCVLmbuac6VUiu+WpmX/y2//LwSBz7/5d3/ALE6u6XCJ0ovhNUUI/FENu3DW1Tj1J+C6B0u9sjCbzXBdl8XFxQoo2GqKVbkEQXANqGk2m3Q6nWu8aWzlxlZTrP9LPQrALnxAtUDXs6fqRn52gbdtC2voZwGEPd40Tdnc3KwqHzYg8tKlS0gpOXz4MOvr6xw+fJiNjQ3Onj3LxsYGFy9e5N5778XzPBYWFkjTlPX1dR566CFOnTrFiRMnOHnyZFXpWVhYIMsy3va2twHwne98p/J7sRUqy7mxyjELFOotwfo/25pTSlXGd3WejpXTWwNDuy37Gsv1abVaFU/JAsVWq8Xi4iKtVosDBw4QhiGdTodms0lRFJw+fZpjx47x7W9/m2azyR133FFd7wsXLlQtuM3NTU6dOlVV8kajUVVJq3Nq6g7Rtk1W98HJ85wgCLjnnnuQUrKxsUFRlK1mIQQXL15ka2uLM2fOcO7cOUajEdPp9BqnaXsuBoMBrutW9xpQxU60Wq1rgKbjOKRpygsvvMDZs2d5/PHH+fCHP8zdd99d3c/fi/het1HwPI/9+/fzT/7JP8H3ff7dv/t3xHH8XfPKD9Na+6uO1wS4EYBS+fxmdEE4GFMATsXRNEYhjCIoMmTgw2huVmZATScQRwjfLx2EVYFsB+i9UZlPlRW4nocThgivtNaXUZNiNkXFM9x2B6cRYrRCFxkqmeH67fK1no/0ipLnY3J0UYCKka4LrkIKFykE0m+RzYYk0wGB4+AGDZAeTiSQRpD19+i6Lp1GVFZGtEKplDS7hY0sxCwucvNRxeqbWixE99J57zpLR3tIx+HUty7z0pk+S4sN7nnXUVbXYGGxS5aljMZjXjj5HZYX1zh6+zF6yz26Kx0O3LqPW96wzHB3RpYqRuMM13XoLDS55fY1RsOUK5d2uKw9lrxb2d77PM1mkyROiJrB/MnVRZOjdV5ybkQZW4AuPWlcESGFpDAGJ2hgDKVySyu0zlFJRp5nqMEeoJHCnXNywF48x/GJFvYzGSu8UNEJId25wuknH+fnfv7tuGGXQkkKJZjNEra3+rSiJgudFt1em337OoyGs1Lu6sDKWoc0zfG8CRdf/CacfIpJnrNpDC/NgY0jBEmhyUv7Itw5sIk8h8XQQRcF48zgSCiAOCsn2DROefybT9LpLtAf7JEkMRsbl7lw4TQbmxdRRuO6ZUBreQ+XnLGiKNCFIc8z4llccZryQs1DPMvzMZvljAcT/Mil020TtkJ8z5TWB35OkeU88exjnDp3kgff89P8nQ/8Amvr6/PJvDTBlG6E8QVmllCaRToorRCOw+LiAv/of/zHaAP/9vf/P8xmcfUZdFwXiSArsh/vh/+vYdgFoL4IwrUAx1YNfN+vDOVstca2m+yk3mg0GA6H1SJtwYoloYZhWNnq29aF3X6SJNXrrIOvfRq2PJu6P44FNHEcM5lM6HQ6lVLLLqJ7e3tV8CNwTdUjjmMajQbHjh3jtttuo9Vq0Ww2OXz4MI7j8Mwzz3Du3DkWFhZ4xzvewfLyMr1er+KMvPTSSywsLFTmdysrKxw7dozjx4/T7/erRdXydm677bbKRydNU8IwZHd3t5xr5nldcHXRrCuk6uZ1dR6IBWeWr2KBW57nVVWmriKy25NS0uv1GI/HaK0rPtG3v/1tPvzhD1/jGTSbzdja2qqAzsLCAmtrawyHw6oqtLa2RpqmuK7LyZMnKyJ2nudMp9OK22O3WQc21k3a+hbV+VEWSD/xxBP0ej0GgwFpmrKxscG5c+e4cuVKVZ0LgqB6D3tv23+2emQJ63UgYpPHwzCk2+3SbDYroGlNDp966ilOnz7NAw88wM/8zM+wPp9rLEiz7c96pdGqwBYXF/mt3/otjDH8/u//ftXKhavRHNe3D2/0eE2AGwNl8rXWOO7c5E2Lqh0loGwe5DFOMsNptVFbl9FKIbRBoFGjPrq7AMIlH08RXo6ajJGOQcc5XjtC+h7CcUCaUgUlHYo4xmk2kL5T+tMYMIVCJSlOGCLd0ttGOG6ZRyWgMCkyz5GFj3HM/DUSL2iSTUfE/Q389gI02hTSJU5nTEZDFt2AdiAQjkMxm4CJ2BsEOEf38dCH7oRmwFQrOssNslHGVz/xLJlKWN23QDFMeP6VXZLZkA9+5BiHjh5DINje3eHjf/gf+Hu/9Ju4fjm5SVeyenCRlf09puOYs985y5cfeYk8bXDLbYrV9Sb3vO0Qw37G3nRM6i6xveuwti+myAowTaJGhDK6NFA0EqH11VT0uZpNageUwjEGN/CRonQMNlqV6raiNGDUe9tlNpRRiEIjZelSbD8k7dUDFKlkqjOWmiFNnbD58B9wIoYkWiJYWaG9ssrq/gPcdOgId956CO/B2/GiJu94623s7oyJ05StnQGD/pgjRxs88pmvsh5vEYmYkYTTqcYu27m5GlGgKbk0viNoeRBnBbPCUJgSPKvi6j2KgbPnz/O5L/w5RV4wGfeRssDzyrT3sg8el61UzBzEgtE5hTaoojRr9P2QIi9IszJBXoirFTEDxEnGZLRLs+XT7rUIQhfHc/E8iV8E5HnKn37uT/jOC9/mo3/v73PP29+B55dVHKSDEzbwEcTTGdpArgTe3PF4odfjH//D30Ibxb/7/f8vcVyWjYviRzvRvFaGXSztU2b953WVjV0grIqoztGxMQRWSWX9SqxyqP40bMv+UsrKYM6CH7svtpJgF/p6kKStStRzlawz72w2YzAYVG0GS2Aej8cVl8dyKgBGoxH79u3jp3/6p6vwz6WlJcbjMX/2Z39GURTs27eP8XjM2bNnmc1mfOhDH+Lo0aNAqST6D//hP/DRj3604vu4rsv6+jr79u1jMpnwwgsv8KUvfYk8zyt5+Fve8hYGgwFxHCOlZG9vrwIGFhzCtXyn6y3+61WcetSAvWYWFA6Hw2taWnXQJIRgZWWlkoG3WmV790tf+hLT6bTiDC0vL7Nv3z4OHjzI8ePHq3P5tre9je3tbdI0rdycjx49yqc//ekKbFk1Xf36XX/vWSK5jaGwr63nmgFcuHCBRx55hKIoqpRxawBov1owZ9+rbiRps8gsgLpegQZU90uz2axsBTzPq4BTURQ8/PDDPP/883zkIx/h7W9/e/W5sZwwC8bqlTLLcaoDHHsf/rjIxq8JcIMxpeLG6DJReb7yiHl4ozECjMZTKY5ROIGPnic2a50hJZgsQ80muJ0O0gdtMorZjKAdoJTGDUKEdEogIuZOukLOKzUpbtRA+uWF0kojlCp9Xnyf8vnegHCQTqkmylSOY3I8EaGL0j1WegFeo00xGTDZ3WE2m+B40dzMKqXl+TjSR2UZjvDQMmKYNtmatjnz6S+zcFgj+4cQbsDqeov1Q8tsntskSApcrdk83yfJE77x6BXyzGcwmrG5s8m+Qz/BVz475KXn/zPrh9rc9eYjrB9dIWo1aPcaNJcCouaURrjMZ//0eX72F97IkdsWaX9zk83xiKmIcNNlBpNNFlaazJKEMApR80RsrUpmijHWRm7uPyQMpiirEE4YXXWXnpNbVZ6X0RWTQSmt13pehZtvw5TquNbqOgrJbFqglnxC32XFTMniPsWli0xfEGymgpOOwAkdEB5+1KSx0CPodmmvrLJ48ADr60dBu3zxa0+hpzss+VPOas1LmWZGqX76XoVQA2TKsD1TcyD9F49Cac6cPofnCFxX4LqSLCvJ7o5jzcdAClGmuQOuFBTKUChNoSBJY7QxJfCZgygj5hGaokwrz3PI05TpJKfR9Gn1IoLQI8ty8rAkcr909gX+r3/zf/DTJ3+OD/z8L9BbXCxVbkbghhGRFEwGI1QOUFYhHFFayP/W//0fMRlO+MOP/SfS7L8PYGPH9YsIXGteVi+524XULrq2OhPHMe12u5ro4ziuwizt03RdMmvf11Yv7FNvHTTZJ+f6k3E9nLNOBnVdt8qR2tvbq4jA1jjPtm7qPje2qvCZz3yG/fv3V5yhtbU1Dh06xPnz5yv34gsXLpBlGY8//jhvfetbGY1GbG9vc/ToUb785S/z8ssvc/DgQe6++26OHDlSefssLS0RRRGNRoNPfepTfOhDH+KWW27hqaeeqiomtsJiVUhWgWbbTvYY7bDnw/7OLqj131sFUp0zdD052RjD8vIyxpiqVWJB5mAwqNpKWZZVC7cQoiIbW9ff/fv3s3//fgC++tWvVvfCcDis5OXfr+ViuTjXH+f3et3p06evydWyx2nvq+vvW1sZsryletJ7/VzUK1u2VWgNBa1Bo/15URScOnWKf/2v/zUnT57k53/+51lYWKj+3vJ3hsNhBVws+FpYWOAf/sN/yGg04o//+I8rg8Yfx3hNgBtjDHmRUoUKinn/H40WqiTnakmUTgl0TnrxBCIflQuszpHz3pXJSna2cAQmU6g8w3UbaAlSCnBKJ2QhSgWMVmWFwRTz+IFAIAkgy8HYXjwIV6JTBcJghEAIFykMWmfkRYoQPjJXZZyB6xE0WhSjPvlsTOYUKCHQxtAIwJdziaeAZOYwTkOGrkKJIc+ePEtn1GYymPCeB29hdGaHINvipo7ijrffyelXPMabI575xg7Pf7uPUppo0eAvZMRjwcnv9Dn94oA88dk8NeLES9sombGy5rDYWUBqlyxRSEfy0nObDAdjkC57quBwsEo8vkC30UAbTaHyMqRUlgGSSmmUFghn3g6UDjpPUYWGMMIJG5SwYK6G0gZVFDjSQSYxJivNqTAFjjd3PtYKDDS6CwjpkGYFsyRBm5xG4LPQdTAUZLGhm5bXTjoKleUUoxnJ7g4TA0MjOO2GvNzbT98LMNmAuxdz9vYSXkoMY20qY8G/8B687utfNGwYgtKgckOaq0rB5EhVKqVEGTqq5hOXIwXaCNSc43P1aZQqL9PymOCqzkpLyGNNnCZMpymtTkCzHaKK+ba0RIg+f/b5/8zljYt85Bd/jSO33Fx5RLl+RLsH0+GYNEkRaMJGBAiWl5b47X/821y4fJnPf/4raPPa8Kb4UQ+7ENafMuu/q4MboApBtAuGdcetu8xaeW+9fVSX9daVQLaaYIFKvTRf59XU5dF2f+pRELYyFEURo9GoCsG071f30LEVHateCYKAF198Ea01w+GQ97znPVy6dKki/b7zne/k7NmzXLlyhSeffLLyLrHtC6sGeumll0jTlLNnz3Lq1CkAVlZW6HQ6VRXLcRxeeOEFBoNBda7CMGQ6nVap2XYhrgdI2nacBTb1NG0rg6+fX3terQOzBRhWVWTPv+WtWMJtr9cjCILKdNH6Bdn9sa1DS4y2oy7FX1lZYTAYVKq4H/Q+/EFGnVMEV1VW18dR2Pu27v58PbD7XryX+u/sPTKbzWi329dYH9j3/OxnP8uVK1f46Ec/ys0331xt0/d9ut0u4/G4IhFbDtjS0hK//du/zeXLl3nkkUd+5FwbO14z4EYVBVI6c1xTghspZSUbNhQ00iFeMYCNGVqXzr7IEEGEFBFaFSU5tBnAeJvmQhfHc3FDH1XkUBQgXEQoS7l2kZdVIlGa0QkDMiyjEkyhoSgworTOBxfplknfWggcYyiMRhmB1FmpmMozvEYbNwgJm12yNCZVOZrSa6XZkkhKNU95zA0yJ6QwhqABTtxgOs4oclhpKPabs3MA5oMfkRYGB0mRJ2g8pOOQJ5pWKIilwRSGvDBsbU54092HaXR6PPKZ5ymmkpsf2MeLz/fJCo1SmtOvDJmOy4DPcTNH5E3iWYJRmtxo8iTHdTyMECitUMV8AdeCMgNToUSGVgW+18NpNOdS8DJZWxtDMY1pNZqYPENPJ/NKm0KpHCmu+k0EnS6OlMSFIJ4VFHlB4Ad4jqARQSsqJelZVoIUnZc2j8oYVAGFdthau4VTL12m6SZ4acqpzYRLRjNUJZ/mRn2cDBaglPfovImKFKDV3EDYgpf536RGU1W0KnhUU3ALq3q69u+0nr9Ww0wZsiwhjQvai5pcZRhV8qIcN+T5V57j9/9f/4pf+NAv88a33IvjOggEjh/S7BikKR8EtFZ4brmwHjx4mN/9f/xTtrd3ePbZ59E/pknnr3PYhbAOPupmcBaIWI7Czs5OBSzqjreWB9JoNJhOp/R6vWtUSfb39v8WxNQBleXK1DkZduKvE2btftcVQnmeV4Z+lr9Srxhcr3Kxx2e5JpPJhOFwSJZltFqtikNkq0L2eO1ibcmmViJsX7u5uVnJxD/3uc8xm824//77OXHiRHUeTp8+fY0PjI2HsADS8lbsdi3Yqf/fghsbyGmHPWeWS6SUqqoy9m9t1UeI0j3aAgBLcLbXIQxDoiiq3q/OJ7HfK6Xo9Xo899xzFfix6egWVN3IUeeGXX8dr5eBW9D9g4464KnzzixBPkmSqj1r38/zPF566SV+//d/nw9/+MPce++91WfJKrHqlSJLRF5fX+d3fud32N7e5plnnvmxAJzXBLiZ1+dxHK9sRVESi6UxCCMxRuOmKY1siotGZrOyPpCl5OmArDAEzR5RbxkZtRCeROcaN2qgVYZAoLOS4KrzAuH0UNm8JxkEZRimMGVWki4Q7lwFJSSqKNsrZVcqwJgUKb1SZUOZlq3ncmJTlIs4URPXc1E6RKcJWZYghKHVCpDSLXOztMLIgMKNMEgCLyT0XWKtcYOAjZHB3/9GZJrQi3JE0GR93yKRJxlNJmSZQktZqrJKoQxaaVzHY+vSiMk0p9dt8OD77iAMPaKGRzzbI8s02xtT4jhDoRC+QTVy9Mgj0XpuzqfJiwLHdSnyrFT75AbpGIQWpbmfKTDGRxWasNHD8YKyGqYV6DkISBO6rSYmT0tvIiMwqnR2BoMQEq0UQaOD47gUCqYzTZLnBH5A4DbInZzA8UBIiqCgMIAqyp9Jh7wo2PDWODGWrAagxzEbScp5YfBbEbPh7GoOJX95ZeYHGdZ/yXKjAZSxZV77Owt77Gvs93P/7fnOGEzJt/keeyZM+VqEQWmBzqEYFaTZmN5CA6EdhJjguxF5WLDZ3+Rj/+nfs7e7zX3vex9BFJYVnCCiueiQziYllw2B74VIoXjjXffyP/9Pv83v/O7vsrm187qXiNefcOstoDqIsGDDVhrq5F/LEbEeLxYIhGFYLRA2cdoST61SxbaK4Cqgqreu7KJqf2+/1hfqemXJ+unYPKHJZFKFarZare/im9QJzxbMWB+e/fv3V1UV3/fZt28frutWDrz1tlB94bpy5Qqz2YxOp8ODDz5IGIY0Go2qkmTNAuGqL5BdNO2wcQm2AmYrNNe3Uyy4scdbJx9nWUa73a7Ovb1m9faLvXZWoWQXcWukaKtv9ljtNq5XdG1vbxNFEdPptHKvthUtO26kGshu53oV2PWtue81rq9Mfr/3qG/Ttg6t+7S9BlbVt7u7y8c+9jF2dnZ43/veVwFOe49bxRhcbbfefffd/PZv/za/8zu/w9bW1l/1dPzA47UBbozBlWW0vaAMb4SyLYUxGF3gJ32cPAZPgHQxqkAI8H0PQhA6Rie7aD/HTBwm2xs0Ok2k0WgjkJlCxykqzcCRuI0AL2yUcrwgxAlCTFGgKcmupQK95AIppdAIjJr3r3GQro9B4CLRqkyKzoucIpmiixQvbCFcDz8IKAqN50pcx0OIMlBS4KGNS1ZoCjTpRLK82mbjkkM8yfnKF8/iBgLHlXQXIn4iTFi/aYG//1tv4tynPscFeRtf+cYF4uI8Kk8QspTOGwz90ZRP/9m3efu7b6HXaoLUbPdjrlzZZXE5pLfYIE4LjAavYVAqJ8szHEoCsJAGZQqMKp8Ekjgtr4kSaCWQrpk7Shc4DoSdbmnwp+eO0pQVrnzUR+ryjIo0xsyl4zbhvazkaPwowvFLz6BpYojThE6zReCFiKg0/jNGEzg+hSl5D650Ac3lScZJs4qc9mHcp7nSoTWbYIYz9sYJ+fxe8l0Xx5HE6Y3t+Zrrvrs6f1z/m6vfi3n153v9/ru3baoSjzBl1SyJDbvFlCwr0MbgewGe5+I6DhNnwme/+Cl2drf52x/8OdrdTtmkcjy8IERl5XXXosD1HEI8fuIn/ha/9EtP86/+9b8pfYJex8MCm7r7rwUQdjG1C6xtMdW5HnYBsL4js9mM3d3dqlJiF0QLbqz/jA3arIcb1kedCHo9N6JeZaoTaC1IsJwHSx61/Iw6ILF/Y5UyKysr7O3tMZ1O+fKXv1y1sXq9Hu9///s5fPgw/+Af/AO+8IUvoLXmG9/4RsXZqQPB0WjEww8/zDvf+U7a7TZSSgaDQeUWvLi4WIFCCwDrhoV2OxbY2QqUBRJ1sGGznOx5qIMe66wshKi2Xa8A2WtrSdZA1YZptVoVR8TeB/Ya1Z2OLackjmNms1kVOVHn2th9tpWuGzl+EDDz/f7mh3mtBYNJkrCzs1O1xazFgOUBPfLII+zu7vLBD36QTqcDUBHe7XWwbdogCHjooYf45V/+Zf7Vv/pXP3Ji8WsC3BitcBGlR4o26EIhXYGgfLI3hcYd75QEVcdHCgejMhAOuCAdgRsEONLBZDHaeGX1x3fRcYL0HISmbImkOWYL/IUe3ZuPYfIM6ZWVBMO8jymdMrQTyNMMo1TVPtCFnvMqJAZBoTValKnYIjCgY4pCoaZjpB8gvQgnUMg0RRgNSKQTgCgrLcKULbDpjsdtb1hh71xKPNNIOQXZoFAuSZKRZpo4zeg6CeZbn6H1zl/hwZ9cxWuGpKnh8zs7GOUghAIUs+mUJx97hsNH1xgOY3a2c2aThIfefxcvn9xlc2OIMALp55BKpDQlkWReUVBZgXIK4nRKniUYJcpzKJhjPwdhBFHQprGwALZUOk9QL7KUbDRCtDz8RgRZgk1X10qX6epaz4GOA06IAdJUEsc5eZHRiBoEflASznVO2dzxQBgyt8fFgeSZ3YtMmzGj7SscvP0YzbUO/W88SyQkWW1iD4KAWRzzWhh/1ec5Pa/yCAR5DsN+isqH84syvzDzpPmvP/kYo+GQX/jIL7KwvAKA4wUleBWmNDMWkiBw6QqP3/i1/4Gvfu2rPPnUcz+2nvhfx6hzbeqqHLuAWiWNfYqv/42dpC0QsJO3XQzTNP2uVGalyuyiI0eOVMDDjvp+WB7I9X4v3+vJ23J2bPvM+u9YFVbdOM0uzHVFTr/f59Zbb62qLhYI2cWsbjD4/PPPc9ddd/HAAw9ULbY///M/vwaATSYTHnvsMY4ePcpgMKhA00MPPcTLL79cZS7V2131Yc+1BRvXgzt7Dqxs2e6rPSdWft7r9SoVmP2d5UlZMFQ3zbO8myzLqryr73XuHcdhMBiwtbWF53lsb29zyy23sLKywre+9a2qPWWHdTf+mzzqx18UReVoff3cYIzhm9/8JsPhkI985CNV27Iec2H5OmEYIoTg13/91/nqV7/KU0899SOda14T4EZlGWYWg1cqdEqYITFalSZxeYKfjFFZjmyGCFkCGqNKkoMxkiLN0EKWqhNHkM4mtOUiWhncRoTRGscP0VlOkSaYfh/hLOG2GuV6rhRGJRVvRGuFLhRFmqD0nDOhyooDppQ7p0VKqmLQ86A3HKQXYIoMNc3RcY70U9zApd1dwo0aZSVKlK0kKXOagYunfZJBzmgz4cgbHJ7busx7HzzKwuIyz337ItOJwfc1R44tkk8maOnhRnDgcMixO+4kjFrk8RcY7His7WuxuNzg4NEDxJM9FvctMN4d40RNPvXxz/DVxz/GcOsIwvTQIifo5vjnHJSaEnnzoMw8Ay9AGc00mZJmZSI7uiSZOBhcxyXyGzQbHVq91fJ6FdZ7SJDHU1ScEywv4HgeejopzRdNSeSWokw010aX58MN0RpyA9NEMU2mNKIGrhfiSMhzj1wVOK7HSCzzyIUW6eUX2RwMmPkzjr/7LTQX2zz96DdQ/ZjUl9STlCaz2eti0a54OpRYdDLJUGoPYyQCF6UMSiuiKOfbLz5F9oc5H/2lX2FxpQQ4nh+Rp3HZNlQax3PwPMOxm47xf/v7v8nJk/+MyWT2VwZgr/VhzeSur55YoGBbI3me02w2r5FlQzmZWzWNBTxW4lyvTlggkGVZ5YHTaDSqhbmuerHvbZUtdn/qFSXb2qqbwVmwYCW2FtxYSW+91WArO0qpyqX41ltvZXt7m/vuu4/FxUWeffZZptMpnudx0003MZ1OEULg+z6HDh3i+PHjFb9nd3eXffv2sbi4yNGjR5lMJqytrVUGcZ/4xCf4+te/zt7eXnXeWq0WOzs717Tj6kDEAqt6uwmuVgKiKKLX613TNgKqAFFbFbPnw1Zr6q09Wwmz19T6D1mfl3p70JK+X3nlFTY3N9nd3cVxHN761reytLTE448/zmg0qrZvh/VF+ps+6gos2/a0573OFQvDkO985zvkec4v/dIvsTKfa+pA21be7L31m7/5m5w8efKaVt6NHj8wuBFCOMC3gEvGmA8IIRaBPwGOAmeBjxhj+vPX/jPgNymTif6xMeaz32/bRTJjcuUSHT9EzKWXQjpoXZSmeekEPdnDZClGNzBGIxwHrbIyxLHU3qK1Qrg+5BpdgBQehTEIVyAKgRuF6LyAPAOlUWkOToIQDtIR4Hlla0XlZQsmLTOiyjaZQphyn6QU5CpH6ZxiXn7W1hBFOvh+gAg98lmKGk3wo4j2YoMwaqMwqDxGSB9HTuk5Bl8a7nrLzSzf5LCZnuLYmw9z4VyDlZUWH/2NBzBC8txTz3DxwpClxs04f/sX6a2uIX3NbBwTuCHvuf+NLKws4/keQTMkakUk03VGeyPa3TbCg5V1yR/+p0+yf+WnWVt4D2G7zIjqGJ9ZvM1ix5/3TQxCSqbJhNlsjM4MQoNSAhloXM8j8EOarS6toEHQ7qExFHmMFA7CGLLZDJMXRJ0WSNBZgsE+cRm0LgGT0iUE8ZulE7TRgiTRZFlKPBvjtn08GZCTYRBMdZM/v9Lm7Kkn2F9MSIXktve8hdbB/Xzrq4+zc2EbbQzjTFGfX14Pk40dpqxL4sxBThwXbF7Zochz0nQJrTTtTkGzEfHMiacwf6T55V/5dRYWFxFC4npBCcoBo3RpEug6fPBnPsCfPfxnfOpTj3Bj2Ek//PhRzjNA5VFiy+t1xZMFN9bt1VZg7GJowUI92LKuYrKLtpXH2m1aMGP5MNaZts7vqbvL2lEnw2qtq1aXXZgtYLE8FuuX0+v1Ku+Yeip4EATkec4999zD4cOHmUwm3HXXXVy6dIl9+/bxa7/2awgheOqpp9jd3aXRaPDe976XXq+H7/tMJhN83+e+++5jeXm5Ahw2N2pvb49Op1O51P7xH/8x+/btY3V1lU6nU53L8XjM0tJSdZwWINqKmT32ejXKevlYwqptj1kysY2FsG0puFqBqZsBGmOqc2PMVfO/6XRaGSJawKWU4ty5c7z88svVNX/b297G+vo6X/va17h48WKlZPqrtIz+poz68cRxzMbGBlmWsby8jNaadrtNo9HghRde4I/+6I/4lV/5FRYXFytgbBPmLdB0XZcPfOADfOpTn+Lhhx/+kZ2vH6Zy8z8BLwKd+f9/F/i8Meb/EEL87vz//1QI8Qbgo8CdwAHgESHEcWODh77HKGYxe6+cwG+3CZfXwPcxSqN0TprGiOmUbDQgNGpuBmJbGqX/TUnKdJHSQboepiiIWg2ENMh5oKGRCqM9/E4DXXjoMkCAYpaWyixHIlwX6UqEFyJkgdSyDENM43lbal6edhwcDIXOS1PALEblBYVWqKIg9wJ8zwPPUOSaZDQuJz2vgXAcAumC0LjOjJac0PaWaLRDSH02TrgsHknpk/K5T5/npRM73P/QUR746fsBwze/+jhxNuOn77kPXSjaCx2iVoOFfcv4UUA8Tcizgqw/YTocs3polReee5ZHPvNpPv/pR1hefCcLnTfhdca09g/Ze6FJC0WS7xCEfnlOlKLIM8bxhGSaYZTAFGWulCuhEfq0Ogu0ok7JZWm2ymwwVZRBpdqQjgdIFL7vlBlN6RQ9f40qNMK1zp3Ww8OnzK4SzGLJLM5puAnNMMVvtEmVT57N+M50jWdPPcftcsRFJTl+31tYvPUwT37lcS6eOINnoDBUwauv12FMGeaJEDhSkCQFO1uDmoFXhlJdwsjnqeefxPmYyy/+4i/SW1xCIHFdD60KjBEIU/KRlpaW+R9+/Td49LEn6PdHf+k+/IjGj2yegXJyPnv2LM1mk8XFxSqnyLaRkiSpnibrBE77FFtvDVlb+2azWfFzrMuw7/sVwRWoFmFbObD/6snQruteY7ZW59vYJ9+6ascqfeptMltJqHujANX7RVFEp9Mhz3NOnz7N/v372dzc5HOf+xwnT57kwQcf5P3vfz/GGB599FHSNOX++++vVEKtVovV1dUqAynLMgaDAcPhkPX1dV544QU++9nP8vDDD7O8vFyFVS4vL3PmzJkq4NNWuOqtQKugsu0PK/u2smTP8yo1Uz1jyl4v60lkVUv2nz1/db8ge03jOK4qeY1GoyIc23N54sQJwjBkPB7z9re/nWPHjvHoo4/y8ssvV9f19QZmrh/1aqK1FbAVOFtxtBWc5557jo997GP84i/+YgVwbIuqXjlbWlriN37jN3jsscfo9/s/kv3+gcCNEOIg8DPA/w78z/Mf/xzw4Pz7fw98Cfin859/zBiTAmeEEKeAtwNf/4u2r4ucy99+ArfTYTUI8HtLCMdD5Yo8TxDpFJXOEGGEFPNd1vM5TEikZcQbjXQEWZLhef78NXr+ECoRjoMIAoR0EaqUHJsiLQHRfDKw6MkAbiOkFbj4DZ88yUhncz7NvA1V7kup+nFciVAaox1MoYnVnExmDIVSbO8MGBWC/QfXcbwAVeRIJ6Hp7rCQ76O/M2X1QIebDx7n8Se+zdodA255e4+LJyacPb1Fd7HBzXcd56f/7ge5cu4yi2srJNMYpTWzyYzR3hA/CNBGoQqNcQ07e1t86Uuf488+8WdsXhEsdO9n9aYl2ksp2t9jdGGFdhHSMFdI6BP4EVoXFFlK4XoMh3tkiZrHA4DjQhg6NIMWjbBBGASAAN8vpeGqQAqJUIbZ3oBmFOF5Qdn2SxPmwddoU4AyaGXm2VQFruPMO4KCLBdkicG0BY2wSRBGxFnMXtHg0dOX2O9ssR0bDt57F2tvvI0zJ17k/Auv4BqDomxtifnN/XqmxxpAKbvYQpYpBntjMAKtDbmaKx0iePzpRymKjF/55V+j11vAkQ5K5fNCnZ7bMEgeeO8D/MSD9/OJ//JnP3Zw+KOeZ6DkDzz33HMVidSSIOuEVusyXM/RuV6xYkvzdZ5N/ef15Ga7GFsJeh102GFbKjYksZ4ifT33pk6GttJn+/+iKNjd3SXLMg4ePFgtLEC1aO/s7LBv3z4OHz7MN77xDW6++Wbe+MY38sorr3D69Gl6vR5veMMb+PCHP8y5c+dYW1tjNm/r2rwim2llqzH9fp+vfOUrfOITn6jIxGtra/R6PVzXZXNz85rzZ83zbL6UjRiw59ECGyvPtmRuGzFhwZ7WmsFgUKnGgO9q79nra0Fh/dxbYrY1rrMVtzRNOXnyJL7vM5vNuOuuu3jDG97ASy+9xMmTJ6trXb8+r2eQY48VqPyE6qAkz3OWlpYwxvDkk0+S5zm/+qu/SrfbvaYNaCuexhjuv/9+HnzwQT75yU/+SM7dD1q5+T+B3wHatZ+tGWOuABhjrgghVuc/Xwcer73u4vxnf/HQsHfiJbxel2ZvGT9qzkMlZyid47vlIirEPC1czyWyRoEsfWiENEi/9H6RjoPfbJRmaq43tzw2c0c+US6iSiCMgxM4SM+7WrWZV4bEPCMJJF6jgRcGBJFPnqSkSUqWKEqnYwfpuJjCpjkrjBJlhYICjCQDZhNDHk9Z2lfgkSK1mRMUL7Mvu5nT/QIMrK62aLCPM49v4K9ssHRQ0963zOL+ZcIopMhLo7itSxsl10cbGp0GSNjc2+TsqZd49tvP8My3vw2ept3dx/qxezn+5hZB6JBkAy6f7TO7sApjj5sDzWzvNM0wodFYQAhBrnOm6YjpZIouQBcC4YIfGdqtNq3uIo1GE8dxyfMU7bqlKk3lKMAxMNzcZGmhXSaoS7ckhs8DOJXKECaYTzhz6afUOKKMQsgLgVISYcBxfISUaCG5EHdIJ6foaoU5eJgjb30juxuXOfXN58iS0uNopsusqMgIUgGj1/GEY0fZNhXzFpVC63F5XnVecrx6oKOIJ779BL4X8Mu/9KtEjRDX8cjzFOGWjq9COnQ6XX7tV3+Fz3/xywwG4x/3ofyf/CjnmXIbvPLKK3S7XbrdLlEUVdEIthUC1xJZrwc2dpG11RALhOrKnvrf1w3lrNLEck7s9uxTrV3IwzCsvEZs9pB9j3p5v64KAio1lOXA2EXX7pvjOIxGI4wxrKys4Hkezz77LN1ul3379rGyssLa2hpRFFUtrcuXL1dVj06ngxCCvb09XnnlFZ555hmefvpphBD0ej2OHj3K3XffXe3/+fPn2djYqFx8R6MRQRBU/CMLzqbTaQU+bDuj1WpVxoFWKm4XRvs6gK2traoKZwFPvSVlr0Ed3NhzXo8/qIPO6XTKeDxGCMHq6ir33HMPW1tbPP3001Voqd2Huvng63nUAY4QopJ710M5FxYWiKKIp556Ct/3+eVf/mUajUZ1/YDqXu50Ovz6r/86X/ziFxkMBjd8f/9ScCOE+ACwZYx5Ugjx4A+wTfE9fvZdK4wQ4h8A/wCgKyXZTLP1zAt01g4SdroEi6sUWYzrBASNHq4MyptPUkY42960LmXCZZyCKFsgc7M4o/Xcu0aUpn1ZXqmdSnO/uRGbJ5CujxAOBo3KC4wqSpKxKZPJjSkl6F7o4rgBnhvPQY5HIUrFlcnB0ZpMFWid48iS4CyERgvJKHZJMXgiJZBl4GYU7rCcDzi73WU2WWM203R6DcbTHvl2g0vbIx7dPomapdxx5910FnvsO3yA2XTKbDojSzIee+yLfPozf8rWxoBkHOLJIzSab8GNNIUjGeQ58SxnMhqx3Ory/nc8wLe+cpGt4QZLRcze8HluOeTguwKtFNPRiIKENCkoivIcBZ6h0QhodxdoN7u4fkAZCqkxro8uClRR4MkAjGJ65QpHl3pzybdBJykqS9C6VIlpXcyJ2cydjBWehFRRnmsj8Hwfg8RoQ6Y9zowkiwzZdVu85b57maYTXv7mt9nZHpfeyMZKrUu33+l/B8DGMD9uDa4DQoqygtOPr5LjjWaBZbRf8MWv/zmLvQU+8LM/i+u4CCRFkRP4TvU5es+77uMdb38rn/3cF39sx/Gjmmfm267mGstPeeGFF1hZWaHdblfBkDbSoN4ugqvgxlZwrlcw2cW0Tlytc2PqOVPXt6LqadD1CoCVkNv2kuXU1FtVdfm4VQTNj7cysqu3uGy1ZTgcMp1OSZKEbrfLdDplNBrR7/fp9/vEccydd97JwsICBw8eZDabMZvNSJKExx9/nIcffpjNzU2m0ymu61YmgEmSVMTg8XhMq9Xi3e9+N48//jgXLlyoQNH6+npVURqPxxX3xZ4v3/dpNpu0221arVYVVWHBTf2Y4Sq4secuTdOqemPPqwU7Vq1lt1P3YrHX0yrK7Dl95zvfSZIkPPXUU2xvb1fnvn4P3GjzvtfqsOfSgnPblrx++L7P1772NRYWFvjgBz9YPTTYBwj7eXnXu97FO97xDj772b+ULvdDjx+kcvMe4GeFEH8HCIGOEOI/AptCiP3zp6n9gHXluQgcqv39QeDy9Rs1xvxb4N8CrLuuUcYl60/ZefZJ2ktr9AQIVxAFEZ5WpUJKzL0NjEa4EqNFyalxPaRTcm4EooxIcByQsuSASEoQ44jqhi0nKFGme3sOxgiKLEFnBSpP0UWpkBJWZYuEuRhZSIEXhbiBS7+/R5rM8FwfI8EIwWxWkOUCP9D4vsQPHZzUMBhLRpOC5dUOgReCVvihYBw/zzG1j0unxrz1Jw5z651LfPoTL3NlY4CrHOJhk70d0MbQWmjypc99jlajxeGbbqbT6/HkN57iledzFtvvotlaKStZSNw8gHGDdJCTGfC9gnf/xJ3cfPs+zr88wdvYIB++ROjtsLq6iuu4TGYjcp0wm+UUmUBrge8ZokjQbfXotZYIfBchQOUFSTaDICRLkzL8VOaoLEWmE9pLzXJ91RqVZQQYpOOUSdh6PukoXbalXE3gGWZFySURDjiuj5ClNj1RPsU0ZpgZbv2JtyAjn7NPP8PlM1vMDHiUK1vbKaXSmXp9c26uH8aURn/lYgZFoZmMEwx9lFZI4dDutAmCgP/6uU+ytLTMO9/zLhzpUhQZhXKRUiBcl067y8/97M/y5a88RpLcWK+O7zN+JPMMXDvXRFFktNaMRiNeeOEFFhcXASo34XrFpT6J2zZInS9TlwrbbdRVVHXnY/sz28Kysu/6U2/9ve2w5OQgCKrwSdvuApjNZuR5ThAElcFalmWkacpkMmHfvn0VqAnDkCtXruD7PqdPn+b+++/n9ttv50//9E/Z2NiouC+7u7sYY+j1enz+858nDENuuukmut0u3/zmN3nxxRdZXFy8Jl/Itphsi8xxHB566CFuv/12zp07x97eXpUWvra2huu6VcDkbDarWlKu6xJFEe12uzJKrMcq1AMnrdoqyzJWV1fttf6uqALL4amDIpvbZV9Xv55a60pF9Z73vKfikpw7d+6ailE9QuP13JK6flzfjqsHe1rQ1263CcOQhx9+mKWlJd797ndX1Rt77VzXpd1u83M/93N8+ctfvsbC4EYM+Ze9wBjzz4wxB40xRykJfF8wxvwq8KfAb8xf9hvAf51//6fAR4UQgRDiJuBW4Bvf/z3EXP1hSC9usvXck+ydO4VOUxwpy0RueTVzBVMumMIIHMfHCULcMMBtNBD+fJKWpVTc8TyEC07g4UYB0nVwfb9sRXkeymiyacJst890Z4/J3g6TvfLrbNBnOhgQD8ck4xHJLCZLE/K8QCmBcXymM9jZSkjimDwrSLOcydhhNnbnxFiDnrdZdtOcM9vlk4pK0zI1O1d023s0s1dQr1zk0rkBs3HOex66iUbkgxEkU5dvfSXmk3/4NJdPX2bU73P3295Co9fj85/9ChdfWebA8k8h6ZWVkUwgCh9TQJ4m5HGC5yge+unbuf1NRzl/esKVly5xhAnD/jOs7/Npt5sYKRmPpySpJk8MWgs8zxBF0G436fW6NBpN5HyyzHNFnKXIVpssiVFFgS5y4vGAJjnuPHldFYpsFqOKfN5OpGzbKY1SOUWR40qDHxhcUQJKzxM4jovrOggcEtkkjzdYvPUYy0cPsnvpCudfOMMwVwhTejs2XfCdUk00Li0gXzdDfK86RW1IIaoKjtHzvniuGQ0SJsMZg2Gf2WxGkReMZ2M+9p//iNMvn6VQBUJI0iSmLHuW/jcP3HcfR44c/PEcHD+eeWb+PtX3m5ubvPjii1y8eLFK3q4DF7to27+xkmTLzbALb50QbH1wbNXFtqJs68ImedsqSb/fZzAYVNlE4/GYyWRSLfhWGm0VRTs7O5U3i1X52KqKbRPYVs/GxkblXWNBQLPZJM9zLl++zMWLFxmNRtx///1VDlCSJDzxxBP8yZ/8CWfOnGF3d5e3vvWt9Ho9HnnkEc6ePcv6+noFHOrBnraN5jgOP/mTP8mb3vQmzp8/z6lTpwiCoOL6WFWTdVS2JGoLbFqtVuVZ41dzTV5xoaw6ysrabVWqHmpal5jXictW2VYHiHVTOjviOObo0aMcOXKEK1eucOLEiWrxtSq16z2EXi/jeoD9vX5fJ9hbteFwOGQ0GjEYDKp7bjab8fGPf5xTp05V596eR/u39913H0eOHLnhx/FqfG7+D+DjQojfBM4Dfw/AGPO8EOLjwAuUfM7/8S9TMJj5jnhCQKLYff47FIHLmu/TWT9comXXR84BC47EANpAkWZldSDwcUyK0D5uo0ky6yOlQOsciQdO2awQTskzztOUbJaQTsfE4wnJZEw2JwyXgZyaMqixTBCXniBolE66nu8Thi08P0S6Lv1xQBjk+L4miXOMdhHSkMUOGIXraIx2SY1ie2dGlqe4QQRFGQrquw6B+yyH0yVOfOkl3v5338jhm5e4641rPPfMFWazlKKA6USQFinHbrmV3b1dPvmHf87z30zQWY88y+bW+uXQusAUEiENvu9w/08c59Y71zn94iZf/W8vcHA2YPvi4zTDDdZWlnGEYJZMGAwmZFmBUhLHMURNQ7vRpNdZohW1cDxZLqDGEGcz4jxDBhH5cIjnBRgD2aDPUnMepVFo8jgh8V06yiA85yrZT2mKuUGiJ8FzwBUCVwocqefxj5JCFQzjMsvq5nvuYjIcceHEK2wPYgqgKUtgY4wgVTBVhtnr7EnqBzocUwa7Aiit58nkmvFwinTKEFQhHILA4/LuJf7oT/4jv/Vb/5hut4vSCm0MjtII1+HggUO8513v4OWXT6P1X+u5vGHzzPUjyzJeeumlCoBYsmq9WmMXsHpFoD6xR1FU+dzYp/o6lwaoVFjT6ZTJZMJ0Or1mga4TNe0TrV3YrULIAqTxeFwlgFvnX7tg1MmaSil2d3erSIU678eCsccee4wPfOADHDt2jLvuuovnnnuuIjLbqsrNN9/MYDDgYx/7GE8//XTlLlwHiXVpuud53H///RX59jOf+Qxaay5dukQQBKysrFT7axdBe54bjQbNZpNOp0Oj0ahIxxY4ZVlWVbBsq2o0GlXu0BbY2JaTBSt1hZk9R7Y1+L2S22ezGVpr3vjGNzIcDnn55ZcZDAYVAKsnutfbj6+X8YNWoeqkbcufsp5O9nMThiFbW1t87GMf4x/9o39Et9utrqltsa6vr/Pud7+bl19++Zp236sdPxS4McZ8iVKtgDFmF3joL3jd/06pePiBhyM1rizDK5O9GdvPPIvXXsCLGnihj+v4CFEwHI8IQh/fSFAKGXhla0lrjDbguxjfI1cKk2nMdIY3J1xqpVFpSjadMBlOmQ52SYYTsklRqYJKE2GDLkoVlnA0SIXjSmbBFITBixyiVoTXiAhCOHC4zXCnz4KjcR1Jt6dxpUOaatLCoJTBlRBrg1vkFFmKDpoIU4BWOFKysDAh23ySm8bv4lsPnyD/ydt4632HcV2Pp544w3iWEviGF558mqjb5Q//319iuLVAFvsonc+dZ1086Za8E+nguIJu2+f9P3MH6zetMh1nfPXhZ1mbTCh2nibOnuX2Y206nRZ5ETOdxSR5SlFIHM8QhYJOM6TbXaDT7hGEUVk1M5qiyEmSKRmAlBRZisShkBlMB7SbEaW5Yk6aZqQiq9RQYCjUPGlWSBzh4kqBHxgCR+G6Bt938d0AgWSazDh7boOV227GuILdcxe4eOYKiTb4AhoOSFMCu9wYUszrSiXlOg6qZmwmqKl2rKOfKCsuUtjFF1xHkGtDkipkPyb0I8beGNfpgqt5+sVv8chnP8fP/vyHkI5DmsZEUQNhDGEY8VMP/SQf/0+fZDL98bqt/ijnGbgqiwYYDAY8//zzNJvNa2IShBCMx+PKVVUpVT2t28nZdd3KGM+2ZOrEXpuwPBqNKov+6XRa8UvqZX0LbOouyEKIinxrF/tDhw6xs7NDu93GcRy63W7VtrELbd1/x4Kb+oLS7XbZ2dnBGMMjjzzC/fffz7ve9S5c1+Wb3/wms9kMz/N4+umn6XQ6/Mf/+B/Z29ureDx1LpE9BksQ/Vt/629x9OhRptMpn/vc58iyrHIsvv322+l0OlX7y3r72KwrSyCumxBaYGLPrZV62/eM47gCNxZ41QEpXAu+6ue3Xmmz1bo4jjl37hy33HILjuNw4cIFzp49e00rBa6SwOuVvdfDsLSN+jF9r1ap/WqP33Ko0jRlOBx+V0zDc889x2c+8xk+/OEPVyrDRqOBMYYwDPmpn/opPv7xjzOdTm/YsbwmHIpB4ACOcBCU5mvZdsm/cRoRvUNH8OeOxU89+TyTQcytty+zf2WFMG0gJlOE5+BEAcnGFabTFDPLWVxeJN/bxUszEDCbDEkmIyb9Cdk4I4s1hdbggNt08L15WdqdJ4Hr0odFKINKNSiDyjVJWpBPpzjeDEJJtx0SBC0muyMiT9JuuIRRQJYqtnenGCOZaYE2sC9SkGaolkAaM/d3MYSeoNs5Q7HrcWDjrTz9GU3xE8d4w73LrB5o89n/+h26CwnPPPkd+tsLxKNFtJqTcV0PkAgrIBOK5aU2d775AIePLbO4HHLm1A5f/9yLrI1GRNMXGMRf597bWxw/dhDXlQymu+zuDigKjZQG3zc0Gz6tZptua4HQj8pJ3hhUkZOkCXmeogjmjssGIzQqT5GzMa50MEqTJQmzZEbhuKiifNIRXtmqUrqskqVZggRCV+K7GscBz/XmPW3Nxs4ug8zQuXmdUb/PhZfOMozLfnnbFUgMBYZ87nD82ghZuHHDkaX/j4FSAVgZYpUhmCXp3VZsTNWiypWpOGPTJEfs7KFlgedKmo0mSMV/++x/4dbjx3nDXXei5tlfznzCuvfet7Fv/yqnTp39azz6Gz9sy8lO0oPBgBdffJEoilhfLwVXWmu++c1vMh6PufXWW1ldXSUMQ6bTaeUXY1tCcRyzvLzMYDCoqju2QjMcDplMJlWVxdrQ20m/Tlq2VRxrIGgzquI4ZjQa4XleJWHv9/tVIrj1jun3+xUY0FrTarWqKoutWADV3w2HQ7TWfPGLX+S+++7jTW96E/v37+dTn/oUCwsLPP300+zu7lZVnHolq565tbKywt13381NN93E0tISp0+f5gtf+ELVchqPx9xxxx0cO3asCuPc29urpPFWAm9JxPUMr3pOl712duG1Mm67L7Y1FwRBBTgt+KyfW3sOLMi1RoEAOzs7zGYz7rzzTobDIa+88koVpWBbWXUS+eutalMnq9vPiL1v4dqqTp1Eb1tOFiDu7u4CpQKt2WwihODTn/40x48f5+67766qXna79957L/v37+fUqVM37FheI+AG5LwJYd1JjHbYO7NLHn4T40giDZ4naUYtNl8Zcu6lDZzQZ6EjEYUCR5DtDhhc3mE2GLB+aB/jXVCTKU4yJc0yZv0J6TTHKIPXCOgt+UTtJmHYxPE8HCkQem4K6HgU2bw3iKDIYtJZymw4IYtz8rQgG2uIC0SS4bR9OkstJoMYNctK+XIBk5nHIHE4MTM0HFjtuqgkQSUxju/O1V0GR0Cn6aHVSeTI4OzewzN/Oubymw7hN1q0Wi43HbmV0FlDpnsM8glZbtCOpFCKTjckCn1a3YgsN/zML7wJ6bnMximPfeECF198heMYgvwUWzuPcNetEQfXV5Aa0jhhPIyJZzGuBMc3BIFDq9mm1WoTRSHCdSiMAVWqovIiI80LlBNiV1BdaLQwiHgGBuLphI3Ny+zsbtM9dAwzn7AD3yXPi3kEQ1kFcoXE9aycHgLfw3E98jzj/OaI6Pa7SYucnSuXuXR5j4KSPFzCn7IalJk5uHkdPUkJIC+s5LT8lBgMrnu1vSelQM+BjJj/3xhDoQyOIyyfniRWJNOUsT/B8wK8wKU/3eOT//U/c/jIERrNiCRJicKyHbtvZY1773nz9wQ3dj/+po56vpHWmgsXLlRgwxqStVotzp8/zyuvvEIQBNVrrepnY2ODwWDA4cOHq+pEHMfkec5gMKhaPNY1uNVqVS2merSCNeCzw7axRqMRSZKQZVkFqtI0pdlssrCwwGg0qp50rQTctntc12VhYaEiF9v3tMToRqNRtZ/iOOazn/0sd9xxB81mk0ajwZEjR6o2XR1wKaWqyoo1A/zQhz6E53mMx2O+9rWvcfLkyep8bW5ucvPNN3PoUMn9tsc1nU6rNpat2tjzUwdOlidzfQhl3bUZSun2xsYGOzs7HDhw4BrlmAVGlrtT59zYNpM1ZNzY2ODYsWMopbhy5QqXLl2qKhP1mAVb3biRbZTXwrDnx1ay7LFfnWvkNcdsX1OX2AOVOaJ1tfZ9n9FoxCc/+UmOHDlCs9kkTdMqmHRlZYV77733e4Kbv6qH0GsC3AgMnhQ4QqAMGCS5cYhTQXLiCo3OCXqrbQgEx46uc+XiDqORZvPKhN0LUy5NSq5BPs1Z8AruvGUJNwhQRUp/d0goC4rMIHFZ2r9Ca6FL2Grh+F6psDIGowzosmWUpQkYU7bJpIMQDr7n0mx16SwukqYx8WDCbDglT3JUrtHTHKcl6S61GO9N2dpI0EayO+3wcqy4kE85HvmEgYdSBZ4pMMIt06GlxDECEbgsdB2EOEm6vcOd+kFeeSJlw2mxctMSi6s9Vvcv8vb33sJwL0FKQ5YpvvnVszz0s7exszkjzzUPf/w7PP/0JYY7OaPdPu0k5y3kDDefoD/6Onfe4nNw3wKegKxImSRT+v1twqiYT7aCTrNFuzWXfTsuWpWm/wZDrjRFXpSVozkvRgqnkuXLNGY2GXDu9BnOntoiagiW1yUYUXKajEAVOUiPIivIkhSpSo6IEAbfkXiy5OyMJiMmYRe5ssSsv82lUxdICoUvoCkEw8LgOQJfCHJjmL2OWlJClJ8JIQWudBCinFwKa4gFlSDa9VyUKmoCaYHrlmZ+ZZSJQhuYjGJc16MRtcrJGs3TLzzF4489xoMPvQ/QIHyk8HA9n3e/81184r/8N4ri2ifUv8nApj5xA9Xiffr0aTqdDvv376fVanH06FEuXLjAaDRic3OTjY0NhsMhUE7evu9z8803VzlSe3t7FbkSqEzsrJy5LhW372kXZ7ug2AW/3W5Xidqj0YjRaFQpiuI4ptFosLCwwGAwYHt7G2NMJem2UQJ2v+yoP43bJHEpJbu7uzSbTb7zne+glOLw4cOsrq6yf/9+3v3udzMYDKrW12OPPcbf+Tt/h62tLZRSfOITn+CZZ56h3++zt7dHnuc0Gg02Njbo9/vcfPPNHDhwoAIZcRyzt7dHFEUVsGs2mxW4qUvagaq1dr2s3b7GhmaeOXOG06dPEwQBBw4cqKoJ9jUWQNYdoG2byd4Pk8kEx3FYXFyk3+9z5syZqrpgDRBtW6su3389DHs+6sDGErTrPkxABXrrx27l3XYYY6qk9roh5nPPPcdjjz3GQw89dA0A9TyPd73rXXziE5/4Lr+gv+o5fk2AGwTlJC4ERhdoA7mRZMbgJpLRydOM/KPkUcDyYpc3vekor7y4xd7ZGf0pnJpphDC88YDD3bfvw9eQ7I7RhSb0GywsNXHDiLDZwG2Epeme1mXyoCqXbNBl6rLrYhJDkadIxyCy0vxPSIFwXBzp0owaNKMW+VJKPBox2Z0wSWbkuylOq6DVCZkaj7MXXE7EOWfzMR4OrgCFoUCjshmuF5WVDq0AB2FKr5Juy0eIDS5tfpxD4l72+ce5dHLK1wYTlo4sE7UcFtdaNDsB2ghuvWMZL3J45flNJtMcU+ScfPwsa5HL7TLFT85y4fwX6ETbvPG2HmvLPVxHU6icOM8ZjyY0ohBHFmRFTui69LpLtBodfD8CTFl1UQUKSLIpeZFhVIbjmbkMuQQ+qshQeztceuEVTr28iyfg0KHyadBgyNIc1SzbH1rOn8yyFJQujRUxeAFlPIBRbA7G5IduI1UZg80NtnbGKANtRzDUgonXJtQJmBxHQPo6mmwcKXBdB8eRSCFxnTnhtHCYi87mDsWlC7bjuBilkI6gjLUwqHl2lOOWRPA8h+k0wR/2EdLgeQ4FOf/t0/+VN997DwtLvXLiFiWh+633voVOp83e3uCv+YzcuGEXSDtB28kzTVPOnDlTSZEXFxd505vexMmTJ7lw4QKz2awCN4cOHeKOO+7AGEO/36+4I0tLS9dkIdUN3q6fpG3cgl0069wQW1WIoohGo8Hi4mKlRInjmMFgQKPRoN1uY4zh0qVLlX+NXZjs+1kPH6Ba2OvAwhjD9vZ2VcU4f/48n/rUp1hfX6fValV+QAC33XYbURRx4sSJihT95JNPVu2xPM958cUXCcOQ2267jZWVlYoDlOc5o9Goqs7YcMper3dNKncdmFgisSUI2yqB/drv9zlx4gSnTp1CCMH6+nqVHVWPYahHBVhwaaMY7Hb7/T6rq6vkec7W1lYFGm1Vp96S+qtWE16L43sBPQu069WYeuZWnXBvz2/dLsFWyabTKYPBoAIwAJ/61Kd4y1vewuLi4jWtvbe85S10Op0qbPXVjtcEuBGUvnwYgzYGhUtuymdDTxiKvYTdcxdIFw7Rajc5euQg68tLDAdjzp+/gjw1psDwhsMh3TDC81y8pUXcwEUYAXPlDUIilCodjudyK21MSVQxBum4aMfgBiHGTEBrlNaliZ8y6CJHGANGIKXGcQPaSwtE3Q6t8ZTZeEaSphglOHbrAc5NdnhlNMAYjS8cXCRFkWHCiHQ2ptFeoRAOhc5wRFnBkoDvuSx2OoR+ysbO19kbfIc1eTvdxpsZPjvl8izhZJGj0AjfJWi4nPiCQzqe0XIi3rPg0XVykuHLbFx5AqnOcssBj4Pr+2iFPpICrRSpUsxmCUHgobQmTcdIAd12l3azS+B7CDRFociVIleQq4y8KOXbAL4LQjioPMMIh2Q04NknTnDl1Jhew+H4bSusrS4TdpYQQpIkE4xuUxQlkTrPMoo0gaRMV5dGEHgCz/NJk5hd45B1OsyGe2xf2GCaKQIBysBUtOgt7SPvXyRNMzIByQ2eb0rybvld2fyyyqUfXe2ibM1JQt/D81x8L5j/xoAA7Zp566lUQxV5Xu6PgUC65Kqspzm29WINukvWMeNxiu87eL5Lu9sGYzh7+RW+9MUv8qFf+DBlAUghHYeD64c4dOjA6wbcVETsmuKp3h4ajUZcvHixWtCPHDnC6uoqg8GACxcucOrUKbTWHDlypGoxWUADV9td9epCvYVRl5VbMuv3ctMFqlaVBTpLS0t0Op3KPddWIW655RaGwyEXL16sjsMSlYHKHRiuLlAW/FhwEQQB29vbVUtLa82ZM2cYj8cVb8fzPMIw5NFHH63Sw/fv34/v+5WqqCgK9u/fz/r6eiUvt+Tm2WxW8WFsiGin06l4RHb/6saGVmoOXNM2tF5FTzzxBGfOnKHZbHL8+HHW1tYqF+U4jun1etdUbmz1xi7Elm9jQebS0hLD4ZBLly5VoNPeH8vLywyHw2uCOX9U92cdPP0oQZS9tywB2F4HO+q8GusNZO9tx3Gq+6lO4q5X2OptKRt1cvHiRT7/+c/zd//u371GYbi+vs6hQ4def+CmxDYGg0SZcuJ2hSEUYLRk+/KM8a0TFhbaSCSOdPB9lygStLwCbQxZlhK2IwK3jFPIx2OMLmMNjFJIz0F6IYiySmKEwcg5C3fO+imjG9o4foDK59JPZdCmQCuNUQWF1hQ6w6QJMi8rBlHTp9GO0KIM6vSjNodXBvjnITXgCEkgyzwljCDPFVrNCFtLTGJFUSS4UiKMQRiD43o0A49D+7osL+Rs732DrUuPExerHF68AzfooY1E4+DMJEIKHF+xOzzHaOcie/EmoTvkppWQ1ZUlWqFH4AmELjBCkirDYLCHkJJed5Hx2KANNIIGvfYSYRAgpaBQhkxp0kKR5gmFSkmSKXmmUUWGK0uFTp7McByPeDrlO+cmHG4L3nrXOsuLCziOhxN4GFm64RYqZzod02g00Vqh4lkJHEsTaELfQQjDcDJksnQTiVbMtnfo70zRGHwhGOHRXFhhGic4RU4659zcSHqfFILIc/BcieOULdNcKYpcU6jSVPFGTzsC8FxJI/QJ/ZAgbJS5W8bgeh6u55HGMUEYkWYpcZzQiBpMplMcIcmKrJR0O+IqyU+WBGNtdHmrG5hNEjzfxfdDvMAhK2Ie+eLD3HfffaysrQEKX4Y0Gy1uO34bzzzzwg0+0r/eUW9J2SdxyyfY2NhgMplUrrfW18QSgaEEHq1Wq3ranU6n1WJnqwx1AmrdNweutqGsCqqehm2BTv2J2F5Ly5exCiFb3VlbW+Oll166JhKg3rpRStFsNiseUL2yY3Oc9u/fz+LiInt7e5w9exatNcvLy3Q6nWsWcsdx6HQ69Pt9dnd3K2+blZUVVlZWKtBXJ/7ap/fFxcXKldjydqxCrR6RYJVUlnNk1UpA9X5W2dRqtbj77rtZXl6uvIhsS8Uqs6wyx0rPbUvOkpeto7KV0O/t7ZVqzvl+LSwsVJWqerzDjRq2smGJznVw96Nsf9VtB+qVRrsvcRwThmHFA2s0Gkwmk6ryZsF0/f6sV0Ntu9Sq02xg6he+8AXuv/9+1tbWgNLRuNFocNttt/HMM8/cmGO7IVt5lUNQQguDKCdgQAiDQ/nUrIxkksDucMbBfQrhinkSuMZ3XRa6iiBUOEZy/vQpVvYdoNntEawu47g+OksoZjEqSTBmrpKYxzgIAcLxEa5fBmtKCUikCXHTvFzAlKq+GmNwi4I0mTJLpmDmJOQiwxPMy3QZcTyj6cx4Y9flyUGON6/c5Gla8h90QTqLaSy7NLRPrBUajRQaISTGlK22wHNwXUkUeayuKmbTMTu7X6Q/yEhyQZoDaHSh8R1D4GnWl0K6B0I6nTWaUQNPOkih0EZTqIzUCIbDEY0wpN3rkascIQpc6bK0sEyz2QEkWVEQZxmzZMpsNiRLM7IkLWMZckmWGJqUZnx5loEryGcxbU/xplt7dLoNxrN+OfErwxGjUIVC63JxCPywrGSlU4oiJVOAMAjXEM+G7GYwObjIZNhnsrnBIMlxhSADTNDBCxxG0wFSKzID0xsINRwh6DQafORDv0ihc15++RRb/Q2SbEaR5UxnMbMkJcv1DQU4QgpcZ57q7JUmhlHUrIwpXdfHdRyiqIWXpEgh8bwye00VBbnK8X2vBDPVYltOxq5TgncpIM0UaZKSJDHSCRHScPbyab7+2GP8zM/+LEqWTtJBGHL81uM4jkSp1wd50k7g9QWjbsZn2z4HDhy4Rj3iui69Xq96uj1z5gyrq6v0ej2Wlpaq9oV1t61zOyy4ub78b5+CbTWgDm7sV7s9uMpBqUcIJEmC67qsrKywublZvV+SJBUIiuO4agNYF+F6Fcsa4dkFaGVlhel0yt7eHjs7OxXAsPtgVUZLS0vs37+/yumqG+FZIDAcDgnDsPRTqj2pLy4uVkoaSxq2qez1EFP7fZ2rZBdez/O49dZb6fV6lfmh9amxrUALEKxUvO4KbYFpkiSsra0xGo3Y3t6u2ntaa3zfJwiCSjV2o1VSQggajQY///M/j1KKl19+mX6/X+2rVeR9r9bmqxl1x23bnrMAx1Z0rDLQcsZsa8kCR/v/epXSVnssGLXmjrY9KqXk0qVLPProo/zcz/1c9bkLgoDjx49X9/WrHa8JcAOlGFyVjRbMXDnlCIM2gtxIEqXZ6s9QRV5yCwAhJY1mk/2rXYwp/Vlm4ylnRi8RRT4La6ssrB2g0e3i+yE6zzCFQjpu2QcTc3mtI8vwcKMxRoPWZdCjNKBBem5ZUfFcDAZjfMaTIaPxECEchCj5JlI4CC1QOiMrMpIk5Z4lw+bMIykkxkiSxFAUCtdxSGdDsvEeQWcJgSSeTjDSRRcFjpDlth1ZGgFKD0dAw2/S64QUWlEUJagQjqTINJ7vIYUi8D0Cz7/qeaITCkqns0wZJsNZGUjXaqKMBgqk49FptYnCJoUxzOIxo9Euo/6UyTAnnhmmqUtceMyKkJkCbQRd4fCeXKHyvFQ/Kc3hJZdOt8nW3iaD3RG7WxmRvJUDugzKLM/zvK8uHEhj8iImz0tXYY1imE4YREcYa814d5vZzpTEgA/MjEOj0WJhKaK/l5NoRU5ZIbsRwxGC0JO89x3388//n/8bnV6LvZ0Bzz/3Ao9//Qm+9dQ3OHPhFXb3NhmOpxQ3MOrBdxwaUUTUaNBstGiETaJGC4HBD4Ly/lOGRqPBLJ4ihcH3IzzXZTjs48zDZZUuo0L03Myv7PsKCqXxpAQhSVM1fwoWBIFHXMz40lce4f4H30e318FTLp7nc8uxY7iuh1I/tiiGH/m4vqVQbyPZSoNdxIGKn7K6ulotbuPxuOKQrK6usrKyUkUGRFF0jSGgHfUnW/vPLga21A9cw5Gx72NBi60oWPBjWz779u2rgIExpoopcF23CtO07anZbHYNUfR6QqmtalhAUgdVlitTb+vUs7Lq349Go6r1VFfcNJvN6hxZ0nS/32c8HjObzaoWUr1NZTkztjWilGJ5eZler8fu7m7176abbqr22Z5j+zd5nl8DboAKJFlSeL/fv+aaWM7T3t5eBW5uVEvKVmze+c538i//5b+sjuXZZ5/l61//Ok899RTnz59nd3eXyWRyQ8M565wuy5myfCWrdrMVP6vKswaSlmQOVz9L9aqkBaz2frYAx1oh5HnOl7/8Zd73vvdVnxnP8zh27FhFWH7Vx/eqt3AjhigrMdqUXApdST4EGklmNIWB7b2c2Ww6D/wryWDtRoNArhBPxvjNkNDxmYwnTIZjds5fYTYac/D4cZoLq7iujyEvwxy1QRdzQmFWoLUpU8CNYp52iXScMiVczDOq5qoqNS8hF2mKmIMQlWWkaUaeKYzRFMKAFgSO4G09hyf3HAotSFNJXhSQCxyliUdD/PYCYTtEOjAdDzGugzZgdI7QDloppNRIIcGAlOA7PtpViMiHyutkLit35iRoY1A6Q2HICwXCRRjJ+pF1lDLkKpk/GU5KabYjGUwnzDZ32dmZMRwWjGYesyIi05LcCAoDoPEdzWKkuGVFELgSXSiUKCiyDKNizp07y2inYDxxGBQed+9bI0kTCj1vleBQKI3vebimVPWkBSAgN5p0qhmtLTOejMj2+owmGYUxeEKQyQBPZezsbaNVRgalTP0GDCkgciVL3QU+8vd+if2H9yMcSWuxy+FbjvBTH/wpdja2+fqXH+f/98n/zKcf+W8Mp7O/ILLxhxuOFISBTyMqgwjDoEGr06HZaOF5Lq7j02xGjMZjPK8E6I1Gq6zAxDHtzgIYTZJmlVQ8zdPy2srSZwljMHO37iQp8GcJrueUuWtC8tKZF3n5xMvc8/Z7ysnJ8zm4fpBGI/guOe7fxHG9Sgq+WxautWZvb4/ZbHaNN4xVfdg2h/VssXyX0WjELbfcQq/Xq/7OAghbibHAo87Dud4pt66qqhNr7e8sb+R67oeUkrW1tSp24XpwYFsvVpU0Ho+r96yTbO1Tt205WE8eu/BdD8ZsBcjuR93J+fDhwxW5VGtdpX/bczedTtnZ2alUXnZ/rz+uRqPB2tpatfBZsKWU4uzZs/T7/QrYveMd76gqPfXrWg/HrJO48zxnbW2NyWTCYDBgMplcA/qKomB3d7cCNjeqemKBTa/X4yMf+QiHDx9GSsnCwgI333wzH/jAB9jc3OQrX/kKn/jEJ3jkkUeYTCY35P0teG00GoRhiO/7tNvtithtW6bj8bhqr1r5dpIkFX/GVg3tObUAuM6Tsu3A2Wx2TdXylVde4cSJE7z1rW8lz3Nc1+XgwYNEUXRDcqZeE+BmziUGDJoyxFJQxitkpnwiV8YwGBqGkwmNoIkjBG7g4jpNQs8j9AISFWOEZGFllaXlZeLpFCVBZZoiy0pi6LxEX2QFFLpsg+kc6Xilj4jrIYRBzC+oqAhBAqMKVJpRpDlCSKJmG4zCaIWRPo4UJGRkWYHIDVqX5M+1KOdwEJIqSZo5xJMU7YFKJX44otGbIFodHEcSuD6ZKltIyphSPVYoXFeCKbk1pW2d5QkIjBZzkGVQqkBpiWKeum0gTxVBGNBdXqJIU6bJlDhPybKE6WTCbJQwSwqmscMkcRknkrzwUSYoTeIwOMIQSk3gKBYaBWtLHvtWW3RXu/hSlIAuT1FJynCrIDWGpHBwQsOdN/W4+57jDJMUdJk8XoK0siRqioKigKIAxwWdQyLbTLyIZG+LYjBjqkrwlhjAleSFIhvlzPIUx8CNWHalAE8KwsDl9tvexH0PPVC6X4vy3kSC53vsP3yAD/3Shzh+9618+9knGJ89h3qVE44AQt+j0WzQaEREjSbt9gLtVru0IWhGZLnCcSRLiwtIRxJFDeJ4Rp5nRM0yc6fV7mHMiFk6oVD5/EGg/Cw5oqzc+K5HnCQgDEWSUwQZuTQ4YcAsm/LVr3yRN957F5lw8HzD0vIy7Xabfn90A87ya3PYJ3wLQqyjsHUothO+bVHYSsDKygrLy8vVk62tDNTVWFbCbQGLBTJ2onddt1pI7ahLxW2low6G7GstaFBKVQCs1WpVi78ldGZZVrWGms1m1Yq4nkNSVyVdX3GqA576eatzQtI0JQgClpeXK9dmW4WZTCZMJpPKA8UmnV/fbqm3RRqNBktLSywvL7O6unqN+ixNU3Z2dip+jed5HDlyhDe/+c3VObf7ZgFkHezVFWqWdzMej68hzbquW1WgLLi/EeDCVshsK+ahhx665rwKUbpTHzp0iI9+9KPcfffdPPfcc0yn0xvy/hbY2MqNra5Zo0gLNhYXF3EcpzKKzLKsAh+tVqvyGrKAFa5mRtl7yQKVujLQbu/LX/4y99xzT3VNLMer3++/6mN8TYAbAGSZ+aSMpmTbgMZQGMh02a6IU8F2f8Ris1cay2lAGJAunueAG1GkOUWe02y38NtNFBIhJPlkUlaHCo3KM3ShkLg4nocMPLwgQDggHQ9sv1DMZZNClFlTRUGephR5jpSCRrONVgWmyChkXBJnHQc3zsm9tCTdqpK4fCDMeGXiE+cek1FBtCBxcZiOYlrDPdwgRDgOQadFCGRpTjorn2RwBVmRgBA4lK0fIwSOG6KBPI+RjsQojSmZ0vN/Ba4XsrxvCem5TGdjBns77A37xJOC8cgwnAkmqUeiAgpt7d4MjijbglIURFLTDnOW2oalnsfCYo9Go10CLVESsoUsc76KSR+RQywM3QXNTTetcfjgYdr79rERJxhTlmcczymDNSkdjzOVMU/PIM0M8coyE6VIxgOKSUYyzzdKESwsdNgbjnG1Q2QMSpSL96sZlvcVuJJWp8X973kf+w7uu8Y3pvreGKQrGQx20fJqnfFVvb8QBIFPI2rQaLXpdXo0W22ajSbNqIkfuniOh6meBDSOJXPnGRhDnmconeNHPrnyKdxywZvONBiFlC6R56G0AlmCnSTViNkMI0sCuTDwrW9/nb2dX2NpZYkiz+l1F+j1epw/f+kGHOlf/7DVm+t5N/VF3sYGtNvtypPFVk4s6dM+qbZaLZrNZrVtC3QsMdbyTGwLx7ZxLMipgxW7qNoWjCVqNpvNqspgy/124bBcn7pB32g0Is9zxuMxi4uLSCmrGAhLuG21WhU3x3I6bHIzXDVss0ADqOIN6iZ7QEVCtdUVWwUZDAaV/04cx9VCeL0RnP1nF9J2u83CwgILCwvVubX7Y6tXttIjZRn9cNNNN3Hw4EFWV1erqAi773UZuX1/C/q63S5FUVScHXtsxpjKS6h+jW4UuLGp2O9973srZ+z6qCvrrAVBHQC/mvf2fb8KKe12u7RarSrmIwiCa4AWXOXn2HvDnkPbWrScnTqY9DzvmgpYmqbVZ8OC1KeffpqdnR1WVlbI85xut0uv1+PcuXOv+jhfE+CmVGWbeUtqHooJJbAxhhwNBrSS7A4zhgt9HHcJ33FRyRQzrwJIY/BcpwzJ9CTGcTC5Jo9jijwhzxOkELiej+eHuL6HGwQ4gYeQAum6CMdFzCW3ZU+qzOwp30TgBqXSSooGofJReYHRmryIKIoElWuCUJNOYxJilNao3LAQKpoxxNonyXNwYKHbRuU5s8GAsN3Db3cAhdYGvxkQtiLyLCeezigSl0Irsjkh2QhDmqRIR5b8HEtaROC4Lo12B78RoY1iPB6xdWGLjc0R2/2cycwlLgIKXba/5FyG7sxJ3I4o8KUicDXdZsFC22FhIaLTbhAFDRzXRUsHVRSoNEalGZ7vkwxHpIMxU6WIWoqDh5Y4sO8AQaMJrR7pcIL0HLTOcT0PR0rMXG6fKzMnwUKSOWS9VWbTCdkoRmWqqsw4XkCrHUCekk5mBBL6zAVvr2IIBK4EP3BYWTjAe+6/Hy/w/oIXlwvQ6bOvzAHeq3tvKJVZc8U5ruMTRg1azcZ84WzgOi6NZpMsTSnygjDy2d3rY7TEc3w6HZc0zZHCIc8ypFM6Gk9nMwqlkQIKlZNkGs8r40WMgFxpZGJw3Lxsd3o+mzuXOfH8C7zrwfeQZSlRGLC8vPjqD/I1Mq73t7meDGlfMxgMWFxcrCosVnptAYklR9qvdXVPnfQbBEFV8bGZUXabdgG2w1ZLrEILqNyE69yTPM+rBcrGQNjfNRqNMgF+XqWwrQ7rM9NutyuiseWU2KgGm31Vb2tB2X6o83HsPjuOQ7vdrtRIo9GICxcusLm5Sb/fryo3dYkwXAU0dhuW/2EXN6uiqhNYkySpjtsaGxZFQbPZ5ODBg+zbt6/ij1jfHrvw1jlK9etvVW+2RXa99NxWwabTabW9VzvqCrzFxUUeeOCBiuPyF40zZ858F+B4Ne9fJ7dHUUSz2azMFG3FzALRMAwrvpHrunQ6nar1aMGuVa/VeWvWGdted8uvsveQ7/tsb2/z/PPP88ADD1TVxeXl5RtynK8JcIMx8zZMSVLVxpQBiMaQzlsr7rw/NBorhqNd0IrF3jJ+WLLtJaDSGQUG3/XJCwOZIpmOKNIZRgi8ICIIQrxGgBc0EK5AypK0K4W8ulBJaQsYVI/rAqTr4oUBwilwCw9VZFUlSBYuTuFSuBo31HiRTxA3SMYz8iTD5AXLfs525uF6Bi/wCJoRjcYS4709Znu7uH6IDDyEL0vqjyvwwhAv9MEYVGFQKi8XcmFQeYYwEunMTQalUyqthCHJMra2rnDlyg4XryRsDmGauSjj4SCRQiPROFLjCFWmsjuK0FM0fE0jhF7bo9vt0Gg3CbwA1w2QbkBR5MSzEWkakxaK1cEeUbvHaHOLXGXgFTTbDu3uAq7vIcMGRaNJsTegEfpgSh8b3w3JshIAai1Lzk0Kyg/IwwZJf5d8mpAVes71EXPwCXGWQRaTC5jdgKqNI8B3JVEYcfzmu7nj7tu/L2hJ4phz58+STGdXrQxexT6EvkcUNXAc96ppn+shpcBzfJrtRinb9gIcCWmS0AwbCC1Laf2sdB72/YIwiBiNR2hVZnQJUXLKsqIkfZckc4NB4EgoMk2eFCjPQcmCWBuee/Y53vned5OR4bkuK8urr+LoXjvjegm4/X+dT2EXXcunMcZUXjB2YaincNu2igUGUJb9gyAgiqLqSdiCorqS5Hq3ZDtc160qLL7vVxJpW7mxUnOrMrESXdvmCcOw4jhYmW2j0aDf7zMYDKoKkq1oCCGq4NDrpehA9cRed6+1x5CmaeXgfOXKFQaDwTWVJHs+68DNHpeVILfb7aqCUJdEK1WmdNuWxnA4pNVqVQ7JFoB0u91qe9aZ2QIGu726gZ/12rFVndlsVoGbOvFZCPFdJOZXOyy4jaKIW265hTvvvPN73gN2WMm7zbh6tcPel3WTPnu+7fmsVxiTJKk8i7TW1X0VhmHVsrPXAriGwF2vkFpCd5qm1baNMTz77LO8973vrYjqKysrN+Q4XxvgRoi5eZ9AUdroZ8aQak2p+RDVAhQ0XWZJRpxuYoRm38phvCiCQiGSKQJJkWd4ro/KUoQ2BGGToNHEiyKc0Ec6EuGUqhIhNFKWlZu5Bh0wc5BQKpUEEmNJc6ZMDi+KvDSgy3PSLEYXiiIvKPK8tMFXBSARgUZoQ6PpclhmqF1Ns6FxJWSmYLHXw2+06G9cJpuOCP0lhAGkze4pPXgQIAOJ1LL06DEaQg+jBUZoilyRZBnj0ZCdnQEbmxO29hT92CVR5dOPIwShUDgyx5cGT+YEriHwNb4jaLYkzcijFQZEzZAwauI6Lp7vI4RbtgazKeNhn8lkSDxJSVPJ/q1Nov37EcLQ6YbcdFOE44EfRDiuh2x3KfwI1/HK9tncGVc4unSLdiVprihpUAJnuUfiQjwdM5mUURiGMkYgLRR5rkizlJaBoNVApimkeXnNVYE2P5ySQYhSMOf7Lq3WAm+99y0sri5837/Z293h/MUzxOmrF6ALwPUcgiCi3eqVC2IYEAYBvufTaEUEgY/nujiRg9YFYMiLnDTPcd0ymiFNY9I0ZjKdEgZh2apSijTPcGQ5iWljQM2NuYRGG9DakCQKzytKXC8Mp8+8TJpkBKEPrsvCQvf7TsB/U8b1x2AXujrQsQCm0WhUlRgo4xTCMKyeQOGqtb+tqoRhWKlOLE+nTrqtP33XDf+u3686CLM8nrqUuQ50LACxhoB227YqY31TOp1OFY1gTfi+l//O9duyWVv1p/IsyxiNRuzu7rK5uVlla9VNAu1iZ8+BBVqWrGr/Wd6H5TTZYcGMbRclScL29jYrKysIISqTRbtdG9JoAcv1C7f9V1dMra6uViRxW/2y58FWyCxgbTQalRy83oL5Ye8/C+xarRb33nsva2trf+F2hBDs7u5y4cKFSsL/aoc9XzbLyxKK68Gsts10/TW3/LC6bD8Mw2teUwfsFuACFWesDm4ATp8+TZIkhGGI53ksLCzckLnmNQFujCm5NcrYVhQkWlMwLw8i8YTEcw1RU5KbAqlhZ7hHt72E6/sYlRNnGb47lygGPn7gI9qtsjLje+VTvzSgS5qsdJ0SOAlZchkklMDGKYGFAIxEa4UqNHkSk0xmxMMRs9GYLJv73BjKRdyReI6H7/pIt8xSUnQYixFaJrQDjTOUGL/B0r4VVJaQpwlhs0Ozt0Q6HeE3WiWp2crTRSnjFW5p8Aclh4c5YStOJvT7Iy5f2WNjJ2Y0MkxiyJVEGXfu8qwJZEHkFESeIvQ0vm9oNByi0CWKAsIgIgx8At/HkRLHdcs2nXDQGHJtmMUjhrtbjPsTskRTKIFwBcVoSPvYcVzXo93pYbo9Cq1x5866YmGV6bx1Nb/guI4/V6IpZNCkyAWxKuMB1hZXiNOc2WRKP1Y0DbgIFA6uM881KQqMgL3JjFRrArfB337vL/CVpz7N3nDnh7r/BAJfSgI/YKG7xL1veyuO//1LwJcvX2LjyhWKvChbPD/UO173/qKsZDmei+v5RGGDMAiIooAgDMrfuV7pe+N5pAm4bumHVLYTJa7j0mw1SdKYKArLtHjpsLG9UQKfLEPKq7yhXBW4UpYO3ALy3JDOcnzfwfFga/cK0/EYz19AaUO303sVR/jaGdfLsO2EW1/U7MJsWy1WGt7pdCq1Tj2MMgiCKmjTLlzXV2Tqadr2fepf7bAVE8tPsCRX2xKz26oDhro7rOWHBEFQJYevra1VlY9ms0mv12M2m1WKL/sEbfelbsAHV3ODkiSpAkO3t7cZj8fEcVwt8nWllV1ALeiwi2hdnWMrYRZ82HNjqzW2ymTbHVJKJpMJhw8fxnXdqoWllKpAUafTIUmSa6Ic6j5DlkRtK2Hdbpc0TSuysx32OOz1gLKSZz123ve+9/GNb3yDwWDwQ9+DFsT1ej3e9ra3fdf5vn5cvnyZK1euXFNV+qsOew4s/8tWFi0ot7+z/2x1q36/WlsEC0hs63N7e7sCPvWKnf293XfrBWUBlJW52wT3brf7qo7RjtcEuIGyIqJwShdYo1FzO/n52l6qo1yNkTmxVrSkS5Jl7I37NMIWzBOicDyMUUhP4DgBYErFCxrD1ZgF6TlI6ZZKJ6es2sxVzhhKFZXKYvIkJZmOmA3GjPsTdF6WO8NWi97aGo7noAtFrhV5PCUvyuqNLlKMkUhXEnWb6KZHHsesLmdMEhc/aOI32hRpgolahK0WaTwhi2d4zQ5CF2AMwnHBVaW5oCjbCVoIZtMJ589v8PK5ARd3CuJE4BqBK8rwSSkgcDICR9EOC5qRIvQh8MDzHRqNJo2oRRhGeH7poSMqcOcjPR9jIM0SclUQx2Mmwz2mwxkqNwSRSzvwaLTbBMkY4TpE7S75bIJyQ5pRCz+IQLg46zeR5AlCSlSeliGlQpYXXRuEHzFMYSc3pUvz6hKT3R3Gs5RBrsuWmYBMCJCSQX+IoxSuEHSaTYbTKXcdeRv/4vf+Of/kf73Mlx///A+M/AVzzpFTArqD+2/i+J23fd+/UUpx4fx5dnf2UOrVS0MdRwIG3wuucQgVwsEP5guBH+DPJyRdFKiiXIQd18UPXNxU0mg0mU5mTKcTjNFMpxOkdMjzYl6ZKCcmG8Wg58BGm5KXn2aGMDNIx7A72GHQH9Bd7FHkOasry9eoS/4mD1uluR7YwNUqip3Q7VN6mqYMh8OqPA/XRhjU/XDq915dFXW9M3D9XNoKwXQ6ZTgcVq2dMAxpNpssLy9XwMpWjmz1wbbFHMeh2+1WpndLS0skSUIQBJWM11ZJrFqp0WhU58MCJrt/9ut0OuXChQucPXuWra2ta2Ih6kRgS2a2pm92AbUeKtYJt/53dbKyjUWYzWYVpybP82oBtrwgKSXtdrv63pJghRCsra1VfKe6Kspe6yAIKpWWNRLc3t6uWl8WsNrjGwwGlcLNcp+OHTvGP//n/5zf+73f42tf+9oPVWWw58p1Xfbv38+dd975fV+vlOLChQvs7OzcEG8de3/W20L2/rXgJgiCqi1ad8e2v0vTtKpiWUBYNz38iywW6m0qq6BzHIe9vT329vZYWFigKApWVlZuyFzzmgA3BiiMQOmyJaVg3loQSAQesnIrLowhLwoarovvheyOB/SaXRphRKEzyCWh55e8FK80+jNzdYiQEuk6ZUUCWdnni6LMmNJFThbHzEYjxrt94kmKHwU0ohBXuOw/sk7Y7SKkJEtmjHb32D69y3CnD3mO1AIhNY4jwDHlouWWbS5VKISBtpB0QsVoZ4vV9UPkWVq69hY5jueRTkcId27Ap0FT+lsQOOiiIJ7NuLg14jtnxlzcVSglkTg0pKLhKkJHE7gFUWDoNKHd8XG9ACEdXAc8z6Xht4garXI/DSidI2TZuhLSx1D2meM8ocgzCpUxGe6RjGc40qG5UN7kQdgkiFrI0YA8nbKw/xC7s5jDD/0GN7/rAWR/k9E3/xz2HUDPUpTSpLNJqfYyGlWUZOIMh3ND2NGaVqOBabWIz59F5ZqJNrSEwKG0A1CFQhUpLnPWfyNCzGYcOnSUmAmXrpyn3WrRiEI2t3+wCo6w23Ijbj/+BhbXvn9LKk1izpw9xWjYpwyu/KsxbuyHXc4DMo3WOI4szRilxJEuvueBsZNSOTElaYrWhm63R5pmmHlsCJTctTRLcIRD2IiYJDPE3JU78Hy00VSeynaBwaC1QWmIZylCwliM2dra4tCxIxhV0O105i7Ff/PBTR3U1PkAtmpjnzgtQdfKpi0Z17amLEfAeqhcD2osWICrQMYCEUuQHY/H9Puli3edC3Hw4EG63S6O41QVk3PnzrG7u1vxX+qgov5edffdZrPJ7u4u6+vr17S0PM9jOp1eA8ZslcO2XGazGVtbW5w+fZqdnZ3qGOptn3qLo91uVz+358zygSxosmDD7j9cBXYWqI1Go8riv9vtVlWFKIoqELJv3z5msxnvfe97edvb3sZ4PObZZ59laWmJ8Xhc7X/ddK/uYWSJxHaRrpOv6zL++rm2KrRDhw5hjOHy5cvVNra2tn6ge69eHbv11lu/b0sKSr7NmTNnGA6HryqG4epcczXY0vK2bJXKkrfrpHFLLu/1ehVnqd5mstwaC5jte9lqlAU19WO3reA4jnEch8lkwvb2NseOHaMoCjqdzg1xKX5NgBsoVVJqbtiXGT13KQaHshpRhiKA0Iq00IzNjGXPIc0zRtMxQRDSCNroIkMXObbsY9AgmROHfRDMzfuKkgysCvJ4xnQ4Yrg3ZDZO8cOQ7lKX5fV1wlYDIZ25jLwgSzLGuxtsnb/CxsUp4NFqS/yWQ+B5pWrLKassmPluSIHBwQt8XLcsxUlPkOQzhCOYZWN0UrYNkmmMFyYUjkAXpVNyplLGkzFXdmJO7xRc7LvESuAIQSAMbS9nKUrptjTdBgSeR7fXI4w8tDFMJ2MaYVlNCYIAV7ol3wIDwsVzmwhROo+mRVm+TtIJqsgosrRURcUFoR/Q7HVKF1yj8ByX0I/w0xnJbIoMIvbf/lZu/omfRngeUgjkvn1sZSNG4y0mkzFFPEYXBVq4pTmiAKTDyBjG2hC22xRSkqcJQaHJMUwRtOfq9k6rxWg0K8GONlza2aFQmqdefozf/eeXOHvxTMmpEuKHghwajet53PWmN+L63/9j0d/b4+y5M0wnE9SrcCd2HIlWBm8O1IUwGKNxpFO2Bi1XQwKiBC5JloKRtFoheZ7heQ5BEDLojzDakBcZgRcwi6eMJtOKmGwoF9xCKYpCIcR8wsO2aiidlo2DALI8Z3NzEyirhUuLS/PFM/8rHu1ra1xftam3L+qvsa0Am/9kOQZRFFXcjfqCYwGSvXb1RdVO6KPRiL29PSaTCUEQsLi4yP79+2k2m9XCYdUmm5ubXLx4kUuXShm+lZ3XWznXgxOgevquK73qBoCWZ2J9fOz+WUn0zs4OGxsbVQWpvgBaZY3ltywuLlacHLtNW02pP73X+UeWz2Kda+3/LejzfZ9ut1tVF2y7z+6/53ncdttt3HfffRWwXF5eZjabMR6PKz8dC/TqpGYLZKIoqhbweiXPgsR2u11JsI0xFYn5xIkT/N7v/R7nzp27pp32w9x7nufx5je/uQIU32vYytGZM2eYTCavarG359GCUbsf9rrW40CAqg1pjKl8b2xw6mAwqD4bNgZjPB5XVTi7XXue7WfCvqfl4tjPTVEUbGxsVO9rvXVe7XhNgBtjQBlBgaGYP1maOZfAE6KaiIUxSDSR5zFNckJ3guc02B7v0G62MYUi9MISiGiNyhUGhQS0MBiTY7SiyDKSeMp0NKW/O2SvH+M4AQcOLXHTXUeJmmFJfAVwHLRWFEnKdDhguLnF3qVthpOc1f0rHLn5EEErZDYeo/IUYTTSdXF8vwQ6rsRxPXDmSiaty6wqpdEqR6UJSucoqZEaikIxS6YYKVF5QhzP2BtMOLulOd0PmBY+ghLURI5hsZGyuqRZ7JYVJokh9D063R5pGpOlM7rtDo2ojZSU5S/Px/UDtJTztp/HZDxgMNyiMIo8TtB5AWjQBseA32zRaLXLST6dIhBEUYuo2UaYjCBLuLi1wVv+9q8hPJfp9i7tfSsMA4/Ni1e4cukiRZHipAlFXqAdCcwnfcdluzBMNNy0usxoMkLnOV4OBsHMGFoItM7pDzZQpiSaNwS4c4Ob85de5sLlU+UHRl11Sf1B7z8pJO1mj1tuu+Uvff2lSxfY2LhCGmdzQPBXgzdSCIwsQY7juOV9gsD1XIQU5EVWEscpHZyzLMbzXcKobBlK6QCaJI2RjiAvVGna55QcCd/9/7f370GSXfd9J/g5577ynVnv7urqd6MBNIDGQyRBCJSGpCiRFO2RwtZY3NjZkG3uerWxu/buzIRGljdmVxOejdn9wzNh/zX2WGFvzHgsWRQlkKLFNw0SfAEEQDQaDbBf1V1dz8ysfGfe5zn7x81z+3YDBAECze7G1C+iOqtvZWWee/PUOb/7+30fHlKaayHSpC8Oc2DV64mNFGDbkoLnEQUBia3ZXN/AYLMHwwHVSpXJ5J0rh97OyC+seTr4zXozJhzHyXRgbNvO2Dqm+gHXKzz5ClBeU8Us/u12m06ng2VZHDhwgFOnTmVVDSC7WzVgXcNAGgwGLC0tcfz48azSYOa3qZDcjMHJJyzm0WjumDEb7IOUMvu+2+2yvb1Nq9W6oQJkdHFmZ2czHynT3mg0GpkHVK1Wy36Wx3fkmVL9fj/bIE1iA9erW4aablogQJZMQboZbm9v82u/9mvYtk2r1coE/nZ2dlhfX78BNJxvS0kps7EaE0+DvzFjMJUNY8NgKmRmrphk03zGb2+t0Vml49570/b3m7W11tfX2draugHb9LOEAZjn5wmQfTb5JF1rnYF+jcaT+fyMrpKZN+ZamdfJz8u8OOPNVVLT9jKtxfX19exaj0YjqtXqOwZQ3xnJzdRmQelU3watb6jaWICcCss50sGVAunBIIqpqoiJ9ukOO3h2MW3BCEk4HiPjFGOjEk0UjYkCn35/QLs1ZHs3IogE8/MNTtx7jH0r86lGjpTTmpFAJYpwOCD2Rwx3d+lst5l0xijP5p6HjrNv5QB2uYywbYozMyl+RiepVcM0kTHnhyZNbKYAZtsGzZS5FfgoBGE4oTce48YhtmMzGo5o9gIutx2uDYuEOr0OZUtTs2NmShHLByzm52YpletpwlEoUavWGfR36Y1b6CQEobB1iWKhihQFsDTjMK1wFdwCsuQQhiPGvR7CSkGqthAgranYnofrebh2AVtaCJXgugWK5TrSsdBRhNPZxR+P8P0RZdumurQAQmBbHv4kormzSdFzYTxAaT1tF2pcr4DtuUx06n1VmW/Qbm+hlMRKNA6p+rACasBQK7rT/wfTeZLNo5/5D1+gFczNzLH/wOKbivJprbl86RI7O9tMwuAdiQcKKbFQ2LYFQiOllXo4qQStdKonpNJqju8HlIpFLNtiMvFTjWql8YM4qywUCx4SgYpCarV6StGc4mocJ8WNxInKqjVTiNX0vCCKFYPhBMcROMRcuXqZMAzwCgUuX14lUe+er83tjjeS0c+3pm7eBPLGlkaS3iQ3k8nkBldvU5EwbKJWq0UURczNzXHixAlWVlayaoOJJEkyA8dut0uz2aTX62HbNg888AAHDhzIAMCmRZCvNuXxGGYjN+dkIr/5GHyPufsejUbZ+/b7/RvE+ww9eP/+/czNzWVml8bVu9/vMxgMsvc0GJ88lTqO44ySHoYhg8EgSxjM88w1NVUns3Ea3I5plxn/qbxhqElAJpMJOzs7uK6btVRM8mh0hkwiMz8/T7vdzipr5joa/FE+mci3V8w1/lnCJFqNRoMDBw68LpnOz0WtNZcuXWJnZyc7l581THKSZ7CZ62laVObcJ5NJlnRPJpPsuphE09D3TXXGzIH8nMlrJL3RtTLaQeYzv3LlClEU4Xkely5deu94S6WphCaagokVqa6NI9LWiy3AFWDJBC0lHgVsF4aJJk4SLO3QnYxZrBeJVIJWMJ5uokEwYTSa0On6bPcVWwOBlVjMN2wefmiRI8cO4RXcqSFmSjdWShNNJviDAd3mNv5uj2AQAJKZ/QssHDlItVZFOBZYKfNKuA6OLUjidGPSOkntD6RAJwKl4xQMrBWSNGkQUmNJCcIi1mnLza6U2LjawXE0rYFmrVegHznTtpymYikOVH1mKjGNqqRWKeM6FoIE2/KolqpAqhlUq85TLpZIkgmxihn0dil4FZSEOFaUC6WU5i1Ty4s4CbCUhTd1obYtB9d2sKZfjnSwpMBzPSxHklpdpbR5muss3fs+nGIl/USnmkGz+/bTe6bPZDxCqpik3USqJGX6WNYUAyKISQ1KC6UCm1dSSj+JoixgV0Es0skaALZOPaZG78Lc00CkNFaSsLiwn1qtkvvJTQuP1kzGYy5eusBua5cgSDLc1s8SqU6knCbgCqUitFKoJMUiJXF69+lPJpTKlWzRLRYKjIYjwijCcVxq1TrtuI3SCYmKkZbNZDxmMByQqLQKGsdxSjm3LVR4faHW5l8hUu+yaZVISotuv5cuaFLw4AMPUHSLOPaQOHl33YlvR5gEwNxJ3qzHcjOw2Ii72bbNYDBgbm4uW7yNGq5JGLrdLr1eL8NJNBoNHnzwQY4ePZrdCZvXMpuJ8Vgy3kYAi4uLHDx4MMPemA0qrwGTvyM2d+f5L3MO+XMyFYdyucy1a9cyPFG32yUIguw6GMG2arWafZmkzOB5zLU01RwDeDZO4HCdSm7AxEBWLTF+XaYCZZKpfBssTxsG6HQ6rKysZK9vzs34Qw2HwwxrlMeI5FuQhsG1s7OTbd6GJm7mRF5d16hMv9MwoPKlpSVqtdpP/DvSOtVNunjxIu12O0tm30nkK1h5HSPzfwNENyBzU7nJs8RqtRq7u7s34GmMKauZi+bvwiQ52VqTG3+eGed5Hv1+P5NXeOCBBzKW3TsxCr0jkpsUCKmnFRwNaCwkrpQ4QuOJlC0jgEQnKKEpWC5CSmIZY1tpchJEPmEYkCgYdzoMd4dcacPqCDaCNKm4v27z2D0uB5cXKFWKJL5PLEip25ZNNB4z7nTo724z6vQJhhGu7VJbnKWxf4lqYwZLCrSKQWmkEuCQJjJaoBOFUgkqiVGJRsj0D0MlKuW6o6bigTZSWmhHYCcuzvT3KvUa2vU5vxGwEdhEyqIkNUWpKDgJs+WQxTlNvVymWCzguh62XcKyHEqFClppwiAgiiMq5VSJVFqzqbDfZMCw1yUcjWnU5ylWq9d9h2wPy3KIgzFe0cPzGhScAra0sWwLy0nF85hWAiClpAvSSRt2dlj0ipRmZgnHI4SQuKUicRxz7coV4tCn3dtmdPE8k8CnXE51U0hMnQxcz0PYKahV9sckWlMVgl0UEWmSm2ioCoENTIDoXdhjlU6p7mEy4dLlixw4dJBSuYxtdEAAc9K7rRYXL1+kvdshit+Z7YPWYGdMPYWKNXESp7pJKm19hEGqqq2L6UIUBuFUj0NjTVWi4zgiDiN8PzVydWyXYTJMQX1RiB+k2j+2tIDrLBUDQE4ZYxLLEvhRgqsFbqJY37zCN5/+Ohtb2/z4lUv87u/8LhY2586f5Y8//+8I3kY5/k4Ms9iazdo85n9u8BGGvWGSDMP2UEplNgMmOTGO23Nzc5w8eZIDBw5kbKU8jTuPvzE2BY7jMD8/z9LSEo1GI7s7ztO182yr/EZlxmiOAa9LFExikyQJtVoN27a5du1aRrc2YzOqtaZSY5hOJkEpFosYFWNDMTeGnGbD6/f7jMdjGo1GZvVgEgvDQFNKZewqU63JG1zenFBonfp+nTx5kkajkVUWisV0rbly5UrWtrpy5QpBEGSVpvznbapD4/E407cxNhb59823+N6NhD5//VdXVzl48GBWlcoDb7XWdDodLl26xO7u7uv8t36W981LBhgmmfkMjEaNlDJLwMMwzK6NSfwMNsq0jFzXzUT9DF4qX43L43hubgEb3ZwkSVhfX+db3/oWm5ubnDt3js985jMIIfjxj3/M5z73ubfV+jNxhyQ3pIq7Ok1yJAJHpAwpRwg8mfoRaa2Jk4jAsrBwcKSHKx2EtLCEJIkDJn5AEEVsNX1+vAWvDmPGKqEiHR6eFfzy6RkO7lvGK6QiVda0JYCwCEY+3eYGveYWcRBTqtRYPDBPZaaBW3ABDXFCEiZYRRfpppRpBWlCEyckcUQSReg0R0tVhaMQEo1t2VgFB8e1EEKlZlppjyBlq+iUkrx0oMyVdsRoLJEoSk5Moxwy19CUC5JyqYRrW9gFB9tysaWg4JWxHI8kiQnjEMuSFJ1iCjKNQiABZSGtAoWSxCuU0jaZkChS12i34BGNJ+hY4RU8XKeIbdkpdV5oUDFKyhSoLSw0FnpKnRdBiFq/gmVLhLamrT1wC0VUHNPvtuhdu0LrSpMonookagVakQjoA6WCm8q1+zGFSYCvoTKt4I20pjJ1tu4D9fSMmLwbdtyk4OSv/Ycvc/kzl7j/1GlO3neCI0ePcPDgQZb27Wd2dpZyscjFC+dZXb1Evzd+x2aZWisSNQW9T72r/MCnGBUZT6mqjm1juy6JSpFo/iSgUq4yGg/xJxPiOJo6Ko8zEGoYR9iujZ5AkiggZe7FcYLWabUNnSZ1TAHvaEV2kyQslBKsb2/wp3/2OVavrDHoDznz6kusLB9g3+w+atUqzXb7nV722xb5/r+5i8wzjswGcHObKq9/YiwOms0m6+vrdDqdTD14aWmJhx9+mAMHDmTsqryeyXg8ptVq0Ww2s+Rg//79mRKyGUMQBBlF17QU8uBfs+mZTdNUmCzruu1DfmPPY42klCwvL9NqtRgMBgAZVbzRaGTfG3yE2YDNeAxux4BUzXjN+5jqTqFQeN319jwvS6jy55dPJkzkQa4GyLqzs5O1tczPDXW52+2yubnJ2tpa9hnm2xzGosJQwo2DuHlvk8Saa5r3pXo3QinFN7/5Tf7u3/27nDp1ivvuu4+jR49y8OBB9u3bx+zsLMVikQsXLrC6ukqv13vHNPA3qlQahpqhxZsWkWnHTSYTyuUy4/E4w/wY93aDNTIVHfNzuI4dM/+/ec7lqzvms97Z2eFP//RPuXLlCv1+n1deeYXl5eXMSLPVenvaZXAHJTdKQ6Q1Co0n5LQtBe7UJkAhUUoilCaRmjiOsGSM55SxvAI6CRmPxvR6Y85vKS52BNeCkFgrFu0iD1UEDx5xWZybo1gqTgHDGmGlSsTBaEJ3dwt/1KNSnaV2dIHKTEpJQ4GO05YBAuxqCavoIWwHRepynQQhsR+SBAGTQQ8hNK5XSinmSuE6Dk7BwnJleieOQGlFFMX4oc8k8omUQgmLYrnA8cMFWqOIIIZaMWRuVlMrOZTLVbxCEaZVDMstYLtFmAKgtU5I0JQKVYQlCCYBQsUkWiFth7mZBYQj8EcjwvEIx3YRnoNtu7hOmaHqobSNV6jgOUWE0AidpKacWbvJTkHf0iKeTk4bC9wCCIntOqgkQcUxtuvi2A7N5iaDTo9BEOCPxiQqQWKUomVajatV6XaHRJGiHMYkGlwJZaCvNSMtkDrFXklEmhS+a/NP0xuNuHDxIv3BiDNnz1CtViiXq1QrZWqNKosLC+y0N7l69SpB9M7xJ3GSYCOJY4VWkMQJcZQav/qTAM/xUGhCPwUWR2FEqVSm2+ukFbowvYtKpoC+8Ti9myp4BSb+kCAMkHLa9E006SVL221ZG5YpoJ9pixExfd1Ui2hna4d+r08QxWxubrO+scnK/v1MgrsbWGwW+jyQON+2yW8GpnJiKheGFdTr9djc3KTVajEajbKNemZmhuPHj7OwsJBhF/Jie5PJJGNLVatVZmdnmZmZyZKsPLjTJAf51ophDBmnbSBjK5kKhPFlupnW7vt+drdugK2HDx9mOBxmmjLGrNK8t7kmeTxM/voUi8WsEpVPCAzrxVRH8krC5jpqrbPkxkS+wpJvFQLZa5tzMxgaI+Rn2zbNZpPd3d1MQdd4FeVfr1Kp0O12X+cSboCw71Yb6o1Ca81wOOTixYsMBgPOnDlDrVajXC5TrVZpNBosLCzQarVYW1v7maoWN0deisDMBQO6nkwmNySnpmpTLpcz4LeZbyZ5z8/3IAhuaGfm23/5czaP+eNmDEIItra26PV6hGHIxsYG6+vr7N+/P2tXvd24I5IbIVKAaMIUSDxlSaXtqKn4j0ptw2UCsR2jhY2YUpq1SggnI1rtCRc3BS/0E/pT8OO85XG6anH/cszSTAmtUqEorNR+AZHqxwTjMY7lUF06RKFawykVU3ZRkqBUnAKNLQvLc5FeqhujEkUUTgjHPtF4QjQZE4djRJJiFsJoiO3YFEql1CbATqm3SlqoKGEyChhPBkzChDgO09aB7WHZBRYXKxzvdthpBRSKmkq9TKEyS08JegEESlO0beqhoi5jCjqm6mpsDbZToFAqgpaUa8W0huJYWJZEJ0mKU5Iu2gZIUGlhDLdYQiCxbQ/PcdBJgIqj9M5e2gjLQkiLGAiTJK1WIRCOixIC6rMpjiaO6VxaI4gjZg8uU63MMh6HVBpL9Fp9RqM+SRynSsxSptRnBJVSkXanj2PZuFOMSKTTSZoAQ62NGQWgUT+bvMxPjDBW9IYD4jjC8xxcr5CqA1spHiVWceqs3hu9YxdySG0PEoy8uU8Uu3iiiO8HFIph2qIKIqScgCyCDf1+KipWraTsNylS6YE4SbBtC8uy6Q9SB2bbsojiOK3QTHUJri8s1+94VX4RyhDGUKuUOHTkEJMgwLULKJXQHw64cm2d6B30wm9n5JOXPIA4n3zAjewO4IbkYjKZ0G63s8TGJCOe5zE3N8eBAweYnZ3NKix5PI+p+FiWxdLSUiaBb/Ayea2VfBvIJDWTySQT4DOaNWZDNqrK5XI5OxdDuzYJhtG6ybeHFhYW2L9/P61WKwMJV6vVDORswMB5vIypxjiOkwkb1mo14HoFLK8TZK6juWM3eBnThjLXynwe5sv8jtkwTfXKtMDiOM4SgAMHDlCtVhmPx9TrdXZ3d7PqWl5/RwhBpVKh0+lkiRpcb4OZBO2N2mLvVhg9HwOiNcmoOW+TQPf7/XelHZav/OQp2sY3ylR9zdyzbTvzjKpWq9l1M8BjM3eMSvXNAOybk5g3wt3k/1+pVDh8+DC+72fzYTAYcO3atZ8Zd3NHJDcapvYLaUvKFgJ3mthIUixLggBlgxLYpMaartAIxyYMJ3SHIRvbFj8eKvoqrV7MSY9HKhb3HQzZNz9DpVAjThRB4OMJmVYhVIo38IoFyrUaTrGAtNOqgE7S1pGQGuG4qYWDlCAt4iggHE0Y9/pMhj0SPyAJfUQSp47jxRK2lHiVCm7RQzgSpIPWEIUhw16P/qAPUqL1dIFFIKUgURLLdjm0UiSMJ1AUvLSruHKtjSrPc+D4vSwdOIhdKtCMfNY6Lfydq8zT4cRMmaVqGWUJCm4RIadwESHQKiFRCUkUgRQUilUmwx7RxJ/eQaWaPuVKBdtLlXC140yTGolC0ht2affbaCwq1TrSdvFDBeUF5vcdSRcHBL4fsNtsM3f4II2FRSa+j1spEFkWYz9EGLNPRFrJEuAWHNqdEWU7TW4hVVrO5ghQFIIIGJI6xr/bESvN0PcJoxDGYzLLMZ3+LE4UybuR2UxD65T+HwYRtuMjxuniMhmPKbgeQ2ljWxLPTZPqaOoT1e3uMhyOGY8nTMY+aqpfk6gE13VwbIfI0JNhWrURSEnONHO6WSVvdD6C/fv20el0WVpYoVFtcPqhh6g0ymxsXOOzT/05nU73XbsOP6/Il8jhRjNH8/P8nafZ7MzCbrRums0mnU4nA3qaxObgwYMsLCxk4FpzR5vH9RijyEKhcEMVxFRTjLdPXpTP4HMMuNPQug3o07IsKpVK9pqm/B9FEb1ej36/n22a+aTObFQrKyuZ2WSz2eTChQsUCgWOHj3KoUOHKJVKxHFMr9dja2srMzis1WpZVSufUJnzMclauVzO2GDmjt+yUkdxU33Jt6UgtTsw9gZGIDCOYxzHYW5uLjuPyWRCs9nk4MGDzM/P4/t+BnbOu1CbsUGKFel2u6/DuuTnibmGBsf0bodJlKMoyhR+TeQBv+9m5N26zXuOx+NMk8i0My3LyhSEu91ulsQYYUSTcJp2oqnAwI2CgWb8+crbG8W+ffvodDosLi5Sq9V46KGHqNVqbGxs8NRTT9HpdN72ud4RyQ2kbalYX9e2cYTAFinOINHTPrgCpSQuEkUC0kUriT/x2W7FbIyKNJNB6gyO5JDrsFQM0QlIx0HaNrVymShOCPwJwpI4rpcmIo6N5abVCXQyxeFIpAXCKSBtLwU0q4Qk9AmGY8adHv54SBKOUtqyW8JzHbxSOXX4diVWyUM4LkhBogXhyE8XqUEfx7Hx3AJCWNOJEJHEilAk2FpSqZQozUz4qys+K6cf4e/+7c/w0C8+SW1hHsdJvZm0UsSBz7izy/prr/LK019n47XnOFEZM1cBx3IgTpCODUrjDwaoJMF2PYLJhCCICIMRlXItrQIIiesVQEusYjGlbAtJEit2Ozu8evk1ojhi/+IB/DgmKc9SfuhDBKUK9uIyWgiEbbHv/hMs3Xcc23Wo1OtYlo10PULLZuz7qReXSKtnbsHDFhZVr8B6EJJMxtS1vg5c5noCXBFQQtBLzTRuSSRK46vXl6XVLUimNBot0nnl+xO8QoE4jkjihEkwplwuEoQB1kSSJAqlYjQQBhHj8bTPLVKNGyEhCAPCIE3OgjAgjONUEZqplYlMXeNT5l6aXL1RVEtlqtUy6xvXeOj+R/mVD3+MA0f2I6XFo489gus5/A//8l9OMT13V9zckspvcPnnmFaFeTQ4BINRMSV8KWVWMckv+KVSKWOgmApFsVjM2io3Y0bM3XAeW2M2vl6vl1VRDJMl7w1k2D/mXMxYDU07zzrKV4nMBlqpVGg0Grz66qvcf//9/P2///f54Ac/yNzcXGZtYNoT3W6X8+fP88wzz3Dp0iVmZ2ezu/s8rdhgM0zyYswWjQeXAfYC2YYK6Qa4u7vLxYsXiaIos1RwXZd7772XQqHA/Px8ljCePHmSEydOZJo7BtMjpcyqCvn3M4Dp7e3tLDl9I+ByXnDw3aie/KS5aJKCm9//3Y48C2wymWTu6SZ5NjR9g58xfydBEGTH8gB3I8BopA/yekF5BuLNVdCbo1QqUavVWF9f59SpU3zkIx/hyJH0Rvl973sfxWKRf/Ev/sXbxjzdGcmNhnhaDrcEuELgiASJJsJK3cK1RKEJIo0tC0ihEbZDFPns9gPaXY92nKobC6AuPRo2SKlxpIXnlTING9u2ieI41b6JQyzXwS4WUh8nScrgsSysqfHjFHVJksQkYUQSxahQYdk25WoVKWtYOq0A2ZaF5VrIYgFZKKBI9W6SJCEYjRkNR0RhSL1ap1guppUBPS2FxpJYRNjaJrEkru1xbMXj4w+e4Ff/D/8Xjj/6AYRbyu7E0YCVeme5rkNtdoZjDz/C+sVL/OiLn2V39QWWXUXRdnFilzDwUXFEsVRCaYE/GeJ6BYqFIhJFnChsO9V9UVGIVgKrVEJr6I8GnL96ifX1CfPzNhME7onHmDQW+dpffp7+boffe+zDqChCJQnOtOyslCKY+BSKldQiQErGwxGu4yItG7SmXKpQLrh4BZcoDElCn56a+j6RauKmPLO0euMAHoLxu9mTev2UvGUL2g3voyGKFFqFICAMgqnvU0KcRDi2h5A2liXTapJOK16odDOMkwih00pjHMYIFEkSEUUxcTxdaKRMp3WiiNX1BUK9SQWqXC7T63UJgoQD+w9y9J7DvPbqWRYWlrCdBR597DH2feELrG9s3upL9K7HG2E6zPF81cYo85p2RhRFN1CmTRXEJA55sKx5XcdxssU/DMNMIyRve2DAnCYMqNVsGKatYqokJgx2xQCHzbjNZmWqPAbPkW/JmQ3KAGkdx2FlZYWjR4/yd/7O3+H06dM3OHSbsKzrpo+nT5/m0qVLfOlLX2J7e5tSqXSDsagB7mqtM3uJQm5dMEmHSdgMS2c4HLK6usrGxgZzc3MopVhZWaFWq/HFL36RdrvN6dOns83U87zssxuPx1klSwiRGTKaRNLgiAqFQmb7kK9m3dxWuXmO3Ir4eawz5n0M4BzIwN+mJWjaYqZqA9erMKZqZq6L+blJzvJu8OZ4vp30ZhWodK1JZSeWl5e55557ePXVVzM/tccee4x9+/ZlKt1vNe6I5MbclUumwn1obJHq3SgtSbQ1vXsX+IEkJsYTFnGS0B90aTYt+pGLryeApoDFAadAUQZYnmTxwD6qlQbpHiBBahzXRUaCOImYDPtIS+IWHYRWKR7HkmidVkaQGj3ddHWi0mpDtYhTciBJEEojlEbFYapMbNuIQhEtZdraiZKpJ1Lq5NyoNyiUXKRlpQlToiGZ/iGRVq104uKoBNsr4hc07a1NDvk+rlvKaMkIo8UiwHYQSmHbDguHVnjyf/cZfvy973D5a/+OQyKgGMdIYVFfWEALQTQJqM/Np9UfrfHHQ+JwglP00KGPqNVRcQw6bZFcWb/K+UsjBmNJVCix8Asf58zOJZ7/kz+hvzNm3/EjOK6LihLiIMQpFNAadre28GSB48sPcPHKGeI4YuKPKRQL6AQSFVOsVKjVq5TKZeIwxhEwERqLVNcmtATEaSUn1drVGX387lZbSUMpBXZqaGl0IYrFEnEUMh6PsJ3UX6hWreDYFjomdYsHfD+t0CidSvtPfJ/+oD9lyKU6SlqnookpO8rMM35ie00KQaNeZWlxjvc/+n5OP/wAYRzw4ovP8wunP0hjboZKucLxY0fv+uQmj+24GQhpqN6GrmpE+fJKv4Y6a0C8y8vLGe3ZhOu62UY8HA4zIC9cV//Nb6Z5DyghRLYhm2qSSU5MhchUZEwilMdU1Ov1DNScb3XkWzFm0zLVDlPReKPkxlRLzGa3srLCpz/9aZ577jmeeeaZrH0FZEBe3/eZnZ3NKjoG+1MsFjP6sRnDeDxmfX2dy5cvZyDkj370o2xtbfHHf/zHtNttDh8+nF1TYwwKZAyqgwcPsrq6mv08f+1MlcBUKczn/UYYETMfbnVy8/MMM5+BDMhrrETM9fZ9P2sD5v9WDKhYa52xzAaDQVZ5yltl5FtU5n3fKMwcXVpa4tFHH82S1hdffJGHH344kyI4fvz43ZncQOrZbU1BxJ5MBesSBAmSlMw61VOJJKFIqa1JMKHfV/TGRQIlSEgxOzXpMmcrZksxM3MltGWxurFOvV6jXKziShdbSKTnYEUpe2AyGKKiCCktpONMTTaD1GAzSYj9EK0U0rKQtoOwFdK2sDwHptUZEThI10K6HloIkkihojhlU8UxaEWxVEztHey0LpGqxCZooblO/dEoqZCRSu/QB22unn2Jow8+zGK1QeoCarZ3ECJlLgnbxnIcrMjGclyOvf+DaMfmzF/8Kx4shMxVG2hSCrZX9tA6RimBitPFNAxCKvV5wmBMCuFVJGHA1Y2rvHhum6u7gollcfIjn+LMpR9x9offRw8SVALd3TbXLr3K8sl7sIseWim6zW2++Cf/P9bWrvCLH/sIvS+0udZqMh6lgMpYa4SSuI5HbXERLInQqT3FRKUaN3g2ZQmjfoAEvOlZ333NkDcLTRwrxipAoykWStnCo1TKlsKD0WiM69hASolPe+UFEJput0MYBuhEYVkutqOIkuvy+VE0dZmfYpzeHDck8AOfK1evcurk/SztX2Q4HtDr9fAqNiqJkZbL/v37b7jbvVsiT4c1pfP8Hbt5zN+9BkHAYDDIWCLmeYZBVC6XM3bQ+vp6JmpnEg+zGYdhmLVrTMXG4HmArOphNgmDn8kL8RlwsaHumgTFJFAG2Gm0am7W7slXleBG5eLxeMy5c+c4depUVu0xkWcu5Vto5u7atm3+6q/+ilqtRr1ez66Rqd6Yu3mD+6jX6zcwgcIwZH19nVdeeYVWq4UQgieeeIILFy7wwx/+MPNX6nQ6XL58mRMnTuB5Hkop2u12RiX+2Mc+xhe+8AV2dnYYjUZZImbaefPz8zdgncxnYTA/BueTr5K9l8JcC8NUM8mo0b0BsutmqnumjQXQ7XazxD+f6AJZhTNf9fppuKEwDLl69SonT55keXmZ8XhMt9ulXC5ngPmfZa25I5Kb6XKCQOPItCUlBCRKkpg9X0OCYBKluiyxQZP3JGHsTpVCUhp53bKpODGVuqZYtNhp7bJ6ZURjtsNjD52kaBfTFowE4bi4aIhjVGChrRSPIKQgCVVadYlSRV2EAiVRUeriLYiRdsqaikdjipUKTm0BpQRJGKB1auGgpu0Bp+hhuw7StVMAkdYIy0EKiUpihFIIS2YsJD29w3bjgCvnX+HHP3qO+uI+vOpsJp6ndU4WfMrosh0XaYdIy+bQgw8z7P8NLnzzs5SLIVpbOJ6d4jCmcy70Q6SwcQtlcGL8QUAch1iWS6s/4HtntnllR9FKEh77xSfoW30unn+FWDsUHYEvYsLegD/7J39Ia+MqiwePUrSLfPGz/yPVpQM8+Mgv8MqZ5zl3/lVGE59x4KfCc1ECCFzXY35pH4iYRq1Ir+UzUIqqFMwuLjLxR9APMAbcBQQK6PPWqOBC/GRsyZ0QZmxSTtsGIsV8hZHPcDyYVlskgjRJcV2XOImn9O8R4/GEOFIIKVBCY9sWfgiu4xHFUXZXrHTqQJ5aOvzkC2LbEmFpRoOQKBIkKmZrfYuNjW2ee+5ZPjb7a3gFmRkb3o1O4TcnNzczPUy5Pd/uMG7T5nmmneO6LtVqlWKxSKvVYnV1lZmZGR5++OGs6pO3cjAJjKlkmDtd82XGlKclGwyI2WiMaF4+Ccs/19CrjbZOHkNys61APpRSXL58mTNnzrCwsHCD+N7NFZ+8MaeUkvvuu49+v8/3vve9DNBrKN95nIYBVZtEzDCq+v0+L730EhsbGwRBwJNPPgnAa6+9liUmxqfrn/2zf8bW1hYrKyu4rsuf/umfsrCwwMMPP8zZs2d57bXXMlaZoT2b8ezbtw9IQcq7u7sZY2lhYSFTmL4ZcP5WN9Y7PdnPn1d+nMYOIZ+UmOtiqoSj0SjzNcu3q4wPVb49lcf3vPlakyZQeY8vQwN/9tln+fjHP47neT/TWnNHJDdCCiwEroSC0DgitQ+ItUiF7aZS+LHWjAKIYoGUIRM/xvcLQOqH5GBTFYKatPDsgFLJRWnF1s6IIJAIETAOxpSKZRKVCuc50sb1ysSxD1qhYkjiAHRq1KjiGIHAcgsIrYj9mDAYEU8mqDBCJ2n7pLa8D29hDoVFEvmpDYMGdIKQEtuWWI6TVn6mgm0ImSoXTyeTsAQiNuiStLJj2Q7VgmAh6rP64nMcOH6CA/c8QBCGtHc2aTe3KJYqLK8colqpIzVY0sJx0slmJQ73vO8DfPfqRa5dfY6VMqmYn5wqrQYBcaKxpE0iY4SSOG45baFJxVZrl5daPpfimPLMDEcfO8XVK6+y/9ijWJZHtL6G+uE5hNDsvHaWP/p//j5eqcwjH/4VJrHPzisv89gvfZSZhSWubWzz7WeeZjwc4U/GCOmm2ClLcmDfAjvNLZaWFui1ewQ6QQmY37+PzbWrU8yNxp+2Ld3UoOEtxR281gDT5H4qqqeUwis6VGop0811JNgxwlJ4BZtKuZIK9w0CwjhEqWQKThU4lkOjXmdzc5NaucLE99EqwY+TDAz9ZjgbE+mdWMjszCxLy0ucP/8qDg4f/o9+idXLV+htd4ntXQLfv+tK9nmmUL4lBK/HPgRBkC2mZqM0r2ESEJNAGMXenZ2dbCOdTCbZ8bywnvl5XoTPVBCALCExmjTG6NG0qRYXF5mdnQXIjuc3rZt1dfJ30DczpfJhQMmj0YiXXnqJo0ePcuLECcIwZGdnh1arRbFYZGVlhUoltSkxGByzAT766KOsra3RarWo1+tZ8mbAvXmqu8EnmWPNZpPNzU1GoxH1ep1HHnmE1dVVjh49im3b7OzscObMGQAuXrzIP/7H/5hSqcSTTz5JkiS88sorfOhDH2JxcZGNjQ2efvrpzB08/5779+9nZ2cnY+iY67Bv3z5WV1ez62Gu183VvTeLOzmxMZFvwxnqf75yZT6XUql0g1hfXkvItm3q9TpbW1tUKpWMBXezWeZPC1P1mZmZYXl5mQsXLiCE4CMf+QiXL1/OWo3+z7DW3BHJjeV5eJbAjsERMUIolLaJp3fo1vQx1oow1MQJiDAg9AVBnDopS8ATNp60qVoJTkHhuJL+MKTXcUEqCh7ESdoDdl0XErAcC8u1sdwySRyh/JDAHxJHEYoIS1rYtocOFDoKCcZDgtEIFcQ4lo1XrlA/eIDS/kWEdEiiCTqJQcVIaSNsG2HJtJUlBUJKhJ7+EWiNlqATkVZdhIMgRkQQKx8/ColUQqxi5oWkvXWBr/7Fv6M09038MMQPfALfRwlY3r/Co+97gsNHTmDbLpYtpxMnwS2UuO/Jj/DM2e8zY/vYbhnblSRRQhCG2LaHEODYHsiEOI5A2sQadgcT1uIE34GHTp2gUK3y6BO/Sm1mFmFL1n74HOsvvEbZTggizWQSosYR3/jcZwmEoDa/yGjQpza3wEMPP8Yz3/46ltQkKsZCoi0b0BxYXqa920RImFuqEm72kbEGS+JH6R+J0brxgVkBBSFuCR38doTSChVNcTThBDd0KRXKeIXiVDxSUyi6lEoexeIM9UaD8XiIPwnZ3mlhOy4Nr0i70ySKYwbDUcrsUwo1dRa3LPmW2E3FYpHxOKDkaGIV8LWvfYlOe8Cpe++n1dtlq7nO8y+9gO3YaH13NQiNnkhepM0s9Hl2lGn9mLt+A5A1kbc0MNUbw2oylQmlVLbWGKyDeb5pzRi2iXnNvObLeDzOzC0ty6JUKrG8vMzi4mJW7TEYmrw2TN5yIb+R5QHM5tzNa+TF7FzXpdPp8NRTTzE3N5eN0yR3y8vLvO997+PIkSPZhmg2qUKhwBNPPMG/+lf/KgMQ58/XVK/MYx7YbOwapJTce++9VCoVHn/8cRqNBo7jcObMGc6cOZMlRIZa/vnPfx4gc/k2VbOnn376hrt9Ayo2qsxSShYWFtja2sqSGPNZ5Cng+fbMeyEMsBjIkudisZhpF5n5a2w3Go1GZlS6vb2NMW9tt9uZNEKeXQXXVYp/WhQKBcbjccao++Y3v0m73ea+++6j0+nQbDZ58cUXM5HBtxN3RHLjlMvMLC4yuLKFJTSJlkRaECoDZkrVeAOtUbEgiDUqVviBJFSpX44tNFVLUpZQskO8IghL0Osq/KhMtTxCAmE4wXcdPM/FK3mpA4KKsS0H23WJ/BAVxSSBn4oK2oJYhUSTDkF3hIoUUqaUwvr+RaoHDuDUa+mCFIeoKDXuFMJKqbeWhXS8qabLVCJNyKmnUzxtDQnAQschgR/RG3TY7rRoD0YMJhGTGCyp8UoeZy5eJq4uMLuwj2qtQbXeoOyWaO+0efH57xNFEUeP3ouQpmwco5XN4sohxPL9vHb1OR5eEshxAY2gUq+liZeQqDhiMhliWxZSCmIFneGEidLEFhw+dpT7HjlNrbEP23aJVUh3fYOesiglSeqzFZEac0aaEM1Os0Nzc4va7AJ+MOHhh04z12igE9CCFAOCYGFxCc91SOKESqWEW/BJhgHN3TZB4CPFdR+nGNjVKSbnPQMq1iAFWDLFePkTH1u4DFSfmcY8Ba+IQCKFhe+H9Ad9RuMRcZiW9gM/oOMP2W03CcKQMIpyvp9TUN9bpG1Xy2U6/S6VSoVEJfR6E65e2+aeYye5ur7GU1/4Ar/8+C+xO+4hpXVX0cFLpRIHDhxgfX092/zzVRMTeRaIwSLkQcSGym3bdqYg3Ov1MpVfILvj9Twvq+AYPRfXdTPgsGkrmTaVAWoaULDneSwtLbFv376sFZVPRvI6OobxkgeCwo1MMLjeGuv1euzu7tLv9zPNFQOSfuWVVygWi5meTa1Ww/M8dnZ2eP7554miiGPHjmUtKtM2W15eZmlpiY2NDQ4ePJhdT+NlZVpjpqJixmvaflJKjh07xunTp7PEJkkStre3M+ZYvkpgklFT+ZmZmSEIAk6fPp2JKebbS4uLi1mCZLSBwjBkd3c30yXKV/NM2+y9EnnMmWlzmspeo9HIVKkN1swknSbZN4muAdfnzTFNvNVEsFqt0uv10rUmSQ1Xr127xokTJ1hfX+epp57iiSeeYDQa3Z1tKcsrsPTYY6jhN9G7fWItibRkqn+bUmNJdXCiWNMbaWoS/Ik1hRBrChJsISlLn7IbUi6nLZ/At9BaYkuF1JLuuMc4GJHEEfv3rYBOCCYBia2QwKTXAaVwixVUHDDpdomDmHiYjqVY9ihWS1SWlygtzWGXKkCKk9FJeocsLQGWSD2ZpJwmNtfbI1pPW1ZCIqRGK0UYBuw0W5y7usmP1na51AlpBzCIFYFKaFiCRxfGtGYiROJy/J4H+ZVP/gZHTtyPbdtsrF1m9fJrXL38Y0rlCosL+xFCIi05reIUOPX4E/z5t7/MPY0SbrGIVyoipUaoBIUijkK0SpCWA1ozCXzagzFKAdLiwOFDVOo1hqMOrltC6ZiFwys4+xcYra9PwdEQJCmrCQGxH3Lx/I85cPQoF159lfd/8BeZqdWzxVggQIhU1MzzmAQxlpVqDgXKZ3e3TRSGr0tgYmD0HqnagGl1CFzPoVAoUyqVKJZKxFHMxB9h2al/2ZWrF/G8Eq5TIElS08bRcERv0GNreytlM0yNaE2/621fJinwJwGNegPLsqjXZlHqGlfXrzEaTRgOJpy/fJnf+lu/zQsvn+Hipcu34IrcmnBdlwceeCAzdnwjpgxcv3M3wMq8BHy+QmLAxCYBMu0nIGuJxHHM/v37s1aT2eB7vV4G/DUCeUbXBshwNUtLS8zPz99Aozabh2kj5H2vbj6PmzezMAxpNpusrq5y5coVms1m6umWaz3s37+fYrFItVrlnnvu4ROf+AQnTpzAcRzW1ta4dOkSly9fplwus7i4mP09G0r3+9//fv7pP/2nLCwsZFWnfDJpKkYG2Ov7qf6XuX6HDh2iWq0yGo2yytfKygrz8/Ps7u5m55ZXLw7DkPPnz3P06FHOnTvH448/Tq1Wu77WTDdsk6SZRMZxHHzfZ3d39w2tDm5ODO/2MHPByBIYjSZToTSaNleuXLnBR6zT6WSqyVtbW69jm5nv3+5YJpNJlviaVua1a9cYjUYMBgMuXrzIpz/9ac6cOcPFixff8mvfEcmNsAS140dRoyHb3/kO4SDOBMaESLEWsU4fEw2dHnhlSFTqPQXgyoSiDClYMUVP41gWUZgQhR6OSE/UEoIomLDpR4RxzML8fhzLwnEtgvGYaNzHH3aZ3X8Yr1Rm3NklFCMQDuX5AtW5Km65iF2tYFdL2F4BbIckjkCSumTbEilkyray7LQuIaey9gqEkFMYrEYnmjAIWd/a5vvnt/n+apvz3YCx0mgshEgp8CEBvTihFQmEVWBpdolRr4vUFo3ZBc6/8hKb19a4976HWF19laurF6jVZnDdwtTt2QItOHTPPfQo0hyHNIqaOAhwHBssiyQJiKcsDUtKtLTYHTZpDmLU1HOoWq1gW0UKjo3rFZDSwp6TlBoNWpfWqQhwtWCApogg0mn1ZmvtGt9++hvoGJYPHUBFxodEpSKBWuG6NpawqNfrTHwfr1Ak1gMmwxF+GL/hBn13e1K/PqSEMIpot9tMJj7j8ZgoChmPJkzGARM/RqkEz3UplctAQuBHU0xG8q5UsASCwE8ZE9VaBSEsxpMxURzTH3Sn7ZKA9Z0mjcYs//n/9b/gi//+r/jClz//Lrz7rQ8pJUeOHMH3fZ5//vkMRJkHQJryulKKXq9HtVq94e4/j2sxdGzj92QSGwOeTT/DiIWFhaxiM5lMMnDm0tISpVKJXq+XtYvm5uZu8Hcql8tZO8uw6OC6Y7UZj3lfuH7nbJ5rsBNbW1u8+uqrnD9/nlardYM+ibkOplVRqVSYn5/PTDVnZ2d59dVXWV9f5/7772d1dZXV1VVqtVrGCjPjOHHiBEmSMBgMKJfLmQO0ufs2iaA558EgZeOZqFarWcXGUNSFEDQaDdbX128AR+fpxmtra3z7298mjmMOHTp0w/UyFRlT3arX65k6b6/XYzgcZky1m+O9lNwAGf2+3W7j+/4NSsmmBWValKZaaDBgbyQ6+LOEqQwBGWDY3AwY64fxeMzOzg6NRoN/8A/+AX/5l3/Jl770pbf0+ndEcgOC0sI+5H3gdzq0fvQK2tdTI7/05wo13WSh15fMlTSWpbEjjSNjilaAZ8XYtsLxUtEclUgsNLYQWEJgSY1j2wxlTJjEhEmC47rYuCgrxk8E5foCbrGIShKCXo9ivUqhXKZQKiOFRLo2ouwhXQ+meBE006pNCuaV0kqtHaREaJG5MCOYOnEL4ihip9Xiu2e3+MaFPhcHQ0IdU3ALHLQhCn2UHVFYtNjZlpRkgaEOkN0+7dI1Jn7I+tYGxwY9zr58ju3Nq8QqojrbYGd7k36/x9ycCyKlDaM05VqdxsI+1notjs0qHGkjbIswCEniCCEcLKmJw4Aw8tlq79KZaGwECAkSSpUqc4tllEqrA9V6jftOP8pTz70MQrBYtDjaKLLYKOK6NtrStDdf4+XdAb/y65/AdQsEUx8tpRVSaRAKkSTYSUS9XuHq1aupsi4QhzH6XbQ7uFMjlTnQhJFiPI5oixGWJZEydZbPA4HHk4DxJLgl40gZW4qi56aVNH9Ep5PeKQskxaKHUrDV3OA73/0+f+93//c88eSTd01yAzA3N8eJEyfodrucO3fudUBhk9wYEbhyuZxtrjezhMzGm9+ob8a+5I0dgazCUavVsnZVv9+nWq1SLqdVO1NRKBaLNziCA6+r2pj3vPnn5hyiKKLVavHyyy9z7tw5dnd3M9E2c8cuhGBmZoZms5lhZHq9XlbV2draYjgc8vLLL7O5uUmSJMzMzLC9vU2/32dubi57T601lUqFhYUFut0uS0tL2XUzm6O5RmYTbbVajMfjG65fuVxmYWEhSzTr9TqnT5/mhRdeyMZer9eZmZnJhBO73S7f+973+OQnP5kBnfNMr3wCW6/XuXr1asaKMxou7/UwmBujbdNut7O5dLPlg/EyuxVhkk0jQmkMZU3kQfrf+c53+N3f/V1+8Rd/8W5LbkBYksK+BRYefR86jNl46ccInWrfCFLfKaXThCcMLSZjG1spXCvAIcK1FJ6b4LoK251K/qkESztpYoPAQuNYHo2CJpFTxeE4YtjZpd/aotKYozw7Q5LEDDZ3AIeZfctoDUkckxDhWDaWTJ2s0XpK9Y5Ag7RtpLSmtHGZVmmUSck0mvQ9+/0hL19q880fK851QdkF7rnnIIuzc3iFGn57B9Vfoxt2Of4hD6Vm6W3OcfXyq6zv7jJc3+FT/8kn2d3t8B++9Dn6vRG2W6C1vUlzt4k1pdbNzM6TKEUcRSRJRKISKvUaG1euolTqRRSFQ4S0sW0nbWUIGy18gmBMszPBj1J3diEEzZ2rtJrr7D9wfKqtEaESzbH77gfX5VhV8eGHVliYraN0wmDQ52Kzw/lWyO/8o/+C1u4ugR9RqjZI4hjHSYHMYoo1kZHCkjCZjGl1fapaI2KBeNOZ8x4NDUmsbpnFxE8K27aoVAqcPHyM/fuW6HS7NOoVNjabCO2kc1+nsg1r19bYWN+mMVP/OY/ynYWUkvn5eR588EHiOObcuXM33I3m5eKNxDxcr5SYqk1eGdhsCHlsh7FgyOvQdLtd2u02tVqNmZkZ4jim2WwCsLS0BFw3l8wrHedxNoaCm68kmSpGPkzl5OLFi5w9e5ZWqwXAsWPHWFhYoFAo3OAb9IEPfACAdrvNpUuXaLfbJEnCb/3Wb7G7u8uXv/xlut0ujuOws7NDu93OaLwG25LHAtXrdTY2NrI2lLnGhg1mIgxDOp1OlmRJKdnZ2aHZbLKyspJdkyRJuPfee3Ech/n5eR555JFMwXgwGLCzs8PGxga/93u/R6fTIQgCqtVqxuTKXy+D7TGaKnc6hftWh0nAf55h2zaVSoUjR46wvLxMt9ulPmV7wnUAOMDa2hrr6+sZS/Atvf5beZIQYhUYkBJWYq31+4QQs8AfA0eAVeBvaa070+f/Q+Az0+f/fa31m6ZaWmtiFeGWCyzd+wC2tui2msRrbWwxxdqgM9dwicD3HSrCxwjzW5bCddMv6Si0itCJhxQai4TUQlogSCg5BSIJOknotVv0NzdQiULMCMLxOKVyBz6z+w+gVIKwPRzXQnouKonRWqEThSbVp9GJQlo2lm1nlSaNMQlTKcVcSfzJmMtrWzxzUfOjpsvm8Cr7V/bxn/0//msOnTjKc199hnOvnuFst8nmOKTd83nuj/vYsomnNbOVAuVihWZ/TLvXxa3UOHn0cebn4NKV19jaOM/5i+c5fOIkR47ei1apxk4UR8RhSBKH2J5Lf6JSPRw79acCnVbGorTtoZRiOB7RGSaEWmABFord1S12NpqUyulClrp7J9Tnapw6eS8zvfNUSx7heEiztcNaa8zzI8GvnjrIXNlhY3PE2Rcv8fgvPUHgj7EdF6EFlrRIEs3IHyKlIAxVqh2EpKD5X2dyc5siUYpOr89uu8++5SXcUpGluUNszfawrOlGqzRHDh8CFdDv9yiWXq9k+7PGrV5rIP27LJVKnDhxAiEE7XabjY2NG6o2eb0P3/dvqIyYio0BFeeBvXCjAnLe1Xt3dzcDxTYajawVEAQB+/bty5g5hUIhA7zm8R55Snm+kmPOyby3aSGsra3x2muvsbm5SbfbZXl5mT/4gz/g+PHjPP3005w7d45ut0u/36fT6fBnf/ZnWVvJ6Pb0ej16vR7lcpljx44xOzvL1atX2djY4MKFCxw7doyjR49mYGmTxBgnccN+yruK55lISl13v85XV9bW1tjc3KRSqWTPieOY2dlZ7r333swcczwe02q1aDabtFotHn74YWq1GltbW7zwwgv80i/9UuY0bbR+DJYqzzgzLbX/NSc4P+9QKsUMtlotlpeXM8+w2dnZG/BZhw8fRmtNv9/P9JPeSrydys1HtNat3P9/H/ia1vq/FUL8/vT//6UQ4hTwaeABYBn4qhDipNb6TdJCDUJSLNQoFcuE/oS50w8QDn9A1AmJtCbRpk2Vsmui0CMpRBRsRcXRlIsa11VYTmpEqBQ4tsK2EiZRSgGPIo1bSBV9S4UqCYJhZ5ckiCjXqxQKFaLRkKDTpTxbQzhThHwSI0slkArLLaITQRxOsD0XtE6Bw9bUg0SkbBcTKlEkcUS30+eZsxv8sLXIpd6IQXSek/ed4ld//W8xt3QA4Qmaoybf/PZXuHjlIruBz3iKMZJoGpYkVGNqVQ8dJ3z7m1/j13/zf8OJhx/GdSxe/MHX+OEPvseVtTU0AvUfGYCXSo0UgwAVR/jjSUoPVnEqSkhqEaHQqDhBKU2sFYPRiNZAMNYJEw37qjOUrTLdtQ7PbH6F0ajPZDxKgdDbOyweOYL/wiqdbht/MmSrGfH8CD587wrvX5lle+sqtbkZdpsdfvDMd3nsgx/AdjzwNNp2SFTMeDCmNFPGtlOn9IIAF95rcsR3dFjSwrEd2r0Om9vbPP7BD3Lw4GEm8YDtzR1cxyVRCseyqZbKqEgRRvFPf+G3F7dsrclTXQuFAkEQcO+992bgxZvBkUKkdgiGEWWYT8avyCzCpk1lNksjgJanhRtlV5M4mE290WhkIGMDyBVCZGV5YxppaNz5Flmenm4o3b1ej5deeomtra0pfmvCyZMn+dSnPsW+ffsoFAoMh0O+9a1vcfny5QxAas7bAHgNg+Ub3/gGv/mbv8lDDz2E53n88Ic/5Nlnn+XKlStorfnwhz8MXFe4NbT5yWRyA/jZjNFUocy1Ho1GGZ04SRIqlQqu67K5uZm1wyaTCUEQsLOzw6FDh7LEbDwe02w22d3d5YEHHuDYsWNsb29nLbbvfOc7PP7445mStBnnaDTKQKxwvfq1l9z8/MK0bnu9HpubmzzxxBMcOnSIOI5ZX1/PgMymBWkUvt9qvJO21G8AH55+/6+BbwL/5fT4v9VaB8BlIcQF4APAd9/sxTyviOt5aCGxKgVm77mfeDBm49kXiEYJQmiETqs2lhBYSiKVjeUEYKWFGWnpVHXYtkhihbYU0kodkZUWBGGMqywct4Jje6hgTDKeIBG4BRetYlCa6twcpUYd7UjsUhFkamQopIMUDlbBIg7Sdo+0HIQl0UJMqbbT9plOKyGT8YirGzt86cwOP46O0Rw0sQshj51+kuMnH0RKydf+/VN85fN/xtkr59keDfG1yiwnJAKJRaQ8RrGDE0LB1XRaLS6/9jKf/5N/zfqVVb7zzDdptpogQ4KJP81wBVEcEYx9/MmYOBix22ozb0vEVDlZyCkeSKWGo1poEqXY7ceMAguJpCQ05X6Hl77+7xHa4s+e+RrNQQ+BpOw4VCpF7j92ioWlk1y89iKuVJwNJQ8cnOfxIwtoCSrw8SrzvO/Jxzn/8qt89S+/xC999GMcPnKEZJoQDgcjFvfP4dg2ihTrU0SwKOFacutcwPfieiilcB0br+Cys9Oi2+tQrdRxLYtfeOQRRpMRX/n603T6HV69+Bqf1JrJZHCrh/UurzXeDe7Qx44dYzwe86Mf/ShjKsHrjTVNQgPXQcWmEmASHVP5MbRZY5Jp3MGBTJ0XYGZmhnq9njGKTHvJJDt5yrh5v3wLyiQIcRwzHo/Z2NjghRdeYDwe0+v1cByHX/iFX+Dee+/Fsiy+/OUv84UvfIGLFy9moM38hm4SLENRd12XdrvNa6+9xmc/+1muXr3Kt771razFZdykgYzebYCnrVYr26CMno2p2phEwtB/jUibZVkEQcDTTz8NwDe+8Y0MaGzArSdOnGBhYYErV65g2zaDwYBDhw5llThj7fDEE09w9uxZvvjFL/LRj36Uw4cPZ+c3GAxYXFzM2Frm83RdF9/395Kcn0OYxKVQKNBsNul2u5m7/KOPPorv+3z961+n2+3y2muvobV+W/ift5rcaODLQggN/A9a638OLGmtNwG01ptCiMXpcw8A38v97rXpsZ8YQkgc18NyUgqytgSlxTnq991DZ/saw9fWkbHAERJIMSCuENiJh3IiXE9Rr1q4tk2iQkKlUVrgoLDdGDmKSZQgnIBfirE9je3aBKMhyTihWHIpVmoUiiWseg275CFsG1TquI0w4KeUWq11jJCScDIBHeEUPLTQWMJGI0iSmHAyZrfV5rmL63zpks+4cD+TqM3C/hmOn7g/pVQPe5x5cY2vfvWLXO22Gah4mtSkGB0LSUEUKYkaZXuWsjdDxfVIZBvPa+GUJF/4iz+hUqsT65hSySEMNUeO3sPC0hIgCMOAMJoQjPuMOi22N7c5ueDheCmTSmuNShKE1ugkQRMx8YdsNmMGscKRmocrDvfOS1aVg/AsThw5ib11mZmZGgXPTm0vypLLzR7WNsiqjWUJ3rdYwhEWCoknJcpN2SUf+rUPs/jyEtHEJ1YxOoYoCul3e6y4DgtzdVrNAcl04pWAGSFo7S04tzySJMEPfYIgYmtnm42Nqxw+dDLdsJOQRCfTXFhNN4aY1atvz9Dup8QtXmvShCHfppifn+fYsWPs7Oxw6dKlN2RGMT1nY7VgtFbylZ48gNgYNpoWkxGcM+JoRhnWmG6a65kHvZo2iWGRGEVZMy64nlC0223Onz/P2bNnKRQK+L7P0tISx48fp9FoMBwOefHFF/nqV79Ks9m8QUnWXJc8vb1QKGR6PSbx+vM///OMOWZctY8ePZrZGRhjRSNmuLm5ycrKSga6NuM1SY1pn7VarcxAc2FhgcXFxYwyf+zYMa5du8bMzEx27qVSiXa7zdbWVkYxP3jw4A2YKPMZ/+qv/iqvvPIK4/E4S7LCMMwSv7m5OZrN5g1CiLZtv2uMoL34yWEYfEEQsL29zcbGBocPH85anHlxTVNNvHr16lt+/bea3Dyptd6YLipfEUK8+ibPfSOIxOt2JSHE3wP+HsDC3HxGW47jaIpzsXFnZ6jfey+T3gC1OSRJUoCxJdJWjdQaGbtY3oRy2UJqzSRIxf9EqFCWpFRUjAcRkRKpw3ickCRxitvpDLAQ1JfmiIXFle0m+w4sUEw8dBCmYFcZY7s20rIQdqocHI0jVKgRlgVCE/ljhNYk0ibyI0bDHufXNvja+TbfbSXMLLwPxJgPfuhDHDp2P4NBhzAas3ntEt/74fe4tLtDqHM+SUKDFtg4eKKCTRmtJYNJh1GgKHlV9jdOoWKH4XBEqVaiWilQLZdYXj7CJ//636BaqTGZjAhGI6LRBB0EtK5eo7fb4/i9RxAqSd3P0VjWlFkmLcJwzKA75mInYaYs+I17ZigXEhKp8fU8tcU6y8Es2zsXGHXabPaGhEHEj9Rr1C0LT1rMxIInBMx6RVxpMchwAhaWnVpDHDlxgiiJSaIIFSuiKKbf6YFW1Bs1LAuGscYDbAQuXBdB3ItbFseOHCTWEc1mn0E8Zmtjm5UDR5BTrSYhFJYUJHFMNHW7/8Gz3383h3BL15r5+fkM/2FAqpZl0Wg0OHbsGP1+n52dnRswN3AdR+O6btb3930/a0EZ64LxeHxD68VUKYymzsLCAkIItra2OHDgQLbAm4qDSQSM4q9RMDYJVp7ZFQQBo9GIK1eu8Morr3Dt2jWWlpZQSvHkk09y/PjxzLX52rVrPPvss2xvb78hcNQkBaa6Mh6PM/uI/fv3E8cxg8GASqVCpVLJxBD/+l//61SrVSaTSfY7xgCz0+nw6KOPZolDHvMipcxEBFutFqVSifvvvz9r/wVBkCU5W1tb9Ho91tbWsmvueV527YxJab6Kljf1PH78+Osc0w0rp9FoZOy1vN3CXtz6OHz4MADNZpMkSbJkOG8bYijrRoPp2Weffcuv/5aSG631xvRxRwjxOdLS77YQYv/0Tmo/sDN9+jXgYO7XV4CNN3jNfw78c4CTx45raUliFRMGEwJ/zHgyIEJRWl5i6eEH0fGP0DsjhAZbgBQaCejIZmfXxrF8Zss20hZIrSFKjSe9skWhFBEPXcLIoqATYq1IxhN0EDF3cIHIkfzo7CaXNgN++fGIpfklLK0BCyyNECqt3lgWhWKRxE/ldQvFMkIKRr0x0ahPHGt2mi1+cLXDl9fGbEaShbkHKJVdfuVT/zHH73+MXrdFf9ji2199ilfWLrKrppo+ZGxxQGAJG5cKRXserRSx1jiyRMFN71RaWxNKjYSDh49QbzSYv/8Rjh+/j/c/+SQHVg4RRSGT8Qh/PCSeDElCn5dfeJ4ZR3BkppqyXkipv+hpNUorSBRaxRwoWDx0vMqJI/OEiWLo+8y6s7z89Bd49WqLq60xxbJLtV7j6PEldtu7NC9vk8SaE4mDNVPA84poYREFE1zXQ3teKiwoBNKxEIkiSnw0knDUg9GYeBxQrZSwLYtulFBAU03dKaggGCR76c2tCscWHD3coFCZZXOzSRDEbGw3iaIgpe0Lieu4NOp1NJo4ChiMujz3wx++a2O41WvN8ePHtdnMzF2jqYosLi5y6tQpkiTJ2i4mwTHJ0O7uLpZlUalUskXY4F5KpVJmmWBoxaaKE4Yhy8vL2LbN2bNnWV9f5wMf+ACLi4s3iOyNx2PgOmjZ0JSNaqxxJk+ShGazycWLF7lw4QKTyYSFhQVKpRKf+MQnOHXqVMaE+upXv8rq6upPpDrnqx03+2AZ5lKtVuPw4cM0Gg3uv/9+jh8/zpNPPsnBgwczSrHRR4miKJPMNyJ+5pzybSnzXgbcffTo0SyhU0rx7W9/mytXrrCzs0OxWKRer3Ps2DFarRZra2uZZo3BNRl8lOu6WQJrWGsmCQUyPZvJZEKlUsG27YyGbqpnRlNoL25N2LbN4cOHqVarbG5uEgQBW1tb2Xw3KuD1ej372xuNRjz33HNv/T1+2hOEEGVAaq0H0+9/DfivgaeA3wH+2+njX0x/5Sng3wgh/gkpyO8e4Ac/5U1SunWYMB4NGY0GjIcD4jjArVbwTtyDpUF8/wUmnTDFH09ZUkpbjMYVdnoDSgWFBSTaQsqIOAHbURQqmtE4IYog8UHUJI6G+vIiumizutbk+5cSjixqhAWtbhORJPhhRHcwod2P6A41WknuPVzi1D2HKBZKROGEYDJmd3uLdrtFuxfxlbWI5wcRiSVZWjxNrdbg05/5T/lrv/03uHapxbPfusyX/uJ/5tzmFYZaZZYCWXIjJDYOJerU7P1UCofQKBzbo1ZsUK2UcWwL3+8T90c0Di1w/OAxPvKpX+TEfcdxXJfAnzAcDOjvNgn6fZTv09nZ5PkfvswnTixSLxewhE2SxClYSSdoFZMkIZZtAQmPHrE5dGgGbUmCKKYz6hJtb5FsJ/i+plL12Lcyh1soIu3Ufb1RK1KKYiLLRtmCIImQOsKxbaximUhaKTVepYubQIHSKBWjRgNmohC/26NSKSFdm9iP6SJwgIILjhAQsJfg3IJwbZdjRxfZaa5z3/w8h1YWuLy6Ra/X59VzrxAnETP1WYQlkAJKxSJzszO88toZVq+89VLxm8XPY60xWI8wDBkOhwyHw4yJU6lUOHr0KAAvvPAC/X7/ht81bZRer3eDWjCQVSNKpVL2ennw4/79+/E8j7W1Nc6fP8/i4iKWZWWaM1EUMRgM6Pf7GbD50KFDnDx5kmKxmAF1t7e3abVa9Pt9Ll68SLPZRAjB0tIStVqNv/23/za//du/zeXLl/nOd77D5z//ea5evfq6NlS+MmUYWqVSKUsYSqVS1n4zVZnDhw9z9OhRPv7xj3PffffhOA5BEDAYDNjd3c2ShmazyXPPPcepU6cyjSCjbWPeO29pcPToUQ4ePJhhloyg3/b2dpaAGDaNaZHVajW01pmRowFyGxxVnm1zM53eVL+M7L9pURpckKH3A3sJzi0I27Y5cuQIzWaThYUFVlZWWF1dpdfr8corr2QyAqZNWCgUMgHJvLHpT32ft/CcJeBz0wliA/9Ga/1XQohngT8RQnwGuAr8JwBa67NCiD8BXiFVyf8/vzlTitQROUkI/DGjUZfJaEAQBUg0lm1TXprFc0qoIGT9+y+i/ZS8nGhBoC1GiWDYLVArjVlopK0nrUBKhR8KpKNxvJg4tBj1bSoNQXV5Hkso1jbWeOWyTy+WzDUE2+0u61sTdgaazbFiECpsbOZcm+OzEs+2GI3HJLEiCH12d7bp9Xp0RhFfWtecGSdI22Jh9mGq9SU+9td+hU/+1t+kUPAIuuv88b/87zi7scpgKouf36alkDgUKDNLxVqgXNiH6xRwHJeiVaJQKGDLIl6hyMzsIo5nEXclL36ryc6VL/J/+q/+t9RnarRaTdrb2wx32/i9DvF4zHf+w7do6Ihfvu8ghWIZCQgl0HGE1gJLusRJgu04NGbnKe4vEBMSxan4WKIFy5UKTrFCJ3EZTka4xRKxSkHTCE15X+omvu4HzBcg0AkVy0V6Dsp2UVGMNcX5oHWm4qySEL/TZU5AcXcXeWyFatVjp++n7ToPbEdAAg0LpBb0lJ46cqWTbC9+9hAIHn3oNKdOH+G73/kPvPrKy9RrFWaqDrbtsr2zhZSS5X2HEQIW5mc5evAE42GPp7/1LQL/XdOKvuVrjdnwfN/P1FhNW8i2bWq1Go7jEIYhL774YqagaioOpnpTKpVoNBpZC8pUgvIVl+FwSL1ez+4+NzY2uHTpUgZ4NbgRk9AYOwBDiTUVBdN+2dnZodfrMRgMuHz5Mru7u9i2zdzcHI1Gg49//OP8zb/5NzM21B/90R9x5cqVGxhV2Weew9i4rkupVMpwKqbFZhKF2dnZjNb9/e9/n7W1NX7/938/M0/c3t6m0+nQ6/VuAAM/+OCDGfPLYJEMs8yIGs7MzLBv374s4TSJRr1ez5Sbx+NxxjgbjUYIIVhYWMiqYqYiZKpP5vXzyVTemsLgbYbDIcvLy1QqFbrdbvYaRhnZJDkmwdljU707cfr0aR566CGeeeYZXn75ZarVaqZInU/WDSbq8OHDDIdDnn766RtsUH5a/NTkRmt9CXj4DY63gV/5Cb/z3wD/zVsehUgBpePJkPGony4oWiEtibQtbK+AnLOZPXk/8WBE5+xFiBI0FrGW+FoxDm3WOi71WkyMwJICR4HrSuJE4RUVOpHEkUUwThCOpNVusdMecqFvM1YJ31+N6QaaZpAggINFm9NzHscWihxaqjM/W6dQLtIf9dnZusJoNGZ7e0JnInimB2cmCZYlqNXuoVxe4p77DvGhj3+KMFCsn3uR//cf/N95/upr9PWN2JGUFWVNE5sZSnIWz51D4CCw8KwixWKZUrmKV/BwvQKWYxFHAdubF9jZ+REXz/t88Nfv4+CxFQadDpNej6DfI/FHvHb2JX7w3R/yf3zsIDPFAjqOiXWK6xGWBUoTBykdNEoilARtOdP2XmoU2umHlCoNxpUSDCMcz0NKC6kV2DZoaHUHdLtD0IrEkRwpbvOBewqUG3PEQqB1gpBp1U0lMUJpLGywNVYw4tSKwBZtNpx72D9bperOs7PbpBwNkalMEWioSphMDUfdqQ7SW5/ye3FzVMolPvD4IzgFQb0xz9bmOloHOK6FY7voTH8k1Sbxgwm9YZc4GnPhbXi9/LT4eaw1YqrYa9pHhhljmEiu62b4m9FoxPnz529gJuUTHAOuNZue2RQNG8owmGzbpt1u02636XQ6JEnCxYsXM9l7rTXVapXFxUX27dvHvn37mJubo1QqMRwO2dzcZDwes729nT12Op3U96tep1arcfLkST7xiU9kSdkf/MEfcOHChTdMbOA6DTdPkQayxMaAnk2LJ45jtra22Nra4ty5c3zsYx/j2LFjmU6OSc7OnTvHd7/7XZ588knK5fINwFDTDsw7rJuWWL7KYvRMDJXeWDsY0LWhu3c6HbRODTdrtRr33XcftVoN4Aacj2l/mVZHGIasrKzgui6e52W+Xe12O6tomc/bvJ+5Znndob14+1Eul3n88cfxPI9Go8HW1haDwSBLrE1LNO+DZkxk346vFNwpCsVaEwYB40Gf8WSUarBohXCKCCmJVYQSitL+JZYf/QAiDBi8eplAWUyUJlSKRGu2BwVmeyOcAhRjwNEoobFsF9cLSaIEFIz6CReu/Bh/ErDZEpwLJ+yqGLuTsrAO2DaP77N55Ngs8406lVIF13MQSIJoQqe9Sbe9y2QEq13Jv+/FtJIERwq0Vac+c4xQbXPigb9Bvzdi07/If/f/+s/51qvP01WpjUS2U0+p3gVRpSqXKDlzFJ1ZCl6Ngl2k4BaxHYtKpU6pUklF96RmPB7Q3lnj2vZzjPxVFucbnD3zPDutqzgarCRBqojta6v8+Z//Fb+8r8QDCxV0HJFIkSaP0gZp4ftjkjjEcT3CKEQiKTouQz8kCkP8YMJWVGRcWaY9GtDvjPAqRbQKETpJKzCOTWO2QrszZDJWRFrz3dVd9s/bxJOAA3ECBbCt1FtLMLWnsGKktCjLgOpiFT8Z0U1ClhZm6XW2kElMFIOwQJJioKMEilIwUikI2xMCNPh3GdzYdizi6PYS3KUQ3HN4hbm5WQajHrVKjabdZDIc4DhTXxk0cRylc09rxpMRZ86e5fH3v4/FxTnWrm3d1nN4O6F16p1ktFPyG2/edXhxcZGHHnqIOI65dOlSpsFiNmsjfOd5Xvb7QJYgGTDxYDBgdXWVyWSStZPMgm3ct1dWVrjnnnuYmZmhVCplLS9jm9DpdBiPx+zu7rK+vp4xiyzLYm5ujiiKeOCBB+j3+6yurvKHf/iHvPTSSxl+IR95fI2hxBcKhaw1ZVRjq9Vqdj7G32djY4PRaMT8/Dwvv/wyOzs72SaklGJjY4PPfe5zHDx4kOXl5Rt8n0wLzDCq8saVRnrfqEGbVtTu7i69Xi9rlwFZ26jRaLC7u5vZA5w/f575+Xn6/T6nTp2iVCpln4mp3JjkyLIslpaWss/S2ETkW1Om2mQ2W/Pcm7277pa4EzBEQgiOHDnC3Nwco9GIarVKq9ViOBxmWjaQYtjMvBmPx7z88ssZPm1tbe2tv9+dUGYTQjSBEdD6ac+9Q2OevbHfjtgb++2JNxr7Ya31wu0YzNsJIcQAeO12j+NnjPfanLlbYm/styd+0tjf0lpzRyQ3AEKI57TW77vd4/hZYm/styf2xn57Ym/styf2xn57Ym/styfe6dj3CP17sRd7sRd7sRd78Z6KveRmL/ZiL/ZiL/ZiL95TcSclN//8dg/gHcTe2G9P7I399sTe2G9P7I399sTe2G9PvKOx3zGYm73Yi73Yi73Yi73Yi3cj7qTKzV7sxV7sxV7sxV7sxTuO257cCCE+IYR4TQhxQQjx+7d7PDeHEOKPhBA7QoiXc8dmhRBfEUKcnz7O5H72D6fn8poQ4uO3Z9TZWA4KIb4hhDgnhDgrhPgH0+N3/PiFEAUhxA+EED+ajv0P75axT8diCSFeEEJ8Yfr/u2Lc0/GsCiHOCCFeFEI8Nz1214z/J8XeWnNrYm+dub1xt641t3ydMSJWt+OLVD3/InAMcIEfAadu55jeYIy/DDwGvJw79v8Ffn/6/e8D/5/p96em5+ABR6fnZt3Gse8HHpt+XwV+PB3jHT9+UpXDyvR7B/g+8MG7YezT8fxnwL8BvnA3zZnpmFaB+ZuO3TXj/wnntLfW3Lpx760zt3fe3JVrza1eZ2535eYDwAWt9SWtdQj8W+A3bvOYbgit9dPA7k2HfwP419Pv/zXwm7nj/1ZrHWitLwMXSM/xtoTWelNr/fz0+wFwDjjAXTB+ncZw+l9n+qW5C8YuhFgBPgX8j7nDd/y4f0rc7ePfW2tuUeytM7dvvr8H15p3bey3O7k5AOT1lK9Nj93psaS13oT0DxtYnB6/Y89HCHEEeJT0zuSuGP+03PoisAN8RWt9t4z9vwd+D8hrtN8N4zahgS8LIX4ohPh702N30/jfKO6Wcd4cd9V131tnfu7x33P3rjW3dJ253d5S4g2O3c30rTvyfIQQFeCzwP9Na90X4o2GmT71DY7dtvHr1OH5ESFEg9Qt+sE3efodMXYhxF8DdrTWPxRCfPit/MobHLvdc+ZJrfWGEGIR+IoQ4tU3ee6dOP43irtlnG817rjz2Vtnfr7xHlhrbuk6c7srN9eAg7n/rwAbt2ksbye2hRD7AaaPO9Pjd9z5CCEc0gXnf9Za/9n08F0zfgCtdRf4JvAJ7vyxPwn8x0KIVdLWx0eFEP8Td/64s9Bab0wfd4DPkZZ/75rx/4S4W8Z5c9wV131vnbktcVevNbd6nbndyc2zwD1CiKNCCBf4NPDUbR7TW4mngN+Zfv87wF/kjn9aCOEJIY4C9wA/uA3jA0Ckt07/Ejintf4nuR/d8eMXQixM76QQQhSBjwGvcoePXWv9D7XWK1rrI6Tz+eta6/+UO3zcJoQQZSFE1XwP/BrwMnfJ+N8k9taaWxR768ztGfvdvNb8XNaZnxcy+id9Ab9Oiq6/CPyj2z2eNxjf/wJsAhFp9vgZYA74GnB++jibe/4/mp7La8Anb/PYP0RaunsJeHH69et3w/iB08AL07G/DPxX0+N3/Nhz4/kw1xkMd8W4SdlEP5p+nTV/k3fL+H/Kue2tNbdm3HvrzO2fO3fVWvPzWGf2FIr3Yi/2Yi/2Yi/24j0Vt7sttRd7sRd7sRd7sRd78a7GXnKzF3uxF3uxF3uxF++p2Etu9mIv9mIv9mIv9uI9FXvJzV7sxV7sxV7sxV68p2IvudmLvdiLvdiLvdiL91TsJTd7sRd7sRd7sRd78Z6KveRmL/ZiL/ZiL/ZiL95TsZfc7MVe7MVe7MVe7MV7Kv7/ozr9HVef/wgAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "# conda install -c anaconda scikit-image\n", - "from skimage import data\n", - "from skimage.color import rgb2gray\n", - "\n", - "original = data.astronaut()\n", - "grayscale = rgb2gray(original)\n", - "\n", - "fig, axes = plt.subplots(1, 2, figsize=(8, 4))\n", - "ax = axes.ravel()\n", - "\n", - "ax[0].imshow(original)\n", - "ax[0].set_title(\"Original\")\n", - "ax[1].imshow(grayscale, cmap=plt.cm.gray)\n", - "ax[1].set_title(\"Grayscale\")\n", - "\n", - "fig.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "La imagen tiene forma: (512, 512) \n", - "\n", - "[[5.83434902e-01 4.14859216e-01 2.44058431e-01 ... 4.75007843e-01\n", - " 4.58213333e-01 4.69121961e-01]\n", - " [6.75588235e-01 5.56006667e-01 4.49052941e-01 ... 4.68548627e-01\n", - " 4.56501176e-01 4.55958431e-01]\n", - " [7.66334902e-01 7.00524314e-01 6.49276078e-01 ... 4.76406667e-01\n", - " 4.62104314e-01 4.53978431e-01]\n", - " ...\n", - " [6.81696471e-01 6.81979216e-01 6.71889020e-01 ... 0.00000000e+00\n", - " 2.82745098e-04 0.00000000e+00]\n", - " [6.74694510e-01 6.68532941e-01 6.64030196e-01 ... 2.82745098e-04\n", - " 3.92156863e-03 0.00000000e+00]\n", - " [6.70482353e-01 6.63189804e-01 6.52838824e-01 ... 0.00000000e+00\n", - " 3.92156863e-03 0.00000000e+00]]\n" - ] - } - ], - "source": [ - "Idata=np.array(grayscale)\n", - "print(\"\\nLa imagen tiene forma: \",Idata.shape,\"\\n\")\n", - "print(Idata)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Planos de color" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "La imagen tiene forma: (512, 512, 3) \n", - "\n", - "\n", - "Escala de Rojos:\n", - "\n", - " [[154 109 63 ... 126 127 120]\n", - " [177 144 113 ... 126 127 124]\n", - " [201 182 168 ... 125 128 126]\n", - " ...\n", - " [186 188 184 ... 0 0 0]\n", - " [186 186 183 ... 2 0 0]\n", - " [183 182 185 ... 21 0 1]] \n", - "\n", - "\n", - "Escala de Verdes:\n", - "\n", - " [[147 103 58 ... 120 120 117]\n", - " [171 141 114 ... 118 118 115]\n", - " [194 178 165 ... 119 120 116]\n", - " ...\n", - " [169 169 167 ... 0 0 0]\n", - " [170 170 168 ... 2 0 0]\n", - " [169 167 164 ... 21 0 1]] \n", - "\n", - "\n", - "Escala de Azules:\n", - "\n", - " [[151 124 102 ... 114 115 106]\n", - " [171 143 124 ... 111 112 108]\n", - " [193 175 164 ... 113 117 112]\n", - " ...\n", - " [174 177 170 ... 0 0 1]\n", - " [176 177 170 ... 3 0 1]\n", - " [170 171 176 ... 16 1 1]] \n", - "\n" - ] - } - ], - "source": [ - "Idata = np.array(original)\n", - "print(\"\\nLa imagen tiene forma: \",Idata.shape,\"\\n\")\n", - "print(\"\\nEscala de Rojos:\\n\\n\",Idata[:511,:511,0],\"\\n\")\n", - "print(\"\\nEscala de Verdes:\\n\\n\",Idata[:511,:511,1],\"\\n\")\n", - "print(\"\\nEscala de Azules:\\n\\n\",Idata[:511,:511,2],\"\\n\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3EAAAEnCAYAAAAHPMqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9969tSZbnh33CbHPs9e/d59NWZWWZLtPVZrp7HNnTIihpSHAAciiABCSAPwiCAP0mCSD0LxASCIiUKECQASVBgKgZcjit4UxzmjPtqrurunxlVlaa5+971x67944I/RARe8c+92Z3FaHWZBZuJF7ec/bZJnbEihXru6xwznHdrtt1u27X7bpdt+t23a7bdbtu1+3T0eS/6A5ct+t23a7bdbtu1+26Xbfrdt2u23X76ds1iLtu1+26Xbfrdt2u23W7btftul23T1G7BnHX7bpdt+t23a7bdbtu1+26Xbfr9ilq1yDuul2363bdrtt1u27X7bpdt+t23T5F7RrEXbfrdt2u23W7btftul2363bdrtunqF2DuOt23a7bdbtu1+26Xbfrdt2u23X7FLW/NBAnhPjvCCF+KIR4VwjxP//Les51u27X7br9LO2aN12363bdPontmjddt+t23X6WJv4y6sQJIRTwI+A3gYfAHwF/1zn3vf+fP+y6Xbfrdt1+ynbNm67bdbtun8R2zZuu23W7bj9r+8uyxP0S8K5z7j3nXAX8p8Df/kt61nW7btftuv207Zo3Xbfrdt0+ie2aN12363bdfqb2lwXi7gAfJd8fhmPX7bpdt+v2L7Jd86brdt2u2yexXfOm63bdrtvP1PRf0n3FFcd6fptCiH8P+PcASsTXXssznHU4oBxo1I0DGG+BkCAEOAfO+r/pLRcXuMUCUQ5gPIW6wh2/wM5XOOe4yltUbHamvV139NLv7sqP4MBtnu26ERCI5PMV93Dxc9fXj+v3n9eEEMnnMFzO92xjxLr+hb9pv66auJ/mt97907/hgWkfrryP+Ji7b46D2DievMfmz3/ee33c8Lrkf1eO3RX3FPGzEJeeI/j4cetdI0BJgS40osxAKv9EIfw5UoFSoP1vbnGBO5/T1Obj791+EVf/Jq46JhAyEIUQIOM7icsvInpX9m8cPv/J87MXzrmDjxmCfxHtL+RN0OdPIpdfKw8nWOcX67DMuTnaY6AGG7fr38bhWJkVq2ZJoQoGekhjG06rM+bVCuNcu0b/3Bb5wscyoY1DVzAP51xHB851/CKhvz/32c61X51z6cP+vMuS24pLSzzyufTel/qerCnf56uedwWDTb52a9p/cJvv1HsXcSWpx85fyUeu6POVx664vvvpag61eZv0eZd46xUMKuUxQoj+s4Tfnz6O9YrIe8K5SkoGOmOYFSih2ocIQAqFEhIpFEIIFs2C8/WctWn8urnUNZG8e9udMANX/wYC2ZKtQF4a001avsyP06OnT06Zn85/mm3t/1/tZ+dNuvxacXCv3SrKQrM7zCi1Qis/RtY5GnNZpqitpbGWTEoyJTHWcb5uWFQG28ogrl0/Cfu43Mn+IsOzGxE+X8GPrnyzbhRSeu3WfTc8rhOcun5GmWdTNvgLWscLu861fHlDFkvfxa+P9NK0n4GSr5jR9E3ScbvMlz5+3fSOSdGem8qBm9dv/pbOj9jsaHiF+I69N3Puyvm71N9UNv4YAdDPcbreu8/t+Ca055/T/R6PayWZlIppkZGpxDa1wcudg0XVcLysqRqbyN+bMlPsn/9ySfRJ5z3hkTLZP8TGsy/36Qq5LLzv6bNHzM+Ofyre9JcF4h4C95Lvd4HH6QnOuf8Y+I8B7ivt/hfllKGSvDos+eLf/SXk//B/hti7DcUQVAY4WM2hqWhf3lnsN/9r3G//fdjaQvz3/23Ezk3s//N/x+If/h7L0yXG2HbSpRQ45/9amzKcbhEZ61BSYMLvUvjPzjmc7c6P9Gqswxh7aUE455BSoJW8Qnjp7mMDw2gaS9M4rHVt3+Jfk16DQyAu/dWBqJXq3q0yjto5jHNYwAZGZwPZyrApqvBXCkGADv75gHUOKQQynA+djJIydReWqwn3j3/j86y7hB3bv0r457fCWkLcFocArOsvCpf0JzKKqxhcXM4iLLB03KyDJty/fV7Cc4xzmHBvE/ofBRIDfswRZGF8siBhSAQqWeQyIQCNaN9JCoEWAq0lWgluHg7Z+sId5O3DbnCzzP8rS8R0G/ZuwPYeLGe4f/D/5vwP32WxaDDW9eZDyW6uZGDy6aYY51CqTjCSUiCURBYZQktkrhG5RiiJUF6ZIpQgXiCURGjlv1vnz4kP9Tck+9/8vQ8uTcq/2PYX8ibo8ydxY+DM33mVQVlw784B/+6v/gb/g8/+W0yybaSQLd1ZZ3pAyzrL90+/zT/68J+yO9jit+79JqNszG9/9A/5B+/9Mc/nc+rGYK1nLJGHRP4U+VJcz845rLVIKXsbpov8Kfnnz/e/G2PazTLdsKUUKKU8aIfL9433sY4m9NPzJ9sDYPFfen+X9FkExYCUEik7Ptk0BtMYjLGY5L7xGUpJtNYoKVBKXnqHOG6x76Kl+fD8hMm4cE9rHY2x4bPfG+J90rHZFC6UUkgpemu5E3T7c5Py/xSkxnUXBWuZPEPK7t3inDvn2r0nnZP4L46T6c256z1PSomWsh1LISDTqn0/EWlgg6f7vUSilEJrhdKKV/Z3+aVbr/Pq1r1A9xItFUpoBrpknI0Z6TEDPeS8OuMfP/yv+d2Pvs/xckmTzFXbt/AwJQRKyshGOqBGco6USCDXmkxKcqUolH8PLWXLw/154d2ERIV/ccyVVG0f/qN/5z/iE9Z+Zt4kd15x+V//9ymHJXcf7POvfP0Ov/nqPgeTgu1hxrjUGOt4cbFmWXmFX6Szpxcrfng8Y6vUvLU7pcwk//zhS/7xD485m1dUjaWuDSrw9T4d+r/G2JZfWetQSmBMtxc1jWt5hU32qHgPY/w6j/eIdKi1pCgUWstWZhPC36Pjj/4+dW2oKkPT2Ha9RZnMbqyfeCztZ3y/LFPt+6zXDXVt23t5+c9hjB9DrbVXbCjfx3ifOA7xndPfmsa2e3Ecj24dh7XcmD4/3+Bjm3KmEAKlFVLGvbfj41HZFj8r7Wk/3vPyfiAvyQmRj3V82/c78u72uXT7TMvDjO39Ncaf73m7QiqJDHxdaRX4TbdHKCXa+0c5Jo5Vnvvz89xf89a9bf7NLx7y1fs7ZEr0eBkQeK3v/8tZxX/+wyf8o++/ZL72spMM/TbOeXk08Pq2L1IkPCbdI8JvQqCEYFAoL9cpz8+U9LKgc5ApEc7198lkv5+xj1LAf/g//tf5adtfFoj7I+BNIcSrwCPg3wL+7Y872TlYWceOlty9O0Z8/VehHHWcopM4QUg8mhL+eFHg1mvsTz5C/9nvwy/8KuQ5Qst2UcfNNsqYKbNI+wAdaIufP671CGRjs/a/+4n1BNIdawl849l+U3M4IZDS99HiQUhE9QAO0fY1gjETAIlwjsyJAL6gdh5aicAEJAKDa8GPDCBERWIkAiFHtO9EYLc5X+n4ORxN0qcI6vxvtADO/35ZQfZxoxyWb/cO7fm+Tx2oE73xTMWF+Fk6sCKOvev9tqE/avukhADnz1Ph2gaBcQ5JFDj8u2vh+yAAF47FZa9akAl18gyNowGEsZRlRrk9QG5PQ6ccSBm5lz9mDDQ1VGvYuYn40i9QPnzB8scvUFL0NN6RhpX0m1W8RRRaI3Nqatd+lgo0Fls1SDRWGlSmwmbggaczdJoxBc5YBN0mL6Ts+vvnrJ9/ge1n4k2xNcaQa8Xtwz2+fvhlMplfOkcIiXMWh0UEQTKTGYt6xcvlGfcn3+czW59BS40SAtOCIdcKJwDOdRt15CvW2pan2A2BOJ7bfe4fTzf1vsU+bOLOL6TefRNw4s+NPK0DiJugpz8YG+DSOJRS2Kg1dn5TT/sqpQyCAC2AiM+Nv8dnxfGIx1vroEjGIvIkY1uBqTG2Hc+UZ28CYKVU+94RmEUg0PZXiJbfxX7EjV0r1X5Owa4N/yAoyNr3caScKJ57Faju3huEUGC8qskm5/lTXfuuHQ3QCrhSCoTzgDfdm+QVQns5KLg5GnFjuIcU3TwIBDoAo8Y2NK7BOctOscsX9t7ig/PHnK/XLdCMz7HW4hIQa41Bh/k1LtJmR4/aObSUmA3az8J7ZUq1VgIrvGKyfQcBxllUWJ8iKl4+eezpvxVvstaSFRmHByNe2y2oA1+JAqEVkClJJW2rFBDCC5TzynK6XLNdLLk7GbJdZhRaUYd1IqWg2RDWhYg8yQWB3s+J1hJjHMa4Vpmc8rAUhHVrJsx/kMni93isO99hrX+2Mema7ehUB5kvJRGlZKD3vvwV+xz7G3+PgM3vmRHoRVnOePAGrVIqy2TvPTowGoFQur67PrcKetMBw1QQafua0qjr6DlauZRWvb3BWYfFtvN1lTVOahnGpg/M4u/xfkqJtu/pba4ygPh370AgeD5iGtOC3XQPsta2QFKojgakdDRNlM8F0PH5Fuy08+Koa8t4mPPmwYB720NkhApStJ835budUcYvHu7ww6MVP3p8DrL/TibMv04ApEDQRFneG/Bwzvo9IIA4tKQOQN0611oEI23UxrVKqg64+bnMpOzW61UC6Z/T/lJAnHOuEUL8T4B/iMcG/wfn3Hc/7nwpYKgkWgSrgGnA1B6stS6UQZjt7frKgz1g/eQU+fu/h3h5BKenIEVwIXDhFg4rBFJ1G6sftEBAqcBkHFIJXAROGxupcyRADyydYJUylXYBh4kzV8xOR9jpsfB6dH8jX4oASARA1gK6pK8dOOnsAvEeCY9Ei+hm43/32oj+s00Y+k0rVxw/66LboSfQaIvYXDwpcAu3vDwWG8e7d+6ujptzBJ4d+HYt8cuN68H3SznRWtY6K2b/uVKIHgAVwXJmnGhBsx+XCAQFWkSrHqhkEXoBLdFFIFCis8LFcbLWMRhoshtbMBh0nY6AKNJ9U0NdhbXh4DNfIv/RDykfnXAxq1tmZ5rLlmHr4hvFeQ6fE80geDoSwUVTCjBUyFyDkrhgkRNIXLS+yQDkVA8letfPjQ3kk9B+Vt4EQBDKpfQa/do2WGf9ZrkRVhwBnL/MgziL46Pzc3734R/ybPGck9W5Z/7Bih95h9fUylZICv2NN+4d23RVipt+KiylAC6e075S8tk5163veLj9mvI2F9Z9BHMdHW2M8aX+ggdtmPS8DeBIZz0C7yIjgxUpdV2CDW1z8v7t+0Z+aDsgE619KYC7CtxujrHY2CP8sbTP3YCpxOKYzlFcFlEwiO8dgVy0zMVjKqz5FAiKDZ7XWUSD8ORcOrxBMLEI5QU9Y/w96nDfqG1urXKiL4hF+hRCMCpybg53GOhBX1ATqqUdF0CjcQZNxoPJK7yxfY/3T09ZLRZJnxM6wYMuKSUuoYWUH0Pgt+F3ZS1OqZaPZUphm4YsAG8JGCwKsEK2AK61fkYL3yeMPf234U1CCPIiD9YYQW0djfUWXGP9vqQCYEuXqpaCTEoa63hyXiHEjLWxLBtDFsCY75M/PwIhKWULgCKQaxrbszTFtZGCmaZJQUK02skW0HXKDoISp7O8xetclAPb8eKS3BWvT9dzuhYjWLS2L9dZ66iqJllb3XOjUj1ajSBa2MKaTyyJznkA2wdGhPM8+HDOBcAbXbu6tWyN9e6RiWJFBJnEmg6cpQKVTHiKX0cO6zxIikAqKmaEEK11sFOodNZNb3VTPY+w+A7RStmOS3LPdI56e1bCf2MfO8WNbS1zwnivgKbp5qybng7gpwYTT5OSnXHB2/tjdkZZayVL+y02vksEd3cHfOnWkIcvF5wtqpY3RPDuacpRm+iZF2WibuAzLXHQgjsR5lNLD+ysg1xJrAOdCqWy89SyzsvhtbVIRHCB5mfiTX9Zljicc/8F8F/8NOcKoHGOpbV88OGM8W//NvrwLuKzXw9cxOFj4zbi45ZzePgTmuM5q9Ml9vuPKU4XZHtj1CBHK8FyaVqhWsluoUspvACaoOII+ABs1M5IWhDoz6FHqE2qvN7Y4F0QnDcFpkvvHzRANrl3EzU3dESYXunwm38TIUdktklf+v2IYx1BUOf2591PwnMEkICdSGyOuAF2fYq3bV0Nw7E43sZ1ILL7mwiM9EHlJqBSIoDI0G9JZz2M7xYBqHHekhmf5Vw/a4+NoJfELbS1lG02f27sj6QDcA7XvqcDhPNieyOiy2jnsilw9CNH/NvJZCQQDiEk00mG3p10AKhTO0VzQAeQmgbqNWKyA2+9TfGdn3B+foKxtkfLALbxz1K6E9Si66UUwmuORDeeTRMM3o3xVtPGerCWKWSu/Xsbi9TBvqiSBWSAzIM3Ifvg5pPUfhbe5Jvf4NZ1zUePj/gvf/I73Bgc8GD8+iVtRFQOOOdYmyVPFk84Xs45ms9ZNQ1n6xW75YhhlnmNYmPaTU5KibHmSn6xCdqussZtCsjp5tmztGzMTQ/AxIW68V4RRDjXd6Xsn+P696ADk1EYMdZe8nCwziXrObimBDDUulHK/pik7xLvHYWsTmCzvWdsArg+OE0Flr7b5ibI21S4CdEpBFMAd/m6/meXADfnoGk16nTjJPr9if21zrXuW0BrQbgMUD0Ibz0SpLdGeaEtBXDRgggK6edf+vtmmWZvMOBguJvEoQVtfoiDi9Y56wwmuBUP9YjP7rzJd178hJfLJU3Tj9/tK0c7RWTsJ/gxcc6hlUJFYTaxBEZKzpSiNgYb3EdF2AAUni1F8Bb7eBXX/yS0n503gWkM9brm8bMZf/Z4xM03Cq9QtZ5OtPTCob+/p9VlZTherTlZNJwtK9aNt4pvDxTDQqO1ZLXyfiN13YEza/150cspCtcRoESrTWfpivynk0M6gGOTtdKBt9iiQquzzvVdLiFa2owHsHXHm+KzdXAhjAAkXquUoK77Lujpmo0gJ/KvFKhEEBT7rlowE3ic6cBcOuZxHDrQlbqmJ54ANrggBpHB+f/5fsiOD0SeGN0TwYM2a6z/G/hdBFuRl6ZAu9tXOoWuP7d73xTMxXcgeJrE8e32KdnyorqufX+Na8Fcy8ccOOF6AFM633chBDbw/NhfY1wLnIWAqjJoLclzxa2dAfe3R+gNUJm2dA4AxqXmi/tb/LPROSfztX9H2VlSpRSsaxOsasG1Uogej16F2FElvfukcwF4Bhdg66yXV60HdVp5a14WaBn8tRYPFjPlQ6A8n/vp218aiPtZmheU/b+zquHRH3zA/cO/hzu4g7j9ZneiEGAN7vQ57uE78KPvYP/s28zef0FVWZyr0Ys12Su3yAcDRs/Pmc3rdgKN9SBAqbDx02l3IoCLYEoGubm3sxA0APayj3d8hid40SMYFwT97ju9RdQHiEHwwU9z2EuBDiTFMYsAJwWP8ZhMntPyQBddAzvg1g4tHfiJ13e/de6WaetZ/HpA8WpZ0G18jr9ZvEtX7KfFu3wa11kQlQjujRt9S/sR7xuvS3+Lbk9CdEAyxrRFi2UK1nR4vkgsfH5hBoGQ4H4qvPuqcN5dsz23BX1e0HC4FpRaAdIJZBiFwUCR709gOOweFCXD3sAKD+Ks9dZqgDc+T/naN8gfnTFfNK3PdeqGIqXoKSXipongkoY2roMGyIRtQZtQEleH2Col/bGI/CPDT4NarO3cKj/1LWqNJefnC/75+x9yd/JP+Ttv7LNT7PeUEo1rmNXnPF485N3TH/Mnz77HO8fHrNfeUjqrKl7ZusEoH/B0NmM+W7ZgIsYURNeT9ukpyAsuiFHISNslTSip8qlvvUvdlvzF9Baos64XYwaJtjjEhrTWmA03Gic6oaMxfdObc1650+oo4j3aA5fBkJB9ELP5rpEONzXC3gJtLwkhm2P2ceOWuiSlVoDU9TVqfqPAuQkA+8/qa/jTZ6XvEq1jm3PktdZByIzXfAzIi/1vhdEwf3HDT93E2qFP3lcpiXB+7Isy5/Z4wjQfd33GokV2aTxd/M955dS98X1e2TrkJ6cnnKzrdhw2hapUQx+O9ObTOq9Uq43FRrbSNCgpUWH9ZGHdRK26c104gT8W2dNlIe/T3CJ/OD9f8c6Tc+5tF9wcDtgaZu2ajq7Ay8pwUdc8na/48csVj0+XrGu/Ri7WhrvbOa/sFjx8mbFYVC0wi5a5aGWCRHcXXNv+vHWW9jXlXf5erpXJ4tryayW6AUeaSdd/BzCE6MBi6oEQAYYHWVFxEWS41m2yU3JtxibHvqauyNEa1K2ZPiCKY7AZ4xotTmlsmXP0YofjPXqf6dwPe27jAMKDPRViXAGaumnXcfdM2fb78nzQ8oCYP2JzjuO8RLlBSoHWAufSeLXOeiulCtbZztWzVZqFfSHtM/hxcKLjgZ7HBXdOE97VilYB5fvomEwK3r4xYG+c96xwl7a3je9SCG5tl3zhcMiT4wXzVd2+c+f66r8b43MjKOVDj6xzrSeYSK6xwitOXG0ocgXWf9fBvdI6QaZCiBUEo03w3ggdjDLuz8KhPhEgTgvBm4OSu7dGbZDh+ocfUv7x7yL27oDOvRnNWtzzD3H/zT/Afe97rD54weL5Bau16TSaxnpheDol+/FjeDpvF6AQIFWizbFeqIVuwWy6PkZZOl2gqZtA/A5xUYJQQWMTJiwSlw0LJk2ekwaux8WyGauVfg9KkCv9Zl0CXjbl/3hM0VngPEgUlwg8Jt5o3cLidcnKGI8zbt4YIgc564sVR0dLTmcVVehkFU3MdOPqknvG9zGOti/tHNFpWKXo3qldZJ281407nRtnH/S63nsI+olcnAtjEMfo8rB6IB3GfBNYp+MNXuubYObWXcp/98BNEVe/j+0bjTL03thb4KL1IBJe+uLOgTXtX1etEdv7uDfeYPydj1guL3oxmJFBd5c7RLoOXBcfuUkDLrpTBDeCqAFs3SmUjOq7/oWJ68qlm35Km5SSV+7d5PDWXrv2f3j8kO+dfIdfOvhVclUihcRaw8n6BX989Md88/n3+fHJC55cXLBaVmETcjTWMsqGbBVjPhgd8eT4rBUo/LPoAaS0D93m3gk/PcCSCARXWfN6G2QASi0Qhx7xC0TLgKJG1ySxZVFDvAmANi2GSkqa4IrVVxZ05NG6zFkXEkGJVgi6bBGM0kUftLUWvMBcx5MhD/Z2GGUZZ+s1D49POT+bs15VAKzWVXttN352gxfH2LH+s1Oglb7zx433puXyKqta7L9WUeC6WgEiE2+SeH28l93oYzo2saVClb9f95y2j5r2vaWQjIYlB8NdcpW3YEiSulF6lZaI/gcuQjnLOJvw5vYrfPPZ+xxfLHrPSfvm+9MJwDH+qY012qBn61zrYllHq6UxCKW8FY7Aq4VDtxa4KHxJv1v8HLAnIQU37uxzcDDyyR6k4KPTNQ93F2wPM5pSt1a4VW1573zG+ycrHp/XHM98spNIy8Y6xplmvKX57ijn6GRBXcdkRhFodfwnfo4CNXSWjFQx7f923/uxVq5VTkCQj5S38MT5j89K5Q8fq7dpeYuWMIsQruUhKbDafE6alK5TSnVrNrWm+ThdEZKtRFAr2/GAvgXO3y+RoQJvm0xyXj2cMhlkXCxrHp8sePlywXLpgcRqWdHUTY83uUTg2+Tvbf9lWIERECRJQqCv2O3Wnuv9trmPpMmo4v3S+ev60NFknCshBRKJcabdb1L+k7qneuVx39K4Gffc1N5q52PlPEi/sVXy2vaIYa6uAG79vWizTQYZX7wx5U8+umC+qltcEIFrtAB2n72iXodMrq2yLdm/YphB6uGkcoGxoKRrDUkWyOLv0huY4tglZPNTtU8EiMuE4Cv/vbdRv/lbsJjhnj6GxQK0hnpNr7RAlvt/wyF6e0RZNZiXC9aVwVhHdrJg8Py5B3F7Y7Q6YraqyTK/2JqgNVLB8VS6gKhlN9kxls43F1x7/DebMJMob6dgUCrRaj2sowfgNokstejVdZLViO51hejAW1xyKU1a17dEtc11rpCxdeDCWwZj0hQXHhDvm7pXSvz7Doea3Z2ScpQz+vwd2NvznZvP0R88I8vPGJ6sePFiReMcO6VCa8Fi0TC3llWbRa3rb4wZ8+pkDyjSLrdYoLWWdYDMucR1lM4CthkPGK1rLoy/Fl6b0gI9Edy5kieLcE1MrGJILWzdWPoF7M+PMXKCvrtHC7zxQDhmKlLhJloIhgON2pl2gEiI6LR/eccET3AxNk5IxBufo7j1p6hnc5rKu0FKKYLlw7XZk+K4xV61LgQ9Aakb/zbu01hsZZA5uNp4osuCXbYWXcZKIcE6nLOITF/WInxKW6YVf+eXf5HffPAbLJslz5dHLOsVucwxzlOhC/OjhCKTmkk+5MZoRGMtT42lWtes1xUvFguezl8wLUbslAPv9rJO4gSsF2bT2AMvGES3lU5w39wUYz82g9oj6aSWlx7wSIk6+R6fk4I351ybbax19YmXt/TZKaT6Xgb9c126OKCnSd0UVHrB+5fAqGA0HnBze8ruYMDn9+9xMNxBCMGyXvHh+VN2BwOeb895cnJGXTXsaZ+VczFfMbtYsFxV7RrGuZ613zmBMSYkWhG99SQ21k7U3nf97uZl09IX3ZpTXp9mDHX28jXp+AkhkM61+5B3HPG7xFXzHJOJRL4ghKBpmg4AOweo1u1RWkFeZOwNBuwPt/0ciegMbkNcqHcZ74BbgG/O4JxGCMn9yX3uTrf54OSUqqpbppjOcfq3D4Jl/x2ca+OWa2tAejdKCaCUT+pB0GhLiXSOytYhmZCPj8OClhp+DtiT0opf+oVbfO5wTJlJqqZzV1431ifyCe5/mfJxcMNMMikkdZNRN5baWJbrhpNFzdGi4nBUsDfO2zWaxpRF0NMJ2h0oa5XQtovLBXrrtrtXjMPqtrUIiCKAiy2l43jPNHNkXds2OUmMz/PrrQMp8V1S5Xtdd9kUU74ZXS9TUBNdl51Lf5ftu8Zxci4qx7pxm0xy7uyP2B0X/Mr9CfcmQ3LpY6WeL1fM6oZns4rvP11wPFu3FudnLxacnCxZzJaXFHteIStat0kpvfQkleyfE96vi2fz4FfrmCVS0lf+dUqiFCjH8ciybm7i76mIknr/SCl9bF7SOjrwni1Cii6LpfUx5pt7GoBTiUIsgD+tJbvjgjtbg1ZRkbaPA2+xv1oK7m0PubNT8vDlnKqKYDPSWjfP3T07w0sbU9xBBbSKrvterDXOsa4tmZY0xvP8XEskzrtOWn8PJaMsH5ROPwNv+kSAuDyTqF//DXjjC4hi4GtiVSsYTiArvNCKA50hDu7Bv/x3EL90TPbiMdmPvk32T/+Alz94RlUZ6tpSPTsjHz5G5JqyVMzmNaax3jdeeW1tHRZ7ayWxlwWNNMjR2q4cQPwOIXZO9oGcXzSB6BIGZOymYOIwjWvLFDhHm+UxtlaOpwMbnave5ZmOx1QCdhwpIAogxXlIZEXIkOZoM1GOx5lnWBaGQ83BqzsM3n4A29vw4gWrHz+h+daHLBY1J6drVivj51BL9vdLtJIUpSIrNGros/hdPLvgnYcXHCdxEQZQLmC4VqvbV0K45P9dvFFH4ym2Sd+/tQDSaeoEHsDp8JsJY+rCdfFeafbK1sJHN36xddk8E4BN6ubabSD+HL+xaOFf2jqfQKfcGkCe+4C02Al1RcxGmqXS2WCVs3DzHvr+IeUPnrJaN+24pM1rr2kzNolAt9a6kMAnbqyEBAieJrT22kpVNd5t1Dqf3MQ5/9k5pEv6KoK7pbWtRvzT3rI846/f+1Vem7zexv8Y16Bl3stSKZHsFPv86s1f5xf2vsxpdcI7p+/wjz74Bt9+/JS6qqkaw9PZGdPiBVpqhoOC5WIFdDFc3g2lSz5xlUYxWo7i5/T3FDBsgorYNu+FoNX2pveLiVeiG2dqrbrKyrN5f9vrh0jAWOfi9XHubdba1qUm9jHLNKPxIGSctJSDgi8c3uTLN15nu9zieHXKD15+wJ88e595VXF0PmO9qijKHK0V+1tjSqUZZBmFUozyHGMt752e8u57j3h5euHHT/Sz8qbvmgoiqaDUH7v+OETrUe9HOvcvb4ULyXOCxrtxBtox78/dpjXNudS9VbTHr7ISXhay/bsY8Isfn2rdCg8oD4ZDRnp4eX5I3ECjFaDl41HpBvvlAa9Mb/HN4jGr5dqPJaJlpul4dsPT7bNe6PIZEiPNWOOTv8TSBZGGYt0z8O6VRsqQ8KTBCYkSCidciIv79LdMKz5/a8zBKGOcK0aZL8GwlfskD5VxFNaRK8lkkPGaG3NnNGBtLA9nC/740YwPjubB1bLho9M1mRSMc8VwkLFc+v0kTdKRlgXoLGEdmIlgKk1EkbY2oQe0dOgtHTZkmOzKGsTr/TP7tOwzUXb0HAEH9PlS7DMBIHRKk/46jusqgsnY1wgKte7o04OXDtzE8djeLtvnDgrNF+5t81df2ebWeMD5uuaj2YJvPjvjbGV4cl6xrg1Fpigzyf2dkge7JZkSlFqSa8H5yvBnDy/4xrefcvryrO23HxvZ4y9pS/eN7l073mFaQ0V/D4nX+qyZtjfXWnfZOOPYx/mPsnKMheySpYTnS+8eGcc7usinCkMcPoFIKs9FgCk8P4mJW5rGx8S9slswLnWS9fHqveTj2s4o4839km9/pFkH2SnK7nGuSWRIP2ZJIptU2QCsa9PG5mVKsK4MLvPXRSVlbSxaSjItQTrWjUVLrxxU0ucHuUq2/7j2iQBx2biAt7/mvxgD5Qgx3galfY24dtVJyArEaBuGU8TNB7gHb5EdHzP88CXWOUa3puR3970Vz7qgcfB1y2SwvjlrA+DyCzsqL6JlDFKNtzd1Xta4+s8ycSVwNgFRunPbTDXrqUvmVfeLTSZg/DJQ6doll8HEFfGqe13VLFAKwe1bI6aHE7K9Cc5a9KREbE19nbLFguqbP+Dk3SOePF2wDNY167w1aWAsmfCxV6NRxmjkAVy2N0FNSwav32TneMazbz/myfMla2eZG6811dGQQ3DKEb11nPTdtVav1r2xFQT6YxhdQiOAFSTul7gQpOp6oAtAOtqkLrHFvsSYNpXSQg9m+rGMCV3aGnvhr3fHdDQBYmohyJVE744CvSYW5/Rvt6P0/Wib2rsQjbbh1dcYTr7P6dm6R0+bwmX6OSrJRNAeOUewHne+/vFxwjpkE56veg/wDDuwEpGpS8/7tLdJXvDq5NX2uxaagRoiQlKHtCmhGeoRQz1ir7zB4eA2L1YnvHN8jBCC13Z3eHX7BoXKgTl5sO5El0q/gQZLSLC0QQRtl12v/WbSr08Wf4/XbR6L4YopqEo1uGnsW+SBEcBFQhdC9JKNxLZpPYrPTQUPf4w2/rTnUtMClPgcfzzLNbcO93htZ4eD4QTjLFv5iJ1ySqYy1qbiz57/kO8cPeXxixOWyzXV2rvI6Ey1NYrqumE8LBlkGYMsY28wZZIPeX3nNl89vMPvP/qQp09fUq1rZvNVq43VWm1kcvz4xCVXpeAWQiRlJdJ36+LpogvSpkUz7kWb94z3umzhdGwCuLS239VAPFiDpcQ1DdZ6d6U81+wOxijp17cJabX9PiO8T4fou3F1SU4sUigKWfJgeo+dwfc4Ppv1xq0/50m5kyTjXjfeFidFmzRJOi9EWeeore0yzDkX4pDpSjpoDRKEkD5r5eaG+yltg0Jxf7tkVjXU1rUArsgUWXD7EIBWgjKTrLQkU4IxMMwU89pwdLFmuTYcTEsORhlK+vOHheZYRKE20nUfHEAESS7oHmWwrgXFtekrkdJ9urOCbYI/1QNmEVRFS1jkiRFsdG5woltHV6zFWCcy0lxf0dUpaNIW69TFFsFmarHJMsWrd7d4cDDiwbaPzdouNTeHJdM8wwEfXSz43vM57x4tWFYNi3VD3VjKXFFk3g32bKHYHuXc2cqZFIrdQc4b25qvHm7xL7+1y3/53Rf86P0T1uuG2fmy9Q5oy6EkoLm/vrq+R+XgZQtiLA3Rj5fVIetpBKrd+bQAOg0nuiousuX5rWIyZNAUfVdW34fOsyWeK4Ros3bGkgVaawYDzavbAwa5j4U1AXApKYL015ebr2qDXPHG9oSt0QkvT5ctWO8UkjEpTH9cIw20olmkQdfRdEwsJBpLI9L4aYGWPrQiU5I80JgK3ntaCPoS8J/fPhEgTowniO19mJ/TKyvgHJfgR8xQaR0IiShHiN1dVJkxlYLyl76A+LW/CcdH8P1vU/7oKeLpgqoxaOfN3UJ0RZfBhmOXhR3oiDINUUgZgBCil72yu+5qV5t003UW6sa7AhjnevL55lropfKnY4QeWIhLrpPOecChA4CTCVFEnB+BzcF2yf2v30cfbHnANh77fwCPHrH63gecPTrj5GTNfNV4b7qwwObGUjtLbcLzGkM+r7i5arhpHXKQYxZrZK7Jbu1y9/Y+d2Zz5t9/zEfvn3G6alhFC0SwlEXhLnVBjYAsavyiG6l0GxvDpk9YHCvhwZkMqM451xYlT8cjlEHrua42rgN7rbYxOa+dI/p0oIJAgRBt+m8lfIpv8Iu1KCR6Oug62kPrCVjyu1R33EbJ2nir3Stvkt2cIh5dhM1q81aB9oTfoDvLSCdESdXFH3SbnUCFGAAXNKjeyuaFWoJlzkWCU9465xpDL/jzU9wm+ZhRNqEyq2Db7VpXzbHfIrjPVMFuuc0oyxhmml+/+3m+fvNrnFfn/Oj0Xd47fclzKZLYE9o4BA+kIh+5LMSnLpfp8dhSbWK3RjqQ1ONzSVxep2jyffJWuL7g0z4vXSwbfXBBqI7Dk1reohCt2lo8l4VD5xxSKQ5u7PCbb7zFbrlFrjSTfMw486VlHs+e8p2jd/nxyQkvLuasVz7TWFnmKKVYzJdU65rVqsI5b7k4zTWLvYoHezuM85JlsyaTinuTmzx4+xbnr8/57tGHfPfRU85OZ734udT96CoL6MdZTfvfe6/ZB66JkBrjEKMVT8mkTloinEXAnY7j5jyk52xabL1GP14TMllan9kvL3K2iknivdFZ9KMrZa9FoSzhjFJq7ozucDga8Z58galNT0iDbr14jX7nUuW74ojWQue6LJ5ezS9BWqxxuCDwGWtbugLarHIASlisi6mmPv1Arsw8aFs1JsgQ3dwa2/ciiTE61oYixFIwyhRlptBS8sXDIW/ujKmtRcsVPxpkIRV+v55jdJ9MWwRRKW/yboh9JUd0ze4SgoiEt3QFs+Mz+olAOv5jra8nFt35oiUoTSiSusXFlgLI9Fn+tzg+nu+m2RA7d0rXO3b7cMy//tVDbgwLpIDdsmBvlAdQVvPe2YyH52senVVcrLylZ1RolBSczCrm64bzRY1zjjxTPD9bsViPeLBbMMgUy8ZQKMlbO1Pe+vUpL35xxe++f8YfvvOCFy/mPo7OulAsO7o39hVMaTmDuOfHsYjvK0PIUNxrUvkgzlOnNOz4SQTW8T6RLFowF+km7BOXkmDFOU34XssPbVfzzjnn4+usCUBLMxnm3BkPe9kc2zJZGzx2kye2tCwFh9OSG9OSnzw+D0qELnYw9qdp+kXP4/18nrnOtdI5R2NifLd32ayNT2topTcc5FoitaDBlx6wDtbGoaTz8XE/I1/6RIA4BiPvNilVB+BoKaMTZgUdiAN/rtIwmqLGBWo4RXz1l5Gf+Ro0FXa6TfGD99DvnbKsQj0HGzeLGATvB04mjOkqzUyqUUoZgQ1m6ZZmnZddm8YhhWvv65xrz/UbjWtN2q3lJpk8j8VFb6tJLUad22CXbbK3KYluciOAi66FSggKKbh1Y8iNtw/Jbm57V77JBOZzOD7GfviQ6ukZzcWK+fmaxjiyXLKV5cznNQtjW2ApEWRCUCrprWpSMBplqFzjGuNT0xtL9dERajpA7UwZ/9Jn+Mzrpyx//JzHDy94cVFhg4gc310K1wKpgL1aMKWEB3BpE71j/p3rZOE6AvYJrpQRnF2hPLrUWrfKAB4VHZ9IecNmfGIv3oyuvlyMyxuUGjksN+i85YTBvWmzM0HRYQ2uaRDWIg7ukN/cJs+esDT9TSvVjvk09kFb5fpacGv88jIWMn21OwYxENw6XOOjdJ31rpUxJarzpmvE1dGan7pWqAItNI3wPv5+a+kE2NQS7pvfCL37rmKkR+wOBmyXJb+w/0UejF+nthVDPeT7L9/jXfm83WT9fPV981NQ1z5hQ4i6qt6av99l8JBa5Pz9+xrbSBedK2VXw6gTYkS7QacAMAWMsQ8qARZdwqLEctNqdqOGXVKUOTcPd/nlO/e4M76BcYa9wTazes7J6owPzx9ztDjhbL3mRahBVhQZWaZYLtYsFivq2td90lqR5VkAdj4WY2c8YJLn1KYmUxnGWj48f8q0GDEtxvza3c/z2b3bfO/FI955/oKXR6ftOKT7QCpYRvCRAlWZ7CMReERBWwqR1CKNoA1kqPtmjKVuOs10P5FAJ6C28+U6TfamUjLOx1WCzFU0Ed9xUOZMCw+Y0/3FtYDOtp9j82sk7qH++F55wI3hDnn+mLpq2uMx1kdKCT0g0C/o3o1Bp1B1URlgw54bOh9LDBjnENZ6IU/6XbBngblyJD5dLVeSYabIlcQ4X5rIhrm2Lur6/HhmygO3OlivlPSeIINcM8wkdycDtge5t14Lyd5kHkoNdC76kQ43wdmm5UskFrEYjxXHfdOyFu8R11bcs2SwnPpneqtzdNlL3fZ836JnQrTBksRzyTbOMwVhQCuYx1jkDqDFmFLa59jg2ZXnmru3JvzVz+zy9v6YQin2RwXr2pezen6x5vlyxUXV8HxWhzphgu1Bxumy5mLps7QqKci0psx8WYeYWfr2Vs7eSHuwIn0NsYfzBSOtuTEo+Tc+V/Kr96f8sw/P+db7xzx+fNGWfIhuqL6/dmP8r6j11n7urE3pvKXv78GM3xPi8zqFX39sU9fKTatnOw+EhC3B8JTKIledn+4PUkm2xznTgS97JJyX7wUeJLVKwo9RcKZte5RxZysny1SvTEXkyXFM4hqADrh2ytHE8yoca4xFComSvj91ssfXxqIQ1MbL7blWiVz25/d3s30yQJwM4pBSUNU+mUledmDObQi4MfjMhuCdnT3K+/tw4wbitS/637MS8fqX0G/cZ/gnH3G+rGkCgBGESQ9aHGsFytHWGYsuki6aeug2FugGOBZVTgFcDLCUQWPpkZdrDSfhzDYGLgVxsUXdfizmnboPtkMWmZAQ7bAQNUnO9URKCElOfPAZIy159ZUp07/1i764dFXhHj6iefdDqsenrENqYSkFeS4ZTXLUMMfVlqPHF31hAv/s2jmE80QrHNSVYX6+ZmQs2Y0papCBkshM4WZzRJGj9rYZ723zmS9X3P/JMz787nNOZpVPw58C2g3jVHo8JYuWPOiPlQdqwRVTdAt0c5nEcfaAuH/9x32OXYsitEh+cxvHurnwNJhLwWSae+uncx5I+0jxzr1yPvcvpZNEIV1K1e6mwyncvElR/IjFoq0eGE4Vl+IJTOIGEZmACO+OdFgrkDIoHBqLzBL3LCVb/9f2mBREInVEM+DPhyWuA2ghltIZstYufPlcQbTK+sLfu+UOr+/c4M74BvfGD5BCkquSO6P7vLF9jz8YPGQWSg2klpQ2rvbKulYuofurs1H2zk42ovS8aG3dtNTEzcta2wNp6e/xszE2sQAEgWDDnU+0tCISV5TO9cT3zYPVwbDkzbs3+duf+WXG2ZiVWfHo4hk/ePkej2enzCpfnDWTklJrboxGjLKM2lrePT5miY+70lq1Gc9MY1gu1wwGBc451o3haLGgMobDcUapC5SUaKlZ1CsqWbM72OLX7k756uGaD86e8Hvvf8jJ8TmmMe1YRcuYL95uW4uZS/726EN4b4Or5sgnEvKgOQbPx7FOtetCbGbS7NZhp2nv6COlic2/VwG7+Iwi90lNhnrg6d42GGd9UpDQzqo5JrNkMvP32bh/kM7IRMat8QGDPGPOsqUtbxEJfUh5tnMb7xuTIUBMWBH3OU97wSVVRNfwRFiMtBbHuY2H+/TDOInn2VoKlpVhaUwvVrGL5Q9JcwKY8gWKBQOtuD3N2B1qdksf36uVBxyv7xV8b5Axn9c965lMBM2UxlK3xrjGU6tP3IMieIvukJGHRcuX1t150XLXAYIOsKV96JQQfQWmV47Z3rkx3DwFMP0kJp07dwRuzvn48NEo53Ov7PJ3f+EWByNvfTuar/nwbM6z+ZqLtaEOwvg4l+wONeNcY7cd775cMq8khVYY58GGkoLGWNa1YVRqhBCsGsvzi4Zp6bgxyihDh7UUnK5rciW5PRrwr3225F95Y48/eXrOP/jWU46OfHKOFMDFceiPl0hAdTfWbQhF4sXTeetATCWXWvvi/MckKfF58Rxa2rCtq31UdpnGtK6VscXz+vwszd7s4+mKQnNrq6TMPPhZN5ZVZRiEDK0OOF/WTErNIN8oZ9Dby6DQknvTgiJXLBY1VWWDyNWvU5iOZ9N0ilYPWAPdBP6jg6ZpVRky3T1PR6+l6I7uHFLIVp5fNe6SV91f1D4ZIA5aJutccMdqEyNEqBu5hfCgr1WTCLj1CuLrvwJ3HvgCyAAyuFq+8hpbW3/Es5cr6hAE1OkHPZjTvnoBFs/AmqYLQoxxbmn2ymiBazXJooslila5iMZNwjzajT9uMPTBROom6d36XOs22GU/FO07wGUA4/VQomd1A0LGSUepFW/96j2Kv/lXYDTFnR3DbEZ1dMH66RnLZYNSgtH2ADUt0dMBssxozpbURxfs7hYMBorzi5rlsmFW+8xg46BJ0llX3+nsvKIxjm09Rx5qnxBjUHpAAjAaQVWBUpSfvcdr2yOqJ6ecPJvx9LmPu+vFq8El57XIJxyJVkTQxgr2aIzLVrd4TjxunSeK1LIikr8qUb3IdNzDPIlAH9F9UiTHVPvZz8dASopJ6UGctVDXuKpCFIU/dnrK/LuPKB/sob74uQDsQjITYxIVkIFigLh5i+FQc3KyDllYfb+k6tx7U21npOfGBI1kFPwQbRKeLujchdow4QLwZQYAkQUmaZ2PWbHucmrUT3ETyX9+fdsQ7xMsS87hEpoRwmfFs8Lzl5uDQ3799tc5GBxQqmFLlYUquT+5y9ag5KUQXl+VuLL4e8VNdjMAvdMmp2Cu1+/23P79+trNTt0Q3aY6cNcxp9RS5zftoJm9AuD5Z1nSGLK0a6m2tbXQKeX506DgX/r8Z/hbr/w642zMolmwbJacri94dHHK2XqNEoKboxHb5YhpMWKoB5ytL3i5POOV7W22y5KjxYLZfNkm0hiNvcuyj/HwdPti5svP5EpRjjOkEwx0gZaensfZiNrWKKH4/P7rbJcTHl0c8/7pKY+fvmQ+W7bjnxaB3QQQfaE3rCvnesfiuAQj9qXj6VjF1rkd0vJ6Jzyf9793Ssc0vXp0T0oF3jQDW8zIluWa7bL0yUCcz/K4NhWlKih1yZP5M77x9B1e2Trglw6/Qqay1iod4+I89Tmk1OwP9im17r1bpG0pfV26lmcndBcZvn9X2RfURWfhzJRq446Nc6ggTHUFyn1Mn/o5US751ucDzjkqYylDHS7ruiyoSooWOESesZXnfGZvyDjLyJS3VkohUFpwa1wyHea8kMueK2H7ZCECqO5AgI9h6wM9X5DbtntQdNtLBeSYNCTdb6IrdzxuUk+mpC5cP7ui6PUlVU7FPkfSi/2Ie2LsU2p1g1hX2Cd8+60v3+Zf/9wh06HP7DlfNywbw6PZivOVQUk4HGeM84zdIqdQknnTcLRc8/puyd4w42hec7Jo0EFO2h/nPi+BFu3cHM1rrHOUmeDWSOMcDLRCCz9/w1xRNZZhpvgbD/Z4dafk+88XfOfROT/+6Izz81UL5uJ7d3N22d0a+t5mMXPn5rhE8O3HnnCd531NAGWR53fXhtqn0rVFzFt+I2j31TYOVtjOQgftPdPvg0HGzUlGriW1scxWDRfLmsZmaCV4crLiv/rJEb9wc8ovPtgh11ev+bguDocDRoXm2HWZPGORey+udjw1xhV2HgMdf5UyjkuMHe5K54C3zgkk3j3cUSgflmKCskVLMBtGhL+ofWJAnF/RCqFCl6LL2KYlLoI4qdpj8vABbucAUQwTcAdIDfdfo7wxRf/knCY4eEk6y0wn0AYTsHFXpiuNXUoTmUCyUSeCEq6fyTIyuWhxi5dHt770e3vfcDymt29vTXdPn+HL+ULTkeZ7TLbre4NjkmvGI03+V74Kb38F5heIrW2ccxS/tk1xdMTo+Ut//8pgVxXViwtkrrFVg60bzi9qFoua+bzhZd1QOYtEMDOWgfTulLvTAiUFZaEYjzSy1JjFGhGKveq9qXfdLArPSUNWRn33JmpcMPzSK+y984jv/+Ejzo1tBQObvJdLxiQdn7jWY6ygEB0wcWH80gxq0WXV+1W71pIS50AGJiOBTPjsodEmYgEn4n2CrCG6fka2EX9rracIHw8nJWocxqCqWH94xIt3X3DjC7fI7mhm3/6If/bdI1758IzP3r/trabxhdtMlbX/xwB29lDDAiHniA1Pxo6Jb7qxhKUnUqE/WFjs5bTvqTXHGev/VU2b9rfDDa4j7J+HJrxgGl3EHC6At7/4up1ij3E2IZNFK9x63qO4NbrF7cmE9+Vzr+dMhNeuZk63IW4KUuERyedOcI9ts3h41G52Qe4bAf/p51YB1SeoFIRcimVwXttro6Yy6WAKFmLdLhksZcPRgNF4wK/f/RqvTV9nZZaMszHOOf7q3T1ero55Oj8Krik1y2bN8/kxhcpZm4rz9ZqjxYKTxZLFfMnJ8QVVKH57cb5oM1Tu7k1BCKaDgmlRMMwyVqbGNWsA9gfbjLIhmcxal1iB4PXte+yUE75883W+t/c+/+Q7P2QWgFw35l1Mr9+c+2qn1sU0xLfFse2vPXr3TEFhb/xsUgAYixBecG8SGtgEf/16g2milj4NZUpRFDnTokAJSW1rfnT8Pr//6AP+2oM3eX37Pn/05Ef89h99h1u39nht+x7TfNK6UnZ7Wad83C12mOR5S3PpePTePxHKASSyFfxShUW0/EjpwVxtDDpm2UzcKI21uCggOq/p3lxDn+amhSSXklwJ78XiuqRE1nVrVQnRZsGL8skoV5R6GOoz0nqQSCHYLXIOpiUfZRc9K1tMNtIJrt6aGoXeq1ziIp1BH0jEbIcpqOvmtcuSGHkNdPuXdz/u00qkjabprHjpXHte1z0/AkwRlB+bawE8oNnZGTAZ5fzNV/c4DBkoXVBYf2GwxWvV2IMI55jXDbW1PF+uKJWispa1sTw6qzhdNpwuG56eLFjVvkbf8WzNdJihpeTebkmpJaWW7I00Q62oQgK4ed2wXeQU2mc2FILggif5/MEWh8MBv3J3m9+/c8p/9vsfcX6+IpZHaQ0OsosXTAFwJz/F9++XqYnWuQiC03tEkKuSjNqRV0XrnNLKW95USGqS7Blpa5V+ojsuZEeYUnlXyuFQczjO0cq7B//Z01P+3neP+Dd/4ZDP6y1+54MX/Ce//S6ffW2P/+BgzMG0uHLtOOdpfVpqBoUOgDPG7ZGMWXd+pMFI6/34uU4+Ne5q98gmeFxo5evJ5bFkQoiPy35G1vTJUknFdHmxDlY6cqnUKWUnfQoBSiOGWz6uLorgzs+6OHyF4t4ew6FG4gXwAA17haTTzG/GdjWy2smx+JTsiWnIa5DD4kiAX7TQxG5Y62gShmpx1M4DOBO+2+h+iZ9I71LYMVUXgJoNxGFd1Np7YBFFLA8Uu5prPjbBJyLZ3s65/cVbiM/9AuLB23BwB46ewtkZnJ4CoHa3UHcO0XdvIMscrMPM1thljakNNmjIGuddDxWCtbM0gehHhW4XwHDoU79WZ0uqFzNmD0+xi7W3IlWVf+7Zma8JWBQgBGI6xc3m6OmQNz+zw1hJ7w7Zigautc4Zl6bzD+SRjFePtIgxHN2x1NqWgrtUDxC/+xg2QS48AJPCJ5PRwoOy6AsNnqZat10CYwrPy5Lrskwii+BKuVzy3/zTn/C//u5T/vAfvQPLJc+fLfjmfMV7Z0tYLHBN04+RaxUdoW3tooZ5wmi7nzazo266FFjntUTWuvaW1rou8U741zL+eJHzMXCuNp1LpZKtle7noQXVUU/JYpxphfX0uJ/rONu+aZkzUCPvckaf7vbLGzzYOmA4LDuzLbRZCtNNYnPDg7hp9AXhTYEpFdr9NV2MVJu8pDE+bX8SB7eZDQ5oNfubWd5St6aYmjq6ZMYsXQBNSJIipewln1BaMZkO+ZUH93hj63V2i3228x1O16ecVmccLV9Q25qdcsqd8U3vmqf9xny2XrBqmjaxQ3zPoszJtKJpmlZgG40HXnhUikleYKzldLXi6eych+dnrE1FbY0HhdUF59UF83pBFlwIt4oJ82rJVjHkS6/fZzod9XhFqvk37V97aQ7S81Oht8sM2oGc9B90mukI6LwLmvaxf5kmUwolQjmVRDOeKmDS69NjmfJJLpTysT/jbIAUiot6xv/+//M7/Pb/8Xf4T/7x73BeXfDOy2M++vApH374jPP1BWtT0bimtSZD3L/853E2ZpTnG0JRfz9NXas+fow6HmaMwRjr6QqorW1dXI1zvX+Ozs1XiJ8X/hRoLKH7RdOErJyep7dZ8oR351Iy2auEt87p6DJGR8PTMuPWNKcoPO13SS26/USp7lgk7QicNq3wUfCPQCvPFWl6/vgM50j2nK6MgDHerbKuTVsfruND/hme93TAL5ZHMY3p/jam/b2uTQd4rWv7HrNQSulro+1ulXz99V3u7gyYlJoykywqw2Ld+FAdYxkWmoNxwa3JgIFWWOc4q2pmdUNlfBr5OM5lSCizrky7BnZGWTtXk8LHrp+tG14sK94/XbI2trXazFYNy8pQm87KszXwlvDX90r++lduc/PmuGeN7/Em019HVylH4ueUr8e/m+sxynxK9ZPLeBrx/CTLs7YGZgRj0cImWvnEXuKRkTBVptrrikIzyTUCuFjW/Pv/6bf5f/yH/yn/q//X9ziZV3zz4QXvff8jvvfOCy5CMr6rWpT1xq3bpXcFjfTnx6cbi0iPcdziX28l7u5rraOuDXVjaaxta8Q1ptsHIjZY1R0N5OqyEuEvap8MS1x8e6mBKqCVkCfQBREqWuX8jF++NhTxbEcgUKWY7MKDB4zH73A2rz14g362RudCDaxUE9G1tv5bgjE9aAsMKT6Sy4KWcx7wxN+hc/WL1rMUdET3yVSXGc9Jmw2gw0T3le6VW9EyD762RabY3S24+dV76F/+OuL2q4isQNx5A6sU/OO/h/3oEXbdYC6WOGNpzpacn65oatsmZ1mvA/Oz3o9YC8Fg4OvJzOc1Z8uaD2YrcinY0ZrtJufGwQBV5shRzmhnhGss649eAKC3h6i9bVguYbXyGTGLAlEWiKpBTUpevT/h5fGKp2drmmDxsmFsojBs8Za3OG0i/G9zLqKba5yLaIWLMXCbaye9n7d60hZjdHQ1/YQIwi0eoKVg0Vtp+y1m4cxzicg1CIGrG47qmrm1PKpq7LpmvWo4bxyVdd5a2TS+rAAE/1/XlR2wBoZj1Ljsadtii4y3fbcNIT8yFCFCAeEm9FWHJDzWW1eck76gfQzSrS1CBzDX+NgtESqZ//wAuT69+fGKXgKJ9HLpKrrfRUdjqcJgoEfcmxwyHJWcn3v3PiFTAb2/WfRbZ6HbtGwotVly4PJ9UgDmWWwXC7d5blqYutPO2iv4Xb+H3abcLVDrvMt8lukQ35Cxszvl1+69wq/d/hp7xQGZzNnKd/nsds6yWfLDkx+zaFbMqyWNbZjXFc/mc1ZN047nsmmoG9O69QwGBbt7U0ZlwWJdcXE+5+FHz8m0Ymt7TL075bWdHYZZxigr2SmnrE3Fw4unGGfZKaccDHdYNWsez5+zXUwYZSO2ygqL5WC45LP3b/H49Jynj19Q1U07/p0LV+RRXVKXq/aI+HfTGp7Oafp50yrb0UE39y34tr7mWyd0dXOfgsPYYiFenek2/q2xhhcn57Bo+PDxEatm7Qt3Lw3ruqa2hspW5Dbzfaejq9hK5ZPJpOAx1exfJbyl/dtUPDlnW5dSz5tCbFNSP66xXojy1lvjvSKk30Uuc/xPX4sKTi0lzjUYa2msbC1tKiSyikOnW6G+u4exDqJrIYF2JeRacn87ZzLMmM2qVrjP867g8yaISuPMIk2mLV6/qUDY5DedO2Rq/egn02gtHsa14K9LtJEIyxFkkCjDAl/VWm2c3/VRa0lZag52h/yNz+7x1x7sszvO/e9asjvOMdbx+HTF2hhmtd8018bw6KJqC68LAcvKMqsMjXUUWrI1yrldaKal4nRpOJmv+bMPTigyxeH2gNvbJW/sl2RSMs4Ub2z7mN8n8yUO2C4ydsqcdWM5nVeMCg8s9wcFAsEXDy3D7JBvfXjKD999SbVuvPxiLC5YmpRSbR04bxvp3Gw7l0Hb8pHOEp66ZncgPa7ldMrTjI7GONCqKxUQromfvdu1bJV8KZFHa5zSCq19WYah9klNVrXl6MkxLC/48CdHrGo/JiwvWK1qqsayqg1FcCXu053vb6El00HW8qI4JhG8xTjJFPB29Vw7V+9Ij6niomkctfM1EHWIgXQuGEGCZ9+6sTgnEZkgk+Jn4kyfDBAHuDSaMqbJc0E4lRtB/UL4+nGmCdcEphxXtb+jF3R1jnj1Dba2f5enzxcheYVoXdw2Y6ygmyjZdidsdm0+CdFjYj0XgmAoURKMDSZ7vMDv6Cxm4IFkWs+sOx5DSPsWpvBWl1z+WrAhunOHUpJliq1pzs7+gPLBPmoyhO1d2Npv3fHkjfvYL/8Scr3GvfMTfyz3Nd7KZc1FZXn5csXKBPeUQMBlptjZzjm4N8XM1wyHmn1X8rlcMX77NrLMMfOVF+SFaDUt9fEcM1sjtMSuG5p3HiHKjPzmNsxmvl+3b6NGZ+RCUD7YZ7tquPXOM773g5fMoxmeKAz7ZlwHliIZCLq02Kn1jva6AJSFd+tqQbWLRiVxiUYkITkKwarrPICMtd+cgzpumKLzbZZCtFY7LbxVTymJzEONl0zz5qDko7XhrdEAWWQoLRkqQSmlH5e69jSfWt+sCQoPPK0Xut08nQOVyW48RBfA3W/dxmuttxKnbnE6k6TCFgQ6IKwVY7sMlWFAnN2k9k95cx3wCknYPYMXlqtYrhAC4WjB21VgzwGZyLg3vsv+cMiROmkBiL9Hd680fXMq8PpNo8s41tUc27SyBNzfgj16Gw0JOOuxUWi1+P3N2rEJJKCvpd/sa3TryrSiKHNv6ZkMubezzWvbe0zyIdN8SqmHraVkoEe8tvU6ta155/R9VnKNlgW1NYzznFlVcXw2o6pqsky3Y6G0Yjod8frODhdVxSTPub01ZfTafb5y+BpKKBb1CiUlUnQuhot6xbyu0FKybip+dPwBQ11yON5nXi+RQrJX7pJJjbWWV7YOqW83fHv/I/7o++8xmy974LkHugQI0S9unoLs7rvbJJVLQCa1rPXcVZXACIEQMWbIeu239XbjKC5FWonzHS1z0QVKKxmsel5EGOqSz7/1Cn96suQXvvAao2zoBeBCMShylJTUpsKoEusijw7KHRwIR65yhlnpXapa4Uj1FBUi7BXtGIYNLqVRf78gkEqfXt3TWbobduPpXFJonQCoXTcOn/ZWW9u6iMbY+cZZjJU+Nhq8DkV4t8cyU6zrJIYziZeOzTrIJBwMfFzcc7XAGC90KiVaQbVfl6wDdGnGWW+JibXGOstb6pYZ49d8H2nvGeM7U2tfR+6ijSro3Dpl24dWSREEZWtsa/3ZVKSoFtj4eKvBQLMzLXlwMOazNwbsDTMGuSJLFJO5kuyOcpyDo4s1K2NQQrA2hkwKZo3j+axiVRuykD0UPJDeGWa8eVAyX1smheLBTs5ffWObt3amKCFYNA1FsKjboGheNA0rYyiUopCKj84XZFKyW+YsKm+J3hpmbTjQg+mIr92e8Ds3J/xXf/QRs4t156LvkrWRKOiijNCNuR83IQSWzYRUfv1uumZmWWdZjef6eY4Wq3D/MB89umvrpfbLjEgpUdpb4rSWlJkiC6AyU4K3vnCHP3l4hy995V7rbkoxZDj0yXpWdVdQ+6qmlGRS+GLmVeWtsFmm2uQm6d4XYymjO3vsH9Ba72LB+pg0LILCdD+wAfA1uDbZjnM+jMX9DKzpEwPigEBFkoiEvPYk+a1tIrhUhnNdy+kJsD0ZdQl3X6e4u0v+3hmL2nQpoOmz8c7vO/hjW5/oRMjLm2hkVCnxQ2CkiQnaEzgIfOxaBAVaiF7SjnTTjgBEQQsYItATlz7HYHAvSo6UoiwUOvN+w7v3tpGjAjNb4RpDHoWqONYAqyUMBt4qBJj5GpxjsDcC5kgpKEtPZecXFbNZzcmq5uWq5vHxknGmKEvF3m7J6K1byC99AbF3A312jFss4Pwc88EjzKpGDXPvQigFzfEMu6wZfu1ziPuv4L7xh9TvPUIWzyIKRhQFYjxm/Ndv8Vb9x3zrnRMaujlw7dg5X3cjAIxozRQChIsRcf35jp8jeIvHUmudDVbOOD/GdddFl0kALRyNC5bRqCEklCIQXRydEiE2Qfh4M6GkT5eVZXz+l+7wypNzJq/sgdaMRhmvlpr9THfZKe1lAOfqCmEM6Aw18O6UF5VPr76rMvJC9erExFTGcQyh7z7sH5EK7pa8SPzdo0kzxhsE/2HnXEhG9PPZUuttbDHhSXtOFEbDfz7BkG1BSQt+giJBCMXN4SH3plPezZ7RNKbdvKIgsynop7wi5Tvx+2Vw1W0+cQNNrTBSSl+Ph2jV2EiEEe5jXLrZd+5SfStgkg3Q9TWqSkoGw4KyzH2x1mHBG7u7TPKcs/WC2tTt2MbMns45alORycwnHEEwr30c2t5gQGMtuVLeTQ94PJtxcT7n9OSCk5fnPHt2zGg0oChz7mxN+fzBfd7cfo3tYptFvWDezJnXCz68eMyyXrFTTpkWI5xzHC/PWNY1v3T4Re6M7/DHz7/JuycfoqSiUN7iVOqCsRzyt179KvO65pvfe68tCwB996BWOMElc9lPNJMKB1eB9rSl5QtS+ovna61a72shVOtaFmkkdXtL50lr1VrzMunjRHKV8699+St89dV7vLFzSKFyJoOS6d6E/f1tCpVjnMW0ycME1hkMgUacRQlFGVxgF/MVjTFsbY0py/ySJbkj3L41Jb5jmrHTNAalL1Ws626R0K8L119CyZ/iJunLEpstJMj25wqBVqKNJYoWgdTCkA7P3iDn1lbJwyPNbFbRNA7nulqJ0Z0SSNa8aH8ToqPjVLkTAVfvPaTsKZl8lkqJC2Us4vlS0rprQ5d5WQg2+tV37exbrkUigAu0lozHOYNBRpErpoOMNw/H7I0ylrXlxTzUiiSxDDrHvDJt6ngtJKsQl3l7UhD01xyMh1jneHrhE5q8vFjz4tzy+HTFpMzYGmhe2S344t4WN7ZKciVYN7b1gDmarZnVDdM8Y5p7vnNWVTTO8cbOkMkg46OXCz46W6ClCOUmLBOVMxgq/u4XbjFbNfzuHz+kTlz3Yoxa5PneKtnVgYvjlFrDW+B1SV7oYnR9rTV/vtZ93hLv22Wy9DXf0qyUnTU2KJmk54kK1YJ+IQRFcA0uM8W/8xv3eev+Dr/5mV0yLdmflGwd7HLz5hit+tboSCvpdy0Fo2BhvrhYYxrD7p53lfeW3o5+I2/uPBo67BA/A1SVQWtHlnneFPl1zBCbNmsdVjqsEz2F00/TPiEgLlX7hl2nWUOjQed918rIB0QAcW15Zjrw1g6CA2cRB3fJ7t5gMPiIZR2yHbkuscmmvaAj3KSHrrO4+e+XJy4KZ1LErJSJmR662kF0sVwRiKVbigtZ7xygkswJIVlue11sCu9rvTPI0JlkZ7tguDcEwMzWNBcrpFYeMFyc4U6PIMu75/34B4jpFvL2IUWRsX50zMlPjqkqw3icMRpp8lxRVYZMS7amOSMTF5og05LRSDM4GCOUxP7Zd3C1Qe1vw61bMBqhbu7hHh2htkbevWdVUb520wOY9Rp29hC/+Evo3/897Lr2LmW7Oz52LstgPmf01i32H814tqj6m1YCrBoR3SNTQZt2TqBzRY1g2N/CbcyCn5cUwAHtvHRALnwPQDGWcnB4C2y0+grhyzBIBCMl0CQxKs6B1mT7EyaDnGx7CFnG9v6Qzz1f8MorUxgOIcT2iHiNMT52tF6BqT39ZRnWOs4bH7O1ZTV5LlmtImPu6DcqIYQEaX2QbQRwm3yk04J2VlVkf7zaFtxx+LmJO6FHBM45jGtonEKhsQGkXbbIJRSWqJFd71fLbrHHnckNivIDVisvLKRavg5w9TV56feUN6Wa0svuTH1lVHw1D8a9wuPS8XD+ZsInb+EAKVWrdb8SbEifrn48GZIXGYfbU/aHQ5xzzOuaeV2TSUkmJfN6TmVW1G0CGPho9hGTfMLt0Q0GuuDRxXO+9+Ip5+s1B8MhkzxnlOesovZ6a8xg6JMPaK0YZprtouTOZIoSkj95/h2MtewPt7k9ukmucm4Md3l08Zxh5q9b1Cte2b6DloqlWTHSI7568Av83pNv0FjvNnkw3GXVrINVb8lXbt7jw2cveP78tFWahJFqP22CutSimc5RZ/FuVU1hLC8nSdkEcZua8vhc57wbN7IL3E/nuK4byDRa+bp6UnY7kxSSm8Ndhtq7nWqpeW17m+ev3+HN2zdDUhODS3ZTb5FrkE6G8j0CLX2Cg9OLOdZaxuMBSitsZduxad3cU2tyYLwxZtMPy2Ua/7gxiXyzsRYhfXa4n4eWvkUUVJeN4aJqGGaaOsYxOYcOgE21vKJz+99k5dZ6pWiRKe5s5Xwz6ywuMZ4spt5PXSid85YYY2LB7nB/6ZUKEWjFFPRpcpRwpo9xbLqY3Fh+JE1w4vmdbPcpKfvxeeEtWj4Zy7X0eap/hyxT7O4OKHPF7d0hd3ZKnPPWm0dnFcNMkitNY6yv7yW7xDAXy5pMSUaFJlOS42XFD49nnK8M2wPF3kgzyiQrY9FC+O/B+0ZJ2Co1+yPNwaCgcY4fPb+gsoadomB/nCOFYFJkGOfYKn3M3Kq2HI4HSAGNcQxzxc2tkkXTtPN3azxgVRu0kizqhr/xxjbvPDrj4cOzxG0+WTsienR0xbhTxYpzrqdIie6NKT9L96TUEtcpo7qi6X7sFdESCOBUirLivHpl0nq1xjnHYOjruekQ4uNBnOQz2xOmueb+eMgwV3zmoOStz9/iV97cY5gr6sayueIjvbqgky61p9uL0wussUy3BhRFwWrV9Dxhmsa0fU/r8vVyBtAlkYm8PBqPrkqeKIRPeKLaOBx+6vYJAXGCtuYb4KxBmIiOGtoc6akqWgQXs7QWsnOJFU60sySKIeLBA7am3+bkvLos4LMpDF1W1KXALm4gtNcl95OA9W4AkYk5B0TUThTqXXCv7NwAO7e9LsPhZgFw6dI+eOLLhGA6yJhMc/Zf3SU/3MLM1lTPz2nWNauVQSnBZFxAXeGefYg4fAV3/hK+9fu47/+A5QcvGHz5DdjboxgMuLE3pj668BvA+QpTNZyfV5xf1Kwab7qPoKiQghsMyAdrZt99xPOjJVvTnMH4BdnuE/KbWzhjMcsK9+IcoRV6Egpcl74eoHv/XcRbX0T+xl+Df/ZPsavax4Dt78NwiBgO0a86Xns548U//5DK2TajpJ9t0bOgxRlqZWfX2VBiPKSDNkOeLyDeJYQRiDbOLl5pnc8WGueiL4x3tfiCPNzOqQrztTAWK2EHxbhUKJ0QmtbI0mvZRJGD1pT3dvkMMHjtAPIcIsNM6yQ2+Di5SPtKsVoZZsG1w1pHnkmqKg349sBbpvQpk7IaiQIiur/o4A6jdZIkIfY9ZKkUrXaODmj+nLTWMhRmPbqMWWd8xknnemUGINE3JcdSF+p4v0INeDC9w9b4u5yfzS8JpqnGurOciFYj2N9E+0Ls5r1iSnCv4XbJ35ACXIoWyPnMrimV9+8bXcWj5lZJ1asXp0IfdaaYTIaMJ0O+dPMmt0a7zOoljy9OWdY1i7omV4rt0rvivVy/YCffZWWWvHv2Dt87fodHF8/50o032S13KHXB7mCLo8UJAKerOYu65mix4CyUFfCCoAleBDlqX3JRrXn+/H3eOz7hcDJmu3zJh4On3BjuYKxlVi9DHTTFJB/S2IZC5Tjn+Gj2kFemr/Drd36Z33vyR1TGp9vfLbcZ6gGFKngwvcez+Ql//8W3WhDeuSuJS0A7nVPaWlad0HQ5FiWlAXqCUioMxWNpgdpOONMIY2isbVOoe6WiY7WuvFA2HXlradSEI9BCU+oCKSW5ytBC88bOHcQbgte3bzPQAxpbd+sl7HTGGaQzaKdRQqGEYrWqmC9WbY1TrRXWWJqmacctFriP/d+k/6hocs7HkEYNfRZKCijRZUW1eJfDLABaF+j358SbksbZtqJLbR3K+qjxqvHvnNYEhVBkWgmqpr+PRaEz8hSHd1W7NcmZDjLOz9c9xUOkx7Sumre8+N/inEQglsZqp7Qb3Smj3CWlrwOWJjXp+tZZimIsnL9HXGO0ChQpVWIl7Nz44nqQUpDnip2dATe2B3zp7pTX90rmleGjszVr45ivahZasT3w5Svma8OoUNTG8exsxZPzFY/nS97anTIqFIUu2SkzXizXNNYxbxrWxvJy3vBi0bCsPCCIni8vc4V1JYWSPJmveO/lmhuTjEmxZneZs1N4ZfvpumqTo4y0pm6s38MFnMwrpoOMz96c8v6LOcb6wtK74xytJAey4NbWgB9/YcX/5ekFi3XVZiyOJRyk9BlgjTMtr4hKIIvFJSW1nHOt5SN6SwiZ7kui5S1xvaaJstIkNp43uva+m4pIIQWmNixnS7I8Y7o9ZjTKvLtkaFpJJoXGUjIqNEUm+fLNLeovO37xcJtRoUJyk49f8DEx3Xxes7hYtC7afXdf38c8V3Qun13fI20JIahr42PgdMfHVPtuHf/3seYWaQRF5r34Il/8adsnBMTRxb2l6CmthQV01jiR/ItZR3q7XDgWgJ9U8NpbjA/+CcXTBevG9k7rNtgk65IU7ULrwFtnyUjroLSm5ni+BOl8lstUS2UMvhYXnWDn46pc+xmiZS6g+TjZETgmr5iFzWo6yrh5Y8DotRuoSYkzFhvS+atMMZQCmWn09hCm294aJz6AizOab/wp9dEFJ08uaC6+Q74/QZQZ2fYQvTfGrb3WWSwrbk5L9pceMJydrjGNZTz2waDGWF4+X1DVhjxTXMx8gdBhY6ien6PKHL0zpHp6htASvXcfplNvZRsOfY207/wpVBViMKB55AU0VZZec3xxgXjr8xT/0q9y74dH/Oho7jNikrg/uu7zZbe3/m8x2YwQJO5NAgKQU4JQWy+SXgDmwWUyocj2PsJ5N8nGdXEvkdXUWFZJnNhgoCnytuooCIHQGll239X+NoNcI/d3vTvlet1qlFuCMsbHyZkQOyoE86ph7Rxl2PC0lhSFYjYzrZuUH6++tl8I2pS4NjBbrXzNIB9nJEmFw6vc9lxMoCISgv45aCIohSQSEyOL0tifK853QiCdwLZ0F4Xbjj49+Ffcn9zjcDzmaXbiLSL0tZipEumqmLl285OiVyy11yfRj9WKAlUH6oKLGtHlOrz3xuulbpI+5qUTrNqtVUCWaaSSTCZD7h7s8oWDQ0bZgMYab8GSkkHmU2uXWrNdjBhmQ+b1DIBVs+SPn3+b4+UZPzk95XT1bW6MxuQqY2+wzbQYsWoqxnmBEIK3BwMWWzVKSt4/PaWxlr3BwAvxxvCT01NWTcOkzDlfr0MGP8fT2Tm5UuwORjy6OKbUmp1yynYxRQvFMBthbMOPz96lMhWlLng6e4FzjkLlaKmZ1XNe33qN33r1r/AnDx/z43cftqm9N/+lboHxb+fe2A1gFKT69/HHtFKklgUP+PoTFfendP4JFi61ITBVVU1VN+12m+cZ4zwPniUChy+xEYGYEIIbwz0KnbNf7qCExCblM5xzGAzWWbTQbc+MMywXK6q6JtMaYzxP0pnPIhrHYxOUpuMVW1RkRG29DjWXLicv8PO8bhqfyMtffOW6/TS21E0ralZrGzJyhle0iegU65PJsCmm49rKG9aPjpaCW6MBu5OCZ8eLVhBPM0pGRWB0a4xp+6NAnyrIUyVF5Gf9mKwOiGVZBBo+E2W0/HnRTya8C/qmiy7OSilJ05j2eZHnxcQlu7sD3rg15ev3JuwEJeqpbVBCUGpBNsoplGBnoBkVisZYlhXUxvHj4xnnVcPDszWz6oSbo4KBUuwNciZ5RmWsz4xqHa/vDnhlp0QAH56tWdWWg7F/XtVYPjhds2oseyNN1VhqLZjVDaerGiVhmmccLdfkSrK1lVNm3pVwUmoa67hYNawqg0TwbLVil5xsLRkWsFhbDqYFf/utm/zuj17wg+899clERH/viPFpKY9qrXFhHtPyM9Fa55V5HuxprRNg3V+HsWSE3KC5KHeLTLegMipZhBDUVY1draiCgmEwyCgDbUTLcq4lY6u9vCIFB+OCXzzc5vb2IJRjuGofS74Iv0YuLlbYpkEGGlYBkK5WTavA7rAAbV9jjGjnCtphCq+o6tZolPetcyi6PaEJbpta/mz6pU8IiHPeqmBq3Mkzr9We7iLyMvxsQ/yP7aRijxzoXtclsyI6AAcgBeL2qxT39ih+9LL1YU6dvVKA1n2Phj0X4gu6wqqx9TXetPfwAnEoK5BoIGLgY4sNCEVau563IM+5pEfBHcWGV1cCSiUZDDS3DocMP3PoE5cohQiBtXJYYJe+VINd1YhM4Y6eIYYzWC7g/ARZZDjn2L455uWjC0b1mc8Y92KGmpY0Z0vMqubkZE1RKCa7A9S4aBmeGhU4Y5GDnB0lfc2w2mBmvuaSyBUy1zQXK57/8DlNbbn5+i7V45fkzsHNm95lUmufoVJrODxEPnlJczJHvXofsbvrJ+LiDLGzxyu/9Xne/7/+EUvrrSM+ps2RCZHUjPNgzCZuMzELZRSkI3hrHYCc/yVazoT0OCQWXvdlH1wyR/0Wv6vAENrb4hPbVC6AeyAvFOUo799ASoQMMXJKQZ4jp2MPdCNROdclM3HOr4km1IqTCqqKhfWAMRfOa2aVIM9kL+g7xgtcxWid87GgsaxGzLDVOzUFcsZ6YaBqoAyFy//CAmqfruZwNLbmpDpGIBjpMVr6teNxjuvRg8PHwrmEXrwexrW/R4ldILhR3uTedIfvF0+TjexyP/puYomSKJmc9rPrzk/LBKTCfOea1gX3x9bWFNvYtNo+uO6cKMClG3xeZIxGAx4c7PKFgztM8iFa6lBAWzLK1iyaFcZaVk2DlprT9SkDPcA4w6yetWUEXt/Z4btHR1TGYJzjqLxgmhfM64qLquLpbMYwyzgcjym15pXtbaQQjLMSi2OoS+8SZQ2VqTmvFjTWhuQBktP1ij958gjrHL9w8yYPz59hxpbb45uszZpM+mulUBwOb/B8/pJZveSNfMJusYPFMa/n7BQ7/Btf+Br/wYfPWKx8ofHO0yMWuOmPb/zXud9cFhKuGn8hvGuzjZliXT+BR6rxdS6lnc7NMl7XNA00FiN9BmKdKcZ53rMiK6F8Ih/h1YyZ1EzzMSpksLTOdv+wGGcw1lCLmkwVOByrpmK+WGNrixEW03iAGrMEtkKkdRhregJlfOe075tM2AaGHl/V0hVil84hraWKY8rPQXP+nRvri3xXjffnGWXRU8Bb5EyyIVnnSw+0t2iBXggFSc51wDjXHE4L3tGSqooFnf3v7Ti3Cd66TMiR3jItQz0zETJEi/7+6DqrjL+nQIQC801QuKeKok1LdPoOqWIqrqNYJiD+LoRgOMwYj3M+d3ebX30wZbfwrou1tRwMcwaZZLb2KfwXtS+ePls1mFzRBHmuVIozV/Pa7oB3XiyDBcwxLRW7Zc6s9oXAn57XFFpyc5Ix0IrbE7/vT0IOglGmGWpNbS21tZyta+/+GhQ0i7rhBy8WVMby9o0RT+dLbgxKdsc5leliGotMsjPKOKsq1o2lyLyb56T0QHFnlPM/+rV7/C9//JLVYtWOtVReERLj3fx49+PYWmVRiE/c5EnWxpjqznsnlmmI1tSUx30csIdQpN50zzEmYING0TSWQa6ZDmIWXN+UFGglybUkD+6t240l197vapM3BozYYx8Xa8NqvoL1kkYGWheiTXASFRVdkp2uDAF4oBY9WrUWwRMvvOeGUtVaP29V42OUGwMDEYp+b4Dcv6h9MkCcc7gXj+FP/hvchx8gbt2CL/8qlCP/+xVaZWyDW5zBcubLCLRcRXbXRLWNc7C1j7x3h9HoJywWDYZuO20tYClAC0Jrirw3NU/9rm0IMV1+luQ4bWIT6D5fdSze0hOba10ARbDGDTLFaJRxeHdKcX/Xp+ofhmLn8znCGPSNMWiNeXJE9fwcoST5u+96C9jFBfXJnOz2PrI4J7u9w76SPP7xMXmmmF3UiOczTNMtvMZYHn94xmCg2Zr6rEyuMuS3t8leuQ11jT09x8zXXrAHmtMFJxcVTW1RWrK3V+JWDU01Rw1z1N27iKLARavr+Tk0Ddntfdja8sBuOPYJPE5PEMUA8dWv8+Y/+QHfengWwK0HaNG6FsFclzwimSfXLXyJzxiH8xmCXBhwEzYa58B08mpPUI/WlDhfMRbS0bm8Qgf+msBEGgdV2ND01gARApVbYlLKW+LA/82yPojrvQzBpbLxLshAczpnbdOag57RFIUKxSU7Dbe6tHH65SMIri8bj/JxDp0uxbsP9mmcust/9/MSEedwvFg95zvH3+HR7Cn3Jrd5e+dtSgZXnu81lIZFM6dxNUM9RgYbvI+dSwBdGOBRNuHB1i2Go5+wXK57/Ka7b6rp67Ji9QBcCvLoBGKpZNBzpZtv3Jxtm7ly01oU73mVZa9VdKXW3GC5K8qc0XjA24e+Dt6N4Q7j3PPz88pb2qbFGCUkj2dHHC1eUKzOee/sQ1+LrV5wvDzj7uSQF+qUG6NdlJD80ZPHFEpxtl63Ame0vKyN4TtPn7E7GnIw9MkEKmO4Nd7hwdYtrLNcVHMuqgV5syaXipfLBUeLBYu6ptCKvcGwjdOb5ENymTPUAypb4ZzjrD7HOsvdySE75TarZkWuchrbcFadsSN3+frNr/D6G9/iz779Y8ArbXSrte4SOvTdJfvxccb0rakxsx3BKmeURbl+ggERNqZ4mUzmzf8e41E6YO9df3xpBozDNrYtkL5VFBS6UzQJIdBSo4W3eGnp+VIuc+RGTGikCetMm83VOsvJ6oLl2ifOioK7c45BlrHSunWpjDSXjlF7749xSzXWtrxTJe8dB8TYkPLdOeorymN8GpsDTtc1758uOZo1lJlgb5glHiLJOITmU65b1iFmqrVaRTe3IExGfpNryb3tnNEgo6pMG8/mabTLWNkBrL7bpHWuLW3QZgYPf2OypM46R9vftO/RghNbtNj53/1IpEotY2JcsUjo3l83GGi2pyVfe3WHL9wccjj0dd0AzquatTEcDkvUSPCT8zlH85p53fD4Ysl2kbNsDGdVzd3xgON1xc1BidtzfOvJHCUFLxcNH8o1xkImg1zSWL71eM7eMOPWNGuT7OyXvq6cEHCx9EXC42/nVc2Lec2q9n2/Pc1ZhJpzo0xzU5eUmfTxXg7m6wZjHYdjX8tuUZlW8bqsDMNc8Sv39vjC527wjW982NGF6rJCxiQiMSFStHSnNLS5R1hj2+LcvmSBaMM20uv6Vll/7y7O0csVSnkra7yuqRqaqvFKapNRVx4lbRWq53aopM8LoQN4zLVkkCty7esMK9nfw4Sgxwudg6cXtQe3oXSJMb40ySBXLIMCo2k6uvZJfvquxdFalwJWSEr0GOu5pATrvNWwbrzFrw4Z4K392RRMnwwQNzun+d/+Byx/9BS9PaTc20NoDcbgrEV4CYNWn+0A0+A++D48+RC++CuInZvhZoEiTINrKkRWgBK+Ltr9V9ia/iEvX67AukvlBbw2KX4TbcyQEKLVIrW/JgJVqjn1k9mBPYnDtZMciCYhHoW/1sdlRUAS+hNutbk55kqyvVVw8+2b5Hf2YDLxq6IsfZKQwQD29nwB7SMP4FaLmtn5CTtKIl7OaE7mLZrJ9saYixXl/T3ubw2pX848iM21z1hpLLPHZ5yd+6QL67Xh+HjNctl4sPr+Gdk3PmI6yRkfjDDL2meWzDVykLOVaFldY7CNoby3h8y1B22vvo6oK5+kY3sHdg/aOC/3zT/Gvfcu4rU3ENs7MBhCUXDnb36OH/yf/5C5NWh82v9oaTOuS1wiRGfdjC26SUZmaeni5CBY0RKZtQXsXI5fjHX6uvnpnhWBXnSljNc0zpvORaYS5YMIMZ495N/9HvIuR0GNWPjbGj9WTYOrZqwfHlM5Sy5FcIPy4KsYZ5RlQzOvia5KrkfPnTAsRIjbEh0dQ2B6UqAlpBXtUxCBc7iq8QlueskdPr1tVs/4j779f+KHL19yOBpxe3QDLX1CkzZGjn4dMIPl2fIxL1cveWPrM0yz7R6Aq22FdYZMZCA1mcy5O7rN7nDIsThv7wOb1pQY7J26VYrOapa0NK4gWtRS61zobSsQOef/dhndaDfij2sp8Iibu9aK6daIX7l/j1e37jAJ4K1QBZWpGOqSg8EemdQ8WxxxtDhnVlWcrlaUOudkdc7Jat4Wbd4dbHG+nnN3epNpMebF8gwBZFKRqQzjLB+dnfBsPkdrxUXlrXOrVYWUgm/zFK1/xP5wyL2tLRZ1jbGWUmsmRcEg8xZV4xyrpqE2hvtb+0gpOavO2Ct3UVahZcY0n7JdbIfzDd87+T4/PnuPV6YPmOZTCpWTy5y//dkv86MffsRitfYaaedaXg+dQHOVi2v8Pd1XIm1189KNf9p0iHWJ99h0SYzZkqN23QahsUlCF5pQa89bEcM+JTpNPASQllgVBRIlNUrooLgyNK7BOBOsc4ZZfcH7pyHpS3BxMtYXhi9Ljc4Udd2E/vfHxGv45SVai+8EMZzBJy4hALoo4EQw561WNmjn/1zS/lS0VWP5Bz94yclszXSYc2+3xLlglbMGa30sl//n90hjHWfLmtN1xcGgoGitVLRlQIz1yReM9SDucFSwOyk4u1gn1hO664LbfnSj6+J1IVOdG2TqrtllCe+sNBDXRnAb1rKd19g6uk5dkD1zSwXqDgx0rp5lqdnfGfAvf26ft/cnbBU+HKTIvLVwnGl2Bzm5ljyfrTmaNawax4+erxhlmlndcLKqgzXOsZV7y9ed8ZDx/YzTdUV0VR1nGiUEPzlb8PSiJleSVWN5eFpxvGzCfjtnmJ1yMNLcmhQsGkNlLLmSDLXi7tSDkNpYVsZiHRwMCrSQzFYNk9K7aOYaH5MX3Awb61hUhienKw63SyalRklBIQT/7i/f5Zt/9pjVYuVj3oz1MWDWtRkro4vyJn9RWl3KJHlVZtioNErl4sjz4v7ilTXpvhYyuYsuAYoxBlPXrXGmrmpqY72nUKSHcA9jnS+uHcCXFD72U8t+QftIE2lbVoaPXsy8m6nK2vdvjGVU6NAfDyCjEiN52zYGMH0X/96eHtuMnSpYoq3DSU/D6T5QB3re5Nt/XvtEgLjV02O+8Z9/n3Gh+dznbiPe/rKvA+esR+BZTgvO4igJCYsZ7gff9a6Bv/GvIgYTcBb38gnux9/xgu8bX0JsHYDScP818ptb5A9nrNYhSyUgnR/MdOBja/22kzGNtBAzUPbcJIVnJpuT4Cemc3HpI/iPF5TiLxFXKCHY2S44/OItshtbbcILmsaDt8HAg4GigIsL3PFJK/wrBc9/eMRg4DNNDW9MwDrk1gSZa8xshZqUZHtj37+iwM4WHuCNfID/urKtX29jJHnmM/+ALz+wXDbkuWI8zlChRofTEjnIEZnPkGlXNfXLC5pzRTkocRdniL0b/kXryg9SXfvP67UvBr6Ywc07/u96iXjrczzY+TbffTGjEQ7hBCos6waBDJYx6fxi7wk+yTw61yUeidbZaHXztNHNjRKXF38H7Hys3KYbpcPXXdMCykA4tXMsFnVbyiHe1M0XrB8ekx9uIW9kHpidnSOaxgP06GZZB/fTGAtXraFawbvf5ejxBc75Z8nwrLqxyFyR5xI3c70NOG3WecOmc12Gz+hO2QaXW4cVvhtEJh+Dk4XrBDvrfPqtn4P29PyEv/cH32I0HvCLX7nLm9tvkskMNlwm0+br+ix45+zHrMyKL+9/jYEaYpzlrDrm4fwjSlVye3SXsZgiheLW6BaHoxEf5rrNUnmVVSwK4JH5b1olIq33NmBH75y+26QIMm/8S3tOyq/6oB9SvhX7IaVge2fCrz14hRvDHTKlgyDvGAnJQA8YMCCTGRf1BcfLMwC0lCgh+PbzJ0yLEgncGI0QQrI32CJXmkW9YpQN2ComOCxDPeC8mnFRLXxSFGAV/FlMsLSM8ow6bOrHqxXzumaUZewNh0wKb0m11pCpLFiXNMtmzdHijEIptvIx59U528U2Qy1pbIMUkoVZUJmaeb0M7qArDgYHzOo5ta35/N5nuf/gD/n+Dz7wvMUYXBSMjMG5mLyjb3W4CmCnsSfp+G9e17m09mmhBeOh6PUmXdnglk6mQAoaa1mvKuZV1ZYMMM4yq+e8d/qIO+Mb3BkfUtuao8UxO2XNwWCfTGqUkC2Ic8G1srY1ja15/+InPDw6DrEmsSC589nepCTPMxbzVQ/Upm7AXfkL2dasiqsNumyu0RVNir4rZbxfdG/9eXCoPJ1V/LM/fcTu7oAHByMORp1CojYugLLglmYdQnmA0TjL0XJNbS33JkMfCw0sasPZusY6x06ZM8w8CNwvS/bGBQ8z1avp5mnbtZa4KJTKYBWJYFkIn4ACukRIaRIk6PYks6H863sCuFYgToXlTbAR10AUiL1ySXKwO+S3Pr/P69sjRpluywtpJVHSoZWk0JL5uuF0XVFowTCTWOf400czdoZeZL6z5Uv57BQ5a2OZ1w2TXLNX+uNaCubBnXKr8Ncsa29pqa1j2EhKLdsacMfLhtOlYVoqpqVinOnWWqmEQOdeeV8Zy1lVc17VFEpyvqwZlzpRNMOiMlTGsVg3VNayrAw7o5yLlVeQfP7GFm9+5gbf/tMPPV00pvXWaPmMrzbQzmWf9wtU5sGcNbYXh93P4O7aeYi8Cfpu+x5gy9btMtKBVwxYmroJQrYHik3dMJtXnK8MdcIbLlYNf/r8hC/tbzMdaGrjeH7uk8vc3inJkwQjPToJf5+drXj/oVeekuUgCMmWfAKZPFdcXHSyU5eIp3MhjrGYEdCBt8ylY2eMQwZrXWO8ckIrCTZml3XtOvlp2ycCxC2M5bhpeHBrjPr6L8L+bdqCxomQ25YfAA/KigKOj3FHR95C8/bXcR/8APeN34PTU8Qbb8AbX/LnS4W4/QbFgxsMv/+cqrY9i1jkEZsTHZlVPBzPb0xSp6bnX+4wjesSCLqOKNP9eVO7Dr5UQPe7F6ijdU7gt6rpNOfWl++gD7Y8eFssYDyG0QgxnXpiH41xJy9htUJohRwWDEPdtWFlUOPCH8812b0biFdfxT1/jspOaY4v2kXZnJ5Qv/DfZakZjXLKsyXrtXep2N4qEAKWK0OmBVmuyIe5j42SArtu0FsD1KSken5ONi6RhUYWGraHqN0tODxE3L7nrW+DMWIwwa2XiCBgue9/F+Zz3Grlgd5029e129rlwdfv8e4//CHroNGJli4PJQS4YCGJFogITIiuHJ21DOFQqXZxg0bjzLR0Qvd3E+C75Hzjut91uNg6x3ptseumS95jDKv3j3j3O0cc3jzn4G9uYU/POf3WR4xubVFsb3sgB16BEW/a1P7fxQnuW3/Kw+NlWxA9Pq+pvfYgH2QI4RPSCMlGHBN0mQvTTfAy42utyVr6shXxAv9yfs1o9fOh6gZW65rTizl37t3g64dfYqfYDb+0ErL/E2lLeGifyYzHF895eP6MXOa8vvUGH80+5JtH3+G8mvG53Te4M7oHgEJyY3DIa9u3+PbwGXXd1YuDFCTJ/py0fKkP0Dqe08UX9H/v7nFVXaCr3Ckvu595Sm95pBRMt8b8xoNXuTU+wGGZV0sm+YhxPmKSTVAByJ2uT6lMRaYytsohpdZB8DTslCNypdFSc3dyk9e3XuPZ4jmn6zNeLE/apz+eHfFieRY0rooHWzscL+fMq4pV03BrMkEC85D9cpRlTIqCRV37orxNxTgfMC4nPJ8fszvYolA5pc7ZKSfsldvcGO5zY3CDcTahUAW5KqnNmhvlIRbLD05+SOVqVmbFOJtQqgG1rRjpEb/x+qu8/5MnrKo6CJMeaNio0QMgFpPtWzRjS2NG0uPptripdOzOcS1IjL9J/8jwe7d/ueCm792EDFVVs2yaFoBbZ/nxyUf8waOH3Jmc8K++sc3L5Sl/9OQdDkdjfu3OmHE2RslYqTlSiC/HMatnfPP5d3n27IRVVbXAIgpqUghGWca5FNR1dKHs3sO/Qwd6I7OPxYbTNaCEaJMG6GChbl0phbeKaiF+DiAcVOua+WzFvXtbvLJTUGjBqvZvliY2qY1r9yWtvMLkxbzhxdyP/V5ZcFZVPLxYsagtdyY5exQtIJkONPe2c36YK9ZrryiJyuuYhdsX9e7i5aI1pHOl7LYtIYJCMIlzg76VI7XiRDAWi4bHlj7fK8k776noqheP7WyX/K239/ns7hiB4LyqmeYZ40IzKb0orKRgvm5ojKNQir2hZloqJIJVY9kufSkBLQT3JkNu75ScLWrma8WLxZpGea+qWd0wq2svYwjB/emAed1wXjUsK8vhJCPXkou1odSSMhMMtQqF231s3jjTjDLN0XLNXpYzUJpMWoZaM8o149L3O48WUOHneVxqjHV8dOzHrwruetOBxlpHmTl+64s3+dEPnlGtq767pC+9h8HHPiKgSeKCtFZIKdt6c61rsxekkr2kW5PRih6ta1ER41wX8+jvHa2uAoKSxoM46+VaKTCNYbGoma1Na31bN5Y/eHzM//0PHvGLb674n/6VV3h+tuLvv/Ocz98ccjA5pNDyioRHAZAZyx8+OeHZkxOaxcLH91sfJ1xV3uV4kMdSLa53fUw65YGbf5e69i6lWdaNa1RYpbQbXTxjptEe7/8ZmNMnAsThYCgVe2/dhLe/GqwNSeIGCMkSwj9ffRtG27imYfGDJ5TL30Z9849pHh9RPTmluLeLvvdqFy/nHGK8Da+8wmTyQy5mNdFk7x/jWm82IfDJUJL8DDHYN8qscVK6IN7EDUmGrrrOba2dmw1tdn8D7ia8TZObDJPWkrtfuoW+cwCrFc3xDL038cJ9lnkNQjmAizN48cJbs4RAZIps6BMEyEHmLWJCeGvOIMT1BJCggeboDLU1ILtzQHZzB6zFnM9xdfCFfzljubJczGoyLclyyXJpWC4N2dIz+OXSZzpbrV6yvZ2zczBi/fCY4Vu3kIc3YH8fkWV+QJYLmOwhtvdBaV8wenmBe/kUDg6wJ2eoLIPlAnF4H1dX0FRkX3qLw3/yHh+u18QtKiZ+EYl7m0j+umAfi0AubRZfLDzOkwFESBsf3UDiXKbzKIULGj3RKwkBHsRVznHe+MiQUgoMeCE9ZBCNO5Ac5IxGGYNRBkrhqsbXHqkaT/91jdOhh1JAHRL+1DUcPWP2pz/hZd1w3nh3ykL4eLy68YlH1LigLJfM6i4RQu/9k1i5+J4er4XSCxsCIqGosQjuMs56N8qY8Uz8fHhT4pxjWBZ89fYt3tz6jJ9nZ0G48DeOpfOxAYEWBnrIytR87+gZF9U/5sbwT3k0e8nT2Yw3dve5NTqkUANv0cRRqiH3prfYGv6Ai/N5Lw4otZrElPP+h6A4Mn0Xs1ZINpfji9J5N+ayhWdTsOpc+Pr3jufH87JM82uvPuDB1i0W9Yrj1RmHo32G2YBc5mRSk6ucWT3nxeolxlkKlZNJxWS4jRKSYVaSh1grLTWjbIR1LpQW8EqMF8sTRtmQB1u3uDe9iXWOi2ruE48gqM0ZZ+s1x6sVpdYUSnG+Xrf/ams5W/nA/sV8xdZ0xCvb25ytn/P2/j1ujQ7ZK3eRQmGdYdEsOBjcYKC8ZTATGbWruajO2R/s8d7ph8FVdM12sYN1lsY2/OLhF/gH+9/l0ZMXvXm01mKFj80SQWi7CohtHtusHXiV+2zquhHLRcTMlc51gjV4Id9ax7qqg0LJ29GttdR1w9qYzuXNCbaLCdtlyc5ggBaKxsYYHg8C12bt4+Q0vuwG0LgGLMzMjD94/BOOT8+xixoyhdMxcYG3EA6zjCzPqKpY76qf6EWIWFg4FEN30dWyA7vWWqTypS7q4H6WSW9JiUo+JSWN/TlhTkBe5NzZHbE7zJhVxpfCCe6Kju5zYxy5l4UplGJVWz48WXGxNuwMl7yY+WLUd7cLxlnWJoWwzrtU3poUjMqM2aLqKaaNcWgdXRxtUsg5/G47EB5bnPfIm+ratIqgjtdd5kNRpuqXKfD39O6cXohOwZu1Pib8X3r7gC/sT1kZw8l67V1JtfQyTACH87XhYunT0RdKMtCKXa0Cb1K+hAUemI5LTaEl05At0VrHy9WaSZ5xezLAuRIhBKvatMlQzivvnpmCt4u14WINhTYYC6fLBuvgdFmzN8p4fa/kYt3w9t6Ug1HBqPAZIOvGsqgMRaba/A2Zoi0SvlVmPJ+v0EpSNZZhrnAKtHL8+t1d/m+HWzx5eNxTFsY9QqEwzs9JWmuySTTUnYeG52lKd2658W+aVCaNSwx36CVQSWVpKT2Aa6oGVnN/gs0wjaGqDOuQECTed2eQsT0p2B1olPA11xa1ZdH45DS1MQxz7zYLHiNZ5xAOzpYN/+SHx5wfn8N6DlmBzfIA5Px4jMuMstRcXKxxztNaVzbBtfQXlRgxmYtox6rbK411GBzOCTSeN0VvtkyLNjPsT9s+GSBOeOFWTcpO/ZY2LyFetsrVa1xtmJ0suTj+CK0f0jSOyXaJevM1xGe+7C128fy8RLz2WUa3fp/ieEVVWZrGhYwz/c1TJQwiTf7QmDQNdLp5ON9Fopk4pgztu1p2YC4IzKoLEPb3k6T+4XEDk1Kwu1uSv3oLrKU5nqHGhU9mEoFY0/g09E0wQQ+HuNMzX+tAO/T20CccMcEM7hxiPsc9ewZZhtg/wA0G6PIJ9uUJXMxCuYLG30MI9NYQ1ximQlAWJkkZC4NSkQ8y6nVDpiVPni54WdU8erxm+nzB/ZsjxA+fMvxiDkWBm0597GNewMkzyHLE7iFuceET3Tx9CFWFPNiDovQ17tZLxHCKazLE136VW4e/w5MPqzZzpOcxQUghLFQi2XRLI0sWVxxnJTohx+I1ud6S6he7oItHSWmgLT8QPgO9LJYr61iFhZkHLXHjfGzh2IQYDq0p7u3zyt4YWeagFOrGLrtfwBdNz3MP1uJasM7TtPExce7hh3z0/hkXxjNanXAB53dy1GTAoNTM53VPQOwtM3f5WCysGTWhXTKJcIGxYAKYC5UPHdZb434OmhCQaUUeXDqita0FbuH/yf6GdZbKrKlNzcvZnBcXc5R6TNMYDrenfHb3AQ/Gr6KEwjkLQpHLnAeT+9waT3ien1NVdXi+aK0mEAV4EdKzqzZcJAaXbwr/qcCfZtjtNITRq6B7Z6W6Qr6dIOV6/UlBoZSS7Z0Jb+7cpzINL5anbBcTRpmvoeZw1CGmoLK+VudQDzhfz3xclLVMSp+MpLa+aLQQ3iX1xeoFuczZH+wx1ANylXG8OmNWeZfGVbNu3ZIm+ZBq6MsMzKqK2hhy7WNTBplPm79qGoZZxnvPXnByfM6zZyc8HB7xyr2bOPch2c2MTGom+QSBIFPe9VMJTamG1K7hrDrh5eoFta25Odojl3mbkTGXBUpovrD7BQ5u/DbPn5/QBDelLp16Nye2B5aD1WLjezqvnZDk2vmM8yyV7EpMJFYPf23n8mOd70fTNNRNA1XgKUEjbI1lXlU0wftFCMGdyU1+89Uxo2yAlhmHowO+fsuxU04pVUllK4xrWvpvbIOxBiR8cPEhP3n8nPly7TVb6rKb5CjPKQrvUtnReZ+ON/lWB2w7kGsiPeNDJWprvRXIhIx/1vqMwz8Ppjh8uZpxqUN5hf5v0Y0yAimHF3AFvgzByWzNyWxNkSlWtWF/WnJnK2OnyJOwCUemJHdGA25slZzM1jSNDUWPo3WlL7rF78a5NvmOcaZVWETrRay/BZEOOoWTd7Nz7f381Is2XbvW3iIEtBY653yx8SZJ4JVlksO9EV+5OcXiOFqu2S4ypnnGINT8ikr66MUwLDTnVdMmOZvmWbvnG+czYa9rw+miRknB9jBDK0Exk1ysG+rGx5oumoZMSjIpmeaZp0VqpqWiitkThWW7VAwzxaI2lFrwg+dLnpwseffJOT94nPP5u1NWzSlfu7ndptSXUlBoSR1i6GQAL855l0pjvUtsHqxQDg/gpRK8dmPEK3emPH96hnSdG2UK5lKLWeuqbEynXIyW8hjjFrJb+vIQslUupoA7tUZFsOZcjHft9igA04R4uHodnteBwfnKJ3HRUjAsFF882OLWXy3beMb9ScF/9zP73BiXFFpysfIxiBHEQVQuwOPjJd//8Uvcck70AEwVCeDpoSw1s1mVALMuuc5VLqepnBitkyn/11K1dNdY2yYZqn+GeDj4hIA45+CsMRx94wNuvv4PEX/lb0IxDGZU6TPvxWBl56CpcM8+gD/7A5rTBUL4eCzTOKZbOfntbcQXvoKY7vUlbmsR9z9DcW+P8t2XNHXVagI6n+4Ni1jjkInb2WaNrHgc/OIwwR0gzkN8fCo0xb/xuNwAjM71K9vHhbV7Z+pdJ5dLb1Ercn/RcgnjMW69gvOz1gLHixfUJ3MfsLpYg5JUT0+9tcQ5ZJEhyhlqdO5dJoVA7O7h9veRWQbn5whjcFVDM1t5y5GSvpB4ZbDWsVp5JlqWyjNSrciVZPZszv5+SfXMshKWhbE8f75ga9vH2cl9POgcT+DGbVAad3GCM7UHJjqHwRBx5x7u0Ue4k2PE7j48f4Q7VF47M79gONQBtHUJRqIGEmLMY+eWGgVtg89iieuyk7bCEQ7rBE50bpngk9QofAkCE+ZVAlb42DnjkjpZwSpXOw/g1s61GTQNPlbNGJ/oRUQiyTLkkC4bZVmi7tz0ltbo62iDa4ELcZCxttLjx7xc1pwbS+1cW8rAhaBxV1vUMKcY6EvCYKot8gKeJ0wh6PlntwzJuoBVBcIE22Nw120BHLLNUPppb87BxWzBP//wQz63//v88s1fplRlyMgnA4DzUA7AYjleP+f7Jz/geLnEOZjPfI2l0XjAncmEz+++zVCPEaFQuAchksPBLe5P9/lBeUTTdC6Vnjf4/qTKoLipehfOzhJzFX+KAkr3Xq53bqegCEAiSb7hv8ukOKwHcvE4wGf29hhnI1ZyzTgbkAUF2tqsGWcjKltxUV9gbIMSiqPlS87WF1gcs2qOkpJn8xNKpZFSkUlFoXK2igkAWiqm+ZQbgwNKVTBvFmTKJ9J4uTxjbSokgvP1mnld01jLvK65qCqmRdEWgS615vHFBQc7E6qqZrWqqNY1T54fczgec17NOBwdUNuanWKHnXwXLTWLZk5tKwSCXOaM9Ig7o9s8XTzjrDpnnI9pVi/YLfZoXMPKLNkuyw0w1o8tTOfEe4bQjq+UEukulwNoLRKRH9Alu7lUIzACvEQRCSEpk/UaalsZb9WXnrHFOLXKGBrbBEWYjxec5KMQDwoDXXJvcptC5ciQEj6ltZiV0ljDh+ePOTmZwarxYLFxSWY6H8M1ynMGWcZpu19etRY9B4/af53pSzTuFbIeRayNBw46psUPQZ+pUuLT3mYXa955cs7hJGdaqs4bRcA61LqKQK5uLLNVw9PFkkXtBcfzRcXpvGJ7lLNVavYHBWWW1AzDJ9bYHmTc2Sp4/7kKWQhjhtx+luMIvpumU/BK2XmzQF9Ijha4qEiPZU/6QnGfT0VvhDQGK8bKxcQoUorW1fKt2z6JibGOoVZtNsqqsQwLH0PlXfT8Q4/mK06rCusc58EyfLKqKLRCCUGhJFpIpuusrVU2zBVm6K1y83WDsN4KfLr2SmYlYvZLGyxuPvnPVunLFniXYsXD04pb05zFuvEFqNcN7x0tuDne4rxqmJoMIRzjUjEqdCfeJsq2Sen3+YtlzbIyFNpb40aFanME7IwLD7qazl0y1oGLcySECPFaQZkTXBqVVj0vj971kmCYiHMc6swGl8qmsW36/csKQj+ndW2pVpWX82L5pLDm69r4DKuh3AzAIFds27x1LZ2Umlf3RuF7TNjT8dcI4CyO7x2f8fLoHFazLmSrGLbnV7Vhe5h7i2ditNmM4YuALsrtXpnQvWssT0CIda5ispNwD4zFJ4Ppe8v8Re0TAeKk8C5nP340Y/T3/xljpRC/8jdwWY5oai/Qp6u6WeOevId78gSkYDgpWK8ty6AFFNrHhfkvYYTxvpFi9xDu3mU4fI/lqkEETU+c1OhbDB6URaaRZmyDTpOaZhEzjfXXhP3QiT4wBLHxt+tiNIfH1iaSaBcUDN6+7380xset1TViufRCv5ReoD8/97GCUmIuFqhRgcwUzcUK1xhWp0uEFD5OChiMc7LdEa42lOUTXJQUz8/9PcdjVFGgJgOqo3Mu3nuBEDC+vcXs8RmNsdSVRWfepVKICpkphkNv8Xnz1SnPni9ZLBrG44zTkxX66RnlwRzx6hsexAnhF6k1cHECk50ugYc1MB4jBr4gOLMLuHHHJ/VYLqiqJB5xQ0CKv5hE8GnPDWAqpqIWAZh5na6I8gwyWjcI7pUArouti3Pj07nT+w4Eq1tXIsLyMQs0VWMa478L0ZUc8LtYB+aco62fWFvM2ZKVtV2gthDtuyglQQlkmSGLLLgq+Li4dBNslwodPfa1ScnYhk2pVTSEE51zCANID1B/HpoUgtoYHj884j8b/xGFKvjK/lfQWmOdwQU2Gufc2IaXqxc8nR/5WmWDgrqqWa9rZNDKFsq7N7fbl/MTN86m3JveZFy+x2q5bpl8anHpsrht1hnrZxRrYxZcZ22Lx9PrP86le3ODjtfEe0RFU7zuyzdf9311XX2vi2rB/qBACoWxDfN6TqkKnxykXjHOR0yF4Hw9o7GG09WKXCmqABa3yzJY52qGWUnz/+XuT4NtWa78PuyXmTXt8Qz33PmNeA94mNEjhxZJiS1SNAdLtiXSskIRUoQU/qKwPzgcITn8weEIy5btsD8o7JClkCVZMwfT4tRsimQ32UB3Y26ggQYe8PDmO98z77GmTH9YmVVZ+1xMHd1NAPnivnPO3rVrV2VmZa7/Wv/1Xz5Kt6hX5CZjns0ZJyOm2Zgnq1NeP3mIc46X9w557/KM8+2W9bYiNZqqlbo/mTFcG495slrxsRfu8O7ZOavlhtl8woPFgkmacnN8jY9f+yiFERBmPEjZtBsmvmREJ9iSjBmnY1rbsmpXHOSH3qMqcuWhxXvBMLfi2WPg4odvp4WoXq+7FAyq3XOpwXjHdQHBX0fr8PwiMZR21iehUwZauTgttJLfgyNjcG3hPycCJwBnWx9Z7rxfvYJhAKm5MRRJgtZSoDlc/7MEx+J7C+vUbt0w5xymq2/lvJowQl1XPxk5cSioyor3713wW0XKR+/OOBpLfmnZWiZpoNHSgbFtbdk0LfuFYTPLaVpL6ySiZLTqGQe+f0VMVFGkhrt7KeM8YVs1nT0UDPaYDhnEKqCPqMYMhtb5fLlEd4WSdx3cYa7G4iVhv4odULHqYQCUSdLXRHUO/tgLEsEqWxl7odu1jDJDouXvAHayRAREZmkCKSzqhrK1PFnVjFKhPDon9eBCbbfUaI7mOa0/T5Zo8tRQVC3TLOF8W/PtsyV163hxr+CdcwHRq6olNxKNM6ohTzT7I8PTVcPPvjDnzZMtF+uaw2nGyaphv9hyUKS8OBt3ACX0R4iwSl/1Y5YlQtnbVC2T3ICDpnWDWoHyIQbjPijrsQPAO+diGI9oPZM5sQNQAK1DgOLqmhZH6sLyY60VO89ZUGl3HcZoYQehujJJAaSFyFYA1qnpc8hj+x3wwBlO1g21Z71I7p0B7yhIfMRzmhuKzHgAZ7t5Fyuqxn0lucX2md8b90nop+AsaVrXRU1/0PYjAeIKo/nI0YS2dZydlaS/+RWK2Rx++p+C3G+CAa07C0kmJQVu3yY7PRVVxfMttpXIUPXwnOQzv4LdO0Lfenm4EaYF6vmXGB18AU63XZQtNLczkcNrzoJOhp6m8F7wIhkf5neRVyEsTv7o7vXdgRWAHoptXv2eNFFw4MENYOsWU+S4skSVJTx4IDlu67WAusUCZTR6fw57e6SLBe3xGcWsoN1WND5YpxNDe7lFj1Lq0yVJ06L293BlRbssUdkSM8qoT5a0lxvyUcLxkzXrzSnXnttjNK2ptjXrdcNiWXG5qDg8yGkaJ1EypXj+w0csHy0oCoPOU9ZPFmTHp5j1Eu6+2LsxQhHragurhYC267dR+9ckby6AVZPKMXnBwaeew7552tdRCv3pf+pu7ghtacCxD/9Uf2zv1epHMuTPBaDXImqTzkkUDn8M9OqUQUSluwYgUf3vodB41+LSArIKyv0Gamw8WQK1OAr32kp49IkSADfWikwr+U5FbzyFxcNKtC6eh8GwlLmsvX6K64Cu/6qBI2NXjUpcjhpqi0qHxt2Pa8uLjNc++AJN0/B0seSzD77GPJvz0YOPYkgIdMjQtDLMsz3uTm/ydC1A4jIxuG1FuS157+KCzz76PLPn5xzm17v8IXCkOuPO5DbXRiNOL5YdZfFZDp5nvRfaIOqvexDSv9fnnATwF9fnipkC8fl2vyP8zLKU/XwuNcTQtE4UCGtbs6rXLOolqRaFyWyUsaiW5CZjv5gxS2esR2uerE+5Ph5Ttm0nA58Zw7JaMU4LTjcX1G3NXj6XumzlglSnjJKc080Fy3rDLMt4+/yci/IhH7t+g8PRiPPtlvPtlrP1huPFiucO9tg2DfM8p3WOn3vuLu9eXDBJU4nSLZc8NztlvbfmqLjuI/MhR1ljXcuqXlHZisP8gL1szrbdkmhZ7xKVsGwXJCrhD995gc//1reugKe4T3cBXGzMxkI2MRDf/ds51dFx4uhsXEcuAL8wZ5yLjDiFeGX8fhirGgqzYWd9dU5WOOc66qv2z0CXUhCcGq6lsRJVDucnFWVjUeiMjaxQp8oO1pbhfFODfgqfDXnt/dx1g/XLBote6ysOvx/XlmUpz71wjTTVrMuGhxclqVYkRnV5f31fiGFbpJpb4xEnk5pF2XJiNFpJ7tbFpuHdxYoi0czztJ97TnLEro8K9icZp4vtjhpqn6cbANyuM0F5Z0DsJEhNLwgRU+3iCF1Yh/ramMFxLs9AUNQN1M5wfKBiFkXCzUkhrJJaaqdlRtM4UW5cly2JUWxrS5FqNmVLkRgmidBUt3XL6abi1rSlcY6LTSMpC1pzWdVM0oQn6y0OKFKJeF1sBZyNMsP5tuZkWzJKNY8WW843DR+/OeXaOOXpquZk3XCyrrkHvHSQs6ws+yND1Vr+yAsz3jsvmReGSap5sKi4Pqq5UYv0vXXCEAqgzTqRyweYFgnjzFC3lsY6xpnxwi0tear5068d8g9//a1O+Cq0bl2KwLPS6krgOl67nBMqd3htGBXtHVc9wO4dUSGdqYkiU1eaP4lSvWCNQz7fAzd5v2wsedI7b4yPAj/r1CKM4j0c2oDSkGQS4Y+v2zsdnHOdcElIOQjPgOynQiUNUz9+RoI9H1KskmQo0tOptbY/3ML0owHibu7z6v/qL+GePoFHj+RmtxtU4MJC6CXvYshQz38YfsHhVivM4wsSo0hS4f5ePl1hvvRN8ukv4f7MX0Tt34hingqe/wDZrX3y9y/Zlg026rQOIXsjN4A8vRP+lcENNAFovUeqowl0+4XqVJmGG9JQrUl33/vsSM1o5EVIPH3OHO6J0EXVYB8+FSEWrwioOQWl0NOx1Ivz9DyzXkvNPKWY3hKKkhn5MgB+0WzXFUm27qhw7arENVYA4SjDtZYbz++xOd9wcu+C2TQlnxfkM5ivSxbLmqq2zPfFg62LBDPK2Hv5Gu1yS3o0J91WNOdr9PkZ6uIUZntw9lQ6f7vBff4zuHfeRd24jvrAq7B/KADVOjl2s4AH78PBNfQnP87+3/wGx43PH/LgybjhmqMVKCf0BufzZ3qFyb4Mgdr5DNBF3Z61vAy82ruLXHceRaqC97oHkNY5XB05KXo01c/1MG9jgZ/dL7IW19o+gqz6hUNO7TfGqhE/yM6CHSLDceTNOYdt5bW2M/z6u9qNHHehOedk7kQG1o97uz074H/7z/wlnqyPebB8SqoNja1pbEMepf2Fu9VKc2N0m5++/jMs6hUPlhdorckyiTI8vFjw2fuvM00n/Mm7v8gknXeiO0Yl3Bnf4cZkwlvJKW3ZRyR2KWMwzFlTym+0arjBdgCN4foTt6ue1+H7Mec/ps2FlheZ5L45odFdHx+wbUo2Tcmy2pBq04Gck80ZqUmY51MO8wMyI6InVVtzurlAqZrr4z2cs0zSscj6a02iDZumJNFrQOiV26b045AxTUc4Z/n4jRs8Wa34nadPuD6Wwt/XRiMux2NONhu2TcOt6RTrHEWSkGnDhw6vsaorbk0OOBpvOC8XnJcXHOYLRsmYy+YCjaayFb998g7vXN7j9uQ6L81fZJJM0ErKD4yTMZt2w+PNEw7zA3725ic53PtNnp5eDPpVxlMN+jceMxONXX+MvnJsHIUN4xqe3zBWamc9iF93znm1D0Vs5QQjuQ40Kr+uhsiadb3ao/y9E3FUdPMtRF6GE+rq/VVt60tDDOdZcITG9xsM+KCgN7xPeQh2DaQQUcRaYcn8BMTi9qYpf+Zn77CtLZX34tcRqyj4+lpvQGulOJxk1K3j8WbLe2dVZ+QarThblXz7iWGcGF41M4o0GMPy78Y453CS8iBLKOt2YHgHgz04h4IBG+ylxkdAEy15XGGdiumY8c94T9rVCAgUvNgJEESawjHh+yej1INFea5ujAo2bcu2sazrLYlWGCV1xBYbuZ69PO2KRYcacksv9rO3N8IokfwPz5tRilXV4JzpCphfVLVPM1WMkwQHfPTGhON1xVcfLbg2Trk2TtgfGVaV5XzTUraOF/eFpdH4B+HF/ZxV3XJ7MuKgyFjWNU1rO9XJ0gv4VI3lbFXxeLnl+qTg1l7OKDPdvM88pXJVNuyPU37m9gGH12Y8fXQu/Sld2o3ZgLFho3pwumdxhBbeCyArUG0FtF1ldCgVIrjyMzBNYppid/4kF3Cl+uhqayXy6Oht7dY6aGxXPDvMfbtzXLiURCuqVmoq7rbgQAtzq2pdVxswZt/FTvAOO+yAMClg3j8L8XzeDda0HnT+MKbTjwSIU5M56o/8qS4Koy5PBRWPJn5H8qqU0EchshHqhY+gPvopkm9/h/H0ktnNGXqUYTcV7brCfevbuNu/CX/4T6PycY/mrz9HcuOAJL0HZd+RIZTb4tGyA3AC0FVv6AId9SAMZEgdaj2VDNsj7y4q5AfHCM9tMKmCsRwM5Xgx6iglwbCfzWBvD05PsScLmnNR7wnFo822wcwL1N27qL09mMxx772N3VbYbY1KDOm12QAM2NpTURW0Fysp1F0koBWuakj2x2A0tqxpF1vG18YU24a2ElUzPUrJbsxJL9YsH12S7o9RqcFua/Q4RxkRrjF3bgogWy57Cuh4LmUDTo9xx49htULduA5pirs8R832YLuVjX+zhpMnUlsuSVA3bvOhF2acvnXWiYnI7tALmgRQI1GpPlSt+6NR9DZMAGzeHu4AHvSO5FjkJChS7i4FgcISPCxB5RF/zu5BjRe4EIGT1a0HdDHI09HvSnXR2SbMNW+wxA6JZlNhzlYSsQsLpVYoC1bFeTnBKBPQa1vnacXyfvC4hRYvirTCI3aNSLz+pAibjJMxn7r2U7hrosC3blYYZchM1h0jG06ISmgSlXJrdJfX9j/I159+h4PpiMnBHvM8Z1WLfPs3Tt7kzuQ2Hz/8FLkpunPt54fcmV4nSR7Q1EPKpHwXBPpScCR1m0REtQwtbEhAl/8Q1x3bjfDsArh+3QtPxNAREM5vlKZxLYf5AbNsyun2jLPtgstyKZ78JMMoTZkWHBRzbkyOmGUzJumEx+vHlG1F61pGSc7N8SG1bbtnN4iiGGVYVCtGSU6iE0xqKNuKaTbGaM2mKbncLLkxmTDPczZ1TescuUl49eCAm5M13z59yuFoglGabVMyzSYYrdnPFc/Pb2OUYd1sJPHctZ1ox6K65Hh7zLpZc2d6g1SnLOslIzOiakWsZVtuce6UtaeN3hhf50Ov3OXkfOGjS8G4sVeeuSSq/bfb//FxMW22Nw6ujl2/rw2jgD2AiyNx3gHwPdQvgS4iKYBO6sB1BcCV6urKOb575Da+yPA9y6ri1APs/rtj9cndFINYwVnjVACyw/5wzuH8H60Lgh52kJ/149wKo/nAoZQCkLIZQtHLkrCO95GvYPRmiebaNOPWomBebBjnCYfTnCxR1K1j21jevyiZZym3JoWnpElfjjLDzVnKN7WKRJK83RSLXtADsZAPF3pcKYnAhWivVr0oSdv2ioASoRnmXcVUvKDI239XH6kJkVlACmAj2+beKGU2Sjhf1bxxumBVCy00N1pEb4B5nrI3FuCXJhLhrFsRyBklhtuTkVyrn0+VlUiXUpLzNkkSMq0hkbk2L1IUinXTsKobbk5yxqlmXcs8HKcJtycJq2nDw6X0u1aKRV17URQRVrk1Kxhlho2XvQexQ6tWom+Xm5qythyOcrkuL11fNmI3ritLax2VV7U8mGR88rUjfuXJhYiSeAd3bPh00TVPf0Z5h7+PzO2uQwJOAh0z/B7WHN3Z2QHEhLEWBkE/X7qyXSaBRmqmok23nlkn609YUqxz3RgEu7z20fwgbneledxaNVJOAO98QvewyFrHqmw4W1ZU3uEeU7h7tehh+YBY8E/KYHiGk+kpx8FRFhgEIUL3wzq/fyRAXOChKm0gH4lRH5IZQbz71qKsr6uVBoSewfW76MmI7PY+2c99AvXJn4UnD3H334eq6oshB6EUa6XUwO3bFPk3WFz2+XDyVUPwBKq7jPB+rFw58HZ70Nc0Q7rl7n4RwFvcZDETO/hZrWnFg6j2D8KOhvMRtlBEu11usZVI1yfP3xSw99IHxcj/9jepHl3gWktdteStRY9SbNWi8wRbN7TrUiJu4xyTJbSbCmUUKk9wraU5X6GMJpmPQCvyG3uCNdZVd53p9RnjTU27qaS2mVJSG25PIn+Mx6jnXoTLM1GcVAqaGnX7JdzhTdSt5+Dhe1L3bzyVsSsFwLnTY398gxpPfG25MfNXrpO+fT4AUW3wcgfc48crpteEtcoSgFxPm6R7TY5LPGjTEXj7fs+aVgEcyllC3bZEKSZas3dQiPJkng8jbwG0JYlQSkMenDzpUZhXdZ9RRkdUzWGwzlrHZtOgnlxS1/2muDvnYfhV/T2qIS3JZ2kb1S++oSkbFnC6EgQ/7i3k/jjnGCcTxsmkM4Cl7yxOiTRJD3OEVnlYXOOgmPPCvOGP3P0YHz/8GCfbUx6tH1FbMSAa15D5cdTAyIy5Pb3OJM9YrzadZxuIvJT4DQ9i6f+wsYYWb67hPG5nboTaW70BNtyYnV/XwroYDKs4Hy5QOw+LA7TStLYl1SnOWVKTYpTmolxLIem24qX5XSbplDuTuzjneLd5l8erEwCW1QaAaTai9lG2i3IhVEyTkmjDKC3YNlJaJDcZzjmO1+ek2nB9PKd1lhfmtwBYVRsRjtGa6+MDLqsN67rk7uwI5xyZSTgo5iilKEzB87PnWNUrtNIYZbDOci0/Yp7OOSyucbo9oTAFqcmo20pk9IGz8gznHI1rGScjZumMIhnx4WtHfNFIWZeuh01Pbw3j9KxxC0ZPcOSFPLIwTsHpZ7zXWCklThYXR+P68QntCpUzrCd4kYZRzo3phP1iSqrTTnUy+maM0rS2GZzTz5T+2v1r3SW77n+DObjeVjxiSdUMI3rOz+eY6h2MvEE0wA2BZwB+Mmfbq/twXKbjx7gpRaf4mGiFSoJxL+83VsBH1YgkfWBVJEYxSRPyRHFjlvGRGyOORjnLumHhhTwa53pHpKetpUZzYyLlB4ABYAp0sr7pAegKRravyvJMwzqMczBoY9+ljK0eALbweudQtbabH8E+21YiWHIwzckSTWMdiRFgWSSGRGuWVY1olsLteUGeGskfA86WlicbX5KkkXzf1KhOXbIuHWXbUFvFKDGkRiKNWokBsKlaTrYlRgkYc8ALswlKQdVaEq1IlGacJCzqhsuq5s50RG0tudEdtTMxmlmRsDdO8Y89AGMfMZyPEi42DaNU+zw4/FxQXKwbX3bDkRpRtUyM5pN3Z/xamtCqiPHhdQC06R2ICq+GnBgRNbEWnDgFlVIo0wcpdmnQfckJ1xX6btvgXOrXqDBucQQX2/oAjoi5GWMYjVIp62CSLjpmXT+fHOIk0IP19BmTzfdPlvgyCuEgv1aH61xvG566rZ9H/X4YQFmf+6m6eTtMMxEgl6Y+d7GxPu/XXgF+Vy7uB2g/GiAOBGiEBUArsKEgm+5fhz4SB6A1au8Id+0aWZqifvqPoD/yhwT01aWIZBiDGnsAEVaQJEPdukueG0yiaKs+XyBe2AXVDydlXDAweBTi0POzWlh0ws8YJIZ5E0flwuLVUwqkrhibDdy4JYIfzkFZkuyPMfMCuyqpT1eszjdMlRIxkPk+HN6Ek0cAbI6XrFY1beNov/WI+SvXAUhmBWaS02xrbNvQbirMOMN4+qTyEbhkf0JzukRliQDHRGNGGXqSS823NIU8ZzzO2bz1BD3KMLORjO3RkYzFbA57+wLS85FQJbMCd/7UR55aeOk1qXm3vpQyA20LSQp1jRqPZXpfvyXHpAXZzf0OhGn6yFnIewgPswZcB6zoyhL00bFerEQPctrEy2lUD/ZQ0BAStiUK5vBlCXbGP0QAw+/7ScKHf+om43/+F+GVD8NqiXv/7V5tMsukdESaiiNit+yG9tZ7yKVyQmF0/h57yqbqIoZ1Y6P6OdHj5BxY1T1m1nvQu7pjro/GQeRVauX1q4tjENOAH2Yh+lFvCg3KDnIdgSifLRivkWGOYpbOuDk5ZJwW/NTRp3hp+iqvzB21rSjbLVppCjPqF3yfF3djdINRmmKMwdqmW5+gj5zFlI/gJR0aNsO6S7ugIRzTr0tDAaBhhK7fWJ+13jV1y7rZcGN0g8qKU2fbbrk2OsAhtKWTzZLHqxWZMUzTCfNsxiydc1qeoJTmyfqSbdNQty2Od/nggRRCn6VT9vIZVdtQ24ayqdjP50zTCbWVchl123B9fMjJ5oxRknv6ZcI4KTpFRaMM42TEJBvx7dN3RRBlNgbg5lhyE/eyfUZmRGMbUp0yTiakOmPVLKmtULZvjG6S6lTKH1RPsc6S6JTGthQmBwuHxSFGGYwyXB8fdMZL15/BURP1qYnoWd2cirzdnUGlVCfY0f1tdDcHOnDTqf31wOiZe1XYZLzXaX8+5VMfepF/6bU/xit7r5DohNPtKY1to36RMgNGJYNzG6X9OhwKEItzs3VSp23Xcu+jJ62M+84cDKUsnhXhuUKrhAGVa+BcUn2E4Pvt1z9uTaJafm9SPWMoUcPOjvMcjVKkieZglDBKNc/NxhyOMjE4PVVNzh3lg1uHSRRHo5w06aPGcU2sXQn5sAaFsjRdyR/6qWC7cewBXPi9aUQ0JRRObp/h5Y4dW4EREUpHgaNqWqmR54VAtL+X25MR1jlWdcPxpuTJouHlQxEkGaWa1Gi2tUj1P1mX1G0o13DJq/tiUxaZRPk23vmwaVpmecrIGDzZhaqx3BgVPNlsu3IDk1SKdIegQOrz54pE8+2zBYUx5CMBkfvjlDTRTHJD6imRmRH6ZxiX2qui74/TLhK1WNcoRGHaOkdixLk2H6X+2YTbs6xflzrnteq2sRCJ07s2CHSgLhRtZ2f+Ddcmbz8boZH3wKen38a2dLdvhTw1pUBpRtMRH//Qdf7FT9zk1etTJrlhW7XdnDLaA1Qt89toiS7vPu6SyuTr6LaSR9w5sjoFZpkvVdVEhciHdnl4xMK6HpwaPZgL/ng9+DvUmFMqRC8jau5unZDv035EQFzYubQMmoVQoT1wYQcew25EFGqyh7p1Gw4PUXdfkeONRpkEiok/NhrBEGZ4/gOkN+aYpxuMdl0HQpiQkTeAfkHqJ2d8Kf0k6RaJ4CAMnkjVg7TBZk7/ejd2RnWXGd5vGgfLpdALtcatVnLAfC4KlZuqmzzp9Rnq9h3JH7s4luLfoxGbTcOjpxsUcHauuNU49p/bo7IOMyvQo4zmYs32THJOsA4zyQXIJQaVGrJbe13OU7vY0i62Avj2U7h+XUDIfE7hHCoIsSQJajKR6xmNYf+aALAH73nenh/3Jw/g4Agmc2h8qQFtYLonCGNxAc5JtE4pOqn9vT0mRrOJ1BllBEP0TLyVAX/bALgUqBDFeMasDKBQq5DzLxta94g5hfVlCAyOkHBv/JhZhrLKADOj+egLc8b/1r+J/qN/TkRaVufY+Rdxzeflg9Mp6rrkcbrNWu45TXGbzXBS9CvIlWsPUUCQRTxLNdkopa2aZwI51w4BQCwf3a2h6tnRx3ju/yS2TqjIG6Yd40T52G38LIdj/TpRmDG3Jzc5GjVcL27KM4rBGKk5Fmaqi6C/Vppb45vcmkx4cHoebaL2ymYZaCoBwPX/+g3yWeMWg8Lhufo5EN4LbXfDCusgSL2xy3LBoliglWFdr8h0yrXRPptmy8pH13JjuD055Mb4BrnOWdSXbJsNRhkuypJ75xcopTjZbKjblpf3b3NRXjJKC0ZJzqJacVGtSFYntK5lko7ZNiWpSUh1wot7d6htg7WWRbVmVW2YZWPyPOf25BatbdnL9wC4VhxinQDzSTplns3Idc4828OohMebR+xl+94gTjirT5mmMwozIoh5pDrt6uAVXnH01uRW12Gta7k+PmQ8ylmtywEQC9HPAMTjorp9ixXO4rHoVQBD9M0YE+UOOS/13XrjSEdGsu6+Q2s1yIXLi4wPvHKX/8XP/EU+fvhTGGWobc3IjKltg8MxS6dcK64BsGqEyi8U1DUmUjbsnUheWCCaRH1U0avNJYaxr+GnBnN5aBCG/gnrU9wvsef7u61FseP0J6EFS8Uouhp4mdEdAyS+15DXppXCKYngHBRCCd/LhdWTGK9QSZ8G0AU7vb1zNMo5nOY8vdgSWABhjQnGeZBVD6+HvLsgg9/uUFqDMRsb+LugLv4Znp3Y0RSveYG2Zq2jqlrOy4prZSZS+x7QGa3YVC2bxjtpNdwY5UxzySOTEhwCsi62Le+dlRiteLSosc7xwmyC3ghdc5omLOqa87Ii1VpolFnKqm6YpgmJVry4N6HxohyrpmHbKMapoUgNR7OM1sFz18SptDdOqbpC00mXn5f6Oq2rqmVvlPj7Vp2oWeqdrVUroC0L8va+z/YnXgPBSSmhG6OC6WzEelV25WPkpN4pY4wIY3kgFuh+Wmtv6MROpr5uGoTi66G8QABxoa6gwrm+NpzUC3RR3WRFkiSUYWABVYx49UM3+V//iQ/w2p2Z0HwBfBHvTaWYjVJfXgFGrYxx6qOveue5d35S67C/eqBIFLRJU8llH2UmCtr0OW2h/7tnzLoO8AWBk6Gt3wdvwnni+dvNY37w9qMB4jpMFt1FB+Aig8G5YVQOBKi99kmwLWrvqDfsn/k9rhsode02+cu3KN48pirbnUP6SRk4+WlyVW41XqS6YpqDSF6AE+HcPQ8WrgK5q17K/j3noH16hrl2TRbu6VQMrTSVCJ11mL0Rs3lB+tJtAUp1BWcnAoaWEoXbWsuqtVgcJ/cabhxvuHatYD7LqHy4uKxaLt487QqbJ0YzmSRkmZGhSRMZD6Mx4wzngUFyrZSLthZ1dCTXNhqh9g9lPG/cFvA2vwajGZyfSkQuKFImKbzzBjx5CEmCe/ctATDPv9SFuFFKonDg8yZnqFc+yH7xaVarcjCdQgsgrGPlKz+2gFZ9KN6Gzd+BU0FSWzY9oxSG/qFzzqGsQzv5gEMAXTiP9a+Ksp14ohOtuJYmXP+TH0P//J+GfCJzfHYN9con4fxYasKNpwJ260rmPEgh9DB/k7T3UEHnOQrTp/ELtETVZN7luSHdH8O5APQuOkzYZP0zhpTICHly4TX5TBje3hMV+1Q642vnOflJaiESJ/cZrU8gEdHolpVSZDrn5fkHwDlGyYRdOfbd84a/DvJDXty7wTeePqVtWmK7/lnSz9/NWxrTw+MaQHKenhVAN8YRmNw5X2/MuejzvXfy8fqU6+MjjNLMUl/bzVk2jVCRro2mXB/PeH5+m2kypbIVy3qBw7FpNlyWW8ptxWZTcuocJ+cL3jo45wP7+xyOpqxrOU/ZtjxdLdg2DZkHPvuFgLzGNqTGCzkpzTgtWNYblFLUo4YQJ3pucgeA1GTsZXMcjmv5URcZzXTOqllinRgXla1Idcqj9UPOzClaae4vHwBwd3oHo3rwMkvnQsFFM0pGfGj/VfYPZiyWm27tiMcu1E/qIuhqSFUL/dvnX6idcewBXACE1vYqlYDPeaE713Bg6Tagw70Zf/qVD/OR/Y+T6VxokybhIL/Gtt0wSgrGyZjcFFRtSeFzObXSnnKtOyXU8Jw460RtNNrQbDDa/Bwq8ozDouC83HLi+jk29FUNKb670bS+aH0wKIdCTbGT4yelBXsF6CJxYb/TfXd34iahx7SCcW64PRYBsnGedOInXX/TR0Ws3yS1VuSp4YWDnPePExY+lUIczTYywoOjiK44d4gAyverKxG4cEywq0IkNVxPf14Gr8fXHLOYggIgwON1yfPNmNY6iUQhIHVbS37V0SjjsMi4Mx8xyqRuW9VYjBI65Nm6YbGpWWwEwL1/tuGFww0fuj7iMM9Y1FLTrWwt3zxZsCilzECqFdcnKZnWNP7+g9LnOElYVEFwR64/NYrrc3EGjTORta9b5wVKZHxHqelYY8H2BDhb110E6vhSytPcmOeyLzkZu3FmOpGfRCteOhxz/fqEd1dl96wCXW610oosS7r+lvHyz15wsAzGjwHroFeoVB2oaRqwVgn5zqkOdEMP0oNITadYrjSz/Rl/6hM3efXmtFOfBBEoCQIuh9NMlFl9gXqt5T5zD9qht9s7W81Fef5tDU3S3XvbOsZFwsEk756P0EIUOoDPXnvOdn2ADyRIRDnuoyEdOBYqu7I+f5/2owHiFISIm/z9XcKJgUrpxERGacgK9Cufkt/zkQAXDyT6qIX/n3PgpAaXmu7D0RF5ZuTr2n5TaKPFBrz3wImX6pmX5WI6Zi8zHxbAtu3zGiCOaAyBXAi/a5nPtDYeZMf23RMmd29C0+BGI6HcHR+DtehJjvECI9y4ES4AJjOwLe7ykqqyvvi0pXKO0rY8rWsONxV7iaHyi+FIayrnOKubLvo0MWL+pEokisNmmWWa2SxjPluSLrfkL1yXYt7XxVMrtMAMZnMoRlBMUEkGxRh3+zl5otNMfhoDewfyu1Kouy9Algv9sqpE/ATg4hTuvCzHWwd3XuDFl+bc+52nkRkceymVz+HoI6TfrfWfi+qshfdUrHimSLVPFg++ATcEkA6hYoao2NRoXjgcoz7+SUnWbSpIczAJarIPr34Sd3RL7n916WmkXpUzzSTJN/G01fCMmAS088XaPZXSiddJ+2s3RmNSg5kWUi+wM5B8FMg5WiuLjW36nE9rHU3r+kVC01FPuwjSjkGqjep0V35ShE1gSJs0ymC7OAPektoZe7+JJTrl7vgFFJDq7IrhGWacC2RMZz2QGHNzco1RmrJi04lT9DlSoKOoR3e2CFj3dEnrKS/Wf76nsnRrXmfwD72GV0VPhptPaG1refPsCS/t3cE6yygZMUrGPN08pbEN02wCwCgtuD46Qvl6YyMzpnUNi2rJtmlp25aqrGmalouLFcdPz3l0cMZsPqGqapx1HMwnlG3LyfFFB1wm01FnLIzSFKMUrXPMsswrVM5pbMvtyU02zYZpOsFoid5lOmOUjMl0RqJTtDIkKuVafkTt6i4vTqHYz/apXY1G89z0LkYZJumU2laMUykQu25W3PBRV+usAPIb17h372m3V+z2ZecNBrB97lJsDIXPxCBaa+1FB3pKZYiQSqQrbEZ0tddkj4qeW+UnTm64ffsan7z+GrWtSF1O6uszpTrjqLjRAdTa1ljXdmqVRhlSnfj8UdOBWLk3c4WRoEwAnPIv1ZpJlnFRljvrUyweEBxFvXNCDB55P3awDOd3H9EL/8wgt/DHtynVM0SUkv05EPrDCmVxnZO5ba04FJUYtofTTAx6I9LzSg3tEOvXeOsctnUkreSD3Zimng4oz36o9VZVfZ5PAA7QU/w7W8kDida5wViG+R1UDevaBnOgs6VA7KraC00IWNNdf0BvDEvBccd751s+ek3ub5ILlfF0WdFaxywTCuLIGMk3C7ZNqK/WiJJl3YqyY1W3PD3b8N7jJW88GnFzf8RyK5T3G/OcTW1558lSQFyiOZwKKDNaMfFgzDqYZJpb85SbYwEI+5OUbW272nVpIpTOPBmkv8u1Zv3eGtaKSW5EVV3BtVkm1MLUR4USicqVdcs4T7rzHUwyXnt+n7fefArRnhHES8J6kqYmqnsWxtavNWGMdT92fSS2fy8G5kIvtAPA0gNTv8dpRSdIkebcuH3AT9+eSQkBr0QfnBazImFaSOmI8H3BXg/H9CDKdQ6kJIi2xduyTvr929cNnI9TztfVYG7HeZexIyHM5SHtcrjYDHPb+1IMnfLwbkTne7QfDRAHAsxCYo42dAoxAY0rLwM/UKp0cux4Hs8sOX7XK9255Lzan0lR147IxynqdBt5+WSB67wIvuC3ier1xBTJph1uymE2BEC3G0oNBlb4fJi4wRMRxq61wwXJOcd2VTFZLiW/LFDrtBaxkO2WZE/BzZuSnzaZSj/MD+DBu1QPz9lUbZeovGotl60UQK1cw2XbUjlHZR0zozFKcVy3XLSWyjr2Es3UaCZakdYiYwwi0qHO10y0Yf7GOXe+c0xiFEVxn/HL10lm4qlVIbJ09JzXXNWow9u4i2PUeA4vfwz33usSgZrsiRBNW0s+X+WFU/JCgNxmDY/fhxvPoUZT3GiK9nQQIZ31TTGMcnZJ99HvcZjd+b+DEIq83wO5MM4BoKdKoaUuhETjggESrQqJkppte0Zz7TDHvf8u9pf+S/jAh1GvfBI1vyaRxuvPoQ5v4k4f4zYrX+jbCDo0RgCciTjiWvk5YCIubl/oO4DQbrKBCNQ0vUcpJP8Hh0Ls2Qtz3zmJzjklOXO4XgFKRacfLtg/ARbSM1pHD3Oh1pSTqKWzOCUgLERxQxQzVp4czowA4fp1I7REJRzk+0yzjGOCARrER+J6bnE0rjec4vy5Z4GGGEzEP2OqXy+BP0zUflY0CRyLqmJZrbk+OmTTbEQYRBtm2ZR1vcFozc3xdantZka0rmGSTjjePuXR6pjNtuo8sGVVU5ZCEW9ay3Kxpqob2tZyfrbAJIbFYs1yvaEsayajnNGooMhTtNFd7SPtqXrT2ZjZZMQHDw+lrIBJeGF+m2k2Rs00uSlEGVNP/BhrZtke62ZJanKuj25xsn3igeeIVGe0ruWsPKG2FQpFpjPKtqRsS07KY/azA3JTkJucUZo+A8D3YxLyL5zraWzD/u3b7ljsgpaYatk5Fu1O/a74WnzoZjwumO9NeG9xn6r9x7wwe4G7k+eZpnO0MhRmzCiZULclrRParFFGqOnaoK3unB3xdaU66Z2iwqmM5ljI8ZP3W+84iL37YR4P6XMW0IQCwl0LwE33fbH7jMRsgR/3FuZLEoztYBPQq3BqpWmV62XZfX8lRjPOezvLaIlgDPZD14vLiLNPwNcsSxj5z8blR4IhGv45h6cqynMcD1XdxPRwOiO/rq8yqYJqZRyZDj+TRHdRQKXUQN1SKYkkrSqR5N+fpKyr1gMAAT5VIzmtB9NMni1kD8wSzXrbcrwpWWybThhmtarZbCQ/drtteHK+oapayrJlf7/AGMXZ2ZaLiy1VWbN/MGY8ThmPUw8+++tLjeZor+DGvODDNwpSrUi15gN7U4rUcGOeMx8lHbAOLah7KiVO9eW2ITWacdY/S9tarlcBmadhWgfrsumAXGKkVELnzAld3zmBhtTB0OIapfGz3IuY0N1jr8bYnydE5QT8W/+e2BNNE+0t2oBJ0dM9jo7GfPt0zapueHV/xs39gr2RCL4kRnfA1PtU+2fez9FdR5KDbh5IZFF3aVwDZ5lSXRQu1Kgbinv1xe3jew000g56uNB3fd5oeE6kr3TXZz9M+9EAcTGySdIYMktuFJHHWZBPD8pQPirh+uhEvKIEmB0+Bx4oarhxm3R/jH6wBILx0y/0Rg83o07SOJrUEjVTvh6FjfDl1QTqeLMJlxZutUfyOzz2aLHqPpimEqVZr+U+Qv240UhEMQ6OpC/mB2FVpX66oHVSr6dykoFTaCkKrRVctpZl66id47yRxX/VWtbW0TjH2joyZRkbAS6r1tI4yHx0JlE1B4nm4b2KqTY0znHw1iUH84zb33rE5ONvo37qZ3BKS3Rtso+azGB2IOORj1Af/GlYnUNd4erKjz2iUJkkAuImM1gvYXkJ+gFufgjGMP74C/DlBx048/5Xr9zV979B0UZmc9jOHb3AiR/S7qdzYBVo/3AGBaxYJUsDJspsMk6+J4CpAAqfHm9Rf/dzncesuL1P/oc/ifoj/wz6pY9CMYX5IUznUG76aGPgqzs/QQOoSxLIR2gf9dqNYXeQIRjtfhFqrFxbPwf7xUaHRS30jfe2xU6JeO6GhSimCMSg8se/OV8XS6OUlnmioMXinBSlVt3cUf0u8n3OCaHchfNxXzFyREkx4cboBvtFgda6W3vC2tRT54aCD/IzHtM+dyT2tPaJ5VfB3LNa71XsVSwHLILI6A4iH40r0ShSIzTHSSrRrv1sH4tlnEh0LlEJx5tFZxiEa0uSpKPyLFdbqqahbVvWXumtalpW6y1N27IpS9LlmvEoxxjDZlPSWik4niSGPE0oipwHsxMmk4K6bpjN3+PmbMorB2/ysaNX+fDBa/76EzJdYHTC2Ex8ZNtwvbhFZbdCscTRugatDKUv9C2CH2O27ZZ1s0ahGPsacj918yX+gfragK4aA4z4eYsjFOG9AW1WRYyAaP8IwCZE32KgrbWWOez3uPAd4RqCfXV2eslff/3LnaHx3HzOH3vuI/zsjZ/muckLTNIZ6IxM55Sq9ICwvx+5fk9aVZpUp/7n1ah8bPyF6dNGEefBfdP3Q9wXcp/DufvMPtO6oziFWmU/CS0G/ZnRJEqTIgCudo7YZaSUilhCvkxSGL4Ajvz7WvXOvN654MFNpjka5cxHKUmiqSrbHROM9j4iLPNMKOGuk8bXSuEC8UoRGci7jqRnr0vx/hOiO85BmvbPRhCSqOtWqJv+e611lLUAuRBNzKS2M0UqCsN5ItZAohWn24rG1wmrqj71ZjqV/LKLi5KybCjLhvVaHE/bbc12taWuajarDVmRMZ4UGKNZr0pPuTNoo3k3T9jfL/jmvYL5OGVTtRzNcu7sF3zkxpiPXJtzfZYxG6WkRjpM0Uc3tVbMR+nA+RNSRGqvoDnOJbq0qVq2tUXrlsw76//wC1P+llI7ubh0FEMBLb3DNs6tDfMqtgGSxHQO3hCk6NWRZY4EIBtM+vhZDaBca90Fc5RSPH264m9+6UE39s9dn/KLHzrgD9055PZ+wdTnwoVrDkvkd9vVwviGPEKv7OYd5/01BdpvyGcM54eehRWc+iGithu8CXl+4fnorsGD5L5Q/bAcxw/SfnRAXBNKCpgdC9FEhzmU9ZG4MEoyQ6Bt+siUVQP1L56xCGBbyTMqUhKjKAm2cQi9qi7gkZhnq1n1mzBeqU+gQey5ihUpwz3En41vNe6O8DMclyaa0bwQo30ygcVC7jFNO/EQigI1m8F8X4z+6R4sL2C94uRk21H7cqU4zFPmxjBKDcu65aRuKHTLZWNZWSd5c65f1EPhSVooNKy9V0fMBhgbxUkjQHA/sR4YtpydNjy62DJ/44znv/g2+596Hv3JT8BHfxomM1Q+wq0vUQHcmRS3WoBtYL2QeWGMUDG3Gxk3kHtcLUXs5M6LIsUfxiUCY1LLRWRzLcOHRzlPv+mJcTufl58NUvhdIbklANpGuQLd5+hVLf35terVKrfW8eSipCxbLsuGk7ph9MYZr73xlOeOj7F/4V9Cf/gPoYoJbjyXMgxBsdKYPjIXJocRAEeeD+ZPWCM86bhnJ3tv0nfjXAdDsnV9jpy1stm3jb/fEL2MqAq9z+TqAvaT0qxruyhD6D3VOZDo5lFsNu06cfyLz16PAp0S52m5TtQV07QD0IAHbv3GKetUBLbDxmNjwO3XoI4lENeIi2tvMTw+WqvCpYf3d1uWJeznOYkWBchlvfJFuHMSH7FJdcokHVMkI5xz5CZn024obcmj5bIzspPUMJ2N2NufMSsyLtZbTo4vWK22bLcl26pmXTc+MtCCZ0NUXgY/z1I2ZSnGWZpIrpbRrLclZVmxXEpR8suLFefTBe8+OeHzD+7zwcOv8XO3P8RHDz7Mi7OXGekErRNqW5HgPC3QUFupZ7eqVzS2Rvu6gE47GtdgnWWaTtk0G5b1kqPRdcq26ry3u/++W5/ugpXgGd+NwgXjy1qF1q475grgiZwuoLGu7SNkDrZVxcnJJXXdcnm54vxyydfyjDdeecrxR8/5sy/9s3xg9kGMTkj8P2MNLaIqqdHe0aE8HV2TqGQgdjKY8Tvzq25bamux/l937Vr1EbaobwLdNxiN8Xnj4sOhjEbXZ1d6+se3WZyXqRfeReNs57hMtKdTeqAn9HiviudVJxOjKeuW1Cv6NQG87YA6YRX0wCHVEv3obZgdOphiIIYRDNcANIzqKWjx1O8BmYvWpnANvbEM/dq1W3csHN8DStUpY+apZl22XbmEELWSaI7qctak/ppE7+6dV6SJ5KwmiebW9QnX5wUH45Sni5J3nyy5uNhKysu2pgklGmpxOnWCIQ6yImO9lLz0vMgxzmBTw/n5ltWq5mkmc/nR0xUPD0Z888GCvfEpH7sz5edu7fHC4Vjy3Pw89lhCnnkUdStWTmNd56QJ6qBhnGYjw7a2bKqaaZGw7RyE8RrROzkCmJbXvZUz2B+GgY0wRuIslGdPAHqg3/b7V7imsKfF5xMHkRfRW6948vCM1apis9qwulzxO3nGW/fv8OTna/6Hr93i5cx0hbJDf4DcUngmOlihBMDX0XyTNzz+6Gya/rqCY613aA6FXLrn5HvY9k1jyTLTnTsA5DgiHeeu/iDtRwPEdRtJCIOFFRcBKtaCdsOoGnwXY6ibhcOIXOxlaBvc2WPcG9+gvVh3oerwUyk1MFLbDiH7REhPOQiTYncgQosv71ngLbTe4OoTHONbVEquK70+Q73yiqg3jqe4y3MBL00juWfjMVy/3fflZgmbFe7kKWXVkhnFgUp4YS+lbSyrsuXBRqiKh0nC3SwlTQ1bD+re3FY8rVsa1y/oDY7GiRJSQ5/z1YE9HFvrGBsBL0srgM40LY8erjD6HqPFlvT+fbh7VyJrTQM/+8clT7GYQjHBHT+Q/MbZnig4BiGPs2MoS9g+EgAHcHid6tE51gPo4MmIxUyugrSh1HE8Jh3m8Qa1/N5/DsCFeRGfA4XxYNG5YNhLX2VakSvFJNEcHOSsHwl9tWlbnj7dcOvBMenFqTgj0hw13cNlnj4qq5rPizM9pTJJ5F+adfWBLHJBnRocMl9RfY2SkBcRBPONG4bw48cR7Z8L37ehHEGQjN6lDEsHfnfD9MezRcawjzAE0GZdS4j99uDOQ7If8vY1SuYOjmV9yVuXb3O62TzTIB9smsHtijgZVEQH6YzdNhjH/TrU58hFdxoBtV1vorVxlCO83nsib07nfGDvZWbplEk6EZDjWhpbk5ucIik4yA9obYM2mk27oWpLzstzNk1NmiYcHe1zUBRsm4bz9YZ37j3BWsd8b8Lzd68zTlMWVcXp6SX37j3hYumwWiKltrZY4w17kxCikGGetm0LxlCWFVmW0rSW9arPEX1TKYx6g4vtkofrR1wfHTFKRrS25eX5q0zNCIvkzG2aFda1TNNZTyFsFWVdUtuGs/KMRbXEupZ5NufB4oRWrFBRyo3qug1mmgr0fQ+0doodx8eEse8Aj4LWtYPjd6lQoYZciNZ1dKhUk6UpoyJjNhuzWm2o6gZrHWcnl9xbnLCoFzSuIVU5RknksfIlBhQKp4cOMa0MqfFgzueZMJhrV9cJ50SAJ9A+lVIYdJefE3+u74swX/tIXXgmYqM/pEUANDtRhx/XpqBj2ChExAFk/a9a24Emi+vod46rBmZn+Cp1hUQRxicxAnDWZct7izWrbR0Z4x6cdeUdLGCxtrd3go2ktUTnwueCMiH01MyQL7VLmxyuSX2kJ+RhxTZYVdlONOjWLOX2fsEkTxhnQqFsrOR8Gx+NmRZJVw+1dUIdXW4bESkxmtsHIz753JxF2XK6qvjKu2dY67ixP+K15/aYFwmLbcv90xVvvHXaS/A7iUS2bYttLUmaiNCQ6e+nrtvOKZHnCW1rOT3fYPcKnHO8/niNc46LsuaF9ZhpkZCnAlr2Rkmnvp1o1d1XnuoBjbluZD6UtWW5bWhaS5Ea3jurOqaG0ookTWQeRKUB4q08njfSvz1QD2q5Mi6hHlrr2SAumncOa4c2R5g7YZ9S2mMBbSArKMYFBwcjqm1FU1Y463jyZMW7pyWrbdON5TOfE7W7buBr/goDq1uDbAu+1ImsQ67fzwlzuF87Qh/tlgWI6fEBBEspOtXRgoPozq7S5Q9rN/1ogDjncG2DMqaPsHlFGjrpzxgxOboCgLtNG2T1ts/2eluLffo+/Mbfp/nib7M5XffADamHFTbXnt/qQ6IRyrb05w5GTeCMh9f624vpAcNIXW+gBc9S1yXDJMqgCFR4yiSgDo9gtejvM83kvi/PYepph2kGjx7R+sKCVWt572LDcd1wXFvOGhE50cA80VxLNHeylBtpwmGS8H5V8aRqWHlaZWV9KpZTFFoomQAjrSi04m6WSu6cESXL0ShhOk0pcsPk7j7ZzT3UqIDVCvfGG0IBnUzg/Cnq5otSw2+6jxrPcUmCO3vcK1jWlVAqZ3tyj87BeALbDWdvHneiJcpTI2PgFozuwVRRIXI2bI0HbwLKglEu5wiANlAnZbZJhCqAuQRRqgSp1ZMqRWYUe4kh916YaWG4biX8f+2wINkfy9g6KxG2yZ7kB1ZbL9aj+0hcoByHPNIsQxepgAAXi9X7/oieG+PBtZ+l/tqFKtovIPKaiTZf1wF1WShNMvSc9YbU93Kw/Pg25xwtLUlUFwvfV4E+Ji/Zrhbhs5rqtoTYJdD/BrCoz/nCky/wxUdf58lq1W2ovaBJX6MpXNtgErseRDqvthM8iGH9CUIp3ytqGkBQaL3AhOtASL8+yjEjU5BoMQJCLTXFGOssmcmwzrK2a8ZK0dqGVGc8XD3yTgHNelPy9Ok5JycXrLcli+WGpm7QiWY6HjEdF9y8ecit6wdcO5zz/r0nXFysKOuaqqqpvcGgtcVoQ+IjMqkxZFnKjRsHjCcFk0Ki15NMVBGLJOG52RHXx4cUSc6yXrKqV+QmZ5KOuTm6xSSZYpQhMWNSnaGVZlUvu3FtbUOiEg7zMctmiU0tE1/L7hvHx32hb6UG4xgS9OPXBXDQRbGCMd4LRPTgOd5bQsQ1gDrR94qKYtNHthIl/ZMYgysM88mILE9BwXhccG1/jjGa/YMZh8WE3PQR/1RnHZATxoFG+Zy4QKF0noac6pQ8yb7rXPtuAFX+9vMwRLx3nAsyp9uBg6MDsFEZgm5dc+6Hpiv9KDcHbBtHZjyIUqorqq1UyEfz+5xfy+vWenCtunM4fH4QIv4V20TCzJB5uq0t3zq95Ev3l5wuywFoisvSJEnSATEBZVcdP0HwDXqA10YaA3GLo29KERVKDjW5hNo+pLUFlVZPzw65R1pRpIaysSRG5OnDsXXryBPdidtdbmpxeDrHatPw7tMl9x4uWC4rlhcrqrJCG81oMmL/YMJzd2a8dmfOSzdm/PbbJ5ycrKmqlrZ1lJtS5PoTQ17kZD6nME01o1HK83dm7E0y9seZqGgWCdenCalW3J0X3BgVFIlmUTZcbhsmmelAqYnuTQIOvSBNGGSjFZM8oWqsiNOlmrKxfPPBIoo8qcFYymv9uIWfAbiE1+LxgWEOtbweOFtybOOLhId9LT6H8tF8k3iGWTJnsjchL0T3YDQpmB3ukWYph4cjAbHeMRCu1/V+zQiwXZlWKGCSR2kJzoqdRWTXI7ZPaob7bjw3e/u935N3gzqiUCnR3ADgwufC2v+7ad8XxCml/hPgLwBPnHMf968dAn8ZeAl4B/hLzrkz/97/Bvg3gBb4Xzrn/t4PdCVtS6fxrrSMt0fFXeQBvFXpZUdDdEabPtIWKJVNAy4yjpQAQ/vwbdynf5nqc19lc+9UPDypJmnjkKbfTJUsaLtY0Hljtv/dbyY71rMMyrCu3LM2sl2PWGixgo3Wina5FQrhZAbXb0rfXL8llMPtRu55vZLfR2OJ0ilNfe8pwfO+bqXEQOUkOrSXaBIFY60Y+wf3om1Z+wjaVGvSPOWkbjhrLI3qI3EToym0IlMwTwxjrdlPDEYpSmtZtpamrMkutyhg/O4ld26MufmJO6Qf+6DI6V9eSm7fkwfwwVZolNZCVsB0Hy5PBcikRqT3TSKqjlkhdFHbwrtv8OTppit0rfHiHoqO4paoPswufdrTHINZrVVPOeuNcojweldGoPVgrlUC6AKA0/57QoSyUn1k77xpOb1YYy7WGKXIlGKW+NIJaSp0UudAaVRW4IqJRBvjUgJBzTMImmgtx+dZr04J3uvaL2Q6FYmrug55V8P8udgQD3MffBQPrmyO4TP9vPYgzzq0F94YZGL/PrU/qPWpda3MIRgUhw+GapCYly1s2LthDsatPybMHInqnZRP+PyTz/Mb97/KW2dn1J4uZluLUhHtJZxn4EiKDGA3fC2OngWgEKtUPnODi873rJ+9BLgcd75ds6yXFEnBXraPdZb9/IDGNjS2pnEN62ZNbWvGZtwVz763eCx9bC2b9ZbVciPrstaS4zYdkacpeZ5itOb8bMHicoVJDKORFPZeLjcskQhx21rSxJDnGYnPG5xOCqazMdPZGGM0C/89dd10NM7R6F1evHGNP3L3VT5+9BqZzrioLtk2W86rM46Kmx1ASlRCqjMSnVDZikQlFMmIEWMa1zBXe9wa3UYpxf3VPU5PLrxjUHvvtRhefXTpqlOEaA1SbkgtC+Dmu3ltlbc+nHNYhvOmmz8q0HPFW36+WHG+EKdBmgjAm08ncr/akKikm8daaa/kqfvvca0Y0tp1bopEJxhlKJJsYBjuUimNNzzbEDH2jkUYigwM7o+hYwHC9q+uPCNxpMjSr5O/n+0PZG1yUqxYwCk+309y4hrvfAtChtZJXlcoWm0SUagMFDyRZLe0TRBpknkWRCPWZcvXTy74/HsLnlxsJfJhFG0r6xf0UYddeyl2WA9l2nt6dwBoIeIvZe+G8yQcszuX+u+gA43x+vdoUbOuWorMkPnoWJok3Tmr1rLxQiCJUdSNxRnN/eUG4/f002XJxVLKGKWpppgUTPcmZJlhMskwRvH0ZM1qU6O1Ym+akySai4uS5bKkrjRt05IkCdNZTpKIo3s+z5lPMm7sjQA4W1WcXG4p65YiS2isZVqkvHpzyi++fMirR1O0VqzLhk3Vyn2lfX9oJaZv4/p5HoAMSN5fKDXw8HzLw+NlFxU0iSFNh/Um09QMinOH80GInEpNtJgSuJtDJ7TXcI7I+chVx0yfX+ftm6Zmdb5gdXaJShK5xiwlH+VSxy0RlclnpYmE3dXRx4fiuaeVYpRqktRDIS+uqI3uGC2pn/9VY6+sJTF4DfZ9vzaHuWi7ORsrePbreUzR7IHgD9p+kEjcfwb8P4D/PHrt3wH+oXPu31NK/Tv+739bKfVR4F8GPgbcAf6BUupDzrmW79e06nPcQDqz47JJHpzSiadJ2j43KkBliQXTZWgHpcvO0rTY97+F+5W/w/bzX2dx/6IzTNNEY1Opeh8ON90kjo0hInpLuDTXGbpxizeemPsbPDxhsYn5xip6PXx3GPS2tSwfLRi1LWo6F0EQYwTAVaVQLFeX8PBCIjp1JcBgu6F8eI7SUFspcJ0qxVFiOEoTbh6OuH5nhko1GE1zvubsrOT8ouK0qjua5NRo1taLongAONaKg0STa83EaCa6r3Vk/ZDW1rH1alGXqmX9aMlm8x4vbGvyT34whHrg4sznNRpoZKHEJPKvrmB2ILlidQXlWiiH80OottgH77OsJb8jURI9M5HnRShww2hZDHCkr1VEmQwGeu/BjJvrjsBHPYIhEk1lGJzvpLEsWtvlFmZKMTGaI2vRx2uOvnWf8fEjeMXnfCaZKG/6RQxjZJzbVgD6Ll24KDpVSrmGQGxSg4odYWGRRG9Z3nSAsW2/sEjJAdcFxbVR/Wf9pGiwJGhf78Vh2+jxU/Q17n5/23/G7/P61G8yfjSVkqXJrzEx8O/oSjvOgN2mOgAnzWJ5sn3Ibzz6DT79/td45/ycxgtzGKOFllMPDZruXCqiCzKMvDzLIxivaf52ouMZrG39d/R9EX9v+O6maXnn/BzrRLBkbMZoJfHqANZWzYqL8oJRMqJxDVppyYdbnYmB2bQYo0mzhL0s4fDaHs8d7PHy/gEAuclYN1uO12ser1acXi5p6oaiyGjqhrKsaBIxOIwxpMYwHuWkacJsPmY2n0TRAbmPtmnZbkqhTi1F6fKiLFk3Wz51/cM++t6yqBcipx8/V95BV7cVk3yCUQmta9FWvPOFGWNdy4PVQzbrkiQxGGPEKPbjGjMyYmBzhWK442QJY/gsYCdjF3kUI29VLwc+pCY2qxIq29VgKROx/jfbCqMV3zh6xD9195Tnpy/hnEWjMUKyprUNypcdcDhyVwwiZxbLKMlJkqTzbYTcuXBd3b7hI8Rta8FolKdlGalv0vWNGPpXHRj9GiXXaLFobaJnxEdwdB9F+H1s/xm/32sTkcNt4ITzTkbfJ0rTKUTWjYW8z8sJTfs9MdGqcwIGO+hy0/CVp+f81r2lB3CWxGjyxHRzMRaxgFgAQ+h20veR4ElEmQx0/jAm4RmNIzVNY0lTue5eCXBYTy6sXzG9sixb3j5eo5TkQQlLr5+f2iisE/n9NIou1a3l0apEKenHNNFkmeHgQMoK3NovePWowDmY5oZNbXm6rHmyrDldlh29r2ksVdVS15a2bcmyhDQ1zGYCQg6nOfvTXPrD9aCnqlpWq1ocZGzZlA3LsuWffbXho9fnOCe5b9uqhUn6zPkhuX+9UyOcW/s97GxVs1zWnYqvRIn0YA8ZUmSvFnKHYV5isBHS1AxyW7s5G+akigMVff5e6P+udtvqAqo1OIfThiYtaJKM7XoPrTXfujHj/KWaO2402L+670INFLfjphRcG6US9Qt6A/5nT3mnE8SBPmUhdjCEtTjuB+lvOwBuYCPV4D6NpS8hFF77wRen7wvinHO/ppR6aeflfwH4Z/zv/x/gHwH/tn/9v3XOlcDbSqnvAH8I+M3v/SVWDHWTQmBsKCWdaXyUzbY4pcUbrdreGo1BX/hcv8uFmYK99wbuH/5tNr/+VU7uX3rWmuo6IEn1oFxASATtSwX4CWGFTx/GSSlJHI43hN2Inr9JWeCIJ/HVnKIhaHSDv1ermhvFCA5vgE4kapWP/Zf6tb4YSVHt5UIoiydPOD/dUFWSB5UpTZ5qPvWpm4z/2KdgOkXlOTz/ATFI336D/De/zPTtY/aXNfdPNiyaltQDpMaJyMkIxdhTBPdMwuFeRp4bJpOUfFbQrEqSSY4ta+qqZbNpWC5rFqsaax3rB+fo7G3S565DmuIWl7i6RKW5gJYkQ6U5brOUyOLpY8kRM0aATLXBbVdQTKi/9DVKaym09tE4urIAsdiEKLJdjTpY53p3DbEBDi2uA4TxdHNEhu0zqJohzmJUbyjtGU2mFcvWsrFSziEUX189XTI+PcZVW9RoKvXjJvN+YbF+J46KXHZz3RgYjci+i3c59sBb6wZgtr/f4QLcYUTvWOk2Oyu5kGkwEmxY6FU3x+Xvq2Dj96P9gaxPQGtbjHBIOyCHA43GeZVKh+qAsTiVvsv9e6dS1+dYTraP+Y1Hv8GvvffbfOf0tDN4Qp6P1qqjwcUbY1zgODZU4797w7dXpAw/Y3rIEDhcvfxngYtwDcYYltuS3OTM073umESloBWtFx0ZJSMO8kM2zZrS58Mdr9dUbSsRtCxlL034cx/5OD9946NoZRiZgtuTOygUjzeP+MKjr3BtdMxiPuf1p8csF2uSNCGoeDZtS1FkJIlhNM6Z7015/nCfcZqyXxQcFDMW1YpRkrOut6zrmvOy5OlqxXItBcXvL07JzZvcmd4g1SnbZovFkgDO05gTnbJtt9S25rw6F2CjpaYcwLbdkuuczz38Km1rGRU5QblPRXkUvdPOdf8GFEO3O379eITpFDcXvEvsPIPqKnjvpLeNgpEvVVK2UFtoLFVds1pvebIUAN7Ymta1QqfUqUSglZI+8S1E/uLyA5N0TJaaOMzYfX/3uR0HwRWQ5fq1eRjZsdEcDn/r7jPiHAiGWYj0/P4juD+Itck62DaWuROHmwnOJu2otRiGpY8EJK3GaF/zrTOPVJRHpHqfOALgtBJK4VeenvP5dy55dL6haS2p0TRYHzFXnUBEMMxj2ykAAuck90uM2n6+BCAWgEs4Txy1C0ZyrBDe20bPtr/CuQFOLssOoMYttrOyRDMrEsrGUjaWTdVysmpYV5JHPs4TxnnCX/jYER8+nNNYKUNwY57jgPNVxdeeXLA/qljtZXzr8ZrLdUWWGX/tLU3dMBplFEXC3jTj+rzgzn7BKNXsjwyHo5STdU1qFIuyZVVaFmXL+aZmtW1wDt4626CV4u5kRGIU27rtctRD00oAu1bDclXOOV9GQvaxX333mLpuGY0yLwQjOW792uS6sXFumGsdj3fo97BvxJG3eAmKgX0Yv34c+n0nnF9riZyTjcUmqjaSXqMUrmnYrrc8vdhwUVXUPgc05AG6cF7Ysc6GbZqmpFnqoyYmWp+GzohuzoQ1PF6jVc/0iiOSA8OS4b7qnJTTeFbh7x9mdfrd5sTddM499F/6UCnlq0tzF/hsdNw9/9r3bm0LX/lN3I3bqA//jERfCBE3H3ULEThc/3qcFxc/yUMojju+j/vHf5fNZ7/GxaMltqNOykQNRf+MjheNoVFj296Q1a73egXBh13j5rsZsM82mHx+VWQkhdew/c/NpoHRRPrr8lSUCY33wIRN67mXhX5YjKSe2nvvsd22lI3Ue8u04va1EeNPvARlyb2/+hme+5MfhrJEvfAyWEt575Qk0YzHCXfciCenW6q6JlFe0MRJLlyuFGNtuH6Qc3hYkM4LSShvHfOffhH1sz8HR7fgyUNRnLy8pP6d73D+xhPSzGDLGrdcoQ4PYLsVSf3xXCJyddkD06aB02NRpAx1BNdLQQpPH/Pmb7yLISp2jeSlKRUeIf8wOseOI4bW9SzeED3rxiWM/c54hWZcv+lJDlL/wGoUTsnPsda8mGtenBUcHua8c3/Ju2XFReM9bziq2uLWK9TqUoD5dF8ij6Ox3Kuzwg9vowh0KDMAUBTkHiRWYQ5HBo9zDtcKXcT6+xYZRN9PLtCHXachFBYkUaUE7XztcevBWxOlrNp+8X5GV/1Bt9/T9alxDV8//Ro3xzd5cfryYAF3eMeP6vvbYtGY75MX15cXuKzO+ezjz0oE7uKCxstxB291yD9oGjUAbfG/0MJaNFi7IjXKGADE4D4Yw7Crskv0OReNbb9xgxjKm/WW3OS0rmHbbsl0htNpd88Kxc3RLWpXk+gEWri3esC2aSjLmqqsKEY5H7x+xEcOP8C22fL//NIv8z/92B+mdZaDfJ9Ns+GrT97l+njM4WjCh44c7ySGh2Xl70XuJzWGLE2YzSd88MYRNyYTpqnQlcqm4mNHr/Cxw48yz/Y43Z6watas6xWvn73J68f3GacpVduwrjfs5SmVrWhsTaYlr8+6xovayPyo6opUp9DKvZZW2AQn21P+8bff9M+G7mhLIVcvHiMZA4bjO3AIDhXhBk6lHQAUi2V1n3G+1ID3JGutSYwhz1PSdM6dW9eYzcY8fHjCwyenNFvp09Y5qqpm3WzYthsyk5PotKOUKtagvOCPc12Rb6GoS77oOBmJoRRyFKK5GFssQTgg0CRbX+ss9J8L+SNdtMdLkdMLZUgeYF/AXhs9oF32/fhPZKH6PV2bnHM8uKzJjOZoBI2T/hKgJvlsWWRgtlaM+JAXp5SnsVpZvQIQ0P71TdXyOyeXfOm9BSeL0kfMZZdM6elkBAHGZ3RpcCrFdQvDcX1UXHXKkledR8N1KwCLcFwo9h0Dvtgma1u4XJbeyJfvTHacjNY59kZhrZL7f7IoWdetqFR6EZCP3Brzwf0ZVWP5P/zDb/Nv/tHnO7tjW7d8+u0LXrlW8NxeTpZo3niyYVO1vfNGKfI8IUk0e5OMV66PuTVLmWUiqrKsWl47nPLytQmjzHC5aSjrlrK2vH255FtPN4xTTdm2LOuGgyTrAg79nJCZ3VpHi9BtE93bKpUvIfXofMt//7XHpKnpxgf6HK8YWAUYFKsehyjqs5x98bFXmSD9OUTkgy6/TkCNKDAnidAc6/3rXL9znfneiIf3jlk9PZGUGq/8WZYNy7rtauXNR77UgPv+T7hSinFqSLPEA7je0RmiZyo8T6GfXbzuqEHUN5QSCOeQouaOvoyAiP3EYLdpnHd6hzX9h3N+6+9/yA/VnvXtz+xHpdT/XCn1RaXUF588fMTyr/wy7rOfwa0WKBPxU82OeImLcHW3EEevKdUDGmdxZ49wn/4lys9+lYv7l5RlK54fPwHbxvnfh0E8gLYRqqT1HPLWSnJi8GK1reuidz3dMt5M+wciriHh7x/oPZEhQieaTnTiE40HGRYpLN5+5tNwcQJPH8PD96WEQKAh3nxegF1WdMqN5btPaGpLaa1XlpRilaef/ianf/+3ePR0w+aNh6jxRL7ozTf5yrfPePJ0g3OwWNZsre0icbkSAZNCKybGcDBKuHatIL85Z3W84vzxkuOHCylIXpZw+yXYrFj/nV+DtiX7M7/I9T/3c2Q35qgsoV1X0plVhVteMOg8gL0jAaNnx33duOWlDxk53Ne/xvG66sCXDv8UnlrZx8iCiEdgv0ofDxehoGgZy6LE+UzxZG6RTbJ1Ep20vn9r52iQn0rB9TTh51854MP/+j/NjX/9z/Gzf/4j/OzNOS8VIgID0NQWNhJddOVakFKSQTHxFx/lhCrd/wvvZRnjcUKmrvK+gwGojO43eH+tktMV/pb7C6A1LOBhsQ55nyHa00YbcmxQQu/k+BFrv6v16f6jB/w33/wVvvTkK1S2RCndfSgWB1AdPLtKorzyip90q2bJbx1/mc8+EApl3fTsqbYV+k1PNel5+sMIWu8F3Y1QxFG5nfuji/BFa1IsmqJ25lH8exwpCRte21p+5f1f57K64KI657Q8YdOsfXkGw2F+jdQb/2UrNcYeLJ6wbRqauqFpWpq65Xi95jP3v8JvPPgqVdVw7/Ixs2xKkYx46+JdPvc73+Gbx8cAnGw2bKvaU4FEvCTPUooiYzIdcWNvxu3pjJvjazxeXfBgec5Xnzxgls44Ly+Yp3ss6gV/+fW/x6Je8k/f/QX+hQ/+cY5Ge+RJyrqRyFxtG6p2K+MewC/alxLYcl6ed+vEuhEJca00Xz9+ncvL1WDsdDSG8e/dhIwBmR6CN2NM9JmrYxN//tnPsM85a60IxmjF9cM9PvqRl/hXf+EX+Nd//k/wz/38x/nYh1/k8Po+Yy8AY1vLutl2YNY5KbkQ8uJEBMp092J8WQmF6sRNRqNcck9252IEHJSiM5g6amV07f1N9vcZnBTxfJTn5qqzdLd/f4Ta72ptujg94Rvvn/PG8ZZta8mN0Bu1UhgPqsO8bDrnXm/oh1w6h+x9En2TISoby7fOFnz2XYnA1a0dCOsEBcfYsA82VLxnBHAWO8hFJTkuwdRTMePnIdhN4d9OP3THxDTp2AHZ+ILiTWP59HvHvk5a2+U3hfOM84TEq5hVXn384XpD1TiquqXy+XKPFzWfe3jKp++d0FrHuxdbDqcZR7OMdy5W/OMv3+d3Hq0oG8v5pqFuLUVmMEZRFAl5Ifv0wbzg1rzgzjzlsMi4f1ny7nnJZ966oEgMZ6uacWYo65b/9Lfuc7qt+Lm7h/z5D97gaJySac2mabv7rduhIINC1ERXZcOqbGid5ENufX22prX89pNzTk83g/1BKbrIYZL0a5RzkQ2w8/wopToV0GfZuL0jsM+rD/sS9AI3sQOyrmUfnB3MePm15/izf+ID/MmfvcvHP/U8z33kA+RH19FF0c2nVd1QNZaybq/YHiqal+H4uI2MkZp/adEzn1x/X0rhc6t75xrRWmOf8QyEaOYwKhwcs67ri9B2P//DtN9tJO6xUuq29yTdBp741+8Bz0fHPQc8eNYJnHP/EfAfAXw4zdy9d8557Z/KUaPxcJIEo1WKS+C0QdlGkHiSgkuGBm5nTTrc5QnuM79M+ZkvcP7OKdutUHrCwlM7S2IUSmtM4ssKNP0ir426ku8WX1oY1HhD7ReinpbWh6CHn9/9GwSAtPQretjUWieL6sPPvcNzP/8u3Hqul9hPc9RkjmsaicwFqoIxtKuSuhGREYujVYoHq4qHb1XkWqigb/z2E248/P8x2y9YXW4xSrHZNJRly6JqWLRtB5IyrcDC2GhmRjObZ+g04eztU7SG9x+teFzXPP/0KerlV+DNr+PefZdH715wi68xBjg6Itl/THOxoTlfkcwu4fAQTh/D3VfDnePCpm1bXFWh0kyUKQ+ui7hHuWHzzlNRz/IbUeskWigbVd+5XbFPObUHKuGb6HILwmamwCtRDgFc7EOQ1/r3GyfUywCCtBLa4c3rI/Y/9TxMp7BYYO7e4gN/bsqNL7/F22+es6jE4KCuh8Xu01zy4tJMopI1dC6b3ZamTCYp2Ymmcn1FPAWdxDr4uR8eE6BGRF9aB1ZJFC5EEXG+NpDrjfbWyjEyNx1O989IWChD0Nz9kAm6v4ft93R9Kp6fuzcfPeUXX/oEqfbKsL6POsNRSnRLFM5BqyRfsDvfjj3mnGPTLPnK8Zf4zP0v8PrxMdtKnBRtazuJ9CDNHCKewXjt//Xn7KM5/YYeAJd8Z7+R7NaGk0OGtL2r9Emi74yeLX98Wdb86rtv8EfvPObm6AarZiX9oQypznDOyk8f7TMYNk3JtmlYr7edrPz9J6c8eHpGMZJ6bl98eI/3Lv8Kt6ZTzjYbDo/2MFrxndNjni6WnJ1e4px4c1Pv9EuMYTobczgaoZTmG8fvs1cU/OZb7/L++4/5Mx/4BHend3hv+Q7fOX+bN8/OKJKvM00nzNIZB8Wcy3LJWXXJNBtzoPdZ1Avm2UHn4rH0tQO37VZUGE3BLJ2T6pTGNXzn7FEXTQvj7ly/bwypSL1RGRdn78foWfR7FxnHwzlmd/4W0aXeSxwEVuZ7Ez519zb7+YxVteHu7ID9jxV8+doeDx8cs16XOOeo2rpzRjg/rqE2nPMOrTinWDzYIvqTmZTRWMQcmqqJDJZQiLzvh9AXwbhLEkPbqdsNle+6vlBILVDvIRejSPLhbChXoBWgO6r4PyEo93u6NmU3XnUPHy959fYcoMtlk/uTMWiso1aWVEtdrLJuqVuDtVLrLfRD60IUW7OtW75ztuCz7y14cLpmUzZdzo9zIT9KoxPviOgAspwrOK5DVFQpughePH5SNkDINj3roI/KGV+jNxjEYa2JlXHj7+1FNPr5pJRls2n427/9hF947hp3D0ZUjeT0adxwLvrppLWibC3bxnKxrqgaS9W0nK9K3ni0YJSJxP8X373k4WXFS4c5Dy4rXn5hnyI1vHNWcrKqOVuWlB6QZJmo9uZ5wuE052CcYB187fGSWW74R68f8523TvkXP3GDj+zNebqo+Nap9P9n7xuujaTg90Ges6hrFnXNYZORGhnXUTxHwNfGk8jbtBDhmizxZQhax9cerT3g7e3XOK8r5Bq2re3WV6WGIC5EmEJfByDXNO1gbwpjFdb4XcdjyBeTc9vOjt7bH/OxDx7xwkHOk2XNjf0RR/OC9w5GPH268rX4RKzH7AD9YIMP97+rYC4xmvk8F9X3Wpx2ytvwIcIWbJvQX2GfDKUEpK+cn699nmZo0qcxu0b2qfBMJEnIQVQBvvzA7XcL4v4m8K8B/57/+Tei1/9rpdT/HUnO/SDw+e93ssY5btwYo37q5yDJpdP9SutAcr9UJOQADO/SRf8Aa3HrS9zn/iH1Zz7HxXeestk0HXiDALbo6r6RDI0dGTAn+LHx37Jj0MS2dDhvXG8rVviJKS7BAIs3Y6V87ZT4rjoD0X+Hcxwfb7j+93+N/F/9l+HmXRhPUXtHUFdSOHu7EoN/tgeP79MsS1kQgco6Nh3dD+rGUVqHriqy1YZCa0ZaEn9tJQ/Yylpq5yLVQ4lwhUhcnhm2q4r7j1aU1rGxlrHW/M7f+gav3jslu7nH9p1jETlZbHFPnqDOznB1S7vYSImHUUY2mQjtsqlQSSoCJuBVGkcCcMoN6uWPCFBVGrc4Y/lo4Q2IsJk7WiRpt2GHikEfaSJ6T8DdjqgMztMr+5w6b+deAd79IPryBAgQt06RKHj6dMPpL70Ov/Q6xiju3Jlw8Mc/yvTP/lFe/fSX+c5XRZ2PWuruqCSVOZ9kkheX5xKNTBIZAOEa9JNQG1SSMBoljLRi6YM52stnGCNROOe9X210P9Z5JoxynlIZG4h0gFe7PlrtlOocViEnDuhy5mLP2z+h9nu7PrWWG4dzPnHtY53RrunVTQOlUoc8mx/AlVa2G37n7Gv8+oMv8s3jp2yqulPm213AZbMwng7WDHKAwkYVRyXk9d4w2QUCYW3bfT+O4n2vsevpMsPIiLWWk+MLfumtX+Vf++hf5DC/xjgZk5vCex4TWivFsEdmzFl5yrIqOy9627QsLtcd8Dw7vaSqZfF93RjG45zpVGh5i23FebthuVjT1G0XzQmgIElF1KRIEk43K75zciolCOqGo6N9/vrrX+Z4fc7NyTXuL55wazolN4az8pyL6pLWtVxUK56uFoyTgnk2Y9mIuIlRpsvxMyohMym1bahtzY3iVqdUum033F8sesPTi3PI+A37c7D2RAtWF8GNp1R03GB9C8ZFZFCHvUZyS9xg8VLWAS2nJ5f8w7Nv8Kv6dZRWHF7b44+//BJ/7pWP8+v5G3zrHcESddgIwfeDFPzOdEZlK7S/b432Ii9NV5JDoZkUOXmWst2U/nrlXFoL/bUvptvTKcPfAnzF4PpuLVApnbNRzSmpH2eM6UBxyJf7J+Ri+j1dm2xrGY9Tbs+zjkVSGE3t51xj++iZpZ8vwZHXgTLrRaysRGzeOl/xhXsL7p2s2JS+eHVUSBv8sa0lNVKnrI6Wv87/agMQ6KMVMZizkU0WFA5j5b5gQMfrlRjBw34Yrl2x8ImjacSAfvB4yV/7xkP+zZ9/kVmRdDRIF50DYJIZLrcNl9tW2E9WgO9iVXVrX9OsKUsRK/l6opnNMg7nBdMiYbGpu3+bqmdShGsqsoS9cco00xyvGt58uqZqLEYrXnxxn7/81Uf8mQ/XHBU59y5LjuYFk8ywrlu2vtbbpmk5XdfsZSlFaliVDbMi6SNOTsBaZhTrUtbXNFPd/VpnuXe2GewXPfDuc7ViWnZPnQxrbQ+id8FTbOcG4AMhV7IHaeG7w1yJnVJNY1kuNnzuyyVf/O1HABwcjHjtpQN+6oNHvDXPee+9C4xRVI3rymBY6wZ1nkN/dH2z0xKtmE8ysjyj2ojASZhHweFZt1aix03bUym7e5GThjUnBo/x+iz31dNWAyW4zw/87tf4vdoPUmLgv0EScY+UUveA/x2yAP0VpdS/AbwH/EUA59zvKKX+CvANxIb+t9wPoExplGL/Z16EG3fBDZPyuzICzl69u1h9EgS8OAfVGvfVX6f99V/n/PWHrNdNxxsOGxuEBGewqi9eLIPGgDq2u0nC1UkL6srlPXNjjo4Pr4fMvpCTZRDDOghm9D5IWLeWb/3me3z88G+h//n/iUSlAJIEt1lLPpxzsN3gLi+kRgkCACvnuvICIT8ubPiFFnPBKNBOUfmlrfIc+1CDQ/LipMZMbfuk10QrTuqGrZMS0m+vtpx/9n0KfV9ojZ5OUDy6QBlNu9hw8WhJax3F8ZLsVok7O0atL2F2KMmrbStjPBpDVYlYS9MIxTDJ4NN/m/fuL7vcIuW9GAGk4Psy9F83baIpo0IuXTc4Pd0y3jx0t+W7AZALYCj27oTvVsqxaC3HdcOb24atdRwmmteWW37x6D2KP3UXM877qMjpKe7138JNvoN6/lXU86+h8rGUGihLJBTnv0xpcG30bGiycUahNYlqu6vtaLxB/ctvrq3rE+EDCE48YFM4gsyk8n0XFrOuXywiJd7Zhf17oR/+INofxPqUGM0vPPcK1/KjnXck58ei6RP1v/8KXNuKtxff4bMPv8TXnz7isiwHgGhgePsIRNj0YpAVGzbxZ+OfUT/1jik1TKTeBXJAZ0DLa/3mEq9nV4Ceg+2m5Fe/+QYHxd/jf/TKn2WWziE4sVzrI3Oaxvkcq6bp6HBVLblxdSsbZTDsxRFhybOEqmpwzlFXIpBUVQ0mMR19DqQmXIjedHXBlGK92lKVNUorHj084e+XNVmWkBgpizJJUx6vTgBY1RvevzijbFvOtpfcaUsuyktaW2OM8eu2jFmuc2pbs/XUS6U0Whm+efIl7j86GToFnX/e2liMY0iFGg7ccHx3nYDxz27sVK/GNgTlQ3BubUtV1RyfXdI+XkHVwixjfmefG/Mpt1+8zihNu/XpeHPG25dvMfZ18+6Mn/e14jJa11KH9cm34PAAMEozyzKKLOVy4OgUJTzJLhnO393yAd00i9bvcI+hn4asmD7f6ln99/u9RP1BrE3aaG4fTRinmtYFh5Lsg5k2VMp2e3estGytv38V/e3toMeLLV97tOSdpyvWZTP4vk7dk2CUiw2R+PIEwQgfrk/DXOnYdgpO72cp+/XPzTBNJVDcAjAM62KgqPXO8qGDZL2u+aUv3Of6JOVf+MhtDiZZV9PT4eeRExBb1i21dVSNiIbUtWW1qinLxqvf+lqORnegtGktZa1YesZX01ryVLOtWi8aIteZJiKiV9teAfRsWbLeNigF7z9Z8rdqEVLRfl5va8vjjZRq2jYt751XKAVPNiWHRU7pSwcphntvYuS7ysYyDfMSeOfpmrfuXwwil5JHamnbPooa7Lt4PMLxcZmHOHo33CP6qGm8/sRMkBjEhc+1rWN1ueLy4SO4fCrMu9Gc09svcHBQcDjdJ/dqmtZKCYn3z9ecLBNuzHNu7xdd3cPwHUNbfjCtmY8z8lFOdaE6DCKCI37OhrVFK2wT6hEKjdxaK+qWxPvjsK9iwCrsgr5/YvC3y675QdoPok75P/sub/2z3+X4fxf4d3+oi9AK9eEPd8Wqw8OklMINrOPIkxgET+JmLTQV9q2v4T77GVbffMB6LZXpA3jbRcZah0La4qny9/AMI6ifZGpnBoRzJ0YN+LieedgdE87NzmsauoXW4QFcBxIchmEEaVG1/Pbf+gafmk1R//Sfwt18HlVMRJq/LkXNsa5gvaZpZFJsPYBbW1FFrB1srGOkFVMj+W4b61j5Pg3gbmw0Iy0grpPH9xNyay1l2ZKmwocO5Qesj2KdNy2aFqUgV5r2sXi1itywLVtOTrYUhWFvXuPKCrVa4bZrGM2kA8qNUETzkZRL2KwF1JsULo7Z/K1/wNKPLYouYmZcKLYd96PqoF0AewEkwxDo9VkEvSd8V/Qk7DXxLFHR3+L1hlVreVS1PKlaWhxb65iYhkffOeGF299kc++02wTKB2fkn/sNqZ/3oUeoGy8IWM1HUa3EGLgFJCp/6zwhV7pTqRRwGTkXIppJ3A+oTh6o+9vbRV05jHCexAjtePcZsNb5YHkP5na56b8f7Q9ifTLG8LFrHyTRSe+1RaILSgFWasXJyo3vRIdT/fxSIaLrLE82D/nCky/z9af3ON9uB1676Dpp27YDDPjTqnhRIRg4vdjJ92oxeItfe9bG8SzDOX5v8H63ntoOLP3VL36BWTbmTz73x7k+uonBeEGQlsZH47bthtKDr6ZuqOumi8JUVU1rLGmakKYJxojc/XpTDu5hPMrJi6zLHQTIslQMn23Fuq7ZLwqKNOnOjxXj9/Ji2fVflqWsy4plVTFKEjZNw/2LS/I0Yd3UbJuSsi1pXEPiy0q0tqF1DanJSJRh027F2aEMZbvhb37nV1mvNlf6tZ8LV0Fwb1FGP3c+75wInuwCuZ7u1ivV9ZTK3edVDJH1tqRdlHBZSQJ267gcLXjn4VO+MZlw/+KSxudpPlwu+Pyjr1AkOR8+fIVrxXUKMyJRSUcx7Z+P+CakFUlCnmcY3efOBdqS9Nt3m5sqMiR3GCw7OVRiOO0qx/VCBOF8u8/B70f7g1ibtFbc3BciXWOtd/oGcODtCec6+8Iie3BjXVcTDeS4pnVcrGu+8uSSN56uWGzqruxS3OKIQtta6tbX0tIi0gC9sRp+DwIWsZGbJMrbJ70wSQziAiUt2G3x3mW7+R8ouNa/3j8jyjuPY6bCxcWW//RX3maeG/7Yi9c5mmW+rEAEIHzfbGtZz7ZVy3pdU9etLxcgIC3PE7JMJPkvL0vOzrZdKo0xmv39giI10re+H4tC1vPFpmZVpuyPDHkquW8BvKSpYbGpuVhX1I3k1LVWSjVNMsOqanl0UTIbpRyOE6ogWBZFoEJPZYnuaJVhzm/rlr/yOw+5uNhGZnVg2vSpQDF4jvs0FqMJYCwAOFm/+zGORVJC5KlXvoznyBCwt23Ldr2F9QVsLgm1ocuzKY8f32J/nHF2ue1y5x6eb/lH75wxLwwfPZpyOM0YZ0NgtdvC9zmEappmqShgBoDm15Wg0to5J6wT3cUIhIb+S5KefhlAe6AEB4Gy+HqGjrghk+8Hbb9bOuXvabPWwb178FNbyX+yVup4xEYqrQhbhLID3kiW0EJfXsBdHOO++Bk233iXxbIecKO774uK1OJZmraVgoVGK+raDQp3B4dDAJS7G0nnAXJDUYl2x9iSjwxlc4FOxCT2PHWf+y59tmos3/kbv8UriyX6n/uzuKNbvWJjuYHLc1itOtEK65wvDwC1Ewpr5RyVU5w1dFGYAMISJTXgZsbn5CEqV1rDRPtabCrQFSxpKkBv2VqSyHuRKEXqt/fzpqF6vGKUmm5yd4tw1WC2W1gvYH4IbYtbnfc3PJlAmgndErC//Ff5rc/do/TlHpRTHd2xRTzeIb8Q8Nz30Meui6wZRe/BjIDecAyCye7HbzASvVEWj5nQFB0rv6Idprqrr7e1ju8cr9j+/W9TVq2XgFaiHnmxRG+2cHkhPN58LHlxiRcEML2CUv+FnhLhAXeqlBctiYxxJZRKk4ixFfL+dlvsM5G+kbnQeZVcBHb9BtBaR5qoTiy2844+4/w/js1ay1sX7/Ha/ocpzIhgXYuzCelblM+Hsyiddg9yAHJhfmztljcvv8PrJ+9yut12m2NsaMSROCfepQ7QhesJGy9cdSqFFm8Qu9G30PrvH6peynvDaHQ4fvB9jsE5w+e3m5L/5rc+y2W14s+//Kc4yA5xOFKdYrGsmzXLehV9xs8lF0okwLasOkAnhqCovNVNS2I0B3szURUDnJ9zWZYyGmWEOmxilFkmWYZzjrISb7duFFVZ+xwOTV03LC5XvFXW5EXWJeonXiGxsS2bZk1ja6yWVaW2VTeu43RCqpOuvMA/fvCP+Adf/SZlJblEWgXRmO89ZrGHt9vcn+ENGY5TbwTEYw+R4rH/uibK1Wials22ksVqmsrP1EDjeP/+U6qqoW0kWsdMCkifbpdkZsN5eSE18ZTB6KQTN1G+/tuzgKrRmiJPydKExqvshnvTagisduvY9XMsBmfh+euZAv187z9j7VXj6Ps5PH5cmnMibV9fK7yjVXJxE6U7Fg1A1VpKbZl6R5RzrhOQUQpSo6gay7uXK9463nK5lqhqDIJiA79fS7yx7t8LghUhVygcnyR9jpUUCHedwEPIB0qSPqoVA4vdaFtMwXQupvkN18Rd0BeekeWy4v/96fc42zT8hQ/fZm+UUKSmO0djHZtKInDxPUH/e1PLs7FelSRpgg2pCk2LSQxH16cUoaadFdtSKcV8npMYTerBVeNg5MFG5VUsN5taGAYeGG9Kx5OLDZuqYZSJAIsxYk/UrVArq0YirsYFZdLeFs1TTRIiX0rxxXfP+DuffZ/Npva1K4dOEufo1ltZ/1XXh2Fse8Vk6/ulfy9EawOjLWbw7FodYexjMOkcNFVDtfGssiQTDJDm0FQ8fnAqa1PrqD2gbqzlbN2wrS3P79V+7HonUmQGdd8VmkKioaNJgU7TwboKfeTYRBTNvq9c52jVEcd3NwIXi5zEz1AAuDGI/WHbjwSIq5zj/b/zFV548UX4hX/ORxnM8I7icgIAqJ4+Gf41Ne7RO/D++7QXm24ySp/HC9HVDXQQ5g2UM9/pQRgiMaqbHMHA0dHEvHrefnGJk217MCHAJ2xN3UIUfne98RegausNHaMUjy62bH/pdT6eJvDBD6Ku3ZAP1hVuvaJ5X3KtROwjStpV0Fip7dooR6Kgcj1lUCPUurnRGKUGQisBcCp/TJJqqsriLORaUzqJNjXOeTAn1z/SisqJ/H0LFEpR5EYWqkSjjJa8NxAapTG+YHkGozFqNJYSA22L+8bneP0/+GVWbTvw/DqECor/Xuu9kt188b9qD7C0oosuOiAGcN1QOikc3kZRuxCVS5TkvYXzt2G8fX+XVhbTW5nhAyYlQbGylrPGctq0NIstI60pOsqjRmcJKonES0wi9NE0k1y4ppYFLfECNkp3OYLKaIrcMKo1G2sHNeqIqBwBsIeZ+73g1rNyNPu/IzCDXEqo02KfYXj+uLaqbvhrX/8SL82f5+dv/CGCBxjnfP9Jc2LNeHfAMJASjNrGVpyXFyzKcrAexUblLuiSc8tP7YsUx55R6CMNuzTJq5E3uZpdANBTN/trkDUzBgnBExvYEv19DzzZvsbd48en/PXyS4yTgo8fvcat8S0SndLahrItub943AHIYLAkWmONpqoboUvWDVma+HtXXcFsrRWjIsMYQ1033eYfpLzDsYWPqmlgPC5om9bXkpN7qBvJRUzThKo01HWLUorMg40iSTBeeKN1cS6iF7FBk+mMcTJils6wzvL+8m3+b7/2N1ivS99XRtYh32+hb3fpkGFj7+WrGQC4YS7ksx2KoZ5TGOvQJ84NI7Zaaxpraa0UCk4PxsKmqGts2XBxuaJtW4os6/rZKEWqtZSHAJynzhtlSHXKhs3gmvprk/ID2vdrUWRstxVBsRME4CVad+M79NBf3V8H3xHYFAPnqLry+Xiutu3V3NMfx9Y2Ld9484TbByNuTVNZf7Xse6EWmHX9rSq/PTZBERABYHmiRbzD2q4OrlJSa7XpDF83mE/Bea0UHW05HBPqwYVjJVLTdnlv4b3dfSIAvADM+mLIfdQtrL9hTTQ7kbR+7vWRnTjHDuD+/Uv+i1XNJDP8zK0Dnr82kui1g7Juub/YSGmN2vri13IdSaIptxXVtsIkhrzIB3llJjEUo4y9vYI0EYGYeC5rJaknqdEdcDYKpqOUupYcOwFGmrKUIESaGspS1BevzWBapKRGkRtFkSrSYJf6PgwK1PI75Klh7Iu7Pzjb8O/+vW+zXlcRMA20vh2TuwN0wz4MIM3a9sqzHuZE6P+gRBns8DDmaWq6CH+/5imfv6ho6kZSg7IRTPY9gKuhrVmcL7CtJc2lvlsYnzyVPvVbc3f94V7g2SBJnBia0ShlNBlRbkr0FaVNOiEoa3pHRX+OnjXQrzlucA1hHu+qrMZOCIldfQ96/TPajwSIa53jG48WXPvvfoXJcy+hPnYApH2CYdsIS9yHVLvWoR4LdYlbnsHFKWiNyhKgGnzPleiZ6cFY0zqSMPG9KqVWsgA2IQHRG/4gNI5db15gucWXp9VuRG74mTANmgg47GLB8PE6+mzrRMb+bFtz/9fe4Oj9E/Jf+Ck4ORGlx6qienRBU9sOnCRKkSiJrGyjxTOAtsJ7hionx4TvCQAy06Jq1DjXqT0qpWitZbNtSP2iH99XZaXPNjb0kSPz+S5KSX0+nSa41soqkuYyxsYIeKm2AlLGUxFrOXvM5f/x3+e9xbYrERDnb4lAR6+R1i3kqjesAwiNo0q2++kCBkR10berQCfkKHZjBuC8MqXqgXmmFVOt2U8SEgW6adnYEBkV2mmuNUVh0Hna8wraFtc2KJOgijEuG4G6IC6f0U24QK3UijQzpFqx9cMbvJbKaJRXAtNKkbjeMRA29tBkY/dAVQ+BgFIStVYewPeOjJ/cZq3jze/c4789+FXuTu/wgdkHvdNFixgMmtZnYlrbeBEFd+U5Bkh1zmFxwOFoxNP1mrJto+8JXuirBolE33S0Efbn3I2U7YK5uIX1rvdMxhuuHkT55Lj+Wq5E/rofPQgJHv7Wy18vLtf87Td+m/cXT/gfvPTHWDVr9vN96rbi0eqYbdN0xnyShAi9pmlaD84ElOVp0n1v3bbd+hEK6JrEUCjxHrdNiyqy7p7rtmXbNqRpIhL3NB2lp6xCToj0b9vK9yapIdXixCqSBIfF+Fw3h/NrZkplSxKVME7GjJMJF9U5//vf/I95+PAkAhVNB5RDVG7QjwyBmPTjVRU+6f/hWPcRqOH4hhbvKUINCukDzq+/CSbTzCcjtNYsVmtWTZ/bpLUHtHkqgFbpztlnOxCXYJRE46yzXb24fnb0jo0sS0mNoVR+DbW9kWM8wE2Mpm1jmqge3EtsQIW6e/H7AQQbEyhRfV/HhtdPQrPW8uj+KV89GvP8XsaNsQMDmb/PVGu0ammspbItrTP9vqV6xeHUKOajlBdnEw7HK44vS5SyXVmC0IJR3uVaKwFdqfERDaN3AFe4ThEuCecITSkp2xTeU0qk7cP8v6oM2Dsm5PkaFnsP51DKdWukbKf9fTRNi7OOs7MNf/23HvHOSyX/yifvUDWWvXFK0zoerbcsSlEvlwi/oW0dWSaAqtyUYiNo5WmViQdhAlS1lmLb26olTTQUKVUlqT3W30eRKBalo2od4zxhU6RATZIEFkHj70Pus20tdWM9DVZTpJpUS6H1sK9349SBAsXIno6MmQABAABJREFUR+KW24b/06++ybvvnkUAztID3Hj96HPl4mPD8xTAVliTZH3q3+/B/lXUJONhB/MgBvvdZ9IckpRkJGtTVRooASf0+6zIKEYZeZ4wynot6MaK4E74Lrmn759ukGWGJE0oPWU/gH6jFFnS770mMV2tzX6+KUL0N0Sv43zP/lpkLENeZ1i/gUHe5A/TfiRAXKE1hdY8ef+Cl770OdRLHxEE3q3uiRjybd3PNPAGrROjv9rgjh/AZgX7+ySzgvR8Q9v0Bkiwe7ukb5Hd6x72tnFSakAr6jr2SstXti6OvoX3ImBorxpN1vWvxcYT0EXhwntABzQCSAry+SLfHOiOeIokbJzljYcL1uua55ov4aoWlb1D8fw12m3FxifZKmTTFDql6/KVmu6CBNgF5clAyVtZiaKFFsBdg0hKbzYN43HCZJJycSlebOusUDetlShTBAi31pIpxVg7klSTpNGmOpuhspygRKrSDNfWMvZ3XoCmpv4v/nO++O3THsAxdKhKP/VeqADGAvs2dEaoj9NCV5bZ+sUI1UclQ6wvBnEtUkqgN4R74COHS1QuVQICt06opBbJI2ycI1PSx4lW5NlOP8S1EbWRZ2E8k/qAzokyZZCH9MWUvQuHojDkSrNVNhJjQSKd+MXVX7OJ5ptQobru6VrM7+6M/Yia9KyoUU9D+d6L5o9Ly7OE8Sjn/vkFXzv+HZ6fvEia+FIDSnmpddsZHspHHmJr2vn/Mp3x0uxlXtp7i0fLJY21bHYUJcPvcZQlrCHGBOWsuIC3Y5d+1hvv4fN0xz5rk+jpHUKDCcAhjgqF83URO3d1vYs/Z62lrhvefush223FXv5lMfq14cX5bWprWVRVd/2JEe+s0CbFAG/ahrJSnr4j0aA8TTvve+k94gGUpX6tCpTMVV0zz0Xx+CLfCkCs+3vO0kQiMz5HrK4amly+f5KmTLLMKzCmzLM5psv/0l0EChRHxXUa1/BffPOv8qWvv7kjXOJngPMUsm6seu9wbKSaSMyjV/mzkXd9aDzE61AwnGNjKgx3yGEKqnIh37VtLauN5MeUVe3XylCgNuQk9vPL7OScGWWEVqkMrdfiCIAuzHsZd02aSV5cKKfRzV+Ga0kY/5gho9XVtcZZT1nuPjeMbMfH777u+PFfnxLvmDg93fDOWckrB2NU1jMiikSzbUWtUtZ+YeRI1Ml1AC7x4OvmXsGrRwVPFhWttVIg28YRuH5eh4i7UgEI6u71qyyCHtDF4iMyx54dKemfgZ4a13/3Tt1Af96m8TVMWzt4rsJ5nHNYrwJcVzXfeP0J623DSwc5mVHkieGl2YS6daxLUacMNcJEtdEXkNeaclt2TgShjGrG44w0FZrhZd0KINMKaxRpKgyCqmlprON007BfJFiXcLY0UirAUxTLsqEoxDxvmhZjNGXZsM0T9hXMck2RaL//CCVzN8ID8owXmaFsLH/5t+/z6S/d60puoAI1X6zDXYpfDMLjtSSIncSiKH1E1VsTKo7kDdfB3fMBIkTlgV0d1IaVgqal8ZRJqq1n3wmAStKkA8zd/vg9QNCuMzp2ZBqtGI9T0jwVkNY5VOnyiwfH+2P6tWrIegDBFbHTA3qH23DP7q8xgL/vgzcH7UcCxE2uz/njf/7juKqRItGR4h4oBoWNuyez290kCnf8AI4fiPF/eEh6fUb+5JKqtrg6OjyEjj2YMyjP3Bwma4bnoY31IzyA00YNIm6xYRQ2ijj61j8QzoNB10Vy4haUFJ0HHNZ/ZwAs4TUXPB/+tco67l9sca8fY1vHtmy5+2hBVVvKMnhLg/e0FygJBZ4b57AKxkaRa8XcyIaZ+e9OIxBmESDoHGy8sMn1I1EC2m5b1q1lrRRr/xBsrWNslC/A3RffNn4BL3KDSoUKqPb2cVXpRVqsRGIn+9LHZ4+xf+Ov8blffp2t35B6aqfrgEnX58QPgvyS+I1bBY53h197UBvWGRvlzYUWaJQOBvRKE40Z9EXAN9aytQJcA4Vx3UoR8EorMm1JWkVRtqxWNeNNhbqxJ4CsywlVYFJUlkteXFNzRdDHA7qQ5J9rRWoFyna5IJ4kr/Uwp88hG7vx1xdEdMJ7LZBGnlDn5FRZOuwb5xzOi4nqH3IR+lFvN+f7/Ct/4o/SOsvR6BCgM0whROSUfz77Gw9iD13z68tRcYPXDl7l3uIRq7qmbNtu3diNfHVGp1OdKppsGn3ULlbwC9GeYXRu6JGMhQB2WxxRC+eLIyJxdDD+TOetjT4bzlNVNQ/uH/Mbk3cpEsPFessnbp3JvTcSFcuyhLqqu3PJ/t3CZUVpaupZw/58SpZnjEdSgFp7ozHLBNTVddOVaQh/W+c4Gk3ZpFKPbrspqauGbVl33us0TaDpvaxd4fAkYZZlZFqigLNsFjmOLEppUpXhgIvqnP/uzb/DX/uNL1BF9zGktYboQm/kxn3a7xNynNHCcojVJonmWFjTe5rrUKkyNqDCeIT54JxjW9XUTYPbttTGT5DKQuuwmWaTVKTGUOQpm3XJdt6Q6KSjU/Z7nvZ0yZAXF4FMooian0N5lpAkwzWre2Z2DLCOhvUMw+xZQC0YQbFyXn//Vlga3yVC8OPYZtOcn/2Z50mNZl4YT9l2JJFBb5SiRvbvALiALiIkwhcifjIrEj5yOOft07KTyI+piLEhH/aWtnU02j4jwkznEO8jd/3r4Zz93KU7X2i9M8INXo+fmUDhk+P72lvQX3PPZujFKZxzVNuKd9455VeujTmY5Gzrlk/eKVmUUhdOawFBy3X//BijqMqK7ekp2/WYyWzC3rU5RZEyn+cRCKLLYQvXYn0UbbWtWY8SXjowGK24NstYlQ1l3bLdNh1gFCAneWtJoskSTZbIZ+aF8ZFWxbRIBtZKB3atZV22/M1vPuA//LtvsFmXXf/h+kh2/DyEPaRfSySKGsZAoq928H78LMZRqBgsOSflHsJ7zgk9VdbstjtPXbdsV1vRdihX8k/proYb9Zatk1y0JE1YLErWewW3fN+7GB2G/mBobz/LWaAUZB7Ehb9jHYBkQK9U3qEa57u5bi6GCHXMlAjvGaO6PoxZNWEOt+2z9+bv1n4kQJya72H+0r8i8vF7h6LG5z0vOIfSOlKp9JE47YFcU+EWJ7j7b8LZiUQpxlP07ZtkD8/Jykuqatgp3UKyY181rUMb90wAF2gobeRNkHHzER0bfsZhUwYba/fdO/uH+EF6YZH4Negl72Pg5vyx4RYq63h8WdL6CN3y/UsKLeH2RPXnKjxPrgcpkrs2NYq7ecJ+oplow7JtqZzrojW16+l/IMZ97R9gkxqSxnF0VLB8KJ9b+7y4yoFtLRoonGLq8+yMkvysLDPoUSZUwmIk0VZt5KcxkI9x73yD+r/6r/jM3/1mFLWQ3LYAqnxQNSrH4Dcst5PX5f+v6EGdi3MPfV/v0iW92dbRgiAaCxdH8/rxs8CytaysI1cyDtKP+DIPAnhHVgvtVVw5MofjRShJIS366JvS8nsAc9GipZTwu037DEnnyMAOHwnfEq7b+WuP3w+bT6AA7Hxl5/zYtbN+QuwkZtmMf/m1/zGtbZik006Nz/n1SUdgrQdtfWfIHOvhXaZzXtt/jfur+5xtN6zrmspv/CEH6lmGbbeG6KuAL/xsW4ktd98dA8FoHYqB3bPA4+D7ImMpBiDxsUBnJEkUbnieum649/4TRuOcpmn54rbqBERCMnzbWpIk6Rw0iTE0qYbMMJuMuX5tj729KZPpiMXlirIM4gu93LdcZw+MUq3JTEJjG17c2+OyLNluKxH0QNFYS9NWXcQxc+IVzo1hnEhOXAAuucn9ftTnYhmV8HjzkP/8G3+Zv/yZL7Dd9pHFXaD8LMOhbfvC17EMtbwvCfNO9X0bAySwXXRqt0RFaK0NgLA31sLUstbiNg1sW0i15/67oPREVddsSkOxrZg1kncojrih8Ipykhe3SzmP5088l01iSAbOgeH8imnFHThzbgDkBhFlv8co3VMvv991/KS0ItH89It7aBS35ilGCXWuDca3r/sKnt3j+miF1sorM9LRJpWC5w5HfPzmmLN1w6ZqqOrWA5M4qttHIML+EJ7BPgrWR6iaxna/Qx+lkeadNk1P4e6N4D5XNOTL7a5P4bmp67bLrY0l7+UaGYC3GAQ2dcM33jzludszmtZyua6YjzMBnkipAGsdk0lKWUpObZImUIxJs5TZwYznn9/j9uGYvXHGo/MNi03dCbeVntWVp32uZ+uBdpEYaut45VrBumop65aVr0dX1xZra5rG15crElKjSYxEWItUagKmWss44s3iyC48X9f8f7/+gP/gb3+L7aYarB/heQs1FMMa2NdljPqosQMnU1ATHe4hRP0+pEburnFxIfHQ5BDl94NWwFu9Be2ZR41PjzKpsLKquis1I9E0eR7MlXW0N7ljUBmajtagNDWecu9z4PRw7dp1HMRr6nBt7nFAeBbi5Sd8fpgzKgJAsbPjB2k/EiAOpSX/KeRB+ULf4U5cKDJqHfhaJAoFbY3brnAP34HTpz5/aiKfm88pXjzCbmrKcuUL9fnwJ716TzBAwVNwrPCRTaKxte3y4sJcUyrkyPUdHQz/HsDJ32HwYsPJOddFOBS9NyyAkd3WKydGeVtOwMDuOAeAUzmhQSaq5VqSkGlNohQjrbCIapXkwEGBYmwU11PDrTThME1YtbaL1q1aizIaiwDFS//wdVEb56irlvW6oSgML9wc4x6vqJzjvOkpQFsrm7D19y1eb4UeBwBXeNEOJQ9rkoFJcffeYPV/+ff5/Fcesm77IrnPAgiWnnoaRGCgV6gMMssBIPcj378OMi9ig0TAM7KhuPB+nzCuwKsQ4s8jnHznXAfMtQ7eZEeuhbIq39xvRAMjI/7dJJAVXtzE9HTK8IykmQA9v+hkqSarFTX95qdSA1pyGlsnBb+NT8INeYUB9ErU0HUiMWGu6shw6j1wYH0kz3kHhzhEGCyAP85NK83IjNCJ9vQ5cCEPUQl9WElHeqjfj6Xr/pO/wizbyw75qaNPcbw+53y7pWwaqqoRQxQ92FAhGESStxU8pbt01WDA7gKt0HaLhIf3+0jOEAiE14a0Nn9Nrt+sAmiz/lzWOpqmGVyDUorLxboDQHXVYFZb9vanUqstMaRpgmpa2lacPJNxAeOCUZ6xtzfh5q1r3N2b82S1oq5F9bEs6wgQWVYrUfwc+Zy4cn/Otq1ZVCV7xZhP3LhB1bZUZU3TtF0x8Q5ERiIJSimKJGeU5J3ypAr5XkphMJyWx/yfv/Af84++/E2227L73LPKPuxGf3aBs7XB0AmGbhMZVUMarJw7rGmx0MN3+w7bGe9G9Z5h4o+E06cakiEt0RgjQNDP7bgGXACzqU6pXd1FoMMx4vjSnYJhlqVkWdqpjYYoXRiHprW0bRsBMhVRmuKL7fsvPH/hbzEmw9/4PvIGl/vJicQZLZG21PRsm8bn8VjlqFpZj1rraJUoVQfZ+cxIvwbxDeMNyjzRfOLGPsfrmvN1xbZuqarW7yW6pyX6NSqAptbJuetadca5gDPbGaZNYwe5QuG9uPBxLF4iYJMOIISxlXP3+UThfHFULqb9heObtsFGwCE8p8dPL8lzQ1Ek1K1lsak52isYZQKciiLpREe0VswPZswPZhRFwtHRhA/cmvPiYcH9i5JNKQq4VdWilZI8ttayWEhtt9ksZzZOsQ5WVcvZuuVgbPjknQkAy42sTWUp4xJUKwN10GhFnigmaUJmdEchh6FddLau+b/+2tv897/5Lpt12QGQeG3qInatqGo6K7Z1OCbsCa3vv7B+t63qwHFoYfx09KyGcQ12QT++dGteAOfhswNaqG0hycXeUUoAnEnAr8PWWq/8GajCzypVQrQ2DJ+fYItqf+1ZZkiyhLYOtHAJNigl6UHxfhnnIodz92knPbMizOHADthVdw3XKP0S1mZ+4PajAeJAAFwo7tzu0MWUlvd3BtctTnGP34XjR1CVPZpKUsgy1NER+e0N40VJVbfYVkVFvx3Obyqq7UVOejnbYKDi1RzdlQkYWjxp4wGIwVv4ezdQGu09XeuiQvRCG+Ec1oVNsTcJpS6b0LkSpciA87blsrFsrOODk4Jca7bOUiBRN43kumWePrmfJNwqMoxRPFnWneFeOQGFkiMHi1Zy2irrqLQjzw22lVzCJNWMZ0J1ah6taFzF2vdf2I6DSmaaCNgIuVo0De7kGPX6V3F3X0TdfAH3xldZ/Yf/Jb/25Qc9aI3sjpj6FyKZIECuiTo1AMkwqwK1UTs5thtH34cdGKF/QGJ6Zg8GVWegKxeKhg8NLbszuLuwJlAZlVKyIysFxqB87pOsTgaV5rh8BKuF7wAP4IIxpRQ6MR7TabKN9EhYWMPkaRvXlR9oPXjTKswpD+S6vpX3/emjqLI8piG2FNZMrcAkV3nePwnNeEEL8IqnsUEtJipKaRRXc+HwhjbxJ5TmucmLfOr6xzjZXrCqKy5aySGDqxG0MHGCcROiV+H9XUAQ01z0YJMfrklXP381cjKkyvSqfmETHW5k/SbXsREQB0DbtqzXJZNJwWq1pSwrym3FCy/dIs8z6rrpPmeMoShEjns0ztk/mPHK4QEAFxdLvzFqbFtS++PbpuXsYsG4yEkTw2ZTkhqDRjHxtMhZNuaTN8WoevL4tPu+cK1ZLjXmJmkv5AFQ24az8ozc5MzSOeNkyuPNA/5fX/2v+Xu/+dXvCpzjfhyoTkbf2YHQAJgiI6DLs1T9WEiUot3x/A7vY3cs5LOS+zT4XO9X8BdKv/Eh8yx8JhhIRkk+4ADcK43RCcYaETbZoRXLZ1QHBPIs6QGiP691MeWtN7C11rSWgYd918u/O2d3o8V9tNZcXYR/zJvQbqG2jnrgiKFTQwy1rkLUZpTKuNZNcMD0udKthYNJys/c3OfRomZTNlw6iXQ5NxS4CFHnbr1RRPOrz1ODOPoSonA9tS5cb18bjm4O7AKxsC1KxO8qIA92nB3YbCK21M0LT2Nqff6tc46TkzXPPbfHYlFRlg0Xi5JPvXLEtEjZeBAr9y42TpIoZtOc63sFHzga4RxeEEYE3gItMkk0dd3y9Mkl40nRXVOWKGrrKBJFZjSHRcInbkuQ4O3Hiy6qKeUY/v/c/XesbVme34d91lo7nHTzfe++WK9y6K7O3dPTkzkzJIfBFCV6aEKwDNiSDFC2bMCCYUkOEmToD8EGBAmSaBiSaFqyLIq0NRxqSA4nUTPTYTpMp+rq6q6uelUvv3fzPfekHdbyHyvuc++rqjZBoqpW4dU5d58d1l7x9/2F70/T6+UBfBceEBibNHw8b1BS0MutsuRgUvGfff0Wv/67r1urlpcbZRe8La8FQkZvEL++CyEs8BU4TwlDS3f9ieDexyumxF6xj9sOgO5aXv35Ib6uu0lZi5wxFti5tcDS+0fX8mSrfE/FL3+5A495rijKgspUATCn4yq1BPuYNy+K+TZLS5wndNrdtq399FZNT+5jzsgL71zePyDOCa8A6CbkijPase8ZE6jUaRvM0S7m0W24f4cQoNbUIZecyDLMcEh29QKDownzRYvWNTTObTJB0ULGxm9aTZnFIFFviYum5C6jj11M3EYmUz9v9yo6sjsCASSkMTWa7jlewe6JNky41gQ3SgNBqIyuXDa+rZSCbZEhaeg5TUJRC0otMUIjlaQn7cLdk4IVpbjSL1gZ5fxgd8JE68Ca+GSpGCpJY6AnWwsAhWAgJdfKgsuXBvbdlaDo5QglGQ5zbmz1qfc0B6Kl0sYGDUtL5iFwLIo+Fq7IMFUFt27BbIaQCv3rf5vT79ziK6/ustDaTU7RkTmWUx9Ilua9b2+6LJuNE3gCmLOiN1qYYMXzE69yG2GwsBAnvhdUBKDctQZC3F8K2hsDMvSft+jJzvt4tiOrtkmmpnB/Z6VDUw5FSeVi55KYUexYzaWg0aKj9wibm8GlgBAgIlAjAXLLJYxBY2vctAblDvpklghB61mrRBRKPwyl65phAgtfqkrLyBzJiV+o9WOXYoF1q/zIxkfZn+9zPJ/yemM1rz4nXMcdz0QlkfUUUMGSkVKrL2uqA+g2cc1LQVYXdNFxZesUQ7A4pucYE5+b5lNKS+rgNpvNKYuMzc0VJqezwHpYF1lI0u3jpIwxFEXO6tqQ57a3GBYFX715i9lsYa05Zc7OaIvVfsm0bjg+OuWKc6kbjfpc3lrnxa1LAGRa0c8swUlPZXx05yJaa46PTi0bpWPGLIqczKUW6GUZhcops5y6rbk3uU/V1lwa7PB7+/+Ibz96nb/75W9RO0Alk3Zd/jzPDXUZ9AWA5iRYCUSm0djuKYmAX6fcEDwDqME7trgcTtq6qAXA5zeTzuBMBQ3vghJ/VkIFl8rYx5a5058s3NwIa6SIhCh+/ConVHsqfCfXh7hGC3jTeMuY7scL+akQmI5Jb8kTIo5tq4hySb85570/gMVgc7zVrXECvaZxFuPG6BD/1lOK0jEalrmkzBVV052voT0BhODaZp/PXFlhf1KHc+taL+W88uPbxQMJiVKCuo4yU7qftEH2sv1S1zooKAKTcvK3v8bWz7ixEZ9dOyuiV7wvx80ts/i2TRuIPWxuSW+uhcnJlL29jEuXVphMLNFFmUuqxtLXZ85y2Wpbj36ZcXGtz0uXhhRK8Ic/OuRkVrkUAJKt1R6jXkbdaB4dz8metkrWYT/nmUurvLDdpzEWxA1cHFY/l7x8eYgxhvuHMxbORVQIz5BogVqZWXBeSMWibXl4MqduNKNexg8fjfnmwxP+y9/8EdW8Cm7GJlHOLOcFVZmKwhIRzHmrpXe7bOoGBEgT2WGDi6o2tF7ZpE2QZ7qKpO7eAx6ImQBohF8MQgoxDW0TQ23cuhWVOG68YEOasscw0Kay1vJxX7w1rqmTOHNhZfKmsR4CutUuHjshi1uywJ0HlL13QNvG82IicBliR73L8Xst7w8QJ4QFaLqNAqnRIDInZGI7LxfOYnMf3voB7D+y1wxGMV6oaaBQ8e/BgN71LdZnNe2DU6ZN00HNdsAR0gpobTAa8kxSyfZMVVOBJ/1uf0vPSywU7ph1rUsWGboLaBvOi+AAEUFdp8mS/8f72X9zbdkPb5Qlg1JRlIr+okUrK7g3xrpVKAQDJbm22affz/j2rWNO2pba2Ou1MazkGde2B0xnNavThspkSARb6yUXtnsU2yvIfkFzPMW0GlO11JV9k2ujHvV4xsyxsBXCuhEOlaQsFFm/QBQZsszQkwXV3hh595D2S6/QTBZ8740jjt1GnyXtct7bp8Peu3rGxornp4tHi7XGISykNsaCmAbncuOeJ41fAGJHyM6tRWARNa6eOq6XgLX+ybA62e9NMhakEl516S5wrJN+IOWFJTfJC6vsEI78RGv7stJeb4Uluzhkusvm5jWjSjgwHOobLZJhbuAtkzHfUBhn5myukzgHHCuT+vH8uj8IRTo2XCtSW1ZKTYsxLUooEAppVQB2nLkRINwV50mNw3yFT2x/gsPFMSeLBXfa1sW1dYVTX7xmOg0+9/f1Amy6SXZcYtqoNQ/CrOu4FAieJ9ymwC3N7RSAYwIgU8EwVU75cnR8StO0bF9YZzjqWyp/JekPemRVHQhcyl7BSr/HRy9cQAnJb736AyanM4S0GvH5bMH6aMBHty8yrhbsDwaMq4pSKS6PRlxb3ebScBslJIfzE+bNgnmzoNIti6bhme0tftC0TCdztNbBzW/UL+llGf2sJJOKTGZMmzmPpoc8nOzzlfvf5Hgx5Xe+8xrH40mI69MOyHnL4/JmvgzW0u/tOedpizrw1ii/58DZPj7vvv68KMjaL95Fsz0PwMWODdf7T2sxsyurklF0EMLaopVj7EyLXzl8nrhwvhBk3tuARPklff6wx9QLL8xH61ogh8ErWsSZNvFzA9wcOof45INYBFC6xTtz1jZjbCycNgYtDKVS9DLFMMsY9TL6hQqsk97FNt3b/D6ZK8nHLq1xtKiYVS33D6fOymIVVCTt7ftEK9PJq+bBdgrQfF+k7q5CxL3HWq9iHjk7DUzI4Qh01sX0nt7S44GP/9unPEnXpjA/E+vT3sNjFouWZ57aYGu1B0CRKdaHJVXTBk+uQZmx0s/53LUhUgj+9jcfhATpnt7+wmqPFy72OZm3rPRz5rV1r3xio+T6Wsl2v6SnFMdVRa0N86ZlVmtqbXhhZ8i8bjmaVBijyDNJv1CMehmjQjEqbJhMrgTzRrM/X3B/MmNSN+xPG/7WF29xcniClBIlI5MinAVVUsrw/lrrhNgj0ukvMxT7c8P1rZelTRDMTLIXpMqcVO5FpApD55brlDjBOCOdvCNElOtDOgPvju3HfNe7Ki3nHQ4KdPclc27kWZLSxpN1eYZko+O+akwkUYqKB5McO/vMNA2HL3FvOL/u71TeHyAuLaa7egsncNrAxhZzvAe3X8fcfB2qCtbWbGN7odIniPbCrpSIzQ3KaxUr08r6J8/bsLhAknIgLCrWvVJlFh37Rcj+Fs8B52ZJROJ+o22x+BPs5hSTekcXvEAmkXRcqrtf7k87PEz4LjrHk98MTI1hqjX9tuVaZgGDQNCT0DiAMlKKa5eGVFXLN28dc9Q01mLkLFS1MTyqavbun6CNYagkW1nG5kaPjY0SoSTNeI5snHm7MjSLmtms5WRs2d8u5Dm7dR3eMReS9ZWC4TBDFsouoK2mGc9pjqbhXd9485h7i8ppZ60dLI1Vi615Vkj08Vk+ztC7n/q+SEeY9v0kvNXThH7wglUmogAg3L0bdy+bJ8w4UIY717Zv64RbC+pEXNzw1rhlKgCcFU65sZsIRFlh4+KU9w13v/lPIREOOEnp8u+5UNJ045IqkrMIIiGL30hTAgGzNAKX3ZbATlctXDBz0JBGl7APS5HY5M4eykcrrEsxIJRrUwv0rBVdd2KHbPHj1lorpZHs9C/zye2PsTc9YlxVNh9Q4lroN0ogbLYeyHnrl042Yej2OcSNt01c1f21ce3qXpOCjuVNpqMMWbIEGmMCA29a2uT3o/GEo/GEYb/Hiy88QV1b8FqUeaAu3x4N+eiFSxzMTvnSD9/kdDwL774whixT3H2wz537e2htGI36PHlxi6srK6z3Vqjbmvunu2Qu32itW6b1nKP5nIPZDCkEF9ZWuFc1eEINqSQXBgNWyjKAgkY3zJoFxwvryrxoW774wze5c2+3Yy31QC5tPw8wosvZ2XlhXFsFUqRz5s0ySYrW2jEZL4HFpI2lCybyboxaQ4jV1YmVLe134/42sQ5BaHPnhdi4pdVLLFnn7O2ix4kgriF5ntE2Z5WkqZDuNewpIPXpS5SMlOjhXUW37Ww7RDdWvzcL0U3U+2Eo3mMIYj9JIciEpJcpykwyKBXDMrMKRh0J3KwSxn4qFx/UGjuvB2XGp3Y2eHTaMJnXHCSWsNSlNW1PT8nvrWbeUuaL7wefawy8lTS+j3chTN30Uu8p79IZ4+e6LpeRDdxZiJwFBUNnDno3Qohz7PjghD8+OGG4OuSXf+rJ0FbDXh6esT0q+NSVIceLhn/wvT0Ox4vwnrOqpcgM9w6n3No7ZV63rPRyblwYcm295OLQJmU/WliFE9i1cdq07E8aDmYNvUxyab1P3dhcfYu6JVM5l1YL1vvKusgKQaMNk6bh0cQCyKrV/Ma3HvDWGw/D+xltbPJqFcFa2g7pnFFenkgVRk4glEvxwl65JGw8Rqdd01jutm3JsiyAvtStPI379oy1/pxlLICQ1mij8nCeB4GtNihp3SKt6zbx/QOQPB/ISWGt2Vb5LclzFRQGKdmUHaM6eIooRwoU6kLXvVJrn7OV8Fv0Coixb+ncSC3R77W8P0BcUJG1MR7OGEISYyGhmmMO7sO9tzF33obDQyvArq527+U7Py8iy1+WkV1YZzCeUVc+WDQmG5TCCbfGhAXj7GYQBdRQXZJPL0ThtIrJbx7ALaPsSFlvzm5+Jj4rnGcIFh7jrD1CJOyVyfWCLhDB1aPB+lADCAV7+3PuTRcstEYJQWU83b4DqcYyTWpjLVfaNFQHM8anNUUhKXLJaJSHhblubKJFpexiZgxsZhmnrSWJWcsU/X5GOShsDJh7WSEF2Wqf2f6E79085kFddyZdCraWS+pWuexSqYDWAedciJAwvaOhFdGdx1tLA5AxlmFT+H42LoZjqQ+9JtOCNctA6cdCcF/sgPUY8whOY5O6U0IM5gXrD172LZjzgwMITJXY66UUCGkTcatKWwWWkratnY+3QmBcO/pUCSnRizGgRRJn6ATBUM+keFdk7x8OsVtTi80HvRjv1pUoEmy7qBC3KpHBEms6G1AXFC/PdSUynl59lk/vHHJSnfKdpmHsBA6/8dnHxfZMNanpv8fWPwFhfl3xn8vWs+75Zy1vqQDUOldnvyE1yUatXR2bUL93qpd1dWpdnjghBPWoz2t7D7n5YM+SvgioXMB57jTEALN5FbS3d/KMcVUxzE8olSJXivVej8ZbI7WmcbT9x4sFuZTsbK9zcHIKwNqwz7AoGOY9lAN/Xige5D3ePj7gy6+8zt0H+64N4rt44USkiqLHEJx0LQkuDlBYtswUlKVeBcY4oqTEinpe3/t7S87uY7YvY9xZ3MzMUsy5wbTpvhdj4rxVTYgkvg57PLBUugFmgbDGr5h2O7cCkFSeqEF2AF4qWKZCzeMAcARn0XqTJbG5/vfl9v4wlbo1jiHbtk+tNaWSGGm9ikY9a4UTIiqCfPHgv/O338+04cJqyU9eXWdvUrNoNGNdYUzse28RjSAqCqm+pPmv/LldV/BuHJuvh2e6PN+iajpJo1MwlxKFGWPAJNY4HYGEj5NbVrAE5YCwclOrDYumoW4sQRCjgh/sznjl7glzFy/XOHd4sCBzUbeMxxV13cL2gAdHc2aVZm9QU7g4uO1hFpJ1z128uhRwPGvIlODa1oBHJwv6hWJjWLDZzxgVWYfERhvDRj/jlQdT/t5XbnH37Ud2LigZLHDe2ri8DvnPVNEU2sCBNyEEIhNB6ZJ6d2itUTK6Q8bx05Wbq0UV6rQ8x1NBTycunMEjr55b4ObTjrlccb742DUpLMGPP5aOZ2POEgF2x3ssRaGYz51CXET3zFxJMhfG4GUed4ekTZP30F5h1GXgTcFhcEP2FvFkL32v5f0B4sACMq0Sy4JvGAGLGebBTbjzFhwfwHgMtUv8Xbu8Wd79zANB5eOFXKuUJeWVDVZmFU07RuuKurYLggZE6netDbmIqDrtGLCgwQtBqfDvBWF/TgAgAWRF28ayt0gaX5W+vv9MPV+slccrTeOi5uuREn4gbMySNpaRsNbG5ndzAgF1Qy4Eq47qtpTWnF878FJpw2GjOWk196vWxdBZN8xVJVlVitUjRS9XlKV1i8qUZGUk2chL9vbmVK0mE5bAYzDIGAwyRB5daZqjKX/4B29RG8OkbW3djHVBTHMhmWRjEEmb2Zg1e6wl/d0DLFhmLPJtJ7AAy3vthv7zC9zS/aS7TgvHcuoBkBeKiYyi52EYkdzTlzatX1rPZFE0QiCyApPl1tocftfBlRLnhx43IjobYuf9XYOlINmPG4NtD+3q1ZK4BGvTcR+I94vjsNWAi534MJVUYBW4Nne29WhhtwDOhGOE//tzCHeJf5Wqz8ubL3MwP+BoPudHbctsujhXsGhbbZkcRVQ8wZJLZFLn9B6d9SJ8miDoLF//uOLvmbnYvSahhvdslf6G7wYuc3ePttWWlW1eBSBnjB1va+sjFvOK2WyB9udVLVprTqczxqczxpMpj/aOGPRKyiKn1y8YjQb0ByXDImeYF47YwQK7i8Mh98bj0E5CCPp5zjDPQ8xXazT7syP++u/8AXXdMJ0vqOomCD0q6QMrlC4lOnYKIrkk4KT9s/y3JK5jQACgaV/FNia0eRSMzgeAcbwkyoEwHJdEnI473Nn4DnfXzm8SGd0s3b6brtE+T1za3gEIyMhemY7ZIOd1hE8sMBT2vt7CKBDBitut87Kg6v7mw1EyJVBtFGDBEZxl1r1sWCqGDsC1znoplt7e70tnlDnufze2hnzhiYpppXmz0Zw2VUhCDXGcaGPIhUsA3kYB1QKuqMyJlggTxqx/dpos3AvD0AXsQQ5I1rW0v/18tORHOlqB3HchRAALwTvBEMCOty4VmWJetVSNBWWThU250LTauu5JweZKySSXzApF3WiqqmE+t/Pz+HjO8cGYg/0Jb5U5o1FBv58xHBZsDEs2RzbkZZBLCpc6YJBLhoXi9tECY6CX21l8YZi73HBe6Wx4OF3w7/3tV6kWDZPxxMbACRFi3IwxyMxa4FrTBWFSSpAxfjRYzxCd9URrfY6RIa5nadxcWGM6qQOSWLhlGUV296XOXuS5MIBOSiWZWAuDtStZczmrMHTi0Rkg5+VGYwjpWoAAvMD2cR6AWFcJ1Hk3Yxz7qgzu3qliI1V0+2Nx/NraRIvye1+d3h8gTgiCL6M2nc4z9QKzdxde/x7m6DBVH/uIbQLtOkQYKxWi18dMp9bt0hhYWaG4UrE6q6krjdFN8HEGHxfn3YxU6DRjTMij0gFkJtGqi7jxpgK9P7fzungLkf9bdCxr6XmpqCcgJNvWJhUHHRDxA8Id1+64H6DG/V0Zw1wbpm1NIa3QcLUo+KmfuYFe1Lz92j7704qTtmWmDYUU5DXUxloZZhp60rnkCVuXorCEJmWhKPvWAnp6vGBcNxhgoTWlMy1nSjhNrwYlafZOOWgaZtqSjVgSkC7wOiOUJO8e2zgJkF8q/rhybeDv4Sex5uw9wbk9krhsOiFL4MaCNQ92iGveCbp0AJHvm+Qd/TNwGxu+n615zVrj/N94zZRxbpjSxTg47dQ5IKpptWWlxE0Vog+5WRp/vkhX1xaXWy9ZtNB+MT7P8vYOgS0fwBK3ThvAL3GCqLGulmapAaMbrwiWcf/LMqgTCFbzDT6x/XH2Z0ecVhV3W81inrifuIFq259OvrjUfeg8y88ykIOuAJROmo4LivEAsQskPEGGn6MpgPNump2N/jFuIp6N0xK5LBw4q6nrhr29Y6thlZJrT1zkr37+TzKpZ3zr4RvcOj7meDKjWlSszoacnNi0A94tMssV/X5Jf2Dj27b6A9Z7PUZ5j0HeQwjBvfE+eyen9HoFdVWT5RkSCygq3WAwFKrPw8kJh8fjkC8rBb9nxYL4W9q+WiRrxDkCgD8eLPvn9OHypxdWl38TSZ+kbksd7ffjirfIaXP+Qgrn5oQDHKnPWWZK/ymEi6tzdVkWvmydTTKWukDuPGucNiYAaaMNQnXHuNbdMdeJBX0Pyor3e7EWUBEYtLWxLpGFSwxd5oois3JS617ZA7jH4ffQ5ibuP4USvLi9wt7MJgFvtHYU+Dq5h00ZkKtuTFyTWHDssege2bXQdce3t7R1heZut6UALyopnJUtUcwbHd0q05gmD15C3ZLYrsblRixyxXTRMK9b5ouGptHc3T0N7/jC9Q3+5c9d56Sq+eb9MTf3Z+ydzDmd1aGOTdNS1w2np9Zy2evZeTuvW9b6GcNCst7PWClsIu8H44qDSU2RSWZVE4CcECIomHMkt44WHDw6oq7q4O7YsSwuEW6kVjSrxF6SsbQ+Y6m1btnR9fE8125fvKIkeJFou18KGdvbx+j5WLwUyAULqscAQhBYKdvakrv5gZXKyonopJYGdBg7nC3+WJG5EJSO+6QIMrkUBKyQrq+elKXTVsByTJwf557cxI/3IOoRFRs/rgfT+wPE4a0NzlTaNJC3mHmNOXwIb/0Qc/+etbANLBtiIHXQTpC1qwJmXiO8ZiXLIrizD0FtrVNMFoymNXVjiThag+OJiOQm4MCGKxIHnlhmmzQByZ+3sQEh2NhfkRYrPxl33tl90+syDaYTLwdRRO5qQ92rEt3h/PtUTpBSQjDXmnGrUcBISW4uKm68vscTf/YTjO6esHDkJKsK1pXhQq5oDI5dEgZSMlCS9dWCtdWC/mqPfGtE8fHnEZ/4LO2v/7d84+98j/2mYSQlR23LlhA0dTLhXd6+48NZcHOMAC6+xzLoNcm7S6LVTArTEZP9ZwDVxrmEchZsxXvYLS4loEnbmjNCBBHIuee0WHfKxpxNKeGtXcvzNIQUZFmMiYPuDqtyRN7D1BWR/EeGODm/YCspzhDzeIBhtbDCxXd1lQTavYMfhwKvLLBWVG2iYOXfPVMEz4Z3szJ8kEtns3MuYgjlhBzLVrl8Xlo8bPOulxYOio5UIoXkyuA6n7r4MQ7mx4yrBYetpq5qEG4TNTFnWJYpt7G6FcIkrnUeaJzjfvyYF0wrGjdh0xWQIM4NY7pxbue5fhoTE05b0NsdF60x1G69rp2rZKYU83nFZGZJQwa9kttvP+R7V3/En3jiC7y2/zbbgwGN1lzfXGdSV7ROgB3k1iPDMksqLgwGXBhssFIMudDf5MnVJ7k2fIIvP/wSv/69b3N0MGZtfcThwZj1jRWmTUOrNYW0MXQAt09OqJs2vE9oMhHjQtKkrRFA+A3bzRm3e3tr/nkWU9+eyxre1DqRtq8vXpCy48E7oUTCFGGiJcq3e7iH99VHRHam5eEhLLjNnBbcEpykVn8vJNp1SQDG19dEpYc/N3MM0MvtkL7PsgX6bBoHO57s+LK7nZUjzo95W+6bD0OxCiW7pzetZae0eeMkwzKjzO36kCqIDVGxAlGZZ4wJOT+XS2tgfZDzqYsbPBrbJOD77YKqikQilr3PKnayTAbmPf+ss8K/u3frQUXyXu4PT7MfgUk8L14XFU2eeTIoAlpN45Q7fl1Mx5tP1dEBOg5INFXDzMlBnpRESsF83jCd2mTevV7O998+4HvXR/z0tS2+9WDMxtCuQRfXekwWDYudEdpAv7DJvvNMMuzl7KwUXF0r2OznbPdKntgYsDkqeP3BKb/x6lscjBdsjEru7U+5vDngtLLEKkLZ2LdSSd7enwc3UU9A0rFOkjBTGoJLpRACBAFEpX3jLXMpIPbHffumjJe6XSLJMrqTAsUY65od2LfD+HOkTaJLsGVjF401zrR1RDoJqQkmgk2/hWbqbJ6489aW5SJEVx4rS0VV+XUuwZKpUi4FwiJ6jPich17J5mBJOMeD1GWPJl/lGPf53mWn9weIMwbj/VzrCpNlCN1ixodw503M/Tswn0dAZlWQ9nvjqEcpYmc3tW09HxeXZS4HnYE8p7i0weB0zqJqmRhDu9BWEE3GiBA255Ufd9o9VhrRAXKCCC5UuvsZTyDhOn5JO9kkfy8DDf/pz7BxWoTYKm8VMQlIEMZRxrs6+Xs0xjCfp8J8d2DPtEEKa5n7yr1jTv7m15lWDftNw815TSFsLrnMtcOlPKc2NrYuk4KD44pq0bJaaa6+fB2xc4n5X/8v+PaXbnHUWC37napGG9jOIC9c8GqrkYVNSbC76wgLOGu7EUTNSubeSSfnpudr927+/BC47f4X+klEohkP2Px9Gm2CInr501fIA0fvbogD4kZYt1WZ3DMFpOk7LR8DbOyaF/b8Mb9wgE0z0B/CfOJWh6yrgsIHz1qrcpZb91Yhk3x8ENgzbVtEuT1aCBMNkokJ1IUDq96qEpKqamPBX+BhSQWtD0+xG47qLK8pgLMHlt7ZmADygQ5WOq/ksuC5tRfYu7DP3nTMvGnDhhhY+4yti0o03sKDPK/9TJUNydhNhRVbvSULnQNwy1agFLidtbI5AgO6lqFWd89bjlPQ2rpFnk7niVtW97nzeUXmCFz+zte+zd3xCW/s7nOwd8yD3UN6Rc5w0Avv/rEXn2T35BTdap7e2eZbDx9yfXVGL8v4c09fY5iN+Htv/z3+61e/zNHBGGMMt28/AmBDWPDXGkOla0pVoITi4d7RmX46Tz+Rklv5+ZGykIV2S+Z3ap3TuLWJJdekc9xkoasBX7a+eSDnf/NEM+cS3yzjnXMWKG9FU0JRhPQnZukyGxPn9zbhzwgATwRBWEhLbuJZBL3wlVoR/HN9e56nFIr7ZZxjMb9cvJ8/17/7h0XBZEzcm/w7ZcKSmPRyecbalo7FtPi+8kelsE4W6WnawM5ayacvr/BgbBkrmyYqldJ7pjTvkZXS/u1BmaVbjyAw9RhYZu8L9RR0+nMZnIXxn4A5HwOXKpl0mg5FJoQeyTirFhW7J3M2RzY1iVdG+d+njo2ybRV/+2v3uHtc8erdE/aOZuzuTskyGWIz21bzmY/scOySp6/2C97cnTCpWi6vtjz75Ig8k3z1rQP+3uv77B7PabXhtZsHdo5sWfKNRhvmraafWWv4m/dPzljC7JdoFQpAzLVRavkCovXRmMDaupyCwLtHpsAtbcNgwUvaLwC+pY5smzbExvm/PZBMAbh9oIKmgnJ4djAkfSGdjFoor2A2nd9TUHVekcLvqYK2tYnVlep6CqRzx7+XV4yl6cX8ud6l15hu4nmf9iSS/xDyJcaY0PcuO70/QBxEN8qmgge3MPduYSanFqTNZs46l3c2QNdqkQwl0ku6FpcIpaxG0K4Y9vd+n/LKBmuzmro6pW0icva3SYNjl7V2VogPnmThWNxG3DGRxnB1QZ23LAWXqwQsBlCQvGZYXHHPNXHR9c9sEwDjq6yBWdPSzxR5Y4k9hBAUwlrVGuGY5ITgtNW8Np6ylWesqQyo2Xca6KNGM20Nz/VjbNxHBlbjtKkzdnYGnH7rLW7/ne9wNG+YO8KDo7rlsNFcyG2OlLKIsXAiV+hFzcNFHQhbPOjJhHU/8jnX0naIRC9dl1J/X8vEmTQqJG1pOn83S7N6Gbg1xgQNsjaGDEv+4usojHWVSt08U0tf4zZZI+z3+NyuC6cxFtgurzIdgUMqyApE2ccsZl6itotJliMy1Vl0lHOv9MVb6lJPKQtCRGAkDWPUEPLl+WTyfjwFMK2NywfkgF8wj3oaaj40xQM4YwxH9SGVrtgstxhmKx0FDUK4+ErbN+9mCfPjNL3HQA15eetl9mb7HC1sDJZnq/Qlbh6yc2wZBHnXId/3573XGYsQJgLCzv3iM9Jnnec+uXxPX58gLBEFgtPxlK3tNfJcBYVTTKEAtdMMz+YV3/zRLa5c3qK8mnP3wR6Pdif2ZicVnFQcnpxydP8IMsndGzvUdcP9rTX+1Cde4tWDH/Ibb/4Bbx0dMZ5YxdHxyYTT6YyNtRWklAzz3K3bhlwqps2chw8P4jruN3vnGn6eS6Av0cXVG+F8e7VBCGiT9kpdpZb7dLnvlvs5vYc/5oUDf/3yWIkVpSszGAi+d0lpTYyrca3Reaa3xIkk76Q9y1qZM5mFtrVCpgd2hPOCBQUbR5iOqbQ90mdqbRcraeK88O9vTGzrIBYsv/8HvHgXSiWhbi3d/NaoCErNtKSA2O8FHcubA8O2fQNCtmsZNj7o2e0VfmK24HRuXQybpiusa2NsnJ4SLBZReE5jd6UkJAH3fZJSr6drSDq9ovB71vLv/04tRrrVHUZeT9YR3NjPic/SrQ7f9w6nXN7o08sVp44tM8+lS+AtnHBumExqvvbmAde3hqwPS+7dG3O4d4wxhsneIRzdZzL5CR7deURe5Nx49jJNo7l4ccgzn73C64djfv2HD9k7bRg7N8zDwxmnpxUXLljvs2GhAkjJhGDSNNy5cxzdH0Uc/9EyHhUbgAVpiTLDuzr6v9u6xXt9pG6Q5xKjpMqlZMobL5xy1qLeAdkyxsj6fSoFgZb6urVyvy+6CQNieT/0zOrGdENx3q0oaRVUWeDAMA7ARYOIfZeld19SfnlFkknmkG0unw4lKr6tUqHrvmnjecN0e8/lfQLiXI3rCu7dwnz1y8xvPkQNSvKnrkBR2N89GAvaBhP/efQuBCFJoFI2jkiIaIlz95Aba5RXalanFU2rqSurTQ4sla0hU5Isl8iqC+R8x3owB47IRMR+9YNp+S3t0piCj+hi5cdF635PlCodIU8i6Amr7SqkoC8lg1xRlopeqawVRkmaVgf3xarWqKpBCZzLnKXOL9wILWQEQKetphKGJ8qcB1XDaasZKRvtMPYaGQELY+hJyVaRc/vOKY221rlCCGYOvBw3mlwIRkoylBKVOfawXKEGJfXumHHbWlAU2s4CuEycTSuw3KYpePOgzp+yLBCl2hPhfvd584Jlzy8+xgMW0WGs1ECRrA92jkbpwIuoXjBJlSqZsHGFjy2eoERKPOtkR0CUCqEymyuubazFOb5cR3vu0wxkPqF6Yo0T7p8lfRHLSvfOGPbjEwhpM2w/2ztJmbi+Jpr/1EXgw1AEEm1aHs4e8OX7X+NgfswLm0/xc5d/nkE26iho3q2827lCSC70dvj49ss8nFqikxMdNd5eWMmktHFcVU2qvAzPMQlDlmcHlFF76M/puqgtbc7hXvHvNGZpWUi0m5J1l8uVoiwL+r2CslfQc58eoLWtDjTi/Txn7PKG+XtKKR01dQQpi3nFweGYne11fuJzH+Htm/fZPxpzms9o+4qT0ykogexnNE1Lr1fwkaeuMl4s2J3cssmQtaauGpqmZbaoKIqcQb+k7Fnik7ptyfKcXlby1vEjTk6nZ6yIQljt/XIMRehhc7b90va2v/n37Aoj/l7nWeBSodW30TJ4ToWm9FrvbNKp67sMWZsKJfZzGEfC0fskk1xgLXVatB3rtK+BEvFaqSTKKJv0O8kh50Fv+r7LrpHLAmp6bhAa5dnzPkzrkS++qaSA04Xmu/emGAzztuXz17cC2UmyDdntyv2Vzl5xzt/+HP+b1oZhqfjYhXXuj2vGs5rjqSXa8nPaGMgcVbsQTZgLac43Y2zy5EggEV3yfJL3qCSIlgwLGBOLnKtcsDAna1JKc5/OKyT0Bj1Upih6Bb1eTu7kJxtL7mShxjAcFoFwRyZzUilJUSja1lA476KqajmcVKwNCj73icu8+qN9xidzjDbMypLJySQo1GazmuGw4OUbm9w9rnjzYBGUprPKsmCenlbkuaTXy1np5+RKULWGYS4pleKNwxnjozGImDDbA6FA/U9X7sF0gZUxJoDaFACGe/l1zAkNQjiWStfuKfjywNkPIqlksOD54yqLTJaWiMh7mcgugAuD0MlCQhCYKZOS9rH/9P11XvEKhe4xEaycdhxLsswEJXiuImlQUDAQrWmxLXVUTLlPb2n2xQM8n3ogKlUIwHE5B++7lfcJiMPSiN57m+Z3foe7X3mLyaRmZ2fAapGRXdpygCyprjEWmPl/YFeyxjpziNYheB9jFGe+PTfLyHY2GIxnVIuWU2qEsItEJ6bSdwqmo7D0sU3pLT0QUFiAYMe902wLgTR+QRUBkPjPGO911lIiEJRCUirBSi9jc7PHaKNPfmGFbLWPLHPo9y3YzXP7L80jNptx8g++ynhSs9CaQsBAChojAkmKd5fUQKW1ZQsD1jPJVBt6EtaUZKAEO9jvfRcX17Y6kJo0rebguEJjOGlt5NWGEoykZLWfU+Qu0L7MEEXG3beP0MRYOz98l4NTffGbiQW7fihE8OY3HJ2c7++XLuR5cq9cRHejYBE10SoogQYR/k7j8TyI9Amx0/GQgkL/d7pRemtcqGsqrNjdLryffaC0KQZU7hYSYj97i4Abr0qCVol/eAI0DTG1gMG4ROWeXdGN4bAWRwIbu7X6zdVX0aq/jB9H2Y+3AH2QysPZA379jd/kv3/7Deq6ZffaMZvlJp/a/gy5LLqu06ngnYA2Pz4Jn10rnC8+7cCnLu6xPzvhNb3HvG66+ZGUF1C8HiuOlzSezVbFbbCajuvKshWn4x7j7tkm8SxW0x2/++vyPGO1VzBaGbCxucrOcMjF4ZCVos8o79PPe/RUQa5ycpmRORZDgaDSFV+88won0zlVVdtnOKC6MLUTLqLQMTmdsZ8pVlcGXL+xgxCCtZUh/b4FigAbm6v0soyNfp/1sqTMMvp5zuFsZpP2ti2z+QIpBaujAaOVAeuDvhXUjKGflRQq59t379sA9iTfD3AGWKTtcZ4WNbWodV10BJ61bBmAeetdahVdBmr+3HRtO+88KWVQzoS+TDTm9odlrWN8H+PWCP8M+ZhxKx3pSdfzxHSSgIe6yi4QS9nhjLEhA7l79zSlwnL7R8EtXiuITJzRCuqtph8ed0qwfXM8b/nGW0fcvHNsLVoGdgY9nr4wijmzcHtn6k7nhEohLKuwB0fSKxSNCeuVCYDJph34zOVVHp7WvPlQs6g1dR0Tagv3HO9CtgzgYn5L/xhL0Z/nKrHGOauKlJgQC2zv0SYugMGtz0DjPBY6yq48I1c5/UGPjY0+G+s9xwppE5+vlIp+LikzSS8T9JyMkkkrF9w6rGi0oW402qjkPQxSavJcOsug4WRaIYAyV1y5vMKb84bVzVUuX9+m388RAjbX+/QKxdqgoJcJRqViO5eczluO5w11qzk+nmOMYTAoWO3nrPaykNQ9d8rY3//BPrrVZLkn9VtWJnUBXDp/loGczcsWj6fAKrC9YsFalmc0jpBKSBHAW5iTbqClLJ8eoKWxu75+qTeDXgI9Pv7NChzSCV0S2iZRaHnvLTd2xbvqpjpFOoDuh3yW2ff17pTarX3eAuzdPy1eaFFKhb2hbTVZpsLemYY7+Pf1JXWx9N/DlPwxyvsDxBkDh7uYL/8hN//gTR4cz+lLyelpTfHWLv1Mona2bUs0DcFXy//zMXDeFFDX1qpXlhHF++d46VMpKArKa5usnC5o2gmLhV2EfO6rpjWBsSZ4bLqFxQu7HoiBFcr9SV3ik+hWaTAhRYEOAC5qxfxxsALOQCo2BzmXLw/oXVpDrfRR/RyRZxG4ZZkFbqMRoteHsmdd76SwALdpWP3UQ9Z2X2N81LoUCtZilgnbHpWOTHNCCE61ZtpqptqwX7doYDOTTFu46DVPxjBE0O/ZtAEAp5PWpifQNs6uLwUbmWItUwxdwK8qMmS/oD2dc/Nw1gFYvoikPXD00XYRsY3vAZyf8qnVzQti/rvAAgxBBNr+GR7wpWAnJDxPwHkqsmWia0eRyaddUOwgCfFwS5PSA/0YD5N8kW68auds634UwhH/qMxal1Vu5wLEcW9PDLfygqBfnczyAkl0HQ2Xc/537eZN5nS4fgP2zGKAC0oGlZ3tzw96Gdcn/P7dL/EPf/ga+7tH9PolP9zf58uDb7BWrvLs6otkIvvxV+B3KKXq89GNl3k03eNksbAEG7VlTdRa2zEtSP5FlxcP4NoAvjwBB9bdTXSBRSgeuLU6sKd6d6ROAl3Xv6Nhn43NVS5fWOf66hrrvYEFQDILwE1KSU+VDPMhhSwoVWkTcAclgualrWNun5wwm85tCgWXjydrpc1v2bQoZTe6HDg6HHN0aNMDPNo/QmvN1XKbum7ZubSJEoJpVbPe69m6G0PVthwvFrRtS1VZQNwvS9bWRgxHfdZ7lrWyl2WUquBwfsJbN++fC9i6rjxdK09HkZOA5bSk83r57/Osae91LqXWp+VnpMKZbtuzF/tFz8W2+HoFYQnvJSFpzbIPpt2vJM7tGAPGqz797YVjz43vlOaJ00uKhLT9fF2CsKe7Lnytc9EL52qTEJxEoX7ZBfmDXgQwbzTfuzfm1df3ODmasL454vbuKb99c5+/WGRc3uhbQJ5ck34ul9ZEBSVJ33eeK+CZ7RGfmy2YLBruHUydwtvKBvUSEQ9E8GUJUFLiCxnCVzxFezeJd0q6YZVIHrj5tckkiiZPzKEyxWDUZ2dnxOZaj9VBwaiX0cstcCuUoMwkw8L+62fK5paUMombt6EEi0ZzOlPUrWXftMDNeg4sFm1wWwbYO54zm9XM5w2Hu0cu2fUWxhiuX13DGAv2Vno5ZSYpM0HVaI7mdk06nTfUtbYWuJWCjVHJet8maS+UoJCS3dmcV77/sGOJf9ya0pnD6TE/z40FY966tOwq6K9fttL5PHvpfFpOsRLOJ97fx92lQNEXlSkLEL0rpSdwCw9og7yTMmXqBMBqY9eD91J8VXVnbfEKMSfnGKh1ZIBO2yV6tBBcJqPyISU09AaheG3KHl7XrbNcR6fC91reHyBOa8zrr3Lw5de5ezRHYxgCi6rl+GiBvH3AYHUIo5F9QxcHZ4xBNA2mba3lzSTgzueL88QmPibOt7BX0Q0GFFc3WFvUHB4ugjuA9yf3nSLcdZ7avz1njKSyOE4BYa0ckeTCAz+Nz/UWXSfdZWRCMJCSnc0+25dHFBdXUSs9a3HLndVtcxOxfREuX4PtK4jNy4je0Ar33vIIwe1OG83Kl95gcLKgMYZWQF8K5lqEuDBP79+69/Rj6UYvY+B9eSG4YJbS5TTSBqNtIt7pog2kHyNlLYirmWKtn1MU1o1KDgtkv+Dtr7zFVFuGTOM0IR2BKPm+rPW1sYHCxk0QgZt2HRAAqfuX/u2tqEqIcD4Qrg9pDkRcyzIRAaE/JkRMNyBw4yTYV+LK5DVD3kU0aJMF3UWh1dGS6urV2QgdE6XIcoxnsGxbhwitpVqcIbsQlnY7ca1I2zAt6Sbvx7A97yxjWdTuiY7GyVY7arE+DMVgeP34h/zWzVd5eH+fptX0+iWnswXfeXiHtfJrbJXbbPd2OhY3iMoIkfxl//bRsKIr9SdFIFgvN/nE9sc4nJ9wWr3Boqo7AeBRYI8a1RRspUU7Fj/hkwBydtMNJCXG4BnlUlAIkOcZg37J1oV1nrqwxZXRiJViQC8ryWRGPyvZ6m+w1dtis9xgvdhgmK+Qy9zS0AsVLDl27bPP+Pr9NzjqlzZVgFIUuXWJTJkVjYl1bltN07ZcurDBcNQPFquqqvHsXwezGY3WrBQFs6bhZL4IicGVkgz6Jf1+yahXkknr1jcq+vSykr//w+8xmc3D5gxdIBH6KdmY7WdXoEqFqscdP0/wOTMelp57nlUqJo2N8z0omZIAfD++7A9LL+P9uqDz3o3WZFKhpAVn59YR51Jp2jNrtnC592x9NUJYQKXE+axynhxDdOpy1v3XA8EzxT3eJ4RO3+XDBOQejmu+/+YB+4+OyJy30mRW8707J+yMcn5lsMOgcIRMwSKQyismaZvuciQShWjci62gW+aKly+ssTuxbpU+Pq41BpEkiveWOM9eedbqH58vpXFKJENKy27nfVyTIEnenQASqSR5mbO2PmR7e8DOxoDVQU6ZKcpcslJKLo5yrq30uNDvsT7IWelllLkikyKk6In7G/zg/ph7JxXDXsaibjEGyjKjqnRQYuaOBdSDTC/EP/nsJVZXS9pWU1Ut2hiaVtMvLIHSeNFSKMGk0oznDZVTtJalot/P2V7tsTm0rpRSwCC3ib7/v998yHQ8DTF+3nVxOXbNt8/yOo8bC9ajZ2ldUmnYieiALCGi5Q1BeJ7tx66Hho9/9m6dHlgvAyGB6BCd2G3RuVGatmuISYq3vnqlo5LOcm+WV57HF+PAX5HJkBrDe7oIAbkjN/T96dtFCucqKkgsb35cp/eObpJpsWM7kvzE+eAU7z9GeX+AuLqi+vIfc/PWmKluKYVEA21jmM8bxnsTsrv7FIMB9HrWZTIdlHVNoFuHLkizuQMiiEtbGEApsq1ViumCYXXgBAP7W1PbZyhpySxScO8XOrO0VXkxTSeuVa1zo0xdJj0INHS9WAopuLhScuXyMLhLqlHPplZYX0e8+DLihU8iLjwB/REiK85t0jBRdGvJYooes1nD2jBnNjZooWmFZ520QG6uDQMJM20BXk9GwJb7TynI3UAtRGTvrOqWyaShwSYVl0ApBBtZxoVewWCQoZSg6Oc2Fu7RMT/an4Y2SLvECxc6cffxgrA/1xOb+O8BqDkgFp13YDnINb1HYJNk2YIXz5FE904r3yTgzQE3D8SFiHEkvnhik/D3Uv0MNu9WxyTmiX5C2/hdTjmgniNk5SyuMR2BSBaMoHywlbJtk2gfjG8L0wWi3lqsTNe3PPxuovW4dWkqUt9wvwjmHxLXykY3/OGdr3Pr7iMm0zllWVgtcNPycHzKtx/e5NroW/zs5Z+nVL3H3CVBxa6k4/lxRYmM66Mn+dj2PnuzQ06rilN/RxMFUr+hhad1Nko7lzyphN044rkpE5zW1nqXkpX4xNsAvV7BhQvrXL+4xaXhkI3ekEHeY1QMHIX/Da4Or7Gab1CosuNGd26rGLsWFSpnXFWsjwZUi8qBtEh1DVBVNUWRs6ga+v0ChQysdvN55eJUchbzCmMMRVlQOWXfpK45ms/RWjtNL5RFbt0/V4eslRbEDfKcQdbj1slD3vjR3XMAm+i0lRcCzgM0qSXhcW5Oy5v7MqCLfXPWJcrfB6KLXMhTlMzF1J0qvY89YanS50xZf34AVcnetlyEkEikFXLC+iXCf5kDktaNLmlLE2PvgkbdX50IoSmACznwHiPgCWHjd+x1Kjkuz+2vD2JpDXz/7gmPHhxTzSvUMInPOl3wtbdPuLHW51NXN7r7grteGx8naf+2+4EdJ2fHZvwuhB2bWysln720zqPTmnnVMp7X7tzoAu1jX1MQHR8WzzUG6lp3rjMmKqj8uW0TrchpXjMhBKPVITs7Q7bX+6z2CwZlxlo/49JKzscurnBtbcDWSsGgUGTn5FHt1M+1Ui9XTCrNaj9numhQUjhLo48DNMxmDb1eRlU1lGWGlIJ+P0vcLgWrKyX9QlE1FjT49h8vWqYuVUPd2M+iUGyt9biy0WeltAm+V3uKQkpe25/w7e/e74zhNDZMKDvufbyad/9b9rhAYJNlJ8zAWuugCAht7gCyB3C+eCuccd5RqZXcXy9wicchuCB2PAOW6uXdOjvpBOzNnPChO4PVA22l5JISqNunj1eMufFHJDjxRo3wPsYaKtp0n0wszW2S2sHPCw/uUwWUl538uPH5E1PZadn98r2U9wWIM7Mp9759j726cbnILGNiqw2Zgfm8pbp/RLbWR169DLjG8fFAzmWQzFGut60zuwrnLOvi4rz7WUqCAlCWFJfWGcxr2vaE2azB51bJHA5Mc5TB+QDO+InhJGNruenGDhgIFjh/je+vvpJc3epz8elN1GofkSkL4K5dQ/z0LyFf+BwM1xDynQUj3z7GmKjRUIqj44qVlZyhn7TAijLMtHUhnDsXSEtB74EU9KToJKk2JpKOlNJqoE5OKmbaUBnttLGCrTxjI7eullluN281KMAYvvPNB5bBMtQ33jsFQGEwG1wOtwimUy2hBcP2eyZEEJmXXSGFk5wt6DLBnRIioPP38GQm4VoSMBeURvaL7xFPkhKFk26/eFAoz/nNJWILK5Bx3zuCpMycS2WWgDwVxz44mtzoEpC+vJBu3BrQzk3V1skLeJyxuvl6gyODQXTq3gCiNU6DZK2jUsr37NLwfi/TesofvvU2BwdjGq1x6UYDILp1csLXH77C1dEVXlj7KNITOBBOPLMqmzBC4/8fpz8sVY+XNj7C4eKIk8WcNw4PmddNR+D3FrOUgCmdR8a4OF2XoDsNrLbXO1DuLHH+/fxGJKW1Wu1c3uKlnQus93qUqmBY9LmxeoVPbn+SK4PrlKoX3v+9FCEEwlhHvEfHYzZWhvT6pR2fvcJqsF2cS12bc1k68yyuh1prS12fKRunV5Zo4Hg2Y7aoHJGKoihzRit9VtdGDPPcsZNJhnmPSjf8w2+9yryqQqyaj11I29PX337GNVcnQmW0NsR8S936x6GRCjiR5MEDD/AALAVmfo6n1yrRFZT8/dJ+DucYumPznCEYwGhYax2Y5GyMn62lBXJ2qbV7oHTkJVYpKtEyWlfPe1763NRK4AWk5XrFeD+CJrsT96m7FusPi5dA1WjeeOuQyckktJO3YrWt4dHxnC/fPubayoCdNbtyCToes52UMumADHsz3WFhkk8BXN/s8/lrq4wXLbf3JkwXTWC8FsK6SC4zfKdpUIwxNHWbkF6IYP3uWN+MdZVMxwcQWA7XNobcuL7O6iAnU5J+qXjhYp+fv7HN9a0+Iweu3q2ccUcE9k4rNoc5/SJDiJaRsYBrsbCy4mLRslhEcGktjtai5l3llLMYrw0yhIDVfk4mYVppZpW1wkkh6OWKzVHJxbUeo9JfJyiUYtq0/L//+7eYOXZdcFa4sP7rDtmIf4EQUxqEJ2LSc2dR8ut8WFe85cmRNCyTiADh2tCvJmEgTtbEbkJvGcBbugYEttG0i4yJwM3Lsz4dGVERFJhPl8bG+f3bBXlpPJx0LuVSWrZK4X5TMvpWpXuudwf17+JjOtNn+fq0rXEuk13CE48X/Lssu2G+W3lfgLhmPOftdsYiJMy1bhf+RVptOBlXyLf3GYwG1irlWyehrHazPv7dtrAMeOLuG+/RttDrUV7bRFcN7SMbH4cxqMzli8BaH/zdO8DsrIwGeJc/wrv4GDhPyhH0PcJauq5fHHDxhYuIIkNkimxnE/GLv4L87C8jhus/Vpt2K2JBXGMM94/mXFwpMae1sxha96pKaxoDp60mE4KpthtjZWyS8J4U9KQlZ7FAyICGCZpxEl/hY+16UjEqM0bDHJVZrVS52iPbGLL7vfvcr6zGLmiMiXFtnWgN10g2PtaLBN0Jm7p++lx5qcujv39oDg8GiRY1S+4Stb/hXOIm5tkpPQBbDqAVAqShc49M0CEv8X3vj5n4is5/UzqJu2aZiSkUlSPy0rJU1pV7uAxzId2U83wpR1xrrcCeadJnEtJYq2w6jjXufYRBmAhYdUKb70+3cRRuodZg5IfHZel4MUXcecS8qsIxL1goFFXd8IP9Xb4y+DrbvQts93YecyfXbkuC0ntZr1fydT629TEO5kecLBbcOz2lrhssk5bt99R6luZ169TA+Hmmz/SPB3BeGPDflZKURc61Jy7yqcuXyaRECcnF4SY/e+ULPL36PD3Vfw9v8fiihI2vuP/ogMsXN2malqZpKXsFmYuPM8ZQVTVSSqqqxlvrmkZRFBk9KZ3bUo1sLM34ftvSJIQLeZGjcolUkrVhn9WyRArBsCjY7A1ZLYf8zs3XuP/w4Ay4EsIDsq67kl1jHGQRMZZiWdh8HJnMO5VU27tsVTsPwIGftzGGJb1XSuHfEZhSqd5W2l2zBEbd2GqNRpvu+uRgnauP7EhLVrFnx1uab8u7Uvr11bdTGywdksYYcu+atQTqQn8IUAmBSbeNrbDpLQJWyPoxA0/ep2W2aNi9f0Bd1dHikfTjom557d6YL64W/OneDqNeZvsnUSM5GRJ/cVBw2o3+zPrUHSbWrfL57RX2ZgvGs5q61ZhGU2SSXi9jPPYkI2ctZ7hnBwDi+s9HhKTrl0/mDbY/U4vPhavrPHNjndwxCl5e6/HPvrjDS1dWGPb+8cRcKSxge3tvyhNbAw6ndgytDQtOlbBuktowmVQURRbSpNR1S123FIUK8U+t1sxrQ64k43nN0STOsyJT9HJBmSvWBjkXhpYIZb2vWO/lrOQZf/PbD7jz9m6yJnXXj2AdM5FMK/UG8B3uLUkmmZ8pm2XaL77DA0BzANAzYnqQprUOz8RYxkwP1tJ6tm1r043IrkU8nOcHpsqtHGQ1L0ud0gWKws1/P2KXx+zjQJ3xcpwQLq9pnD9FrgKJjBAuzCgJMfD7jxIqIV6K947g0nRcKm1fRKXUeXX6cZRM7wsQt6haTso2NKAVsFPXEUG1aJkcTK1b5Q1XbSktaGsc3brXsrQtpmkQuoUst7ni0vOhu9I5QCdWRhQXF4ymlXXtcJqV3Ju+6Y6lFIQ5TIM08bcmmUhwvsCWC8HCaF64ssL28xeRZY7sZcgXnkP+pX/Juk2+B8tbWowf9EbbmDjdgMrIhM0FV57WbKwWcFK5BVszNY7dB5s6wL/HqXO/60lBXwpGyrjk3zY32sJYZkuBA29KUihJv2+JTDzda9HLyTaGCCG4/3Aat1BjXGya22wTTakx1q0vE6IzNtze0gVA79AWLY5dSNDpD5mcA3Ht8N9TohffA5ruJnZeSZNpg7O4LV2k3bi27U94ThifTdMFccZANbXHpCM4UXlkZvVF2GngjwrhDsi4SJ+tbxyvCtEBp35sG/dektjuHrQp0W1Lr0sR75Ij7YNS5oua8WQWtIYxTiwK6kfzOa/svs2N1e/y05fWyWTeGWteAbFc3msLCSHY6V/mo1sv8nCyz7RpODQzlJQ0edYR7sGOXZ9se1nwBzcmlyKojSF5L79p2559+pmrfOziRQZZSaEyXtx6hp+//AusFhs/luXNPiepEwZjNJnMyPKM46NTDo5P2V4fse/WjkoIFlUTQImNZ7Mzcl7VGFNRNLlNKdBY0OeFh16vCM/q9UqKIkNJyWq/ZKNn2ShzKVktS1bLIVpr7j3Yt23k3Ge8Nc4fWwZwKZhK3zGe5/swtdyl5551R/afy/123vXp32eUV+ecl9bNTnBtJSCIZpok+awf7yljcGuW0ggYQ62tkiOTOT7+LX2uB21KSrRb25Zj4eL5XcDmhfxIVNK1qBlj8MptDy59nFzHqmDOgt4PcqmqBpNYZbwl2AMmkBxPK/749pgn1wZ8+vrGGWETupY4g+jshanc4o97JabBKtnXBjkvb69z97hmsmho2hpjCMmuY30IIGB5bQqWVTRVFYFemrAbosVGSsl8NufGM5d5+voaeSbpFxmffWKFP/fCJS6t9d6T5e28EtZArBWmyCWPjmc8yCWXVntBUdbLFaenVXjHqmqCFXE8noOBXj+naew6NBNRh9cvbSweQL9Q5JmVnVb7kq1B5mL0bH64QaaoteaHbx8GcGUwwXrZsbwRc1EGq9gSIEvfM51D6ZzzxcfFBavTOcDjjILKye/obloBcFZBbTAiupsrn17Gr69ttLbZyunkU7kB1Towb5yLq0Erw6LVHfnLrg2OVOVdhoNI+meZsyBlwPUESZH0y4/NuE9kmWUttf3h3S9tvKf1JkiVfJGZ0j7ivctO7wsQVxuvwYvHAgGINngG1arWVI9OUCs91OowWuG0Aysk8WHpQJQqulMGLYOJ1jj/3aUdKOYV/eYwDA5RSIpMUtWOCemcBhbC+ZYnxwxeeCMI69YCY4/lQnDStDy92mf7uQvIfoEsM9TnPov8i/9zGKx2B/J7LMK9lzHu/VoB/QFK2W31YV0zWCiu7AzY25txSMNMaxbGg0pbv0xY9srKWHdL+084gBcna2sEShiGSlFmksEgY32tDJqI/mqPfHOILHP0dMG+o6f1sWjCGAea0u7raus8aPCMfNC1kKX97a1ngbhkqXiBWibuhHZj8lqpLljzMQPW6ctbA+OzSH43WDYrH4O0XDxbZfqbj8dLOjAqJ8JJDeZk37bHcN0CuMxpqoQM5D0psYl04M3fMr5/99MDs2Qfd3/YL/7aVEFhjLVM+2TsLdGl9MMkJAE0TdvR+gLBUgX2fZum5cHklO/u/YCroys8s/oCPkb3cQDOl2WX68eVXBY8v/Yiexf2OammzGprjdJlTp5n1FUThItzn7PULz51QCpI6eSYUpLZouKZp67w0vY2vawgk4qfuPRJvnDpZyll7z3V+7x6hE8DCEkhi0CGs/vokKLMeWJrg/v5mNPxlLqyQmFdN1b7qSRKKbI6WunAgSEHupRSIV7BGEOvX5BJyUpZspmwVm70+2z11shkxuH8hMPDcYcI4HFa3C4gSoFFaiXSnb+7759u2t3f/Lrik4FLGa0ZHjQuX5PGwcXflp8Rz5FSRq8HL/V04nLj1/Os6imIa03LaX2CEILVfB2VxMUJnKb/3PUwgru0mGSP8VVRpIImZ9p1GfAao1HS7oNG29hLpSKw+zAUnVho/VSMLohxfTo4XfCNeydcW+1zab3XWe8hjhGztE758RMwP92LrAxgf7+83uOzV1bZndRUje33VitHAtJ2AJm9vKucSMeYJy0J1mMHAr2lSSrJdDzl4tVtnrq+Rpkrylzxp1/c5E89f4lRL/vHcuf3VkiBzXlXZjaG7uHRjJVezpNbfe6fVEghOM4ry6SbyZD3UkqbdqVa1MG10tLPy07MVONiBbdWSseUqbgwyoLssjXIWCtyMinYn9fs7p526tnJhZeAovAOTt4IqQAQnXZVmQrjRggRkoEHwhJBp4/Oc9WM7RXXxPB3EqsbZLolJOUp+qWUtMbG76FcrH9KahL+doyVzrgRU2bEJStds7WB41lDrgSjMltaO+3/rKgkQtx4ulcqGcHfcqoXpVRHePIyb1BaKa+IMMlcMjSNSRQcMX7UQ5Ifp7wvQByc9dFOBUJ/zBjDYlqj7h3SKzLE6oqTJlvLUOnIG8I/bazVIi+6bpfQBXleaFYKBgPyi6uUxzOaJMj2PD9Vz7DW8Sn3t08e48jiO78LBAttWM0UT358B1nmiEyiPvNp5F/6q4j+SnjKey02hsr9Q1irTbOwYGAxI1MiWFFuns55Cri0M6A4mNNO4LRtmStD3VjrVevAmzZQYSiwlrxMC0YuAaKNYYSRVAyLjNHQ5rFTvZxmVtFb6ZHvrCJ7OXpe057OWZjIfimwMVW+VdqOlp6wu3h3Su8KGQDgUhs0xgSXSp1oj9PzPAjzjpmZsBSydj7HZwv3r8UCGGtxEh3g1ml/18eeCMWDyUz4HHOik+rA/y6hK3jbFc1aUFMJ7PTQLqKDVRcXV0A1j9flOcL5XHthVsizLJHC9a0ltnK/+XZOAIdvJ18zbzFNlfgQ1zBvuTHGPNYT9INYDFYgSvMr+UXaGBMIOOpWc/Nol68//CbrxQYXe5ceuyIvC1HvtfSzIR/Z/AgPp7vsTibMmwYlBEdZdDdTQtCe47KRjoOUwbJpltzi3Pst6obNtRU++9QT9LIMJSSfvfQxfurSzwUCl3cCp2fe2XiHO0c5bTQajTaaSlfkeQbCuhzdv7sLwLX1NfaLHGMseUnR5Mzn2sX81I40wda/zTTzRU3WtOR5hsz95mkYjvr085xRUbAzHNLLMuZNwzAv2BqsU8icST3jeDF11r3YZue1n23Ds2QbcVzEzT79LW0LEMHKtwxkgpAgBDoRzPz5xkTrnfBrjRCdcZmCRfvMWPcQt+uEmA54CwEidOrvFWbSvZ82uqOgmDSnGAzDbIVcFoHgxLg46ULmlErZ8SkTAemctj2vvXz1/eEUzEr3Mo1zs0v7xc+DFChorZd25A9m8RZKiIKyFw7T9apqNDf3Z3z1/gF/orzo3CrprOXL+uIIkk3n3LR4o63B9uXTWyM+Np4FtkolhXXpF35MWwAglYQmiSsiApKgKGt1IDE5Y5VtNP1hn+ef2aLn3N7+5Aub/JkXL9N3KZDUj2mF86DPsxFa12G7VpbuHbQ2/OjBCbDK1bWSXi6pGs3pvKauNdOpttbRROFU14KqivnvikIxGOSOqRIurvUYlhkrpeLSSk4vk0yqlo1+xnavJJOCadOyN6lZzBZn+hsDRphAUpKSj6TgKTBDOiHQA3/vDul/a9sWaWRnPfHALbXKecuej4sLdPvarvH+HKt0U0iVJnOP89cba+IxlwbFD8K0yBTcxXHhZfDMraPL+H0ybxAChmV27o7Vy6yhxo9Tr5zuKMT8FxPXpzAmWxOs/ZZHUXQwg1I2NhSiy2aqiNLakOeyozB5r+V9AeIMjjDBbxgkOdeAxiXCE8IGBE72Jogio1cmlrfUamFMdEeLrXjOg0389OkHhEAMBhQXV9FVg2lamtZQFBK1sFbDADYTgTZqsmzxJIB6qdN8kcKCps8+t40alKAk6omryL/4LyUA7jHt5cEa2HdsG2uRqRfJ+2bx/Y0Gp7UX2HdojOHm6ZzpouXG1SEAt08X9KRmKgTjVgcLnDYwcput7RvDXIMUls2ykJK+sha4zc0e+Vof02qK9QHFpTVkkdHOatCG6f6UhdY0JqZd8NT9+GMJwDM4K09o37OuID6WzrJNQro9S1xetyUAFmLbALAU+j61QmhnV4doiXMblp98+PGaPM8BNQs4u1bCxi02KUlMqLc2NsWAXdFsrFs6poVlVzXjQ8TFJ6KbsF9kMpuWQDiBTDmaYFL2p2R+WdBl49tkYm1rPWb0G4N7R+86KcL/CNd5IOq60KbVkIa2WeqoD2oxXliK89jnKfJWAV8OZjNe2b3Jhf63+JnLP0c/GwZlgR/jnRunKrx3Wr2NjfsRCC70dnhp83keTva5dXJAO59b0CIFVd0GQTtN0m1vETeeNEblvFgtKQX1vOGl567Tz2xy7mc3rvPTl96JgTM+JxI3RaDm3e2sVcavJm5N0Q15Qr4xmS64e/sR89mCF67soI1hd++IumqopGS2WNA0LZWz6vd6lrShaVrHGKepqwaVuXi5XsFqWXJxOGStHNAazTDvsz1YRyCZNjO0Mdwdj1ksqhDLkFrkzoKwrvUntb7581Mw2HFn1T5BrkqYzc4CQrDroUmOGxM/oZuE25eo2Y3X+bL8rE7RXvmZvqsb/8Yxl2pNY1raJCZOCIE2mmkzoek15BS2jw12TxUyKrlSgJWIVGdBcnRnXVZABOXqUt9kStKKCBBTATTtL+ljjz8MRWuC1d8Yqqql3/cxO1YRLYXgZFrx1bfHXBr0+NS1DWeltFKjIQrU55XzjvvVSwpH1mYMa/2Mj19Y4+5xxZ3jBZN5TVkqfA44bzHyMW1eyA/3TKx0bdMGdtFUYM/yjOnJlJc+fiMAtpcuD/mTz+2Ev9+peKHfzyHPPOiGaiCxiADBkDtykaaxqQJ+9OCEyXzAC5eG1G2fuweGIye4T6c11aKiXlhlkCdq8iy/Vtw0jEYFK4McJQXDQnJhmLHWs6kHtgY5Ww7AzR2Zyxt7c6p5FSyT6boT1hodAVbXBTm+u7dq2qGjO2DOOHeb1GXdg7z0vqE4QJ4qE3y92taS1XTq534/L4YsrWN4hjHO8maigSL8ix4x1mXSAu9Ka5qlnLjaGBaVPe7Bmi9KRJlRJYQmUZHmDTaEBOYpOF1emyCuRx6oWhdKGWJ9PXBLlXJexvhAEptgorAet3ZbdGtCBnVfFpUm3x2jRj3yK9vuHsbGxaUxQh7oeM1i2nNeEvffPWmBc0vL1gcUi5r6YIKcVQEAJVV+/OsYT2AR/ar9O/rqzLTmmVGf3uV1K3QPCuSv/ouI1e3H3NNYUKZbON5F33wF6gpx/XnEyqbTnGbdd8oKa9Gp5pDnSBfnMNfaJvcGdusac/eUp6+vWO3FBDLRoiuQjuwkEzZdgAfZAyWcq6UFSKuZ4sJGj60LffKtkY3r6+eo1SFmUdGeLmxKCCXZ258x1SawOErh2AwDMHDjIGzy9t0biPFaATh0GSQtOUkXoHk3Pz8J/W8ejKVuS2nfWsAmAoDLAoiJwCWK4F03T+gCxvTd0qUlEpsYl+LQATitLQhPE+r6mx/uYuants+lgrx08aAKznF5QhtEwt7nx7EfiykAk0ldU62Wv9q49/ftmLm28CkGvBXOPlYEf/APQ1kWxv2xzsYkBK3R3B2P+daj17g8vMxLGx+zScAfU9K+eMfnEzWBmcx5auVpHm49YtrMmdZ12GTVUrB4sCwnAC30kQNw2r6Af1EyKanrhmefvsqT6+vkUjHK+/zS1V9ikA0fW0dvmTmpDrk3vUNrWi73rzDIRgghyWQOxgSBXmLBS6sbcpXbpM9u86+aBlkJ9veO+b7WfPT6leC25adCJRuUsqQBZZ6RZRlt25JnKsQuFipnOBpweWWFK6MRa+UKhcoY5D1WixGTesZpPaVuG6QQ3D88pm7aDlBI3WqW9CFR+2y8ss4DDttjjwvej1Zcy6bpf/PP62iAXZukm31aN6+5Ti1Py8/1x2P9o5Jn2TUqBXCBbMJYC2nr9tRc5t17u5ucVCfMmyk92UMI6YBcQnjgnh0Ud8TYteV2SutpBcn0HYVzW4vu48aNLRkEKQITnvdO8KAmfd0PfJEyCOEQ28y679mx5ZWTB+MFX7lzzM6gxxPbgygu4MaGUxg4bIe7ofU5MvFcrwT04EoYE/azS+s9Pnl5xLTWVHUb3KSt4Nq1tgkR3fbSd2gdMZFUNn7Ku41meYZuNduXt7l8wa5FgzLjf/jRK6wNumMyLT735fGsYfdkgU2PULDSy5BCkDmlp5+5XgHbasiVpJfbhqrrlqpqmc1q7mNTJL10eUirbf63w3weQIVSirzIKAoVXC0Hro5+HdscldzY7HNtvWClyMilTTo+zDMWbcu0bmmMBZg3H46pqxrv7ihFJPBBx7bz8VrLSiW7VqoAyiABJTqSk/j+McaFjoiYWsDfOyqhJHVbh3b27pb++aEeIl2rvIfEskLLygwh3sy7UurWho/4IqSVd7RNoxDYWLUdg7lccot0l43nDfNah/QOvh8gUVK7engrbpGrYJCRwno36crVN0nNkOa5yzJJ5gkRgziu3fobwZv/BwQrHMSY9Pda3h8gjq5QmcbHiUCxbCeaRamaxaIl3x2TrQ8QfceM1i5Z47yNVeVdATfcXHg1I6bVCE/vrjX0+xQ7YFqNXtQu6Z9w7INdFhsPDHzDp4J6eER4T8NQKvZ1w9MvbaFGPUQmkT/5BcT1l862izHuvYwduMagv/KbsPcANi/AUx+175blBH9hXzGV2b+bBqSbvK6u04Sha79pKO9NuH5txMppzt39GQNp4+RmbkNMU35FBkqbyPvKZp/tnSHl1Q3UqET0SigKmE7RixqjNaZuEWXeyVPmhceGCJIioOhaZr2PuE6AVzpu0mvBgUPc5uUmskx+832RwCSnTTbBjdK7HGVEoSN9nj8vjX8zOBfOBFw2xlA4wUUSSWPiPZLG1RoxGMD2RSgH6U5qrcnHh5hHtxGjdUK6AW9FljIoLLwGSOTK5o4rMpAiAHkruyWCVWJx87+FNnDHUiumr5UiAc3aJIsWgQr8w1Ki+0fiJud8v/1mlUvFvGm4eXzAt3Zf4UL/Ijv9K2FdCyVdQN4rlEuuWSnWeX79OR5O99ibTsky664iW7sRplTLqaUNoisl+NjjruvaaNjnaDzh4zeuMip6KCH53KVPsNm7eG61Ure61rR8e/+bHC6O2CjXuTZ8AiWUFa6dUB/e2pFfaKFRQgUNrdaWhdILEsdHp7xe7vHMhS02ej3uHZ0wmsyYTRdOu02I7fDvVZQ5vV7ByuqQ66urXFlZ4+Jgg0HWo8wKBIJxNWXRWs12a2wi6zaJr/PjOcYzxDZSIUVDCu4B3p1xErracqvt7boupb91h4Dv1647pR+b/t7pM1JrbEfRtFxPgV0YEl8kL9TEdzQM8wHr5TqlKjuXK6E4qU44WOyxkq/Z/sYzT0pyaYG6x41SCMd0aslllJAJMIuscP7ZHrh54dCTZnnChXBeuxQTFNou9pNl0vuQFJdXQcquK11aMsfauGg0tw5m/PGjI9aHNtG1b2QhCM6xxv0thQsHMV0lgAdyHVHKPbqXK57bWuHhdMHRrKZXZuS5DLTqVnkAwojo0UCiYDKJBdkBPC8kD1eHHO0d8dRTG5SOtv/PvbTNlY3zvQN0Aui1hjcenbI3W7BRFuyslaRU8kCyNsVPIaBujVOQwXwe5cxHYka/VDy91WdjkHHnoGR3WHI6rWga7eaoszE0mtK1xaDM2BiWPLnd54mNgkuDPmUm6SmFFIJxVdM4t8RGa5QQTOc2vYpV+lpByKSaaNcpHXdiB/h8WfYG8P1hRNwvlFJ2TWzboByUybyLbas725ZudWcueuAmVQR+xiF/HzdYVU2y3jmllzJn4uZsh8j0YVbOWQJD/UyxM+hT5rJzqRSCw0XF0bRmpbccFycoEhDvAZzPG+etsH6tkeqs54QQgizzbSSS8WO/l2UW9rfUGpfueXFt6hoE3q28L0Cc8f+cQF8iw6KRakFTt4qq1syOZqi7h5TDIWiNSa1wWjvLlbYrkeesTVciCLPbNC3IGlEUfoeEzU2yWUVzPEOIRWfRt25/3b/tu5jwTuABnFtIsMkThmVGbQzFxTUbBzfqIz71MyyzUBrdWitaVlggagzmzmsWwF17Cta3EL2h/T2AuAT9Jkmg2di2C5YDE5U2VMlm/XBRw51Trl8b8YnLK0yOZjx8NON4UVMbS0vvkyCWUlAIyVov49LOgNG1dYqLq4iVkQVviwVmMkHPKkytg3uOKBTPfuEGw+/c4+v3Tzhq2gDMGu9qg3dBpLMBp/ngPNW/MTE2zr+JBxQeYHnf5rSPrDWgC7Z9SWPZ7F7TnU0etPnKGQhEJiI55ussifcIPvY48LOsbtEmWpLzAu82YBc+Y/t0fAw3vw+XbkDRR6gMk7lUGm6Mp4JXcCNqdUg1IHBDPF3I3Lv797fHRHCZTON1/Cj1bqxegWFdN7pxPh+G4tcmv9FAYlFJGjElljiaz3l17y22+9/kF66sM8iXXKRFd6y8G4zzUZr+aUoorgyu8fTaE9wZP+Qt506ZDqkUAKSpA9LfUqCg3CY9HPWRUnBxMEQJySDv8dza88il+FztaOalUAGEPZje4WB+yOXhJdaKNQpZImWGsgFW4Q28htcXb+HzwMjGukXWN/HoEGMML166yM88eYNJXXF3PGbvdGKJZ5LYuLzIKYqczUGfp9bX2RlustlfY5BZZd+8WQTrW6VrWm0BXCFzfv75Zyh7Bd995U1OJ7MoTCYATUqfm0yEYym4OoONRNdVNT2+PEeWrbsQ16mgmEn2xfSaWFfT+S0KSf4+3fp1XV9MXHu9x37i4ubstvRVzwLwJSvbaT3h1ulttnsXWcnX7LjAhDxxMc+m6LhVplU4D7j6sZlq99P2S+nOl9nw/D28+9N5z/hAFxeArBMFABBYErNMBtdSYwzTecO37p6yMyz53PXNTl7Q8DVZ6/xeGMYP6R4Xj6VMkBvDgmfWRtzcX3BrSfj3TJO+jzzZSbvEtBwUJAinw1SsrfVYzPqsDWwozUo/5+OX1s4k7vaWGZUI+A+PZxwtKq6O+vQLRZFJMhnfEbpzyz8/9+2o7Pyr69bFN9k2ub03oW40H7k85MnNNU7mI+4eVxycVlSNZl63IYl3v1AUuWJ7peTpzZKrqz22eyUDF8s+q1smdU3tQ04Suef5a2vM50/w5g/vU82rmPRc+7rHdg7rg4hrQNu0wXpkx4cK3hhgQViWZwgpUCLGWCMIbJK+XYL1NOlT/8w0xYE/tzVtZx2yz7VgLl1fPPB0vouxU4zphge57yYh8am1IZe2T4Ubm2n4y6RpuH04ZWtUMCxT7yQnk8mYC1MlQAyg1joq6h2A9mA5c3uvTOZYqvDz+7L/FEJ2FanBUirPuI6/l/K+AHFpUWFRTxdgUFmcjL5vZ/MG+fCEbPMQtb5uhdjWd7SxAA4Si5yyxzqxRgIc5alok9+UgqJAba2THU7oHc1c3YwTeO1p3rDk65sGVKaCvT/nqa0hi3nDk5dGyF5mBesrVxDrF0i3MlPNYT6B3tACyrbG3H2d2f/p36T3Sz8FgxFicwfyHp1gT/dOPiG4j58Tl59m5+KAt48sHXFPCsatsfnghCETmv2qobk15snrsP7CDlufLtGzmna6sICscouGc/8sLq1Z4Nbv23acz+H42MYSVg2mNei6AW2QZY4aWSHqyqev8yuPjvnaNx9wc74IQM7WnWDF8qDRAzvlWsgfT4sHIfKcY8uYUPsxRXSjVMK6hNg1S3T62P/duYdJrE7JMbCA9AxwdN+lsPF9PlYvgn03ZusaM50iHt7DzGeYB2/B6qYF89/7Y8wr34WiQG9sI1/+KQvgjbFulcpa3aL/Zvw8L72AxpALC9RyJ2Ap0QWykMQEJouLECASIc8KeBHQ5Zkgy7sb6we3dIVq/91rjb17m4+HrNsWA7x1fMyw+B7XR9f46MbHkTJZbs+R9p3T0rvUJP7eywY8vfoMb63e5kcHB+zLGJiN6TKV+fq25wi3fuPRQvDsM1eZTedcuXaBMitQQnJ95RKDbBisbQCNrmlMQy6tVavVDQ9n9/h3vvyf8Gee+Rw91WMlX3UEF+KxAM7WS7NebHBpNOKW2UUpSZ5nTGcLxMICOTWXHB6c8N2q5vmrl3hp6zIvbt2g1jWLpmLRVtS6DbnI+lnJxeEW/axHIQsMhkk9YVxNqXVNrRsa3dLoFmM0fVmSq4xSFfzUE0/w9NYmf/Ct17jzYJ9Wt6HOVugEIayiT5LkYPL9uATW/LG0zaFrSWvd/F9maUwBnPHrkzsnS8AMQHRR8oDNCcGJAG7r7+br8jp6ztBLx0drDPOmYt7OeTTb5bQ+ZaO3wSAb0uia149e5zu7P6BUBevFGi9tvIwSFsArocikckBOUp+jQktjzH29pbPUebdZn6ReOTfKqBkn0WjbUdZJWr8kKC7Hsnxgi3HKvSQmLqU7F8KQyZjGoXUeOHsnC7709jFPrAy4utl/T66lfhwtnxtCGoxj4nbj9PrGgGe2Jry5m3M/uNtD4zymvBUOL9S3emldSFgUleLqE1tobdi+uBrYKD+yM2C1n3eUGFVjY596uQpKoUcnC/6vv3+TP/eiJUJZ7efBrc5bdB/XvMNSsT3K+eEDQ5YpikIxndYsFvY98lyxezLnW63mY1dWeHKjx0e2R9RaM281VatpvMsgUCjJxUGPvlL0cpv+alG3TJuGRdsyb3VoR20MpZIsXNs8e32Nne0B3/3eQ/ZdKhQPcr2iIqW+D0qPxJXmPCu/lDKANC/opNZQ7zIYLL0O2MXB4fcdr8yVnWc5bTdAp24drwNtaJompkVIOwGcC6WXzxMOAFfmtWbWtOzNFtStZndcBeKZm4cT/uj2mEE+YbNf8PzlUQBqAsjdepIrSdU0wRrneRIk0sYEt20QjLIsC5bKLJMJkIsu3t4bKRIk2rb2SoCY29Wv8WdlrXcr7wsQJ1gSsIPQ5AUkSeYW6qbRQcsCYHRN7/4R/QvH1grUZR8IlrhAAtGJmXODw7lR6rpFedc0rW183Ooq+dYx5YNj2yHvwLpnzvneJhNlqCRP/Ynn+MavvcKNnZGNVZIC8ewLsHUVIZUFXfUcc7yLWLtge302xtz5IdN/6/9ohfSrN2Blw7rbFWVcxN1CLjqxUXaRF+sXWf3Lv0z+7/4tJK3N9aYNx43NqVG4wdwYQ3PrhGuLls0rK5TXt8huXIbVVej1EFlmLZceJM9mMB7D8THtrAJHmWua1hJ1tBqUROQS8enPkt14FvPf/X8QSvDTF1a59rVbfO3hCSdtBGy4egQeIQfs/Eor4pt1xs7j+sAYQNizPTGKARBRaLYug/H+3oImlu7lBQ2dHPTaniZ5usGCtEJA7bEU3ZLiKmNAVw0sFnB0hHn0iPr+Pu3JzCZ/l4J675R7d05oG8MLszlsXUJefhqR5Tbxd1FY18kEHC4/MADaAFZFIH7JRHRDTS2Y0UWgq6H0PuwevIXHhBiV8yrxwStWo+g1aWdd3ISwua+UlNRtS2usJalpW350cMDXRt9kZ3CJi73LnetSUPSOxRh3tkGYqKiRSHb6l3l27Sm+M3iLW3nGXFh3c3vZWeuPjzn1v6fv0y8L/pmPfIK//vu/zyefuh7inp5efYqVfD3EYNS6YtpOGGWrAFR6wb3pbf7tL/01CqXYGewwzIf0VM/GAwoRxtrjNqd+NuQvPPszfPPNW2RZRpE1NLlivrCETJm0rna61Xy/vcesrnlyfZ3Loy2uruywUW5QqpJcZm6O24TUs2bKuD7lcH7CpJ46ZYP9vdGNjaN14PozFz/BarHKb936R0ip+Es//Rn+4I2bfPeVN1k4987UfSZ1R1wGxunYCMLv0vXnne89DNK+O891x/9LY1+iZne531MyGxPgk/QSTJjoRHfKpW4yTjmxaCoeTva5d7rLnZM9DudzCucCtjudcOfBPk3TMqlnbHx0kyvD69h4yMy51TrhJtmj/PdAlCTSTxfrqWSIdfSALXWXjO6WsS2kdLFQbRdkB2+B8wbiB60IccaDJ1pEvAuYdYdv2ig7Na3h5u6Erz04ZG2QM+plYV/oAGl3DJNswUtALij7RFeBsdrPeGFzha8PT8lzyWRizswNiPKeBx8d8OCAhZCCn/zoDn/vD25y48Y6RWbdcl/cWmG1H/NkLhrN6bxhY1hYMc7A7smCf+e3XydTgov9HqNeRu6sk8sAbnl9EsJaz37m6iZfvXmEEISUCafjhYvhsuOpbjTfag2nVcv19YJLgx5PjAaMehmFe55vw1ZbxtBZ1XK8qJm3rQUJrnk8eFBunfnIhTWe3Vjhv/zOPYQQ/PTnrvPqGwNu/vCeJX9JrJXRbdGWjju16qYgWF5bUuZLwlZjf9dtkqhdRjZLT2wSrHGGM/d3Hd0Ff7ILFNMxYLXoOTSVtdr4e3hDhdHQts7t0zCvW6rWsDepuD9e8KPdOeN57ayohsNJxVu3j2lbzbTW/KvDG1xa64V1JpcxjUCWxLf52Eg/VpbXW0Hqxp66fPv5Etcyr9wAQoykf2ffXx4M/jjlfQHi3PizfW+6pkjhG1ASrAk+ia0xUDeWrTK/u0vW60Gehw43TWMXGO9maCWxLpDzrerYAU1VW3CVuVijLEOOBmRlniw6tizzNgRtJ3ZhShUVmRA8d20F8dKL1P/td637YebIKK4+5QBcC9UMc+9HiMvP2MV5Oka/8kXm//Ff4/TeMRf+t/9icLUTRS9a4Nw7nhGSPBmKylH/3L/Ezy8WfP3f/+/44WzOXFq3xJm2FrlMGITRtI2hun/KyfGC4a1jhsPbDHdWLNPkzgXY2rIvu78Pp6e0xxPaqSOG8Sblpo0TMxPIIoNnPoL81C/CM5+A/+av0b76A576+WfZ+f49fvfVRzyoYr+cl2MttDNnAZwQMZ4tPc+nLFAByKUaRdMhYks3I+8CGX/zlkEBwmlO8KAumu+Fq3shBEhNIQUTF3DrrYvWlcgysMZ7mBB/KdUUPZ0z/tEj9vbn1g1WCRZVy/3xgsYYVr70Jldf+k3Mn/3nEcN1RNnH+Jg4JSxwVjJa4MKiZK1tGGth8+Q0/jN1H/Vts6wZypSgbrxVwBLOQJoWBLL8x1+M3rdFpMC0G7htN05pBVkIAMKeC+Oq4vv7t3lq7RVWd9Y71Px+DPvyWCuc2xjTce9LLgueWLnB5dEaSt11py9JYu7YsrtSGi+ilOLpZ67y8e2XaJrf49Jo1Vo7EGz1tvE5vxrTcFjtsVFeQArJvJ3xw+NX+Q//+G/yaDLhX//JX6WnSiTSWumSpM/nAbggwCH5mcs/x//+l2v+L7//a9y69dDmgfNpAzKbE84Y0CdT3mgfsj+ZMiz3WC3f4vrqKhcGG1weXWCrt4U2LYeLI44XYxv71lTYeFXHgOnaR0mFkpJcZVzs73Bt+CSXXrjK7979bV7Ze50/9cKLXNtc5x997XscHdscTX4s+HtkCSA5C7z8tiNIZKlE+wpCnJd+gDN/dwCk/wwaXh9z4tbCpfx//j5CCEdEJKmUdItdKsUS90TivbwlrtI103rOtJnz2v4+hwcnQXCpqoZHjw6ZVxW/P3iTly98lV+6usJasUkm8mCJy6UMBCnLKWCWwWompbV+5JmN+/Rt7YRBT2ySXucJTOx3MKlQ5q13ctlR/gNe2hoj8o6bIlgrUebctBptaNyc18JwMqv42tsnXF/p86lr6+/5UcurlPUuWx7DdhhdGJVcWLHKoDRxvLfoBE+BJVa/NLZPCMHla1v85BMr/HrdsLnSC2PukvtujAVF++PKxroJy2p+a3/Kf/Clt3h4NOPf+MXnQpolJboWuMcpl/x7PHd5xP/qp57iP/ryW7w+qV2+N8VsVlEUisWioa4Fi7plXrc8OOmx0puzViqe2CjY7BXsDPqs9q3IfTJrOK1rTiprfTtPjvGKolxKVvsZF1ZK/jerT/F3vn+Pr751wieev8DW1oDvfPMWs9OZtYKJyDZpb+jfw5xpV5be3VvQtNY0dRPJOgwxb5xvF20656cWuADw3L3930YnISfGYNqoDUiZHjvAz8W+hc4AAlulq7MxVikxqVoKJRgvWt54eML+/iwoMupa8+j+IdWi4g8GOZ+7NuKXyp3QH5bzQJApmyoo9AfC6bUiU643LAkpyDKFUqLjJSAEHXDv31cIQVFEK5wng7Pn+33Yx9adOxzPLe8LEJfWVyUTC7xGzb5spgSLJS+MttXMFy3zOwcMRyXi2tVuOoGwU3qmG+0vxKnqrDulwRJwtDqy+flB0+uRrfXp98eMq8ZjgSQeqwsO7DuJ8IsAtoqMC597ErG6boFFGZterDlGymqGufM6Yn3busmdHqK/+BvM/p9/k9e+cZ9P/Zu/CtefgaxAbF22ycClSzF+DoAzurWaDK+p66+g/sq/wuc+9mle+Hf/A7702j67dcPDuuXYDax1oWiMoTYNi4mmN6sp9gX9+xP6/T1WV26xem2dfGtEO60w89pakIxlQRRKQq6sFU6bSKwx6COuPw9CIravof5n/wbid/8b9O/+FsOPXuVXLq/zR//oTd6YLwACIUlKqBIELyHOWODSseTBmydD8cnEleuVlkSLAoG5Mt4jdZ+MtpJMWLenYMkI/ZyASgGFEAykdG6/bddKFd4lvoD0FopWO+tliywyq61pNCKX1I6uPxe2rnXV0nzjO+SXriJ++s/BYBXR74c+8PFvCBFj4YSlnReIQNbiWTR9vEqq0/VBw167rZIFyScrXSbEjEoXQZ4t/fgBLl5QOM9NREq70QohqFvtApft+XXTcnd8wjcevsLOYIcX1z6K9PEG6f3df+cCudTKs2S9Ewg2yy2uji7S67+BODoNl8SYk7ihpp4BKUvYxuqQX376BUpVYoyhcNYpKSWjfARAYxoO5o8YZCOUUEyaMd/Y/Sr/6bd/g1d+dJt/68//FS72L5LLnPVyk142eGcAZwytaRAOWBWy5Beu/CLP/YXn+Pe/8V/w5Vde5/hkwslkZl0rhWAgBE3TUNUN1aJGZYqyzHl774CyvMfmoM+zm5ts9FYDePPvbOMlHMkKNo61JwSSjJViyFqxgRSS1WKdP/vE/4Arw2/wj+58iY/vXOPyL67w9776HW7f3+tY1IDANpYCuOVzUiCVasJTlje7PUXraErusWzFSy0eEaDITn8vl2it6rphdrSN51zqz2t8egHntqpEZHv0dfZJ2Ou64ct3X+VC/wI/ceHzKJk5S6l9thIyuOGlaQLSd8oc2Oq4UqaATUVBKH1/P7aN6QLqeO+oNf+gF+E3QqkC+6AXhr1raSatcDqrLGlPpqRLP2ItFF+6fcTlUY/LG/2OtSC0nQ8PcPKN3xu90l0IT15jr2s934WB1UHOM1s9RqOCw8MZ3v0cQbDseGVYajH1gr8QgqIs+MxLFymcJV5JEUgnfGxTq63L5EovCwQur98/5f/2tVt89ZWH/J9/9aOsD3LKXLLSy0Let8cVY6K3F1gXyJeurPBv/6nn+a++c5c/eG2P4+M5x8dzJhOrwB4Oc6rKsleOZ9YK1C8Ub+zmlIVie5jz/IUea2XBaVVT626cqpKiE2JRKgsg+pliUNg0DRdWS/7Hn3qCZ9cP+LXvP+LJiyN2/sQLfPHrtzl4cBDXCXFWoaS1tkpdB8o6awCJIkibwApqhFuLnAdIauVLrWhpv6X3TNcmH0dm98y4j1owlIU6h/Oha2Ve7rAsC2PdegoYqtZQZpJMektXl0HSrk2a3/7hIVeGfT75xDq5EpQOX1hmSmvlXY6La5zVxj9TKRXWnzxXYV2x9RduLbTzsChU6Guf8N2e4+WpuC5JKc4Xbh9T3hcgDnD03EuuHlgtt8osq54xVpBfdhNqG8N0vCC7f0RvYx3W1iJYS3vBQl0L4DzQc9BZKIGpjI3lylVkqhQC8hw16lGWqhNHFW6LOOPP71kKV5ViqjXXr40QV69gDvdt/3gJWGsoB5jFFKYnmP17iCdehOkJ+nf/NtP/6tf43jcfcGVnADtX7fNWNqwVLu/xjgCumicgFhc3lSFf/gJr/49P8is3vwd3bmK+/yqz795k/+4Jp+Oa03nDpNXMtebEkY/02pZeZel5V3bnbG/1KHsqLNwqV6hBYS1xvl1yhSgyyyD6E19AbF6Ok703Qv6pfwGuPYP5r/9z8k34wp95kY3fe4NvHU+ojDnjfqghMFamIM4DNU3cYDzzpR9Xyo0Xk5xTm+jL33GNeoyjm4CQEydznz7u0WA3v9wBuAbDVGvmXoCmS2SSuKjbZ/rfXK44Ywwyk0i3CHhXMm+9a7WhenBE9pUvoi9cQjz9cdjYRo1KmoOEijvRQpNlFHkUDL3bpBQuXQBe0Ot+KimcDsTex+d/U9K5Uuj4DkJEBswPg5AEnDMSkt+kIFcq5jg7R3ifVDVvHu7xnZVXuDy4wkZhlTapVe0dY+GEACOcWwl2xBm7wQoEpepzZXSJ1X7JQyJ4SwX680gDMilZXRsymy/YubzFjbXL7M/3bewKJsR7KZFR64pFM+WkPuZC7xKzZsKXHvwBf+OV3+Y7r73FzuUtNssNC7SyIZnMycTZuAVftEsWnRYlMqTMuDp8gn/vZ/537H32EY9mj3j96A2+u/smbx0fcTydM5vOmU4XVIua6WzByYmhLHLyIuMgU9w/PObC2gqDPA+ufkoI1nq9sOG1piWTGVIoRsWQj2y+yChfDXUpVMlnLnyeC/0L/N2bf5/N3ohf/enP8g+++yqvvX47zFe1BOpToGWPu/fVZ/tECBN+W2YQNcYqKLuAK8mvhActcYuLzzYdQLMsqOV5xmy2YDpbQKWj9L08BBN3Kl9qrSndibkTYoyJGuq21UhsTqxbx8f80f1vsllucGPlKVaKFUZFycF8TtW21kXWsUxKIShU7gSk+EylIimHjz+xwo5cWqs8dXm0cnpw5/snCk7yQ7M2gQjCd2r9BdsnmZTkWQT3FpTFMTOvWm4dzPju3jGbo4IydwmhE5nCD4t0rKWeAcYQGEcNVvj1Fr9MCq6PBoz6nlq/G0sspKCpmwAEwrxSiuHakMVswdrGiI9cHjJNiDm8sJwp6axfmumi5fJ6j6rRfO/OCf/p12/zle/c5/q1NdaKAoN1jfS5wODxyqVlPYgXsLdXSv7Vn3qKf+GT1zie1tw6mfK9RxPun1QczyqOJxUzB+Rmbc2RE+B7ZcbuseL24YzLaz16uaTnXEKLTLJSStA45aghV3ZeDLKMS6s2GbgvvULxs89tc3mlx1//5h2a1vALn7/BN17tceuN+27NVk4miYrX84CWd1/1v/v8ff54UIDoJNbSJfcWwpKlpLngYnud/Tv0babCc1KPFq+4mp3OWEymUE1j42tH3uY/UYHQx/dXq43DBwRAprVNUVbXJsRgVlXDvYMpv/nGHmu9nCe2BqwWOas9xeEkzp1c+T0dciXopTkIBS4XL8Gallr70zHjc/YKERV+3kJo0yN0Y+eUku8ocyyX9wWIExBIK3zxAq/f8DIVc5ekWiY/OIyB5nhG+3APVdj4oFCsmc35VizNTr9gZQpjKntq3SIK0/ldrfXplSoI/ee9A6Kr1Pz4jTUGKyW/8537vH1rzMbde4gnrlNKiak1ZlEhygKaGnP4AHPvTcSFq1DN0b//a8z+1t/l7e/vkUvBlV9+OQxgMVq3/sJZ/hgApx2A0zY9gdb2XJlZ4FcvEP0R4qNfgI98Hn5ZM9QtQ93CfIKZT2E6hskx3L+DufUW+vZd5m/usv/glJNxxfi0oqoUUlkt39CqLpB9G5eVDQrk5jriE59GfP6XEVtX7fPTNsty5Ms/i/mrO+i/8R+gjo54+S98lMFv/4CvPjimMtbl0Fs8vVXOuxK1JrpPpsnD/TkawmbSGBOu19j7FsJazVp8svmY6iC0pRO1lXBCt0nIU4RBOtdf7c4ZOc3RYdPyqGqotDknhN/VMchOLvloMnhElqFWeig1iRNfWXfM07alf7xgtDtBvfWQ8vd+0y5saxuI9XXk7ji6s7p+Ecpaon18BCYSmASFiYgLn1IupYeKcRVNowNg88BOSuH87OMm4S1wYhmFf1CLiFpKX5YtLUpKl+T9fHe4cVXx5tEdvr/yKp+58BOUsvdjuXN5RZEbhIikcZVQXBle4cJgyBtK0i6ScSTiGurr4svLH3uGtbLk977yXfb3jnnj8DbPbz5JXuTUuqXSDYWLMZvUY3bnD1kvNqh1xdd3/4j/6tXf5fVb98lyxZ9+/iW00UghLYgT3RiotHhWS6v4iso2KSTeKVXInMvD61waXOXjW5/in3tao7HxeI2uWegFi3bO3myPu5N7vHV8jzePHvH28THTyZyT+YJJXZNLySDP2ej1UEJQqgIpBL2sZLu/wUc2X+Tp1WcZZquBkS1t1ydHz/LPP/8/4tfe/HWOF2N+9TOf478b9PjOd9+g1ToqZky0VIf31F2iBu/uaNsgCrL+9/RcD4x8H0ZrnenEZfjz/TH/PYLCFMAJ8jyjqhqOxhOa0wXnJfdOfLuCBj8Fob5t1sqSh0p1BL62bTmZzCiPTun3S17NHzDMv8wvXJOsFats9tfYm04s+Y9T1KlkD0tB63kslJ3+UbJjhWuaxB0/0Yj7drHa7oTo4UOA46zSTKJ14ma6JJ4o2W2/uo15uQBmi5bvP5zx1OqU53aWWHTpDIczRQfL2lKMoTEu35zhwrBka6WXjGdrTfcueKm7nu+rj33qCbZWSv7wyzfp9XLmtVXEFmVO09r8c/3C0rafLlqOpzWrgxxj4Pt3x/znf3yHV948oCwzfvb5bU7rhh3ZY1CoADTfCcD5OegVbZa50ANVwcXVkourJc9eGvELz7rQnlbTamsR8rF5jyZz7p7OeGN/zoPjBfO65XBaU2aKTAl6mWS9D5SSQklyKShUxmZZcHmtx/ZKSd9Z4Zb79PnLI/6XvSf5z75+i93Tmp/71FW+Psh5/ft3LdBylTfCdMhCpJSW2dLLzwlAC+uHJ9xIwgPCmpLExfm1Jssyy2wpIkOmXy+y8GwRWGSlilb14OatJLPJnJP9Izg9tAPZgzbvQum/u0+/NnmrvgdwK/08MF96ENXUDdPxlMP9nOGw4LVC8fdLxZ/hIqMiY2eU82hcdfbLTElyFVNMRcISu7dlWVQqpCDO54rT2pDnynF5pG3slBBZzPWX3u/HKe8LEAdugQibWnRiU6obQB61jhHM+b/rRYO8c0i/XyAuX7adXlddadKDMG+N8yDOJ+5rWkwm4zkODIrBgF4vI5fWpdO4W9m8cVEjlZbBWg+hJI+qlo9fLJE/+QXM2zdtELHWiNwG/Zt7b9ib3X4T8XN/Af17f5vZf/G3ePvVR+xOKq5u9hHPPQ/9AWL9IhSW5VEsBTRDaoHT7p+x72lpcSyY83nngj+fG4BZAUUPMdoIFko+4kCsVOTAqJrD4UPMvZuYH7wCb75JtXuC6uWoCxtw4QLi459FPP8pxMoW9EeWBt8h8GXhV0gJ115A/dX/A+3/6z+Ee/d4+s+8zPC/f43fv3nApNUhpUDnPR2A6wL/yOZmGS+7icC1cx30cWnaf4ewALQCx4FiQqyXvzeuxZSwVjiFwAhrjcsQlNLe86hpuDWvqQ3kIgJKDzKzJbCfal3CGBIisIEKYWUsn2NvYQwPqhp136qNNjJFUfw24vmXYGeHfP8AUzXoRe1cK0UAcYBzofTg0+k4hA2qFk7baq1sUYsETtsuvBG5KyT5aeU1YFKdv0l+UEtcd7pCZXD7Et1YBn9NCm7vn4751qPvsd3b5tm1F1Gcnb/nPjtxs7Q24qDNCudslltcGa1RljmLeUUa+uCtMu3SAnVpNKLVmuPjU1584Qm+cOXT3Brfodcr0LqlVDlKKA7mexgM96f32elf4SuPvsh/+u3f4Ae37nN4OObSpU2eXX+CUpWs5mvkqrQr+DsAOPsyJryfdGu+lJllkMZR1wuJMRopvEVNYVSPEdZqdnXwBJ/Y+nQAta2umbYT9ud7vDV+m7dP7rA/O2aQ99jorXKxv82za89waXCFnhpY9syE2W+5zkIItns7/OVnf5XfvP33uTt+yD/78qcYDXr80de/T1U34Tx/j7SkVtFAxrWkoIzHutdaq5Jlm8ucplY7dkGkDF4Jad1Td6So4HTCVJZR1w0Hx2OqoxnU2sXPivhoQaJdipY8IeKaaoxGyIx50yTPJYyxqq7ZPTgOAl2R3aZUX+O5jafZGWyxOz1k7pj4fJ2Vi52UwrkpUZ9pv9TamVJ6p/PNfhdJvbuulD6P1RkGvA9wEUJ0AJEXEtMcZdaKa70qWm0tZI1nHRTw8GTBl+4cst4vuLhqba3L7KV+yTlHhx1+9/FDEC1zq4OcK+sl/X5O5RgdO9ZDB+BSZcTlzQFKCMZHYz7xyWv8/I1N3jg+ZTAo7JqrrIXxdN4wq1r2JxUvXl7h1bsn/N+/fptX3txnd/eUq1dXeW67z0qRsdrP3Pufn/4mBXC490/BnnRzw8sV/j1tEmif5sL3CeysljzDMMzdRa2ZVi3jecPe6YKH0znjqqaXKVbynO1+ydaosBbRTIYE5L5u561N1zb7/Cs/+SS/9uo9Xns046dfvsRwWPDdb96iWlQdq5vta6eMTG7lXST9ecuMxqlyOXWnlEhaE9N2tG2LNM5dOrHO2aTzqZmmGyvmKzOfLTg5OIGTPajn9tTMpVqCaInz34WPb7USlGUAVeRShJQOQkQvAWMMzCcc77lbuJCPXib52MUVdkYFt/sVVa2DoiOTNnm4b3rrGahcG8nQ3+kc84m+rQu4SeoRAV9qhPJygp+z2ZIb57uV9wWI8/U1xABDrwEIL6skqWTiF2Y/QSxoN8yOZsg7B/TW1y2jom6tZJrOLohulVJaanYXS2ScO1v4592QhECt9CiLU6ZtooF1K5UgAgiDFYjf/OEBTz29xs9sr3D98zfg0jV4eJ8LF/royQJ2Niyw+e7XEU89D+Nj9P2btL/1D9m9ech42tBiFxJ6fVjbtLFwbWPj4XCToG0ii48HbsIKQI4yygFZYV0q24aQcwPp3iHo2whsFkbjE4xbMJgh+iswXENcex5+8s+CbunXC3tdltv755Yxc9mcTrKZdvpfCMzGZdT/5F+j/W/+Y7h5k51f/Ci//MXX+M3vP+K0tVayCoE0hsJr9NyYsQDNFp9+IIwU95t2KDsotFwbNcbS7PsYPL+pSSPQbsMSROpvKyII507pFzOb+FwJa4G7vWgYt4ZCxtEt6bpPph5M2i9uhhAXJ5RBOEDUNI6ARVnrY+P+3asq1H2rzVnN3yBvW8TFi7BzETWrYTzrjncgy6Il0bqZeiVEnEdnLAC+rjIZI3QtD5rEjcfV28/ND3rxgCQdu9E1LsY3pSXdnHyZ1jU/PLjP1uDbXBpcYbXY4L1y5Plx9zi3y0E24vLoAv1Bj9PxzOZvCzFSPtg9SSegDd96/W2eu3GZT33iOX7h2We42L/I7myPzY0VxtWCS6OcVmt+ePw6lweXmDUzducP+fs3/4BbuwfMposARHpZj9VilbVik9Y09NQg1K01Ldq0IYbGOytLIdHObdO3sUJhhLZLtn9nEd9bCoVJ2crA/o2xVPaqR6n6bJUXeX7to2jT0pjaat+FchbC7Fwh7p2UDiv5Gn/2iT/Pb9/9h7x1fIc/++zH6GUZ/+jL3wkMmsaIMF/SWNEO1b2JbvdRWDzLJmqMp9G3fdi0mozoQpneDyL7ZJqPK32nIs9oWs3xeMLieAaLlsdKCkFjFROSp651/pi33LdtSpFtvy/mFY/2jyxwyBS5vElrNJeHF7g03GZW1xwvFkm+OBm03cvzTIf3PL+fPHmTQnXOC/mqpED4/c0BuA9LTJy3poRPcDkTrdW3yCS5krTJ3ucwX3Ap1AaqpuX1R1O+vXrIzw8uUmTJOCNet/ToGBuHGxfJOPFfykzy9KaNixuPF3H8SAUGmrqhaZswdpu64Y+/95CPv3iBT33+Wb7w7BZrvZzBRHHx4pBF3dLL7X72g/0xz26MmDctp/OGv/v6I97ePWUyqdx4hEGmWOvZxOZ1a+glqW+0I3sRvl0S3Vi6v8V90M03d0zgFRuxTUjvY6ybnxSCMpf0CsXWqODJ7YGz2kWSi0yKx1oIU4vVctleKfjLH7/Gr796j+8+mPLppzYpMsnX/uhN6kUdUgOk1wbFXuKS6HO/eUCdWumCx4A2jigvgrSwx5hu3cPc83JVKi/o7nyuq4bx4Zj28BEsJkQywlSeFTFGziRhJ67dwCZlz1WqWCIkXdcu3RazMce7mnt5RlEovpHZ+XF9rcf19YJZrZksGicGi6BEL13cW+phYcFXfDcPxKLFToY6etnKKtSiBS5tmzSv4Xst72q7E0JcF0L8nhDi+0KI7wkh/tfu+KYQ4reEEK+7z43kmn9DCPEjIcQPhBB/+r1WJhVPdIKj0nErhegoCrXx1gAbQzCbN1R7p+hHezZvWVVBU3dj5MKASFgrM7ext9q6OjaNzRnnr8sy8s0Rw2He0Z+nC52dsyaY3Wd1S3FxlfGsQeQKbv4Ace0GWz/1HOO7RzEm7uAATk/swP3uV1ncPaSqLVX5zqBgda3A3LmFfOplm1ZAZXaDnU9gcgSzMdQLB85MbEAPUqWy7pdCWJdGn1dO+e/S/q6yxE3TH3N/p4nD/WRSmbUKrmzB6jYM1uzf7+JHd562mvkYBiuov/Kvwo0boDUbP/MSf/qliwyUoDJQaQte5u5zebx4a1djkmYgfrdawnhNsyQPp/XyhDU+TtODw/QST7DSk5JcCE5bzf2q4bi1rl/aLI3ppH7LRWvHTulTM4A1h0EARFLGZLnawLTV3Klqbt855eT1R9Q/fAtz/z6srZFdvUi22resoPYB3Xd19XfY1j5nuT11jN/RxgVeOw2okp6RKZIO5ZmkKBV55s5R77q8/GOVf1prU9Twd79DtHiEv5c2MfdMAKq25cFkwg/23+KHR6/R6PrHeVmrZHBwJghOPj5J5jy5ep2LayuWMSth7Uvr0rYtrYtHWMwrnlhbY3I6o1A5d07vcG10lT/x5PPcOjkOFuLD+RGn9QQpJN8//D63T05ompambdnaWmVldci904dcHV6nkAWZyBBCUumKeTN1LpANxuiORVEbjfQQTniaeYkQ0gn17h82nYISyh1TAdTaHGQuotO3fegrQSZzemrAQA3pqf5jAdy7lcbUlKrPn7z2p3ly7RpVW/NLT36EX/ypT5A5zaxv11brQOfuXX08EDEGfILdZQsT+Ng5L2h3Bai0H9PP7vU6CAVeQPDz8OR0yuRoCrPGuhIsb17pgiVFEJJ8vSypiabWMc+TL5Y5UkSmTgfkdvePeXBvjx/t7vPK7i1uj++zXq5wbWWbtbKkl3X1yNIBw3S1OkfvF9rJenjYY0Ja10KVKaSS4Z+39khlmS4to9w/eXbKfxrrU/DiWGqjmAswKgl9zJAU1hrVBuHSMK9aDk4XfPPehPtHc96LHOkfacd4lNk8uIlgTfDcxogLG/0g+EfyFR2E4rZtaZx1dzpZ8OT2kKOjOcNS8vB0zvXRgJ9+fouHexM8pf/dkzmL2pKd3D6YsXdau3lo2NkZsTIsuDOes7PWC4QoUgibhLtqqZxCXpu4X7c6Ws1TJWYQ1IVXqsXjQkQBXLhz/Fg+r92EsF4r/ULRLxSl21PhrHwU+vox65YxsNLL+AsfucJHL/VpjeETNzb43OefRuWKpm4csG9pmzbEoy2Ds7ZtA4AzJsaQdSxy3iqW9Nty/c7c2617TaNtSEYAM/a6ttWcHJ5Q7z2A+SmBUR3ipzHR+BBe3MfvWffVutE0bix6K6a3jPkxh27tfWan7N/f5+23Dnj7wZhv3Rnz1uGcjX7Gjc2SUS9DOQKg1hgsT58D6yaC4PP6xb5nm7ig2+M+hg4SBbkbM0Wu6BUxFcWPs0e9FymrAf41Y8xLwE8C/wshxEeAfx34HWPMc8DvuL9xv/0V4KPArwD/iRDiXX0XjFnWW6cbFV3pG6+1JNEuOf/91liGoEcnsL+PWcyhrjCew9O7FXZawYE5x8gDeCm2kzw8Wx+wuppTJNdbwdwN0mQhMMBJ29IcTvn4T17DaMPsH/w+nJ4gPv05Tk+dAKcUTCYwPsbs7dL84Zc5vHfCncM5Grj+5BqDK+s2f9jqNiymFrCd7FkAl1rgtHPsFMkq4xJrEgJIhQOBIgI8D+Scidpa43zqAhE/PQAMG4c5u8Mmxx5ndTvPLYByCFkJow3UX/5X4OpVaBo2fvYj/PIzWxTCtm9lCAuut0iFvlg6XulugPJysLK3jnkZJhNnw0m9UG6wlqv0P7Cm9kIKTtuWR3XDbt06yuW4+HvwZo93J50f2trvgg7MmaruCOC+3aRI4v0MTNqWO4uKu/cmTG/u0rx9D46OYH0ddXGTbK2PLPMwBnxMnFc4hD5w9/RDJLUedDY05yqZBYIUgcoEKpPkuQVz1p3gn7SIBPxTWpsgdTFJrXDeTc4K7inTnnte2MS95b5qWx6cnvK9g9d4ML2LToANJELZOUX4CriSXieR3Fh5gifX1yl7xRnQZnPXtQFEGGM4OB6zP5vxC594kVZrfuPNLzJtZnxu55McT+cOBCnG1YRpM+HB9BF/cOePuX94zIMHBxgDT169yBNrayzaimG+agGbaZg2pyyaKY1pwjv6+Df/jgaDjnbo2GYJkLPHZHB59BY7KVSSRBxvywvXeE+OtI2WAdCPU5SL8eurIb909U9yfeUyla75hRsv8jM/+bKNM9EW2HqiEj8uwAs2VvPtSV2W+z5VOKftIYK16qym23+m/ZqOTelcfY/GE46PT2FSWwC3/CBfjXOGnyc6CM8CGt2EOvmSko3gwNVsseDh3iEP7+/z+u4ePzp8wP78iI3eKpdHm6wUBYXzEvDWOJ+rMloBYzs89v11TP3hGS0jYLAKpRTA2Tidf+Jr1D/59UksfboSFAg6sRK5tk3dAH0OrExJmtZwOKn59u4RJzNriQhKvrAX2Xv5PVP472LJghrqZ6+7uNLjxoURw2Hh7mNBgmeobBorpxhtj58cnvDgeM7Pfeoq2sDfeW2X46rmZ5/YYLGwYzHPJHvThnFdcziv+OKdA+4eTLlz5wStDU9dWeXK5oB5rYMVrm6tlWXhlOReXLH7cLKePkaIjuMwtkF6vkjaVXSuY2nsnq+c+P+neBC52s/4ix+5yks7feaN5rNPb/KZzz8T3f9M3Md8cnUgyLxGmwjy2i4Qw1uxIMiG3lLn26XjUueBjjYRICbzNcoXMD4cM9/fh9mJ85xLw5+8UmiJqDAZiD5htjbQaKgaE071gDEoNF2ScG+R27u/x623D3n7wZjvP5hwf1yzNci4vFqw1ssY5FaJmClvJSVY/uO8iv2QMj77c7wiTQg7z4pches8c6wU9hk2Bs9Lpe+x/9/tBGPMfWPMH7vvY+D7wFXgnwH+hjvtbwB/0X3/Z4D/2hizMMbcBH4E/MS7Puecamusi+TyYBdu4TGJ9kdrQ9s6hh1tqPdPqW89hPHYWtXCTZeiq/xsUgrhgwr9sbaFuo4ulaur9C6u0u+rIHwbB+D8duxBXWusxWh2Mre5v3Jlhen1TcTnfoG19RIzmdp8dHVtrYW7uzTjOXcfTHl7UXHUNAye26H85AuIz/0U5uHb6C/+XfSd16Gtg0UumlK8hS23vsTe+hZcJ91k8xa31HUy+ADILqgDZ6nLokUutez59kpsA502fI9FqMzGxwkJq9vIv/Qvw/o6NA0Xf/Fl/sS1jbABzbW3xlkgUwXgRgfU+bi35Xi6lMwDOBPHJJy7RGviwu5dNr2Vr3VKh0IIpq3mUd1wv2qC5tOCLdF55nLxoNKySLnv3p0XELnq+MXnmbX4qaTuGphqzZ3Zglu3T5m/+Qh9/6FNwr69jdjaRAwHdpzJmHpAJM9P3zntNj/3zpt/Ebz5ugnrqulAnlKCPH/X5eUfq/zTWpvgfEtcagHxxeeT8VYQYwgMqbXWKCGYNg0/OrzLd/a/w6y1DFxx9rzTnHkHgCckF/qXeHHrBsORjZlNrRUhANznadKWpevRZMK4qigzK0yvFau8vPkxNocDZvWcQuUYDI1uuX+6x9F8zu7DQx7uH3JyOuEj2xf4/JXn+ezOJziYP+KP977Go9kDR3Ji6fy9OBOtayqAIoyFcmnx1jd/zdlW6AK2rtXO/bdEqrLcruf13TsVKSLJxiAb8YvXfpmN3iqt1vy5Zz/OT3z2RXwy9KZtOkQgntDEu02eB0TsccLv1poRKa+XfzNuPdJLINH3cdO0wQpyMplxeHwKx1UEcL5ZU/C2bDVYUkjYZMQmMLD2sqxDPpJlijzPLOB2Qp1pDdO5BXKPHhzww719bp/sMmsWXBhscHG4yUoxpJDWmhqYKM8Ron1bLrddyuzpBWwvUAXhyeWak9KmRsiTNv0nVf6pyU7p3i7Sv7uu8UCg5k+Lz7srpWBWNbz6cMarj46pW9O5Nv3uwdvyntGtl+szY1jpZXz88oCVlSKuR9465CxAbdOG9ale1Dw4mnE6rxnkkiKTrBU5L1xcYXt74Cj8BbNKM280bx3PuXdS89btY3bv7TE+nvLczpCffnqNn762yaOTBT+4N+ZwUgevkm6IhPVM8YBWCC9bduXPDjBLvgdSq6SNvAtrGNPJs96t/LiKJj9nVvsZf/6Fy1xfL5jXms88tcnHPv1kiEFMLW4QLXDe3TKde5355mUzIcNLeAu3TwcRFCfSM9Vaudk/z1v2vJUK4OTwhMnePkwO3YBxrvIp34OJMpGVZR2gFFGRbIyNifPjrXD523wpS0VWZBHEebl5aoHc7VtHvPVwzJv7M07mLVdWc66uFaz2FIULQTmb9y0e80ASujF4HtD5/QCc3Jgpm4gcyJV1s/VKFiXFOypzl8uPJWUJIZ4EPgX8EbBjjLnvXug+cNGddhW4nVx2xx17/H3dZ2sirXzqBpc8HyG8W0B3cUlN4MbAfN6yuH8Ee3sWJPnBqFQ3vYAvMiZH1k1iwvXX2B6juLTG2mqJRNAG4GZj4Lw2xxibhmBFKbb/p3+efGuF2Y8eWRB3uA+9IRu/9EkWdw6ihuvkhOZogp4umGvNQAoW2nD/q28jLl3GvPU65rf+FubWm/DHf4hJ0wcoxzyZZdHKZu8awWhK5x022TAb43v6gA4XAN6dvCIBeAnI81bA9DOJ83hcMUuuQr6PkQqxdgHxF/55+05Nw41feZmf2hjFsQHMtQkullVym0Bu4idVcg0QNL3e5cGf06lHcl1HW+5ETiWgkILKGA6ahvtVy1zbRbsQMe5MLN1bE2Ul697pUhQY2x7h+UWOyFSk65egMptEXIlu/rzGGCb6/8fdfwfZll3nneBv72Ovv5k3fb583pZHFbz3BEAnSqK8WprumFGEeiK6p1sRM9Gtme6J1sT0H60etWKk4KjFlsQhRJGURImkCEAUSHgCKKAKZV7Z5016d/09ds8f++xzzs33XqGK3eAUsF/ku5n3nnvMPvvsvb61vvWtlPVxyM1bfcbXdlDb25pK3OloMFyraZEeYXJOp+vtxZkzIil5yTT9XeX0lKPULTAUy2Lyz9Uv/4Tbj2puMu3oOFXGq5mBNCuTS7dKOUv6vO7dh1KKzcGAl/eusj68fY/U/n2vrwRq1AO296XPw7OXWJtt4zh27v0097QM5pI0pVmv8jef/Cxtz+OVvU08y2IQDXCky2fOPM6d/m4OJkbxiH44ZBiGTIIQ13EIw5ivX79BpzLDrf5tvrbxNW4P7vDc3nNEaZiftxSaCmkJC3GfJedoxKx8xRpbGHplAQrNazlqJ5AlY+nehVAd+ffD2oOAnkDQsJt8YvXj2NIiThP+1KV38NjDp6e+myTTwKr82b0GkwY8Zv8awMkcPN1PUt8AuQIoFvdXCJ2PMRoHukh5L9RuaiH05AXTFmXhlSz4YmjgaY5RVgO2hC6rUS7sKy2J62gaEiUDSikyIHfI5vour+zucqe/RZCEzFVmmKu0aXp1PNvBErKUXyJzw8bQJk2/mn40YPWoup5phcCAfs+REse6v2rqj7L9qOcnVBEhAE3pSkxdq2zNsGQhBGdJMXXr45LttNOb8MxGn91+8CDR0vzvfB8ZiEmOGm3ZPl1b8uhci9X5+pTEPIpC1j6LAiVxQq1Z4//44ZMAXN4c4duCYRzjORafeWyR7e44X58PgpCDUUx/HDEeR9iOTTAO+MrlbWZ8l2vdAT/YOOTOYMRrO33ipIj+G5BVrgk2FTG6xwad/l2IYh9SlJlh3AOW7zfk3iJWO/Ld+395pubypy4tU/MkUap438UFzlw6NkUBnJovkiPrSWmOMfOMsSGLEg+FGJSUmrZsVGqL650WVsqPpfRno/6I4UEPBvuFkEkeOCjZlnmN56QUZLAgCop5VhW6BUYUpuzAsCyB4zqZjWsVYFEp1GjA3uYeN67vc22rz9W9CcMwZb7msNRwaFdsqq6cuiYDHIE8JzhNVV7I2/xdXkPyuT7vtyKXTzCdo/pW2psGcUKIOvCvgP9cKdV7o03v8949pyWE+D8IIb4nhPjeoUrzWl5mB2lpoRXGS1jiHmf7yANJsjRgQHfgZBgSbR/qqITh3iulb6RdAjvZe8Kx8vfyiMgRSqWYadPsVKlkaNncSO2FUTlYUCgeOdmCcw9jNXzSKMaquajxCMIA8VM/T7A30Pt2HOj3tZBFxaXt2Sy7Dh3b1uIQrRnEhUd0FK81C2mCuvN6NqCzCJnjTue5ZQO0UKIs9X15G8vWPW7b3JPLZkCbeTXROBPFEyUgZ45XFA27322fbkkEvd0p8ALoiJztII+dR3z6Z/Q9kJJHfu5hHqn5OvpWAnA6OqZy1Umj2jYF1tCqkGUAZWefW6VxZJo88ipEAeYE4AhtrO9HMXeCmFGalgpn633bJZCYD+HSdabqPhO9GYNCID0Hu5RXZlsS37ZykOhKkR1H76OfJGyMAu7e7DK+sgVbWxDHCAPkKjpHThQ2Wm4wWvc5P30bp++hUZ0sL3wGvAnBVBHRPyk76X/ruSnbZz4/pcMof87Li1c5OduMIyP2oLctG7KKOJOkj9OUSRxzt3/Aq4evMU5G99yP+5+8WQTuBSE6mis5Xj/Oudl5/IqXeQDvdZQY58Zjj5zmQvsCc9UGSZpScyoMoxGpSvnY6kfYGg6J0xhb2ozjiRbwsW2azRrzsy1mWnUsSzLjtTnTOk3bbdF0myil2BjdBSFy8Gby1kzETAid36dLDaRT15xHvfInqmwsFqImhh6uHSV631MROozDYtoJ82ZbqhJG8eC+jiYhJB1/gY+sfoAw1dTnP/vkOzl7YmXqHqWqVBzXgLMj55eDsxLwKT8/R0sXlI0C+YD3TcHt/e6ApJfVgzMAzkxGlpgCbFO/ZyGWQrmzcHoZGqWuE1cAJMuycD0H17HzNVuU8kCGownbe4fcubvD5Z0d7va3iZKIttek7TWoO9WcWlkouWVA7kih76NUUmNYGS94/p3s1dQKnLqPb3z7/zdrP0rbKZ30pqIqJuJi1O709sXOzc6E3k+eq2micXGic4tu70+4ejDIRTlE6Xv3a2nmzFJHtlMl5/Z80+PSSp1q1Zky8EvXpf8W8Ng71jjXabA2W0EpaPk24zghSRWfO7fIcBwRJNrpvzUIEQJqnk2z6dHqtKi361rwy7U52axTs22armYVHI6ifJ7O89jMmlU6b5NDeKTvH9gHRzHVFOArvWd+jn73rQC6KE7pjqKpNcicH8Biy+fnzi8SximJgo++Y4WFY/M5kDI0x6P1+UTZti45P4ydZ0Bb4bTN0nQUUyBRKXWPqqV5HwHBOKC714XDLS1kYuxLo8VQ1mQwtuVRu1bahQNJlKP46BIOtpXPD1JKPN9F2Mb2lUUQBEgGPfa397lx45CrmxrIBUlKy3NpejZVx8LLFDeL+a6I+pvSAGXGjjl24Xwjz0m1s/qXZSGTHNy9xYnpTYE4IYSDnoQ+r5T619nbW0KI5ezzZWA7e/8OsFb6+jFg/eg+lVL/SCn1TqXUO1tC3vPwp1k0Kx8UOrMwn7CzfeR0yjhJp/CDUhBGKfH+QOcIhWHxlNh2AerK1ymlNqKzQU6SFABOCA0mPA9nsUm1qr9fODCLsLuOKArqx9rgVRDzc4yHEaLZ0OcSjJDnnqR6Yo5kv6tBZRjqyIvnsDBfYbHls9bRtCj17W/C3ZtQqcLsHJy6AMO+9l7o2XiaIpm7UZMCiB6lkRoApkd4aQYxqNg6AupUsQ8D0MqzURm0vdnZyDygh5v3ADkDTuWldyMee0KL1NRqvO+nL3GiVPiyTKHMQRsFQDPbkL1f/smu9h6hd4UiLgPybDxljk1cqffdTRI2wiRTz5yOjh31YJZ7pNyrAjN2FEJKpGMjfUdHhh2ZUxT15AGucy+lsmx39RKd7L1x45DJjR3Y3kbFMaI9A40G0rOxsv7JHfJi+rzyeTLRCb1TQdzShFScVwmslKg5fxLe7h/F3ATT85OoOblhqPdJJlxR0DdMtCLPxVLFfJAqTaU0T4hCkaiU/cmEa93bU9G4NwIZ+sku3+3yZ/r9htPiwuxJ6o3qEcCZ5ueklMKxLR5bXKRiVTg7c5z98ZjZSov94IBExaxU1zjZbrM/7uJk0SbPdqk4DrOdJvPzbZaXOyil+M7GD9gcbVGxq3T8DicaxxnFY6IkyM/NRNNKHZxFktR9r/solFVH3j9qVJZz7t5s+2GATgptNAyi7r1ADg1Qj9VP8NjcJUbRhJpT4Rff9y5m281SPtK0kWrGkAGqZl9Hz6sYa/eJ2Bnvc6qdn3FaRMvMs5emWoky6k9gkhgvQ2FV30OdfEAflKJaIgPxrrSwhNSFpA1gy+YE13Wwc3nx0nVnYHo4CtjePeTOxi6v7e9xd7BNrGKabp26W8W37VyevFxX7H4tyVUY7+/xNnNQIQZV3IujgO5H1X7UtpPwGvcY4HEU51Fg0PaIyACWAW8KQz+DOCmAnBlrg0nMK7sj9gfhPQ5OY3K8YRce+VAp8B2LRxfrNJteDhzK0RlzD23b5okTM9R8m0sLVfb6ExYbDt0gIk4Va7MVziw36Q5DXFtwONa5vq4tmO9UWViosbzcJI5Tvn7rgJ3xRNdj811W6hWCKM0jjyYQUPZf5OecvR4FcuZ7P+SS77uv8q6mTCdyv8mbaibSdDCK7uNk0tdzYq7KJ87MMA4TfFvysfccp9Fu5P1cVlY2tMijDpN83w+aH6zpUiZJkuRCKkcBY5Ix3OIopnfQg+42xEGR+mPsbCG10VEWNzlqk0prag6zLYHnWFQdXXrFzlI6ctl+W+L7em6Zyu2TRWQuHo/Z3djjxq1Drm8PMiCX0HRt6o6N71j5/kyqiFGfzPsxO6UkUURRWpqjskNmYNPU0p1SQGXaIf5m2w8FcUKP1l8GXlZK/Y+lj34b+GvZ738N+Lel9/+CEMITQpwCzgHffaNjmMnF5CoZ4zJXDMrQLFbBY9cTi8ioQSqjzWojJYpSoiijDQ0C4u0DODjIvmiogvfppTKwM+AHCjCnC/fgzLeo193cqXm/526Sphxc34c4RPzsX2D+Fz4ACwuI+fks8mfj/rk/w/j1reKQ2YJUqzk0Gw61mkOSKoKb24z/9RfZ/n/+I9TrL2kw53qo7p7OpYPCs4Ai5xArMoBnTXOMTT8gildx5Mcgl1yNqKQYZFZtE40TMvvMzOyFh+MNDXkhoNbW3z8C5ISUujC54yPe/2mYnYUgwFqa59PvWaNpiiwe2f09+W+CI+BK5B5li2JBA2MglgBJaZ9J9rdEYCMYpim7UUw/SXWR8OxrJjKW9WoOKAVFmFwKTYsECJUiKht6JgcuTafi6maicD0LR0wbsuZczcPcixM2DidsX9snvJlF5ADRaCIrbuZJ19ebF1A/YiyWmwYwFIV1S2DmKGVh6nx/xLzKP4m5CQBVGDemMHG5JpPxZpcN7fLvRuTCqKBFia5DM4ljNgb7vHr4Gt1wX19T9gzd198ryp/pZ/RolMmWDufb51ho1qfAdRmAVnyXhx86xaXOaSp2lY+vfoK/+PD7WazO0fFnUSiksPiz536aV/a2suuWmuomBBXPpVL18Cseaaq4drjNv3z1a/zfv/arXOtdw7M8HGnTj3pEaTg1P5bpjCYC98bRxwwEmi2y59V4LQ2NSwPCe0FcHo0rAbwiov7G41MIQcWqIoRkEPfuAWRSWDjC4Ym5d9CptBhHE5br83z2/U/guU6+xKRHqOX3NwBFab9FFCoXVio7LkuiQ2WDrFwHcDieMByUAJxpJgKX9eXUa54kSz6hRXGcUxbN+dlZAfjyV81nrmtruiLFfGIAnMkZHAzH7O52ubGxw7WDXTaHu6QoanaNqqOjNIYC+cMi/MaALKvEFoZQITRklX5X+XPzkzE/laMmJipSdiJIClVGvb3+nlIFQEkyB3mUpEyihDBO2OxHXNkfMAqT/Nkj78NpwGHWiPKUr4oP88/OtOssdmpTUR5DyRVCUGvW+PgnH+LTZzrUXIv3rXX4uccWmPF0HTWBNtj/d08d4+7+MD+HUZQSp1D1bKpVh0pFF/6+sTvmV56+y3/925e5vNfFzvKQRkE8Bc7KQEoIUZQPKo2bor+Lfn9QK/dPOfBQPtY9/fSAzx/UGr6tyxoNo3vmJksKXFvy5OoMJ2d9+kHCbNXhIx88i1/1p9f6fDyUwYh+c0p9WRZjTFo63SaJk5xGWQZsec5jrBUx46yeplKK8WBM3D2AcMxUKQEhtPMeKBf0xvYK8GbZuoSVSiGc5FRQM3VZklwZ3OSjmTnS83RB8ik9ByE1IyzbSdDrs7t1wPXbXW7sjrh1GKAUNFybilOocWsgZ8o2ySmzOacxl0CkqXdtFEuVUlnupakLV9ihb/b+m/ZmInEfAP4q8HEhxA+yn88B/z3wKSHE68Cnsr9RSl0GfgN4Cfgi8J8qZaq7Prg5xmuGXlyTbHE2Es2mmUTlsigDaK9cFBfSzkkWmQvDhGivj9rb1yUDbFvTF48+gJkXQNgZ2DEHSEu0yjTV+6jVaDYcHCEK6XllaJS6GHPDsoiiFPXV30cuHkf+wl+DvT2YnUfdvaqjce/8ON7xDunuPiiFVa/kg04IrQA4HEZsv7rD3q1D7q4Pef7v/lt4+TnwKqjBAepwG4KxDi8nWe5fEmnVyjQrkSAy4HpPUwUwM9dYXthNPpzKFjwT2TPgriz3asAbpRXihy2SSmGETFQUwsFGDuSU+czxEPUZxCc+hwpCiGMqT57nwyutnP5nwH+5lfnpBZXyCP0IY/wZzFuMNfO3MRjJrsbkwfWThIM4zXPcbCFo2ZKGJahIk7dWFBRX+TmJ/HxcKXRUjZJxUfbUORaua2mVsFQDJt+38DPjzgA3iY4mmlw5ha5Xd3dvzO7rO8Q31lF37+i+8BwcqYGolQE5A+9La/QRgKZf01TpHLlS/kT5ViaJuke56Ufc/kTmJoTIJdQNfcx4HY3xbGgS5Zye7KvZo6XnpDjWqmhatjilFwTc7N7lRv8GscoKR7/RqVAAIdOO/r1YWeJUu43vuXmyt/kRQnDuzDE+d+kRVmvLDKI+LXeGzx3/HDvjPTr+LLuTbRIVc651kROtNjujA1IULa+Bk409KbXa33g04eX1La7v7LGzdcB//8Xf4kr3Kq7lMowH9MJDgnSSqzGaCFyikhyEPki8RFEArrLZrZ0jR5wOpUXwfn2SO5XeouEu0EImqUroH4nICUwJgwofXHkf4zggSELes3Kedzx+rnTo4jkqaEjTdCQpJJa0pp1I2bjK1S6z8Vb8qClj3YCZSRjRH4xhFBXebVtCxYK6o189a5pfDsYzmtEs9ZphSlVAps6riujpVH5Z5rhwXAfPc/NnxFyPzJ4LIy1+0BuwvX3AaxvbvLa3zsZAB6N8286eNZlRju4FZ+U+LfeVKvXVUcPZOFCm7u2PFsPBn9D8ZGX9ZSKYRVSkWE+00Tg9NwtB7lQKY+1YirMfgP444vX9ETs9E1Ev5iazVojSG2XgkjN1j4C6VtXh+FwNx3Wm1Cn1LgTvfe9p/qN3H+P4TJUwSVlq+3zs9AJ3+hNmPJeDYUgYp1xYanByocFORqWsOjLPTbMtLYQyGkVcXe9yZ3vA+nqfv/MvXuTl3S62FPQnMb1xnK+5uTCJ0utbmuWHHr2G/Fru47hT9043hXhZGdRxZNsfdoPfoDUrmiWyP7w3ImdJQdWz+OxZnXIZpYpLK3UuPXosL7lRnpPy+VSQz0352Mqe87JKrXlNkzSL/ib5PGXAXVkxF2AymjDuDXRZLCEKPQevpn/cSlZn2CyccQHwhCgiZ7abgbvCsaUUWSkA8CxBxbPz+2BsJ6/iZRoXpUCOtPS+sjbcP2Rr/YBXbxxweX3A9cMRUaJwbR2BM3O3oSwbsFjY7sU9MGNEn5vug6kaeaXtTIDh6H38Ye2Hgjil1DeUUkIp9ZhS6ons5/eUUntKqU8opc5lr/ul7/w/lFJnlFIXlFJf+GHHEKCNSpjiX8fZzYnCoqK8ENMeSCtDtWnpITHCJ1FWlyIdhkQHQxiN7uN9TIsfy0K6mkKjElWoUubAReXb2e1qnouUZtQ7BQRpSi9OqVmS5afWGPzhs6S3XkXMLCFOnoLxCO7eRB1so3p7uH/lLzO+sp3XdLNna3jLbXzfwvFsHFuysTtiMtETznYQ8oP/7p/D9l2QFqp/gBp1dbmBKMgGvSoJudjFAzHV6SYCJ/WZm3w3RIl+KQojoMxHzkfpfWYtkU31b2WFVArRmkftb0JvBxWHxf4dD1wfsXwa+cQTqP4AlOLkZx7hfMWd2o0t7s05A/I8OWOzlKmW+STMtOcs91aW/tlCg58gTdmLEkKlsiicoGNLLlY83lGvcMp3WHUt5hyJL4uctfslrAoKO+qoYSIsiXSsPAKmFHiuRd2xqEgdzTPUyqPHSJXiIIpZ3xrRfW2L9M46ansL4Ui8DBjqHK7imtPSYmr6wnFELq6SGOdIaaGbFjyBJEvslVLoaOqPsP1JzE2QjR8pcwBXUIHuFa3IRRjuf74AxImWoo/SlFEUsTs+5Gb/JqN4oLd7w7N5cNTKtJpd50RrGb/i6lqAJYO2UauyOqfFJM63L2TRsoiG0+J06yRBErA+XGecjAiSCX/54p/h6sEWSZriWg4rjQ5rzSaeY1NxNHVud+eQMND1mXb2uvw3v/PP2ZvsIYVklIyYxCOGcZ8wDbKSAim6ZpwWyHjwler/FQqRqU4K5BSQMNvJ+/TK/fIGTQ++mVa+j1W7zigeMIz7U0I0MisgPucv8OTiwwzCIYqUX3jkHawuzuXHKwPOo9NoOSenyOMqHDvlYsJHo29ltVHzvSAISUah5pEbKkLdYX55llMnl1lc6tCeb+K3quBalKgv5YufMuYM7azoc+1VdiwLy7Lyc3Jdh1rVp+K7uI5TEhYpvmwMn25/yNbWAS9tbnP1cJ2t0Y7ep2Pj2CbfrkwlLXJMjCKlceoCUzWu8j7KHCbmygyQs8SPvk7cn4jtJAS2Y2uDPDPMlVLEUUwUJQSZ06i8tsRZORTHkgWAMcAvm9MmoY7GbfcjrveGREkpV6e0PmR/Tj0rKgdE5b7QP64tOT/v43nWlKooQHu+zbtOzTBf8Zitu1ooIkmZqTmcadeYJAn7o5DBJGYSJfyNd61xd29EnChcS9CuWCy2K1Q9G9+1cBzJ9vaQySQmTVP2tw/4259/np2hjq4MJzH9bF8mJxCKMWJb08D0aL+bazV2qXmuy2BNMG0KFeCu7ISbcn+/KdOpbLc0Kw6TMKE3jqfztDPboFl1+OjpNuMwIYwVH7i0SGdJU+HLz3h+PiURLKWmC3aXn7Xi3qpc+dIoUBqhmjiK8yiclJJgHMDgoLBTAfw63uIKrZOnqS6v4swtQXtR236Wo0GcKZVlOrikTFke25bUU16K1hAwNeKUAs+zqdarCMfVGhJ2SakyLSvYK3p7h6zf2efK3UNe3hqzORojhcDzbCyrKFti5qPyfTGXZZxRSqmsPl5RMzSM0zzn0jgQTDka+y3WsPzRWllvoeUYgOImFFTKbKPMi1f2zJlmFLnKD1e5Rko6DlHdblEyoCydal5FFokrr1YmJ04fJC8Abreq+K4uNWCUKYM0ZTNM6Ccp+3GMsAT+Wof4f/kl0he/Cecf1vTHs5dQB1tQaSBOPUztqTNEWwf6+J6Hu9jCXWgihGBuTufFRWFKq+XhCcnl4Zjrf/sfwKCLqLdg1CNdv0Z64zKqu1sqiiju9Toc7XSRAbm8DIEiV6A0n6elouHl76YGumZ3zvTpPW66H9JUCpMBYvk06dXndZjdnH+agF9H+FV48oP6/oQhtFp84D1r+BlNpKAzFmDOz4COAW8mamUemvLZmck2/7mPsexkk3WodIkDSUGd9KVgoeJy9niTtarPguPQtm3qljZ+nOw88nMRIo8gmqgCJcONRBf9lq6dgyjbkVTaFVZXaqx4Lquuy4Lr0LYt2raNL2X+/IjsGdqPYjY2R9pRsL5OGsRIy0QAjXfVCLsURqahMaVJeVHQr6b0wDSQy/rIlBX4EVMp/ySbEDoSB+TJ8Ebh0SxsViZdXu7DcjsqMJJHV5TOl9sa7nGzf51YRQ8MYxa0wgf3rUJhSYeTzWPU6tWpudL3PU6cXMK1LPbGOqrkWT6/fuVfcHd0i9PN0yilWKsfpx92caXHYmWFdy6fY2e0jxCCttfgeGuOpXodKWC23QAgjhOarRqOZfHa9bv8V1/6J0ySCTW7xiQZszPZ4u7wJv2oS6ISUlSJKnkvBNOLs8y2yRxNGQlTCJF/V1MlVf5Xua/K/Xj0b3OMN9OUSpkkY9ruLFvjDaI0nAJyjuXhCIeHZx/BljZhEjPjN/mpdz+K57pTtMByHmkZpBzNgzBj5UHUy/L7ZltTaDuKEw3gBJmQiUDakrm5NhfOrXH6zCon1hZZ6LRxfadYdC1RROGy+ciypKaGC3CkifSkhGlMohSeZeXRd8ex6dSqLCzNsjQ/w+LcDAudNu1GjVa9iuc6+flbliRNFYe9AXs7h7y2t8fd/jZBHOe13PRPISZQGMvlvwsgV1bK1JGo6bxV00dHhWJ+nJuJlphm2RZJnGQiJ4b+XWxvKKZlx0DZASDQSpVxqggiPT+t9wJ2+8HUmDuaQ2bAoFlHpuw2sw06OnSmXaPV8otorRTU23U++t6TVF2pc98S7aD/4iubbPcCTs3WSJRiseETxCmeLVlu+7zz9AxbvUBHnRyL5abLQstHCkGnrW2nJFE0Gj62Y7P+ylX+1q8/x2AS49qSYZCw3QvY7Ab0xjFxovIIi7zPc2n6UDBtaxafTV93kj/Hpe8fuYdl8JbbwT9kbiqP83GU0Gm47PQCwnh6nfGy8gyPLLSoexaTOKXmSt735KoG/5mypKG35qA0m5+UytReBVNOTAPsflgzDs4czISxZokJqaNpWVRtZn6G85eWOHl2idWTi8wsdqDaLKJkRozPvAJkcyuQ13ELY0WU5Xh6tsznGceWdBo+a2st5lfmaS3M0ZzvUJmdwWu3wK9qO7SklzHsDllf73F9u88r2xNGUYoQRvFW59mVyw6Ye2iidSYqp5SmVpZtJsMcS0t4xnP+eKq5bwsQV0avgkIoJM68aFFcSgw8kndThKs1fSCPFOS/64hGOomItns6Ny4MiyibaYZKaLwORwsdlrePIqyah+9rIlysFN04YTtKGGcntB8ljK9uE+0PtOT7s98BIREf/Xnk2XfAjdd14W7XR3z0U0Q7fVQQ6DvuONgzNX29nsOxpRoH4wjHlrRcm5qUfG29y+Dv/F3Uzl3trejvwY1XUa8/q6velyRU78mHozRJFC7e7HeB5saU1HukVaJalkDbvTudQt0/dECa/UlLg7XJAHHsnAa8476mhZok10oT0ewgnnoXabcPYUjlqYs8WqtM5bxpemNZoXI68gYF9VJ7C1Xp92KbPP5W8qxJoQF7qBQJBTAEGKWKzXHA7TsDxmGCEORROommTjZtScOSGbjUwM9E0lxHIuwi5zOdhKTjCGGJPNosBditCs1zCxxbrbPY8Vls+yw3PFZaHi3bysoGFLp+CYpuENE/nJB0hySDyfQtIItum+s2z6EBm9a9i5hSEGc5p3rRK+iCplbjT1IzxqQxko3n2gDYOE6IkqSgtx4pMwDTERRDq4yiYk45DPpc6V5lZ7J1X7rkVMueswdF7CSC5doyM/UKlqUN4rmZJpcunmB5poUjJdujQ3Ym2+xOdrhxeJfXu6/jSY93zr+H1eoatwe3iFWMJSw+sPxedkY9gjjEEpJZv8Viraapho7D/OIM/d4Qx7FpNrSx/v1nXuO//eY/YT/QEblhNGB9uM7N/nXCJCiuSTwYkpZ74WgUzeRZpagj89K9+zja3igH735NCEmqUoJ0Qsef53r/dR1VVAW1yLV8qnaNJxce4WDSI0pi3r1ygTMnl6eci8U+y3XNpo2Ao9sAWeHwjPpViv6aMQV63Om0gthI3+bdkqaKbnfAzn6XOIoRQuDYFo5tmXopiIqN47tIRyJsgWPriJht2ziOneeVKaWIkohJHE85LqQQtDyPC/NzLCzNMj/fYm6uxeLiLIuLs7QatazIdnGtaZrSH4w57A3ZnwzpBcGU9z+7YVOGqemb6ZpNIg9plAVPptgC3F+k4se52bbMI3G2bevolhQZnU17/MugxABage43U2/XCKEkWdQgDIu5aX8c8/Jej/4k1n1emnsMmDFLP5DXysxb9rklNIhbqvu0mz6WbWE7Nqsnl/jcxy/w+FoD15J0w4hxmHA4inh9b8xWN8B3LJ441mZ5xmevHxIlOqfoZ84usD8I6E0SUqVwLMF83cW2JBXXYnGxznAYFlGYSo1Xv/08/+2/f5X9gWb8DIOEje6YzcMJQcnWfKORUv7sQUPKsF24z7bG5n0z+3mjJoV2KAZRykzd5ebuSN/z0r4qjq5D9rFTMwyChHGU8uhqg2MnFzNbV+W5ZQag6fMxNc4KIFZ2RpYFS8oFws3f5WidtKQ+RhQWJ6YUJi1n0B2wtzcijlPtfLCzWsSGOunVwK8V7zmunpdcB8+zcTK9DMcSjKOUcZjmc4S2nQSNisOFYy1Wj7XoLDSZnW/SWZxhYWWORruho3NK5QGNOI4ZHA7Y2x+zNwzZH4S5w6MsWlWea7S9qPLcufI9NecSp4UKrFL69yTVOCfvmrcyBt7Ctj+yZovpxGMgH+CJKsRK4F6OsrzPAqmUpnXlzlIpEI5F3BsT3tmB4XA60lRSZxS2XeTFmTID94nEyVqFWtVBCtiNEnajhCAtKAeDRLG9NSIZamAmHn0Scfwi6vJ3SL/1e6hnnkZdfRHCCeLMI1Q/836CW3v6WLaNVa8gfZs0imm2POabHmGU0On4LLgOvhT8ux+sE/zDf4B6LlOvDAPoHaCGPXLBkdxzcR+jxTxEOfDKVkHzWXk7A+xMM/1mfs9f/xgzkVJQbZJe/g7Cr4Htkl57HiZDvb80AdtGVBtw6R36/kQ6GfWJz16gYcmCOnlk1ybyBoUEfH4JR7a9H/YwQ6Rs9qVK6Ry00n5GiWI9jLk2CVgPQ/bjmGGSEmYnZgtYcHTpiKqUuapmqrRMcpwoVJxmYeiSZ69UtDLOZDatmofrFh6masWh2XCp2YXoCRQiL0GqGI1j0iBGZBSDPMk229hci6EfmOfKUKHKRXhz2kmi8mEwLbObnbv1tphe/lc333VoNCrakC0ZoUWeklYINK2IohQGjn7//vt3Mi/lrd4ml/cv5wXATfuhgOOoI0YI5v0FTrVnaDaqnDm1wlMPn+Hk7Ay+bePbNuMoYme8S8Wu8PNnf4r3Ln6AxcoKNwfXeL33Cs9sv8DWeJ1UJSxVV/ipU+/jVm8TgIrtsVyfp+o4RGlCp1mjPdMgSRJmOy3mZ1sIW/Clr3yPf/Dsr/Hq4StsjbYIkoB+1GecDDPngczrvL3BxWHmlHvy3NCANZ+774nmTUf43vg4Dzq6/lexqlzvX8WRLrZ02BjdIUiDfCspJI50Od06gxSCINHGys8++Ti+5xZAw5z3fSabwtOd7TV3FhRjq5yzO3WeJSeBUqpYKE3IZBKzvdfl2o0Nbt7cZGNjj/1unyDMaESWZLbdZKHTwnV0xCxJkxwAJElKkCT58c2rkzkJtDGiP2+4LlXPzZYyC89zqNUrVHw3KwZeFtkQBFHEZBISxPpcrKx0wdG8HbN9EbkUU9E6nR1Qrk1F9p0ieiKNk+snxNHkuRbVuo/ne3kNL1PAOQy1SmW5mHcO5mAq2gQUeUUlxU+zXt7uBlzZ7esafUcdL0cGo0mJUSpbY0v3QilF3bc5MV+nOVPnIx8+z1//9FmeXKvj24KmbxEmCcMgpurZ/JUnjvHIsSbzTY/1wwm3dke8sNtlpxcQp4rV2Qo/8+gCN3aHpEprK9Rcie9YJKmi3fCYmakgBMwv1GnONMGy+eoXnuHvf+sGr+/0udMbMYoSeoEGj0YERor725fFZRfz/D3mkvk9+7tcfgEK2yNPpXhwd/7QVvVs1g/GVBwdZd44nBDltRQ1hbXiSE7O1PJoXJQoPvTECrZbyPRn9Ib7lx4QIs+PU0rlgG3KuXKPszebK8p5caaGcDmwEE0Y7B1w+9omt69vsXlnj/5BvxAckRbezCyNuVlNgUwL55mQgjjWaqNCCKJEYbCQUfAUQhCnOorW8Gx8386iYxLfd6jVXBzXQZi13dSRUxAGIaNRyCRzuDolhcocIGbMHCtTxCynWxhRk/K9NQ6lwj4QeY24N2JgPKjdq7P//4dm25K2bbGfTeIKrQZoltwc9abT0uXlcLZJmDatTGsyin/JJCLc7GI3fOTKUgHeykDNshCWQMUKlaSIrEbZ1HZxDEJQb+qcLFOfLFJZZFBocZPXdofEccp4HPP49/4IcfGdUG8w+vu/hLvQxPr210FKxOoZ5Gf/PH4cEz37Es6xeahWcVdmCG7uoZSi3dIc8XqnxnAYMddw6Q0inv7Dqzyx9XlqH3oU8emfh/0tqOii2HoWsgvAerSZCFjRawV1skw4LPeBQTUA5XwWKUvROnH/4x1t2q2cHdOGeov05kvI04+Sfv23UY0ZRHsBai0IJ+DXEPUW8qmniL76LezjLtaJYzw2e5U/2ukXxbyZZvOl6IhYotS0o6C46mLREYUxeDQa4ghBzbJIlBa1SdFOhlgZ+q9ikBWeNMc1BckXXJuzczVmZ30uXz1kMA7oJQpICZViPI6Z9APs7hino/MPhWshXDufBJIkJe6NAej1I/YOg6lrmJRzsygtpsBoFJOMAmTFxbFlrsxpmpl8LGm8cYW32yxkBW0ge7YkU7VZQFMJhCV1PtxPCG2p7vqsLs8RRwlRFBPFJmH7PoIcQlMrkySemqfKOQemlaMolpTsT3q8uPsaq7UVzrceylUKgSwvTD9XQokcXIg8VDW98lftOidbS6yt7bLS0IIkwyjKyx1EacqrB1fxLI9UJQTJmIpVpWJX+Qc/+Gcca8zx9Nb3ec+ipOPP877FDxImIS/tXeFYY4n56gwXOgu8uLOJUopGs0aapsw36kwmAbOzTUbDMV/6zvNsDod84uQlPrH2Ybphl4pVyyjEph7c/ak5OtqmR7CJvBkwpMrvmb54CyDtLUWLlVbrrFgVtkbrLFdWeX7/WSpWhdRJqFhVEpXgSo+aXefdS0/w1Tvf4Wx7jbPtNc6dWeXFl2/cc1yrFNnVh7k3MpcdPjMUS6gEM34KY8BxbCq+XpO6zqgQ+UBl9N+Ebn+Y7zdNFUxiSBTVTpUTa4vMzDR47bXb3NncIR3HBAjCUIOsfhAwCEM8y8KSEtey8G0bz3WIMsAwDEOkEHT7Iw72e4UDTUomQeGF186f7PrTlGAS0gsCmp6XGYsCpYrnx+QFlwt367+tfJnK1Q6PAD0T/ZNC4FpWniv0k8AYaPg2x4+3uRLGuRJgkiRZbpwu+p0X+M6uN0mLCFx+f0pS6VD0ofEDrPcioqTHUr3CUssjKU83oojOKcjnIhO1g+m875pn89BSlf2HFvnwuRkqjmQY6rUrThRBkrIzDKj7tlYZVAoLgWMJfvW5dRbrDpd3u5xPGsw3PX7q/BKJUjx7Z8iFhQpN32J1xufajlZNbLd9kiSlVXMZDkMa7RrD/pgv/eGr3N0f8smHF3TtuSDGsWUpl+3B4+Oou7oM5MpfM4JXR3HZGzn23uywNIEOKXQe1U4/ZLntc3m9h+9YVD2LqmsRJwrfsfAdi4+eavNbL+7g25ITsx6nzi7x+kt3HnhxZedTkiQ6Qq6K+qMqVbnjJM9vzs3GFJlZ8baj5f3DmTYTE/GKoyKIEIVEvYgoibMQfZKJ8yXQ6LB2eon5+SovX7Y4vLsJkyEJEEcVgkAXeu+PI2TVwbG0UJQbWSXbSWlF0lRxeDjhcH+Q5+9ZtkU4KUUIIVOw1OUQ+r0xvVHEXMPL5+Fy2SdDrxRC/54kWk+iDN5ytkL2IAiK8gLm1ZQdeKvt7QHiXIuVuSrRzpBJmuaS6wZKmHIBRycZE7Qw4c00Vdi2vGdbAOFYpLEuPWBv9/DrVWg0DKej2DAr+q0mka5NZ/LnpCwoldnfhwcTtqMYPzuRSGmRE7LFZz2M6Axs9uOY1d/+I+ZPnYG106goYfz6FhXAvvYqyvUQpx5G/vRfwNn8e6jBENFuYS3O4cYp0V6fSqoYDwLc5Tbn3/8IYu0E6tWXufzrT7OzOSD58rO0PvgxxImL2oA2YecsCnffCUlmVEXTVOn6prYTBdAygidlo9TMYCWA96YXSJHNGEohTz5E+gf/Gk48BGcfQV1+Gi48ofdluzrXr9aGi0/A1/9Ig2nX5cwHT/Pib7/AMFXTtMnstVz8O828i9NwpHQq3DtBG0+aLyXnLsxiz1SJD0YkYcxkEhNGKUGQEIWp/j1OGaUpO1HEVhiRAk1LsniyjbfWYXFvwt0gZCdKkEhmbE3/DcKEaqC9TyaKZVVcvKpLHGdJ4GFCfKCFbvpJwiQtohQSQcp0zTqZ0SXjOCWdRDidOpWKhW3L/JYB02At8yiZyUVKkRf5LveVnSX4yizvz7JkVgZE6PP/8beRAKjbdT5+8gL/LozY2T7QOUfovtLUrYQo1VEI+wFgzbzmxXiTNKetmDYIQ0bRPi/uvUTHn2PeX7rv+Wjw8gYtW1AbbpW5apVOpcIkjhnFmYJYFv291dviZPMYw3hIe3ATv1Wh6bRIleK1/Q2iNOFO/Q6u5dHx5vnQykfZGe/TCwfM+i3OtNcYRRPu9vs0fJf+JGSt2eTjJx7meGOFF3Zf5Ve/9S02dw743eh5PrDybpaqyzng+mH5fYAhTObXpd8znxURON3H94K5o5G7t0KjPNqWqqt8d/uPWKqusFY/zvX+NU7UTyJcrVKpVIojXU41T/FVvsMkCWlYDp+8dIGr19cJs6iXSWaXU8+TiYakR54zPRuVAV5uGGYGrsyuv+K7nD+zyoxf4XAyYRzHBGFEFMaEYZRReGPCIGI8Cdk96BGNdTSxVvE4tTTHqZkZDg76bO0eEEYRiYx0HbokJQxjRlFEp1JBInCkpGLbVGybwLURQjBJYpKJIopihqMJkzCaupY0TfN8t7JzI0kSJknMklPH8xwsy8ojkGVAlgOLLGpJ7mCaZgGYfEPbsnKWj5uBT4kGlW814vF2bHXH5mOX5hmPIzY2+rmIhO4/lUcplCoib9pROe08SFOF51hEpSicaY6UhHHIRi/l5b0ezcosvmMVUQOzoVIaeIvMgZgtMEJQAkbaaD3VrjA+kTJXdYhSxRB93CjLF9oaTVio+wRRQsW1aPpaMn8cpryyPeZUx6fjhziWZGXG59NnF7l5cIvtQcRqy+XkrEeQKLZ7E6LEZjCOWJ6p8vhHW6w0XV7cHPM7X7nC+nqf3xlHfOLkHJ26i52vg2+8fAlRmE5C3KsJlG+Hmf/vv7f7gb+34lww92C+4XJ5o8d8w2Wh4XFzb8TqTCWPxCml8B3JmdkGvrNPkCjCWPGuiwvcvrFLMAmySFlxDnk+nDmOKiLdZh0Tlphay5QqnGuaRKU/cz2XC+c61LwV+uOIMNbzyWSSEATaATQeR0RBRDAJGO7swfAAgEq9wpkTbU4t1NnbG3O4vQ+jLgiJStukqSIME4IoIVWOZklJge9Y1DybJNGgK4hSJmFCFKWMBqMcuJWBqLDt/Npsx0alWiRIj0ObqmfTs4u5o5zrbJpRsjb9aFuFs8441h1b5u/bsig8rxSaGvqmR8DbBMQhJQsX5klTxfXdIVFe+BYipQ1cgyvKAC3NWSOl6IoyKkv6oUiy0DDZQpCminB3gLB38M66OonRRJHMpGSkepMsGmfrnDCV0SvTKGHr+7f4g5sH7EQJqSrqhJn6XynQi1MGqVYxvH1nQP3Xfxv/k++jem6J9W9cwQ8T1CuvIC48qqmDjo/4hb9I+iv/GDEYQKuFvbqgJ4lWQnJjl3DjEPuxS/CO98PhPgvzFSp1F6vqYuiO6eZN5PFLID0d6XugSqCYplRm94K897Nt8podBqQpDeqMsZQDuJLxpN5EblQ+u0sNICsNmF8kvfUK8vhF0he/hxp2UWGAXD0DaYpwXJRfwz5/CnX7DsL3sU+vcdx7jVfHk3uCP9YRL5hdOifjbcuVKpn+DDMZoemGEu0McBeaeMfnwXFoum4x+5pw/HhMeH2Dp792neuTmIoUHKv72O0a0W6fRt2hvmsBMZO0CK0rRb4aCM+FIERWHLzjHbxUIVwLq+qBbXN8/oDKy5sMBlHelcbYsaTAsk1kTU8ytYZL9eIqNBp4r21mFKlCWQvAKtEhywZTOaptjAClCsDn2AV4MzmlwE8MndKWNp88/hF6wZAvhxFhEBFmCd55LZySsuc05a143yyMZVBnDHqBVsDsBgGv7F9nxm/zoaU2ruXn5zEFSIxxfwSW6CGU8Pzes3x/83XiNOX1/f3ciG14Xu6k6AcBw3hIkITsT/bZcjdIVcqjC6f5vSs/4EQr4cXdVzleP0GsImxh89kTP8WvvfYvGUZj2l6TR+fPAa8zjHyuxPvc6nZ5aukil2YeYj84oDPXouZ7tH0/B1u7k21WqmvYwn5gFA5KYFVN0yjz6KNxxghRRCnfYPl7qwAupxNlFlvF0sXMN0frLFVXudJ9nVEyIgkSOv48oNU2K1aFS53T3O5tUHV8zs2cYHmxw83bW/oZeoPzsC1rSi2wrIYqRCFKAaXcTLTaolIKR1os1mqcaM3iSAvPcvOxZzzlo2jClYMtvvz0i9zdH4ErWVycpVOtsjcaUatXqFV9woMxechFaICZZufh2S5BHOLbNidaLa1YatvUHB9HWizUani+y6A/yvuymKN0kXCzXykljarPowvLtL06N7qHHGSRuAfRKHP6pCi2uR/QczIhEyPKUk7beAu28tu2WVLwM+cXORzH/MEkJgzCkiKezos7Km1u1kSz/tmWJBFZ2ZPkaB1CfRxbSoZBzLN3B8x6Lo+ttrIouenHYm7L78cUeCvWmZ1ewMEkpOZKbh4GulCzJah5mYx9qpjE2iiPswhKxZFsdQOWWy7fv9nlVMfnWnfIsVaFIE6puBZ/+bFVfunp23QnCStNh4cWKlgCGr7Dje0Bm4djLi5UeOfSDKMwZWGhQbXqUPXtfNx0RxF+y7tn7XtQU2R1wTLQV863B6ZAs3lfZY6X/7VN71fvp+bpgtTbvYDFls+tA50bdzAM6dRdFFo4w7Fi3rlW59s3e7Q8i+MzHp2FJpt39qboj5A5AsrUWjtzrAgNfKQlM9uaKbAnhMjz4ZRS2JbO1XRtydJMldMLEtcW1F0rZ/4YS6E3SXhlc8CXv/oag942uFWWjs3RaXjs9gLabR+vViE40HWLy2sp6EoqVUcSJYqKK1mbq+t50dJUXUsI2jUXyxL0esEUJdLccycTGDH3v153OL/SYq3tsnk4xrZl7lQXoqgHZ87DROZMK8oPZc9a5lQRkJVRKbaVUkwpL7+Z9rYAcUII3IUmi3FCfxBxdxRgGSKNgjDRETSSNH/YTPHWFIGkCN9LUShVwhGviG0hRMxoFMNmF7tdxVqcKwCcEJnUv8iAmyp2YsBZGLP7gzt87cY++yVhgjA7kCeK+mCga3PMZKBw//YhK9euIS5eZG63T7jZ1Yb5d78Bn55H1CRi4TjWz/48ye/8W2QlhEoFa2UBazgknUQEm124fh0euo1otWmemEVIQf/mPtWbV1D9Lur2dVRnGVGp88b+pJILKE2Zzo/LZh4DTAzYI8u1UylF1hUU8Svx1lZHUdpeSuRjHyT99/8C1i4gHnsP6vtfh8ffp4Hd6ln9lUoVTp0lfu26HsCex0OXOtz4wTpRFmUol6oASkCtuHIhihppR69Cb2MobNpQGiQpl5/fJnxuE4EWJfFsqeuPuBazsx5Op66jsgdDQqVoWIJTvsva6TZpGBMfjJBSUJOSihRZaQpj6Gfn4FjgeTo/M0mQq6uIh5+A2UUthGPZuMGY1TtXYX+3oMSmKbiZ4pMB1FqdRCftLizDnRvYz7yGJQtaVdkRoicliW2ZOigFRcksSDkn/H4A7icEuJWbEILj9VN86sSH2Br2+O5wkilTkhtLQZLkapUwTbnQC1uxLy14W/JyZsdxs2ftbr/Pc9svc7y+xpnmhSlaJZDTf482BSQq5qWDF/m3V79MP6O22VIyCEMSlVJ3XVq+BoZBHBMlMXN+B1s6DKMBLbfNY52H2R93udHd4Uzb5Qe7P+Cjqx8DBHWnyc+c+jRfvPllGm6Nql3hkfmz3OptMolj7vR6vLp3g4szF2i5Lc7MdQC4trfPncFdem6f9eE6n17r4Fn+GxpJ5rkoRIamqZSG5lhQSxWqZNjcC3GLe/BmW+5Vzr53pnmeb299k8XqCuda53n54GXOt8+zO9lmzl/QtGvpcLyxxst710jTlKpb4fGzx7mzvpNF2qaPYaLl5hhCUaISZn2hCucJFAAOMnCVCgbDCc+9fJ1n0msAWpTEsfA8F9e1abXqzFerAGwNh8RxAq5kdmmGk6sLhEnC/niMlIKq73HglLzwpX6zpY1ve1jZuDzWWOLCzDlabgtL2FjSIkpCNi9scRgckqjC2HJkVsxbyIwVoecOV7rM+rNsjbZ5cecOGyXHY5nKXVbHy/tLTPefdmRptVhLmkL1JvckO+6PuPzJn1QTApbbPn/m0hJb3YDRKMpFKgCCIM4FFEwfGZ0BK6M7CjJaPBCV9l3yleA5kmEAm70J3757yHLDZ6HlkxzJnQJKILko/2RlY3e7F/Dc1iH9TPzLtQT9ICG0BHXPomprxe8oy+VrVLRoBcCx2QonBz7yBNzuhpzpeFw/GPKQ28SSgrmGy195dJlff2mTxbqDb0suzFfYGkSMgpj1gxE3D0MeX4hZarisLWll3Ttbfa53ByxGPlujCR/05pitu28KwJmWpApbiinla1kal8bxIo39ypTF9Md2KOT7ELA8U+G5u4fMNz1OdWq8vjPg1GyN7V5Ap+7qsruW5HS7xrdv9gAtyX/pTIftjYO8tIDJ+84FTcz6LkoRuuyeiAysiAyxl8VPyvlz48GY7z17h+9kLBbLsnB9l0rFwXUtZmcrzNY9klRxOAyJwghsD29plTMnZwijlN44xLYllVqFwNbO8/LclCqFa0lqrgZxVSU53fG5NNuk5tt6LpCCKE7ZenKVnXGg66hmfelmc4tJvTHKro6UzFc9DiYhr22P2NrXqQAmum1YgGXF4SRROI7exhLluQp8V/evY0+zAWwp3zKAg7cJiAMdefDXOqzt9BldizmMEywhSMiETWKtODWdU3D/302CrpXl7BhvovRtxDAkihLG4xhnq4vvO4harQiFSImwbZACFcaouKgVN76+w4vPbfH8cMLIeLXQRnCY9X2kpuuVHSYJLdtiL4qZCVMm17bwV1dxz59g/9WnsQ7HzDeqiGq9SKhcOY313veifvCMNso9D1wXz3VJumMmt/fwv/g7cPo0TqfO4PJdXrzR5cPPPoN88p0Iv4LavoWYP/7A2UHnGJYULIVgCuoczaNTGkRj2Xl/FGBPHN35m5qV9IRgrJSsNp2vQVB69wpy+SQqTRCuh3r5RVS1Cc1ZLTk7t4D0bE2pjGNq7zpH5flNVFrkpJlWXq7zSXPqPKY/n7qUkiEYqJR+lNBLEkapzoWzBcieVp9sb1n4cp9QKSKlC4I3bcnJlo+71CLeHxAHEZNAj21fCjKtEq1YFGkQLWxb3/PJRI/H9gzi+HlddiAOUUmsE3yX1mA0RN25mW+L58F4rBVYy7TYNAXfB8dBOBaWLVCRyqNvhZGUOStK/BBDB0lLE5u0BLalnR3CFGcxhtRPSC5cudnC4dLMw3z8xAY7oxHX1BbBJMxBXLnotyUESU7XKkWQxHQkziw8xlPnWhYS6AYBt3v7PL/3Im1vhjlv4b7Pk44S6XujSNmZbPHVu1/jj+6+wiSO8+eg4ji4lkWUpgzCEEsIGp6HY1lsjfZYqM5xGBxQd2qEaUjLa/PkwiO8uPMlvnHnCp886WEJW9N1Vcq8v8g7Fx7npf3XcCoOdafOmfYarrTpBgG3egf8u2v/gbMzx5mvVvne+jqvv3abp088zzuXHsWzPPYmO7Tc2bd0D3JHA3oRzd/PgFZCiqWkZrO/wRz0plgC5eNi1qEUz/JJVMr2eIN5f5FUJVjC4tbgJlW7iiNdLGkz47VxpUOiUhKV8O6VM3ylcpnheDIlVAJMeXGLa52+7nJUpJCIL2hyAEEUMRxP9DGitEgDECBtSb1awXNs4jTVdMfxBFl1WF2eY6XR4HAyYRhFBEGkHQyOzB2ZRn0OdNTPswqxlpbXZLGyhEIRpiGkYEmbeX+OSTzh9uAuQVb7s2J7jOIJQRySZsDcjNOq4+NZblaTUaBLsha1mMpRt3LOjvF+m2YAnGNJHGllYE7m4MKRkuk78OPbTHecmKvyc4/Msz8IeD1VjEeBVh1Mdf8GcZqDIShAW5H3JoiTNLedDPVS55Hr6MahgHGQcOcg4OW9Ho2KQyUzSIUgj8xNnR96X6Mw4cbukFcP+qRKmxJSQMOztDR8knIwirFqAteS2FLQDSKaFYfBJKbu27SrDieaNVxL8sr2iG9cGfO5hzXFTed8KhbbPh871eb5rQGnZ33qroXX1vsbTGK2exO+cGWXiws+802fF2/sceWVdb79yBIfO2XhWZL+JGa27t5zLablz50g10CwKIBZWTxNqWmgVuI35e//8e77dDkNpaDqWozimL1+yEzNQaHwHMn1vSG+Y1FxLa1w7jnUPDsTVoNHjzX5dsVjMppoymQJdFiOjr4pMb2OmW2MuAiZQ1NaMs+ZS5IkB39hEDIejokGQ4gmGZMrczDbHm6jju3Yumh4nJD0D8Gvs3RsnsV2he4wqw84iXBcR9eQy+Yfo/YM4NoC35ZIocd923PoNLTIkpH3ty3BfN1jGMW8uqdLBziWFsQ5GCVMYm1DJimZkwLqrkWnZmOYBEmS4GSUYjP3GFPaBJGMk1dkDivjLDf33GCWMngzdV3fSnt7gDgzwn2f6ql5lnsR7I4YZijZ2IRxrHJRG3NTdISg2JVOttQdmdesQhuWRnVS0y0V4f4QUkXlTGb8lhZX88CpKCENE3afv8vXb+xzK8gKF1LUUvWyAW0M8nGqdDFmKTiMU+adlFCl3NkbMbdch1u34Px5Zk7McOXZDaxvX6Hz8ReQT36U9M7rqO9+VSvlnDgBN2/C7KwGc3NzVB9LGL9yh/HVTbxxoKNwg0iXA5qfh/EQFpYRiyey6yg9bObBVwr91BnOaTadmDoZ5vdcuERo8GYidSrJwJwoaJZmn3/cARAGqMNtRHMWanX4wTdh4ZjOIbzyAtg26tlvID7wGUhjqNSRVV+DuCSBhQWWXYerk2CK0jDl7aKYYLOYIsbOLmyDae+9xi96D4ZZ5EoJpKRAmIG5MFE4QufCDZKUUOn9H/McVpZrSMdCRWlucNkCapZknOrjpea2mMFnWRp0TSao4QC+91XU1deh3yeL+UMQMHrxNrevHzAaxdhZVDCOUiZBkbdleNuVis3K8VY+8RigZj4vjMSCqpxkhptUpVpCpUn+nqbIOeZveTZ62zY9Ijzp8+7Fd7Mz3idMEta39gkmhr5ErlBZvuopwzNrR2lHaTbR29LOvq/ohyGv7l2n5lT50PKHqdr16X2UfovTiJcOX+TXX/kCN7rdTNpaz32OlDQ9j2Gm5mpllM2a69LyqvSCAYNoSJAE7Ix3qDt1Gk6TGX+Gc7Pz/M5zz/NlXuJjx+5ysnGW/WCH7+98H1c6LNXm2RzusFjtULWrnGkfJ1Epz2/f4bX9bUbxBEtIxiNdY2qx1iFIAma9GWb9uQf29pRXH0GS3wEwuXSpKjv0dEmNfAbK+jb/dyRSYI7xVoBclIZ0g30aTpOqXeGVg1foLM2zXFvmzvA2AsHLBy/z6OxjpEqLnTRcLXiSqpRj9SUWFma4cWvzviI3UESZTBHvMug/6ly593qKzxzbJiYhVZlBkCjSMGEsQ8aTzMudPdetTpO5+XYO8k2POJn8e5wZYuY8VOZw8CwXKQTjOGAUj3jp4DLXu7fZn3SxpY0tLYI45IWdDa7c3mQ8mmDZFq7raKXLLB9FCDNHSTzf5eTKvKZAZjldwBRAg8Lrr4Oxpj+KeQx0xKEcgSvnH5q5/yehGTvIkoInltt84tKEOEm5ebvLeBRqMJzdt3x+Mn0HOdvJFERXShFFKbWaVijVgsla8CpJdW3MURDzzN0BVdviyWOzOFYhQATl6LG+tzu9gGc2D1jvhdrMszWlLAHqnsBT2oEsBeyPIpYaHjXHphdGjMKEOEnZ7gWstH1OL9TYuD5mqeny4vV9vmQJnlhss9apsnk44fJ2FyEESw2Hu72AY02Pim1xasYH2ryw3ufW3ohJrCPiw2GEZVustlzGccJStUKr6ryF/tdXrinNpVz7shPmyPZmLD7I1/lW5iaFvi+DrPxDohRX9wY8VZthseaz1Q1wpOTq7oCLS02SVOHaUquAxorIViw2HGY7ddaHkyl70UTSAGzb1kqQUTwV6b3HvkzVPU4qIKtbKJG+T2pZhahJHEI4IhzbhGNgPMjqyAnsziIrKw28bLy4tiQQWRTe9SHSTlRd3qiYB5wsOjiKFL0w5pWtPq/tD+hOEu0stXX09/vXD3j19T0mownSkvgVjzCI9PyYnTPo+aZSq3D2zCyzdS/T3dBztFETTpJ0ikZZdryZe26VdAfKQadEadCXopCqsF3fbHt7gDgpNEhJdf5ZZ6WBkLC5M2aY6JoXJhcuzalI4p6HwITuk3xbDdbSKNaGZUmBSQrBcBQTBH2k7+CtzRUKjKl2E6k4YbLd46XLu7wwGjNItEJhHmpFi5kMVYonBI7QqpqgFSt9BLFSbIURJ3yPjTDi+usHnJ9v4J4M8Z66RPPKHhubI2a/+mXUhSfhue9AEMDKMcSJcyj5ddTVq4i5OQ2wFheppCmT61tMbu7iLbepVm3e//OPIC4+DIf7sHIS0ZidCjeTTdL6+hKmfEJm/rWsgoqnUnJKnl5pNagzhcNFBoFEQQ/Iwd9b8S+pFHXnFdRkBLdegxMXwPNRr1wm3duAuRX47h/AuYdR3/kWnLkEVU2DwLbzUgMIwbHlGq9fm66DZmiVeY0c835x9VOtTMUyXWfeM4U7/SxqogBlZeqUSuFmA7KKRKYKV8BqxaVycp40ShC+jVQKexTjSokjBErqc3GkwHYkKtFoTszPQ6WKunUTggB1uE9yd5Pgzj7CsZCuDUJwsDNksx/SSxKcSNAIdfmCIE01B1toZ4Ivsnoyw8JDW6YhwXRybu5lRD9XlmHSCrDtjN5ktjevStMr8vowb8FIftu37FpaTpsPLL+HcTThy+mr7Owe5hSSRGkqr/FJFbkhBVhLsxzdJEmxlaYBhkmCUmkOvMx4u93vAZeZ8dq8Y+6dOKJkXChFmAZ0w0O+evdrfOPOy0ziGC/LqWp6HraUBEnCxqDPQrWGtG0mcUzddYkSA/IlN7t3eahzjlv9dRzpcK59nuXqCu9cfJRvzN7g7vY+X1v/Jitnj/HKwcuEScic32GpuowUL3G7v85KbQHP8jg/c5I4jblysMONw0PWmk2qNZ+/+LH3cH7mDINowFJ1aQqUliOTSh0tIzA9hmQJmJlMCpHdH1Hqu+K2TS+qb7UpFJujO4yTMRujDY7VjuFKl1f7V3m0c0jbneFG7wbHG8d5duO7rNXXcKWraZWWQ5jEeeRwKQNx5esug/yy4TZVaDdrxjgqR+Hyz5TKPd+e6+C5Tg664szocuxCjCIKI6QtWVqY5UKnQ5ymeJZF4jiMrRDHtbFtKwfLlm3pnJjseJ1KG8/yWB9sESUxh0GXm71Nbne7uLaNk5335mGP3d0u3f4Q27aoVXytRhlFee1F13XwXG2K9DP1S0P/M+UDpgxbc92l+cnw4k0enECUjOXi+ftJisKZlmaO66pn87GTc4SJ4vdTxcZGH9uWJImaAvmGVlbk8RafmXqfKlvTwjjJ2QV6W71mbHUDvnqjy3xFAyuYflKTVNeou7475PWDAUGSUvckYaxoeNpZMQgS7nZD5us2bd9iHKf4tiROVQ6+d4YBa+0Ku4MAWwoWWh7n5xp0g4jnZ6vc3Ozz/c0DFls+1/eHRGnKSq3KhU6Dpzf2ubo/4fSsj2dZnJnVxb9f2x6x2w9oV12aTY/3fu4Rzs9WCZKUubpLzSvM4vvNGeW3zNi07mOPlrcp948ZxmUA9MdpSsH6wRghBFvdCbM1F0sIbvVHXAyaNCoOl7e6rDWqfO3WPivNSq6AWHUkYZzk6/zKUoP1W7tTzv48J9dE2ozNIKfnVIEgUQkoLVCkT664YJUqUqEBj+M64Op1LE3TnMJp6kJGSkGoH+a55TnOLbdIUoXv6jlhZGX5tLYDSYKUWiTJcWQeAZurOtQcmzt9nfZwGIbcOAhYPxhrQZFsbjroTugd9Bge9hGWRbVeJY5iPTdmKriWbelzBkbjCNeWJdupyJtzs1INqhQQMNsVkdh7y6gZx1OaKhxL5tjirbS3B4gTUkcWRiNUnGDVPeZO6FPb2tGS6gZt27bOxbHJamspI5erprab8liWqGF5Lo8jGY1iBoMIefsA4dq4802zESpK2Xp5m2fWu2xFeiJzS0/hOFWESisBogSBUrhC50kFWbKnKTx9GKfMxgkVKXi5P6L5wgbHT68i1tZYuDDPohQMn7tB/Q//DarbRcwvwtmHIY4R7/4IDIekt+7osgi1Ghw7pms9vXSLcLeP36khZ1pw6iKivYCot3SkLBiBWynESnIPSQbkDKAztEpT4DsJM1XLEuSR04CuLJZSRPco9qEKU+wN816u/oDR3/6vqPz8p6DZBi87X8uCa5fh1CVUHCOSRFMEX3gaHn2XromXJKTDMXJmBpRi5vwC9vV94qNeajJvB8VEmlKq8ybK26ojkzS5UWn81JKyJzdTZpRFNEBIhUXKjG1z6mQTq+ET7Q008AKqQUS97uCHUW5M5y3NnAhzi3DyImI8Qo3HiFodq1EFtV+M5ySlUXeoWZIgTbGFYLbi4Pk2SZJSrTo06g7OTBVnpo493yLpDui9tD4VhdP3sHCOmChcma6lvUly6l7mYyD7grDM2Mg67ieEVmnAgVIpQkiWq6t8dO0DBEnIV9U1RiPtwYySBC8zTOM0zReVOFtsIHM0lermGO92rlwldN6OLSX9IOClYIeq833aXpszzQtYWQZwrGJeOXyJ37v+h2wPh9hSUnUcTdO1bYZRxCiKqDoOTc9nbzymU6nQ8DwOJxPiNKXlJ1hCchj0GcVjml6NVw+uUnPqXGw/xKnmKT535hEOgz7fufs6F2eeZRiPWKgucKJxkiiNeGT2EcbxmLuDLVbri/i2z2Pzl3Ash+e2brMxGLDcaDBXbXOifpym28K3qkhhEaUhjnQLx0npwdPqZiqLd5v7UBT41n6nlAK6iant7hf9PNrejMf71uAa/823/iF/+sIHqDt1XOnmi/HtwS2O10+QKC3jP44DrnSvcLZ1ligNSVTCOJowX50B4L2rJ3j2uddzxcYHGW+5ozEDcmUQY8ZPfq3iCMsif1/kXmJddy3LB8v2a1mSVr3K8WMLNF2PvfEIW0pqrsvEjxlVfV06IFM7nAJMQMefZbm6TJiETJIJNadG26txR/RI0jQHcdWKR7XiMQlDHMtiZqaB52mA6fku1arPfLXKfLVKp9JgGI15ZW83v4Yy0D3aF/k9LBmV5hkyf5ebZa6faVrTj3tTCgTaDpqtu3zq9DyH45hvJ6nOkUsVQZTgu3ocWErkNEvQjhHbkkwirdxn1oIkU4rU07sGfo6la7B1RxH97Yg/qNjUPZultm+CuySpYrcf8tJOl8MgwhICz5JYEpqeZBAmhHFC07dwLEFvkmBVBHXX5nCin42ma+NIQT+KCGOPqmNxK8snX2r5nB02+NiFmCRVPH1rwLnWgH4UsVD1WZ2pECcp716Z5QujbV7aHvHIYg1HSs51qriW4NnbfQaTiJVOjYWGw6mZOnXfpp7RO1MFQh0pWp71tSr9XlYchEwtnQf7L8vOvTe+pz98brqxO+LvfPl1/vzjS1Qdi3np5Z/t9AJmak4e5ZnEKVf2+5yZbeTmwyBIaFe00++JE21eeNFjMpxMKeRqZtv0Mwjk6rF5jpzUxbzz74nC/i7n7gJTAAl0pMvMdVru36FSq3D69Cytis3uIMSzJWBTj1NqNRfXcwnDcskSkQdwFqo+Sw2fIEmZxAl1x6ZTddg8nGh7JuvWVsPDq3gEowDLsWjMNHBdzQDwfYdm02W2VWGm5rLU8gmTlBs7w4KdVKLBl01g855pugi9zMsxGSdKsZ2pOWfyo9/a3PQ2AXHZq1GAFAJnvsGcFKTJHt1eSJoo4kQhREFJI1F5x0D24JQAnA7vFiBDOBaOI/GSglYZRSkHhwHWzT2k52DVPSZXt/je99Z5dRwQK0VYirTECsZpiswoPIUypf7MEuCIjGOegTwpBLtxzJLjsJcmfG+jR+srz9P+z57E/9SHUPt7bH7+K9SiCHFKi3cw7OvRNugjHnsSeXBA9NpNnHPHoV6HpSUqwOTVO6RhTLKzj/yVXyK8e4D/t/5L5JnHUeM+otbSqo/SKiiPZsQZQQwhyevDJUnBVzahF2CqQON96zGp0kvp9zcCcIfbJL/0P+CtzsBkDK6P6u5CtQ61GurlFxGrpxCOo4/f6ZA88yzW6gm93yhChVldESlxl2aoWxa9JNG1+yjVwSl5Y4/SLUWW72Vk7+53yuaxMldujIGyV1f3rsIW4FkWx2cqVM4saIVTR5eusKoe7kKTZW+PjcMJo5zioiPHebMdRK2BqjV0tHF2HpaWcHa6+XiP+1qEoFG1ESNY6FQ49sHTiOUlTQ+uVBDVGrQ7mqLqeljf/hry5fX8Osueo7JBmKpSHRNLYtm6JorMygpQpjgZAGealdWK+0mKxJWaLR1ON87x0bWAUTThmc0NwjjROXFknjnLIiTJDctCFl7liwCUZL7RIg++befeOIWiPwl5YXud2cr3aLszzPmLbI83+MLNf88L2zexsshDopSODivF5nBIzXGwpCRKEmqOgyMlh0HAqutSd10arkucxkjpYAmLu4MtzrVPsjHY4bndF6g5VU41zvLJ4x9hZ7zLt+78OhXbp+PPEqURo3iEQDBORlycucD+5Du8sn+dS50z1Owqj85dwBKS57ZvEyUJu6ND/r8v/ya3el3+z+/+66zWjjOJR9ScBr5VzQFa3o4AOFM6oIjUlfIysievTJ98o1YuTfBGrRce8suXP8/xVoswCQllSD/qUbErNN06l/deZam6TMX2kUIyV2nz/a3nWaxqgZMgjpgkEZawsITF4wuX+PC7NvjuC1c47A1Kl1qi1h4pMVCupWaaplyq3AAwz22SFo9lEcUzYkTF8+o5Nr7rsLo6z/lOh0SlWFJSzXLJ5qtVHEuytbWf13YrF/bVY9nCtyrUnTqJSmi5LZZqc+yMitpw/TDEtSyarRq2bdGeafDBMyc50VrGljYV28vou3XqTh1LWjy38wKv7u3dE6Us99G0I0lgZQXHLUs/C1qRUuZgrQzsyu/9JDUF+Zy9OuPzM+cWGIQpL90+0KUGUm0/2VLnoUdJek+tvCIKVzyHURaV8x2B51iZDSZI0pTBJOb5Oz3m6zaf8hdpVGwGk5grOwNu9UdIAb4lc6phohQbfa1K6dqSKBMDafoWB+OY5YZFw9VlIMJER4YtIdgdBRxrVdkdhdzeH+FagrOLNYLMafbV117HsQTnZxtEiQasAOMw4UPHZvk3r27xndt93nWsTtW2ONGukAKX1wcIAbuDmF/67i3W90f83z51npPzNcI4xbP1eU47ecvMAW10pxmdNcny8mxLGpJSvr6+EbCbuo9vksSyPwj55e/dZrnl69IxStEdRVRtm0mc8Op+j3dVZnEy+3ip4fCtWz2WqhVsSxDGijDRipGeJXnXsSb9T17g975+ne5eN5+HDGVQj49CWLA8TxkFy6ni36lmchkHiyk1IIQgiZMceZhIu9mXqSe3uDLLhZVWDoCE0JHmxZaPbQk27+4TjieaaRAn+biVQuBJXROvalsESUrbcznWdtnse/n9GQUxFc+mM9fAcR3m5mq856FFTnV8Wp5FzbWo2TYd38N3JI4l+cHWAbd2df1Nk45i7rFp5r7lNSqldpCYHFPbynJNszEjM+e/+Q4YobkfPlZMe3tQw5XSFEIzcWd0Mf/UIvOnZmg1XWSJa2pbIpfmLEKaWRDJDCgKL0C5k6VjYzvFg5mmiiBI6R4GBLf2iPeHfO9761weTYiVyvPcypO+qccFmsdqJikpdEmEuiUzwQLdwbaAUaLFLlZch6Yl+dZrewS/9TswO4dYXObY+08hltfg/OOwegq6+7BxR+e4BRPEo48hLMnwmy/C4aG+4OPH8d9xHrtZIelPCDcOObx1QPA//T3U9i3U/hZqbx3CcQbc0iwCl+qaa0msuckmm8QoVJajboiCQgmQSTXfc/8QxTFUaV/lOnTlrwQjks//PUS7hXz/B1Hb21BvwM3XYWYRHAd15y70DzX/edBHLCwyfOkubN6B0YA0q7uUn1ulgiO0YIj3gKcgp9hQPCxmgj3qTckvjSxCh6bLmtiZEBq020eOJRG0bIuV4y2sdh2UQjoW0rOx51tYF85SPb9E07FwxXR9ttxN5Hq6Jt6xU4i1U4iLTyI+8Ancj38Y56MfwF6aJT4ccXAQYFmSmZbH4kOLyPe8B/Gu9yMefgKxtKoBsdlnqbC7nHp2ipy4sqfIbGPZeuKxLJ23MKVG6RTFdrGkfnaN2MlPkFJl2fCXQmJLh4vth/ngsXdycW6OmufmjgJHyszzlqlzZaAsl4RP0ymj1NB0RQbiao6Te8CTJGFnOOK5res8u/ss+8EOX7j573l++yZ+RluzpF4GfNvWFKgkZhhFU4IObd+n5Xn0goDFWpNxHJOkKZ7t4tkuvUCDiifmH+ZU8wSX919ie7zJSnWNptvgz196N/OVBVZrx1mprhKlIQfBvgY3ScjDsxcJkpCv33mGbtjDFjaPzV3ig8cu0nBdDicTNocDbuzu8/ef+VUOg3264SH7wS5RGub9q8r/lHVBSccAAQAASURBVCJVSfGZSu+JzJl+ezMATuVPcenvB0TDgmTCv7n+W8z4TT64+hS74wPqTp2N0QZtdwYpJDd76wyjQabsOWSu0uGF7XV2x7uM4zFxGmfCGrrAdNWu8OTyCX76vY9z9vQqjmOXDMLpukzTdB19TqmJ2hoK0tF5R4iSEVh8v5zbItF/t5o1TizNMevXSZXCt22qjsNircVDnZM8PLdAo17FybzluSpkdkxXulTtGgvVeVZqy5xunuZdi0/x8RPv5hMn3s1qo8MwiuiNxjmAe/TYMh9YfYqnFp7g4dlLLFUXqdgVHHn/HKR78m3yiyNblgo1OAPM9Nwlc8PGzs5bQiZ2YulnRrzxWPlxamUal47ACk7OV/np8x3OLbeoeDZ2Nqc7tp6bPNuaGl9G9CGngCmVC52ABoi+I6l4Vm6QpqmiOwp55s6Al7Z6TKI0B3C+beHbFm6WwmKXGB+TWOW/g466NX2LXhDT9lySNM3ZNJ4lGWVMqNOdGsstnecVJopTczUGUcSfemKRmZrLWqfKUssjiFK6o4go0TbYx07OMgxivvjyHv0wxpGCC7M13nuqSc13GIcxO70Jtzb6/A9fv8bBMKQ7iuhN4pxyamwDUfrdpO2Y/EKlyoIx+trkkb/fiCFwr+1x/7lpEiZ88bUNVlsunzwzy0Y/pGrbvHrQZ8bTuarX9icEUZrV+Es51vB56W6X7fGESaT7V4oCAPiW5FNnZ/ibP3+Rx548gZPRsU09RhPZN+dlwFf+XlrMpSpJcgBXzEMi9+2bfdq2XahcZvtyXIdGu8HZkzMs1PW84DmSimux3HR5bLnKheUmtWYNy3Gyc5G53SKEzonzXYuleoXjjSrHZio8tTTD5853+NmLc5yYcRllBcIbDZe1tTZPXVjgZy7M8aFjs7xjsc2JRo225+bj1pRWkYLseCZ2UIqiZb8bMSbTH2YMGcYWkNtXpknzbGY/b6W9PSJxqdICFUIgPZs0iLUISbWKf2yW2f6EXjfIb5JSOi8nTgRJXEw8kOEUisGZG+GRji5J38ZRinAc5Z+lqWI8jtnZHHDwyh4vj4O8YPIkVYwzjnaYaoAmgWGqaT0yy8yQaIGTQGmaZd2SjDLKZV1KQqXVCmdsm8M4wRGCL/+H1/i0/wXsv/xXkVsbBL/5W3j/+1nEwhqq1oSdO3DrGnQWoNbA+cwnUV/4fXZ//wfMffxRWF1FrB3HrddJXr1COolorjTZenmbtX/8/0L+zf+LzjXb30R0lrWqYxnMGaAVZ5E3Q6vUnQIITcssgbkHL3zTXvT8VRzJZzCbdHcQcwvw8BOaNvqpn4VBd4qGp5IUdjb1OXb3odFib29C4+YNxBkbFcZYdV/nxgkBnpdNTEILywBhmnKEsDjVhKFAIkBMA/5ylEopEy3JHsIj3VDUfdGU2tWFKv6pubwvZE2XDMBxYDxGNOrMz1c4WNdA1LYlFd/CamgFSRotRGse8diHIYmg2kQcuwAPvQ/iiKT/9wi//jKDQaiLbUsLFSeo7S04PNAR1SDQxevr9SwSp4VgygIAeuHR2jblPFMpRYbdDYAT2LaYFhnQnBOEazFVXsAQ7Y920o9zKxnbQmnA4FsVHu88QS/sI8VldkYjwjgGKbGQBHEx8sywmmIJKJUrWkZpgi1tqrYRFDCUS4jjhNu9Hk9vvMDN3l1uHG6xUK1RdXx2x3164zE1Vxs/y/UWnm2z3u8Tp6lWvBQ6Mtj2fXaGQ0bRhKbrMUli+uGQjt8iEZK7w03W6qvsB/t4lsfT20/z5PyTrNaOsTvZ499c/V3+3Lk/Td1psmytchDssz68S92t49s+nzj+Ab5865t86frTfPLkk8xX5rg0e54Zv8X3Ny8zjCJOzs3y/K27/NP6r/GfPPxXCNKAw3CPGXcOWzqgMmdJCbzpqJwqiZeoIscgy5J741t3f2PojdooHjBfmeORzkOESchHVj/AIBoSp8UcGKcpu5NdkjSmF/ZoOA02un1u9G9zsrFGnCY0vVoW2daRQlc6HGt0WH5ihueX53nu1Rvs7PfuKwZQBm860lbQcMvgzzQtnV82nIrPy6DFcWzmF2c53W5nVFCo2A62tHEsh3Ec0PTqzM616PZ0KRLbsahUPFqehyMtqnaFutPkbPMCqUrxrSqLlRVON84Rq5hJMuHbd68zyYqJGyC5O9ljFI8IkpAoiRBCUHdqVOwKruUyScIceB1dN8qqt0YGvQxcdJ56afvsmk30zZbFLC1LRuVPUtNjQxu0FxebfCQI+YYU9MeRnmsSXdQ7zuiUBnggmJJKB+M0UARJimtb1LM6bv1JnB8vTlI2DsZ8+06XKE0ZRjEzvkvFsuhHEf0wxrV0nlvLdZAN2Mxqm1rCKFFKmq7N3jhiFMc0XIdRnDCKYzq+ByR0RxEzNZdhEOM5kvX9MSuzFVaaFfYnIb/76iZ/+uEVGhWbimuxNwjZ6E5oeDZN1+EvP7bCr72wwW88s8kvPrnEQsXnfLtB07V5dn1I1bMJl1Oee2WH/3m2wt949wnCOKU/iWlW7Cn2juk302dKAbIYTonSDKyjNs8bOpjewljsT2KWaxUem/cI45SPnphjfxzmTmlbCqJUMchE+PphRMN12Dscc6s3pjJrMYlSqq6Fa2eOHiFwpOT0TJX/9KOn+PrJWf7ge3fY3eoSx3FOqSy3tMQiSpKsjEhermt63hWZt9zk2Emjmlv+G3Bch2PHWpxdbGTqtWjarRQ4luBgFNOuWCwu1ugd+FiWheNYVKsONd/BkboofKtiU3NrJErhOxYLTcXxuSpJqojSlD+6esh4XBTUUCh2xwHdMNLrcUYNrTs2VdvOcjXTvEB32WmSpmkG3AqdgXKdOHNPphiDWTPlZSwpcuXM9C3OS28PEGeGvzHgsxwcEccIx8ZbmaHtDYiHAUGQ5JO27pTyQCE3jCh12NQibhV1ZkynJ0lKf5LwWm/M9UmEAjypgYsUWrAkVlrEJAWqliBFMk5TUhSx0lDAlQIHnRNXdzSNwABBV8BhnOKIBNdwrhF89d+9zMeP/T7ikcfh2ZcJ/5d/gvuf/5caZFWb8Nh7YfuOPnfbwf25n2buO9/i5u88y4lPjODSJcTKMexGA3X1KlbNozOJuf2Hr7F27l8hP/eXYDxEdXc1tdL1dQQuCrJRKAugphRMBqR7G3oRTROE5SBWz4JXu/+dU6Uo3v3u6QOaqM/Ah39W0yfjCLq7qJeeQzz8DujuQr+P9BzY3ym+1GwThAnhldu48/MkkwhrZSG7rxZ0OixVXa72J0RZ9KNlW0RKMUrSPDpbeHgNTat0Xlk3SHEvqCtvlyhDzZm+Wgk0LIvOsRay3USNRlpFs14H1yW5eQeV7GOfWGHloxdpfv8aSZLiL7Wwaj5pFGfCOhY4HsI/0u+Oh4oCTZMkm0QSRWop0nEIW1ta1TLOFlrX1Z6xMERUKrkQTBmglqmTBnsJCXnhcOvIgpQhPyEEWCIvMSBKO1QZfeInph0ZM+Zf3WnyxNwTRGnE89uvc7vXy5U8TW5cWVBH72P62dCCJxrwaWW/pCQkoI8ZpSk3u102BwNcy8K3bUbRBCl0uYBRFDGJY+aqDZZqLQDW+32iJMkjLa60mKlUOJxMONHqABOaXp1RPKFq+2wP96g5FTzLQyJoug2e2XmG9y6+l5ONkzy38xK/8vKv8Tce+U+ya29wceYhdifbBARYwuKzJz/Gc7sv8hsvf5OfOfckZ5qnONE4Tttt8dzOS9TdLqMo4vdfeYWLnW/ykZWPME7G9KIDqnYdV/qkKtGJ8ihNWhcCqTTrYRwPOQj3sYRFohJ8y2fOX8Qt5YOUW+4dfosWe8Wu8a6Fd9GP+iQqoR/2uNK9yqWZC/TCLoNohG+7dMMelrBQKqXpNonCiGuHd5jzZxjFAcebSzrnSFo40sG3PR1NTGIeX1zjofklXtje4IVXb7Kz352iEZa9uflYSRWpSu+pHQjGuzsdMSt7ws1PreZzojNDy2swjEY03Ap1t0rF9rhycBeAk60lPnnuPN+rV4mShGPNJjXHyUtXWMLClg6e8KfOwZYOcRpRtav39Pkojtkc7OHZDlGi5yff9khUSpRGeJaXv3+PAVhqU9E3E43LnE15dDX7WwKOAXyQU5uPlqH5cW+ZjTzVV3XP4omlGVIFz28M2exOSFOR5+fEiennwqkXxym2nVFTbVkah5pxYglwM0PWyVQDdZQPtkcBriV0CYtsh54lGcUJ4zCl1rKZ8V1SYKsf4VoabEgh8C1J23cYRgnNTEhCfzem5tjsTgKcrH4pQM232TgYszxT4Uy7zsvbI/7F83f5j991XNeX820alQZ7/QBIkdLirz6+wjfu7PNPv3WbX3hymYfmGpxs1ml7Lpd3B1QcTbP74tN3eXy5zodPzTOJEiwp8DJKnWYHZHRlitwmIQSTSINNQ5eTUjBXd3EfEFk5+mybuV5/9mBKXavq8NhKi/4kzoHmH9055NJ8lV4YMUm0QEw30L/HqaLlOUwmCa9sT1iqeYzClMWGkz03GfBLtPJ2mKZ8/HSb9x1v8JWrXb72zB12tw7znLdyVDwXJhFC2xlpUqTdlK9NiqmoW5l1UN6m3vA4vdxkoeFwOI5peFra37UFz9weMgpiHlmt84nHl6nVXNJUsTpbo1FxCOIkd0pIIfDd8v4FtqWdDkY4CYz4SMokTFjvh/gZzVePP00BDpKESmIxiVUWkSuisUZHwNwzKInpyaK2rrnTcaKBmhCm+Pe0w02zb96a9NLbBMQJHX1I00K0wQg8KIVV95BVF7ndI9rqF98qAbRiMsokqRX5BJQkmVFJNskdMS7HacrtIGQ7TLCFzmULUkVaYEodacnAQNuW1C1BpPS2KYpIaUPDFtrAT5Vi1pbcCWKqpejFQZww61jMOTa9OCFA8Uf/+Ku8/787ifezn6H/y7+Bu3Ubce5xiEKot6E5i7p+WeeNzS0hPvvznFhZ4cYvf4mVrS7exz8AnQXE3BLy1jUqUjATJwz+1ZdpnHsIce4JGBySHm5rRZ+V00dy5FIIJqQ7t2FvEw52UZUaTMaoShVsG7F0WtdwO9qM98WIpZQfYGXeg6JcQdb8OiJNoX8ArkX69S8jVlZhbxuqNV33rFJBGZptrQZpShwroq0ebhBo8OC6eUFy4XqcfnKFja/fYJAZxYnSpR/atk2kFIMkwUi22MKMvqKAcDlHSRvsUB4t5eirXjhFXqpAoRe6xY6Pf7yjz1tKmJ3VuY6jAekr13W+2MOPIS49RePP7GrEVK3Dd/6A8GvfIekNsYf9B1JRM1eP/lUCqYlcKg3SpCQrsqQjclGkSzTYtj4nq6ATm0nEPEeOLZFW4Z2zLEMRMLQBhUjRQE2WKW2iFIHLuPBv4Hn8cWvFGCmuWb8vWaws89T8kwRxSC94LZfzv5/n1eTElRewpORYKIoUy9wodx2bTqVC1XGo2DZRmnI4meBkYE6gKZz9NGVj0OXszBJLtRajKGIYhoyjiO5kwmylgmdZTKQkTGKW6/Nc727QqTTz49/ubbLWXGLWm6Uf9XEtlx/sPsuHlj/Cz536DP/Ts7/CXrDLUnWVVCW40qNSq7E+us0oHtJyW3xw5X0sVuf5Rz/4Eh8+vs8HVt7FQnWBTxyf40r3KpZ4hTBJ+NUXv87p5inW6scZxkN6YQ8hBPP+Yg5SFBq0BMmY/WCPbnBIL+zh2z5BElCxteLcvL/0YCBXomrek3unP7jnXrnSo2o3GMdjBIJvbTzN8cYy+8EBFctnFE2oOxXG8RhLWFTtKonSstMb/T7RQpyJzHhIYSGQSCFxLZtEuUSJplp6tsOTS8d5eH6Jr9+8zuWXrhPHyT1RqCln0n0ij1MRK1HQKO2MumSabVt05tocb7awpC5rMV+d4UTjGONkwsu7twC4NHuO080z/MKZQeaQcHhx70W+evtZ+uGISTIp+GX3no0u4o3IlVsBoiQhSiNkIojTGCEkcRpnPwlCTAsVHHUCGcqVdYSCZYmCSmn6JgVEyXkiyvvgyJs/xu3oGqVtHEx6N7M1h6eWZ4jSlO44JlFF9EEKgRJM5eeYvDgoKJamWVLkBa3NseabPk+daDJXc/AsSZDoaFyQpDkVzZGCw0RxMAk50awy67kMw4QkhTBOGcoYKex8+yhNWar6XOsNablOHsXeHk2Yr/o4lmQSJri2ZLcXcGqhxi9YS/zyM3fYH4QstXytYWBLaq7F3YMx4zChXXX47NkFTrZ9/uFXbvD+C3N89uw8cxWPD6953Mqizt+PU37pqzc43aqzOuMzDGKGgTbAZ2oOtiXz9V4AUaI4GAb0xjG9SUTVsZjEKVVHC7fMNbwHDrUctOX/Hf383giYYwlqns0gSLAtye9f29V5hZMIz7IIk5SWbxGmCVGa4tp2Tn/d7U0I0wapUni2To8wIkSTJKFiW4RZWYmW6/Lp87N86HSLf/PcFt/49nXiMCbJhLqEEFrAxJy3kOTJJipFyIJyWWYOlKNwubiJENiOzcJCnRMd7Rjybcla2+VMq0E3DOlPDgF4fKHJmbkav/jQsu4PW/L81iFfeHmP3VFMEL1xyey87EgJgMepYhgmJTo6JELf81jonFJZAtmGzWSolACOo+dbQ73M01KOAN8kJXdGlM/D3OujJVV+WHt7JK1IoSlxaVosVpkRmKvhzDRxl9tUmj62Pb1gpdkinKRKB5ayz0yhPsioeWp6QpJSe09uTgLWg5hAqZyLncJUTlzdEtQsTeeZpFo0o1ZKSkxReW6LJbQipScldUsSpkpH46QgVLAfJSw2PU41fMapYieKuPp3fx1cF6vmoW5c0SqT88f0aHJcxMlLmhI3HkK/izh1llN/6y8RrB/Q+9XfRd29Ba6LePgdyPe9n/o7TmG3q8S/+euow11t0PcP4PnvkL7wLVQ4gThE9fZIb79G+tozcPuKBmHtWX0/5hagswiWgwZpMSqJUWmCiiPUZAjDQxh1YdSHyRDCSQbGs9y7NM3u633yT+IA1d0l/df/DMIQ1e9pML9xWxesBg1AhNDCHklCkijCTMHKblb09qbZDt7xeSqWxM5pkhpQR9mxa1ahUJYab4rJb1Qqz3nLH+Z8nBXGk8rGhzEIyxN6xZLMH28hmpkgSbOpwenJc+C4WHUP+8QynHkEsXoO+cTHke/4BPLcO+HEWe3pG0cQjO8T3Sw1y8K2C2qXzCgxOE6R01iekaysnp9tI2SRT5p7FTMut5CFJ8u2M49RacIxYE0plT1TpedLiBzAiSw/7iexlY1ohVbtXK4e4/H5RznVXqDmOBj+/FHPZXlRU0qDQgkkJcBuvHSOtKi4DvPVKm6W5C+F9nQfTCYcTibsZ89J2/dZbTRQStEPR9ScKgu1Wh6FMGqVlpDUXZfd8YCK7dHyqvTDIf1wlFPpbnTXWa2tcLJxgnE8JkwjXjx4gTl/geV6i/XhOp70qVo1hNDgZKm6StXWxcLH8Zhj9VX+1rt/kasHW/zGq19kb7JHxarweOdxfurkR3j/sdPMV6v8xmu/xzAeYgmLUTzk8v5lXuu+TJBMCJIJ3XCfjeFtbg1usD3awpY2La+FIx1m/VmaTjN/Dk1NtlSlJGlMkEwYxQNG8YBJMiJIxsRpNEVJfKMIXZJG9KIu/+7Gl4iSiF44wJE2W+NtJrGmCYaJnos6/iypSojjhGEUabEPr4Et7ex+SqSwmPVn8C0Xx8oKxyJJVULDrfLpMxd56vFzeY5H2UFZtuOmI2vkBkM5h0zlTszpebfiuxyfbdP06kzigKZXY6k6z7H6MRzpUHUcTrYXOdE4yWJlhQvtR7jQeoRT9bOs1Y+RKsU4jgmS4IF9pyNeVi7lbahUUNQvNHmMenuZfWblTgxpySmj1uTRmLwTM1+ZCFz5udSFejMFuexvBRlolTiWleeR/iQ1011KZT5wpdeFuYbLEwttzs771Dyb0u3Ix4YpQ2HWlLQE7JISkBMCXFviuxazDY8n1po0PIskE08BGIYpoyhhGGrWVNN1ON7SqQ69UEfWlus+TuZAnET6u7YQ+LbF7jhECkHHdwmShGEUU80ooFvDCTXfpu7bBFFKlKTs9UOWZ3xWWy4HwwjbEviOBhC2JViZqVD1bKJEMQ4TTjZr/Nc/dZ5XNwb8z9+9ze44wLEE52Yb/PS5eT7x8AIrnRq/8tw6g0DXFhtMYq7sDri1NyaMU5JUMQpitnsBt3ZHbPcCLYWfgZKmb1P1LG1/pMVzbH7iJCWIUsZRQhCnhFmBaWNLKAr75J77rGAUJvTHEb/54jo7w4idYUTF0RTWYaBr4MWpXl86vqtLPoQxw0Dn+flOEdVUkIt4VGwL35ou0THjOfylp1b47MfOYzt63kqSpKgXV36QpKXtj1IeXU6XzKOM01E4Mz/4vsPx+Tpt3yaMFe2KzUqtymLTwxY6L+70fJW1doWlls/55Trnl+sc71RYqVV0WlQYZ2I8D57XLanHhc5PVzkVu+ZamVO7iPOILEpp+sK2RE6dNEr4+XyUz0MFSDP9W7YFys8bZDXmhGbuyCPHezPt7RGJE5nXPovE5Z6HUsgWQM53cIMYdWefZKBz5JKst/PkQSlwZRESzT1JZXCYtShOuROEHMZp/tBYWQTClBMIUkWidAFvC02zNN3vSkFF6fw40BEfK4vGBUpH+OYdi+uTKBc7AQ0Cbx6OmXO0l2nOcXltd4jzd/4xndUGbG6i9jdQ/QNEewE1HiBqLcTxi6hBFwYHcLALfoXm3/4/of7wS+x8/veZ//gG4kMfh1MXEKsn8F/4PsmLL6P+6f8bdfIkolqFegviCHXjMqrfhZ0N1PVrkMn0i8feCY4LtQpUG/q41YYGctIChAZn4RjGfVRvDzXsZSBBIlxPq2ECjPv6vbljUGthVC1VEqOu/oD0t36F4PnXkRUX58Syjr55PmprC+IYNQkQSuli50vH4PIzgPa8MBwiKn4RkfJ81OE+8cEgF5IwPndDq5moknwyhfdalo0FNEDLnUuUhqIoNlSQK2AqkRnzCOabHt5aR49nz4OFBZ3TKARqb0eDnaUlRC1TDDVjXVqIExdwz67pUgr11oOeFn1Wrl94kmS2GBt1ywysAbp/MgAnhEDJgvpoZV5YU3ajHP43xqG0po1DIbJom8GJUYKyBMK1UXGS168Dihy5n5SmSmUzcgNUixzZ0uFU4yxPLhwwjr/PjcM9gIxak04tGLZt6Xo6xosuino7VlbMWqFFGTrVKr5lkSjFKKPICmChVkMKQRBrEZOd0QjPslio1fJco47fIk5T7vR6AIzjGN+28SybII45mPRYqHZ4/eA2c5UqSimcrEjz9f4NTjZOALBQWWB9uI4tLGb9FpujTcbJkDAJaLhtBAJb2CxVVwmSMcNoQC/qUrUr/BdP/XW+s/U0n3/pS3zm9Lt4rPMYJ+onWTy7xOXZF/nu5gt8/pV/yen2MXzLo+7UiNKI28ObjKIRu5M9rnVvMVeZAeDizHlsaeNKF8/yqVgVfLuaiYfIHNDFKmYcD+lHPYJkgsjmHle6+Jb29IZpiBSSpjtDxarm0b9EJdwd3uR3rn8hF5A5N7PCOA5wpcv2aI84jRlnQG61sUDba3O1e00fw7IYRbpkgy1tBALP8jgMDnQkSkoqtkecaqprxfHxLJdBOOKJxSUOTw+5cu0uURSXDL+jXttsHIrp59O8B1nOSibyoZTCti1mZpusNhpYQuJIh8Vqh47fQSA4DLr6euqLVKzKlLNCCovF6hIXO8cIk4iqU33DR8XJwGt+Pvn5Sg1gS/Rh46mWmUPAyUQTzBxjwJv5vZznpyNwMn/Wyq+J0vkvxiliRIakMAbXTwaME0wHcYyAEog8UrfQ9HjnUpt+kHBzb5I58KYFYyxL4LoWYZgUuV5kqc9CR4BkrB0GFdfm/EKVhbpNlComcaqFG4Sg5Wt2wCTWEu8H4wjfljQ9zSKwhKDp2oRJwkZf53IFcYpnSXxLEiYJB0FI23PZm4QsuJ6OrGXUzN4oYqbucjiKqHs2h6MIIWCl4bIxHHMmrDGYxCw0dWTesQQrbRNRSxhMNJD8v37yHF+9ucs/+MYN/tQTi7xreZblls/P1Ra5MFfl6Tt9Pv/cHc51KlRsi5bnkKSKre6EME7ZGk54cWdAu2IhEVyYbej6r5bEcyxqnkUlK+vA1P3RIGww0VEjo/UghaZtCmAc6f5sVR2qbiEmFycpN3dH/OaLG7x4t0eUpCy1q4yjlKZrc7M7JkwUwzAlSQOavkWz4vDaXj939nSDmIoj8TKgUbUtBlGsaaPSytWOpYCKZeU5jR8/N8P6/jGefeYW4URHzZM4mTKWhLRyez13IJXBGxIlVK5WKVX27EpJp1Nlpa3vme8I1po+nYqLUrA+HBNGKadnvXsUQy0pWGz6XFiqoRRU3Ac7j4UQ2EJThbUzVYv3pOjrtbUHSgsSWgVd1oCrfK0uOc/NvStH5URpLtJOpbLOm/4siBP9XNm6v20ptDH5FtvbB8SpabeDMJSwVOn4Y5KA62KvLqDCGBXua6PIEkRxOrWA2bZERUkhImAWvqQAiVGUcudgwnaUMExVZpDr4siaameS0cGXui5clCE9X4o8Qle1BHFWJ05H4/R3HSHYDBMuVlzatiRUZMIo2kJeD2MGScqK6/LuT59n87k7PH+3xzs9STUMUaMB6umvaWO80UItLCMWT+gacM1ZWD4NwUjnuv3Zv8bCe64w/me/hrz+ebw/83Nw8jzi/Z/Evvgo6vvfRl25StQdEx8OqXzgccSlR0i++AW++m9fZDeK8aTghO/x+C9cQ3zqs7DcRlTqiPaCBnXlHIw0gSRGRQFqNIBRT1M//RpqJHR5hCSCYU9TMkcD5KmHodIsvg/gOHgnF/Xvc3NakfL5Z2A0gjgmHYeIJEUuLCBml0n39/E8ibvchv19WF7W/eM40JqB0ZB4f5AJI2igZgt9Dy2hy02ESmUTlEBmryZXzjRlxmTWzJSgssXsqES5oWnVLMnyagPZyqJwrRaiPau/tLtJ+vpV/b2lY+BVM6QkNSgWArF6HvmL/zFq3EeefARsF5XE91cENVEvccRbJ6Xuk0xgA5kpi5rae8Zgyp6JslKrnoi4Z9ExdJt7qMjGeEwURAnCknlE7ic3Coe+vuzvsviGb1V4ZPZRDoJD+uGYUay9gmVhHZ2IbeeRU71mZAt0GmNJCyl11M3UfRvHMaNIJ1x7mdPCUGB828bLAHuS0Szbvq+NdmmzVJtlEsf0g4AoSXRBcNul5rpsjQ5Yay4zV2kxjMZEacJcpY1Sisu7r7M32ed4/RiPzD7KrD/DC3svUrE9HOmQpDHP7/2AttfmXOsiltDn4FkVfKvKrD9PnIZ0w0M+ufYJnph/jH/9+u9x7fA2P33qU3S8Od67+D4uzFzg6a3v8+redXphwP54zIfWLnGufYrfvfZVfuMPv8PeYR/LkpxYXeAX3vMOPnPqo1T9Kr7l03Ba2NLJozn6VqTEKiZWMUEaMEkmxCrGkQ5hEjCKhyQqIUxDgiSg4w9ZrR7HtyoZ4NDPc8X2ODOzgFIp89UZbGnz0v6rDMIRiUoZxxEwRApJ252hH/XxPJeFWo2DSY8TrVVsYeNIh6bbJExDumEPpbSCqAHbruXgWgWj4F0n16hUPV66fJ1xEJauyxhHxXjSjgG9ROpxpEpS4KWIrxBUfJfVuRlm/CZhEjPjN5nx2gghOAgOeGn3KkIIFioLuk9FMb8BLFRW+OmTnyFMApaqq0iRFQPnXhEHKbQxWKZTavAksYRFSppRIYsf7cSwckpRkqR5VLJMETVy9dPHmy4fM01FVYRJosFhiS3zFpzdb+tmHEHm9zIAUyXH0+n5Gr0woh+kuiRKKnPqmXHm+b6dG6pJRiHTQg8qU9fTju7jMz5zNZtRlDKO9HhruPq+VDJr1cvk65WKSVFM4oSqY2fAGjq+xyRJGQQJQZISpQrHltQcm71JyHzVY9ZzGce6ZNCc71FzbDb6E8ZhQqehC3N7jmSrG9Dy9HwZRCnP3D1gtVvl3FI9z0mr+TaNiqMVyeOUg2HIz11a5n2rs/x/nr7N8xsj/qPHV2jXXN6xMsOZdp1ntg74/t0BB8OIcRjzmYc6XJxp8s9f3OQ3fvcF+hub4FVYWFviZz56hl+4tEDH0aqGdc++R2kwVRBECZMwYRwmTCJtu5pznEQi3ybOymq5bR/Hnh6sri041qnSG8csN11qnuTVvSFRogGDpqsqZis2zYrN3jjE82yW2hVuHYSsttycHrtQ1fRTE0mN0pREKWL0546U+tWS/Nmnlplr+fyHr7zOeDguxmCJNWAWR5U5e5UWgMjt8CROUJbOq1WpQtqSas3n2EKd2apNmCiWGw6zvgvA4Sjie7cHSClYqlbwSgwkfUxYafv82YeXSVLFUsvPhUKO2jJQlJsyzaRdQRZBy1RN7Sy6ZqL9Vva3KS9QFi8x845jT8+5UZJOKenr4xXfUUoHk2xLmqyY+9Ll36i9PUCcIreQhaXrmCCl9nxndUqIIh2hqFZxlmdJBhOs3QFWbGp0ZLtSCteV+Q3MJzezQUYF29gcsR1FTNKCQimFLhGQAmmiQZsUOnJmPk/QETe/9GzWswUnVRokiLQAgeM0Zcl1eG0c4md0yqalX0dpysqsj31imdmNQyqbA67cGTC7uY/z+guIJz+A+uZ/gNu3YX8XDvYQj75XG/2OB34N4biorVvQaFH5L/4z1B99heh3v4D95G3EU++HpROITy8jbryC8/yzJC9c5fa/+Dph9BWe2xmwHca4mQdmN4z51m8+x+Lvv8Lpj51D/qlfRDRmSW9chld+AKcvIo9fQKWppvuFEw3WbFf/KKUB2mSoQZ15MnbuoGbmEX4jAx8OtOcRaydRlqUpfsdOQO8QdfWqBiGehwgiZK2CWFzWRcD39mi3PNzHL2ig5+tInPB8qDcRnkcaxnleAJlfQKKjZgka3IXZeKtbMl/ktN+y9Frytpj3DGCSQkwVClfZOOlUXa1IKSU4DmJxSee6jUfQ7xJsHGI3KlpYZtiDZkf3W39PR107y4iz79DHkhZqcIC6+zpi+TQ054oBl0XajHEjpZ48hG+XZghZ5McpVahG2TbCt5FW4YGVRwwapSiic1PvZ7W4ZEmJybFyIRP9ACX6veSNeek/lq0UUTjazBhpuG0e7TzC3uSAYRgSJUlucBoPuZ2VZbCsgnJWNkolWgp9oVbjcDIBNBXMz+q+BUlClCR0gwDHsmh5Xr6PSaLzIOI0puZWSFKLY40O15NtJlnUzrECHCnzaNzx5hLPbb/GXLXNKJqwUp/HCgfsjQ5598I7qdp1Ot6cBiJWyJnWaXYmWzwy+yjP7j7DxmiT9yy8F9+uZs9OmhnxLjNeh73JDq50+auX/hwv7P3/2PuvWNu2/MwP+40xZlxxrx1PPueec2PdW5lkkWyKZFNqtVpZLbesBwW4ZQswYPhBAiwJtiHDgGQJ1oPg8GDBgCxZkLolG+6W1IHsJrvZJKtIFlm34g1148lh5xVnGmP44T/mXGufW8UuSiBVLNU4ONhphblmGHN8/+/7f983+W8+/BW+cPAGn5p8ir3sgH/4+p/hU9v3+d2nX+N3Hr3Pf/a136Kq/i5vvXuX8nQJkcYMUp4dn/Of/Z2v8De++Rb/0Buv8Bde/sfoj4Y8Xjzkw/MPuDG8wUEufRKVK6ldjfO2Y+kAHA7rbCe9BDgvz9hKtkhNFmREhkE85OboOrGJ0GiuDq4yraZ89+RjEhOTmoTElPTjHpd6B6Qm43h1ztaozxcvvULtGhKdhMemDOIhZ9U5kY66yAGtdeeuaZ3DelkMx8bwyu4u8WcMb79zl/PZArsRrNueivBcr1y7CFBrt7d2waK1Zmsy5NZ4TBSKQnu9bfKoR2UrptWUR/M54zSlcTWFXdF3Q7QxrJoFhV0yiEZc69+S11OaZTPnuDhkku4wiEcXNiTSIlnsZJSRIWltycP2lU2NjrS40IV/RmsyYzrJ8SbTKJ/X4wOT1l47Ug+5yMrJdRSYcL92FbbOoY3plhw/CkNBt37SCly4k22CfuchNppX9oY8WRbMAguklGTeqqB2a8OOdZCctc8HYTxirdntG25spRQb7ru9WFNZcbJ0Hs4KS2pUcLQM4h3rySLfOSECHOQZlV1iHUyDm2KsFbVzFLXj0iDju6czxknMqrHs9VO8h2lVcznKaJwnT4T1ik3OuBczLxpe3hnyu49OeLRY8aUb2wwCO9hY1xmV7A5TDqcleWL41/+BF/i9Ryf8x28+5E/f3uKNgzFb/ZhfuLXHy5OCrzw85Xc+POM/+rWPqSrLd799D3v8OBwAxeGjQ/6LvzLjV74y4Rd+8jp/8fNXGWQRD05WvH865+aox95IeuPKxoU8O9dljVXNRiamp5Onni4qsljLcwOQ6KcRL+/0qO2CrSzilb2cVWP58KSkF2uSSFE7RT/VXOpnREbzZCZ2+j9xfcDjaU0WBwlhbNjuievnqrEd8wR0zKoPrUIKAeZ/6vYWafQqv/qVjzk/OqepG4wJ6pJPnJhh3bDxuiYyF9ZXSit2dnLu7IuT7yBVHPRyMmNYNZbTouLp2YpeFuHxFEFGmxjNrGiYFQ07g4QbO71OQbQoG45nFduDhEF2EeYotXb8BWGg00hvmIkJ+Kqtx0by2ZvQQtWC8hYcyv5ZS9hdUGutvQZkN0gh/GIPnYmkNUJrhQrb0667/jBz0w8HiIO1pDJ8oM7u3nt8Y7GrCpNXYmQxmZBeK3BVQ1MvO00qQFULRWnMOusK1iwcwPK84Omq6vTySaistxN+riVOAAjGJeJQ2S7cS+/Bwnasw0t6hkazsI7GK2Hswmrv3DruxBEjI31ymVY41llme1eGuGdHPHkwpXSeCstv/Mq7/OyqIv/f/x/gCz+N/41fhfkc8jP8ww9Q118OodyNVI33r+Nnp/DoY9QXvkT8i38O/+Vfxf/G30a9/lm4dgf18mfh+h3yO19n/7/923zry/fIteJKKqeARuR1RsGz85Kzv/odXn3vKf2f+GUBz8bAB9/FLhbUD48wwwz96ssCvrIc9q+ieiNhmGwtIA6k965YdC6LPsQaqCjB33kNnj1Gjbfg5Ah//976fNBa3Cm3tuC1L0BT0RxNGV8dy98nkzXDtLUtLoxFweJ42WnJnV/n02wukp2XXkenZWJqNm7yiu8vspGKc3gN1g2lSkFPa65e7WN2J/Lm29uwdyDHaTHDf/tbHN87w7szLum/Tvz2t1EvvQKvfgFOHsOj+/g7r6Hf+FOQ9PDO4T78Jv43fwX1s/8g+jO/KOx0O9IMlZjgIAZbWynxZCCspPcwn+PKGj1wkOdgLb5pYDAgvTJheLpkvtiw2PXtbv/kp+96bzbkkRdYORNMCFqzE+flYnF/iJnoT/hoF6EKxZXedT6z+zonq3NmVUUTmAiJEnAhH2y96JYqqCziTZhldvMxpa04dssuO66NI9hOEpZ1TWxMx74NkoTdnkgiF1XF0+UpNyO58Q+SHleGWzyanVE7x6wsGaYpWimeLY+5PrzMJBtxsjpnnA5pnLA01jn280s47zivzjp2753Td5mkEy7tX+HTO5/hK0++wteP3+SzO58jj/roYGIkwFaxk+1R2hXPVk95bfIaX9j7Il8/+jpfefIVPrX9GnvZAbeGt7ncu8LrO+/zl+Nf5te/8Q69PBUTgXAtt6zM0dE5f+Urb/Ldk2N+5uptKltjtOHD83ucFlPuT08Ypimf2XuRK/1LpCZlOxPAkugEG9wvvfc0rqZ0JZFOwrGQY2VUxM3BDQ5XhwziAafFCXenj7rjrZQiNQn7vQkvDG9jveXZ4pjbkwmxjhnEgyAPNGylY1KTSh+ZX4clN07Cio3WyF1G2LNWdv+FS5e5Nhrx++/f5e79p1R1012LQHfT3wRG7bbBWnrYsnBXdifs9oRp3etts51uAzCvF3zj8F0+OjzGO0/j/g6v7rzHy5MXuD26w7ye8XT5lOuD69wevUyiU5x3PFrc5xvH3+QzO5/mzujVDigrFIlOJI/NGIwxTAY523lOomNq1zAtFzSuwePpxZlIjrWnH+dcHow5XC45XxXr68uvy2zWuQ7AtWOzN06HfdDJNFlfZ628WfqGfwTmp+cFGs/9qi1QCrMGozzm8/sTns0almVDWdvOY6CoLFGkiWMjkTJhvq8Ds+e9yNxuT3oYJWxPFsxDvPfUzjMOksnUSC/dvLSMs4h+rLAeZlWDVorLvZzGi/nHXp5yVlbUzrOqLcQGDRwXJTuDIaM45ryqGcUxjXUM0ojM6i5gO2R7k0Sa82WN0YpLWxlfdBP+2nvPMAq+eG2bUR51/d429IvtjVIWZcPRrOLzlyZ86doOv3nviF9+/xk/e3WbnWHCrZ0e+8OUz+6P+MvffMxvvfmIrJ9Rmas0tdjvR7Fknh0/PeW//uUZHz6Z8hO3d4L5iGI7n3O4qHl6tmJrkPKFawOuDjLyyDDJEtJYd2xcY33HfragE9ZsVxJpbo37vHO0ZG8Q0TjPyWoNoFKj8LFhK4u4OenTWMfD85IrO31WtWPSM52z5qVeTj8TSWp7/bgw3/aCwqM99q0kGeAfennCy/s9/upXH/DOtx/QVM2FPrfNMHBoWzP0he+NMSityPKU6wdDDgYxzsPlQcZ2ntBYx6yq+d2HUx48nVPXlv+39bx40Ocnrgx5cXvI+arm/nzJi1sDXr48JA6Fh8enBV97csrnDrZ46dJgDRiRYkZsdNf/uTNM2RkkxAE8HS9rlpVjK4/oJ+LAarWnF0dc2Uo5W1ScL6uOjWvn6zYLtmXdNoFqey2ZAOLa4n/cRRasFwTebyh8foDxwwXijIQEe9aB0762kvEWbzjtZRnq0gHpqqKZl5SVuPRY51GNGDHEcVjjGyV0rnVdOPSzwxVRQNBJuEASpcR4JMglCyUZb6UT5q1uF7nhvGxNT3paMbeenlZUTvpjnGA8NDAPlalJZJhbMTcpnKcX7A3npyuWX7vH+XnJ1Fp2I1ng/fZvfMwv/D//Q/T/8n8Dv/Tn4OP3BEg9fYgfbYvMEfCHDyAfSg7czmVhx7RB/YP/NP7sGbz3HXj2GP/CS7B3DT7902Qvvs5P/PyXWfyVv8sH751SB5ay8WLAYhTsbuekl7ewhyfgPObyHjQN5UdPuP+tJ5xOK9x//R1Srbl00GPvC9eJPv8ZePl12UFZH4aT9fc6gnIh0QZpD6IENdnHNw3++GhtZNKOupbz4ZVPoa++iPvmb+CKiuylKwJK4lhy13oDuHITTg/h0SMePJzTINWtGEWitLiNIrKFxq9Nawrn6QXjmYS2j+7i2ARqravlhdMWyRPczmPyOwedW6bavyxxDrNz/N2POfrtD3j4bIkDVr9zj613njC68i7Zp78NOztwfo4qVviDm6jtS7Kffv838B9+iHrtM1xYcCgFJgphmtDrRWRXtoguba+dKUEYsTjuJKcqjqE/Qr/8ItnpgvKjY6z1F162/bqJ0TYBXMvC6USmDmU2ii+bFXPrJOvxR260fC1r5LuJyBCb9ZfGr/Bk+ZSnC7HU10qqy1WoVpqNSX2zbw6gn+Ts9SY8mj2jnyRd5To2MY1ryKOUytasmpppWVI0DfOqYlGLO1mkNcu6prQVk2zEol6xk28xr1acFQWVtSzrOjyukL7c3hbTas4gyZnXq07mN6unrJoltas5r6Zc7h1glOG4OObj+Ye8PP4UP3/lF7g/v8vj5UP2sn1GyRZt3PKqWRAbcXq8ORwEYxHHlw6+xHl1zsPFAw5XR1wbXGMUj3l16zX+jZ+8xZ+7/U3+8+/8Gm999FAWSt5TlDVlWUn/xO6Y66Mxz5ZnOO+5OtihtBUfnB7yjQ/vc3Y257+yXyVLY/YPtvnJW9f5qcuf4s74NgCpSelF/fB9hlGG2lVYb0l0QqRjhokA2dPyjKIpu+B05z2NrUlMzMuTF9lOd7k7/5DKWV7evkpmMhITE6mIXtzjIL/EtDpnVs1YNQWVqzFa09NZJ6MsbRUc5Gy3KKid5cpgjHnpFr1+xrvfvUcV7mGyWGhDZ1tGXm9cw+vr0Rhh4W5PJuRRilaavXyH1KQsmwUfTx/wm/c+4unjY6zzFEXJ20+fcWv7Iz69/x4H/R3OihmVq9nJdhkn21Su5O3Tt/nuybp38sJVotaLmzxLuDwYctCfEGlD5VwAWJpER0TaEGlhS7fiMbe3rnG0mrNqGqqNvkAIcsrnwOoFh1zWAK7thW6P2+b4UYsYaOtmnnUwcfv7drRsweWtjM9eGvBkVrEsG2KjaWxgBLzCxYEBpT2OwiTERnF9nHG5l3FUlPQTg/MSFB1rHcCbEQAQW+ZVQ2U950UTTExkqpxVNdtZwiCOKBrHdjAwcbWlaBxGy3YX1uKBnTxhVtekkQR/DzeMH9JIGMBVZdkeiESw7Xu7vd/nnzKXeOvwnIcnK8qRLNbbWuSisqSRZqsXM85jykbs+P/MiwecLWreOZ5yf6Z5cXvAuBfz6sGQf+tP93nr9T3+068+4p0PjqkqMTMqlgXFUnoNd/bH7I9zHp8VWO+5spVRWseD4wXfevuQ+fmcv2IdSZawf2nMZ1/e4xdf2uKVLfESSCIBdFpBGhuMVpSNKNKSSJPGmkEWkUbCpi1qG1hn+VxNuB29NBmwO0z48NmCRdHwwl6P2IhEMjGacRJzfbtH3TiWTdMBjFhrYuSYtoXHluBo1z+N89zZzvnnf/YGf3vS4ytf/oBiuS66RHFYH4R5qDU3aYGN1lqAXGTY3e1xZ79PEmmMhr08JdKKVe358GzJb717yJPHwvjNZiVvD1LevDzk87e2uDJKOJzXNM6zP0rZHiSUjeXd4xlvPV3y8tbw+dtzUIvI9/0s4mAr58pIinhtQHxsFFmsA+Mv59swjnh9v8fJQgogjZPzRamLOZzd+4RraB1DIQA9iXUHite9c/Icoz8pFf/7jR8SENdCfYPOEnwd+nmaRvpt4JO9ONvbmKIgfjYlLUNV1bbygbZCuX6Kcx5tPcvzFUch+LLy4oikkYbGTAtDpoGekWbDmXUsrbgbtn1wsRLjk1Zm2QKBnlE0jb9QCquchHyPIkNWW5YByIFIL//eRycMjGY7isi15qRpuJ4mnDeWX/3Lb/JLzf8J/S/8zyGKJWLAO3jzy/gv/RJqtC0Zbi2NrQ3kA+lR649QaQ7XX4HpMf6jt+Hk67B7AIMx6qd/icHnvsRnP3wH/7XfZ/bmx5yclCyXNXFiOHhpBzNIsasaM0jBWup7Tzj76JjTacXCSRyDtY57j+ec/dr73Hx8hvnNr1I9PuP0uKDXi9j+wg3U7Rdwl67C5Wuo22+gdCROl8ePUYMBvq4FeATjBr9Y4q1Dv/4a6mf+EflcH7xDcvsKXLkiYEQpAUmXr8FgjP/G71C8+4DzsC9ipahZa/o3b2bt960xSaSg8jDQqnOIahcALUMLAsy/FyyJlOLSQY9ofyKf4+AAxlvSD3j/YxZfeYv7D+bU3hMrRVlaTs9KvD9H5w9IgqOkLws4foTqDcUw5v59mrMlSV198k03+tuyfkK8P5IsOmMEAOc5yhj5XQvgtJECyJXrJJfukj0+YzbfsJxmrSP3XqI5okgLgHMeFUmRpdPntK6VzxmYeO/RxvzI9cVJnITCf6LW/cnH9aMhn5q8xv3pY2YBYNUbbqNtvtVaSudlce80B73tro8oDovW1CTs5lsAnZxvVi04XJ4yDeBsXlUopRin4jq5CGBsEEwo9nsTKnvUgcYW7D1bHnKpt8/R8ozj1Tl5lDJK+1jn+Osf/zLb+Zgr/SuMkiGHxRE3BtepXMV3Tt5iGI84yK8wiAfM6hkPFw94unrCy+NPEeuEUTIJmW+g0WQmZ2WXxCphO91hPzugsCuerB5zXp0xSbfpR31+av9LfGbnM3z8+Y/5yqPf58sPPuT4bMZqVWKM5sXL+wyShFVdM0gka+yj02e8/+yI8/MFy6Ik0prF0vLgwTOm0wUPZzPG6de5P51yejojy1N+6sY1Xtu5xUFvj4PeAdf7N9GxNLxPq3N6cU7jGjSaaTUPvXDCqH3+4FN8avIGRhkezB9we+sKVweXSXSCUZrUpBzkl8hNj+/Mv03taipXoxEWz3pLbCLKpsY6cafT2gByTdbOsRUljNKUT1+9DB7efvcu1tq1lFBf7A/pFkisF1BpErO/M2avJ+fPbj5hEA+oXMX9+UN+68F7PHl8TN1YjNFUVcP0fMFHnpBJKIxuaUvOqlNSk7Ns5tydPmJaCcB/fggLKffgUZqy2xswTMSABiQfbqRj+klOahJiHWOUJosyLvUPuNR/zKPZrANx3dXmhYkzWndfNwHa5ky0aS6wUXrpjK++v+biT87Y/FwtVyn3rPD5gwyuq/IjQODFnSF3z1fBXMNS23UtKtmQu7VOirXzjIwwaLI/g3xVQWoMeSQGGO2it7SOE1OyaizTqmFVOQapYZBG5MYwryRvcBDcpXeylMqu8EZ3JhBFMDHpZxF5ZDgva/LIMPDisPn+sznDNGbSj8kTw/myZneYYp3ndFEzzCJu7gpIee90xuGqZG+a8soVYWwmPVE3+LB78sQwKxrSSLM7SvmF8R7TVcPj84LjRcXeIKWfRXzuyoRX/9ERD89X/Oa9U377gxOOT1csFjL/3rm5xSCPWZYNvVSK8u89mfPR/XPm53OKZYE2mmbWiLHe2Yonp0t6acSz0yUnJyv6/YTPvrTLZ64MuDpMuTbocWU7Z9KL8R7K2nF70qN2jlVjmVdyv1hUjqJxfPpgwGuXR2il+OBszs3dnOtbSRew3osMN8Y9Jv2Ytx/OOnmrUSrEDNguNJxwPq2LInK+JVqznUf845/Zo7GO3/7y+zRVg4kMzjm00R1wa1m3dmyGex/s9Lg0THDec62fM0wjqsZxb7bg7713yqNHM2xjOyZvuax4erTgg17MODOkkRQQZkUTohca3j9ZcrKsqb6Hw3dXpNaKQRZzaZgw6QkUWtWOgTUkRjHpRV0YfXueX+rlHAxXPDzRVIH9dE5klCqc+/IevosYaN8zatt3wgXbxlUZvRk/sOE/8AOOHxIQR9uI01mgQ5DeQTsjyQI1zDQqivA7O8TbT8lnBctljW1891KtjanRSnLivEOpio/uz1k5R+HcOpIOOoCWKtUttpOWClWSD7dyAuQsniosvkDT08LiRR6c0Syd73rrDDC1lq0oYhRplpUc+GVrcgI8rhoq5yU7zsJZY9mOIo6amr/2X32dn/id/x2X/tznUdev4+tagp7LJSq5Kp93NQ8fJOS09Ub4o0cQxej+GC7fQR3cwj+7h7/7Djx5AONt+f/q51B3PsXoHzpk+O53qL/xtvQbDjJcbVGRFgBQVdjpisVSmpRjpbr/O9sZB6/sodOYk3ef8vTZirKR5uUP732HNHqbNNXc+ZlbxP+zv4jnbXj6UHrg2jM6SUS2qRR2XhK98TL6z/5zqMEE//A9ANStW4gHvvTRcfmGgNZyBYeHLJ/NSLUAagfEii4CognHY7MW4BAg3fbMRQoiJSHusO6D607RIHrSG7/3ePo6on95JJ+h30ft7It88ckDii9/nQ/ePWFqHZGSnstZZek7T5Fu3DnzXGaDoye4YgFPH2GfHQsLbe1zDRxKQL2WXgadRMJKOieOmCBALo7X/6N43R+X5bC/TzR8QlxIbEMbYtl9rk6+FFi1MAHRVnm1VNcusG1BUtn+rutD/REbP8j02sYOvLr9Ik+Xx3x0enqhr0l17JqR89BarHOkJkFrzcnqHAgsAkqkllrTj3tYb+nHPfpxj0hH9Ks5WTTlaLlkXlUUTYPRRcf67eYCpC4Ndqlcw/Fq2hmlaKU4Ls65NbrBVjbgwfQpgzhnWi7YSof0k5yPzh5Q24Ybw+sYZVg0Sy73LvNw8ZDfePyb3Bm9wCgZkeiEZbNCecuymTNOJijVSnLW50JuepxVx2g0aZwzjnpM0j1WzZwnq0ccrQ4ZJSMG8ZA7ozvcGt7iH7l1wnfP3uO3H32b09WKYZpinSOLoo6ZnFUVxUoAVhJFGCMZe9s7I169eoksivj2wyccH51RlAI87t97ShJ/gzRL+PnXX+IvvvHPopXmcHXYmZBopQNYENA9r0p+4vKr/PyVX6AfDTmrTgC4NboeegHFzOQgv8R+filEJUwZJyM8nto2REh/noCamlVTirGNkkWDDdXvytYkJiLWDT9z+yZ13fD+hw+7+1vLxMk+/mRBQWtNlqdcHgxITUI/ztlORSHxbPmMrzx4mw8ePGWxEBbBWsd8vqKXp1TBVEUrRS/KOwfLylYcFUc8WRyFMHn3CflP2/cHAqxiLdLfNE5QStE4AbCJjol1LPs2GLHkJuOgv8M4PWReVV1uWdtjovXadEx7L9fGhvFW2xvXsnAXDE+Q8O/nzQ3+pI71LB1cJDe+l3M3OHS350ZgSLf7MZ/dH/NoWvHgpGAeYnu623EsdutVCHi2znNpmBBrxbSqu36pdr8mRpNHpstnS2OR7C2bhlhrzlRNFe4zhRUjE60Uk0wFA46E0rogq5T3dCAulf2YURJzuBI32GlVM05j+nHEk/mKxjrJYlOWohZG7nBa8vHhkp2h9ES9OBny4dmcu7MF+4uU/VEqi+WN1guAYRZxNBPn834eM8giLm9lnC1rHp2ueDIr2B+k9NKI27sDbkx6/BMvH/DuyZRfff+MZdkwyCJ6iYCLUSYh0avKUhRSpDaRIYojojhia3vAnVsTstjw3t0znj4+pS4lBuXuh8/4G0lMnMT8qZ+8zr/2cy9wtqg4WVacl3XHBEkepaIwmqOi5ieuDfnpGzv0U8Pjs4KisdzZybrjlRrNzVGfG7trFm5/kFFU0oqEhUQbYcMazyr0PpqNY90yc1lkqJ3jL3zxEvNlzbfe/Bigk5d2c1MLBluJdwAqvV7MwVZOGim2spj9PKO2nseLFX/n/TPe/eiE1bIU0Fs3LOcr0jylroU5jrVimMq1Py8a7tsV06LmcF536/sLK6cwX7aso9YSVN9YTxZp8lhT1I4sFiaydbJVyHUTa8mu++AwkZ7GUOSINtznvQ+kkQLnVXcNCtCT75MNc5bNgkn8XEH8Bxk/HCCuLYUoJQvOppGFazt5Gy3yrdZpD2QxnyREV3aJZiv84qwLp2xp+3bBLu4vitPTmnPbUDpH4z2pVuvFPcKsGR0W9gHIpbrV1GtgDeRUkN+5wOjFYbtGkYbGUTg6w5SlE/YtUUpkl4HV00iPXKIUp43FKMV+HHHcNCycAL/Duua3Pj7h5n/8m3zuH36Z+J/98wLU3vkGbnqCuv1pYaSqYsOJ0KAm+7Koz/qQ5DA/EQbu9S/hz4/g7nfh/ocSrD2awM4l1M9eIvnSzwu4+vg9uHcPP5vjixKUIt4bci1PODicUSwq6tqRZobhnX2i3RGr9x9zdl52F32mRXc86MdsbSW4xuL/zt8U+SAIaAMBZU3TMXHRT34W/U/8S6jBBPfRt+E7X4W8H8C8ls+/fxkmezA/h299FeKY/rUJ11cN954upRnVg2bTKnldVYoCGHPh+A+MJlaKsRFnxzZXbn2KtkHBMmwgojSKPDFEW31hvCYTcfM8OaT5nTe5951nnFRyg2y8THyphiwz7Oz3SG5dQr1wByY7UJbw6B7+299i9dEzFk9n5KOMtK74RPB3MCdw1lPOCvSHT9H9M5LL2zAeC6DMMjGISdIuioG6ku1LU3Qar627fYsn1bq5doO+9Nah4yh0yOs1wu0qTeH7DUz3IxcxAJsod31zUCrYU1xcGCY65dXJqzycP+LZYsGsqi5M2O1Cs2qa7gY7yUZMS8lNy+MMrUzXO3RazMiilLKpSU1FalIm2Yg0igXoheLDLFxXW1kWNtV38sabIzH+MGomLmTOUTbyWsOkzygdULmG0sq2TrIRO/mEJ4sjsijl1vAmJ+UJlau41Dvgwfwh3zx6i+vDK7yy9TI3h7dZ1DOerB6xskt20n1inWAJ8QiSh8EonuBwgbWShvU8GnBz+CJls+TJ6hFPlo/pRT368YDdbI+dg11+av+nmNbnfDT9mPdPP+asnLGsRcZzZThkeCfh6aUF06KkLCvyPOW13V12e0PeOnzCfL5kVchny7OUKDb0ehmjcZ/GOX79wZfZ72+jUNSuCX2AZm1KoyN+7trn+MUrf5os6vFs9ZiPZx+RRRkKcVlMTMIk3Q4Ojpqj4hlf3Psitat5tHzE48VjrLcorzqWEoJbGev+bB3Ok0hHjLMegzjnz3/uC/ylqubh46OwP9cLgba63fWEBWv+Xi8NQe8J43REFmWclef83pPv8O0Hj5mFkGOQzKIkicjyhIOdMS9uX+LW6DqjZIR1lqPiiO8cvcd3T57wZD5nt9ej8YEt2zj9jRKg5JznvCx5//SIfnzOteGE7XxMGsVkUUpiYnFkDddP7RqMjujFGVkUddLJ5wHqJgiTKWnd+9Y5xRkT5EzreWhthvKj4U7ZsWxeMqu6+VutBRPPQ/u2PndtkvPafo+n0yrMSe6i8YIW5+9Iawap4XIvZ143QYShycyaoZlXTRf2HRlNrAlmI+E8RmSUZ0XDIDGkYdHbRkN5D1eGOQDzWuRxHpHtxUbTiyP6tZg21U7MWIZpJDEEq4rYaHaGCbNVQ209O8OUZ+cFD05X7PQTLm1l3NgRieM3H59xazXg2nZOFn/yfNgeJDTWdxbz3svvJv2Y81XDo5MVx4slo0xA3lY/5qd6O3z+8kTy5M7mvPNsydGyYVZKVMDNvQG7o4xn5xOm85LVqiHLIm5dHrHVS3j/yZTptKAua7TRJFlCkiYMBik7OzmDLOK3Hpyw34+pne/6rGO9DtLWCn7u5pifubVLHmvuHi1552hGulFoTbTmxqjHrb0+idEcTktevzKmnxpO5hUn80rW0awBPdAxlkZrVCgOtOdfPxam9H/1Sy/w7y8q7n34rANpSinpj/se7JLSijyPGWWRyFqTBKVgWtb85t1z3r57wnRarF/HOkxkSNOIywcDXrs04NWdIaMkorSOx4sV33q64P3DJU/PVuJE6tdxG+1oma6mcZwvKr7zeE5iNDe3cy6NYvqpMJWp0SRtoQxF4x0GyTJse9y0EtfOupUjKzEEkvNadS08cTjf49Dj3QLJzV0S/XdcL/1wgDi8gLY20yqAOFc1+LZBUis6y/R2UlYKtrdJDqbkR3PK0goD5taacOs8Te0g0ZxPK1bOU4YqnocuLiAJgK70nsp5YuU7nXGsFT0EVUtPlThX9sNmzK0nUuJ2qJDYAQddA1XlPB8WJcvAxjhU15MlTpfy+LPGkmvNVhRx1jTESrEdRRzXDR8WJWd//S3+1LNzev+LfxGu3YIHH+NPjuDabdTVO6gkXy8ytRHwlg3ARJLdtpqLAcrsVPZh3pP9PT2FaA6jLehvofauoV75An56gnp2X4DFRx/iHzzFN5Zo0mOw3V/3RQVzlPylK9we5tSHM1wjINw5H0LXFXa6gsVibb7RsqtRJMyR96if+wXUF34RigXuW1+G02NhGFsQkuWSGZfmqMEYPz/HL5dQliR7Q+KPjkm0wnrVNXWHM6zTc0dK0bCuziZKsRfHGCXnQd8Yzpqmu3hh82vYveF3RkGeG6LtIQyHnRule/Nr3Pu9+zyell1FSCspHNzY63PwxiWSF6+Luclnfhq9exW0xv3Gf8Pyu4+5990TGuu51Qv7yq0Xe/IhouC0CrNpxXJ5Rhwptpwn2dqCwQA1Gsv25CHTaTmX8+XBPXj4EFfWF3poNi8rrdrQc5mMtF4zSN46dCLSSmX0uks3VNiAzVCUH6nR5pDJufX9HTgVChTspPu8tv0q92dPmVUVtixprO1kJg5xzMu8Z5QOOkYmMTE46MUZta3J44xVXbCsCzERsA1GGSIdMYwH+NxTO+khkYDcmp1w3B/ND0mjmJ1si37c4/JgF+ss02pJpDWNs/zu0zfxXkwmjgMLuKiXWG8ZpQOM0jyYPSGPcnaybeb1gnEy4nL/MrVr+Hj6gGWz5DM7liv966Qm47B4yqx6n91sj3Gy3UnpUKCDY2RrhiH7wuG9IzYp1/u3qF3FrJ4yb2aybVGfPOoxSsbc6N/iS/srnhVPebR4xPtnH3Nv+hTrPdt5zm4ISAeJYVAoXt+7zE6vx5P5vJO22rAojLVmUdfMqgVZlHace6wNsYlYhFiBX7j2M7y89SqNq/ju+VtMq1lgPExY2Gbs5fvspPskOmHeTIl1wk62x6pZ8mT5mFjHeOdx3qJZywHrcI2nUYJWNbGJQ/i15nr/oHOz/OlXbvPfHp1T21amijAsm+efWvfJZXnKdj5mnA7oR32KpuCbh2/z1QcPOT2ZBnt5WawM+hm7+xNev3zAqzvXeHnyAq9svco42QIU3zj+Gu+fPuWdh0+w1jFM0zBHrK8EkdqtA8sXq5LFqiQKi8mdfMIw6TFMhvSinEQnwYK+4Lw659HiMY/nhyyb1ml4o1DERRMT6X+DxjmUMV1hLlZtP4r+xHO+V//Kj8TYYBtbNZJS6/tg9/swXfcSw6d2Rrx/vGJZNjjnqYORhlZh7WRlEXx9nNB41/VHKRRZMOJIjaForEQBOE9qHd6rjpFzXsBYaR3LumZeWQZ9yQc8WpWkxjBMIlKj2c1TPJ5FLUWf2jk+PBal0SCJOC9FIjeraxrvGMQxSsHRsiSJNP1MpHi9xLAzFCfLp3PJdbu8lXFjt8e4F/P+4Zwns4LbO30ubWWdDM4DiVGkERvniO/iqkZZRP/SgFVtOZlXnC2qzjGylxoGWcSVSc4XrzSczCsezld859mCj45XlLVlq5+wPUxJIxMknBFbueFnX9zhxt6Ao2lBveFU2QQmdLaqeTJbt1UYDanR9GLNsm6wDn7hxg43d3ssioa3Hy85LsquP9IoRWYMN7d6XJ3kZIlhXjRERoxp1mHWYtZnfOgN23BP1kqRGZEuJsZ0AP5ynnfX6T/5pev8R4/OJAi8XQqoIK9sr0UjAeDGGHq9mEsj6Y/MI0NpHb/76Izf//CEw8OlnM/h2AzGAy5fHvDqjQmfvtznU7tDXt4fMswirPe883jGO0+f8u7Hp3gPg6ujYAb23GXSHlXvmS4qTqeFMGQero4TRmnEOEnIInHK9cCibjgtK5b1intnVUcM1aGPsg373sxntM7jlEQVtDLKqnaSUbex7mpHNz/pP9zc9EMC4p4bTkxIfGVFyhWvJZataQNKoXLJ2tKX9kmenhMtahrbMnFyY3JhEqorx1nZcB4yRzK9viE0zoGTBfzSOjGfcJ5aiXOlVpIf1zMahwMLJZ7SecaRyPcuaM6VoqcvNk834SKonCcJJ0xrsFH5NRN43DSkOmZoDAvrGBjDKDKcN5ZndcOv/M59XnnnP+TVf/nnUX/2n4bjp3D3PfzJU7j5KuraSxBnYmMfJahINOc+TlFDsbT35RJOj/FHz4Sp2d4ThqauhIUbjlGTA9RwImzXK1+AL54QHz0iPnyCf/IQHj3Cnc9wlYA1G6q5Oo2ID0a4RYldVvK1cTil0MsKN1+iE2GCSBIYDqV3a2cPrt6ErIf/9m/D7HxDAhLYt+FIJJTzc9TkAPpb8PQrsu8nE9RcJnsFAaTJ042SKq1wqdID5/zagjrRip0spmkccawxFaycpnRrmdBmX4WjaweTiS7SsLWF2tmDOMF/6+s8/q0PeHS6ovaue1yEYrsXc/CpA5JXX4DRCIZjYcqyvgDuVz5Hsv83iT46wzorn81acLa7KYvAOkEnESZS3TkOCjPMYDQSY5WrN1F7V1HDbZlEPvo2vPMW5dsf05wtqYLDklIiK1DdNRFa3sKH1Dr0yuEgWYf4djs4NDH8qAO4bni/BnDef98FoUIR6YiXxi/zYOcBx6s5RbNpTKE2vheTh6PVGYmOxBhDy6J3bitiE5PHGbWV58/rJctmRT/ukZqEPMrYDT1PznvOioLj1ZKrw5TGNQy0VLkrVzFKhuz1apoAGlywI7deWLlh0mNaLuRnK8AmjRKm5Zz7s0f0opxelHNeTRnGQy73DtBK8XhxyKr5Ki+MDnl161Wu919gXp9zVp0yrafsZHsM47EEvnac03pfaaS4ItVLYa8H8YhhMqa0K1bNirPyRExH4hGJybjRv8W1/g0+t/N5zutzjosjHs4f8dH5A2bVglUj/c/TShYEWRRxZTjsjGBmZUnTWKxyTMuCWbUkj1LSKCGLInpxTmISbo93uNK7TGJS7s8/ZlEvurnBKI3RhkE84HLvKr1oQKxiPDCtztnLDohU3IFWE2SDRknwbeSDHb+ly0zzQSIoi+WU3XyHxjdoFD9x6SXevHqfe/eeXjjfNtmpzXMyigy7+RaTdEKsI945fZ8vP/iYo8MzqmDt570njiLGWwM+d/Uyn92/wzAZMEpGpCYlNTmJTrk5vMVOnoe+F99ZkDvv1vMTEKlITHbC46Repxmn0m+5k+1wqXfAVjLpDGYeLu7z0fQubx3d42i5ZFqWUv0Pc57+Hgue7pIMrpUmAPfnF0ft/P0jOdoCGnReAK5VNyGLwlZe2e4DhahJDsYZn7s05Om0pqyfY4XD7TdLDFtpwllZY5RiEEedzGxWy3WaGB2kl4hU0qrOICKJNCMfBVmrGIrM64adLFlL3rxI2gZZhPcptfPBfE4e0DiP95ZebKhKMflYNRaF9Hgt6oajRUkaa2KjWFWWXmqYDMSw4mhZUdSO/VHK7jDh89e3eHxW8OHxgsNZyfXtvDNG+YN2s/NiOZ9EOrxWSllbzlcNz87l/Yd5TC+N6KUR17Zz3jgYc7asOVlVPF2ueOdwxbSwEjXQOI7mrgPdozwO+XGWsrbd9TldKs5Xll5s6SeaLNZsZZKLN+7nfHY/Qyt49+mM83Kjzz0cp0mWcHO7z+4wCWyQp6gtW724K79opS6AC6NAuYstJVEokLdqgTwyjPO4Y1T/9K0d/tadXT5471mXEam0wmjTMYad6ZKCNDEc9CUTLtaKd06nfPn9E54+nYf+/LanTnNw0OcnX97jjUs9hknEViaOklkigPLSKOPSKOPj1FAUtpM4tmyc2rgekkhUYk0jWZTGKCb9mH5i2MlSLo8yRnlMGkxIHp8VvH084xuPFpwvKlZVQ2MFvCXB+KRd77cYZH3tebyjcx+Fdv3pOxP+SMv7tLEef5i56ocHxHWaN8mz8o3tDrpvLYHbPeOc9PikaSgp9UivTBidr2gOl1SulSyFNbDzHJ8XPKwqptbReJgGfXb39qybhGOl0Ko1vVBBCimPk5/lQNW+DfDWFM4zbRxJMEeRTLh1VEHlBMQVzjOKNImGpRUJShVcEjWeuXUc1w2XkphUS39WohS51tJPZR1fO51z7//2K/wDv/c2vX/lX4Abd+DoCf47X8WfH6Fvfxp6I8BLWLRSAdTFqOEE1R/D1RdxD9+Hu+8JcHv0UPbxeIzaPcA/eySyu8EIRtsSEXBwA797BfXaF6CpMas55vwEzk+E4ZlOYbXC1DWUJb6scEVNLxjORDtDiQbIMjHe6A9hMAxh4grOTsAfCSvXMrNxIv+39+TnR3dRL30WdXAT9/A9ODmEJEEZg28aViuRpmVaUziZHNucoDpUZdow97UkQAUlr1RI+v2YydzzuHKd1LbrGWMzVrg9Hb2wcPuX8d9+k+nf+zb3nywo2pBbRLudacVwlIhRTNOII+f5Cf7woWTnZX0oFkQ7Q3Z2MlarhnirJ/vLNhdcENVkn+TqDluHM3yQryb7I8zVS6g2P29rD7V3Q9xLlUKZCPvrv0JzsqBcViitSJK11GKTlVsHnAcQG5tu8lWxXvfChZ+7742+MGH+qIznQYf8MnByF9UaG0Oe0YsGfHb3sxyuTpiVJcerlfR90MrlRH//bHnKKoC8w+UUoAspZnHe3TiN1iTGkOiYNJrRj3MGcS69YCZiEGcUTcO0LFnUK64ND1g2BXVwttzODDv5FstmxaJaBflkjUJxWs25MtijF2cs6wKFZVUXxOmA2MScl3MeLZ5wfXCN3GSUtiSLMrbTCWVTcVpMOS2+ybPVM97Yfp1rg1v04yHn1SmPFveZpAsm6S6xTj6xP7UyJCFAWnuN9Q1tmHSsE6IkYehHNL7htDqhthWxjulFfRKTMkm2Gcdjbg/v8DOXGlbNikUz56w856Q84bycsqhXVLZmWRcUTUnlJHNPKcV2NmC3J2xlL8rpxz0G8YDUiKPjslmybJYiHwznQ5sFt53uMEl3SHRKpCKU0szrM/KoR2zaHD9LYQuMjsiijMpWOC/REqlJqG2N9dJnkZqE1sGxzbnLdUbjLVcGl/gzn3qN//TxMU3zHEPPWhLdfgUYxH128x2+e/YeX37wXZ48O6WupBLfPi5OYoajPqM0w3pHYUum1ZSTQvoXY51Qu5rd3hYHW6ecF4Uwnjq50BOnlKIX9bky3OHpYtEVLi4NBlwbHpCbjEgZhvGI7XSP1GTheZrUfJ2T1YppKf1PLZvagsX2nNn8vgvjDV/bXha5RC8WWFsW7nkQ+Cd5bLJtF0Zg+jdVJO1U1RbqtFa8cTDm2bLky1XD6aLq2B+QReUoi3gY2CznW5t0333fOlcqJexQYhS9OMIoxSiJyYzBBcfozBhK45iWjdjrpwmVdZy5mp4z9IkYZBHDOmLVWKwXx0CP9Gbt5im9SPLDvBeGZCuVOItZ1XC6qNkdJmitqBpHYhTDPKK2jtOyYnpUM12lHIwzrm3n7I1S7h4u+fqjM25PBlyZZNLP99zpsS64ydqwXVO4IHceZGL1Py+EgStqS2LERTIKAGGUR9za7vHFyxI2vqgaZlXN0arkeNmwqBzL2rKqHVUjkkmRrip2BzE7vYh+qjv5Yi/cgyOteDovAlPqux7QWEuf4pVhzqWtjF5iOqntNICcSAuY2mRhs3gdAu+9HLPWHK52XnIc1bpXrI348t6zO0j4l/6BG/y798+pyuqCpBKkV27dzyv7b5zG7PVT3juZ86vfPeXB4xnWSkEdpPgTx4atYcYoMx2rOy1rRkXURYl54NIoZn/SY1aIIU6ijXhimHU/XJ4YbkxSjmc5VSNz//444+W9vANjvTRi0o83QH1G/lhzvqiYrSTGYp0FF0xNwmdtAe26pq071tKYdp5q+/E2im3mTzIT5/w6jNiLtNLXTkwdtBIWbtPcoZXgRXGwhnGorTHZ9ZJh2XB+VgaJiNCdj04L7lcVc7t2I2yNTJ6f+BSta6HqDC8a7ynCwZW4gbXV6sp5Ei0VpvY120PQCwejCrLJsVGcsc6ma/TacKMIRieFE6CWNZb9OOLMWkrviJT057W9Xk/qhr/2Wx/z4tf+Az73z34G9U/+T+DqbTh5invz12H/KvryCwLmTHyxp0obyIboO5+Dm6/jp8dw7x14eBf/5BH+/seo4RCSVELG+RDf1LK/d/dh9zLkfdRoGz+cSA6dtfIezgqj11SopkaH49kN74RZc1aOnW2gqWFzMaJUOL6RyCdB+vf6Q9QXfxE13pVA8ccfw+1XUIs5/p1vUz2b0ljfWbTGSnVxA7ULId/QnQObx9w5CYlfLhtcaZlbh1Ghz0ittcuKi5UpEIoc7+H0mPK3v8HdezMAxiYi1ooo0qSpJs8jJjs9AUDzORSFOHOenkD2Jt5aCTG3lt7BiNw60pt7Iom0TTCuCQ2x25dRX/hJBkmCOz3HrWqirR6kKX65ROlT/PwcZWs5y3UkUtnX3iB/8AjzbBru4kpksW0Tcri7X+hBaQ1KNh6jtN7oh+MiE4c0Mqs/5GT0J2G0i1W/8T1hEXXx015kmS7lV/iJ/c9xXs755tMHLJumu2Fs5znDNCUxUWdk4li78EVaZNqxFvmkMGcO6y3LetWBp6IpWdQ1RSP2x0YpTlYrJpm4VJZNTaJjSlvRi3L2e9s844SmmNO4hr3ehPNSzt1JNsJ6CQ233jOrlozTAfNqybPFMXmUcWt4k1k9o7KWJPRbFbaiaEruTh9xuDzhztY9Xp+8wXa2xyiZMKvOeLi4xygeMYjH3QK+3U/QOhsmGB8J4+k9ygt751xDpGMu9/qsmjln5SnPiqdMqykKzTgdsZPukuiEQTxgEA84CFl3AI1vwmeyEnfARihyJ5SV4bwLIMtine1u2EBnxjGMh0zSbTLTE6Cp49DbVVHagkm6i0JTuYJls+ieb5Qh1jHWW4zS1LamCiyr0cLstWYdLSObmpRleUbRFOxkY65e3ePu3SfdgnvThl++FQlPC/Tm9YI3n77LveNTvPcMhjlRJDlucRIRxxFXBgMiHTEt5520d14v6EX3aJxl0Ujw+JXhkJ0859pwh14w29kEVuNkwhf23yDShuPlGcumZpL16Sc5latZNEsKu8IGQKzR9Eyf2+MXuLf9hEezs26hbEKRo3WibJ085VxZOwpvArQW0Amj0EYSCMPZfv+jAuRUQGcXJJOBdWv7KjcbnHRYzHovMsFBFvGTl7c5WTZ8+5FnWTZEITNrf5xzfSslixSxNt29z3th3KJQLMjMOn7DQQBgnnktktjaOZa1Y1G5rhZ5Yir6UdQ9r3VH9lqxnSecrCpmdUPtHJMsYb5Y4bxnlIhDY+XEiGNRN4zTmEXdcLwqyWLNpJ9QBBYrNppeGlE7kWk+nhecFTWXRxn7I3GrvFrkPDxZ8eb9M66Oc/aGKXkAPZtDK9BGYdp2DS9B0CDrje1+wvZAevNOFxVPZwXnpcwzkzRl0ouJA7jrJYZdUm75flgCS+uJdS17tFZzOQ9NKGjJPvZUVq6DVZBfei8KoThcL9tZwt4oZbufEJn2eqDLnxvmQaXlfXe7UuFkagFFbRXz2hH4BrJgCqRU+36qY7Zmq5raem4O+7z40i5vf+dx95rrCJSNtgwvfZxGCXP65bvn3H82RynFcJiSJEbMqRJDnhh2hpmA9dJS1HJfmNc1mZFswsJanIfLkx471vHibk4WSb9a6nVncrfVj/nS1S2MVjyeVsxLy3YvxmgoG8tMN6wq28V2gDiXvjoZ8f5+wePzdd5nHELCW+DVArj2uhTjE+mFU2rdjyeZdPLYJCiXNnON/zBLpx8OENeOANR8Y0MotNAmyqjOUr1z2IN1L05gbaLLO/QWBVV5Ii6KzlPXltNwc2z70UCozCZ8vxnc3I51/9T6RgGhR659DS2MTuE8W5FoiSvvWVhh1iLVyirltWovDoiF82RaeuHmtmWHPIWT31XOc24tW5FhN425uyzRyCQXKxU+hwDAd5Yrjv/S1/i5R6dkf+GfQn32Z/HTE3j4Ee74CYx3UFduo3pjAWEgQCqKJSw866GSTHLnXivwJ0/wH78NZ6cCxrSC3UtwcF2iCx58hP/Wm1BV+MFAJIRXb8JgLMdIGzFaiRN5H+/XYM3Wa0DnVCcTFLaNtaFNC9rPT/EfvS+OpV/8WfTLX4T+GKoC952vSK/X9Az/wbtwfAxa0dSyeCWAb4OwmAqF9Y1IVxWdEU1bwawaR55HxLGhri3lhjVte36IvXxrmrOWVy6XDfY772Du3WP5+JzRMGEvNaSZIU4jdBKh81i+Zsm6jyyOhXU8PpalY11LrIZzJJe3ZEMPDqA/CkWODSCeD8RZdLVAP3yAPhGHPM7OII7FxfTxPfxkTxZWSSbPv/Uq+o0HZB99hC9KvPPofi7umHkuvXRtD10A2t659XFpr7nN668dSl08fkoBf+sPuuL/RAzffV0DuAufm+8vf2iBQaRj7oxf5qg44qyYce/8nNo5enHMjdE2o3QgzFDIH6tsHWRqInPMo5RER93Nb9WURDrqgN2yKRDnsYTKibtZHDLIjlfn3Bxf7uaxaTnHKE0/6rGbe4qmonGNMG9KMS3nXQ/Vs8VJqC5aFvWKUdpnVi15ujhiL99jN9vlwfwBRkfkUcZ2NqYOIKlsat49+ZCT4pQvHXyJ3WyfSbrLIB5xWDzlrDplGI8YJVukOpPiTrc/VeiXExMd7Q0eh1MR1jcoNL1oSG76oaLrWDZznqwe87vPfpfSlgziAVvpFvv5HpnJhdFCrP+99/gAIJ131C2gQ3rVWgYQBFS2YM8rT0REZjJGyZjc9Ih0TGIyYeDCPPN09YjdbB+FMIoC1gyVqzBKd46OWmlGyZDExNjZM+b1ighFFiXEOgpGH5rKVWyZMYN4QGlLHI47l/Z48OCQpmkuMN9txE7bg1KsSr5z9D6Psmc8ms3IsoStQY88jskikT1mURRc7kTKG5uYxEQ0zjItZ5yVUypbUzQlHs9eb4hRmqvDfXKT4730M7bHMDUZN4e3WDYr8ugxh8tTFIqT1Tlzs2ScDjkujhnGI0CyFb33XO5d5pXtWyTmIct61fVp5nHGMOkziHvkUd6BMfs9nDHbBVbbv9p+3fwbQB5l/CiM9j6k1Xrx5/36d2sHgPA3LvYFNQ72Ryk/dWWLk2XDg5NVx0Z87kqP7SwJhiK+64myHrJI44FetGZmrPeUIQKjjRtY1A1GGxJj6Cey+I61sECLpuGgJ8dBZM81YxWTxYaJT8J7yWtqpVjWlnGqGSUxx4UAwgYnz0tiplXD2aqmn0b004jTRUUSifywbtaGKo33PJquWJaW6zs5eWJ46fKA6bLmw6MFj88LLo8z9kYp2fdg5pRq9/vFBXnjZG+P8ohhHnGTHo31nC5rnp4X/N7jE2alY5QZttOES/0186eUSO5skB+3gKAFdsYLpKidQ3lh4BT6E7fhcRozGSQCGKM1C9S+5tGsFBnlBpvqQv+jMKvyydpev0hL72Jp5VrLQwh42xFe1pZBauinEavKYjT81J1t3vvuIbaxMn8b3Z2CxpjuBCyKmm88nbGVr3gyLRj2Eva3cpLYkAWH1Cw2ZJHIZGMTVE2xRICdFBXOV6xq1+2nyyPJArw2TruezM2+uDTSXBnlvFTWeA/3mpJl7bh3WpFFmr2BY29eMsgiRnnU9bTtDhM+f2UgDpaNwzoYZYZerOmnmnEakxuDZw3sPWslWDva4kd77cJFebj1nv/yDxHP9EMC4tZAjLrGhYBvbx0qidahxe0HjSK5WbQ/62A73+uRXt1mOC2oqnnQG1dd/1OkpMLdMjItGBK7ZxmdCQUX2ZpIrQEfSv7ehoNXzjO3nu0QPFk4MTrRai2/bGWVmVYsrbBpiRK2bhn+Vmw8ppVVjvOYgdEc101H17ah0+3/x1XNl3/jI37W/xWy0yPUL/152NrHnz6BZw/xJ8+kz+3KHdRwew2wtAkfxgQ/foO6fAd16QWoS3y5lDDxw0dga9TBDdi/jvr8z+FXSzh8gH/vLfgbf5XmZI7pJ6hxyCtLU2Hz4kQARBYWae1s2EomrRVwB8GhssYvFiI1zHPUq2+gPvfzst0mBmdxb30Fjp6BMfhH9+U14pj5R0dUtSNLDdXKdcer8dLonmkJNXVemmXbHrlwBsrjnccCS+dItSbu+gmkIfx5Jk4B543l4e/cZXs3J8li9nf6mEGGjiMpQICwV0ajBz3Y3RUXy/5wbeRTV/hCjF9UMGpBa9RoJIxoC4jb0YLi1oWy3xfTmNUKikLY7LsfwGKGH0rvHQCnxyI9HY9R0UImkXDtMB6j7ryKevnzqHy43ivOrb/3fh390ZqttNvW3k1cYGS9g3/9/8qP2mgX+xJbIgWCT9CzYSjWi8nc9Pj09mc4Wp2wqN/hZLViv98X639bExsJPl7WBZGOQr9uQ6qSCw57AHmUivFFMJAYaQEzi3rFSPW7558WU07qmieLY25vXWVaLihthSplLsmjjEk25OlCigDDpM+iWhLpiFHaZ5KNWDYFCkXZVFjn2MoGTMsFT5dP2ct2SU3KWXVOrGMSk3SL7CqSRf/R6ow3j97kje3XGcRDttM9rvSuU9qC4/KQ2WJKYlJ20j0y0+tAU7v/gA7QaSWLmXZx3rKSkdYkJmMUb/Hi6FWsqzmrTvlo9iG//vA3g7NnIrEJcY9Ex/TiPrGOiJTIGzdNVlrQ1gTAmEUpeZSLuUoAblqJxDDWCRrdgcmT8lAknjqTHurwOQ6LZwD04wHn5Xl3LJ13AVBvBZbQEesoSLfX22Q7FklY1Vtb23x93OfkZNr9vus3ac9V75nPVnzl4T2uj0YkxvDyzg69OCbRrURa+vC0UgySHvu9bSbpVicjbUFuZWuWzZJ5vaSybc/igDjIKS+wmOH73Aj4KpuaRb2kaEpKW4eq8wNm1YxRIo6ZALNqTqxjJtnwAhM5iHuMkyE3hze4MbhJavL1e4bjtTYdCudG2F+tDdHmPnE4BnH/D7rM/0QNz9qVtGkX/W2F362PTHtmqM1vwtx9e7fPF1cF89IyK2pe2Mm50s+xXtQtmVFdUHusoA4+Au3ebRUweWTC+SRvMUqEnS6sJK224G5eN6way2lRsd/LWDYNlXUUtcg5k0gzSROOihKF9OItagkO70UR/TiSkHAPy8bivGeYxMyrhvNlzSCLSCLNorTEwWkyjXXHesWN5rysic5ETtdYx3Y/4Qt9iSi4f7rkaFYx6cfsjVJ6ifmE1K0Fc6gQlG0uMk3eQ5ZoLsWaS+OUz1wfs6otx7OKu6dL/u69Yx6eV/RicQDdygWwDJKIKOynXgBNbRGu3IjuaSWrvcQwzKOuj6tly553YT1f1hIkrtWGfwScr2o8kMeyRgK6/ZTFhrFNOC2r7hrXSonAp10Xe6jD82rr+fSlPts7fQ6fTjuX601lTjtPTaclX37/hP1xTj+N2OolDFPZz4nZMCPSAph2ewlbScIwmOo1zlM5CYmf1zWL2rKoxBG0F0lMwvMqmZbhzIxh0jPUNuFk1VDUjrJxJJHio/M5i7phGMf0UwFU00JadfYGMdMimPhEqgNwt4Z9rmznpNG6paRlVIWVI8xVdOaLF8pP4W/eQz/5EwfiwiKoZd+s6/p8pJfnezAAmxfTZqDfYEByeYvBouTZsyUz67rJpV20d25e3n9fBg7W8sgI3zV9RgR3Q++7io5FAFjhPEOjWeA6gNgamVSs++eWgY0aGB1iCJxIPVX7eIkdmDvH6apmK4o4aSyrzhlKZJyt9jlRcNpY3v/9R7yc/y5J3kf95C+iLt+GvWsSKXD0CP/O7+HzPurKC6jtywKuWjDs3doBUkmumMoHYoZy/RV8XcrCvFyBdajeAK7cFkbv4ArRg7vSm/bqZ8SU5OQQv5h3fXIiiM8EgMex5JqlufTELWv82amAsTRFXbsJN19CX3sZekMxalEKmkpA5UffhdUCshw12cEbQ/Hb3+Lp0yVJrDGRuIjKzaUF1etKZXtcW7nk5qJHhWNQOE/lLaOg5w9nKZpwGiqZGoySBcty2bAbR6Q3d9CxwTu/zknzXpwcIyMGKK++LsxmbyC9hi0jWSzg8BH+w3fh6VNhwayVCchZcM0aQJVL6YM8O5Wf83zt8tmO42P86Wm3zwF5r6paxzuAFEFWq65QogYTGO1+/76251ioH/hvf8LHuqJ/ccH6yQeuq2zP+1dO0l0+t/cZjlanwFOuDHa6BXSsI7H7j5IuG65l00zojSqtHDcJhg6zl4dR2g89cTGJjplVC4qmZNWUWOdY1iWnxZRhIo8zyjCvlmRRyjgddkYm43TAWSGSyq10xFKvsN5yVs6JtQmL+YZB0uNwecKz/JCdbIfj4oTSlsI2+YpZJWAx1hJMPi1nPF09o7AFhS24lF8lj3pcNTeoXMm0OuPB4i6JTtnOdumZvrAzHfvpO0CsQyQBgPIOq1j3J4aRmIy97IDEJOzn+9yb3cPoiBfHL6JQnFdnnJXnLJsFq6YI+WxxAKJx6LXrsZvuMYrHtG6a7TZEOu5636SnNjCkdinsWrwFQT1hgSfLhxytjhkloy5SoZVr1k6YNDFTSVnW0r/Yi/LwuXUHaFKTMq1EOuucZWd3zOnp7KL8mefqPdayWpXoseL21i6xiWmcSERbtleiEcTB9NbwJnv5PpnJiHTLLlpKWzKtz7k7vcvh6oTK1p2Msj1G7XbUtuSsPGVez1EohkmPNIqprLCS3nsOl6ecrM6DZDjCKN2Z65S26uYfpSR6oHIVRhvyqE8/Gn7f+WlzEf39hscTqeT7/v1P0uiUAa1ErTVa22AdP/GcdkHZ7iMvZh2f3t/i6bzivSPFnR1xbfTBwMZ6T7LhVpiGcG+PrIkq54J00hPrtdHOICy4k9CDtawthRW5ZWUdK2spGkuqW1MaiYXyRpHGhqgU9q8fQJz34qzZApRny4I85JU57xkkEdOyZlyIwchs1bDqAAYUIapAIY6Ni9JSVAL0Dmcl2yGSYG+UcrasOZ6VvPN4xjiL2R2lDFJzwaSiXaRvAjpoVV/rfey8/L2XGPLtnFEecX0r5+7pktgoro1FAbMoG86KmkXdMK1q5rUlM7qTSWaRMJGjPGaYRxJxtLEe1ir0xK43BaADx73EBNMQ+eOysqwqyzCLOhOc1nijalxnFhNpReNE1plqA34tYbZOzp+qaaicxGXdujYWELdxr3Ib5kNaK+raMV/VXNnucWc373osW6BV23Vo9lYW8/JkyLgXizGJEQbRelFSzVY1H50tqKy0U9mN618uh8AcNo550TCtJTx+f0jI83NBZQXHy4azQsz6erGwnY3zFLXIgtulnfOwqhyaBjWSWI1eYr7/2ul7XosX5yuRW/7g5nA/JCCOC9EBFxRaLYB7fqdos+6tgrVMTymivTG9RcHs4ymVd12Yd9t/Bmsg1462cVNDlxHWsXOsAVwSTvxEqe412+cvg2mJ9cKuJWpt+9z24SnWYCLXivOgZ+4Z1YGLtj8O4LCuuZ4kTCLD/dJ1+SCJUuQh0sAj2t2nywr39z7ipemKfLQFt15BDSYilZwcwPwcf/IY/+Fb+A/fgu191MENWbRrs7ZcxK2ZOoXY+ScZXe5cU+MO78OjjwXUFSvU9Vtw6Tpqaw8fP4EkRY0m8vjzIzh8EoCID86UqZimNDXkPdQLr6B2rqC2diHtC4OnjfRyARQL/Pkz/HffhPFEjt3BVXj2mPp33uTRe8fEiSFNDItF3S0sKic5fq1FbrwBwBOt8VoaUmOtqCvLSdkws5bCSbafRAnIPnZhUdaeNgr5OD2t2d5O6b1xHa5fF/nnYrEGSy3jaIywlHECWR/VG8nXOBUW1Dt8PoDH9wWslaWwam1OnLOyJd7jiwUcPYHT064vVETXZn1eWyugLoSod3JkpYTBi2MBf70earIDB1dRN18TcP8HjD9wgvpDTF5/UsaFTxSqZe2du2PifsChleZG/xaf2zvCesdWOgwLalm8SoN0YCBYO4E2runCoOf1SiqUDXgq0rAoj7ShZzI8IkFrnO0CvytrOS/mXOrv4r1nVi1IjOTojNI+g+BImZiYNEpEThX1xJnSJAzinMY1KKUpmpJJJjK4h4uH9OMeO9k27519hA1SxEgbxumwk1XGJua0OOmkiqN4TGbyAJwSdrJ9ttNdCldwVp5w5J8xiAYM4hGpkby87hCweXPWROLzJYAEBd6yskvm9ZTa1TjvuDa4xlYyYRCPMMqwmx10ryZh3Gc0XsyDEpOSmYzU5BIH4D2twYhSGoP+xHF33lHYFZUtGCXbYZ7QNK7m2eoxz1bP2ErHZCZjWk27c0HAUSXFOJ3Qj3tdjEQaxSRezoHUpFjXcFyccFZOO5CzNxzwwXOARS512bbIaNIsYWfU5zP7N7k1uk6kDUVTULk6mLsIyxbriHE6ohf3SE1KZnJinWB0FBxFHZnJeLp8Sh2yBEtb4gKQ890e9VSu5Kw846Q4o3a2y8NrCxYg8Q6lq/CN7yrzbUh4asQwRgLKe4yTEdvZNpd7V0h0+gdeY89HEnzPx6B+FKeqrsqvgz5PVCRrNgDWLoSbENd58M4z6cf8zNVtsviMrbSVUUohXLFmXkTK1zph+s59e1E33VVRejFtqm0AfEYK53kw5CitmJNU1jGvGy4PMqhh2TRiSOFFSteLDdOq7kCM9dJjtKosGmGinJfzbtVYxkmM1prTRcW+SemlhqfTkjr0CbfB5LIN4jcwXdUM85gs1l2vWWw02/2Y7X5MWTuO5xWPT2XuHffEqCTfsOd/fuiAojppK7LGnC5rpqsG68Tg5NIgY9SLGefRevEeFh3zsmFeNKFPTuSWSaS7MPF2XdNGbbRfN4cLIKdqHP1ULPMjLVLYunGUtWOUx/RSiR1oQ+Jr6wWYN6GvMIo4KythHLXGKOnhSiKRqJ4ualaVpQ7M26WtHKUV3vouYkDpkBunFF5DlkXsjjJ+8vqQlyaDzqBm2TTMa+ntLhovBjVx1LGpSaSlKGBa4xRPFmuOliXPliXL4I3Q8j2b/W1V4zgpKk5WUvC2zofIhjWraL1nGTL+VrXrDLdbhjiLFP3EkBnNJE3Z7SXsj1LS6AcHX+34XvPVH2Zq+iEBcetqEE0jLJyIdcUwIdpYmG4uRmG9gPV+/T+KML2UlXVUTqIANkO9L5B4rO3mUVC69eMsa2fCyq3dYwjPKcLr6vAJnPcsQyxA4RocIpms/Jq9UwgD19KsRqmuWi9SS3G4dMhJVzrP07rhII6YR47zxpIE4NG6Vqah6lI6z3FZU3z1EZ+a/8cM/uV/Bv/a5yHJBDAMJ6jRNjQVzE7xhw/x3/hNvNKws4+69AJqJDEEhOq2IMRIAITRgbHz6N2r+NGOMGMgLJJ3wvot5wLujkqoSgFq1grozjLYu4S6/ooAQ20ggBiiWEBbywyCbOtqhp8e40+fQn8gv9ca3n+L4te+wtN3D8WYJBYDkdMzcSCNlaIO+7bxvjvZxaxGwshx8lGTWBPFmkwrSicT4dI66i7UkQ7Abbp9RUoxziK27uyhXn4ZXnhZQFBdyT6zwehlPhP5Y5zIfjh9il/NUKMd/NYeKu2BDg6Vw7HIG5USkBUnsl/awgVevlaVSDE3S4FpGjLk9JpZjeM1+5lk0kvYH8B4W5xHt/Y7QEmcQpDo/XjI2Fycyjf+gkRDwR8I5J5n7WKTcmv0Ah9P71E7S+MaKlcLgNMRqUk6g5PWrRAEyJ0WU8SgQWFdSWKiLgZgJ9vq5G/eexb1MixGTMcKHq/O2M0nlLYi0mJtX9qKYdJnXi0lRDfpdVLCSAv7l0Up1kfC3iW9sBhLWTUld2f3uDO+zUFvyklxRqRFFhrrmCzKuh60whbMqnnH2N0YvIDysvdk8W7oRQN60YDGVczqcx4u7tH4hlE8ZiuZkEW9DtBt9jwJqIK2l26oE3LTo7BLfLLNrJ7icKzsAhtAhdkAhpGOiIlJgjwyNmkH1ow2G+9x8Ti3PXS1q2lczSAeoZUJn3fFs9VjTopjsiijH4nktXLCpkbKUCMLicrWwezEBBmtJdFxV6EVmWqPYVJROwHF86pgK8uIIkNdr4EQyILAGE0UGQbDHq/v7vPa9kvcGr4ggNBbKltRuZLSlpS2onIVSZCGLpsFtasZRAMycoxJ0USkJmMYDxkmfYwy9KN+kJaaTlLanu6Nby4AuDj0dEbahDBwebxCkZiESEXEwbmzF/Xoh1zAQTwkM3nXd9jKXn88NkY49i0JJ9fCRaC2eeZ+L47Se4kd2B4k7M9TrHfUji4bLtKKRK9BS2vE0LJq86ruXnvZ2K5/btk0pCYJ7SyK0tsgrZRMNhVea1FZBmlEU0pUQaQVjXXkkWFWCTgcJFEHstrtyAIgOytr8khRO08v1lSN42hWsTtKGeeORdkQ6bXBR2Q0o1xy5qrGsSwbrBNWSweAhJftSGPN1e2cSy7rHCiP5xVawTCP2erF319uqdpjIe+71U8YZBHLyuKcZ1Y0NNZxuqgvyO/k+SoAB2GjxKRlfQzSSH9P4NYez9o6muAOLgzRumXIOend6gVm0ShFWcu6KzYa6wQkN85j9DpORALYFd7LmwqwMvTTYEKFgKBrWykmWkcLtHEBSilMZIgizWiU8srlIZ/ZG3Nzt0dkRM5ZNY5V7Shry7IU6aJSbU9fRRZr+mnEMIuITNiGSDOMYwZJhFINvaiVZeoO4D4/6qCAi7Tq/ndgGIJKIKy3jSbRkmnYS6RnrxeYt7Z/73+IddMPCYjjolzSrRdLSrFelLaPaa+MsFi5AOAAnOP4rcecNA2VFyamzQlrmTTn1widALQaD40C5S8uu9rvnRdmJwoMm/PPL8/a1wmyShdkmO1JrORvPa04a0SGacLEK88VQxSQbamcY2A0c2uJFOxEEZUTyHcnT9nZyej3Y9J+CkbhyobToxUnpwXffvuI7X/nP+Glf+bbqH/sz4ssr1xC2oM4EdZr+xJ+fiZA7OgJ/u4H+DQVQHf5Fmr7ytoQo122Ron0y508kdfpjUQWGdgbFaf4xbkAruUcnj4UEFOW3TFT+9dR4z0JI9889jrwXt4J8CsWIuO0tWzj43uwWkJV4r/xdc6/9jHn51UH4LLMsFqJNGOjFQ0QQE5bTQz713pPT2uxYVaKqnJBHityykQpxpFh5VzHknanK+vX7/cikivbsHsgBi8tk2ViVBpAWFXgy5WA3WYtZfRVgSpXApTjDNUf41/+DGo8gWIFk13pUcz6kOS0OmrVG+Ff+5w8Tut1FEPel+PRsqdtT2KUoEwkIC2Kpb/QRPL/x6Dtv9to56fvse/+wL3pPQ/nDyiCxfyqKUl0jDGaUTLo3Ag94lAJcjMpgplJK61rnKV2FqM8ZVMzr5ckTvLlZAG2jmlppSW1a6hdwygZsGxWnWMXSO9R7Sy7+RZPFsc478ijjGm5oHI1GumZ6kXCyk2rmlEyYF4vuD97wH5vn8rVLJsVn9p+g71sn8zktL1ipS04q045LU95snzKWXXOndEdJsmOGGPIhxY1hU7YTiUkvGiWHJdHfDB7D4BBPGSSbDOIR0Q6vrjflRSafPg+NTl439n8pzoT+Y+3nQRTQIbMby2DJiDj+98eW/Bmve1ARWbycFxqptUpR8UhhS2ITUysYowyLO2Syq6vf4W4J1a2wag6AOCoM+zITBYq45pVs+wMUWorzMT10YQ0iTsL79YBrh1aa3q9jEuDXfbyPQbxMDhoIn3QYRusbzpA18odvffUriYJIFxrQ2pybg5vMYgHVK5iGA/ZSfdIddqBYnEr7PHC8AUG8SAAa0NqEuIgWRUnT+lHlHM6QgLTZb+3oL6TsP54fvq+o1NEsmbdvNr4mXCLpe2bu7hc6l4nPP5kXuERQFcFk5JYKwZx3Mn2rPd4r4I7JRCs2jfdMGXxr6idkyDwYBbUhFaQ2q0VMh5P48Wcog193hwi5fMM4ojjRtigyIiRmXVyPY4T2b7GO+aVp5+I7f/ZomKrF3fg4PJ2Rj+NOvVVO6yT7LSzZU1cWib9OICZ9fpNIaYlozyirB2ny5rzZc3RrCQ2mn5qGOYxoyyS/Njw+u2SlbYuHkxDvPf00wgUHQvnwv5pWdR2qACk25iAP2g01ncGKSYAZes9Kry/te2+l5zbSCuK2lFvxEuolmDwdKYnInmWbYoD62S0oqxtKCCozsjj0/sDrl/f4t7d0459021RXItr93iQ8sJ2yvYgoZdGAQQL8Gt78spGetWWZdM5a1aNIzayvVqLMUwSaa5MMvpZRGMdWWzYGSTSI7ixw/qp4eakzziRe0cbtRCFvsnN/3EAgHrjZxP2fytb/R96/JCAONXNLK4SJ8nOrud77SSzrqCqKJLrpJ2ZnMMvltx9NKf2vjMUaXPBWoOSdu2ilMgnB1pvZLoJQ7cJ5hwCslqdMwgTt1nt0kqRa2HcRsZgsSyt6xpSI6WoPB3TZv26V6urjngfQsflaxMuiIV1FM6Tak3lPVlmiIwmyWJUFuEWFat5RRxrBoOYpLSUpeNb/8XvcudrH9D/C38W/8qnhXmJM3xY4KvBlrBBNz8FizP8o48kauDj9/BNI86Tu5dQl28LIPEed/gADh/A1r4EVdeVMHjeC+iKYmGNTg4FdNUVvirlsVduoHavBfZNC1jTRr53Vpi7Yi5ALhsIYPz6b+A//kDA/McfM/+9Dzg+LmisIzIaY4SB8x6ms4rai0669o7arzXpllbOKvu/9p5xJO5FSWooiwD6XRvy3i5w2h6KtiNGXqcF4PNFQ3nvkPT2Q9RwDNuBYbQ12Cgc4NBPuJjJV+eEDYtiWE7xcYKKBHDpqy/D5dvyGBN1DJnS60WS74/Rn/45+NRPh5PPrP8rFUxr1tfWjxdB//1Gy/ps9kd+/8defN7zo3IVDxeP5HtbY5SmF2fBPCPr3st7j4lMCOvus6glsHpZF9LHpE1nhGHwTMsFaSQStNJWzKoV0ErFZbsHcY/GNRIevWyYVUv6SY7Wmn7co2hKenEmoMp74g02yCJW8I1rWDYFw6RH5WpSk7BsljycS7aXc44kLNKNjgJQXQobFhZyWSRZYR9MP2A3O+Nq73on28N7nJf7gFKaXjxkEI9w3jFvpjxY3OPJ8gmlLbnUO2CcbDFOJiQ6pbWRb/e7GII0JK0TJY6ICIMEbW/2c2mkUKjR35PtWfex2TAfRMQ6EfMTpWh8w6pecFweMq/naKVJAnDRytC4mrPyjNKWNIG966IPXEPjDFprYhNhm4rK1oyTMQC9qEdlK6bVVPrl4oxVU7KTb7G7t8VHHz0izwWomgDk2ku+KCqezI94tnzGIB4yTiZc5GnawqYYmJS2oPENqU6JdUxlSwFUXvoGd7IDJuluBy4jHa9ZuDAyk3NjeIdr/Zts9g0q1uzb5vXx4/npv9+Q+xFYJMesvUdtgpR2tLigAxV+/RrWeY5XFQph4CKt6UcRaSRfbQCJWkk7gvOeXhyR6CCNDH1pHmGBxGBFQsFjKzJG5z2FdaFna23ukBuDdRJ50KxqZpVkyUVa0Y8jCmvJE+ljdN4ThViDBkfjPJGWQkzZOHqxobaOJICw00XVvVcaS3SAtb4zgWlCRppWqmNVzoI5ShbLdombrKBhpSANZiWXximN80yXNU/OSw7nJZV17PVTAXR5RGIuAon2dK+tD2wa4XoKwMBtOovKaIHD85dKKyf0BGO2wJDGwemyBYU6qMG8DyqiAAijYHJyvpSIgJahc64t/MkcFSlFFoncVI5TKF7FmqJ2NOH3mTEU1jJOY37h9QN+K9I8eDDFBoDYAkuARVFz76zkbFEzzCRvbzMyxYb1W1lL396itJTOMogj0thQWU9sPD4ArN2hAMJ2tPt8c35JY8ONnZyrk+wCi9k+5vmff9jHDwmIC6Ou8ZXIKX1tUUm0LmG0PT+wLiOtOecLZaXi40Oe1bIgBzn5IrVutG1vX+0hau3mIyWSRgiSO9ZVJ6CLAmhQ3Ws/P0fGoRLRsX/hvVtHzM0FVeM9PaVJlKLChx47eaNMq441XDkv+uHwMQ3w8XnBZFHTO5YcklUIhoy1IkIxMALmlFKcHS3wf+lv0P/8O6hXXsXfuI269pIYZczKdY/WeE8MT974WXy5wt9/Fx5+DPc/xP3ur6PSDCY7G+6gIXenN4LBWECIswLMWifKNJXg6SyH7V3puYqC02i1Wpt61CW+Wgl71BuJmcnZU9x//f+i+FtfZv5kynLZUIV8kLYy0lYeAVarhnmoCFnvWVgXTp9QINiQYIh5iSM2GhcqhkVpqZwwpO3xflxVQRar2E4i5hsVwnYJeFrUfPTmY64++1sMf+Ep6pf+HOryLdkP3guInZ/D2REcPobFXF5gNJFQ9DgR8LpzSYxOWtlkZNbyUtYNsIAAumxw4Xc/Hn80Q+aLdrUTLOhxwTnwk/ve8z0kmBvjuDzkeHVGE7LHBnFPQFwwkgAJhkYh8jEt7FBmUmwiZ+eqkayaKEpZVCskN86jrfQcnFeS51UG2ZL30s8pskhL0RRorYW1c46GhjSKqV3dMX2FLdlKx6Qm6XrbatsQB8lnFqVohCG0xjKI+xRNSWxi3jp9m0u9A/Io56w847yaUgWjExB7914k7pCVqzgqD9lKJmilQwxAvmbJvMh6tI4YxVu8PtnGuoZpfcrh6hkfTT+isG8RqYhRMiIxCalJ6UXiPihAVNg1vKdWrgPKsm8EmjvlUF72dXsMWtjugwmJCWyRVib04Cw4Kp8xrc6pbNU5SyY6kceGYooLxiCrZhUksi70IMrxbtk35RWJjlm4Fcu6IBukOMSIZmULCltS2wYxV4k4L+fcPtjl/v2n5HlKXTUXpFjiTrnktx884Kz8u/z89VN++uCnGSeTrlDgvKVyJbN6yklxwqJZ4r1nmAxCz14hLpvGE+mkO0bi8Pu9e0KVUiQqAf2jYR7ywzxUt7iXdZL1F521Yb1c8s/97nk2blVZVlaY2EhrkhAY3YuDk6mX+2IcWDcVAEFiJISauukMTuI4Yl7VXT+dZJrZcB+GZSPASf6uOlONJliwx60ZhpcerMq6IPMWiWAvDT1yzlPjqK1HIQAmDRLysnFYp+ilBtsIqHt0uqKfRp20sKwttZXnOS8GHS0r1AK82GhxQrSu63vaBMORVmwPEnaGaSeNPFvWPDxd8eGRxCOM0rjrIWtdMmOjGGTrXjiF77arBdnryyv0Mnq6NaT3dGqNlqFLjRS0G+epG8eykuNpWsZJqw5E6VCILhtHUduOuV1UTdeD2L6fV3JMVo24Qe6GtiCtJI+5Zf8irYi85qyspNcsNly7NuLBg2kXCt6O2aziqx+ecray/NkXt/ni9QmjPBbWOMxfrRHJ/emSs1Iku1uprG3bWIF+Yj4Rp3Dx/L+4ToqMJvrBDSB/qMcPB4gLYMWXFb6RkG/vPXozQNh76f+JonUf3PMh4CHP6uj+NLBc6kIfW1udasfm/KVYRxAkihD2Lf1x0YbkEYSB2zQ/aWu2LlQOYi0Vn6ExLF3Tgbl2tGYorcwhC5WQ7vVCxSQNW9v25Z0FTZ/02Xlm1hJVdVc5EAAohikWj51LSGEcaZTRLL99D/3BY5L938d88Qvw+Z9F5YMQzl3j28y2rI9Ke6g7n4U7nxXJ32om/W7Tk2DJs4Bnj6XH7fQY/8Fb0luXZWuHxKqQxw5HkGbC1D18Dz8/lff1XmR+vSFkg7XBCuBPn+D+o3+PZ3/zazw7LHDOk6aaLA2L2rYl0nqSxFAUlvNpxSqEdNcBSCeEUFMvIFlvHPX2OKSJVMK0FrdJiSNQgXmVn3v6ey9XFPJejxcl1ceON147woy2UTtXO0dJbANpLvt3OV/3ByZJoIIrWJxBPsArjYqC1HHTvCcAiO8l3fPOSfj2j8cf6XDtordl4/6QpiYgbMeT5WMiHdGLs04e2crM2p62zhjDNzIXKWGHYh0xSHpkUUrZVDTOohNFacW5z3rHrFpwWggLt3nzaoIZRT8WgLSdTiiasssDi4iC3MmigukGQC/OqF1NrcRcBcSgonUai430Ms2qeRePUDQls2qOUaaTdxZN2b2e9RbrhbHzeEbxmNIWtPECjW/Ioz6JTrrtaJzMK7IvDFvJDlvJLrdHDdY3lLZgFsxMCrviwfw+qUmDCUdJpA2pSWX/hv0MkEc5kYqw3pKajFE86pg7kfvFoV8t6Rg66y3T6pQHi3ucledY34Rw8X6QCa4ZzMbX1K5mWs0obBkq58J6dYtvgkFEAPbyHg6HpxeJJDVShsQk9GPHVjbs8v5ujMbs70+w1kkuUxitI1xdNxwdnvEda3lpckh0OSI3PQGuQRKqlKaOalbRiqbrYRN30NKV6HpBpOLwunKeGAxeQfQJj+cfjz/OIYwWHasEaxFTiPxaA/vv8fzNddCytCRh8R4byX6LlO5Ciq0Txq8FZS1zZJAi+SCJwnksgKcfSxBze05XTiRwtXPdsk26vKUYm0QCGvJE3AJbV0yjQg6dW2duieGP9N1FTmR+LVvW7pM4hJZPV003b8dOU9aVMEIBOFZN2wvWvrYNDpRr7VW7hitq+dsms9auD1VgCPdGKXujVACmdawqy2zVUFvHrGh4NK3pRVEX2p0YTRpYw8joTk4oxil0+6Zdz4Ech3Y72jBpWPfCLStLWQszmsWGLNYd20h3/KCsBcC1QNY6YdQ0fs1ksQbbnSrFC4uolUhbtZYct34cYX1N7Ty3Jin1CxO+fveMqDP9COeM0TSN49GTOUVleXkv4/PXJnJclBy3LNYoJH9unCSdFDczsl8aGxhArzFtj1SQgD7fn/ijOn44QBxAVeFWFa6xnTV7Z8veyifbr61pQzsLbPzen0+5d7gQ3fHGy7cFjeeB22ZOmCawcoKauioFyGTYRhQ0zm0EQK+HQyR7PSUGJdtJzLkN1Z0NNq7tr2oZvkQrIqc6UAEyYSyCyUkeQGHjfcfqubbZWHn6WotEMwCX0kHtxWExsxZrPd5LFWQ6q5mWD3jpzfvs/aMP4U//WdSlWwIWrIRNs5zjl/PQixhtyC53NwLDQxnP1vjFFL+cSr9Xa+hRV2tJX5yIW2XWF3OV/tbafbLtgSuX+MWZ9HotzrD//r/Fu7/8LquiIY4N/X5EnkdEYVJubWjBs1w1nJyXzK2VhQnCstlQPWqZuNYhtK1ilaHKk+cx3otTlfVrp1HnpX8x1eIEGqmLvXCb55YGxqME/erL6JufklDydh95hxrtCrC7/Wl8uRSAGweXtXIJUYrK+9JzGCUhOD1agzn9vW1rVctU/3j80Y6wQHDdjHFxn7cGG99rbLI+lSu4N7tPGsUM4n4nMxOwYC6EF28GGuMaYh0HOZ/HGINGUbka1zgyJefSol4xryRWwGhNbES+RChQVbZmko5ZNiv28l3SItnow7JEOhIXSiSLDIQ1K23FKrBsIOfdvF6Re0cvzgRsOfl+Ua+oXdNJ7CbZiCz0VS2bFaumpFI1pa3IowzrGxpn6UU5tauZ1TMOegfsZwcMky3SIJOMfITDdZJGt7F/E52S6IxRMgnHivC6NZUrKeyKwhYX5JDtgkQFEJ0HN0ZxzUy6fqzNYwxQu4rHywfcnd2lsCsykzNJJ/SjPkZHtDlkeML7V5yXU6bVtAOQy7CPYi15bRaZz1vDFQk2LqhsxSTdwihDHQB0aSuOV+fSTxP3GAx6vHbjnLfvPdpg6kMBMAA5pWCYZ9waX2OcbKOVCSDTENE6cuZsJdvUruq2U6GEdVam6+vTQfbayiJ/3LP2P+xo7eTbPrQo/CwM8sV1zwUmjg22h7WUMtaaURJ1UjMdWLc1++M7pqhxHh3AXGo0VXCAbBmxVUM4TwTANcEMLtKaSK97viTvy9EzhqJ2jHoxi9IKyxXWYbHWXYhyHeSYeWKCc6NHuTAXGM2srkmNoZ9Esm8ah0fcM5e1lV4wLXlsAtzECKW2HutsJ3NM45aJkm2crWryxHQZdJFuXVXXn8W5df6aVgQAZdjur6Wgi9KyrCzLsumcI2srLGPlHLGWbuWismLOEbLdslh3cs8WpHi/Xt86D8uyCWYpwiqOe3HX29U+vj3ejfOcLcVVUtp6xEa/8Q6DMK2wVrGhZB5c1hbrfAgqF3CtwmtPq1oMUyJDbnK2riYczmvu3j9fK6PCeeuC3HbcT7iz1WeQrSFJC+byxHB5K2N7kFBUPWrru9w/EKYvNoqoYzM/uST6UZ6f/r4gTimVAX8PSMPj/z/e+39bKbUN/GXgFvAx8M9570/Dc/4t4F9BMM3/2nv/y3+/9/FFiSsbfL2uJKKVgLhN3r9lL6xdxxK07pTOsXr/mcjoCBkWPMd8cVHu1E5Mm1JLees2DNp3E5hWEu6twxX6nBKhc6wcGXGzKcOJXQR5ZBtr0DpaOtpJVibL1s2y3aYWKLYgpDNlces+u6WDytnQb7fBPnqocJQNzKzjoLFsDRLy3HBW1nz1o1NG/49f4/O/8S0G/9N/BG69JDNOHEDEYAtljACs1QxfhuOgzdphUSlUFKMGY4kxaI9FCyy6Upve2OEhBLquxCb/7JmYbIy2UUmG++DrLP+P/w5vff0pGuj1Ivr9ODhPSv9aU0sVb1k0zGZVCFgXAFaGfdM6ULYun+3+ej4HsNioErYLttaVFCU9jGMlTqBGbeinw2PbxWCqNQd3tlE/9fOQBwfNjXBzpZSYysBzOhY5b8ODwv8fG438IOOPa24CAniwF47burPnue3a+CpzTTv/eJ4sH1G5mn7UI1KGSMeBCVmfgz4wMJujdWTUSncgIY0SXOMZJpFUT72lsg2xWVt4tzmI3nsqa1nVBUDomytpnGXVlGQmQSkVsuBE/tOybrGOO4llouPOlc57T2wiMpNRuTYeQdwD8yilbGqWddFl2xVNSS/K6Cc56AhrK2pbs2oKmkSkiy1z9s7pu9yL7nNzeIPLvStEKiaP+mt3wo3rowW7Hid9HEp1vzM6oqdjBvGoA9PtfaDd388L7GURoLtj1j5OoVg1Sz6cfZdHi0dEKmI73WaYDIlU3ElFK19hXUPjG2bVjMqtrfhLK2yk9Q7nHO2M5HEYFQeG0nbHu7DFBcMQ+bw+9CHKvt3tbfHqziU+eHLIaiWv3zrBtQvLLEt5fW+P17dfD72D6/3XsovGGNLAQG5Knjb3weZ2/Hj8weOPY35SAWQ1tjXzkR7ulskIr3nheHbPZaMrUkk+WZuz1gKHug2EhrBYd50pHMjXlt1pXLh/hvmhcdCLJJBbDHwUS9/glQpFlvU6qHaOorGASA6rRopVReO6OIAWNCpUZ/DWvrd1F4tlEGzwgyRShQKsUYooUqway6qqKULMwcpaepFhGMcdM1c1jmWlGGbi4BgFmeLxrGK2apj0Y9LY0DhPHq/ZSh2AigrArt33m0egzRNjkFwAHC2TChdlgc/bz/vw2BYgK2Sbz1dNB8jaCITnGUPvJX9NjveahWy/Ou+xDpwOPgBqbcrnA5huH/98MVu8HzROiaPkfi9lWtW8canH7wSGUXfrWDkueR7x6uUhL+4OOia0+6zh/VNtSGPDKL9oZPXjdpIfjIkrgV/y3s+VUjHwm0qpvwH8eeBXvff/nlLq3wT+TeDfUEp9CvjngdeBK8DfVkq97L233+8NcB67qNbhyAQWrgVpSglD9DwwgDWAA6hrHt8/lywQ3QY+ewzqApCD9YXQAr3NSlUUylPyVXWV7JZBSxS48HOr9xYGSE7i2nsGxlB6cZcsnScLhiTLjc/YeGjwRAhI0FwEGYTts16MNmJFCK5WnfkJtJUyqKynQgBj4+U9rfcY4Fnd0MxglEbs9hLKecmTqubXvvmEn5n/VXZ+6gVUnq8t6sdj2N6VHrjeIJRFjPSrgcghe0O8bTYiHpy4IkZScfLVKrB1G4d+NcM/uw/f/Q7+yRMYDFCf/QnU7U/jfu3/y93/4D/n8fGKURYxHCVsTbJuweZqS1U0VJXj5LTAGM20ttRBblE6x9RaduMISzvpyLHrcgE3gJzznsWGnrzcWDy3kRRtn2Kq5ThuSmtb0xkFbGUR2edfRt/5LJ1w9/tMLp9gz7T5no/78fj7jj/6uYn25hRA3OaC/w+4eWzOKe1w3nJ3dpdelNOPxaa/zc1qnPTAuXAOGmW6RUlrMy2N3pY4yB9jHaNjTW0bTKQ5L+c4b+lFKZWug6Nl080h4ggnQGKYDCltxV6+zVFxyjgddaDOhfeU/LAq9JglHZDrKs5Ij1jlKraSMXXIMRNXy5yykbzGJICbqZXg50hHLNyKPBbnxdaGvgmSxFEi2/JkcchpeYbdseyku3w0+4CdbJftdLcDImpD5KyQ1Uab6+ZZg+/aVYExXzNIm/EEa5dOT+Mtja2hY0hFVjirzvj26beYVTP28l3GyZhxIrEO1ttg+LKgtCWn5VkXzG29EwdKV/N0ccy14SVKO5XP7RwmMt0+AnEdNVpjnWPVCOg2SrLdnJe8pdrV1LZmiWJerbg2PMBEb2GMEXAY5r723BkMe3x67yUO8ssXSg/fbwF0cdH4P+5F0n+P8ccyP0mwcQAper1GaovVRl1ka77fmBcN/ThikETd3NX2iWm1BhixWc9H7ZCFvw8Zly4YmEgGXKw1y0Z6NVNjAFnge+9ljdcx5224tKGxkl12vqxJY01jW7dGWe/UzlE3jsi0roLrz6ERANtGFPTSCOc080KKUqkxrILsWHrxoKraPkBFZR29SJbGDsWsaDpJ4iCLqK3jvBD2ameYkESau+dFABnRBQfDTWONTxpmrB0YYc14fr/bymZouIfOjCUymqKyHM5KvIdRL6Yf4gTUBphvj9F01RBH6/0RGWEhT4uK3V7aGZloFdgud5H0UMj+L+q2+Ly26heDJ0dpHbEW0D1KYiZ5xHCYsFyKuqOuLVEA5+Nhxk9eG7E3XOc//qDA7H/sAA5+ABDn5cwJTgzE4b8H/ingF8Pv/xPg7wL/Rvj9X/Lel8BHSqn3gZ8CvvJ938M6yYbTCuVVd6KoOIC49iwMC/KOids8gKFHLk0NudbYUEFq2qewwbA8N4QRu5ia3uqq2wqULAjkb63DpUZMTlrwJnJGxco5caf0Un2qfMNJYxm1bkqthCBUNrRWnflKl1sXPlp78ZTekytNptfMYiL8tzzPi8wyUa1ph0fjQnC4ximZJI+KiqEx7GcxuoSjuuHvvH/Miw/mvPL6HtF2HxWamFFKTGa8RxmN6SXom9dhNIL9y/Dip+HkMf5X/ho0DeqVV9D/2L+IbyqYnuC/+w38m1+VHrnRSGIG5nN8WaG2xqg7L8LNF6Gpqf7d/y1f++V3SbTm0nZOvx/RG+eYQcrp3VPK0lLVlum8xijFSd2QakWmpTen9o4za+lpLb8L7nZduLtay0HWIEyYO2sdShsGQaLmfbN2MUXYujg0YMcoVn4NtW1gSLe3M9Qbn4V8uC488ONJ5o9y/HHMTfI+LvRPbfI3YWnbHl/v8WqTof3kUGhGyYgm9IMZpWm87eRoLsxBEcI2iZ2zyCvbeUkhwc+xdoHB10Qq6rLHtDJE2mO0JtEOoyTk1jtHZS3LpmBWLdnJdjpZ4aJa0YTYgVYuapSAQxe2Mwnhy2VTiY09+sIi7rQ8YzubcKm3z8PFky58vP1fNCWVlbDwyglDJ6yB64LDrbOcFCf04z6jRNwoH88P+a1Hv8vLkxe4PbrDUXHI26dvsZfvcaV3tbO/l202F7LElNIU9ZJff/RrLJsVr0xe5tXx69SuorQrzqozHi8es51NuDW4E/azgOhIRSIf1BG1q7g//4jvnr3HIO5za3iTUTKmF/XRynC4esLKrqhdzXl5TqRjzspTsigjMUnIkLMcrU7pxz0yk4lRAB7rXcfEdhX7AO5LV7GsC2pXB6OWnNSnndy1jaI4L2fs9bY5GA+Zz5Zd3ED7WlFkOBgMeGnrRdIQ+fDj8Uc//jjmJ7deR6PUJiBYgy4PXQGzZYc2R3s6ZLEhCYCqfb7RqitwtICkAxoBIDi/fk+jFTGtCYqEfLfsmVEqLMAMiZH4gsYJG1dbMWGqGscgi3BeZtJ53VA6yzCJRTaJBDPXVtZbRmsxqVBagrs3qKEWtM5WNeNezLgX08zlea1LZqQFkFTBRbxoHIVtlQiecRpL8cx5pquaXioOit7Ds0XJrK65PMy5vJVxsqj58HDBIInYH6f0EtMxmd0dwYszY2vp//X7Z8zrmld2R1zdzilqS1E7ispyMq8YZBFXt3O08p081oXicSsfPJyWTFfipDnuxaSRgN7GyvziA/u2DNLMs6VIQtPYiJul85ytpEcvTwxnqzqYL+kONLdFQDkPxJSmlYCmAaBmsaGxPtyX5DiclzWXhxnWey7t9HlvdhquDTlXo0izN8q4vdUPPYg/XjP9YccP1BOnlDLA7wMvAv937/3vKKUOvPePAbz3j5VS++HhV4Hf3nj6g/C77ztccKRUkel6mFRkUGZDNrPpTvmJFwgzWVlSVdJHtqol80sqyuubWqTUJxZYauNru5h6/u+ttHEzMDwKMK/tdbMIU1Y4z8o5hkZ3rpEgF0OmYd6amPj1Ys8oMdNYunXYuPMCyFqTjfPGMjSavtYsnOuknRqpOu3HugOfLdBroxEa6xkasc/PtcfVAjQzrTmsa95eFSy+9ZQXLg1IE02SGEwWU85LDo9WnC9qFIqdrQ+5+ql90qvbqJND3De/xXf++jsoBS+8+oBe08D771MfTYkv72BPpxx+7T57X7iOGeSgNWpvF3X5sgDBu+9z///yX/LBkwWXRym7OxlRpNGxoVlV3H3/hFnR0E8jtILHVc0wbLf1nizRFKXjtBFXynGo7rQMmg3A/0LVkDWYr72nLB39fnscgpWuXoPzlQsh7rHp3C83R6QUo0tDeOE1kaL+uHL9xzb+qOcmgGWzxPqmyw1z3iJvq9aFpe+1bVwEc9Y3NN6S6IRHi8dSnUUzrebSG2XE9bFxlsrVlE1FGgkD5r0njaRPa1UVFxb9sYmoXYNRBuctJgCn1oTF1mV3Ri7rkqIpWTVLJtk2i3re9dXt5tvy+Vxg2LxIAhUqBHen4mTpmi7aYFkXbGdjClfyePGUy/0Drg+u8nD+qIsfMFozzob0k7xzUmtlno21LEIUwmDY7ww/AAZxnxfGGc9WR7x98j6Vrbk1usmNwQ3OqjN+68lvdY+ThYNhKx1zfXCD3PRJTcbXjr7K//33/ybWOr50/T3+wRunvHXyHs8Wx1wfXaZxDd85use/9sW/yF52gNExSZdPplnUM75x/Cbn1TnXBlfZzfa6QPDaVTxaPuS4OCE3GVppjopjBvGALBKWcZSMKJqCD6YfUTQlt8bXOubOBwDXDkfIhwoMJxBMWkqG8bCTPeZRzjDpEzVRkGhWVLbi1d19Pnjw9MK5oZQYCNwYj7ncuxIcVX88/rjGH/X8tKwbMaFQrWKAricOZJ2yOTs9r6r0a2yBUiKVO11VwRhOnAjTwCy1xhu1k96taCOGI9YSsl0GMGSUCsUQAUmp0Uwr21nft0Vv66X1pWwcy8aybCyDAORaSaV1wv5ppXF16yzrLjCDWWTEtdJ5nPGdTLCfCrA4nldM+gl7o5TjWdmZicRakxlDb9TO7esdZL0Ay6UTA5HWOdN7cbu8FuXMi4bHsxUe2B+ljPOIk0XNu09nxFozDC6XRktv11ZPMhpr6/n2w3P+z7/2PlXj+NKLO/zjL+3z3vmM948KXt7NmJaW37s349/+My+xM0jAt14AHhMpaut4clZgnWdnmDJI1/1p1otcsmycyDaBo1lFLzHBPMaTJxFlbTldVJTWst3PRTjlfdcDqKLglIkUEOtQdBR5pZiKpBsmL3GkyYLZSe0EEDsPW2nC/jjju953MkrnJOPtYCyxAD/Gbv/dxg8E4gKd/zml1Bbw/1NKvfEHPPx7HYpPFKaVUv8q8K8CXDaG+mRBsj8SSaVWAuDaYe26B042SL62P7cyubKmKi2lEwBX+3VoolZrENY6FXa9amGL9yPDNMgdGy/mFu3oBbbM+QAmN4BZFBi5drsK55laK0DAs8GweXKtO5v6NitOJJ9rGSdsskUi+kmUovCemRWJ5sBoSiUAo/KQsHZl0sAoMhgg0xuSUQ+ldxROKvxDI4+5kiScN5bTxjI6FvnOUVkziQx3bo/Z2/3/s/efwZZl+XUf+NvmmGuff+mzvOvqru5qdAMNNLsBEJYEELBUgAwyyBA5oVFQM6HQhGY4ww8jTYQ0CsXERGg+yFDDYZAUSRGUCBIkCAIggEYDbdC2vO2qrPTPm2uP2WY+7H3Ova+qYIluFYq5MzLy5X3XHHf32eu/1n+tUL29dVqwvz/h+AslW+v7nLt5yOFbR3xjMscBp8/s8tH0c+RPXEWvdkEIVL/D/sGc7it3yS+tIbMEDfhuF//CL/LVf/o8AvjIw6sk3Yx6VjKfG0Z7M07GNYZ4zMogC5PAzFkupGlgwVKJKT2l83SkoC8VE2ffYRKj4vGX7WMNe+mjFj+ysfF3jUVzFaW4p8ayvZIxPrFnCgECyKUkv28Tee7q8vX99kv+3vgmjG/G3ARn56fBuQG3pje4r/9gy1SJxRPbNxG/B6CDAOKsM7jIxFkbFvFzUzLzRXRPDCAuMGZTujo4WEoh+LZzH+K0GiEQTOoZx8Wo7UtbSfttP1siwTqBi9b8uQqvL42htpaTckw+O2QlWwlMnlSx183RizEBQgTHS+MCW6eEoqMzClO2QbwNw1a7mlxlzL1nZ7bHuc4Wl/oXSeb7HMyPmVY1mU7RUtFLOyRSs9FZyBCD81lg/INbZsrczOlEV8ZLvfNM0ilH5THZNCNVCeNqwnq2RqYyXj95g3E1Q0lJrjMOi0M28g22Ott8aedZ3nzjDkVRcnhwSu0cj2/cx0Z3lVQFM5dX9vb52v7X+OT5T7bGJgjB3vwuLx29xCDt8/Tm0+SqQ2kLJvWEqZlwMD9oWbKpmZ7pY1vXa0HGmPSZ1BNOiwm5ztr/Gxet1pEtYFMixD0450CGeauyNbN6is3WwnOkwntHojRKSsbVDGsNp+WES/3ttufE+8V1mHcyLvW3GSQrv8dX4974Zoxv9tqpt3GBuycFl9ZyantWQiviTV9KgbNvZ9/CWkM0dSgWQKVhXkxUnNTOUdrYKhLNSUZVTa5ChpsSkq21LkUVzC5K4zguq5gzJ+hoRUc1ICnsUjAqETgvqB3kOjB2M2MYF4pOBB5Nj5R1waSjjI6VpV1Y2qvoiijqMI/ULqzp5taQ2WBOMq8sp7PAyG0OMvRMcjSvmLsAUqUIhihaCgaZjuduMZ03EUSJCiApRBDAej8lKyXTwnCiZXTD9JwfhN7SN44mTOsgU+0lmnNlTj/moX1l55QXX9qhnJfcvTumtJ6nL/a4tJLGyAHLazePeW1vwicHG5GFDE7mo7nhaFLRyxRrvRQtQz6ej+A1xAWELLtZZRctN8ax1k/D+VaC8dwxqQ25VvQyxaQwrZyyuU5Cm49ACN/KVBvWcl47evlZJ0gpAqh2dZCGF7XlXDdns5+QJAq71FLU7SY8spXTz947Hot/0sYf6sh570+EEJ8BfhjYFUJciJWkC8BefNot4MrSyy4Dd97lvf4W8LcAHk9Sf7gzYVNLVC9Dpjr0xKnoQlkUuMogo0657b8y7izDMquYFIapdRHcBFas6WXTAta1xHg4MWE5VsQq1laimDnHUW1Z0bKVNS6kj6FfZdmmXkfWrnWpjP83HibWoTD0lCKVog0GD3b1gkmUA7QUOWEi1VFu2bBFQfIXAErog3OcGMuaVvRVkFfaCFg9CyOUt9dbUxFevyZ0y87NnKN0jo1E05GhelKaIB3sKMnNqmL+jZOWnbpvPVRqDkcl+0cF8+d3mM8tJ8ZyHKtmV68fc/lDDyLOnw8ffHCAVoKiMOjTGa6oyYHqpZs8++wuW8OMC5cGjE8KXn1zD0tgHyURHInQ67Zb11xIUjYSzakJIC1VkrXVjGunBQ7oK0UiBZVZyDua45oKEeMb/JJb3+L4mtqRJIoEmBWOTmQ7TSwCTGyQInSVbI93I9Md9hLE/fe9Q0p5b3zrxh/n3BTfr52f+g+u+9+89Xn+zP09NvKtdrG+9OSz/+Xde+JCz9ScUTXitBgzqedM64JJ1UghBVeHm1jvGJUThBDMYk/Uw6tXmNYz9mdHrOVDrFtY9le2pjR1y8pYr4G6lUFJqVDetU6Vpa04LkbcmtxhM1+no7PQhyUUucrJdMq4mjXHIVbLRQv4IDgkKqGYm5JRNWG7u0muM0bVhFuTu1wdXOZy/yIr6ZCj8phROWUet9dI2wJHIUKPXCrSyHA1ttsVtauxzjJI+2Qq9EvUriaRIdJgd77HerbGdncLIQ44LkbMTcm4mnK5P2NaT5lWM6bzgqOTMbW1vLS/zwe3HuR8bxOAUTkFYH92xMzMmJhdIJiw7M33orHKJU7KI146fjEYxLi6lbXmOsc6y2FxxLnONuv5OpM6nLtcdRgkQ14tX20NSJSQVLaKsRGilVIG8G5IpAoMRpzBjbPMbZBUdnQ3AueC1WzAcTECAoM3qaZcGpxjZbXPeDQ70xO30u9ydXiJVC56Tu6Nb+34Zq2depce8//q9T1+6gPnWe2lrYytlRi/i7wQzjJOEDtUnGdeWU7KimltKGIum47F8q0YJn9a1cF0xFqkE1zqpZS1ZVwahrmmtkS5eBCd19YHR9rYllAtSUADaxdcpBu3xGltOJlK+rkmU4oq9n41bpDz5v4uFwAvzCOC2i2MTObGkkjDqg59a0Xt2B+XnBtmbA7SFrTMatvmaTovWsfJZhtTLVsr/xAZEMKnQ1adan/nnMeKsE/juWHQ0dy/2mNvUrIzKzguKo6LigdX+yEUWwuKacH0ZISzjtfurPFtl/psd9OWGRVCcFCUeEKG36yy7edvDlI6iWJaWcbzupVaSiHIkrDNIei8Zr2fMugklLUNxz0SDPP4fqt5KPTVdmnt5MPaWGvVMpC05yxI4auYD9cwrGXtGKYJp+Ui+mpaG7Z6GSu5YjBIGY3K9tytDjIeGN6TUv7bjN9XWyGE2IpVJIQQHeD7gVeAXwD+cnzaXwb+efz5F4CfFUJkQogHgEeAL/1en+E83D6cc3R3HEK+3yal9I1xhhALk4yGnVsa1c4pd6qKN4uK3dpyWDvG1rWZbpuJ4kc/fIGnBt3IkkW723hRHtQ2Ml+LAPBGlhckkj7Y0rsgS6zcwiSjYW/00uvG1jFzjp4MIpbae6bW0lMKLRa9ds2JWAZfyw6VlfdtP18eDVuOTQimzoRgoBQ9KVuGqAkbr+Pf0jnmzjEywZZ7qCSbiSaJQKaM9HsZNedaSy5vdllRmom1TK3j1XnB1/bG1JXl8rkeF851yTNNt6vRIsQgnBjHzv4cRiPaLL80ZW0tZ+3Rc2SX1lCDnGtffItnn93l4nqHsrQ889I+N+9OuXSux1onYeYslfdU3rFbm7AfLuxLKgKQOjGGTicsKEfWkgroRfejeukG1QDskHfTnKswgTXnf+7CROQjMOtKiRKiPe+V90ysoygsDz4wJI3sbSMxGA5SxKUrMTLgnt32t2p8K+YmAGMsv/zmi/zO7peobBFl14up0xMd/H6f835UHvDCwWs8u/cab5zssjsdcVIUTOsa4xxXh5v8uUd+gu+6+DGGWXA4DaHLPVayIW+NbjGpplhv6egsMHLVnMKUnJZj9mcjRmXJaTFjXM4jk2ZwMXssuKsGh7lpPWNveshRecxqNmzdKk+rU1bSFbRUsSdvMcdqoREEKVRlTQzDDj11czNHCUVX51S25sb4FnMzZz1f42LvApf65xikPUpTMyonHBcjRtWEUTnlpBwxqaZM6tA+1E/6nO+eo6s7GB+y7ZrsuGZ7LvQusJatMjUzKle1rORDq1fZyFe5Ob7LS0evsd3boN/t0M0zZvOS3b3j9rnOOzKdsDXo8+TG45xWJ7x5eo3XT77BQXHAg8MHqF3N1/a/wlvj65zvnqef9DkuTyhtifWGg/lhG93QBKX3dI+j4phMpVSuYme2H1hI3W3NaYJ5jIyGBwHIJjKJPSyL+cvEjDvrLc5bnHfkkZ0tbcW0mlGaipkpyFXGn33sgyRJZPaURCnJRrfL+e65YJZzb276lo1vxfxkjONXn7vLZ28cUMfw7JAZJmIPXAQj8bQ3kstWRhmnrXlleW7vlM/dOuJ3bo34+p0pL9ydcfOkorKOrU7GE+eGPLDeo6tVy9Z1deitOpiV0Q03MmNSMrcBHM2tZVIb5sYyqS2z2lBaS+1c2wfcXJWltcyMCUCyNCECQAbjjVlp6aQqMkGhj64VZUUpaCMHbB6fG0tZL2z6S2vZG5eUtWPQSdgaZmz0Uro65NnNjOG0rJnXlnltmVaWWRn+ChGCuTejmYkQxHXDco+eYGOQkqeKygTJ59xYBonmyc0VhmnCS4cjnrl7wuVBTn+1j84z5tM5N++MOCnq1uUx15KLmz0eWe1z+2jOm3tT9kclxjq2hxmVceycFm3sQaID42hcMIg5nFQxMiFIGBMVjsHxtMK5kF83KkwIR48SV2NDwc4t3c6WDVradVME3GUdFQWRnWvAWGUDw9cc01RLPn1lg5V+htZhXtJastZL2ehm/85kun0zxh+EibsA/N2o7ZbAz3nv/6UQ4gvAzwkh/ipwA/hzAN77F4UQPwe8BBjgr//+7m9Brqb2Zgz6CZ08WUgqvYeGfm2uqga86SW70dmMrz+/yxvzumXeHD6GdgeAlUuBM46dogq2th4yKVjXkpGxrfNjA+waJqeObEzzfi6+X+2D8+Xbs+IayYBEMDKWjUTTV3LJ+TKYkhQmZJk5Qi+WepvssxnGL3rjgvNm+P+xsaADAzVQiiwCtsIvWL7w+gBWbAxH1wJW8wRXGrQIxh2ZFPSkjH2EUJSG7W7CW5MCPKxrzV5teHU0R40LziU6gK61jO/pao6PS45KQ+kc1d6IdDCIWWeS9ce2kd0U1e8g9sdIKdjop5ychorM/efDgvXazoSD2gTXRxUgUuM82RiLnFpH6TxdKbl4ecgrrxxSOM+aDkDWNue90YnEy0YLQe3PnqvGabLynjJO0loLkkq0x62V4AJHs5qrvax9nRCQCOj3E9g8f89l8ls/vulzE4B3nps39/jlzte5OrjCh9afQi25Ir4zbOSdw7iaL+1+hbuTI5SUdJOEREqmdU2qFN0k4XxvE+cdB/MD5qbkcDZjNc+5f+Uitye7jMoJmU4pbYVEkumUk3LKvCqZ1aE6HuSVCi3DTTnTuq14N4uDUGENks3d6SFXBhdIotwpVznGBfljMN1wWGfQMYhcSdk6Jwb5cWALT8sJaScNYdRph1E55fZkBzmQDJIBHZXT1R1OkxEn5YjKGkpTBxDjBEaahdulrcjSASmwkg5bk5Qm+FsKxczMWMvWOSmvoaXmYn+b2+Nd9mfh+F4ZXAg9avNjfvDjH+Tl3T32d48xxjIqpwzSXjBskQlPn7vCqBqxka/zwY0PclqeIIVkVAWm62LvIh7Pm6Nr3Brv4L2n1++iYkB4MH4JDpZzUzA3c1KVcq5znmvjN5lWcza6q3STHg4fM/RENHtQrTmNlIGR01LhcAghsS6wq6UtSWWKkgopFNZbSlu3ZlvWOWZmzqX+NjrRVFV0ntOK9TwEmC8XHu6Nb8n4ps9PzjneevOQf9FNeXStzxPnh2gVnQ7lslnO2ddJEXr4myXVK/sjvn57suSqGBbu5wYJvUSxnqckSnA8DSBhUgWAtd3NGRU1c2ND3mHTpxbnn6mxVHZxH24+2/mwvmty7Rq1Z2UdWkoK4zgpaja6KVlsrdFRWplIifULx83G1RFojUqacPAAHA0rMkHJEEQ9M4ajaQj77maajX4AZdPSMq0C8KhizMrCgGhh+DLINSJp8ukigIwySwjh2cOOZn9UIoXgQj9nd1owqQyZUjy2NsA4z96s4Ge+72Geub7B7dsj6tpyODUMs8CKJVLwXQ+tMast/Vxzca2D80FWOo7OkqvdBOth77TgpAi9xImSyNj3JsXCYbSofQtoExUMTkprWckSujG+qdkftXRMG4DV/Gu8i+fML5g4tXDVDL2OfiHLjQzvsJMw7Cbcsh4pIU0lw25gRO/Vlv7o4w/iTvkc8PS7PH4IfN/v8pr/Avgv/jAbUjjHsYFbt6c80M9JtgbhF9biKrMAdN4HhseYxf+ByQu3eL3JyBHNzsWLTwhWteRCkpIM83bJ1VOC7URxUFvmzgf2TdBKJpu+NEWTk7G40kzsdbORJWsWSsujWfyPrWWgFFNrKYGUBQW6DNZCePdCiLVshd8wgokQpAJM3M5jEwKuh0qFLDMVkuuLRgrIErCMDp7KOvLK0kkUk8gWGi/oKUkWnT3nc0uWSQZKUUbGbyVqxz2eO1XN6M6IS72MK/evsPXwJm5eodf7yERhdw/ajD/Vy8B7qt0TXGXodDSj0yAhG1WGg7vjCEpD31sqBOuJpnAORTjFmZAcmQDwtpOERy8PkL2Uu1VNLgUDJUkSxbSsqV0M9o6SpabaqJYmmeZcNUyni5KMJFEIEZjA1pAmnodTa3BlTZYolHWtzFT1MxisLpxT741vyfhWzU3ee05OJ7x68y6/sfZ5znW2Od+91PySdzfvPvvYrel1Xjt6i1yHXiYtw9RrypJESi71t3h49UE6uhNZGcVGt8sja1f5+u6rFMbQS0LRqjQ1aYwZaPpgU6WoomNvqJTG/DETbvaqkX7Hf62U1C7kyu3NDjnX22RSBzasqzutbLIxR2miDtKYGWcIfX1BWiOjWUpBL+mSqZRUlYzKCTe5w7nuFht5yFNTUpOqlNNyxLSeU9m6depsgCGEfrtcdUJPhS3QXkfzl4TKVRhXk6iUQTqgiCzURnc1HFNnOSpOGaRdHli5yref/yiFKfny7tdDRIPU7EwO0FLj8Ty8epWPbn2URKaUtsAkNXMzx3nHaTXizvQu1gd3SetDKPl2d5s6SkoBBsmA02pEaStW0yGPrDxMpnJujG8ipWSYDtrIAeccOspGm2MshaQJkw/S1uBOWvmaaTUPge9AKlO0KChM2eb4qSh3m5mCtWyFLEuZTYMMV0pJJ0no6O4f5pK/N/4YxrdifvLeM5vMePX1A/7X7QH/+17GuZU8JKDQWMxHENW8hkXPPcDRpOL53SmpDgYcjTGF86FvaiPPWOulZ+5ta3nK5X6Ht0ZTCmPpaBXUKxGUtQYnUqKJ/WstkozujNYhAds6kof7sXEOKwXGhX6ubqqYV5Z5ZVtJJQQw4VxjbR97/+MmNo6YgbELxm5ZEvreaic5LUMg9Wbfs9pNGHYS8kSRzEWQWBrbmqr46PDY9JWVJph5QOgxa0CRFKL9v5KiNWdJlGQjzwJzF3sGEyV4fHvIx66scfT0Zb6+c8yksqRKcGdUoSMo/NDWgA9fWUHJ8N7z2rWSx7J2TIqQ9XZcVFgH3USx1g/y1gbc9nLNtLTUxtHLNWu9BCnDfjbbmSWK40kVmdGzyxgpBDbOVbVzoZAnJHNTh7y+OH+FnLywj8HdMrpoyiDT1EqwNWiYOIHWin4qyZKzOZj3xh9uvCe6CRsJYOlD9eV4d8LmILh7ibqmdQdp2JXYQ0JjMlIUvPjKIbPYd9aEOzcsSlcGyeH9l/sc3x3HHik4l2iOjWXqmgW7b5FTzK1kGBkhExmb1vGQJfv6+O/Cale0zF3zbUiFYJimHJogD3z7a8OnL/TI+LO69QbENZLNVEAVnTGPjMV6H9g4KclkeOfSO+oITuvWMCXIB0fWspUoeio8zxJkgxmQZYHqds6zkmquz0q2knCpBJmpYOIsSghuTkrsm6dcqQzZRh/VDRlxdlahlMQ7j5ACmWcU1w+5+eYJp/OaW2VF7YNpSV+F7RjZUD3rqUVqU0dJquhglctg6HL/+T6bT19h96s3mFhLV0lWdWg0Lt2CF5GEG1cT5C6XFtULB9CmShjyZrodzXRao0UT4bAAwcbDdFyRphJfeKwXwV63k0J3APcq3e/LEcJRLYeHIz5/6zoPrX2VH7i8Ri8ZAuKdEM77M3dB4w1fP3gG6x0dneHw5CqhdpZca9byHhf721zuXeGkPCaRGi01T25e5s5kn6N5cG9sFmVHxSmZSrDOstVdxfvQ51aaispZimhg0rJlQgRX2Lg9wT7bUdsap5LYv5Wzka9zMD9kZuYtQGzYPQjGGyEyQFPaugUR1jsqa5ibko7OY7Za+HtcBGBTuYqtzlYAiCLymEIEoxRTx0DwqrXdD31iwcSksCEfzWHxXpMoTVeHnL3VdIVrxQm9znq7fUpYSiq01BwWhwCc757jqc0P8OrxN0hV2K4AQBWZyujoHiflETuzuxS24PbkLpN6Rkdn9JMeq9kK42pKIhPW8xUg9OelKmVm5pS2DO69+ToPDR/kUu8qO7PbHMxPWEn7DJNBiA2wZbt/MsYENCHhUsjW8ATckhQuAOVEJWQqJ5FBuprIBCtDJEIj6axcRZ7o2BMnWuCdRCb13nifDQ+mMoyPxzz7xgFfuNTjh7vnGOQ6hGr7M0+NLQCLYZ3n5cMRhXF042I6TySJFOSJYD1PWe+k0eXRoaOj4/lezmlZc1rWcboLgGFU1W0Y9Eqa4H0AW/O4RmlMkUx07VZKtvdgT5OLC6V1pDIAv0RJugPNaFa3EsWmlQEWIEOI5VYJF7pvPGFOtLLNlEutpFaOSV1TnoZYg9VeYBqbMGlVBSBaYqlseK/SNgUX0cpWyzoASQMBJGpJL9OYuJ/juSFLVFBhNeDThX0azWpSLTm/kvFR1vjazjGpkhzPDZkSqES2JiIA0zJs68G4pHZBbhk+TzGvNE55hvkiEqGRV9Y2rJ9WewmDuH+ViYYmSpEnKt7jXMugJVES27BvacyVa4BtAM4xamfpeDQgu2FLIZyDOp7vzV7YvroObTv5Eii/N/5o4z0D4prq0Nw59vfnrAxHweGQsCaSy0yclOAsSA3eU9/a40ZZBQlkvE81eWypEKzo0APW3+7z/NfuMo9V6r5STJ2jI0Uwt2iAlwvUfV+Jtn+t9qEHbuaC3XxjigFnwVszFixa+Lfynsc3u+jDGUfGUscsksCUeWTTNNr8jdu/zNgFZk1EJ8uGMQz/nlqHBVYIYCeVIJxEyEWPWDOfW++ZWke3MkHKyaI3TwFah+yVwhjSVLJVa6wPjpdz61jRirENPXmCoKc/PCpZMZ78/i3odlHf/gjUFQxX8devwfFx+NJL6GiFrsSZ3sMG0EmCVHS3CtKAJrh9TWu6mWJ7q8PaExfAOq7dnaCEYEVp8kxR1e5MP1xzPJUgsgnvZEuX8+PyXJHlijSVDMogLyhEyNoLJjiO4+MSIcMNJPQxEns4w1fpXjXp/Tc8EcjVhr3dY3598CwXe+f5tq1vDyYnbwNtZ18Jo+qYm6NdhlkfgSBVGiUU+7MjVrIul/rbXB1coaf7vDH6RutAeb57jnE15UJ/wMFsyrSuqWxwcVzLh2x119nsrJGqlMIUnFZjjosR49gnVdlFaLRrFx+yBXHNtWqcZW7mfGD9A2ihOS5PgkMlIkYJWGwEbMvXt/WBUVKEAtS0npHphK7u0NV5GyMwqwvuTPYobcm5zja5zuknfaRQTOSEqZi3gM5HuWeQOqaLhQILQNPV3Si7nCOFZLOzHtx2kx7jesowHXB3ukthSpQMRiIhv01xdXARgEdXH8Z4y5X+FVbTtTNmNf2kT6I0uUvp6BwlFZWtWckGuBgLsDvbJWToKZRUrGQrDJIB57vn2ci2cDjeGl9HS8VqvkJHd6hckEXWMaJBS932qTVZgA3UbqrYzfmBwMJ1dZepmbCareBwTKs503rO3JRM6zkdnQV2duk8hcq5XgD6e+N9M5rrxtSGu3dH/PKL+zy82uOpSystCxecKj3CN69ZjKJ23B6VrHWDlU4D4Ga1Yz1P2erkrPdTlAyh17PSBElhR1Max0qWMKsN8zr0uFnv6WnNSpYwyDSpltEt0TGuak6runW4lHH7FvxcI4dcYqYjuNgYpEgRgEwRowqa3iwZF1laSaiJ/bOheN2YzwW558KgJJUKQQj2PpiV1Na3sso8UYFVKi3L4dbGWbwCWdkoHxQtcBQifH4nVUGqGhnJYTfk23VTRWkcvUxzMC3RNnwPi8guZonk/mHIOXpkbYD3nnMrOVkizxQJO2nYNueX5I3Wkydhpeic52gSSA4hAkPYzzW9TJNpSWVdG/ithGCQa/IkuH5WxrV9ilrItvXHRd1q4+Dp4xa1RUEpWiCmpCBLFOs+Yxr7ICvngnlMbdvnNcZLSorW5OTe+KON9wSIa0ZThTmqDbfvTLhvdYRe7SESeTZywJgYOaDAGHafvxNcApWgimCo6SHTIvR6bQ5S3LxuXSt7KkgGBkqhhQjGFXEy6EYXwkyIKF8UZAKKCLkksmXlnPdRtndWorAsk3Q+hEpPpjVbg4zD4+kSC9QsTkD4QME1/Vxneu3i51QuhEs3vXHO+XZWntjwBewrRVeGydg72i+d8wvXy9I59mtDN7pSaiFCf190ZlJa4OdQlJZMSirnsF4wjE3NF9ME40OfYSIFWabIMkV58xBX7tBJEhiP4f77YT7HT2eYecVkZhhHAJsQLf6tbXv4JLS9g10pWdGKbhKA1dpqxuDCEJlr9r5yg52qphOfI5WgnLu3RQvQmtb4hmldOp7LgC6QFaFS1++nbFahejWxAi1c6JtzntN5zUqsZokoWQkicnVPSvk+H0IIinnJy7d2+I3BF7jcu8z57qVgUIFowdzyssR7xxujN1jN+4HBMoEhGlUTEpXQTzpsdNZZzzaY2xnOB9fJze4qAsHVwSVSmTDMTjktxjgCgNvIV+inPVKV0tUdOioES2cqpasnnJbj4AhnDUotjAjaqne8iVbW4L1namZM6wmbnU1258Es7+29fiHHzMXFlzujFLAuSMVndUESwUmmkxBMLQS1rdmdHmKdY7u7ST/po2QMBY5MU+P8aL1lXAWHxX7ai71jMva6hh6yVKUUNvSfZTHw20rXygYv9s5TuzoygoFt6yd9rHc8u/8i53ub7M+Co+R+scdGtonxhsIWTIsZtQ0gq7Als3oe2caaVAU5qZaajs7pJV0GyYBBOmA922CYriKEZHd2m2uj63STAFhDZEPZ9sE14C2RYX/a4Pc4h7SgLh4bJXTLvvX1gHPdbaSQdPWMQXQIHVezcL7ftihaBsD3xvtsNJJ/JamKile+ccjPrXQ4P8jZHmZnXBYXr2nmKdgbF5zrp0FmaF0splg2ugn9RNNNA1PT9EvNjWUlDWqbtV6CFHBS1kyjbLufaIZpCJxOVABEeaJIlA39/kIwMyZEBLjg9p3G3jjVsjsL6R7QgsBuphnNw+e0Chpif58Pc5pa2l+BCL2lEayVdiF1zLXE1UEmbhwczSu896x0E7rRJMT78D61dcxM6NerncMZj5/TAkIpRcsO6migUhnHtLTkiWwdLTtp6P3a6mctQ6qkIFWCrJcyKy3P7p2wmiXsTkv+dG+boras99JgpGdce44SFWSiRe2w3iyKdBG4pToAyl4WQFqWKOrIYlbGcTSt6OjwexmlmgBaSOoo3W4Ytib4vDnmplFXxYtKicVaqJMoNgcpp7OaRAm6RjGpDUU0vQnKjrDWUkqi5Lvnatwbf/DxngJxEOak0juOpjUbOyNWV7rIdKmK2EgqvQtsXFFwclLRU5KpdbGXybdOhF0pWNGKNFHcunFK7WO1SCkKF5ibTIQm24Gird40/wItuyOFIJPB2kT6xnCkYcV8Wx1alt812+GBm9OSpy4PuThNuVFWLEM948ONW7Bg41o2b+n/xnt0o8+miTaIz/MhSLzyFqM8uZRoARkSSejda0COJwAo71wrL+3IRQXXu6AOXM7bm0UDlCRKJ7pSRNYu6u6loD6ckD+4DUpR7Z6QnpvDZMLo2Rv8xisHEfzG47m0f23/mQiPJyL0xXVShdYiOmEmyE7K7PVdvn7zBA+sKIXWEmsclXdtn0lz7loppQDhF72LrfunX2TDeQ9laUl0mJgVAiUWbGHhPSfG0rM6TFzN+zv/DqfUe+N9NOICQQhBbSzHRyO+cPMmj218hR+8sk5XB2Oed4J4j/E1p+UpG/kaUzOjINjBKyHJVBoYtc4mqUrZmd2lshWVNWx21pjUwf5+o7NOplO2umukMiHXObnKQrXaBzt+JTWpTBgkvbY4kaiEwpSBicOjXHBFbFi45jtgvcU4yxunb/CRzae5f3Afr9nXlxZKIbg3LJKiEYfUUVoTXqukxDjDPIK4XhLy4BrDjzoyeYfFCXNTcqG3zTAdMkgGaLGQFBa2oraBqZrHvLpcZwgv0CI4Zrq4yAg5c8F4RRBAkorxAw1wS6Qm1zkd3SHXHS52LzJdnTAzc3ZnR9yY3GRu5lzuX+J3dr7aZuNpqZBIHCG3rZlXqhhx0E+7DNI+w3RIV3cZJEO6uhdNVyY8d/Ac1jn6SQ8tFLUzVLZuZapNz6GWGokIJinCtbI04yyO4CTq8SSxf29mQvSDisdCS003VuHnMbOvo5NFdVtEQPgHMN+5N/5kjmZussZyejTh2dcP+MLVPj+Qn2PYSc7GCTSqgSi5q53joZV+m/1WO8cgCcYagyRhpRsA2cmsjjbzkKdBptf0UykpWHUJWskA3pYs9ysTpIiJlnT8gu1OpIsRAEEymUVZZWMgUlpHpnRrjHE6qzm/krHWSziaVNgl8UNjMNIMJQRO+BjW7UhiobqIMUFZXHk0LpoQ1ElHRUVhHOu9lEGu6eUarQTzKgRWN/l0wnuqKJcMuXCiBYeesyYyZR2z9ozDK4GOvgJah+95nqpWnnl5o8O0NBwUJfvTmv1R2fYWvnU0bT9TS9FKGl1cNzYgLon91v18AcBVXJc2APBoUmG8o5Mmbe9dCFanff8GwDbHqYlx8H4xn9hIYjT77GMhvAF+DSsnhKAughPmrF6mN6AyiyiUe+OPNt4zIC5wUIsvY+kcxycl3f0ReWcjMHFNTtxSGCFSkmWSchKkjo3tvyT0NHWlJJeS+dxwZxKMTwrn2UwEp8ZioQ2RTqQgE5IkVjTckiuRJ0hdtAAfGa7IMS8ZBizLOOOmsgj1LpxjPK7YXs+5s1O1r1nsf1MtXWKMONs355YeC0Yojcxy8fvKeUYxljiPiwIJeCHQBFcqIjCraQCiR3nRBjEKSfulNZG9VLHi1XxOfJuAYYynrizeeerXdhg4T/bD3wcra7B+B/HlN6h9sOrXYmH3D7SMZmAgw3tnUjLo6lANUoJORyFSTXnnmK+9dsyxsaxrzTBRJImgLN0ZM5IGYKkFQfKO0exDYB4lvZ5mOjVUtcXEylRUEoQ+RBkklca49lpQSsTZ9B6Ie9+OWCF2zkURQARyt1/i/sFVPrT+YbRMz7wkFGQEUijWslWuja5zXIyYVLMYyK3oJR1W8xXWsjVmZsqNyU1ylTGtZ9w/vMJhcYgUkn7SJ5Upnci4KanRQsUqcmM9b1FSkxG+y3VqMM5ipUOJYELiIuiDus1+cvE9jDNMzYxxPWI1W2vZIetdywq9HQh4fCuZtK4JBrbUzrSmJxDAViI11gUp4mk5xuOoXc16vkau8zj3O0QdJTzWhTw2EwpEtTT0014rLXTenfEFDiyWxDpDEk1jVOwBc97hvMM4Q+2C1Kif9Pjzj/0EPd1HCslJeUxtDaNySqbSABZFAHB1+5m27Q9MZcJ6tk6qUjqqQ6YypFBUtuCFo+fYnR2wlgeQmqmMyoXcu4ZpbMxtWgOZyBi4KGcKBgM+Pi9INlOZMa5HVLaisEUrl/Pe00069JIOpa1Y73SQcpG7FHojzy6e7o33yRDBvKa5Dqy1HB3N+M3XT3h8bchj59USoBdnWA8tBReHHUZzwyyaVJhofpapEP6cJ4raBgMNCOBqMwn5aokSrbwvSAIVSQQqJqIMG5VCiRL4yG5Z55nUPoIFgYzfKSUE3jk6WrbgrbaeRAbr+9I4+rnmeFqjRFiXAK0rZFMAAVqAkSkZf46GG87jl6JcEykx3qEIa7FpbXCTYHTWz4Mc1PuwDojmj22PX5gXZQtWahuaU3xzrJdAphBB9iijprVhy5ttV1JgTZAXrqQpP/WBC/RzHfrulqIKglOnQMlg2h7uAc28HAmM2NuXLEk+XWS/jsYVp2XNME1aAG6b47JUtNNyocpquJPl0RS/m4B0JUPYuIkh7M1neh/cNHOtqJ2jm8j4fs37L553D8j90cZ7BsQtj+ZcFoXlZHfCep6QXV4PD1obQJy1AWns7nLjpGBkXdurBkHm14mySAkcz2smztKVMoIg0TJTOkp6ms4LTwCRDtqKQwBB4XU6/uzhjHyvGVqIFkzpBpiKQD9vbnQY3L9Bb29KhFOtrevykPGzGmYPGiOOGIb9Lj3qjSGKFOE5ExxOisjIibZp1XtPAzman62HOY7KhxuCs4v9apyJdGQnG4t9KQVpIul0NEkq2dubMRikWOOZfP0W591vkHz7R+D4mO4DW3x6bnjmxilja1uTBuvDMWpOelsNEqE3z3taqeZ8VHDt5oS9uiYVgr6SZKnC2eD4VDcAPoLW5UMaZEzvPFfNc1Wc8JJUUlb2zHvhgwOW8rRMYrp8wpzHG3NPFvA+H8sBynVl+MbREb91+3cYpAMeHD6KQrXgrRlzM+XW9Db7syNOyjGVDYuhNO3SS7psd0J4+N3pXUpbksiEyprowliTqwwXgVRjBgJQuSD/MRFY6Gg932SNdXWHOgmMVuU8wodSlI4SxtrWFHZhTCKQKKHoJX3W043YsxZ64owLksxmvxqmq7Rn3e8CIAy5brlNWyAR5pzFHNtNcmZ1wa4/wHnHWrZKrvL2mNkIukIvn2NmiuB4aRPSCJaD6KoBjia6TiYkKiVXHaw30bCkQ65yBILd2Q5TM+W4PAmv956rg6ttPt12b/0MQ+aJ/SExE8/GubGJRkhVSq5yUpXF81Zwc3qD66ObLfjOdU4ds94qVwXQiyR9Ww9tI50U8ZgvX0eCEEHQyCnn0UjFeUciE0pbooWin3SZ1wWbnT5aq7YgZ73FeHNvofR+HPGW5r1vTcSsddw+mPJL39inlyqubHSjkc4iPw0RnjcpQi5ak+nlPORK0E0Ug06CEDCaGyrj0Cr0hi0bUSzLApuHa+MiSx8+r3EtTLUMjpdW0kOHrDECgDIRFCRSBpml8ygRGSYCOBMses2A9jOypAGHLrLaEiXCvrRFZ++pXJBDpl62vadChDaWACY8Ha0orOVgVmKdZ9DRbV9a89dZDzLsW2kdKjJx1snF8V1S+jT5cQ3YBcia3rz4//1xyaQwHBUVWga2TEnBUVW1zNZKlqCFbMVoRjisAyGbntogQZUitIU0MRMiXh9FZTmeVmgRpJZNGHhRB5DYqMka9VIDNEMRPK4bl4Beo15qgF6iBMYG907naV0pMy3pas1JWXFpmJLnGmMCq1vZpmB1b176o473DIhrTqIlyN60EFjrOTgocO6I86s9dNRikwfnSsqCydfe5MgYimhM0vRB5TL0wnWkpPaeg9qEi9wHsxMpzgKwRIjYoB+e01Sdl7DMgl4WAQDKyLhVbT/M4rnLwGwBLASD+9ZJH7+f/mevRYC2MDeB5mbOme7jxpzTRUqpYeNY+hcW0spGelm4hXQxl5I0gibXHG9/trZufJBM1lVwoVIqsE3NsdEy/Ov8oocszRRlZblzFBz07v/wBQ7fPCRLFXsv3OWcEKiVDvriJueunOP7bu3x1u9c56XDSZhk47FveuEqGgfQcEiTaLIyGtUcHM65W1d4Qi/jSqpDL1wZpJQW3wZ7L08JUgTd9nJExNsZTiUFMmYQ6Oj4ZAuP8YJahElSCRHAfazwmSgxcGUN5Yy3j3uLpvffCIBFIJVkPiv5/K23yNRnWX9kg41sKzypKUjguTW9wc70gONixMwEBiyVio7O2Oqu00t6TOoxO7MdBCL0eOkEgaS2hlxlGG+Ctb/UrZTQxZ60xh1s4dQmyVWG9ZZeEkDauJpSAt41faASLzXK2QhMg7+hlpqe7pGojFSl1M6Sva1I1UQNNBlxDcMjhCCJzFdtTWDRXAgLb1i8YNyx+NZN6znG7WO8YT1bj3LExe9ndUFlY5ackMxNgZaauSlC3IBMA8PnNQk62O/HCAQhwu87qsPUTLk7DQDu4ZWHeP7gVYZpn9+6+TyPb1wm0wmDtEemMi71z1FHVtK44PCptCKRCusdk3pGYaoWWCuhkUJS2ILj8ogb45vMTclaPqSnuyRSU5iwH00/YZMFt3zelq+vpn+xmZ3VEqsmkRFgNzl2JcYrhJB0dADCm91V0iyhiJE7xlmqyEDeG+/DES8h7z3OOJSSTKcVX3rjEK0Ef/npy6x0E6yL4dSA8J5paRhVNZM65LwJQsZYqiSDLLQyuChl9EQ7/SiTC71Ngjr2mUF472VZY6OAESKCLyXbfi3rPL1EM60NXgQA2gyztGshdsOfYa6kFG3YtG8e+13us8aF3Lnm96Evzi6ZBi1/z6IiSQRW6WBW4rxn2ElaxlEQVFVNf5wQ4JzA2NAHVxoXHBqVRIgYs6AbGeXCBEUI0bpHHk4qipgtd2s8Zy1P+BevHvCBcx0yLRkkmkwpBqlupY4WH2Si+PY9Z3UwEWnCvbVeAN95bTmehliFXqroZqqNLWgcPwMAFkvgLbxPc4l5Fr2IXjTsZ3NPjMYnWtKNbKuTAuPCtZKocM4eWOmzudph93CKc57ZUmTCvfFHG+8Zz+GwmAg/q8hCee85rgz7+3Oq28dQ14tZoa7h+JhXXzsOZiXxYmv6xBIRGCiAmXMUztGRksp5sqhdNj5Y/6ciGpjIRSCu8Q2YC1/sJkS62b5EhP64NPadNeMMk7TELrkoR0QIGA7JlXzHxNNI95r9aPdHnAVrsIgcCEHm4szzF58fPnsUs+CCJDJstxZNE/ECezqCRf+8MK2OPc8UqZBtzlTr4EmY1PdPCnZHJXPr0Aiyx+9j/coqvQtD8kwxf2sfsboKZYkfjVD9jPu//SoX07SdGJrP9kv7UscJRCcxNHRas1cHsB4cRwM7533Qc1dLkowgh10cq7DYDJNv83BjLNPm03ioSotznjQN7GJHK3IZYgSWMfrcefJcRcMUj68MFLOzYnjuGQm8n8byuZRSopTEGMPO3jGfu/UGzx4+GxbKDbMC1K7izdE15nXBtA5ukWGhlNBPewyTkIU5riaclhP6SZ+ZmTNIezhvW3apqzt0kx5d3SGVKc47amdaIGFc3facNdb8Hd2hn/QZpD16SZdU6thP5qPLmKab5JENbxzJFIH3kbGfTJ2R5S07KMq4MFJStv1yTTAuBABmnHmHU2Iw80joJjkdHcDm3vSIw+KQwgaTkvVsjbVshX7SIVUJSQSvpa2obMXMTGOfWMg/y1QWjgs+NPkTeshqV3NjcoO3Rtc5KU+prWG7c47vuvAx7hteopeG4PTNzjqn5YSd6T63JjsArGUhuqFhIpssu47OCG51oQ9PyTAHTesJd6Z3OJgfo6VmkA7o6E4M6w69aoLQ35co3QJhGQ1bmnMQjquKRi+LWV8g2qDzVGYM0xVW0pVwriPTqOL56qddLqwMW5ldiJy4B+LetyNSRC4WHJp4oJs3T/ntV/Z5aXcUwNtC8IL1MCmCe+C0NhHsNJmTgakRwLwOzoKZltQ2AC8XQYxeMtDoZjqyP1HdsyR1bH52LrAynVQFx8Q0mJbJpWKGQIT7buyRa6SCzXYLYri2lGckfq1hhlgUz5vAahNdM5v5qY6Zdd43Bd8F4yQJDowN6DiYVRxNqjajbtDRAeDqs9td2mC+MitNWEPE/UyiwYtb2o8GPO2PSnZPyzYGoJtpvv3iOleHPYZ5MEHZzDPGtWF3VnBtFPri+nngXuqlXl1JMDRRQiyFkC+A6sm05mReIwTR7CQA9HllMa1ZimhDu9vjHRVny8Yt4XjDO0tQYd+6aZDiZknokWzYWCUEg0zz4x/eboPoK+OozT2p97/NeE8xcWEuCpVuLWiB08w5Tg6mJIcTkstbwQnQe+xbt7hT1VESGSsBIkgpcynJpKD2IRKgdJ40EZzY4Fp5pmJEjBDwnnrpF7Erqp04nCdY93txhj1yQuAaZi9e1QFcscS0RZ12WUOaovUCP/vl2TUOKYJW3EFrk7vINlsAKZYBXHyPM7EEzaLKBufGgVJkQpALSYWn9E3PH+1CbOYcvdLS6yWU1WKiaM6PdWCXYGVz/Fb6CeLqfchv3MKO53TWOhzeHtM/OkYM+og0hbpGK8njD6/iXj/mblW3kQ/NvjbvKQSkSQgfH83rVobZV5JhdFWazxfB3KmQqFhJM6HcGN/3nW39y32FUgiqMtp4p5I0kUgpyCpLZSXzKFFo3qX2jpVhhjEFzsUqYn1vkfR+H23PgAggxjlPWVbc2T/mS3ef5Wr/SpBVRrv60/KIm6O7zKPVfaoU3SRnmPUYpF06usO0nnJanTKtZ2ipOJqfcqG/hYlmI5WryFyGFI65M1S2wvhFrbqRHeY6ONFpoUBApjKUkNH8w57JdAuSPYsSHh171UzsZasjEE2kRkRWrOlXC6DGUjsbDU5U29/X5smJIAcMmWgV2us2yBuI2yQQUR4Y9sGzOzsMrpydDYbpkNVsJQSiz4+Y1HOsDw62hSmZqTmjasR6ts7czNrsNesMjVOoEILa1VhnKWxwb7zcP88gGUZnyS4/cN93sTvbwzhDNwkslonPv9A7TyoT7k53GVczhBDMnQ3xEFK214IWAWCeViMO5kd4HCvZgJ7uoqVmXI0xEZBrqUniDcJ6C4L2uAaA1vTw2fa4Ns6cta8pbYEWCakKQL4B66UtkUIivWj7AT+0fYm7pyNME1rs7TukvvfG+2SI0Ker47mXUmCMo5hX3L075le+ccTVlW4IAQ9Pp6wtp2UdjDqEoBPz33qJpp8sogFmpaG0FkgYVTWb3eCsaHxgUFJNNMYw1Na3xfhmPdGoaawL7owe0UoJfWRsfFTdmKWihY6V6zpKIK0LbS1KBFarkQ8GFi68xsX1W+Poar0jlaG/rnG6bIBcaXzbz+Wcb01JhAgOjUIKmnaXk3icNvspnTTITLWS2JmnMDYAaGHRVgQgV1n6ucbakCFnXdPft5AlBsOXwGTOasswD66YYyVwXvBjj2xzOA8GJF2tWgOR06ri8lqHRAmOpzVzazA4ahfAdy3OhnU7H4DaqAFwqSaPrOKkWLTzBHC2cNpsz6OnzbxTcqEQaI5V4+tQW99m2nlB62ha1JGpdUFuWRnHp+/b4reunPLarZPoqXDP3OTfZrxnQBxEB0FEm1tm4+LcAKcnJf0bh+j1XmB26prZN3ZR0IKyVAYQl8oQD6BFAHG1X8gKjfd0pQrMlAsATwrXslbNdjRyyGWAlEZJXiYlKQ1zFIxOACq/yI6D8NoiAiPng1FKuT+mIyVJk+sR5VkCgXkb2Fjui2verxmNo6Mk9PS9m5ygYelaBs15nA/h2I3UFAJT2Ug1DSEMfDqtSRNJ6RwnUWoRZImLSkwjzWzGxUt92L6AXung5hVuVpHniunLd+h/7OEQDWEMrjL0nrrCQ6Vlcu2kdf9s+s0cgSFNdGDETk5LDk3ItOtLyZrW5LnCWh9NRsLzHQu2bMG4LUDh2+s9jvAFUECShhtLVblFr1+uKQob3Uqhjien9p5eT5MkXY5PSlQnhZV1lsO+lxf898b7YzRFhqaKWNcGU1vm85Ln9na5NPgSm/kWa9km3jt25ztYb5mbmtpaOllON8lZSfv0k34rDSxtybiatYYgg2TASXnCrC4YlbdagNbc6MKi37W9cFpqMlNS6JIqqeglXXLVQUaJXSO9BM64L2qpsHU0/LDBcGNmZmwQMsmss7i4+BEIah86+z2LooYUC1OTxkTDCY+WbklWoCPjFwTP1lsUAcD1kg7GWcbVlIP5CdY7jDesZauspCt4HwxOQlhwADdzUzCqxvSTPrUzTOppKzNtgGHTWzY3BXNTUpqKK4MrZCr0yDXRB92kw97skLV8SGlDz9rMBbnmhd4FJvWUwlakKonmKGHhk6m0ZQDH9Zi7sxAOPkh7rEaGrIgMnIt5em5pkSrjcQjHM0habeu6qQDbLjiDg2Vg6EKPtkULTaoylJm1/SkhAiIA7Q9tPsbO5JgXdvfopSkd3b0H4N7HQ0oZDbqCkUldW5x1lKXh9bsjfvP6AT/6+AU6sb+rqIM5x7iqqZ0nSTWJlAySJEYChHaBJhR63YZSaBZDnwvjGFUzOjPV9pMFtnihiGnWJLmVdLQKeWkxrwyIoI62lwsno0Q5ALDahYDwhs1zzi/d3xv5eMhnW2ZzAnsU1xSu+U41Ukhau/zwR9K4VTfbHzUHdHXo25taw6SuYQLDXLPSTRh2gmP64TQARB/ft6wt48KQasm8dkwLc3a74pzYuEWW1mJ8kFImauHsCCFP9+akpJ/oNih9XAWwvDnIKGqHKR1aSEq3sPBvnCE9QeJ6PK2YGxsjBRSpEhR1YP8alszHtbZbNjgRTd9hs820iqzlz2nYTxMBtZKR0WPx3u15tsF45f/wnffx//4tRyeJrO+9ddIfebxnQFwwohAtWICFq6MSUFYhaDnbOSXb3AQpUXnKdz91ntPjOVVpOT4puR1DojMZmldL51qmp7GKz4TkwFYtQ2acpzH8b+WLS4CuZdUEGBFYKBedLFXUEQvpwTkki4gB4utMZOOMh6pyEG3xGyZIvcsF7PxZffkZW3xoF0iLvDnOALlmXxo2sOkBLNwigqAvJSrKPg2NUUvopRtZhxrX5EqCCWxX0w/XgO3W3RFY1YreExdhPkP2uyBH4DydfsrktCR58y4IQXbfNvLBBxHnL7GxscG5v/tbTCdhkVn5IIvVIpiWdLsakWp2909aV8uBUvSinMDGapbwPm5T2JrlXkfPMqDjHcuYtrfQeSoXcpqKItqAJ0E2p+og/FzukxRC0N3uY4wjPb+CWL9whk1ddo67N0G9P4aK0sBGIuici30DjqPRhK/vvMkDwxf4xLnvQglNYQue3v4gm53bpCphbgp2p0etTb2WmjKyRKWtWgv9js65ProVK8uWqpxGyeICqNjoxpjKYAdeqorSVsxNSWELVtIVBumARCbhuxrZIFEHFq7pVUukwrggQQwW+GH+1DEeIMj7JI3DY8OIVbYOkj8hcZHxbm7+jQyxGW3PxJIbk/W2zUrTUjFIe8xNyaSeUdqKUTVmu7NJN+mxkhUtOKldTWklMzNjd7ZHR+dYbylt1couIXz/Slu1oHWru86V3n0ooch1h935HkfFEavZCrftLm+d3sE4w/neJg+u3MdmvoXzISJgboITZBHBoPeeYTokUzlSKPaLPQ7nx0gh6OicTGUA7bFclorBwi3z7UMIGcFaU3haMGdBAWHQMsE6i1aaRCbxPKUhZkKo9rUb+QZPn3+EvemUjXyFQTL8t7v474337BBCROYIlFrY+Ftr0U5zfFLw5Rsjntwa8IELK+A943lNGrN3z3dzEimZGkPpLOs6RUpBWRqmlaWMua5SCLJEcjSraGztx3W4xp33be9Zsx5JpIhzT5Bfpiawe4NOQi9TrfGGi+BjFllj54NcMpUhQ7ZxlWwYJi2D5LGZjxuQ0Mg2axvVOG37SwBn1vto8NawcsF4Qwgf32tRNG/AVCJhmCYUNhyHw5mjrB0r3dAnNzCacWlahqq2vg1ET5SMQKqJDlmcrwaYWu9ZzVLWeynOQ5YoRvNgcLLRyRDAnUlBZTxXV3KuDnv0swCIMy0p63DMSxcknQD9XLcM4+m8ZlwYtJBtkDlCtOyaZ5GzJ1jqefOcCeFutr+x/2uY0OZ8Wddo6ESUtQaAlyhBbUEuMYRCCKalZdBJuLQS2M23j3vrpj/4eM+AuABMIqsUb11nwmS9pzaOem9EdnQEgwHTkzllFRbelz5yiftWuzz47A129+bcGRVIEVwmiwgMBKJ1jpxYf+b9335Lba7fBmgFhiiwac2TvXARLAYmSMjAXFmCjDF2k7Ryz0QIRuOKLWPIc3XW+GRJsvh2RnCxTW+XXJ7d9mUZZfN7ufQ8EG3vWLHEyiVNdZ+FW+XcOZI6/D6XksraM1l2Kp4fIQJgfujKAITAv/4KbjpH9XO8dfjKIkTJziv7fH1nxLn0Op/46RLx9HcgLt3Hk3XN7O98jkNjWtliLoMTU7ebcLw/5XYVbcGlZDXT6NaNKlwXIaIgNPs6v6jCqSUWrvl3GTA3x0ssTa7Nz9Z5OrkizxVZZZgtVaOs95yOKuqDOUpJxOYGYrh+ZtLxjRbh3kT0vhiNM5dkAUbCNehIPDjruD0e89zBy9w3uMq5zkVeOHyZ0gSG6wevfi/dpMfzh89T2pLb0x0G6YDj8pjb473YHxZkkbWrIzNXt1K75e0QUpBGcNZIqKxzTN08Ohu6ttI8SAaRceqFsGwkMzPHOBErz47KmthTEYAn3rdyzOYzEc0NelGphabXV7YyTVgUnFQ0AzHOkKgEESu4rbRSKZxzSClJlA5MpA2yzmk1Z8ftsd3dop/0KW3FpArmQcYZClO2oKWru63UU0XQ6b2PeXOWTKV8YP1xEplinQkGKEKFEG4k3STnMzde4XNffonz2+v8tU9/L0+sfQAtEu4f3o/xlsIUjJiEbRUJG/kGuco5ro64NnqLytas5gP6SY9EJhHwuiCL9Sb2B8rW5AUah7cmp8oh8G3eXnu+I9sZFsMO5y06vn8mM7q6S2XrILN1JobJK8b1mN+8/gIzY9jubZCq/N6i6P04mjWAXXz/hIhRQfFraq3jcFTyxVunXBx26Gaaz9w4ZFoFY44PPbpKL9e8cTihso79cUmeBMZtf16QyKBSyZXC2ADcKruIwmg+M8wFogVvyxlsDWjQQjItglNqL9OhPSJfOLXOjEFEVixTKrhWRtneGbdLgvqqMZryUcUTvi8BoGkpkH5hTqfadY5oFUq1c+RKYQmf0+TPSd+wc9HQzQVnThuBazVxbPQCAKmtZ1IHRlNEOeK8spAGCaF14kzLjHMB7Bnv6CjFxfVOm9eW6mCAMkhCbmZHK3711SM+88XrbG0P+I//zMNcXj+HkoJhN7iHzisLJhizJELSy4PyoagtB+PAwq1kCd1Mt2shIWjZzTM5giwZ0rTPXTgQt/xlw14usX7N85ufs0RSGUkVg+CNC8d7Vhr+9ldvsj8q+NQDw3cFcWE77gG5P8h4T4C45dPUaG0XZv8xR4Jw8ReFId05wd85Zm9/TppKqsrhX7xLloYm84sXehxPKrqZQtQ1XSXpRm10cKt0Z0Db290g5ZnfLRYmrcU/HmM9Jl68mRQxN0xg4wWvI33v8HSl4NFOTqokRWFhPg+U89su0GYiahjCIJfkDBD43ZxoWqMOFsDTLX+z4uOpXGS0FS7kluRy4TwkImAV3jGLOSS5FMxdYDW9AO1DD2BzbDazhP75IfXxFHHyFtXeiOzCKjJLcM7TG6QoVWO95zMnU27/w6/wZ1/dofvUfXDuHE991xWe/8JNKu+QzjNUitXVlKqyvL4zoXThvK0nmm5XB+lCHfTmlfetm2jlFnLUhtF1nqiTD4+JpWPYxgtELTgEaUajCddakueKZBzOZTCTCRPYdFpT147trQ7i/HlI8zNyt6Cb8NEBVP6BJqN2cfwu4O/eZPa/3RAsbmTLQB/CqXLOYa2jNIabowNePHqJ29ltXti/zlZ3wCDtcmd2FyUkq9lq7Be7TmUrjopTvPec7wfmZ7OzRmEKXARuDo8QEhdZ4sU2RSOLWI0Ojozh99NqTmlqSlvhO55e0kULRVd3AnOIiz1xsgUUH9l+MvZXhSq7Fkns+wtgJIFW4tQYnDRgo/n/26/RhgEUEbw0cQhGiDOyx5SEJkhciSDzTFXCpJ6TlCespENkLO0FIxcLVO17dHSHVKV4yvazG7bROseVwRbr+QaFnVG5kv35HolMWEkTalez3d3k0iAwVa98/Q3+87sHvPL9t/jk5Sd5bPVRNvJ1RtWIwpaclmO2uxusZ2tUtuK1k9c4LkZ0dU4/6dPTvcgClrG3rW7NUZr9XT5WDSsnRYgRkELGXsQFcJext/FMHEHMmctVh1wXqFpjvaVyhj6S/fk+N05O2e732O5stdEMi+vWv2Nb/qDjzDzHvbnpf+uxXFRBLLkKCjC1CW0HznH9uODl/RHDNOH522PW+xnnByn7s5LjomKQBhfEo6LkeKq5MZphvWc9T3He00t1K8FrHFR1jARoiqOh5WLRSxvA2GLVMq5r5lZQWY3z0E2D/DOPC3lBYJS0FMyNpasV960F9qk0bqkXKzpLNrdaovSvYYa8byWONoJLWAIkS9trfTOfiVYG6uWiz4wIJJUIDKAWkrk1TArTAtFmhAy5+J2qbAvylo1lGgbOes96P2XYgFglmMVogcYZdCPPuLLeQQjBS199nf/05iE/+yNP8r0PrPHwRj+CPtECydU8pZ+FzLrd04JxVZOrYDKSx+L3vLJnXCm9XzByDTCWjbRUgHW2jUho8vuacPbGDCccS9Geh8blMtFByTSvLJV1dLVmb1xyfX8Srr9u50xkxduv5z/s/LQ8J/27Mj+9J0AcLBbWDSYXEVg1roXtF814qr0Re7szqsrifWg8nZSGTEquXunz4uvHXCtKerXhWlHTlYKVTHFoDKtacdTQ9ryd6XrndjXa32WZpYvbFRyHHA5JHr/kmZQIHzLLPLTSwA88ucW114/Cm0YmLhWhj67Zd7/0mb/XMVre1mWr/DM/e7/0pVq8RrOolEshqFxwexQsJmbi4wIfm4NFdPQMVLlekgZoIbhwvgtAvT8G57l9c8RlIdCbffzEIRPNzu6INa05qEtOTMn1z7/Fyu/c4IfuW+fKn3mKDzmP++JNxtZxeZjR6yW89OYJ+7VBAluJZqWftPp3Yz3WusjEBRD3jmB0v5BSLI6BaI9le25FyKKbzw21D65bWklktAqWcuG61YzmRtIdZHDuEqhk8cHeg3eLu0sE+2d+v/hP8440oO/M71vWJ2gR3u8T0ntxLKqXZ4990y/WSCoBToqClw/fYFzNmFYV6x3HqJzy+vGb3De8zKX+Oq+ffIO96SFH81N+/fornOv1eHD1MnemOzwwvI+bk9utW2F4fxeBmkJI0S6SjDN4IUnitbfcZ2WcYVYXHIojPL5liHpJ+K6WtmzB13q+wgfXn+L6+FrbnxUs/BMMtu1/CyxSMFKpXQBnRHllM5Yd21p3SpYlTDGrUkQg4BpQRgRvwfCk6WWd1jN6SZckGoo0zw2mL3XrR77MakGYlZVQ9FLNlf5lBIJRdYrxhi/ufJXVbMDl/kUm9RQlFK8dHrI27HPyyh7j2SH/33/8K/zd/mf5D378T/Ozj/0I57rn2l7CB4cPkKiUv/XC3+OtkxMeXF3jic0H6ek4D7o6/jUtgDPO4nCt8Qh+4fjZHC/rbCtXevuQIjJ0kjaXTkVzmOZ4ldGBMlWaTGVordjodjnX3UaJd97qW0mn5wxAbK51/y73oQb0t8/j353F0ntyLJ07KWXbG+ecx1mHUoq6ttgo83tmZ8Kdk5KydlEi7HjzdMp9wy6recrutOCgKDksKv7Nq0c8st3j4xdTDmcVF4Y5x9O6dXps1hGpCpqXBiiFQktYyGtJa0hioiSysg7vF7mq3TSEhIs09NeJ6BHW0YqB1Kz1EirjSKJNfyNpl2LRtwXhWrSx6OTbP2cOVVsUb/LUwvqg6ftdXjeddcdsAq1hYSo3qy15ouL6QLSSwto7CmPb3LhmbdXU1IUI4DAXks1BtlACAa/vT6ic5VK/y2lZo6Xg9d0Ja+td9l485HQ24m/9/RH/06DLf/IXP8bPPHkxAsVgILI9zLDO8z9+6Tp7k5oPnu/y5MYKSSxO29jn2Mo5XVgbCQjZx35xTBv3cr+0dmqOde0WWYBCLJRQzVrZNwechqVd7HcTCD/spqx1U5rs4t9tzmnP39sKT7/fc9/+uvfreM+AuNZ5kcWXqbnoQzN3WBc77xmdlhyehEXIvDSBifHQTQQnpxU3yirIBbFIYOaCWceJsWwlmhMTFibtN2xpvB0QLQM4eCfQm9kA5KSU5CKwXAIJ0rURAD2lUMOcaWlIpYSyRGcJSgjyyBA11RDj3yntXN6ud9uGM2Hgb9+PJQDXygeJjcfxQq+8b6MZ2goxQYrqpUD7IP1MhcQ3+nHC5LyZp3SGOa40zEcFSkvG05qDu2POrXRwswqZJRwXNW8WFVKEzzuoLSfG8YtvHfJXb+2TPfkAT1nHwfVjVtc77NyZ8EZRcT7RTJzj5VnBWlW3weVKNA5YtM3UWgRNewP6lVg4SgYZrUf5wEZW1p85pkII0jghp6mk10uQWYIQVZCneFoDFkXQi2e5Jj2/ApcfgBgS7F0sOzgb/oZHw1EX4iy4c3ZJuyAXj7WvYfG40hB7kO6BuW/tOKMUWLqBNDcK53wbrGyc4/b4mKOiIFMK5yx5tPLv6Jyj4ojrozuUpkJJQy9JOJjNmNQzTssJj6wqDmYnKCFJpIpgIG5HXLzYKNULobYLiaUQC5llc90fFyMaK/ue7gZGJtYbrLcILaITZMKknpDrPIKNhEynCFu3zw0GIyXGhfnTRFau2bZwrN5pstQAlWYREBYIPrpYqva4Nu+rtY5MU3Blm5uQQZmpFIGJfXmOKm6bdsHcRQnFIhg9LMIu9c7R0z1qVzO3weXyrdMdYId+2mN/dsTF/jkm4xk37uyHDS4siJp6Zvj7v/I5fuyh72FNrXGhd56LXOB89wKvnbzG//ybXyJNNF+sDcZ8nnPn1ji3tcZ2r8fF/oCVfEBX58GYRIh2f5prSItFgLrzrj0WqdKUtmqlqs1zQtxEj47uoEUS3kNqBALjQ8h648yZqYyVLGO902MtWz8DDNvcPs4udM6cMx/AvF86t4vXLsxumm9I6E0W7effG9+asVB+LIpKwRVxsYowJqhWjHXcPCrYO52TJwotQ98aBMA0rQwHRcm0siRKsNpLOZzVOO+Z1uG7eVxWMRBaRnnhWWbLRBZw2dgkXBPhM+zSdTaqTLvG62bx3qsXYANo/1/WjkTLuHYJPXNaLhwqa+uj+ZFrVVyNjFJL+Y45vAFV1vtozLGIIfJ4pG/mskbNE9hBLWS7Tw5PUdvQyyYVZWNG5ANQVfEzGrOPM+07PpiT5NHgrozGLG+NZuyNawb3JezNC851c/ZO5ty6vh/WGPMRHpjOp/x3P/8iP/74eaQUrHQT1qWgn2luHc35H//lqwgh+HkT1A9X71vjoYsrbA1SHtzI2e6m9JKw/E9kcCZdsJXEPLrQQiRY9BtmSlE7E/crhonHtXSTowe0THDzPvPaokUA4amW9POEc8OUYUe3fXK/23g3QPZ7A7h/t7pY3jMgrpkIGoOTZoEuWEwCzXp2NjNMncUTcs0k0NOBMbl5NGdqA3skgWE0EFEi9FqVbilTToiWkXl7eHYDiH6vIL0mXHtmgwW3AEScMJoIgtCHAjILKyfrPYzH7UUY+uVE+7vWvORdwFz7/2ZyEmf75M6whSwD0XdKCCGAmSYQPF2adE2zHbGKXntPQsjTa6sz8fPX1zOEkpTjgrJyJFHi+Ob+lAtPaZLtIXZccHWziz3wvD6vgyTVgROe66Vh/+UdLn7kCfJvf5ILWzcYvXw3uGMK+P6fegr52CNw7Rrzt/bZv3bM7cM5U2s5NZZ5ey4X8QQC2uw/F8+FpzGmWADWZgiCm1KiGxCn0KtdhJIoNWvPTeUXRjRaSbJMkZxfW5iaLIMza8DWEWm6+JiFusAXU/zhDtx8HeYz6PZhsAJZB5IUsg6i04fuEKETkBp0CjoJYE7pwMxBO1vdWzh980aYixop5VIzvVsAGLG0CDgtS+Z1TWEMJ2WBjOHetavZmx1QmJJMpSghuW9lBec9/aSL845pPWszxUJjvG5BWWN0IhEhfDoyYlKc7SkIAEG3IdHBIv8Q3VWBoRGajs5bMwwldFssA1og1ADVALxCTIFzgYnzLLLNvA+9XE0fXrNQS+SCnW5kn2nsk7POtV9CQcimC8+TLQuXqqQ1E8l0SqoCcJlWJuw7hjSykA0T15iwGGHJdMJ2ZytW3qsobbRMqooXbt7hxx76HpRQjKoRj108x3g049W7rwV5RGnBS06vHfLlnWf5K0/8RQ6KPdaydUbVKTuzHaSU/Ec/+EM8sf4Irxx9g+ujHZ7d3eXLr7zJbFYynRd47+l3O+RZQpan9Podut2cK8MhW90ug7RLP+3RTzpkOg2ySrm4LQe3PoUWGi0TcpUjkNEURkawGjL0ptU8mjFoOirnfL/Pxf7mu5qaNIxrANihdh6iKGpqVzGuR+zNd5mZOR2d09EdMpWjhW6D1lOVhWtHyHYbhZAtmGuuxXvjmz+kWrBwQczhkUqCAKUWBiKjWRVBj2NeOXLt6CYBkB3XwcgkUyGD7ZHNHCFgJUuYGRMcDSOYaWz8pfB4H1owGhv/xsGwdi4ChAXgb8BduCwc0zowckoG0xQVgVxjlrFQPy0CvyHc9mrrQYXnmXgtu0gBmSWXRTi7toIAXBoDtMbUA5ZMPpwnkYGxawpQy2utREoqZ1trfSUFGYq5NWeUP8Y6dIwyEI3IRobvxUo3ic9ZgNaTueG3Xz/gRx/dRgnBaVnzsYc2KEvDM3fvhjetCwAO3rjGb9884CefvEQRYw1mpeVkVqOU5Mc+/QD3r2W8fhCA+2s3j/nszoS6qqnLGqUV/WGXbjeh10tYX+kw7Cbcv9HlymrKap4wTBL6qQ55yCr0OZ5Zc4rwN0lku89t2LiKpjYmOKESz3MnVVxc73L/esYgSknfWURanOfmWqhtyJQbF4ajSUVhHN0kSEUTJVsFVaolafy5AaTqXRby75e56T0B4jzLkqXwryPQs2/H28559kdlmDS8ZxwbbGfOkRvbBkIbHxg4gIfzJPxeSkbWtu/fXCnLNHH7Oc2/vpHpicj00L4GaIFa6C8LFH0qQo9c+NbG6ADryHXQOZNl1JFBDJvh3/aZi89uJZEE0JTHXrq3gzIX30dF4CJpqkos+ux8MFB5h0EKAeg0OKRpqxcsArIl4IQgIbBgxnt6StHvJbiyZjqtKUuLSxTGeW6UNd9xOqM6mXF8XKKU5HwvQx5PYWmbpBe8cGvExbqG0Qj15OPo13bodDQrpcKVBnX+Ely6Svd7E+6ra+6bjMBa/HQC4zHzL77A3WsnWOvodhOKwnB0WnG3rjiqbXs9QOPWeRbEKUFrGy+lQPcy9EowS0iSkAdm4iJai3D8dSLRWkC3C3kXXLhiwYOpoZjij3fw33gO/8IzVM+8wsFre9zamXJkLDtVzbXCUEUA3VeSnhIMlWSoJStKs6IV3a6m30/YevIC6fd/N+JTP4pY3Q6gTsjI0AlaG533ycT0Xh3t/OQWIGf5cescJ1VFNwk9H7fHI26ORlw/PeZi/zrTum7lNUdFgQQ+ffVJRtWEtXzIYXEUbPoJX8TlPoOmV8HhWYZttavxxtPVOTL2yanozttPu9TWMCqnaHkUpXUhzFsgYsZaCA5vAIIQktKWzE3Zfv6yw6SLsr2mnKPjZ+Y6SDCb2ANYgLeGdWt+FlH62cQlGGdQhJ7m2lnSCJTr6JwZeuUCoC1kGXv6VCtVbABcI6lUQjJIevSTPt47CluEXkM8s7rm+vUdDosjnt17hRuj0Jd47sIGr0rRaOXDZKgc//OXfoe/+uRfoZ8MMM5wVB6zlq2xubnC3JRs5pt8+tI26ZWU+omaqZlS2JJpPWFaz/itW8/y3J0dnHP0ujllVfO1b1xnf/+EIropa63odXK2tla4sLnG/aurDNNOy7o3mX1SKJTUSNmYQUgcjio6cTbnJdc5n7j4ATbyDRKZnTmHHk/tKmZmwt3ZbV46epmv777CM7u73L65x8HxiKOjEezOQrUtkdDV0NPoPKXfy+l3OwyHPbrdjP6gy1PnzvGD93+Sj25+G13dj+BOnAF0YXvvzU9/nKMtJskA5EQEa94tik4NqLPOczwpyZLgbrg/Ktg5cdw+Lri0VuA80eYejmaW9a7iu+9bZ24sgyQJBhoElqmOICeQgJ7W+CmupRqWi1jw6WjFsqZBEkK9jfNMjUHNBesqbUGcsYv1WOv06EPJobYhn02IxdrRR+Ys5C027R4LCWMa2SaPb4PCrVv0xIUe4wXYbPrrmsIchOcjHZrwPtaBkS46BMdtjSYmWoXj1BTYlkFoWXt6mQpOkQQWrjSBBCiM4623Tjgpap7ZG/HyzpSNXsojl1d5RulQEK6LUBTWKX/719/iZz54mWE3SE6npaGfay5cGDAtDUpmfOhCh/xyj/lj65zMwzmc1QGAvnBrxN29CfO54VgU7OxP+dqLu5wcTbDGorQiSROGKx0uXRjw2KUVnr7UY5DoVhmyUGEsTGycp93fJvqgWc1nWvKTT2yhhQzs6tuYtco4RnPD7mnBy4cjvnxrwku3Trh1a8TJ4ZjTg2M4uBmK5EkOnSF0hyRZQnfQpdvvMhhk9PsJ/W7KB66s8iOPbPLEhSHDPITSN9+d5fEndW56T4C45dH2ByxVMwRBwmaWQtiKyMClQjBynqPK4DyMrWurNwADJTF4Zs6zpiWnZtEwvryYb9yK3g3QLbNX7Wvjcxs2rPJQOU8lHCpS04kQ7YVtx3M6HcV8bkFKJuM69KMt9UstM2jLn6tFYM2a95NCoFgsHDWilTg2++W8x0RQlkpB7TxOBElgs98NODtz7EWQEjTbYKLcoElPcfHzUiFZW82QiWI+qZjPDTY29JbecWIcx3dGbH/oEp2yxo7n7D6zG/vpfNtbiPA8Pyv5gVu3cZVBnI7pPXGRRz6kqH7xZeykIPEO0i7kHZBFYLTyHLG2gd+9w9e+dpeHLw0oS8vmw5vkf/b7QiB8XeHHIzg9haMj5tf22HvzmJf3Jjw/LbmSKWbOt6DMWU/aSVD9DLXSwU6CUULtFiHwoXE7hJAXpaV67Qb55Bi6K/jpCf6l38H/0i/w+r9+iWcOJrwyq5lY1waSB7HlO6UAhyb0wzSZh02VMLCoAv3CDpv/9Dke7/4PfMf9q2z/9KcQ3/3DyAc+CL2VwNYJcU9u+U0azgUJ4KLnxLWgvznULdARgsJYVrOMRCmu7R9ycDziZK2gMIZESkpjSJTiyjCET8/qgnPdTXanh+1nVs60EQKhfBuliX7h8NgoGIK8pzHJCCydlKFfKkk0WipmdcGknjBMBsgI5GzMPjOuJtcxPw3BzEwpbUVHZ22mGhDdNhfVaRVBWyoTEhW2NfyctNunpWrZQQDjTSufrFyNRFC5erFPSxqE5pg2AE4KGXr1ZJjHQ1C5QcuQoYYPbF6qUra720ghKWzB3MwpbYkQgspaTsYzXj58g09e+jae3DzlzZObvLl7EL7cSoBxUdsveOH5N7g5eYue7lO5kmE6YDVb4cELW0yrOZ6Q5aakxniDlppVlbOarrA/3+fffO1F7rv/AkVZ8dT2Nj/9yJ9BSUVla8b1mNPylMPimNeObvHczi7PvPgmX64N/+Gf+b6w70K1DN2iB25hSlPZiiIGnjcB76lM2e5s0dGdcJy8ZW4m3Jnd4ldvfIb/5fmv8Ozzb1DcHkFpoHaBgmi0u21VFZgDowqkwHQ0J/6Ek+ZeHKUen9GS/8/wX7J2aY0PP/Uwf+GD38l3nf9OzncuksXMwuZ9781Nf7zjjGOsX8gpm8eUElgbbfOloKgsG8OcPFXcPig4Hpet+3eiQ9Ey1ZIrq31ypTgqKoZZwqio27VV4wrZGKhpCQmyBTwNeNKy6fKMxaelc69lUBtoG3rzitrRyxRaSZT0+NphlrLMXGSyQr6aO2OYsshIbExIFj16DXMIUYYpJKV1IfuNReuFEMFZs5EWhm2XLcMYjnXYlkat1MgxlQw9cVpIrPTt+zaslFRh+6UIro2r3QQBrcGIsYEAmFWOyWjKiwdjPnV5nQ9s9DmpKv7JzjgqcRIwVav2eemZt9gdfZwr6x1qG2IHMi158MKQeWmpjKeXKjKtKJoIgkzSSSTj0vL1Z29z8dIqRWG4cmHApx7daDOTK+s5LQync8vd4xk7h1P+2a+9zi/lCf/VX/xI25PYjGUzmeZ4Nz14jaNlA9IvrXTi8QhxB6O54e4Ms89yAAEAAElEQVRJwS99Y49f/OptXn7uJuXu7QBYTbX4+/ZolmIC4wPQKXVnyKl3nJqKuxCK3FLxWZXw3/dWWbl0gaefvsJf+o5LfOziOpuDlDxRf+Kll+8ZEOfP/Bwo+iCBW3wZm2pHKqJZhYCulPSVZKcy7NeWvHmSCP1lyxLKJous6Ttr5JDLQC58ztmz6t72c9Mr18QGyLidcwel92gfJhJ8E5UA470Jg37KfD6HsuTkdOGk5t/2OQ2zlkbmrQFogqBh70rJQClWewmrKxn9tU4r//PWYccFJ3sTJpOak0nF1DkqEfY99Y0RyOJzKx/09IlYfFaj526GYKniJQT9XLG2loF1zGYBwDWGI5ULk9szN0/5kAnB2G9cH3NqTctSuqV3v1Najr52g43vfBic4+V/8QLb210++LMfhwsXYH0rADepAjjL8zChJSmcnPDE/StY67n40Sscv3yXbH8X8dBjYbtX1uCKBGfpftJzv3Pc9/wzzP6H3+Dhbs4r03kr59BKoPoZethBdDqIaYm1HodvveK0CMe/00+pjgt2X97j0n/zXzJ7bYdfe26HL44LJta3fUBnr3Hf3tDebUhCcWJ5NExo5eFGabhRGn79ZEb3uX/CA/nP86c2Bzz+s9+B+PGfRT78NGQ9kPKeEcof8xDirPlDMHSIBZWYzeRcKOB0tMbjSbXmYr/P5eGQlw/2EQi2ul2UlGRKUVpLN0mY1rMzhaMG0KRKY5wlVbqdk4RQ+ChjVPKsjLLpAxM0aZXB6bEJpT5xI0bVmFSmdHTeAqzSWkb1iJ7ucVye4L1jVI0C+EK0gKs0YdETLPQtiUrani8lQ6V8kIaerY7u0NUdurrb9nAFCyiJ9YZxPaZ2NaNqxLSeUbmKeZQJNUHmQghSlTCt5lS2ppvkkenT0ejDRuWBj83zC5fHftJnNV2NUsMQum18kIOGhnzLz33hy0y+bU4iFb/+6uuMTqeQKpBRixCkArAz5zdu/Tb/3sM/ha0N18c36CVd/sOP/AS1qxkkw/azm89vmMj94oCHH7yE855PPfAgX7t7m++8eIeHVh4ilSmDpM/l3iWcd3zqosA/6Xn+6Rf4m//LP+Dhtfu4PdkN5zYCMxWBXKheO6xfmKcEBi6jl/SCbFYmHJXH/PrtX+VffOPz/Ivf+irHL+3A3C581+Hs5L78GCxW441ualq/yxcDwMLMcLw35zPP3eUz6efgQo+nP/Qwf+nbP8kPXf1+LvaukMj0ntzymzDOxH5EJk4phVLqTI9QJ9VR4idY72dcWMm5czJHS8Ggn6GVoJPIyKxLZsawsO2HIiqflAiF4TQCJE+ID5CRcVFiAVpcZOvwAotv+9NlzC6TAuoquD1KQRv+rKXA2KgwiiAJAjBo2LQmaLsBVFo2Biphjm1wnnGe0lp2ZjW3TysmZWCiEhX2U4jAQgJUxtNJJYNMcbGfsZqlrcFJYLFjXIIMrODRvCLXijSCv9Av7NGycRduTNbC9d5NQ9at9Z4ymozUtjGSA2ss/+C3rjP6uGW1o/jlF/c5HhWIJMXrFKrQI4xKsPu3+OKtAy6vXyFRgtEsMJR//RP3sTsNMVunke2XhHObKEGmBNeOCq5cXaMoLI8+sM71OyP2Lgy5upbiIyu72skwK54PnO8AG7yyV/CLn32Ty/0OR0XVXnuOJu8v9s9FlsDYZt/C2jJLFFmiUNIwntZ87o0D/tEzd/nl33iN0avPB1Dm4lrPuwBabR3aU363uUIl4fmTo7OPCxGAnBAwH3F6fIfPvPh1PvNzHeTmJT70bQ/yFz91le9/cJvzqzl5ov5EmjS9Z0BcwwwtH7qm0tj0yRnrgy8E0QTEeaT05EIwUJKJdWcMUnC+BXHE1yyvkRuJoYvVlBbEsQCMztNa8jcyxmWmr3nf8Pvw2sp7lBfte1rvOToquXx1wP5BAHGn1SILCBaUPfH9+5F5az43EYKukjy41eP8k+dJL67DxgZICVUVfvYeIlPQtbEH684dildvcePlffbHZWAq42eVbsFamkZqSezx8UvGMh5cMxFJQaYl/X6KSjVVUWNsBG8m0OgNUL5VGaa3TxgqxUuzkquZbvfv7WTU168d8/2flDAYIJXg5eunbP6Tr3D1oTV6H/80YrCGn41g5yakeXiRUjAcMpsbbu/NcLfGPP7AChwdwQeyeDziQreu4pd5hrh0ie1Es7aaoWdFAK+pRnYSVD9HrfYhTUHJGAK+YFi0EHRTTV0axqOKw1nF8//rs9SRmf2elS6FcxjvObWOmQ2S3xOziGwA3hXIvZuhzRlDgggCjYeRdTw7rXh+ekj///Wv+ch//+v84BNbrP4f/zLye34qsnPqnszyj3GcCZdd6rloTEUgSpOVorKm7Q0ZJB2e2NzipAiZS700xXvPzmTCVndIaer2ugiSaIkl5reJwFalMonyFRdDnoNRhvWu7SFT0QwkSFyCOUhjlqGkItdZZGTmIQRcCBKZYJzlpDzmYu8So2qEx4d/I5BqqtzB8CR85iAdkOm0DScHyFXG1cFVVrM1Qmh1YMFKW5AlOdLLGD6es5KuksiUws6Zmzkn1TH7831OqxG1DcxfaavWDKSI0s40DYxfYvVCHrg0dwpCT9hqukIiU0pbYL2NTpG2DSt3xnF754B/+OtfZHW1z6tv3OLcxmpYaWkBFdFtSoCCf/zVL/HnH/lzdHQXIQR3pztcO73FzvSYv/Gxp0hVRmnnzM0sxB3EYzdIBoxmBbt3D7n21l0efegSO7N9Hl19NFwv0bhEiNAXWPqSy71LrK72GSR9EnmIjj1oueoS48BpynreewpbUFkTGcFwvndmu3x970V+88Y3eP31W5yMJigl2f7QJYqqxhjLbFpAYUL/36QO4G5Z/rL8b7jhvvNLEfR0i+dYH/T4tYM3Tvn69a/z9V97nvzKP+J7vusp/pOP/wwf3fo4HdX9XYtZ98YfbohYSGrmphB5EiJJpJLoyK41Q8rQLwQwzBWrFwYUxqEk9KLV/6iwbPeSFrzA8r0rKqWsbfveBASpYYzC0FJgoxFdEoFe+F0AE2pJwaBkkFY6D2XtyBIV1iLxdbX1dDPZrvsWzE7Yh2UXSQjh3E2QuRSCg3nJMztjitrTSyW1C8+flJZJWZMnito4Oqmmmyl6EcDV1nNzVPCWm3N5mLORZwQTH1r7/VDgCtLJVMo2U86JaB0U2cMGiCZKtGHcTexAbV0rQbTOY43l9s1j/qfTgo2NLq++eJvti+tIKbFJDmIUT4gDlfIPfucOf+6pK4FxlILRrOZru8d8/daUv/6JqzyaKqal5dndYxxNjEI410Vh2ds95WB/zJWraxzNah7azKitJ9eNG2i49x3ODFs9TS/m4yWVbCWTxoayfLMfMp6s0rg2Xy+TwaTmrf0pX7h9xC+9sM9zL+4wHU2RUrL6gQ9TlzXGGMp5CfMplFOYnYKfL0zfltcyQkZW8m3FJeLF0pTfm+cJAabC3Rzx7O3XePZXh+QXr/LpTz/Kf/rdD/PEpQHd9E8WmHvPgDjP2XNjllb5LUMlBVKFvLLa+7YfrY7AwRHdHd8GiIwPksLlx5q3N7FMtQzmIEgGgdYEY1naCLQ3N+t9C+5SIdpevSQ+3vSlnc5rrkYd8ezlO0ztEkXPQgKpRZDUKYgujKFf6sGtHhc/egV93wXodOD0lPKrLzPbHXHnzpQn/9InQUpu//MvsfnwJvuv73P5xz4GFy7QefBBHv3kiPu/+iKvfOEmR1VN4Ty+6f8gAJWK8OVWkf1pho3b1kjHskzS7WqEktSVbfuDnF/INU1k/A7rYEBTuABm2mMqGgAdfn5lVvG9oylqa6v94ljnee2lA56+8xZ+bYL/lX/JzV96jivf8wjzN3bJLq9T3jri+LgM7qWEidIdnwYb9jRdfJAQUM7BGFjbZDUazSgg18E9VGYJqpuG46t1uzgfaEVXSS6c67L5+Dn0sINMNWtpCloHMCll+FnrhclJUcB8jjkcUe+PGO2MuXl3yo2y4kZRs1tbZtZjfw9gtzzejdlzCCbW8dunBV/60i0u/fv/FT987r/jif/TTyF/8q/BcCsA2T8Bk9GfpNHIlZRagOQmBHxaVVTWMszymAfkIusV5EajMrDwhQkh2MYZcp2276OEQkkXe8JcrOyWLYispW1jBpIIzprvTJDcyZatqV2NFDI6G3aY1jOmZkau80VunHecVKfcN7gfLTWFDdJDCCYnwbbbBgmf8PR0MOHo6pxEJnR0h3PdbYbpChLJrJ5yUBzy0tGrXD+9y/N7e/xfP/GzWO/4ey/+Kz56/gG+tnONv/bUj7OerTNIhgzTFVbTNW5Pb3NSHjMzc1KZoERj9W2Ym5JUJuQ6Q8vokhZlTbU1aB3m11zlIQAc3zpZytgvU7t4s3ehd2M6D+wfJv7cTEhKNI3GgODFV95iv9hjPdtob/Ar2YB//vwz7D25Qzfp8Ws3f4N//OKX+JFHP8grB7e5f3WLayf7jE4n8XoJZhD7s+MAuISOZl6hTGmdoXY1w3RIr9ehtCVSSHKV0dW99pw2/XHgWwZwLR+ylg8RCHame5yUYxKp+MEHn+AHHni8fW0D8o2zVLamtDWH8xF70ym3T0fs7R5x684+0/0JHBXBqbPRsf1+Y0nS18653oGtKV475F+/+Rn+9b/6Ih/5+GP8je/7af70xe+jlwxbEHtv/BGGOLvQ9N63C6blx1WMyilqS11b+nkS5xcfjEfiU6ex7600LoRtO0+6xPgnUlJFX4HaBfYoyOcg8ZKS4MoY5irI1eK1TXaYFLTgBogGFIKyDvllZR3y1Zqtr4yjn2tSFZ0iW/ATVk5tCLgQZEpHUCmonOX14ymvHxQoAcezmrcOakazmv3DGaenBaPjMY8/eZFunvDKa/usrnY4Pp7xoQ+cY9BJeHCrx5XVlLdOC145mPHUuT69RKOFDGoi6SiMo7QWLUNAecO8BRdMh3XBdEMKyBPVhltX1kXWMLZQxJgA54IcdjIOjJs1lsk4zlNShT4wW7eg5sXnbnM6r+lnugVTa3nCV1/d45kHhvQSzW9eO+Gzz9zhiQfX2R8VrPczdo/njEZFK3GWUjArDd5DriVp7ENEBlA/rSwb3YQkCQBXiLMyV09k4ZriX1xPD/OEjlbMjeXrO8fcHVfkWvJDT27yIx/aCrLaKK0VBHImHFPHrZOKvXHF7cMpN26dcvfmPuX+Loz2F72Bf5DhXWxqpJVZ4j3MRxRvvsSvXH+NX/nn23zwO5/kb/7YY3zn/ZsMO+8ZePR7jvfUVja0fzP/w8JQBIhf/oWbY3vxQ6TzRWtEEoBHkDsaHxi5xhykq2TLGBXxvDYS/6agU/lGKvDO7Xy7jb8nsjTEFgIXgJz2nkQIUimYO4czlkE/Yf/OOPy+AY/4yPiJ1lUzkYJMSM5nCY9//BLZB+4PbNtbb0FZ8sYvfJ3XD2c8vN7FGAcnJ5iTGbNZze0Xd9k9KRj/g8/T6yVsP7xB/uhl0k99nKfuO8ftX32B27tTJlYww+Gdw7TMY2CUBIvMPu89NsoncglaS5JExqofWOPbSt+iak97bvbijWHmPH0lmLnoA8KC8bxbWeq9Eer+8Nw0Tvgn1sLpMQzX4Px57h58kWf+0VdDA+0Xb5AIwacf2+T69THnz3V57hvHnN+fc/X0H5I+fBk2NxFPPAVHB/g3X0d8+Nsgy9neyhlP6uBamsfFkZLIThoAWVkiuzkb3/tBNjY2EP1+aNKezcLvI2gTnW6YEBqwqHW4kMsCXxYwGqGHQ/T9no73nCsKnj48obp7wmRvws7ujNvzim/MK26Whql7u3337z5a18L43MIFt8+/c/OI8//nv8OP/jc/z6P/t7+E/LF/H98ZwFJg8L3xhxhL69flJuwGtDULpLYHRUpU/LnJLVJC0k9TKmuprKU0hsIaOjqjNBUraT8AEJ2xmg2onWVUTRiVk9i3FmRMEihNhRSCbpIjhWrzy2pnkDZsU6qSlqEL7FRCR4eog9NyxNzMyVTWmpyUtsQ4Q0/3mJkptTNnXRLjjTmTwSWyq3N6SY/NfIPtzjmUVFhneeXkFbRQ/O3nfpmXXr/BIw9dpqhqdud77E4P2JtO+cz1V7hzcMx/Nvr7bPd6fPzCgzy19QQPDB7koeFD7Bd77M33mNRTKlthnKUWJoJSSxJBsRIKROj3av4maFKVtttufGDgjDftfng82FB4qo3ldBIcaGtjEf0EPzXNTtNU68o7Y944fYO17fUgJZWabpIzn5eM6hGZyjnX3eLu7X3+y+f+Gc45qtqQpQmf/PYnuXZjh+1z6zz78jXuHp4wqeY8sn6Vc90tHll5mNPqlGujt/jA+hN0dY/N1T47s31SlZDrvHXvFEi8dxgfohYylXOlf5VhOuRgfshRecQg7TFIe2ipSWW6xFgEwOe8o3IVla04Kcf0kg5XBp6nzzuKhyoO5yNuj0bsT2ccHpyws3fM4d0j2JvDtA3m+wN8b6LEQ4gg5aiBvTnP/Mpz/OyXX+Wj3/Hz/Gc/8Bf41PnvIVX5PTD3RxkRLNjGsM25tqAklUSphXGEc0Fu2HAWtXVUxpOkQVJo4+LZ+9APlcV1Uq7D9ZMrxUqaULsQLD2pTcuCOQRlU6QVwYo+jTEEgiitJMYuRZBno6S3kyqyGB8wqyxFvXB0zBJJWQegplXj8Bj2I7ynaA3idCwyKxlcHb92d0TtPLPSMppX3DmcoZTg1Zd3Od4/pr/Sx9SG2axmPK4o5yV7RcVsMuMrXynRqebVc0O2N3s8fGHIuX7CZ9864cnzXR5ZGbRkgRSNqUqMTyEwbg2zVlrXFl4aMAdLNY8IdrwPgNVZh3ehADU+nQW2rzbkvZzpdLzoC4vfldM7d7lzXPDwuV44TlKwkqaUpWVUmnivkBwdTvnFV28DARgmWcIHnrrKzg6srua8+Y19jo/nnE4rLqx32eonPLrV4XBmeHlnxkev9FnJNP1+yp3xnEGqW0ZXROlk2Mcok5WCtV5KpiV3TwoOi5J+onliM0ELSS/RrRzeeU+mguFOYS2TumZUGR7elDy8mcMDQ+YfPsfu5AFuHxfcPZ6zszdh584xp7fuwNEtKGdnjsvv/p1xYCIrZ1VYv9WAs7zwKwf8+S+8yIe+60n+Hz/+JJ94YL0Non+vjvcMiBMsetGWAZwQZxe0UobMrtJ5UrkAbhCMRRxQ+4UhRxMGHW5/0FOyNQgJ4C44SzavbUZwDBRnesMaAm/ZDKTRYgtCJUgLQSYDI5Ut9UUZ7xmdFKyvZ+wfFGfUhA24TESoSAhC39XDWz0uf+I+1GMPw+kp5rmXKW8dMT6aM+gn/OB3P4W8ehmSBLGxSQI8+qe+A3/3Dg+enFDdOeLmc3f5/OdvcOmFXR76riP0Ew9x6Sc/QeeXvsztO1NOShPrwI5ZPAYNKIVF02/DxCmIjkJh2xudejMau1699D0q4/kxPhx/V9l3MHGF80x3x+THx2gtybUizxXlxOOPjxBXHkQ88RQf/aGX+cy/eol5dJbqSUXaTRkOUw6PCoaJZtBP+OVfe53TX36Fx7s5in/GyDpWE8VH/uvHYbDC2uPn2f/tt+hKSZpIUBKhVajWTKewvY148ik4fzFY/49O4GAHMVwLDF+nG//2Y9NtXNwc7ccogQpOT7FvXKe8dczhzoTjkyCjnbpFX0EqBeta8Vc+dgmAm9dHvHA64yvjsnVXfbf+usX35uzjzkPhPbdKy9+7fsRj//F/y0/83X/G4L/+L5CPfzteJQj5ewVn3BvvGPEQv32BGYxNZPw5ypCbBZP3VMZQO8e4nIf/2yDlmxvDrK6ZlFUL8hrjjq3OOv2khxCCaT3jYH7MaTlmVhdnzD9ynbGer6Clbh3Zml44G2MAmhqldDWJrVrreZOETLHKVvSSLkoERue0OmElXaV0JdYHti8EUoeF4TDt0dUdnHd0dZergyv0kwECwe3JLW5MbvL60Q3uTk7Z6HT4mz/6M1zqXSJTGevZGh9ah09d+k52ZruclCdcH93ht2++wf/vt3+TK5de4s8/+V18cP3JKLVMOK1O2Z3ttSD4pBwHqam3YZHqHXNTBlOTCM6kUKQypbHQh2CU0gBs6y21DfEG7WPWgRDUxpClKYWfxZvQ0txWGr5w51me2vwwUii0TNjI1zDGclKesJlv8ejqI/z4d3yEv/ern6OMAK6bZ/SShMGgy9HhKb1eh04352//0meZzUseuv8CUkpms4LBoMvf+umH6CcDPrR9gWsnd3hq+5G4P+BwLZMYKtaG0hax3yQUojbyDVKZkqmMXGckIolANsxPJ+VJMJbBc1yccnO0w+3xmJvHJ5yeTDg9nTKdF1jrEAJSrVnpd3n6hx4mUYo7u4e8/NoNqm8cw/xsS8DvOpbBHNH186jga7/2HD/5whv8yJ/+1/w/P/UfcV//QSTqHpD7IwylVQvenHMI2YQih9/LKLWDME8VtaWsHacYCrO4HxS1pTZN5mUo6CaykV4mdGMg92qdcFrUTCrDNM5zzb08lZLVbFFEagxNTGiOQwmoca0oWFuBVoo8VTSW9M3c6l3Yjto6skS3QKH5LAAloRsZOOs8B0XB1+6OOZlbTmc1O8czDo7mTCYlZWlQWvHEhx9ga6Mb9qUXesAeuW+V02nFdF4zmVTs7Zzy+ks32VkdsH8446ErK1xc6/DlGxPMJc8HNoYItzCyWjZWwYftTtXCgEhFtml5yWSsawO3PQFYy6aRz0Nd1QgpsMaSdTKmzsY+saaYIqGc8flbhzx6vk+qJUJ4tnoZzjlGhWWYaZ7Y7vDRD1/ktz83w1QGmUqyPCPLNJ2O5vh4TqeX0+kkfO63XqOczti+egFjDHVZM1jt89TFxwHYWMl582TGJy6uRfMXQAhSHVptmmuuAalFHRjHS/0uiQrGJomSbUi5iazeeB7iJrz1HJc1L+7MuH085+behKOjOdNJSTkv20JFmqesrPX5U5/4JEII3rh5wusv3cRcfznIMH+v0Wxkk+cr5MIw5nSX5//NKf/e8zf44R/6IP/5Dz7G1c3umYiL99J4z4C45bGs3GgOm1ySDSgBE+swBroqyA0hAKdRrAZpIdAIJtbHSkl4zcxFV0sp6EaTEC08hQhArnEF7CpBLmVr3S+E4O143MTH7ZKEMDBoQYpTOk+iPNoHMDgeV2w8tMmG87A/aYFOIz9ogFwqJI+e63P5Tz2IePABZr/yO+zcGjEaVVy62OP8px9FfOip0BvWoCGlAnjoKES3D0D2bfDQt93k4m9+FVcY7nztJlcfugLDIes//knUv/w82d4cMS5xJgC5sXVIuTCTgYUDnomSBZ0sGB0hmsWsCBUkFoBt2f3zSqbZry3rWnEzNiy7pmE6vualt075xENHZJnCmPBFTYSAnR14ooIsI/npn+J7rOOVz17jsKjpSsmbrx2xtpaxttZjOq2Zzw0DJamcY7+u2a9D6PvcaT5SVzCfkTx8lfo33mSgVAj2zoMrpTh/DnH1PnjwcRhuhEXs+DhkuT3xNGJ1G9EdBIt/78KXP+bAuYM7+Oe+wuQXPsuXXjrglXnJ7dIysq4FYu/WE5cKwf/lUp/tn/wkT+Q5T0wm/MTr13nxN97ki6Mpr87rttr4u4G55n3t4gFmFl6e1dz+nRs8/Wf/d/zgf/C9qL/+f8evbN8Dcn/IsciIW7BxKmYzKaUWoaeEws50Mmc2LZjWNf00pZ+mvHVywu2be3R7OVfObzLIMo6LEb00OAgezI+Z1rPgbpgNWM/XuNQ/Tz/tcDg/ZVROQm+YVGx0VljLhxjX5O/IM4xL49roCD0ykzrc1HpJl5V0hePymMIWdHVwDlRCMTVTzncvoV0w5sh02i7EpJR0dQclFP2kx32D+8hUjnE1/+T1X+Dlg13unIx44twW33f/R/nwxlMkKmVh+x0YoJ5MuH/QQQwET28+zXde2OFXzv0Wpan4hde/wuWnL6OEopeEOUwJzf58n6PymEHaY1LPSG3oiwuy0bjP+NaoRUsd+sZiv1modCu8LxfGBEuSM+8d58+ts3t4zLDXoUhGof/Lisgihed+6eYt/vIH5iSR5ctURq+XszPd46HhQyih+QuP/STee37l+Vc4Ph7T6+a8cv0OK6t9NlZDf1xZVgz7XYyx7B2ccDKaIIVkYz5gbuYUZs5j6/fxz1/7Mt95sUuucypXIhBkKsd5h/F1dBjNqVxFKlMeGgYAmKsOWiY0wdxB3WgZVSe8Nb7OP33183zhmVe5fX0X9guYmbNN3mcufNjTku3z6/zMhz5G95Gc2XcUXDu5y68//yovv3ANbk5CD9zvt8ZpwJyhPaZ2Z8ov/Pxv8cWvvcLf+Mmf4C899hfp6cE9IPeHGMvFJGtCLxyC1klXRcOOpjB7elowHpfM1w2DPGHYTTkcF1y7ccLKSs4jl1fp55rDouRcN0cKwbg0FNaSFpKe1vRzzUYvJdcKORchR84Go6HVLKWf6NZwRMlgAhXNaVvQAgG4zKoQmN1Ng9TQOs+8siQq9GQlSrQuj83825iQOIIjZKPOGlU1z+5MOJpZdo5nvHrtmKODMcWsoDvocuHiCvdfHJInqjVLCbEnjo6Ktv+rHYQQHF4YcO3GCVVl2bl7wsZ6B+c851Y7fOXmhH6qeHClz9xYUiVjpIBAs3C3DD2BC8m9XlJ3tQBbiBAr44I5nGtlf+Hcnr+8xcHuMSurPY50Bjo6NTbAA/jcGyf8lY/d18obe5liMMjYGdf8/9n773jLsrO8E/+usMPZJ918b4VbVV3V1dU5B7W6GwUQSAiRMSBjko2xh2B7YGDs8fx+Hs8wZhgbw+DxzIA9BhsYEAIUEEISklqx1VKrpc6pqitX3aq6+cSd1po/1tr73Gq1AmOFtprVn+qbTthnh7XX8z7P+zx7OiFSCN5w/RylsTz+1EVGgxFxEnPmzBbtdkSnEzEaOVYyTmLyLGdrfYt0cwt0QFmUdTzBXCfmsfMDvmHfLFFwuQql+jxCOBA7zJzRyq6pmCR0piaB2tFb7sHrIC144uI2v/3gGT798Gk2Tp2BzfPO6KSS6L3Y0CH7930ff+uuPTRv3UXvDVfy6Pm7eM8nT3Pss8/ChWN+X30J7Fw2cvvU34/zC2d45x+u87FPnuQf/82b+b4b9vpw8pfW3PSSAnEVmyXEBMgJz8ZJvJRV+Bw0/6DCMz+RFHS1ZLt0FZ5qiepbvhgZy7ACeP7i6peWlnITQGPHE8zO5+LrsdYipJiYCAgIcZNT4XvK3M0SHy8AQ2NcjIAChaA3LAhmmi5E+pk1tGcEtWf73HYL9k3F7HnlFYg9u0k//llWz/cItOTmv3EL4pproTvtd47fUZU2UXlHH62d3K/IEYtLNK7bT3Fhg1lg9V2fJMsNc4fn6d5xiP79z7BLCezGmL5fr6TG9fRVx8QyqUnXdr1ycmOQStRuZ4oJc1mBW4CFQPssPfECJnNSUbuY55hRRpJoitxVgqfjgOzMKlH1hLhB8GM/zg1vWmH4O2/h6c+s0G65sMosLYkjxVZa0lWKQAi2y5KuB/nXLLSg3QEhEMv7UEqwd0+T7lWLBPt3weIiYt9BxBXXuKDtOMEag2hPI5IOBJE7CfH7XEpXFctTR+WvnuNjv/KnvHW19zmg64Vfd47CWuJYI3btcZWgdodwcZGbX3ErN58/z9b9j3L/06t8dHt8mXvlFzNJyXx/RJFbHuiNOPMb7+VN7/kMC//2f0Ved89fA7m/4qhycSrpsBDO1ASqBRN135uQor5oAqVoaE0nijhtLFPTbVphyLhwfV6RDunnQzbH2wghib2t//nBBRaTebpht5Y5b46de2O1PaEKyD3LUjMyUiD8jdJYx96M8jGjYoySyi3CghZb2ZYHck0CGdDLer5/LiSQAZEK6164yqlSCclSskSkYsbFiA+d/RjPrF0E4Kfvej3XzVxLQyW18UBpy/r8NLaSW1WZT5bpaJqbF67m0nAdJSV/+PR7yMqSW5cOcufirWipWEoWKWzhct6srdk3tyjSNcvkjo8Hsx6cVeycEKVzikOQ58VlcgohBHv3zjPOMuc06uVjk5uIu8mcP7vKsBgSqcgxfipgeWGWU9sr3LPbRTxEKubvXP9DfNeVq/zmo3/Cg08do9ls0G7EjPKcKAoY9Ava7YRAKzZ7A1qJ60284uBuEh/6vqe5h43Rh5mKppmJZolUjBLK708IZYQQEmNLZuUcoQ/invTLTRh8aw2pSRkUff7ZO/8fnr3/acei7ZSYfKF1SWlpNCL2tBaxWLphm4Vkhjt3X8u5V17kQ6ee42OffILeExecOcqXssbJSgeUIwvWcvHYRX7u//4d3nHvI/zv3/RzHGhfWRcl/np84VGbKqlJcdUaiwxkDXqkdGCutJYgUCivMlJSEGjpe+Rg91yTVqwJlGBcOJXRsCjoZ06W19Du/r4+zJhqBDQjhbUBKgOVC7IddvxSOsmktdRGJjvZDGur/qeScV7WQdANb8SR+6BsIYTrlfOFXSmoWTfl12RCCPp5zsMr22yMCs6uDTh+ZouN9T5CCq69cZl9iy2akWPz3LZN5J9KCGdO4t+vKA3dZsj8vCsMCyF47ugaZVGysNjm8L4p/vzJNd58S8hMHBIYibUFaWGQ2uen4TPzrPdYE9V+qApLlQGMrddZ/bGTjRtjahB+6MA043GO1tI5co+Z9Jv6IvLxs1uuj1E7ubWSggO7Omz0M4RoYYGGVvzg7btYOTLL2x8+z+nTDsAlSUBRGIJAUZaWZidBBYpRf4RuthBSsLB7hlAL0tKy1Al56PkNGqEi2SE1rI7tzpaDVqSYaQYvymIJ72hclJb1fsbP//bDrDzwoYn75uQE//wnf1mQRJrldkJpLd0oYHerwesOzXL6267i3U+s8sH7n2b87Gc9SKsQtORz4grcheMeVxmlWMP60WP84/9tm3e9+mr+5bdfxxXzzZrVfimMlwyIe6FMsbq/yB2/ryrh1jr7fSNgUBrGxrIrVMxoxaW8nPS3ea3tzjy3sdfwzQSKsbFsFoaudpWThpzYvI+NJRCup63altxYtNgReYC7CJW1WGFqMw/wsgIhyKwlswaBpF86HW64a9o/pgoGdwxKIATTWrH/lj3II4dhY4PV4+t0uyHd7341YmGXA2jpGPOJByj7KXppBnHwIHYwgDB0lvplCaMh9txZ8mOnefAvn+NclrM7DGhrRW4sFy6cZGHhErP7plg5usauqZhTGyNy6fr5Ut/PB+6eXGfL+WNQXQyVnNLjhTpsvHpeBWwbUjITKN+T6BjSaj9V40JeUg4zgkijdE6gJW0Lq89eZA/siBhowtJekp/9e9zyrj/lmT9/gniqwaXn1pmZjlBSkCQaOS5pKsUNbziCWt6NuPYGJ42UEmYXOHLPfsLlBQfeWm04dDXiypsQjbaTSeoQUQE0HTj2zRjfTCvcfkaAVJiLp+j983/FR7eH7Igz/JKGAXQzgulZGPadNFN7a53OFFOHDvMdqxd5/YOP8v4PPc8Ht0YvCuaqsZPxy3zxWwo4OS74vScvcPe3/z1e8Ws/i3zjjyG8ocZfjy88drJwQngbb3u5xLK66QLEcUgjCBhmOb3RmKzTZj5J2LtvgemGq/SlZcm4KCiNC73OyqIObJ6bWmZYjDjdO8ee1iLT0VTt1FjJKzthQRI0Jo6LtsBKSyACL4V0tvShdG6JmcnpZwOstSS6QShD+vmAULpzYFiMKEzuWStDIDUahRZOshlITTfq0g46AFwaX+KRiydYaDb5gSNvpBt2UVKTlmMevPApetmAxeYcBztXMCyGxMr10RXGkpqUlcEKz24c59996IOcOX+JhdkpwtAZDj11doXHlk/wxkP3sJgssCvZxZn+GSLtIhkG+YhYR1RloioGAXzhD1EzcdXfjTUooUi9NXZV2bfW0u402bU4y2AwdsHWPfeYnVXgC6sb9PIeiXZAK5QhV87M8ND5M/zAEYOWgWfLImbjOf7hrT/E27rv5p2PPspso8ETlzaYne0ipCCO3TFZCAPedMeNXDm1zDUzVxPIACkkS8ki//Wd38H1MzfU/WLGloQycjlxQtXX+c7okhfOBdXP/XyLX/rEv+fZx058brzAlzC6UcR0NMW4HJP7OAOAQ1P72N/dw3dedRufOPcMb//wQ2x85pwDafaLvL6xzhnT3zPtpTH3v/chvuPUL/Bv/sZPc++u19Tuqn89Pv+YqGIcA1cWXm4sJyyJ3FGAbjYDGpEmLw1rPWdgNNOOuO7wHDOtiFhLxoUhL/36CecrkBWuB25PWyOQXBqkzCUR7UbgF+4ZZe5AXzPQxFoAbqGel8YHdntppwc0gS/C56XxphrWOR8qwSAt6TTcGmucl3WtQQhBKCXCe1O4fDLLE5d6bI9L1noZWWFYvdQjjEKuu3qe+U7s+9EEZ9f6COEA42wnpj/KnamcZ9Oy3LA9zFjbGPHM46co1i9B0kGFoQOLW31WVwdcdXiOdz69yo/f6lohpBAUtiQtXY9hlY1m7IRBhB0ybuMjBYzbz4Hyn7NaW5Ul1jN/vX0uyy1qRKR96UBIVeQQkvNnNxlmJXEgSQtDI1Rcs6vFXz52AXnNLNqfBw2tWGqH/NDde/nAbMKjz1xicb7J8ZObdDquVJ4kIca4iIobr19i90zC7o5bV0VKsGuuwav2TzPfmRhqKVkFf9cn5WXAbSewq0bFxF3qpfzTdz/NyhNPfelGJTtGpxHQiVzYedXaBHDdbIer7m3zg7ft4v1Hb+aP//xx+k88dLkhyucDiGXhJJk+7qBYv8D9fz7ku45v8G9/7HZecXCm7gf8Wo+XBIir5vqdgdVQXbCTC1d6Wr60VZigv4W/oCetcsUJK3kTeNdHH8htqc1OhqVhUBpaygG5SLq/ud46W7/mztPPOc5RSwEF3pDEuibbavscaDSkxhJ5ZyUzypH7lwHoeH20k1NCKCTXXj1LeNMRxNwCzMyy5zV9bJrB+jp2ZQXKknKjx+/8ySO0lKSwlivjTzAyll2diP3XL7J5aoOT5/qsFyVtJblyd5srgeGoYP8rD7gqdVpgsoLwil0sScHq8XXm44B85BqIN8uyNl954aikY0LJOkC0YkulELUlf3UMtYBYShYDzfksp6skq8J8ToD6VmEohymqGdGINVK5431+ZcCe3OuVo4ZzZwKIG4hv/16OJAnpM6cBWN9IiULF9FTEwjdcjbjldljYBVOzMB46kLR+CXv0WcJbrkXMzDpm8/CNyL1XOYmqjryMyuulo8RNmGXuHC6l9KU15/poe+vk//pX+PPHL5AZ93kL6yfsF+lne+FCSyGI98/CFdfApTOwten+UJmkFDmi2SLes8y3vnqV17z3Y7z34yf58NaYzDMaLxwvfM/MZ15tlYb7twas//Sv8oaL51E//AsQNl5yEoGX4qgWRfBC8OasvCuWuRkEZFJeduOaimOmGw2SMKQwhrwsaQYOsKRlhhCCbtzi4mCdzXGPYTGiqRPWhpusjjdYTOZJdMJ0XJKWGWmR0csGBEoTqQhjXdC3kwvmZDarw6FDFdIO22RlxrAYMfQRA6EK2Uq3GaoRzSBxZhcmpaGajhFU7qYuhSLR7hzZ3dzjpJYqYn/7AK/ZfxProy2e3Hia7XRAaUs2xj1+9a1/TqvZoChKDh7YxXicsbA4w737DvDIxXM8/dwZzl9cp9tusv/AEt2pFmEU8L3X3Y4SinHh+vLc+0sSHTITT1OOSna15lkbbZJ6KVEldXVB127Rv/P811KRmYqlE4zHTl5T3U+klMw2Giwd3s+HP/0kURKRyp1VW/dlsDlkI92kqZton1e3r7PE+x5/msxkNUisevIiFfO9h9/ETKPLYxdPoJRkY6NHGAVMTbf5nltu4/bFG1loOGfPUTkiK1PG5ZimbnLP0jf488wtwEOVXBZJADhnOSZzjbGOraiAkRCSQdnn/3jsP/D2D3zSyR61ACtddadaWFU34RcrQEm4cmaGva1lNtJ1elnP93G6XsTSGhLd4E1XzvGa/Tfx3nse5u33f4r+4xcdmPtiw+DAXASMCo4+fpI3b/0yv/ZDl/iOK76nLjL89fj8Q3vnayklKKcQcOybixioDCQi7YKfAy3Jfd9jtxkykwTkfhE8yEpakbuOnGmJpak1aVkyKAqK0oWBr48Nm6OcmWZIHEi6NiA3zlVwWBRoGRAo4VxZpa3llXnuZIeh759KIkWaOwAzzh3YU1KQps6tMg6co6r2vxfg+uc8+Em04tz2mM1RyeYoJwoVi1MNrr12CQFMJa5gMs4M47zkw+97FB1HlEXJ4vIi2TijM5WQJCEXL2yzcXGDcnsD4iZJt020Zy9aaw5dtQBAlhnStHD9d70xnzy/wd17ZmhaTUMrtrOcUeGkpYhJJUOKydqpMjMRXA6A+iPf81oRBVqy2AnZP7PI2x44TbPTJF0VOwCce9z2xja9UU4jiOr9d2Q+4Y+3XFZc4Q1PqhFryeuunqGbhJxZGyCloNdLiSJNkgTceGSOA7MJs4lmvhkwyEt6aUkzVNy8OMW+ucSvcS/3svgcp9QvMgZpwW88cJL3vfdxJ3uUyqmbTPm5TNmLvZ4UHJhrMN+J2BzmjL18s5LwhtZyRdjkR25OeOOROf70iWt5258/xujpT9dS1MtGlSu383tr3ff5mNOPP8sP//qQX/3Ju3jD1UtEwde+yPSSAHFuoS9q0OZ0spPFbyWpFML3m5iKBneyRXDs2dC43qdYOgaset1qhDtYoMoBUwtBZp1zYuKZuFCK2uxEC1u7Ke0cufX2utbVP7XfFouLPHDOSZPHjo1BC0GxPUQniXNFlJLtojL5EEwnmtYtVyDm5sGU2I11mJ11wdNxDFEMRY4OQn7g3CaPP3qBJNTMzcY8d7bHRj8jfOYSjYbmtjdeQ3Z+k5NPrWKsZe7qRdYeOMWzHzjK7GzsAM611wEQz84SnvkgC/MN1s8UjIypGUkpJ/vQAoH2DdJ+BlLKyTFMaCm9TKGwtv7sVSVKC5idanDuQl4buRgragMacMeg18+ZnkoIAokMFFLAwBjs2ZNw/jwUBeLGm7GffdidGzffinjdG4nvHXLVRz4AeY64/kboTDlmK266Ax3GsHEJ+9SjMBrBzAxi1zJ0p5BX3wHdBTCFY9+kxBpnjU3ghZzjgW98NdhRz7F1OgAhMG//Dzz9oedRQFsJQukyb8bG9WgW/lyIpQP7lWlOU0liKWhKgbzhOuTCPmycYGd67v3GA8fKSc/6ZSmikZC8eZHveM0ZvvGdH+Hdj5zn49tjfz5+biW+GlXrZHWtPNxPGf2z3+e7z55F/cK/hKT7JV+vL8ehhKid3qpIjSrke9Kr627Q46IgCQL3nIZgkOdsjscMi4JuFKGEYCtNfRhtZYzigrKttawM1l2QtVQEKqCXDYhUSDto0tAxzaBBXuYMizFhFjAVdQhlQOkX8NZa0jJ1C3oEWZmR6AZaOwZwkA8Zl2MiD9IGxaD+Pi1TEt3y5xJsZtu0gxbDApaSRRIvlRyXY071TjEuUqbjDjPxNFd0EkpTOFOSbxvywHPHieKQXdNdnj5+lo31bR7Up2mHIT/yqvs4tb3Kp58/xWynyZ27D/C+o0/zZ889wv5ul9cffAXXTl+L8UYY/aLPYmORfj4gLdO6568RxHVPCUDgg8Avj1zQaKEIfGRBOp70SFSgvBtFvOnKe3n4meNcXNtyksrCOqOj6uYzLFgZXGJ/ex/COunq/vZexuOMS6NLnBusMC5Sbp6/gU+uuPnp1oWb+Ma9r+Le3a/gI/MPMCzG3DR/Ld2wQztoE6qojoDYzrY42TvFoe5BdjeXCWVUgzIl9IRxe5GCi7Elxhu4FCZHyxAlFMYaPnzufv7sM4+ilSRtKFeksrjKTj/zFR7cZ9YCAgkN7f4FkrgRcdvidSw2dtHUTUaxy8MbFaPa9bOS7Sa6wd+4+jW8Zv+N/NnRT/PuD32a9MnVz+2Zqyb9nVKM6qacGtZPrPL3//3/wdm/cYG/d/3fJdbJ/5fL9mUxlFZOSikn9vRqRyyA8tLqUDkJYhJpmpGuGa5hWnDRQjdxc9bmKGdcyLp3yViXGTZlQzazzBWppXu9fp6jR4JOIyAOFHHuYgnSwjAUJR2l0R7IQWVD74B9FU2glST2himjrGSUlUSBk6WPsnKSReYdKsEt0kdZSaglWWF47NI2aWn8It6xQLddMU0zVBSlA6KD1NCJFRdffR2nT2/RbIbMzDR4/tgaaVoSx5YwCrjy2mX6/UU217aIGhFz8x0unN/g+aOXiJOY/funOLxvql6rfuL4FrctTvlT2YGH3BiSwLHlVQaw9hb6dsfPWhlKI2qWcDTKJxJ9z/R0Y823Hl7gfY+uuOcGsVuL5GOoXHj7fS72U5amYgLtnD2vnGqR5yXro5zjaym5sVy90OBTJ7cRQnDj7ibfcLBLur/NAzMJg7Tg8HyT6UQTB+74SpwM88IgJy0st++aZt9cUgPCCny+UJWyczg5qfvMtfu5cAzkR55f5b0PnnKfOWxUPQru8422J7JG5ZVQOoSo6f6FIWEUcvvuDtNespkVhqwwzrzKD2NBK8tu3eAn71jm266Z4y2fvYY//4vHyI9+9nN75qSaALgayBmQIRQZG8eP81O/lvILP3onP3HnfpLoawujXhIgDrxFvwdylT39TrayutmOxyVjDzIkkHhqfmgsG0XprOmFoCGEZ4AmoGK8Y3079NLIWLqcrYpBCf12yEqO5oGMFFXPmhtVhNDORbMWzpSkklZWv0u9NFMIKDaHkGUEwrGABreobirBgWvnYX4edIA9d9YxjLv3glLY3hasrWJPn0YsL5PcfhXXjjLCpS4nP3uuZg7PrI9YywvCU5vMaM1cN2L3t9zE2gcfpywt49LQO9tn/W2PcHirj777LkSny/wrDrL+qRPMRJrzo4yGlAxNWbtVOktvvKmJ/8CVNEIKtJZEoSWMFGzXf66dQ7WWhGFlvOD2SyF2gD0ccB4McubbDWzm8okyX5ni+eddD+RGH338GKOnT0NpCC5tEnzL67AXzjlg9srXYj/zAMKUsLoCe69wLFx/C/vRDwIglvc5dm56Fnn9vZB0nA5aavD9OpS5W+xgvUZbQHMKygKhtAN3UmEeei/ZRx+i1dQspY5ZGRnXaxkKQUcr9s83WbxmgfCKXbB3L2JqFipQrjQsLiOXDjgA2ZpCtKbBGmyeuu3ub3pGLoNsDEmJaLVp//39fN/ZU3zD776P33/6Is+PX9wtrlonVVmJ7py3PDPM+P3/64P8wMZPEPzSb0Kz+9eM3OcZSim0B23WWkpj0FS5Xa4CrqQkkI7tCT1Aa4Yh7ShibThke2OLqxbnibUmUIp+lpHogFA5OdJ22nc9bcCl4QbNoEESxKwON1kfbaGlIlIRrSChnw0dkMvHRCpEBknNvFUSu8I4G3qLA3WhCml5w5Bx6XKHnAvmiIYaYrA1o1RYJ22KPcsXSM18Y4FxOUYIwRPrT7A2Wue62Wto6ibjcsygGHJ2cJ49zV3ct3wzWVky32zzsZMnHLgoSs6evcTa2hafjo8xPz/F4twUb772G/jLE5/GWkt/OOaRrT7Pb/4FP3R9jzsX70AISaJd0HUnbLMyHNIOE1ZHmy4fTipCpTzT5hZOFWPlQsfdMQo8gzhOc38cK2mXcMcpaNPpNN0B1xJCOwn9lsCo4EzvAvfudtl+UkiSoEkQaE5un2ZUpFwabjAVneTRiycoreXScINvveK1rAwvMJ/McMvcLTy18RTWWtbH6+xq7qIVtBkUAz554SEOTx1ib/MAoQydaYOXV1a9hRPzHFODVQf0JBqFFRasQPmZ9bmtJ/mL458gSWJmp7uUxpLnBXEUEASaTqvJ7j1zXLO0wKHpRZY7S0yFXULlZLhaBiw0FpiN5lBC09BNYp0wHc5Q2IJ+3mNQ9F3Eg3Gh6pU75o/fOMe3XXkb//HRj/Lhd38Kzg/r/sIasFVN0YGEwEVG0FCQGQbnt/mn/+kP2fi+bX7x9p8j0c2v0tX+X9aQSqIDjVKKInf3gMropLo/KykItUIrQRy6r7PtmLw0bA4yNvpDunu7NEIJBBigETi/gEBKRkVJpCUmhc00I9KSRCuGRcEgLwiVy0JrKMVAFBTWZaeluQNolREJgDHVOsAFZQthiANJM3JmKHlpSHOXNzfODUpW8QmXs3nWWsZ5yaXRmNLAmfUxUrpYgt2diH5W8tzFIUPPml3cGNJKQqZbEVPXLDDXifnss5eoLPwvXdxme32bS0CcxMRJzIErZjl7dts5ReY52Tjj6cGI4YE5rlyeqlmfRy9tcdvSNMPM7acsK8lLS6BAewXAC++swrNYUorL2EeoYgfcfppqKGck0405aozri8tDvwA1DnSM+5zuD7ldTSOFu8aakSaOA05tZPTSgv644ISWnN8YYa1lmBZ8w+Fp1ocFs82A+67o8szqiEFWsjG07Oq6fLfMGE5tpLzpyBwH5ps1gKv6+ypZejUqI8Cdn7P+ngnoe26lzzufvEQcB3Rnu2wLQZ7mBFFAGIc0O00OHJjh6r1THFlosH+qwVwcEflIHyUF082A6aZj6uNAuqBu3Dk0zg15YWrAWJQWYyVXhi1+7r6DvPnWXfybD1/FR97+UVg77SWWxq2zVDAp3kkfQ2CNA49FyvDCCv/T//lR1gYFv/jqQzTjrx2UesmAuEBM9LSWSW6GBdiB9NNxwdhMQBJUsklLZqDqs0yNqxYlStL3qHzsnSmNdflwiZz0yhXWPV/KCaDMrPXSSuGBx+SErAw8nJU1deh4JR2stlHg5JljY4ikwpYGVlZcIdQDo0AI5uOQxsEFiGPshfPQ72M3Nhne/xlOH9+gPyzotkO0EuTF08zNNVg5P2AhdZWnqUCxnTvQdTYreGaYMxco7ipK5j/6JBubKUoJpFSM85L5+QZnHzzJvr27EMv7EAcPoj9zkl1LCasnc1LrQserITw4llLUIdjVrOSq/ziDE1wflnPrpO4hDLR0cgghapD+QjllYS2DQYFqO7lkdnEba2F5NuH5dz9Opx0QJwH22AW3Pa0I3Y6dRPLsWXdwsjFIie1tw9oarK0hjlyHPfW8iw1otmBxD8wsII/cDo2OA2xCTli36iLGwmDLGZeEDWpTE98vh7WIQzcS3nCY3dYyd6nHTdYSL8+ib70ece3NMD3vXzN3J1dV3ZEKdICIGojWlPu5yByQlC48XEQJJF3EzBJ22MNur0GcuPiCIoNGE9FIWPrFffyjz36aB//DR3nHWp+tcmImAVUGopN1aH9uh8KdfyfHBb/9B5/mR+1PEPzPv4V9AZCz2QiC+GUP7qosOKhusJPvd8pGAqXoj1NaYUiAa8BPgoDSGLZ6w7qosTkeo6Vkd3uB7XRAIDWbhTM2GRUFdtxjPhn5QG3FqEjZTgd0IgiUyyjbTvvOGKUYoaVCCYn1jo2RitDCB2Jja/OThjc1KW3JsHAN5GmRsZFu0QnbaKEZl8O6h0xLTSADpqJpSlsyLkec7p/m6MYJhBD80bPv5sETp0jHGXEjosidhffhxXmOXVpj/2yOlIJWq8H2lnPIvLS6BSe2OT0bs/+6ZT7U/Szn+/3a6dOUhoNTU7zn+c+wu7nE7uZutAhIyzELjQXWxuukMiNQrldPo3yFV9YmBzuHqOCcZ6ayzIG40pT+Hq1IgohQhXQrEGftJAOlernScmJzk1g1sNLU7p43HVzm9x57gOmkQTsMObrxCYy1tMOQdpjUvY1O7ujm637e58JwlUujNY5MH+Z0/wyHpw5x4+wttXzQ9b65olIFTIGaYbXWUtjcP1b7zXaSTonryVloLHHL4iGstcxPtzF2Pwenprhj1zVcNXWYdthxLF5lluPZfC0DlFBEMiLxwL8w2UTOKSUhMQ2VMG1nGOR9+kWP3OR18SA3OQ2d8POv+E6+9fB1/Ob7P8DzHz8K/dxLN/0NvjCQCwfiqntOrGBUUK6P+JU/fBelNfx3d/wCjRcwcoXJUeKl5xj3VRsCgjCoowXKsnTXkDGXqc+EgEYo6Y9yWrErNiopSCL3/WDsziMpoJ+WzDQ1S0lcxwxUwdS5MWykOdNRSBwowkw5+WRekqAItSTRmkFekJaGQVF4sKJqBibwmXSi6gczlnHu+riasaY3yhnmTo44KgtMammGjtEb5yVFaSnNhNE5vT1mpZexOcxY6MbMt0I+cWyd509ssH5pk2ycoQNdm4Xs3jePlIJ0VxutJUkzcsHaFvKNNVg9SZ500bsPcqkVXwaMjTXEScy5s5s0myFL0w1KYfnU6R6375p2Mr6S2jVXICismUj8uJyQruSh4IDHaJRjjQOVUkpUoEgChZYOdAOTfq7K2ERIMCVPrAz5nhtcXnFhLM1IccuReR545pITI4WK0xf7ddG9ESp6acmJ9XGtNIu1ZJgbNkcl/axk/3REWlq+6dA0N+2dqtlZKSZ9bkJc3u9X/X7nMXJ/m3x2IVy0w8172xgLuxaalGYXVyy0edXBLlfNtB2ox4N3JsYw1X4LlKwjLyqzmupzBN5p1FhLmhuGWYmSbpsqQ5z9usn/9IZr+MxtS/zLP36KMx/7sHPDhAkDWGXPhX7eKVKn6srGFJur/Jvf/hilsfyT1175OUBu7Bnlr/Tc9JIBcRLQCMqdMkoPmizuAGkl2M6MP1ATGV5luqE9roilW6TC5TlxhZ1Y21bPc7JGGJauVw7j8uekcNtTmZVoIShxO0wi6n640gqscMCwMtiPhZPKDUpD5p/rjFMkMtAMHj1Zs4OhcBT77l0Jo2MX6D1wjJULI4yxrOcFV+9pc+Dm3Zhhii0tyfX7wBjMYMTTx5+kd2qbwkI7VHzDr/5XDH//bdz//ucwwMW85F3rAz74ySGHGwE3NRscPuhkc8dPbFMYS+s9n2bmb3QRUUS80CHop8wEA3KTE2rNVlnWWXGXnYqVbbFylZjCV8ZKYS8D2NVzlBZoPQluN16CWthJxADAel4gowARKLKL2+S5YWF/F6EVxfaI1YtDev2ccW7IrEF+ZoXW2x8nDCXdTsTcyjqqE7tw7jyH0Qj7zBOI+74JTh5zb9JqIw/fCo123biKDic9TEoDFvobDnyFMYSRe2yYgNixUFzYj/iW7ya66imiK65BzO9BBBFYizWl66GzdoL+TemjIRRCKQfadOAMU3Q4aQQF9zwtIYwRjRaiM4MdbmO31528skgdqGsMEa+4l1ccupKb/+z9/M77n+OxweV678I6VjmWriDRUqIOur+QlfzHP3yYH+YnCP7FbznGsRo6evkukPwQOCZOKklZePMMv092ulQFUtIO3QK8tBZVWXwLwVQccy7UWGvpRBGBlPQyd4wKUxAozbjMMaYyKbGMi5RO2GI67rAyWKWfDQikItIhiY5Ji8znvblA69wUbrEkJUpoSs9MWaxfVBdQDOmEHaaiKYw1DPNRfd4nukFDN9hMN2qmp6GdqcZMNM3Hzz/Ah08/zoNPHWMwGDMYjbnxhkPcuryHXpYxlyTctHCYrMzpZUMefu4kTw/H5HlBksT89t/8b/ndJ9/Bcw897xbvq2NOfvg5fvOh4wTLXW658UpuXN6NFIJHz54H4N3HP8IPHPk2Z4hiCzpBl1bQJCszdjXnuThcd8dBOJCjpAM+aicjJ1zWnRLS7adyYoBS9TkmOkZLzXKn446pYSKprIaE06sbhN69c+wz2n7k+jdycXSRoxsneeziOc5v9RgNx4xGKQ9wjD9pP4wQgk47YW20RTtMSIKYcZGSlhlHt45x99LdtIMO2ssmldA1UBNCXFaUqb7PTeYf6xli7KQn0D9nOprjVXvu41D3AHtae5mN5upzwtiSrEwnr+ufI8WE1VRCeYBoa5bzsmtDBgQ2JFINOmaKQdGjl/cwHsTlJkcLxS0L1/M/f/de/uLmT/Lbf/J+OLY9eRFjnaulk3rUUn20dF83U/7VW96NsZb//s5fvAzISfHXuXLCF1aNd280xqCVrhfXSklCrZjyi0whXFHK+CLyQjtko5+Sl5ZOrIm1Y44CKcnKwt+nLUU56W8clSWNUNGNAi6NxqQ+XiDU0rE3pSEzJaVxZiZFaQm0MykJpaiZESFsveAfZyVJpOgmAQxhmLv8S2sh1I6p6o+L2igkDhRb45xhbnjouVVOn95k1B+RZznjjU3ai/PMzE9hrUVryexsQlEYkiTg2NE1RqO8/vkt/+jV/PrHjvPOxz/j7ruDTYqjn+HUyRimlpjev4/uTIs8N2yvu3P3xIkNkkgTBYqscP2BU42A0ijaoWYrzSmMrVlIB2Y/9/iVFZNlmThmSlnLKgPf23jFbMNJ+I1165Aq18yHXx290L8sz1dKwc++8gArvTGPXdrm0TN9zq4P2NpK6fVSjh/f4MFY+yJbyNYwI4k0SaR9fyJMNTRvuHKBuXZIw/d/7fwMn1Mw8z+/MD8YLr9XAix2Ir7xinmun2+z1I6ZboY0QuULiA7UWk/UOzWYA287mUDt4ycqyTBMWnvdWtPJQpPQkReDtCTSvtfTgs5L7tw1w2/9nTv53TuW+b3/+CE49/RkI/OxA3TWuoI/uLWXcHaEdrDN//mfHgD4HCDnej6/8nPTSwLECS6PFvh84cbWQuaNQsZ+QQoOwGUW2koy8r1sUjgwp4TwYdaTnqAS72bmwV0sBWPjtN8FAvkClqioNL1VtcG/ZyDcxVL4v1WsXIYlEZIZrWt3ykAIukohlGT9Yr82SymsJZGS5q4u0d4ZUJKZa3ahpxKy1R6rT1/ADFOCuQ6yEbgeueUDKCm48ehFPvnERSIh6bRD7PoqjcO7+JtH1zm6PuRUmnM2LRgayyP9jEt5yRE5hWpF3PSjN3LmnQ/x1Ikt7nzoMcL77iS6ai/9B55m11JC70yPzFg3PfjPqcXljkNYZ2VcnadSCfLc9YAZX3KqGIvaDMVrxEMxcbGsQLHEGaoAiFYLGSqGo4LyXI+5Q7O07rmO1swMIo6xZQn9PmxtYTa3GT9/ie21IScePEmvlzEwhlhKbnrtIcL7XgNSYbfWEbuXkVff5QAcAqGDy89FIUAobFk4Q5NY1n1yL3ruSoW87pVw9Z3uYs+zuiFXQJ058rlWbdaxfUq53+epj4aoqHs7OenBvWYQIcIYkXSww20Y9rFFNgGZYUT85u/h797yOA/8H3/Jn6z2GJlJhX1oLKYwLASqziUc+r+fz0p+9y2f4Ydb/wD13/8biFvueP11DAEgaqvry5zg/Nfa2EcIAhXQ7w1JopCpKELvcKxcnp5ibTSiHUXkZclso0FDRyhvEFGYgtKbnkghyE2BsYZIh2ipyU3JsJjIIGMdOZOT8nLAnpvCZ6hptA4oTF5XugrPwLWCFnuau+nnfQbFkEAGdMIOWgSMyhGhCrHW+Jwj7cxNggZJEPDmV97NTNzl5PY5PrOyQieKOTyzh0iFLCWL7Ep2AfDstWf54GefQgeauBGxkW5yZHaZV7zhVp4/dpaLlzbh4hAyQ/7sOp/ceowb37ybmUaTn7/nO/mDp+7nI88c48rpz3DvrruJVUxhCpaSJTbSTSyWUGmy0n1eLRTecByJdP10UDNYoQwZFdsuYmBnoUkIQuV66RZb/katBG4C2+FiJuDihXUs1mexabazbbRU3DR3E9+093U1I5abjI10ndXxKpvpBs9tnuDYxjkeu3ieC5vbbG8NUEry+puu5b7dr6Cpm3WEQCCiz9v7Vm2vsQblA+K/0GOlkFzRPsyB9pVe8ljU+wVrCWX0Oc+pXm9n1p7LpVP+d+JykwEBEoVWAYEMSXSLUTFgUAwovbwyLVMCGfA9V72GW/+rg/z6e97NsQ8/M4kksBb6hbvZzsZufwfSu1cCmym//sfvoRs1+Yc3/yyRii87ti/XIRA+p1JSmIKdmXGV1A3cgnI60fT7GdtxQKcREvreKSFgea7JWj+lGysagWS2qYiVk0sa3+NlrCXzIMP4hXagHNhLS4MUZb2Gi7Qkz0z9PAsTK30LWrm1hCgMpQHpZZJpbkgixVw7YpiVjLMSrQStWPveV1uvQUpjWR2ljHODlII9e7oY08EYy2i0yObGAKUESRK50ylQ7J1vESjJeG/BsWcvIJWk3Y548NwGo6xk4ZY7WL+wTrG5Cv11t4i/dIKNPOXwG+9lZaXH9Tcvc/z4Opurm5xIAg7unyYOFY+vbvP6w4sY60K8lRTkRUlDBGhvfLVzaClIcae3kk46mmUFZVmiQ107jIZexr9vyhv86B3L9mq9IAQnz25TlJY4cKA7zQ1TScDyTINXHJyBu6AsXb/iIC3YHhVsjjOe2+jzzKUxZ9aGPHd2i40NRyLccf0S9y5P000CWrGu73FfbFg7OUZfCMRIKTi40OSKhaZfn1v//IpNuxyYVf107nUnTGBpbN1vWL1ddZ5VP2slaEoHuKtA++r8zQpnpvP37ljmvivexD/7/QMu6iAduhcoCxhuuTVYa3ay3/MxWIvpb/Gbv/cgnVjxD+49SOzlgF+tGIKXBIgDd8+UvvLoZPJu0Svq/0OWl4yMJfKgq3KDq4K2K1CQe5lGxzfVGSD1fzf161P31Rmc6cnQTl6rcrnE/7wTVlq/IK9cJa1xr2NxOaall08qpUiUJLZuW4PALdYGg5ysdt4RNJREzzRheZnGoUMO6V+4QHjdIsHRSzRuO8LWBz7Ls89vM9V+jqt+8c0wPUvrb3wzr1lbQ8zuOLFuuY3Dd9zF4TRl9Lb3sHJ0jWYzYLuXsb2dYa3lxFOrXHPfLXTaIXMDTxsHIczNMR4XNKcahGf7CEktR6003RUjKqTAlpMKiFTCB36X3p1zcmwlrom3yoaCCdOZCVszqVK4QHZrDCKKUO0GWm3R72dEpzcQoUatXEK1EydNzL0EZKpD8oo5kiRxjJa/k4ilXc4I5eB1mA+/C9HuIm57LTS7jgn7AgBFKO0ZuS9leMpYBb7R2FbdvK5SJsTEaakCaGXhq85+Eg7jyev4l7yMkavfSjp2LG5CMoRRD9IhNgi9jlsirr2RV/7/F7jy37+Tf/f4Cmezot7vYwPrhQtdbyrHVGwXhgzL+azgj37743zf4v+I+qlfctv31wMhQGtV3zSMtWDMZZO0lBItJYFUTM90aIYhyt+Aq3kkUopmEDDMcwZZxv7uPFVAdS8bUhrjIgf841XNhCiSIKaXDRnmY/9ajjkurTPgyUxOTISxJXJnr55nowKpCdBkZca4HKOEpBN26EZdYu0CpEPlFglZOWFQjHceNBgOtPfDsv+8QnKou5+zvfdy9+5beGLtOT5+5jk+JJ7kF+/8ERLd5Iev/XbeePAeZuIZ+nmf3OS8cted3LPrLkpb8tbn3sUTly4Ra8259U3Go5TCGB44fZLXLL+CmUaD7dkuhSkJZIAQknE5ItHNWnLYDptsjns+3kHW0QqXOTWCz71zQLIoyvraqvrlIlW9XuLMZtQONqhq0Baw1R+SlSkqVETKyYzTMqWf94hkREMnRDJCy4DZeI7ZeB4tNPfuejUSQYnB2JJ+vs2F0QqrozX2t69gM91gJpqtA9K/2PirgJfq9ZRwfZqT2WQyH1dzc5UzZ0zhQaLL3VPoy7frhRX4ertCtNBEMiZWCcOiT2pS16/pzTYOdg/wz7/jzfy7Ax/gg3/yAFwaTVZdowI2UpgKnbEKwMCbp2ym/Iu3vIPd7QXefOUPoeRLZvnyNRtCCHSgCQJFlrqialWBrmRz4A3IlGBuJqGTBESBpBlOgEWsJa0oIC8tpSk5PNvA4IKqR2XhzZIc4CrF5B5uPdORm4KRVymEPkqgtNZJA62lIajXdpVRmmNS3ApMCEFeZ8FBO9Z0G5rISy939tTlpXNaNFh6Wc7Ffk6nGfLaq+dYGxZ87JlLtNsR21sj5uebhKGi3884c2aL2XZEqxGwe67JTHc/ncSxPxf7OXGguPfOZSJ9gEeeW2Vra+w6NNLCrXesZWu9z/JylyDQNJquQBv4NpHnVsd885UTEJNo7UBntXZ6wWVd3da1X1P1xwVlUaKDyXldxSkAdKPAsXPC9UAWvqXDrSFCNjdHpIXrL6yKi3npHEcj6eMddJULqFnoWIRocfv+6ZrpKkpDb1xwcm3I2jhl34xzoZyAssl2faFz8ksdO4PClWddq2XQTjMccC1McLk5CsJFRbz4dnzuz4Hy2aKBJc3Ly9Tyxlqune3yb//OHfzrK2f5yB9/ADbOTdZvo57b18mUc0mPms4vwZQUW+v86995kH3TEd93496vavzAS2IWFDhZIbDjBkN9QKU/qONxycCDBC0uZ8u0cBc1cuIG5FwmnQnKsHTPMV6yCZMbuNixSK7YONhpuuG2UfptqgLHXW6ckwcYL+9XuF74AktqnIQn9AyUkmDSnOHQ5exUUQitWKM6TWg0nLvi/CLsXgZrGY8/Su/+R7h4aUSkJdv9fPKhF/cgZhfcRo1H2LVLiNj3bmlNfMNB5PPrxLFi/m++EYxh460fpNONoNmkKAxT3YjgzpvcyRnHxLFGJSGRkqR56eWepl6ISiWQfpKx5WSRFPqJI03LuufNCBfFgBAoLRj7pt0qtkH641ZYW5tuDEuDGecoKdHdBmGoGA4L0sxQrPYxjYB8rY8MNUK7HgrRGyNDhQi1A2Zaw549yDf8Tez2GvbkM4i4gbjrGxHNqVo6+eUYNUMr1Qv/MGk8rh5jrQOf4BymhKDus6vHi2yXEJPnK//V59aJqOEnFw06xFaB76Zk4W+/iZ/74AP87l88xWf6Wb1g65eWzJTsjVTNsA6Nq0w9P855z798B6+/9kbkN/4g4oWf62U4qoUSTG68FaCrKt9CCFpeSnloehpw8kqz4walpaQTRa4qbS1JELOZ9tBSMchHBFKBhnFRUBhn4S49IHEukzmBVPSzESawKO9qWFcnET7yxPXAVayyFhoj3OO1DBgXY4bFCCU1iW4QqajO/spNRlqmSCExuAVIK2yBtSip6OcDjkxdxVKyRGlL9nW69PMB7TDh+vldPHjuVC3FnGvM042mwLp+tePbJ1hoLKClRgvNzQtXc3xjg/lmk5++5btIy5Q/eub9zDebJDohL0v2tNvcvesOwDkwCgQN1aAdthn6jLtQuWJDaUukkGjPhokd/zV0w0UXlGPSLK8PZCU/auiIvMxp6IhWEjOUfXetKQliUvUbDMekJqUyWwn8/iyMM/lITeoMQXyflhKK0ufHOSbLXctpmXL11PWk7TEu9HzGOTAK8VcCaF/q+Yv1YE5QzwOw4/u6duR74nYUsHa6RH+xUQFBLaSrfKuYUTmkn2/X8kxwx/LHbnwVh2dm+M0/+Ut4bmtycQ1y5wq6mLgm97R0DpqFIV0d8I//4Pc4/JOHuHPhnpc9E4eAKA4c42ap+9WFX+RWxibTzYipWPPqq+fcKS2Ed/GbnAvTiUZ5qWMnDOhnhWMqSkPg71tpYZACQqn8OsjlyOXG3cNHRVnPeYH0WWlMCibgQNhOAAPSedso5diowplSRIEk1C73rKppGuueYwEsjArDKCvpJCGhdtu+f6GNFJDnJVcvT7nzdhE+uH66zqibakWUpaE0k22pgMooK+h0Ii5d7BGEmhuuWyTUimeeXyOIAiLt4g2CMGDv7g5KCgrjtlsKHNvjXTWVdD1xxtoXXXMI4SIWZHU80hxTGpR2BX8hvay1MERK0Wo32LykUFpRVC6VyhmypaOUvDC+C8NJWwsvSayWIDURYXeALQ8y3f8k/XHBkaU2xjrWMtSSQE3Y3S/XeLEIgp0vv7OevXO80Cn+i42d/XrV6wZKoKT2jJzdEf1QMBOH/INXXcHBxe/gd373Y3D6Cb+OMzDY9AX43b7wjnPRlIp09QL/5N99isM/1+bWA1MvLyaucqwxO5gat/h3y5dqDPOSkkmbghaXRwgUpctoq/rQ+qVhWPo+ILwBivB5zdYSCvcalREHUOfOFUycKKWYyD0LX7IQHhCy4zGOnQNt3aI4tRZbGqRSNCQoLRkOC4bGdc8Z3AFQWkBZOmv77W2YmnHM2MYqF9ZGXFgboYWgV5RMRe6CpSzBNyWTZ+7x1dXq6XeaTVbWRlxYG3PNn3wQ1Yq4sDJk+UAXETdo7plyF3DShCiCYR/ZCBE7tM8NIdkSojZ7CbRrGDTePRKqvjgH1IZpWZvAaA92Fa6ZeeXCsN5fxlZuiRPWrj4W49xJRFoJjYai1xfkWYlJc4pRRpaVRJFyvXNCOLMYv8Ey0oRLXfS33429dAY76iOuuQNx/d1usmu0vqwTUT1BVGfLZJXvFn+XlRrE5bPUzt9Xz/082yY8kHMTkX8PqSFyuSpCR9jBpis/lKU7J8KY8O5b+LGZJkt/9FneszGsCxiptZxJneQ4UY6xGfrj+fgwZe4nf5nb33UIeeSul72ksspcKktT3whKYxA7goiFgFboZI+zjYTClDSDBpEOKY2hnw3YzlKysmSY56RlyTAfs531mY27WGto+ubp3BhKY2hoZ7YxKkZkJndyImsorWGQOwYP3FxWfZ+VWW2IUVdxRZWh5sK/lZD08wHjYoyxpbO6931eg8JZ+LuA39IXmwyDYoASin42rI0w+nmPp1YvMcgzOmGDC4NtxkWBlq6vSwsNEvIyI1IRhTdXqfq+2kGL4yurnFLrKPE+2lGDE1tb3Lq0RCAD9ndnaQQxsYrRMmBtvOoMW6T2DKOiGYRsptsoD1arfjgHJib9XVXv2Pp405l4yKpB311vSdBgPV0nkAHNxN+cpZh040tAS/KiIC1TBIJINYhVzEg6EGcwjIsRI4Zo4Zgnidv/jiGVKKnp5dvMRnPkJiOUEZGKvSNoTiC+Muz3ZcYDO+5bFWgTl93LXuR63ykG+EJVeCaVdYEgkKGPeNAMil4de5CbnEAG3LZ0mF98c4PffPf9bHz6rDM5ARiXjqFrh5M51RcB106v8ffe8mu87Ud3sb916Ms6n/+XNqSUdTHJeuarylcsy2rRKlhsBURKccV0TGktsVIOHBjDhUHKSi8jLSxjv/8HecG4NMzFEcbiWKUdcsrAs0dpbn1R3asCqA8TQN2/ZixkRenBgAWfEWeEAxwVuAIYWec6mZeGVqyd7HOHPb/0QBNga1yy1hvTagRsjkpnvuKDw9fXRzwfKqaSkFFWMhyM6/68VqzJChdTUI3SuPw7pJOf9jZ7WGt5CueuvbG6TaPl2LdmM8QYQ+ANQrSS/r1tvY1KCsgcmN3Zy1UNIRxwNL79Z3WYUZalyxz1RjUArUAzTAtipUiSwBeOqxPA2+ErxXg4Jq2uH6jZy6I0GCuxxhUPA6+KqrLUrJe7KiG4sOWUHtZaktCZg1T7JtBfgeLSjvGl5Mq92LW+83lfjCHc+VgHuKWXsvrYi1J6MC74piunmf3JV/N/vaXD4IlPOfBmjTM/2b7oGLmqyO0z7jaPH+dv//sH+dN/cB9XzCdflbnpJQHi8PfKfIfU8YV9kcZYep6Fq4wzqtDuSLqsLZDO7MK6frWWkmSmJJTCZ7454KAFbJd4NshVk+o+Lqr3nyyoq1DDndeOU2xaMiCoZJ/CSQSV15lXodfOmMVXslIXog0TABoGyrFHSsH2tjPTsBY609z+898B6+swGDB65izPPnqR4R+/m2xzSPPwEvqKvYgrDnlpnqz10ViD2LuP2990LU++51nOrwwYDrcYFIa9xrFDtjQOADVbbtFvDLrbQISaOFb0+mXNeCp8/IKWn3MxwET/OzbGVef8jqokq0I4lq1aLGgBgbj8WEsEI2MwI9/j02wSdhvItTFZbhgO8xqAZ7lBjwqXS1dYMp8PM7fcQd10PZQltr8FcdMZjYAzCPEVZusdnr5cTNMEzO38nfySJpj6MRWj8sWkCjsrSxZ37JO2M0rRTlJpiwyGA8RoAPuW+da/FTH/Bw/z1tXtOmcxtQZjJpV/iWPpDIYPbw048o9+ge4fvR3aM/8f9sjXz6gW+kXue07q4+T/LiWBUnTCBtaaWnJZ2gkYm4pbbI77nO+v08syZhsNpuIW21mfWEeU1hDryPXICcnKYMNFDyAoTEFa5GRl7gCMEJSmrHvWkiAmlIHf1omDYW5yrLVEKkJ5t0IhBYluooRmVAw9eCjpBC5IujA5mckQQhL719TCu0BKTT8bOXAnBA2d8HN3/ACr41Vyk/Ps+gmeunCJtz73Z6yP+ty2dISFZI7dzd3udXyGW7V9u5u7+aE7XslbH/80xzY26I3O0+8NSefnJ/LfIkPLgNxkbGfb7GvvJ5AhDd2gn/epmvpdrENA7CWOO//b6fC4Me65eVxNehmVUrSCFoUpiXRAI4kdCxfICQMOrgA4KhjkrlciwEk0hRBkJqtBKkBmMzBOwmgwdTZWpCJKUxKrBoEIvDmWP6+Y9E9WbpFfEVbuhb/7Ehi2v8pi5LLHWrcPEt1CC40WbhFa2pK0TEnLlL3tJX7m276ZP5h5kGfvf9pJKgGGhbs5JN7sxAqHEAw889hx/uv7f43/9IZfpqlbX/K2fd0N4UxKxqOxc19U0kkqwYd9C6JAsXcqvOwoV/fndqCZmQlZSFLO91NWernLqw0CcpOipaC0TiIZetngeprVAKAwlsJYMmO8GcoEzBXGEinnrLjTdt5YS1G6JorA+3QIC0I6QCSFkwEWPs831m79lZeWzIOUQAmK0ta/sxYu9nPakev3jgPFof1T9McF26OcXj8lHaU89oyLFNizxxkYzbQimpGuWTOAvDDMdmKuvHoPx4+u0N8aUOQFRV4QJ3ENTMvS0ooDxnnJgg8Utx4kZUUBiJqF1DvcjasxUXW5fbM6TjFe3VT1wymlaITKgSgpabVCJ90PNKk316gyzPI0J/VgxOLAcdVrFwd+8Wph7A1jSm/u4b66+9rGIGeuHfrcPu/Abi9Pn50wWl9egPKf83ovtib9Ut7DWpc92PAGSdX+aBcBWWm4er7BP/ybt/M77+k698rMG9VVjFyj44PJreuRMyWnHn6UX3jnDP/hzbfQbnzlW1JeGiAOyKyhrO+V/mzzQwlXrch9xafuofJ/H5SGsXFArJJahsIZnaxkJdUUX7NJSgCG9cIQS79Y2HEi16ycf7+wAmfC1S3BMYWVTLuqZFrrKksKiIRESlelSo1FlwadG5SqLgwo8REDoYQggNhVeeyli4gohqSJ2HcQ9uwDoHHFOQ7nHwZr+b1HV7j7+Da7ls6y9E0DSHyf2MzcZNGhFOqVd3P9vr2MH3qSYmtE8+pdiOuuxY6GXHhujf3ff88OFCUdc+gd26pJRuAAZ6sVEIZyMiGrCZiw1jIelQyNqYFxdXxiKQhCl1yUGlP3zDm7e3fEq544AJuXji5tNFDtBmGwTT/N2NzKvLJwYlsrhKgdnRbmGzReeSOiYjI3V2HrOezUnJMdxguTE27Uc5rmL7Nc8PO5Nf1VnvNXea9KVoJU7vOowAHTMsdWfXgetN/xI3cz/46H+a2jq2yXjg0urDv3J6y2ZVhaJIa3fuYcP/qf/hXqJ/8H10P4Mq14VwYBLg9H1NcGOAAnlaQdRSRBXD8nVJpAKowt2Ux7jAepY9isJdaaqTimG7Wx1rkwltZJr5MgJlBOind04zRzjZ4HTwMyU+7YJmen7/ruAi+rlJf1gVlrMZQOJDgeCGFylHIySiUko3LMqBiihKQdtN1re+CIBGsNgQzAQKRiGjri+PYJ5uJZGjphMVlkLp7DYFhKFlkfbzPMx7z9Yw9z3w/czAdOPcjtS9fWr7lzOSCE4J7dd7G/s5dPrTxGLx1xeGYvN89fz7gY86nzp/jJm7/VfRac7X0lqdRS+2KRdDlx0mXgaS9d1FJjrKkDsCugdb6/AcYitPQsBoRaMxV16ed9hvkYrV1emVACq4VrdK6KJ8YyLkdeIqocGJOaYZ6xlW3VbGC1zVJIMm9X3QlduHeoIhLdol/0ODs4zVXdawlkgJaTG35usst+/i917FxchSpG7sgyNL7g4dxTu/zQvffwrpkOD77zIRdDYHEySlU6xUF1g0idMc27P/Ap3n71n/L9V765lmm+3IYrYprLFv8VE1e5Ms53Yjph4MK9yx3xKFiGhWPc8tLQCCTzTc1MEtAJNetp6u4RxhIpiLWqJZJn+yM6WUCsFP08JzfG58kZ7xjg1m2Rzz9z0mImax9jfcHLyf7cEsQQBYo4VMhCIIWTSlpraUYTOXtprMPzXr6olSTSkkFaeLA3iSvoJs5gZCsOuHTJmZ5srm3z33z3NfzGnx8lDhRXLbUIvPww0I5RU0Jw5XKXhdmEM+d7pGlBkgQszDUJtWRttcfBQ/MUpeuNjrVglNvLwGD1vZaub6v6/U6sUUn5ssJwsZ+5gG+/A621hKHLiCtKw7gsiSMNwt13XGGjCqZ2zF2aT5i46r3TwvW5gWfnhHBKEqgt9xuhYmuU0wgVMy3HXG4Nc5Znk7pnrxoujF2hXiLLgReajX2pYyfoU/4YSVExlz42zBiWuyE/+W1H+OO5hM/++f0Tk5Ns5BzFVeWoK5y5XZnz/j/7NO++bRffc+Pey80AvwLjJQHiJA4UVYYilTSx0lNLfyJKBAW2dj6sGDmDZ8uwKCa9VpmZAInCWqR1CxQlXASANJbtYpI5J8XEAh8mICP0Ab5OHCe8CYu71kLheuKk316obt6C2FeEfYQgeW4uO6CSyswFMAbb78HSEvmjTxPOzUMjwZ46hmh3oDvtWDolKPspoRDEkUIpwWN/8Cm2soLMWF77U69D7NqNTcewvo45t0J2YYve2S3X6Hx2g3hxldEnn2TXdYuIffsdA5iNoSgoByl6KqHIvfZduf0VSkGSBK4Pze0swFdxSseMbfdz+t5d0gE59xkrEOfy8nYKZCs29IX7w0tCgwDVjkkSzWCQMxoV9UJaV3IMY0kSzYF7rkAd3I84eBjml+DMCezzzyHuuAf6m9BoXy4LDOLPcab8L3HUMsvK0EWH0J5xjKOQ2DzzUneJDQIOfP89/Ow7HuTfPr7CejHJT0ykqBlUYy39Eo6PCz72K3/Kfd/2Q4jlq7+mn/NrObRWKCXrAoLSqo4aUEqilGS20SD2fVW5KQmVrpm4qtKqhCAJXA9brLWXJjrGLitzCuN6upo6QTUVl4brnNpe8UUPQShVzc5lvudNCUkzaHhAb72c0J3npTW+D2mSo1WakkxkxCqioRs0gyaDfOAjCpzEbWJ24RwQq59zk3Fk5iDvfv5jXDV1JVoGrAxXaActmkGLzXSTSGkuDvrMznbZlSyhxBP8m0/8BRtrzhXyl7/7R1huLzMqRmykm5zunWN9tMWZ7U20lKwM1tjsbPLRs5/m7j0H2dvcixaafjGqP6MSyhuvuPDuUDkA62SXuo4X8B/CFXpsySAfsNLvI5SoTTakFDRiF/S9Pt6gnw1pNKIJzRp466vK6EQKxsXYSzElDd9T2M8HZMWofl8l9UR6awumoxl2J3sASII2Z4eneGr9SW6Zv7UGpDuH2tE/9l/6qHryKoltK+hQxRVURQcpXDHiB26+iygO+fCfPABbXpGRlZP9r6S7mY5LuDjif3jbW3jtT72GpWTv1/Ijfs1GdR8Et7BXenLOVHPTQieqzTEcIPOMk78XC3b0psUQKUleqYj8uiz3i/5ACaaikM00Y2XopHdKOMAm/b/cGOfKiwN+Uoi6QF7JJp2joLjMhr0oLeDCskP/z4E4t7C+rLdJOIAS+Iij1V7KXDviUi8lChQHZhtsj0vGhanllQBFYZiZ77K/k9BqBTz3/DqPPXmBdJTyjd9wJeNRjpKCQVayuuVyNIVwzpZCuKD0cxf7zM13mOlEaN8zNi5sLccceVWQkm7Or/LMdq7lq2NmPBvWHxec2kwnAM5YpJYkSUCkJeOsZFSUdcafEGJiPCZk3Qs58Jl2VeEq8D2Fg7Tw1xl13yNAb1RwcTjmqvk2gZbsaQZc2Eo5sznksO8tNHbS1wgONH+lgclXY7ywV04KF1sx0xQIkfv+whghUpSU/Oir9vMH8ev4xJ++HwYb7kXGfUi6E86pklxunOX/97uPcM8/mWPPTONF3v3LN14SIE4rSUNKhqZ0gJYJu6UFBFrQyw2hFORl5TJJnQ0H+Mw193hjLR2fdSLFjuBp60LAGxKf2waZdHlZZsf27AQV1Wu6ypL7fUVcBR7cNGRl1evd64ylBD/pSZQSjDNnyrI1KL1k1FcPgM3NlN39gTNYGfnFyrPPIK46wpn/+D4uXBpx5MgMzat3oRohp4+uszvUlAY2NlOmuhHPnRtzMSuY/a0PEseKc72UsTE8OczYF2lSY1kKNc8+eYEf6ae0fvbHYdc+eOZRABeOrZS72WYluW88zEq3hGspRRwpZKidBFOALQx5VjJOSwaDnF5ZMvA7J9hxjTd8lWJQOnPrUArS0lZeAR6Eu98rPBPn5aWqnRC3I8LtjCw35NaggNjngySJ5tAPvwaxfAAG2y7I++iT2GNHEa+4F7HnkHut6PILSYQxX1dDuJswGO+g1EEs7ncAL4xBSsTWBjYIWPze+/gZ9VF+/ZHzbBaOkRsbSPwJHgrhozHg/q0hr/gX/x3hr//ejriEl9doBiFT022Koqz7FFydQaK1Igg03SiiFTRYKzNHIJRF7QYorEXKAKSv7pUls3HX96k5gJGXOcNiTD8bMhV1iFXETKPLIB/Rz0ZYIDcl0pTOLElqtNQ0dESkQnSdDyZrBjZUrv/thUwdwKgY0wwSQhkSxRGjYkQv75GWKaWPKHCf0zL0EQSuDywiCQIeXHmYe3bdyW98+k84t7rBrQeWuX5+P0oonrm4yvRMh+e2jnFsY4PpdpPnjp5hfXObf/XRdxA3QlbOrzEeZ5w8ucLMXJfxOGN59zzPPH+Gn/ruET9xww+w0Fji4miF0pacG5xjd3M3gQwpbUlWOqOerMydZDWKaehG3VNW9WZZLGmZMixGjIsxq/2BX9yoGpQnTQf++nmf0hoaiZNfSyEppZhUWX2/zKgcu143QMuQWMVeJlmQmRwlFAGCApfNd0X7AHua+7ybpeSpjUf55IVPc9/uV7LU2FP3pe0cXw8s3M6xE8g5U5gm841FpDfn0UITyC2GcsT3XXsHUgruf+vHJ4zcuISmX65oAbkzOjn1+Cn+9Wd+k//x7n9aO5a+nEYz1MzOJuR5WcsowfXxBoEiDBVLnYB2qNmuQu79ojWQomadnPESmNzWrJ3xyqasLFHC9cm1QucYOUXIqHDAIrfu0tB4QKek74eUhFL6S0fWayMh/LpIiprRqY2icGuOQLnHtD0LNcxKRpkzTamknABpYWuW6OLWmGasiWLF9rjk/Q+fpddL2bu3y+J0g/37p3j2mYvMzDT49PltxuOSxcUWjz58gnR9nYce8zlwG9tYYxmeOYGe202RF0zNT7F5+iy7v/NufuP7byYvLb/20eddESh05+V0otFKUnpZdeED0uNQ1f1pVQcE1reFlJZhWjDODSubYxDUJlpCCDodF48w9J+9mwQ1YFBKUVZFc58r18s8iMOtLRuhIvcGNlXsQQXAtkcF66OMaxY7zDRDpBQ8t9LnidUtbt89w3z7xQ3gwi9zb9zXeuxUCwhRxXEEdd+gEoKtLCOQgh9+5V6U+iY+9ta/dIYmpnRfqww5pev+uAuPP8Gvf/wQ/9Prj3xF99lLAsQFoaQba9KR0zbvpGoC4ezrq1w1cHN4Yb1hmBCXNasZ6/6mgEFZumWtdcAv82yctO6DGy+9bClRA70XGxJR969VTbwVa1EtnbWWBIGsLffzvCRNja/iSOJY0e/nXEjzOqPLSTJdc22+OSRcWeHk2x6i3Q7oKIk+/jx7f/Rb2P30szz4jic4+8h5DsQR1928yNSFPtu9jNObY8yWrXt1nhiMeOrSxMFy7C1+JYILeUkkBMNeSmtp2fXB5RmMhk6KWRQILTFp7iZbBKESNErBdCckDCcORS5ctCTLDaNRwXZpGBkna42kk6BmfqJq+Crg2JpaBlvt0wrIhUIQ+Z+Lfuq2RwgnqUxCmokmz0sGheuLbAJxrDj0zdcg7nsd9lMfQVx1HTz1WeyxY4jb70Jcc5s7N5KOo7y/jseEkcOL7ZUzcVk8AFGC1SEEISIIIR4w9/2v5WfM+/mNx1bYLBy4zoxjTQvPgGcGtq3hT9/+GN/3dz6KvPWbXpaSylbQ5LrFBR4ajhkOU4wxtXOYDjRJoJlpdGkEMXK87eTfdhLSrISzlp8wM5ZW2GRtvEWkQgpT1mxcPx96F0lNYUpi3yNnrCXzi4O8zLG+N05L5XvNVA0ElNSUPjPKbYMzNAlUUJuK5CZ3vXYmpambdMIuUkjO9M96a3F3E9NSMS7GhGHIucE5fuuRPyP2JgcPXfwsP33rd/HMxlH+3cc/wFvv/yT7lxd57TWHOdvr8SdPf4rnTzi5qATCIOCpZ06yfcIFdGMtjEvWx45peWZzAEpwrt9nOpqhMDmpSdlINyhsSTNwfVWFLWrTFe3ZyW7YJZRRbWwihKSwRQ3gtrNtcpMz6I9Q0gFvY1x1v9V2/YAb421KU7pcJukWRmU1yTu6AbRkfbQF/tg6NjCmHbQwtiRNUyrRqxaamcYM+9oHPSMoeXbzCT509uPcu/suDravog7n/mqdzF/DcRmQQ9BQTeZjB+IqOemW3CJUI37wuldgjOXDf/oJB+TA9cM1tLvxa+luoGnJb77zg/zYdd/H1VM3fG0/4NdgdGPN4b1T9Hopg0GGKQ3GGJR0AK7dCNjXjYmVYiTLGpxV3gNaCioFXl6W5MaZnqyN0xrkWRyDNy4MWhjXj2YsoZK1OYrxfcDWVqxe5QBY5cP6Pi3l3l94RkjgTM+qxbLbDgd+itIQBwrtjdoq07TAv4ZWgplE0wg159eHHH3uIlPTTW48Mk9vlHNgb5c0L3niyQs8fGmDxb0LvOK2ZTYGKX/0sVOcObnqXCCNhSDk9LFz2JXn3c6wFoqMwrhg583tVQgisrxkphVydLVPXhqSyEUhbI8L5pvRxIof9/lcdIP6HMt5ISDLDeOsZJg6Q5aNfooONGEUOqWHcC6aUgiGhZOiN0LtjLaq15OqDntXSrGZTjJDrXUAPQ4VaWHICjClJdSOCT3dG3LH8gydhruXPH9xwGcubHDr4jR7puP6uL0cbvkvBuTm2hGBkmjlWF8lJIk2/PgrlzHmG3ngbffDcHPSDxc1vVto4Bi5bMh/+uOH+du37uWqXV9eQ72d40uGh0IIJYT4jBDiz/zPM0KI9wkhnvNfp3c89h8LIY4KIZ4RQnzLF31trdi1lDDtQwyrgpISEIYKKYVzlsRNBBMjDP/PS/J2SieVEGx7/XcFJox1ZiP90jIsXSh1KF3YdygEiZzIKY21tfxvaAypcbJLx+w563zrJ8Nq3Vxr/0NJI9YkiSaKXMU3ihTtdsh8oGlIWVe5cj/5DU6ugbXMzEQMRwX6yv3YrW04fRp1y03c/TOv587dXdbygv/nYye4eGlEo6H5dH/MI4OUzw4ynhvlHB+7cM5ZLbkmCTjSCFiONFrAGxe7/My/+gkWfvWfQX8LTh2DosBubiBaHVhZQXcTykFa2/4LIUikotMO62gBEbjm6fEwp7edsZk7ljH3+6zqr6q+JkqSjXJSYyfSV4HvXawe59k44QLD/YkEcYzuJjR8ZtDYHwshYdeBKcR3fB88+5hj4s6exDzxJOzdi7jlXufeqIKXF/AQYtLnJyTECWJqAbG0H5aWYW4ROtOIdoeFH349P339EjPa8QrFjuNXneeFhU/3U4b/8//iNOAvwfGVnJsAYh3zyj3Xc2BxjtBXXZ11tyQMA9phxGIy66z8ayDlWDblrbiV792y1oV5h0rTy4YoKUmLjHFRkJc5/WzIxeEGq6MNBtmIUAZ0ohbtsEk3bBJKjZSKzOSMy5yttMel4TrjclwzcC7Q2e74z9SAUiAIZUhTN2nqpgNFpvBh313mG/M0VExpCg/0SgzO7EYKxYGpKUpruXfPrVwabvCZS49x8/z1/NIbfpS7br2a9fVtfuNP38eJ1XUKY3j2qZM8+/QpLj1zgfTEJttnXE8a3YDmvink/jathTYYyx13X8e7/8m/4F+96udIy5S1dJXtrMeJ3kn2tvZgrKGhGxTesKWSUSY6oR22iVXsnTldL2LmAdxWuuUcPsuM8Tgj0Ko+fkpJ5jotsjIjM753LYrAS9HwbrwVcFBSMi7SiWxSaBLtGE0pFLnx7pVCEOuYQ92rsNagZcCp/vO85+QHOTx1BddN31SzbdVxeTkMIUTNYgJEqsFUNMtsPMd8Y47ZeIZm0KQZJPzITffxDd/1CuiEeImNc6/c6XpWWMYnNvhfPvnbZGX6NfhEX3h8peemUEu++eoZFzgdB75f3Em+kyQgiTSLSexcEP36RO8ATMK3h1RsWOGZsmFREkhJbpwcsbCWcVmwlWX0soLcGC/vlrQCTSvwhkvWMixKMmMYFSX9rPA9Rl7W7MHZCw01qtyvQEti74roeuUcGxKHivaO3Ljq3/5Oo7a/T5oxve0xeWHqcPBWHHDXrXu58pplept9/uztD3HhwoA4VmyfeJ6NY0fJTj4NF57Hrp51C7lGB+b3w8wemN4FUnHNN9zBW37lB/mlb72Gj59a5fc/c57FqQa7p2LWBhmjrOTgdAOBd97WE6YxClzCWcXCCdxnH+WG7VFeh08PxwVKK+dOqZypyUI3pvSulwLBTFPXfdjK9+5WBihSueNVMX1edVqznnlhallqf1xw5XSLbkOjhOD02pBPnF3jquk2hxabBEq+TGakyXjhOlFLQTcJmGqGdJKAmUZIO9S0g4C/e99+7vnu17jwb6UdaCsLB+B8xBOmZHz6eX7lw8dqQ56vxPirMHH/AHgK8Lwh/y3wfmvtLwsh/lv/8y8KIa4FfgC4DtgN/KUQ4iprbfliLwpu57WumGN3YcjO9umXzuRES0EYSu+yJCnLHXllOPBUB3hDDdLAOV1mxvoMt0nv3AtHKKreLVtXqKpRmZxsFoahMMReOhlJOQF7/rHGWEzp7MGrEeiJI5GUgm4nZHYm4ty5Ab1+6eQ8uAt7dXXEdL9PnrtG2fLYSfRdt2FXVjCPPoaYmaYoXYj4sVHB2XSbm4cRBktbSuYbAZmxTGnJtjf60EJwQzPiij0tFt54B+Kqq6HdhWNPYi9ddD12MzOIuXkoctJnzxDtnaH3/CVvauImgW6saTQDZDw5XcwwYzAo6I0LhsYBuEoiGgoHjAsvmZzSmvWNdIcrJ/UxDPxzAg+ipZgYlSCd4YuItOuLTA1jYwiEIAoVyWtunxysosA88ghiZhpx+z0uwyNPEc2uAzPZCKvDr4s+uC80akYOPQkajydWtzZqgM8zE2HI4o++gZ/6nXfzG4+t0C8NmbUkPrvO2cxbMII//tgJ/tYj9yPveMNLERR/xeYmcLK6OxbuYHW0wcZ4zIUL6y6UVStCHwIe64jCuwy6cFUHpCsHycqxLSsLL6MpSIuMRtymMAVKulw213BeEPgKa6RCpBCkZBQGCu9KWd1iR0VKVhYM8hGxjpiOOyS6UYM2Vx23FKZECUVBgbCiNv/QPsS5tCWJTtjX2oexJSvDCz4429njVy6Xwzwn1poLw0u84cBreHztSf7ixP1c0d3DuCgYjzOysz0+sfZZlg4uQmFRnRDdjjHG0mrG9AfjuuB1aN8u9u1f4vuvvYtrp6+mHbY53T/NxdFFLg5X6UZtruweItFNcpMRyZiN9Jyz7BeuA7oTdpzjpnQMnMWQmYxROWJYDBiXY3KTu+Pgj5uWktyWSCk5OD3NdrZNWuRYnPGMUFVvroBQgpRo5Xoj6/41v48DGaKkIi1TBsWQ0EtPZ+NZAi/x20hX+fMT72U+mebuxVfWv38xi/+v9+GAnHPtxFoiGUHQBRx7qYRmI11HCcWP3/wqhIAPve1BZ2hSWGdyUvo+xdxAAX/0no/z83c8xbVTN73U5qev8NwkuHPvLJcGOduDjLNntynywoVRx5pASRrauRuWdtK3tXOUXsiUlxNXSWOdG2I1b7k5DMf0WWebH2snmxwWBWXFxDExQ8tKw4bJGJdlDfYqQCHFxOCjcqq0AoRw2yg9OKk+o5Aw0wzJS8t4UNZrjYUkZroVcn5TUviF8rMnNrjpqnn2ziZs9DMKYzDGko5TuHicox8+T7R8yLEnzWmY64Cx6CShGA5BKWQQsHDFYQ4enOHbb15isRVyujfinU9fojfKaTcCDs42ePbikP44pxUHHJxueedHd9u1FpqRIg4qo6PJyHy+XV5W605L4YO+tWcHpZIsT8XucT6WKtay7pnTO9QEOtAexNnL3qvax1nhQHUoXXZcWhquXGohheDidsoDZ9ZYSCKOLLVrULxz7HQX/XoeFSNXfVQtBa1IgXWB82HqzLACKfn79x3AWvj42+6HdABF6ti4Khu4dMqZd77rUX7+voNcs6fz+d/4P2N8SSBOCLEXeCPwS8B/7X/9HcCr/fe/A9wP/KL//R9Ya1PguBDiKHAn8MDnfwMI59pMlYbp7Yzh1riW2Cklyb1t6s7mbykuz4iTOBOxCkJVgAEmMsnLDDT8cyu5YSWnrADh5Y+lfmxmDaExhFLSkIIIx6pZaymNQElLURhXxcUbBwnXYBqGknCxS2dQEA2zOtZgaAzN1DA+tcr0rft57J1P0nx2he6tOWJ5H+LQVdiNVRYWE8LVPjOBZNpXqXaF2m2/ZwmXwoBXLXeYv+cw4tbb4YojsLmKffyz2M8+jNnuY4sStXsRpqYQ3WnQGrtyEpPm2NKwuZWRW0s7UCSJppkEjoVTEozFZiXDYc52L2OzKBlVfXBMGLjq+BTWMtUNObc+vuw4KCojGVsfx4lbJZCmEMegNTJwwZcVuBMIulMR4tob4ehTsO8g9gPvQTRixI23IBaWnSNjGIMKsHmKKCYyg5fFEMKBYGu9u0zTB6GHLkcOYH0VISSLP/ZG/tav/Sm/c3Ldn+PO6KRfVsUPy2ODjOH/+q9p/d5rJyGXL4HxFZ+b/JhvLHHf7rs527vIR/sjrLU0GpELqC0KSg90nMtkxdJMboZKSNIyI/dW3KnvnbPWMCpS35cifUO88k3ognGRkpbOvn5c5hjPjCnf+7YzhmCYWwpTEKmQZtigFTQJZeidAMtablmFcYvLts8ZTTR0kyRwoD9UIaU1jIoRiU6IVMh9yzfzbz/1HlphyG0LN3Pbwi3cMJdxtn+WpVaLp4SAbkjQdH1lyVyLonSN/saUTHda3HrzVXzzwWu4a+lW9jT3cml0kUdXH+dDZx9ga9wjMyX7O0vsbe9if3sfiW5isYTSveZ2to3FEkhNqAKauukDtl2BxkkoB2ymW2ykm/SzgatWC0VZGgfidMWoSg5O7WZleMFlvVlvi+4dQrVStTmly36aRCQo4RaxlSTSVK6AOOfK+XixdtN87+n3EUjNfbvvpe0By8t5CCEQ1q92sUQyRgWTjD8AwQZaan7ilm9kOBjzqfd+1oG20jggV0URGEt5psevfPI/8u9f97/U58HXeny15qbpZsBrDszx7KURW1tjytLQaAQEStIb5eTlxLDK4hb4lcukc5V0Yd2Vdb7LqXQ/j0vjgJdf3Go5cV4d5mX9GrmxFJ4Fqhi5QLrn5cZ4V8mcSClib1pihXea9J/DWFcM9/sOuaMAj9/uypgj8LlsQsDhuZjTqwHT0w1OHb+IkIILWyNGWcH+uSYL7YDeKOfsyUukydSkf2lmNxT+HFKKqfkpDl91mG84Ms8dezosJDHbWc7DK1t85PgW/XFBXhr2zyYoKXjmwoBxXqKV5Mr5BtPNkLQwNVBuhKp2pazIgYqF640LeqOcUV76fkSnQAoCjdYSa51a4NBszCB181JhLJEWBGFQA7fKYKvKlotfAMDcPcb6uAa3vwZpyUwSooRgmJU8dHadSElu3j1FK/5cSGAtX7Xg6pfCeKG0MlCSTiNwWYX+b1vjHCk0P/OqA2xv383j7/+4c6bMxxAmTlYJYEryc8f51x89zv/+PTd82bP24Etn4n4N+AWgveN3i9b7Y1trzwshKv/2PcAndjzujP/dZUMI8XeBvwuw3HSL9WChw67d2wwGBZtFgRLOPnc89iGOxtbgrHKolO7FLrvY4XKAV0n4doaDV4zdzjgBs+O5oZjINHeOyijF6cAFqbAEQhAH2l8sbqcGgSCKFEVpKAtDhuvhUknE9GILvdKvwWNqLHlecvHoGst7Z4hjRbzUxT75FOLGG1wQeNygddcR7hjmRCe2eHaUcjotuCaJaEhJag33vPoQ0U//tJPT9bdg2IdTR0EHiL37Yc8yKkshCLHbmzz1q3/KvkPTNL/zNZTPnyQ+ME96Zp2tLSdLSRJNpx2StCNEIJFaUY4y0kHK1nbGWpozMhXrB5Gf4JN6InEALQgVa36ylDgJaygnwK2aH1x2nMAYYDSCVsuZrQhBlk0AnADaVy7CcOAA3KOfhjRFXH8DHL4B4iaYEhFE2Dx1jJQKvu5ZuJ3DOfl5vrq6g4QNRNM/IAixQsLmOgQhR/7hd/HG//EPeed6b9IvISbXR2Hh3R8/yfeeeBxx1e0v8o5fs/FrfJnnJrh8ftq7vBeFZH/rCu7bezsr/T5HWUUHiqwsvRTShT1XQACopUJKqjonDKjdJt37SEoP7CqjEnCMXeqt6UtTMizG9eN2mpUEUvk4jwo4KgpTOudL47LnQhXQ0A2fM2ec6YE3kyiss2uvnCmlkLR0G2MNQ++2KISoQ8Rnomm6Scz+ziJPbTzNdTPXEqmIA50DvOFgirWWT7ee5+jJc6ycX2Xf/l00mzFlUfK9r7idH732BwlV6OWLGVvZJrGKuWn+Bow1pGVKpCLSMuV/+Ojvcs/yAb7vqjehhGK2scioHLKdbQPQCTs0dIOGTpzxihCUpmBcjullPbayLYb5iNyUNKRGS0VelERB4DPiXJFwIZnl4nANcHN+MwwJA+XlSBPgppXrpXM5gCXKTlwwszLzPSgO0CW6gRSKQAR8dOXDrI+2uHfPXexp7r8MPL/Q0OTlNCqjHZfhB4EMaekOIBDe9Gcrc0HuP3PPG/jn69sc/dTzE3pByzo+hcLwrg89xNl7TrG/dehr+bF2jl/jKzw37Vneh7Ww0I1545E5LmyOOFpams2AUVYwygr6eeHYuB39ahNzE1mzaNXYGUqdl8a5QEpZAz9nKOSF2r4tZFy4Qk2w47GundQBOuuFhMOiIDOCRqlrB0p3+CqgObHGr6SH4H6X54bK9dHYiUnKTQtdHjrVo9UKUUoRxwEXLg5QSy2eXelxak2x0G1w6x0HeCwK2Dx9lnRtlal9y4RRSJEXfOfrjvDTr9jPIC14am2bDx7f4PzWmMi7fbrttERacnZjzPs+/BydqRbXH5lnqhnymv1zhFqyNXRzdjPSNCP1OaynsQ7AbY8K0sKpNEK/XspzQxS5eccYS+SlsJvjvJ4nYi0JI8/iS1G7kVYS2koGWSm83DGcMKQAG6OMK+dd8NZT57cZ5AW3Lc2w0IleVA/wMiDgPmfURjtVa5cUJGGVSer+PspKYq347950hP9mc8SZT39mon7SoQNyQkCZ8+fve4qzr72SA/PNL/Cu/9/GF4WFQohvAy5aaz/9Jb7mix3yz7lTWWt/01p7u7X29vlGCFojtCZc7DI/36CrXK7YaORyTKoKktyx6Ae3yByWhqFxfW7V5CT836oP6HrcnLlJBZ5M/XvfyyZcQHhHua8t5di22P+LpCAQ7p/yLNPYOPOS6enINUB6Y5Nmoml1I9qtgChSmNKSpiUikCQ3HwRgZCyp7/E6m+WM05LR0QssXz3Hxz5ygmfe8wz2+HFsljpqds8epq7eRSgFe6OAn/iWI2gheHI4ZjUvCG+/3jk0njsB65dcaLgOIMtclaASSfe3OfPv3sXRnrPKZn2d/FIPoRWrJzcY+M/UaLjQbxlrRKgxRUk5SOltZ2z0MrbLst53gRC+188SCecyGUtBV0tGo4KRMbWbaGV3DJM+uNDv00B6+9vRCPLcsUlA6XsYjXX9jnq27bTIF8/DmTOwdy9cczNietHZ65cldjSA7TUXnxC8/JzLnLRSuv1UhcAHIaLZRcwswfQidKdcRuHcIq/8R2/knk6DUAoKCx0t66KHwfJIP8X8wW/VQelf6/GVmpvg8vlpbn4WhEDLkOtmrucVe46wPDdNEGiy3EkIC1O4JLbacdL3p1nDdtpnOxsyyJ20pzCVbMlgrZuzXO9JTj8fMSrSifFIkdUALtIh3ajNbDLFbGOKhWSaVtikE7ZoBDGNIPZGJwopJKMiZX28BcBsNEuogjp8OlYNOmGXTtCp89cy4xwfp6JpAhmQ++DvtEw5P1xx81rQ5JV7D/EfPvZh/vDJBzjVO13nvy239nLDwl6kkizOTvMLP/TtRKHm2WNnOHdhjTt33YjF0su2GZcjLF5KhwOfDdWg6w1WfuPhP+Hoc2coawMTt+0ro/OMyrE3XQrRMqChGr4PzjAux4zKIZvZlo9OKKiCwLXQZFlOIw5rV9F2O0Eg2E4HWM9wJoEL8C7KSYxEFTNRKSxyO1lYWWsobEFuCv9+LnogkCGnBsd5fPVpjswc4uqp69BC18Cvykp7OY8qjF04yQpKapq6zXQ4w1Q4RTtoE8iAqajLf/OG72D2yKJThJReVqk9m2csg9Nb/PHRd7wk9ulXa26anZ3zDpNw9UKbVx+Z5cBylzjW5Lmh38+8NNIZiQkmAM5YSz93IG+Yu3VW6YnOwrM2Srqw79Ja0rKszUuq/LjMGNcfpySdUNMJA2bikG4U0Aw0SaBoBZpIud7gQEq0kKSmZJC5glcr1mjfSmFxrE/pgb0Uorbhd4DH7aZhVpIWpo6euvuKDu0kpDvT5tyJC5w/s8aFSwNGWcEwLdgcZD7iQNJcWODNP/qN6EBz8dgJNi5tcN1SwgdPXOK3HjrDXzy9xoWtFGtho59yfmPI2fUhG4OM9X7Khx48ydbFdcrSEIeKg3MN9kzHbI9yssI5QFY9cdarrdxncYCqNy4YZWVdzNPSKbXG45w4DlBKEkWaTieioZTf7w5cdyLP+vt7SNU/V/XICSagS+BZOGP9PpyAknasObM+4rmNPldNdViebdQgb+dJ9/ItMbkhxI79KZzbZwXQ48Ctj2biiP/++6+ne+VVDryVBcQtt+byssrBqed55zMrNdP85RxfCrd3D/DtQogTwB8ArxVC/C5wQQixy304sQu46B9/Blje8fy9wLkvvBW+jyfLEYFiZnebXUtNwlB9zofemelQmTGAYwpKKtdKwcjYWpqXexlB1SdXWMfEVWHeLSWZDRTz/t+M1sxozbRWTPvvO0rRUYq2UjSk9PlwTi4QCsHMrjatVkgUO+DTbAaoJCRIIprtkCiSKC2RjRBx8BBtrS4DhErAcFiwsdIn2jXFTVdMcWGQceH9j8Nw6Povopjgnju598fvA2D12BqPDMbsiwK+9wduQywswfqqA25B6Bbw1VABhBFkKYN33M+JCwOum2+R3Hcj44efJj4wz/jUKpcuOfOKVqDoTMWoJEJohc1LzMD1wW1spqwXJak/NgpoeHlpYak/kxTQlJL17bRmPrXfX6FnOXeyPoEQ6GqBMxp78FlissLJAXDRDYEQdV+XfeQz0OkgDl+DWNyP0CE2G8Oojx362IS46Sjul9mwVZX6heuDsAGNDmJmEaYWIGmB0ohDR/i2v3UX+yNdA+5EiprlGRrLY7/7gMvde2mMr/zc9ILRCaa4a+k27th9BXPJ5JzKTI7B1KHdLoh7UiVNi4JBltHPMrSUDPNxnZ9UsXm9LGWYO/nkqEhJvSSjE7bY017giu5uDnR3s9zexd7WLpaaC+xpLbG7tcie1hKLyRyzjSk6UYskcMHclYX7TDxHUzeJVEQkIxLdJJChYz+CFpGKCUSARBKrhKY36whkQChDQhnUssq7d93Gq647zLkL6/zZsY8zKkZIJM2gyev2vYp/9sYfRAjBZy+s8Nxzp1mcm+Kf/+D3s6e5h3E5QsvAsVT+q5LK5725vsJ3Hnsfx85c4JbrD/FtB7+J0pbMRvP0820ujVYpTUGsY5q6VQM4aw1pOWZYDNhIN9lKt+hlQ3JToqUiVm5fjNKMMAq8uYlkarpNWqY7pJQh7TAhCLQ3icDLKmXdS+cMIDIXVoytpbRVTyQ4UJqWIz545iPMJlPcMHsDiW7VPXCOgTL1lfn12G+yM0z3C/19Z6YfQChDGt4xtRt2aAYJWmiWW3v4R296A2I+9vaGAgLnJIoQkJX8/iceYFQMvpIf60sdX9W5SQjHFNy7PMu9h2eYakXOsVoKxh4EFL6vqVK/lHaH82RpGOcWJamDu421pKVjSoe5MzNJS8OgmBTWE62YiSL2thJ2txostWJmmxGzzZC5ZsRMEjLVCJhNQqbiwAM6B+RcD7ADa5GWPvfNy5V9D18lAazY2iTSvijjAr4DJQmU4Kb5KQ4ttdm3r8vM4gzj4ZiVc5uUXkaYFSVJpLnztmWstRw9t83qs8+RzM3xPd95Gw+e2OajxzYpdzBjWV5icdlhzUgjBTz7/DobFzfozE1z9eE5GqHimw/Oo5VknHtmTbttq0CpOz6uL60CcP08p/TxDoF2rGWaFkSRQmuJ1pK56Yb38nH7QglJrBU61FhjXd+clJcZnQRS1kCtMpPBWh+uDuOypBsFjPOSh1c2mI4D9s40iIJJvuDOmUjw9Tk3fbHx+eYuZ1YjacWaVuzY5EBKDk+1+fvfexN05xx4k+rySKZ8zO9/6CR9n1f45RxfVE5prf3HwD8GEEK8Gvh5a+0PCSH+V+BHgF/2X9/un/IO4PeFEL+Ka9A9DHzyi25Jntc9WcFch+kowNh1VlfH6NL4QPDLd6wUECIcWWOcpCjHnfBV0Hct0avB30RW2dEuny6RjnWLlfQXkKg12UBN25eFZZw69ikzlqFx/WC5tcg4YHo6Yn19jA6co5nNvF450AShy3ERUQSdKebmGqyeKxjtuJFtFgWdtGTw1Dmmb15mdmXIk2e26X78s8R3Xo/odh046/e5Zq7J0fN9Xjff5pqf+Cbnzqi1+7s17p87aA7wpGPYWqf3lvfysccvcmS+yYHvvB1z5hzBbAuk5NKxdYbGEArB9HSEakzCvc0op781ZmNjzHpeOAYST+MLQUspgsAFWio/cWjhZJMXfQBlJblsVhM1k37DCvSVQJ6VmHGOynMP7ks/qbvX6EQalpawTz8OSiGWlxEHr0Ukbfe5+5vY8cD1bukIkXReVlJKmASi+h8coK++gpPYNrtgSmyZw+YqjEeIV30jP/jISf7NJ06S+ey4oZmY/jy4OeDGxz+GeuW3f+0+nB9ftbnJvRlVmPa+1hXcsytjkI0YFafpjZ0VdeEz3HaOQAYILWopZG4M22nKdtonVIokiIn1kHFR1C5tSkgiFdKJWkxFbaaibu3aV4GWykq/AgTGGgqbM8gHpGXKuBzTzwcMiyG5yREI2kGHft5DV9JDW3oWJEQLBxidJCpgrjHHRrqJxdYRBtvZNu2gzVQ4xRsO3sMTFy/xqWePc/Xsw9yxeDPtsI0Uku2sx+Grljn2/Dluv+Ma/ulrv58D7QMoqeu8OX/83OdAY2zJsBjwB0+/g3d+8hGuPbyPv3fzt9EKWiw0lpBCcmG0UsstZ+NZIhWhhQYsYw/gtrJttrNtMuM+j5LSy1QTennPSaKiwBmcKMlct8XqaNMvDCM6UYuszOuFSyWnlPLy41raspZ7GVvW7I+WmoaKmY3neXjVkTBXTV3JQryrBnAO/BkkjoH6ejU1+VIWf7WRAAIrBMJK37MVkOgWxpqajc1Mxh1LN/HdrzvFH//xh7zJiYRMgLCQG5589iRHt5/hptmvreT7qzo3Qb2+WZqK+cYDc2yPSx5KC4bjgnHpjDG0EORM2JVgRwB4ohUSQy8t6YdOEhgpRaxKMu9oWBhnrKGEoBUEdEK3kK16v6qs3Epu5mTHE5OPtHAGI3npTD1Gfn00zkti70Lu2CsHPrFgxUQG6PYlNGNN2s/qHC+88uebDk3THxeMxwWjwYjt9W3OnUtYXGzRbASUxr3v4Wt2c+zoJQ7deROvvX1vLYFseNKgKhhrJZHSkheGcV7yxDOrnD1+jun5aY5cs8RMK+Jbr55jebbhzEcKQ6glSaQvC8OWwgWZ930fXF6Y+jNpKWiEiv64wJSGIFCMRi6Ye/dMUkcLBFJ4B1B8f7FxMQN+ElJK1excfdvHezV4FrM63rPtkKcv9BDAwakWM63wshmoBp47XuvlOF7YGydxoFxLQSNQ/ly2jLKSojS8/tA8j3zrzbz7Lfc7KWUQuzBwISAf8+zjJzm1ehvXL3e/rNv5n5MT98vAW4QQfxs4BXwfgLX2CSHEW4AncV4jP/XFHJYAZ3WflWAsIpCEu6aYTnPyzNDr53WA9lIYsAhsFKVn1gzjysxQgPMrg652Wu9AOPOMrAIVHtS1lKKjFa1AEUWKMJDoQNbVV2svT7Y3pcUEltDT2WXpevXSwoGZk49fYM/eNkmiGQ4LNjfGZJmj1tvtAK0lo7R0Zh3DPmUxcZAEJ0/IDGxspWglUCdWufb1Rzj6ged44IFT3DXOSe67GbG4RL7eZ89VcyzHAdHrX+vDrCNfnVRQlk6KWI08w66vcua338Pq6pg9ScSBN92C3d4mXx8QXbXM4JPPcGZ16CIBQs3UdAzKB3R6ALe5lbIxKuh5GaWAWjZZNfCGnl3MhEDj7rP90jk2BcJlwYVikg8HTk7pqP/JhFeOc9Ro5KpIw5Q0dcc7EIIrDk25z7qxATMzcOhqJw0UArtxCVsUICSiYh+/DqWUtsh9RoxvNLd20isCkztn7TXsc/dM6apESrseuUYbunPYKjNQB7T+zvfzmqf+dz645SrasRQMSyepPJkWmD/6PeQr3oiQ6kW27CUxvrxzE/6GSNVHEnJl9wibu7bYzoYcXV8nNwWBCdjdXsAYQy8bIoQzJhkXqZMSKUXuM5W079GaitpoqRnkoxq8tcOEqbjLbDzLbDRDM3CM005L+io0uQKXDsiVtHSbKuB6VA7p531yU/DM5lMst/YRqJDCFGxnWxTWBZInOkFLTeot2qtFNFCDRXDOmGvjNRYaC+xp7uGnb389//ej7+d3P/Fx0jty7ttzJ9PRNKujTe7cuwe9bz/fdeXrfRi2M8NRQtWsVWU1X9qCXtbjf3v4LZzZ2GLXnnn+zk2vZzFZpKlbRKrByvAsp3qn0DIg1jGJbiKF69EZFw7A9fM+m+kGvaxHWmQo6eStsYpoBglr4zVvaqLQnmlrhxGDfIQQktgHp8MEgFhrXXjxDlBnrdu/pS4ATWZcf5+xBi0V+zv7GRVDnt86we7mAld1r67dKB2A4+sWuFWjAl5yZ/+fn592unHulD6689r47ySRil0kh8mdXDV1IfQ/duMbePzoaZ75rM/0CnyBqrTYCyPe+ty7uGHm1sve+yU0vuxz006nRyVg13SDVx+YZmNYcPJSv2ZyFhN3DY581mpuDGNveiKEINKStDSEygVwJ9rJHId5WUsh26GmGTng1o41gW8fqRf7HlRU/aTeTNEtfpWqvy9KS+ZNQIZZ6cxKtHTKKzGJbKqMVMwOYNcI1Y7P7hbWxliWOwmvvnLKWekXhuefu8DZ4ysUxQJ793ZpTTXojwuu2T/NwT1d9s00OL0xIlSy7sVzwdhmIhu1bjsff/IC2xvbNJoNjlyzxNJ0g7uu6HDH8gx5adka5gSegWvscKOUnoEb5YatkWPh0tJJQEMl6+dsFAYdaIJAEkUO0M4kgXf+hIZSREqSmx3ntKXOi6uyASuiQ0qB8OdEUbr9rKVgrhORl5az/RG7mw12TceX9UDuBHDw9cnCVe6nO+f4naP6/cRkx/2+zn4VAq0cQ5uXFcvpCgr/4N4reOzpi5x57Gn3pKjpnCslmNWzvPXJFa7Z07kM5P/njr8SiLPW3o9zU8JauwZ84+d53C/hHJm+xCGwRYktTd23JbQi3D3NfG6QK336fVdZ3TPTYO+d+xkevcATxzbZLkpayrFuzlXP6VQXk5DneiPPBk1CuttK0VKSZqzRgaxjAPLCMBjk5LkzGSnxOmao+yACz9AFoX9eImj4C90Yy5lTPaanI8JQ0es76WFpLUq7eIE4Voi9e7GnTjIcFig3J/l8NUBYtsuSZJCjLvSZUYKr3nQjyfuf5FOfWeHg2Y+w/OPfAsbS+JZ7IW64f5Vw1xgH4KrmyqLAHnuW/oce4fzZHhu9jL1LTXb/4GvgzBnGxy/ROLyLjfsf49Fjm/TKkkRKFpsa3XFUsEkLsmFGr5+zNcjZLIpa410xbYlUBEFlB1wdUQfwqv7DKi+uqxVa+B5D4UxMpAd+AgcYhAAzypxDpVIYD+ZLa5nWmuZN+2FlBZIEsWcvYv+1CKWx4wF21PfS0diFXevAVUS+7oaHFVWkhTWeZavA3I5Jovq9EE6zXVngSgXNrpu08swxcuMRzMxx58++ged/5W2cTAumtKSwJYV1faCP/dlT3PJLAxei/hIZX7m56bIn19+GMuLGmRvpZT0K84j7M/8veX8erFt2nvdhvzXs4RvPfOeegW6MjYEgJNKUKFIUKVMUbVm2bMfluJTYjit2nDipxElcmf6Iq6JYsWMnqaji2CU7iiuSbEmUaVKUZFEmAIIAMaMB9IAe73juPdM37mEN+eNde3/ndANNAX0htdoLdXBPn/Od79vD2nuv532e93kC79t6kg/tfIQ7q1t8++Q7LNol+4NtApGzas4oHzDKhjwxfYyv3X+OcT5iq5hS+Sr1/myzU2yzne8wsAPpYYuBlV9R1evUe9Xig08suOm/ClNitKE0JVZbClMwyaY0vmbhFryxeJ2DwSW00jShZtkKSFcoRnaUzE4yXAIkpS2TYUegCY7c5KzcmrVfM87GPDF9gn/jx/8J/uNv/Ff85d/9XZ67f5t/41P/LEZp/vGnfoGhHVKmfTDK4M+5N2Y6wwfP64vX+I1XP8Nz9+9zfDrn/dcu869+/J9klI0oTMl2vsPNxau8cPoC83ZJYXIOBiIN7ULL61Cz9hLovWiXEtALPSguTCGflwBDv+C1hnGeE2PowfM0HzNvl2TGUBY5ddOmXjjp0c4yi1E6SSgDQQnIaJKD6CSfcHVwjc/f+22GdsAT0yeYZtv9fncGD515R2cc854b6Tke4yatUKM3fYTfp9vmfGFCoSjtkGk6z53xzViP+J/9wh/nf3TzP6Q+WsLQJl2+3Pt+9cvf5N/6VEVp3x0S+h/lvamr3cVzC0xN5P0HE/7w+xx/G/oe3K1hxuWtgqoNPJjXVG1gK88wWjFvHKNMQNl0kPHG6YpRbphq2/d5TQZZb9Zhzs3ZEGO/mA0hJtdIlfrc5DVGi7LJKAVK2AybGyKbzDSdDE1cYsNciIw6RVQ853OQ/r5N7slt2r4Y4ZNXdqid9B2PxznPf+eQB3eOmJ8uGH7qMcrM8LHrY75+e8mtkwqdrr/gA3WbTHaUOBLeOV7x+utnzE7mtE3LeGvMsx+5ytYo59nrE/7R91/Bh8j9Wc269dL/lyR2sAHXbWLhVrXrSYHOvCW3EiZdeX+B9SlLw97I4iNkWkl/YSHLdWsNWS5qgi7kWxtNnkvmm5jEyH75dCxjhGFhGBeGr948Y5xZrkxKJm9yo3wP3oneMuSeJOUE6e+8WAg5D+rUuZ+fv08rpXr2uHt16wLT0vK//lMf5n9y6wHN8QMYTCR6ACB4fvXzb/Bv/sz7LhQi3ul4J0zcQxyi742dhXy68s3OlOGwAH2H9vUz1BwOTypu+EB5bZvrpzXxwVpMMxSUEfaLjEsHA46OK/aspTPWtigGRmxfs0zjXeBs3rAOIeVjhY1uHJH3iU3u5sQJkyRywIE1lKXol6W3RU7+6VnNcJCxvVWIHr3yjEYZg8cPsI9dhSs3aH/rCzRt6C34QQCPQqx+D1dturHM2G1e48Yf/hD7L9+luLpN+M4LvP7lm1w7XTL48GNw6RJqPJbZNhwTb70BZ2fE2Rz1yA1e+AufwVppyP/kH3ka+4Enab70HM2dU0bPPsLx51/ixddmtDEw1AKy9vcHhMZBFDC1mLcsFi3zlCPWAbgOfGVKURaGutkUDgWgquScBxOjeXxccpDODWu5OQUf+iB3nY57CML+EYLIbJcNrROzlSuXhsI6xgjb2/D0s6iBZHPEk0Nh3bxHKStArhiJ0cl7aMQYJcg8Boi+XzCJhPachBKSMUzcPO21Fo2Kd/J6Y+Vrugv1WoCzVqiP/zi/9LHf4f/1xZsYpRhqzSKZy3x5tuRjrz2H+eBPvHW7eG9W7948FDDJtvjxSz9O5SvO6gVGGQ7X9/nQjuLq8DqH60MW7RKlFLmy7A62eGR8nUfGjzBrZzy59SiRSJlYqmk+ZZpv9aYi99Z3Oa1PWSSJZJvCqDuWTOIEin5BnOucoR2wXWwzykaUZpBYsILM5Kz0ktP6hKEdMs4mdNEEQztkaMc92Fq6OS46pvmUo+oI18kuEQnmUXWExBEMOCgP+Nc/+U/zdy99jqvjA75z8jyfu/ldVm3FRw+e4droKqUp0UqT64LD9T1mzYyzZsb10TX+7Bf+CwpryI3hT3/6p/mxSx/vHQv3iwPurG/x8uwV2uCYZCNKW7JX7vdmKrWvWbtVAnALKl9LMLnWZEm+KVEEHROWDBuSJfckz7Hasjfc5onp4+wVu7wyf7XPJg0hkBnTL5C7v3OhlXtbjLjQ0iZDkyvDyxzVD7i/Pub6+AqPjZ9AJcYwxNCzqO/15ZLupL6EHmCE6N8k8b4Yct4zdEohwfUS1WB1xiSb0CaTHYXm6e338Yt/6FP8lV/5rdQyYKDx4CPPf/cNbq9u8uT06X8wO/8PYHRsFMgcz4ziY1e3WTufGC0JeL60VTDIBWzUbZPcc0WqNx1mbA0zvA9cmUjIdLfY7MK3tRLQtWpFhVQ1nsZt8ntNklQ6H3owEyKSsZVs97s+Nq1FNWVSP1zdBlolfW8Ked5HRG6p0nuT9nNYGGbrlCnXFX6jSDV//409rFH81nfPGDxref3WGKXgwfGaW28c8+LLx1y5MmY6yrFGpx42w4NZxap21LVjMMh47uu3krRTc/2xSzz9xC5GK548GPInP3xVxECLhhAio1xCvSflRSll7QLL2lE1vm9J6ExcrNE9IHXnvB9MauuZFMKI7pUFl6YFW8OM2yeVSPuMpm1aCluItFJrTMeK0sm8YwoKl2M5Li1Hi4bTpuGR8ZDLW8X3NDPZsHAPd46+G0bHmMVID6ghZSUq1d+roDOGSX/H5rh0MtXuWJeZpnE65R3Cxw62+dmf/SC//ld+W/wpusiBGPjut1/n9smapy6P37JdP+y66d2xuo3ScxWdlx4spWShPhrB1hbFfM3keEX2QHGzaXnfi/fY+uBVDp7YYTzOmL7/MvbqHjiHP1vwxm+/yr1VMgWwhjIzVK3HAIvacbr0LPwm36wDUl2kgLhQAqSTjRxkp2AVHTOvKJxj0GjGJunBbfeAVyyXLd4HdndLAZdXt7HPPIH62I9BXdMeL/oFbxully8oqT56oAqBu8uaK8BgVrH6refZ+8QjqBvX8c+/gnOB5792SP2Vu5RG03i5qX34j3+Y3/7LX+PpR6fUjef6sx/l6V/6KGG5Rj/+KNy9y/zXPk++P2H4gascfeEVXnh9ThVCv1A/2C3xPhCXUj1YrZzIKJ1jmSrcXZinVYpMSfC5TjcQFzc3BIPoQrat5QMHI668b4/6aMF6LTc0kboKCIwIiCtSVlbPyrYtvnFiuas0u49sQVVJxt2lq6grj4HSxNP7qGIg0sCj21AMRGpYvDuqsQ9riFlJ+vJdTpIXIAaQFkHy4iiv61ySVAJvSsKL6ULV8xIVAowm0kvYVDDImfz3/xQffu7/zrdWNbkGvFwrtxpP/M1fhTeBuPcyeJMuCVlkdgtNCXS+xMf3P8Y3jr7Jql1zc36X28s3uDF+jCenT3FQHrBX7ouBR1rY3ly+zuvzNwC4MrzMbrmLDwKU5u2Me6t7yZxjkWSSEavl7zNt0JlmkNi27j7SOTMu3ZLj+oTCFGzlW+wU24yyMVZZSjsgElm6JYHApfIyOjF4NkUORKDtpIFJ+gika9uhkYy7u6t7XB1dYZptEYn8/GM/QyTypcOvsGxb/vZ3X+DXv/0t8iKjbRyDYcG//Imf49/5zb/Gp558lGXT8G9++mP8ix//OSpX8czO0/1+XB5cYZJNubu+zSuzV/DRk5scrTQHgwOJEYid1XnNvJkzbxas3Dq5veX9Q7EDckaZzYIlbhwnh1nJpdEuH937MI+Nn+CsOe0lfrkVyWWWbTLlyjLvJZckkOKjJ0RPYQrG2Zjnjr/FJB/x+ORxhtkkvbJ76AtA6b5/r10z55m32AVFE9ExLYzOPR+IgZgkl921FfpjI3+nEPnywI4YhVqkq75BK8t/76N/lM9/5XnuvHEozdKVSCrDccUXDr/w3woQ1wGd84tNn34wyDTPXtripeMFAIeriv11waS0lJmRRbw+d01oRe0CZ6uWGMU1clLa/v2XtUuMkmfpHDF2EjOwSgwelFIUZiOj7YrbjYtUbWBROQkgzw1lbiisRqnYG0Z0vXKF1eRWUTUSLzUqrLTUpP7sDiB2c8kn9s8niebvv77HI+Mhf/GbdxmXVnLi7i7wznN8eMr9O0doLe0ixhqeevoKL3zrFpPtCd57Pv7sNZ56+jLLZcvVy2Nhzozilz96iZ98dA+jFUdzcf60RoDw1jDDmo3sum4980qOWZWyjrvohC7wvAemMRJCwPvYF4tGmeHKcMC1nZLJIEv9epK5Z6wUlmxm8F4AcVFYcq17s7juuHS5ddZoXj6eMbKWg0nRA/Q3c+K9VuC9eG9Kc7ZTk3UxQOkVF16n1EauCxs55XmmzqT+uKoNNE7kwNoo/rWfepwvfOkNjm/fE4MT10BbEU/v86U7J28Bce/kWL87QNx5WZhWwsTlec+4mO0x44MRw9dn3G8dX375hGeWjr1rEyZPHghAunqN+MLzvPrZV3jjZM0o5WXECIfrhrmXnqpVSBED5yb6+fDvxNyjkP45kVXGfmEcU3PjOkRW3nHmPGWrmRjDzsBSlBatI00bOD6uuPbkDsUnPoD61E/K/szfQCWr6sJH5iRglN63E9w0IXJv2eB85NFHxpx98xbZC3cZPn2FZ37xw7iTJX5Rsbh9xmrlyDLN2ZdfpVSK7Q9dxexMZPF+4wb61VdZ/Z0vE+qW0Qev4eYVb3z2FV5/sGKdGp4LpdkeZcQI80XLoLQoBadnNae1Y5lYGKsEnFklcQADrciyzvY29kHfGRum7v3XJ+x/+CrubMXde6u+R65QGqv8BsQpAdAAKklYY9PSJGOTvXFGvj+RuTGZwBNPo4phnwWn9q8JQzUYS8h3jO8pQ5PYgTLfJiYtCoALXmS08iqp/gSf7G69gLauF07pBOrS9dbFBRQD1HRfJLjzEwmtfPz9/Owf+xAv/+dfpfVyzgMC5Gb/+d9h53/g3819cQ919Lftvkq3+d/10aOcNWe8OnuNo+qML9//KpHIXrnPtdEjApKUZe1XvHD6bY7rY64ML2O12M3fWd7hpD5l5dbMmyXLdo1G9X1zuZFjbLQ4utW+YWBKMp2l0GmTFs3Sa+aDpw0t99f3OaqOmOQTLg8uMUyOf4UpWbkl96tDro0eIdO5GIQk7YhWGh8EOBWmoAlN71DaSQAjkaPqmMa3XB5exgWHCy2fvvwpHps8ws3FbU6qGS+e3OZ4vWaYZXz+9jfIcsunr36ArWKKUZYP7XyQlVvho2doh1wdXifEwKuLl7m9vJ0W7IZMW7aKLRSKtV+T6zyB3gVnzYyVW+F6iakiSyHoucnJEujyIfQLJICiLHh0eoUfv/RjXB8+gouO4/qIRSuL3jzPxBjFCljOrCHPMwlYVxoSM9mGFh8DW/lWDyivja5ydXjjgoSQKKCvmz3ne8PeC6MDcCH6XjobOhMXZdL+x1QsiH3cRQdsSQW882xcBwQznTOyY9rQsmSBi45LwwP+uZ/9/fw7f+G/lBBwo+W+FiJ/4Zuf5U899d95t/bFPdwRYw8Muv8GAXO745xH3ZDaSRTAreM1V7ZLcXbsZX/CZM3WIvkb5KaXlx0vW6pk5185n2R/Gzap+9tu/eSTCZwAuovmEB2gcCEyW7cs02cNE6DrTD7aFB3Q9aWNS5EJ1iGxKIjcMbeauvW9uYkITWQ7ahe4sT3gX/+Jx/n8rSO+8PqcYWHZ2Sk5OZFA9Pm8xiem8uhohTaag0tj8twwyC1X9ka024HCaj5yfcqf+OAV9ic5y9pzvOiMk+QYdICobgNkWtzGGy+B3o1PfVhyrExiP4vEbprEJIrTpMIYxbi0PDIZcn13wLCQYtqq8VStsGp5bqnS2ksKTZqytL15CSQDlMTGjUvLbNWydI4npiN2RtkFw5jWC6s6Lu17DrzBBph1IfadjFLOS1IKnJtfHTtqNRfmVQdu5T02190wl3NUt1JEuDIp+RM//wH+3//psUR9CX0KvuUvffku/+SzNx5agPq7A8Sdl1IqhcqsZFcZI/b6MZJf22H69UNsA3cbx8mtU0Z3ZtwYFLz/bMXgwzNWX3+FV45XrEPkfutoE1g7H+gNXUD4xlijMxfRSow4QAxTujwze+5BKxrYbkmnaGNkGQJVCMy9Z7RuGRuDMYqzxhFeOubpf/ljMNmGZg1N1QOU3CiMU6xCYKClzd+n7YwK1iFwd12z+q7j2qUhO8Oc6pUHnD5YsrU3ZPDUJfY+9Dh7Np3GuuYTP+khywgPjln/xV9nebpmNC0pnzyAGDn75i1ee23OcetwURo8c60YJyB2NmvY3spRCpZLx/GyZe5TpgnCnuVK9/1whdEYTZ+DR3oNwNQYPvpTj5Ff36N+9ZAXvnKXO1VDFQQQDozGOFl0RcS0JDNy8+8CqsO6oUkhn1cuD9EjYWjVzh7q8mNycaxmqN3LYvbhlpAVYHNUOX7oIKMHUn2LtswD1I+2qh5DkGqOq8E5+R42om0dElBLAbhKgXLC0LXVhqmLIV0QcfO3KPl9OYLJjjBxaVGV/RN/gmd//Xl+e74iT2/dBPjGSyf8wcUpTPd+ZPv8bhlySzink7/wu0imMp6avo/j6oRbHHJ3+YDfan+bnXLKjdF1nt5+hpGdsmhn3F7exsfA4eoBPnp8kg7Cpio4tCWdEybQG4uASCh9CKxNxVAN0SmXTqGJKmIxqMSKxxhpg0vAYs4oG7KVbzPK5O9uL+/QhIaP7HycLoC6X3Ajss3c5CzahfTLacvGmENTuQoXWmpfc2lwwFa+jYuOVb7io/sfZmAG/NITuSgMgqMONf/8ByMDO6QNDcf1ET56dotdDhIreFw/4I3FG8zbOUDKh9OUtkShOa1P2S62pdLta07rkx4EGq17cGe1xSQpnlFSce+Ahc0sWgeubk34met/iL3ygLVb8fzpt7m3PuTB6pQQIoMyxxhNZsX5LcsseW6Z5mNxlkQlKWWLUZqtYsors1cZ2JLro2sM7abaqlBUoSJEz8A+/MDX8+N72WP/qBdm3fH10aUvf/6XBJUiFZSmPQdetRJpajfHxVVX/kafu9Kk53PAyDa0oSF6eY9ffOJn+Gvv+yovPveaVBjR4CIvvnSTlVswzt49fbs/qnH+bHcLy14ShwSBP5jVmEpzVNWsHjjGmWV7lLM/yYU9UIpl5Wi9sGXC6Mk7d20fWilKY3BR3BUvgDnEeTegqNsNqNFKwKRWCm0UeXoMGa1oXKBqxTEyt5oik+wtBczWrbRPbInxRsegGC0zp5NnLqqNZft5GaNL2cGZ1fyhJy7x6Wu7PHf/jF/79hHbo4JBIQqtzsxEevCuMCwsZ8uGxnmKzPATT+3yM4/tc3W7JAKnq5b6XOh496W1YlU7CptjlOzbbO2o2tBv23nnzswmSel5picEBrmhcYor20Me3xuRW40PkeNFw2ztuLta41xgOi1ZzERCGaOAuaKwbBXZhZVJ1y9YZoZXj5dMs4zdcX6BhYtR3l8pxbjsgMpDmJjfZ3w/I5Ef5ed1xQMfYmrN2XxmUB3Ii4Qo58SnwoRLMRAbU6bz77s5VkWmidEIw5ewzD//7FV+7Ymr3P72S1I8Nxn4lue+c59F7ZgOHg7B8O4AcZF+0a6MFvCmtTgsrlbgPWZPbPntqpJ8kSjSw9oF/LLG3T0GL5K7Q99QhUipBWh0GmGVQNebo0DP1+qskk1Zx4gn0C2flFKpb00eLp0RR66l0toFYp44z4lL1rkhEM/g6TtvwME1eePlgugD1ihCkO2b+UidetKICsdmUVdFsbBe310yvr/m8sGAvRtbmOmA1Qt3Cc/dEkSvRYIYIzgXGN3YoXx8n4FW+EXN6TducffeitOqpQqxB6KZ0kwzy9Y05/bxWpwiU1Xi+KRillxAlRIXyUJpypQJZ62mLA2ZlQy8LpSz63GbjjPyH/8ozRe/wZc//wZHreuz3jpAaJRianQvbTVGtOIA0Qf8qqFtAsOhpTiYoEYjGI9h/xJqMBZGqhgKA7d4IGySb+WCKR/uYinGKEDcNRugpI0wXsYSle7dIh/65/pWwFVbgWuEfVRaqjz1WrLeqiWUI1Qx3DBxnZGJ0hBb+fe82LuTWhIlK24whvGWmJx4D3tX+Ml/6mN868//TtL0S1/k7aYl3HoBM/2Jt9v099ToO3jOPQC662hspxwM9nnZvE7r2/RACH0GmY8Ocesz3FsdUbmaST7ss9yskgro2lW4IAsTo4zkl6V7Tkif5YLjpJqxNhWFzfvXdk6SXc+csHjCHHWA7v76PvdWHhc9i3ZJJNButRSm62GKqYdGWMKBKUUumGzGO4OSPBmuNF6KCW8sau7bB+yXe9wYPYJWhtP6mNpXPaC0yhIItKFhmm1xeXAVoyRe4KQ55nB9j1W76kGRT4vFYTZiK59yc3Gr37cYI6fNGSu3vtAr2OXi5SZLNvWjPuS8MzYpy5ymabk0GrFbSv7cN46/wXF1nM5Zg/cek7LkBsOCpm5BQZZnlKZMignZFxc842xM61tmzZxro6tcGV7rGVIAFx2NrximXsRuPj3s4YPr5Z0yVTVG2R50/igWTB2Aa0ODjy71C4YLILe0A2pfkemcXBf46BLAlogIMTTxAtxSlVyYSr0ptuqMgRnSWjE5cUH6Nv+5n/oJ/vevdpFqHtrAvQen3K/u/bcCxCmSqigVrTspWDe0Elv+cq1pvPT+d4v3Dlx1csGzylM5zyizDKwYNyikeN24gPOBLOo3vb8YaAQi3kcaH2h86F0PO8DTyQdVAoCZ0Ri9YemqxrOqxThtVTvG50w3OkmnUV3/m/QiaQWVCwwTIPOJTQkJ9DkfWFTSI/jpG3v8vkf2OFu1fP3wlDvzNmXIRdqeQVR87IP7PDodsTXMpHcw5bs1LvSy066fqsw0w9xwsmwlpDwxPWfrtjcy6YDbeTOT7JyLZQdSBURJhtv+OCO3ktV3NGtY1g4XxFFUCkqSCzedFiyXYr7UyVP7YxZlXToqLMvaMWscN8YDpoMNC6egz67bG+ebfrCHfJ/ogFTXhtbPPS1GPD9KINeZu9QuULde+t/Sz1sfKDJD3UohIU/r2Cz1aQIoK1EOXfxFN/S5/7YJKDc+9r1xO6Ocf/7n38+fee2uPAWaNbQVR3ePuD+r31sgLsZIdKnp2egNQ+CcLCSthdGI3Ue2yG+e0viNjrWNkeW8Ibx8yNlZw+VpgZkrHriWhQ+cJlpeXBQFZROTGyRygwvQM3bhHMhzPvbBmDoKIldRgJxTikJLH1nXO6dS1amNAR8hN4aB0VS/8RnKx98PWU6shInLck3rAoXWZEqx8PLQK1RXndmwhhESexWZ311w+3DFqLBcvjRgdHmCGZeYYbLGNpqwbvGrmrNv3uL0rOHsrGbmQ79dIACqNIqdUibSqw9WgLCDMUbOZg1HjaOOQdg3Lc6ew8wwHFryzDAYGPLcoDODGWS4NqDnKwqj8T5Q5Abu3uX5z7/B0nt2rGGSWTKreO5M4gwMkGUG12XqKTBWoUqLyjOi8xSFYTLJyC9NYTJBbe/A/lUBTqsZarQlwd7FMIUsljJ/suLhzdHgoVkT/rN/j3jvHurHfh/qiQ/DeEskm/kA8gExLx++xLDrfwsOvBPGcTmTjLcYoW1QwcsxqNcw3hGgWQwE0GWlgD2QyAXfJkOTXMBo9JteOVuIo1K1gnoFJkP9wi/xwb/0Vb60qGiionKRe42Hb33pLX1x79Wxkb69FcCBLJa3822GWcmZ38R7BCILt6ANLSu35JHJDYZ2wJ3VPe6vjlku1oQYxRmxGPf9VjFG6iA9F5GAC57Gt7jgezCySLb4Yv8t13GmBXgYZRhlQ0Z2RIheet9SD12IHhsDhSkY2RFLNyPT6QEeI0Zbcp3jomOYDTHKcFydcaCzXgLSWcgrJQsNF8R4ZdkuuLu6yySbsFvusWW3MdqmxTq926aPjpP6mJVb9qYkLr1niIHcCCCbZBLB8Pr8DVx0/X4u3ZKj6oja14lxs5SmZJQNGWdjMp0xMANyU6TQ8pyDwZ70/mZyHHbKEW1oeOnsRebNnGk+YZpPGdqB9JukRWyei9lD931hCoySMJs2tBRGDGVuL28zskOuDC9fYOEAGl+hlenBVHzIC5cOSP3Xt/4Gd1eHfPzgWS6Vl8nTtnbB7gb70CWGvYFJ1x9IYO1WSUqZnCUJVG5NbgqwMQHNgNVBZMFBSpdKi9RSo9FJdtntmzCsOYUpqXzVf/7PPPJT/KePfo7vvngzPYAD1emKl85e5InJ+x/qvr4bRwdwVNJAdtOqE7TEKD1RuRZL9PMqLh8iZSZsz/6kwBrN6bLhrG65u5Ji0shaJrnEDYRUrO5ufUpB4wOVl961kCS1a+cpkqrGdooCrVIerBLwU9h+3dSBu86cJTNZ78bY7UNILGPHThVJijhrXP9Z3+uaCkEiprp9LzPDH3ziEpk5p7BK4LCTy9Uu0LrA0aKRhf85OaSAT+nhM1pxfy6ZdQMjMtRF7ZmtXf95JgG3cepF7P67W+YqIE8xJoPc4Hxge2B6iWvjAtNBRplMYbTWvRt4lhms9eS5YVhYikyKtB0bN8hEovnK4ZKBMRdYOJCMwEUtrGMXOv6wR4wCov76t25zuGj45JVtLk9LhrnBGpX6H3U/Bx7mCCHJKM+ByLr1PZh0qajRGfQMCyumPGl+5Vb3pjPdtmn15l45+vNcWI3zui8m/PFnLvOfPHqFOy++BroBpWlOjnjtZPWWvrgfdrwrQFw3VCel606kc8LIpRy0weMHDH/njQR45OHRxMC9wzVlKZrULDNc3i64TMHJrOF+23LUemY+0AQBc90JDGxYuO57/SaZZTepXaSvhIOAurGxbOX2gu47xg1dXOSGwcBy+voJl//Ob6B++ufAe3SZUZaWqvJYFCOjqWPkzHm2rEksn0oAM/ayhgi0iQ1ZrBqOX2uxb8wlmy1luhmjcU7s+JsYWfvQyya7fTIKcqWZFhbnAvebNvUAyrGpas/ZQtzXxtqwYw3Tac7WNGcwLbGTErs9xEwGwoqNRqA117ZfwN46FdOA1KC7/NqrLFrP9VHB7m7J9PKYUDle/Pq6d/aUG30nJQVrNGaQi6RWKUYjS7Y3Ru9siSPlYITavSw7ZCxoS7x/EzXdEwBiM9APT9sdgwfXEJ77bX7lf/Of8rvziuvFf8XHRyWf+JmnyH/hZ1Gf+CnU/nXQmmiLh8bIxRgFkDVraNbExSlxOYfVTMBdU0MMRG1gfgajMTFEkV3aAnYOUDaHZCxACHJ8YGOMok3qjYsSnp7lMNoiei8XxNXH+fGfeYrnfvVbtFGxUHDkPPFrX4E/+VB2810+fo/epXS9bhc7DG3JTC163Xztax6s7zPJJ7ShZWRHXB1d5fr4Og/WD7i5vMUbs7ucVDNWbZVYI00bNmxKiLFnpbow8a5fTmRrhjoxYknRjFaKUTZku9jqgeD5KqL8vaXQBYt2QWmGDIyYABk0pR0wb2fJTGSfebPk3uoB18aXpX83Bkzqyesy6qQfSgE1a1dxUp9ilMYmZswH3/fY+RhwoWXtqn57bWKudAJI28UWPnpuLW/LvU1pQvRUvmLt1gns5YyzEXvlHlv5NtNsSpZCwLXSFwK1r4+uCbNmM2rnsdrwoDpk3s65PLzEfrnPXnmAVs/3IK67h1hr+vtrF1mggEDoA8zn7YK9cpf98oBM5z3IjzFw2hwztKNzC4GHB6RiFBD1xvIV/vR/9O9y/NJ92C145v2P8Iuf/Ah/9Ik/yFPT97GV71CawUMHcSEKI9mGhsqt0vmRnMQmyAJ37SSzcJDMddrQYpVlK98mkvXMW0Tmn+xX12Kx6SzUaT4N7ZBlKyBxt9jhj336Wf79V2+DSwqJpePr97/DH7nxiw91X9+NIyRTj7T4ADayr/NMwSAzLNq2Z8KaxDCB7Red++Oc3VHGuvEczmrur2rOmoalcwwSW+8ToOpGmwCOSYtborqQPdYG6eNKAiUUimFeMC5MvxbTiV3zQVizjgkxeuPc2LFrNkkglVLsjnNqHzipG3aKXNoi04I6sHENVyhiCFgj5imNk6KMVrLeCMnl0nm5zwpDt9Fs5ecYLqU2QPJ02fY9gT7I39QdY5l62yal7fcnRgFOXUZeN7pIgCIz1E6M5tqUpbc3yRkmAHf3tJIohqQSkPuUxnthjwa5Se0pAjrK3LBuPEfrhv1h8Rb3zMaJfHY6sBeY04c1ul60l+4t+B/+2d+kvvldmOxz6clH+YOffpR//KOX+NDBlN1xzri0D52VC1EYuKr1vWlOJ3FtE45QSjFvWsYpO7RxQc59aUUV1s0/Hftj1M3/LtKjuxw6Rm7dSLbi7jjn53/yMf78q3dkvdZWUC348t0ZP/uBSw9lH98dIK47IEajMiNyyu6oKCUB2XkOe3vsWMup80QEWK18oKkaRq30aZ25CqsUu5llMrQMnGGwbni5EonlKlVHuktSJ6Bm2YA2zaaPzsVNr0oTNuyYTYAns/qcb4SiyA15IdUWk2x0vY/MPvcdpteugVLoMqcsJOpgrKBdR5YqsIqBE+fZMiJZ7CSg3Zzutsudu1HXPrBGcvbgYr9OIPbSCZ1AYa6k6VYBt1c1AfqA7kIrhoXBu0CZacZlwd5eyeTSmOzSFnYnAbayFIDV9eItl8Sbt7jz9ds0IWK0gLIs0yijef8jE4a7Q7LdMdmVHY4/9wJDrckylSqtYK2mbT1tusB0mcviWCvs9pBsZwR7e6jxBMoSNd4WM5NyBMGhLj0qjJjNksTx4VDVMQRoa1jNaP/c/4PfPF3TxMixa/jGsuE/+4tf4dpf/QY/t/0f8ol/6Q+h//T/FHXpsYfy2YBMrKaGekVsKmK1gvkRzE6hrqTQcXoE+5dhtZSix+svSNTC1cdhOROZZzm60NeFzVOxJKYYApDeOAP5EBW8uCk1NehA8Uu/wOXfeJ4myZSbAOtvvsrYu/dchMP3Hd/n4dIZMZRmyDSfclpLP5cLjrVbc5SkjEZpbi1uU9qSg8E++4N9pvmUcTbmy/ee64PBu2KR6Xu7JO+sY9kEmEjhqEksB0AbfA/0MiPzv7PWD1HARqELciMSzhCDOAPGyNothY1DoRMTZ5U4O07zKVvFhFuLe9xd3mennPYyy27/xQre4ILvH3AhmX6Y0LJK0ofONASQfsC0ryrdkfPECCoUNxe3aEMr5iQJCI7sqHfyvDK8zE6xw16xT2mHWJX1AKU7JyRmoPZrHlQPCCFQWkthDQMrYO/J6ZPsFvsUpkQrw63FbTE1MZuFmzGaum4JQQK9rbb9fChMyaw5I9cZe+UeYzvttyEiZjOTbCuxdw9fphSipw4V/8m3/yLHX70FdYAHa55/8Yznf+M5/t2DX+Ejn36af+2nf4FffuKX2cp3HxqQE1mjALjW19ShZtHOWTqJxehkr7vFLmsnao+VW5HrnP2B9CJGIoUuZR4HILmJdqM/ZlHMUHJdEIynCQ2tb1BK84tP/EH+/NZnOPMzaDQ0nq/ee0N6JdVDVka8i0aEN8m7N3LKkCSCXRj3IDeUTTIhQwDCfN320rZl7bBGMy7ELl9MNSwvPJixaD2N9xu5HWC1rCVyrTe2+X3/2oaxkyJUUjKhyIxsZ9c24YM4PHYMl7q4S2hFnwkXQuxf1/V6DTPDWd1yUjdsF3kPsDoJYwid9O38Mdn0i7Upo61zRRV57+bzuyiA88X602VLm2IUOpOSzMiaUCnFziinyDRlJsUfl3qx+vXYOdbP9NsmINNqxTCXEPCr29IT2PV03VysxMAkMXHOeYyRKCvnN8/3bvOtVszWjtxotoYZZWb630UkvmFnlPX78bBHjLBuPP/+516lfulrUpBeHHN45wX+8m8b/vLWZa4++1H+9D/6NP/CJ29wMH2I6qkExFeNx6UcwHXjmTWtAOTgmTWOvTJn7eTZOTsTVndvlLOqZb4PMp0UbAGsJuvafaK453byTKWQNqmocGkuGAX/zEev8JenI5anqcWlWfPNW/O+cPJOx7tm9dWZfSiT7M9jWlx2LpVZBqMRlw8G3LzZ0KRq0CodyHUyB7FKsQieRe1RtWJiNC7KwjNEaWK0SkCYVZtsMsUmmLqJG1llb4wSzwE4rXoXxao+dwNQ4JwAp6JIenKt0BGqylF85ksUv+9ZzCinGGYMVi49hJHIAy2GH3WMmJiknCSqNt1V2qSx7m6SWm36B2DTXih/q7B68xDM083isJUQ8rERV81SKQalZTzJGI0yilGB3RmS7Y1Rk7GcA2M2d9aqgtmMuFpR3zzm+LUT7txbcb91NFEsViUgV5Ff3RbWblxAiJx8/kW+8N0Txul86wRSvReJa6HAWoUubX/M7WSA2R6jJhMoBtL/ZXMBOHkJ1Up6ufKS/vb1EBYpMSQnyLYmvPJNfvPXv01zHgghct7X6pb/6N4Zj/6ff5X/+cEB5r/7vxB55Tv9/BilclMviau5yCXPHsDJkQC702O5NkIg3rkp+XjrpQTA71+B1YzIFLU4lcrcYLLJjXN1arR1G1MUpUAnQyFtoBiivCd6B+//KJ+8tsW9144ZG82D4Dl87YxxW5+LN3gPj37xcjHbSp37iUj29rm/foALHhc8s2ZBa1ua0DC0woKc1WfMmzlGaSb5hBADk3zIvFmlhZBNZh5FHy1gtO7llK0Xlrz1bS+t7ApNRmmKbMgwK9EoFs0CnVz/uvw1gMzk5Drve9za0FL7itIMpBfODql93csXt4ttzuo5bXC9O2aMYoIivXgao22/HR17CKTqfUhHqWMGTBIWarQydBb9WhluLW8RYuylkbnJGdkhW/kWAztM2Xdl76qpvse1HgiE4Gl8nXLbDnn57HV8jFityY1lnI/YK/aF6VEaHxy317f5tZe/SFlkaK2xyTHOuUjwAWtMiizYxDuUpuSN5nXG2ZhJYgIv5J/FQKELdOozfKiV7gQSD9d3+fN/6zNQXTQUoY1we8k3f+Wr/CtfeIG9/+0uf/SRX3ooIE4Wp22y/a9YuRWLds6smeGiY9bMybQlxMDh+lCKGr6iNAX75b6AOjsEB8oqci3FBWLERydzkyAOn12hF4VVFqtSb2KU/b8+us6zH32K3/qtr0EuIO61wyMxTTHvXRDXUW5ayWKyezy96TFFjALiCm1og/R2rZ1IIFsfkyOlmJtUjUcpNtIybSjNhtET+bbupZGZ1rQhCMOU2kKa4HvA0l31UUm7Rq4F2Kwb37NhzkMIIuvr1jvnpZYuNfv5AJkVSWR3iY0Ky6SxrJ2nDYEsnr8/y8JamLKNmqrLlxPQGy8oqKxRvXzyzQ6CpyuRypeZYZzZ3pClkwZ27x2C9KNV56R73UJfswk/b31kWTtOa2GsCyPs2TC7+H4oWFWOz70+I89tL59VSuF9wCefhU7m1211iHC6bJjktt/GDWmbCuhG99LUhzm6Prg3jtf8yq8/J2uZ7qTKjsHxTe783dv821/9Ku//s/8Cf/zD1zAPYTNiks+K9b84b84rOc4uRBZti00RE/dWFT7AynmG1lCYgqoVImNVO2I0jIrEykUusLXxXLHEajH5k+xBAd0hRK5vD/jQszf44mefl3VrteD1e3MpIjyE0O93zeorhog2WnLitN6c6LKEwQBlLdFa9q5PmdxZcJocE6GTGUrwagBKpSXEO3iqIJSpVYqx2WTBZR3oSoDNxdiDNxcvMl7d6KIIBlr15h0Ln5qxEXfFEDzOBdrWUBYWm2nyVDWp755RnJ6iBiXZ9pBy0XB6VpNlErK9CoFV6n2bJcv4sdEUqTPOKsUgsSZOpVByxAglRgGWIV3B56/HriJ80roe7O5lGQfTnNEoY5Ks+7NLU/R4CMOhLORBehJDEManbYnzBc39OdWdUw7vrzmeNyx96IFkd8PKrNyklFGYSYk7WnDz24e8dLTisHUcZGV/E3VOHgBdn0hRGFRuoW1R1qCHOWxtCXgrChhNBaRpxNm0WaO2DpK8cC0GHe9woXTBzr9aEv/Of8VnZ+u3vG5Tu0uLjIMrUv2PD0EWkOSSsVqK7f/JPTg7hdkpcTETMN22F57YsW2haVB5mZ6AVvrg2gayBLh81UtO0UYMUbLEzHVgrhzJrA4BVS1hOOWRf/zHKf+D38BFmf+3jtY82awfuoHMu3HExFq9+Yz2jE/6fqfYZZKPmTcLXIpvaIProV7ntLh2a07qMx5UJ+nhnWNLi1aKwkgWmU29lbVvWLZratfQBp+MUsTYoXe2ROSGw2zAKB8wsFLR7JwljTaJNRHANoxDvPa966RSCh+d9M8hC+pRNqLyFYUp2St3Oa6OOa1nVK7mnjtCK8VWMWFgBwLYwqZnDVxvWuKiFLoKW+CDw2h57NjUJyfXieGoOuasmVOYnP1yl71yj1E2YpJNGdqR9HSp79/T1QVqt6Fh7ZacNiccV8cs3bJnG7rq6SjL2CrGGC05WCu35PXFq3z37GVeOnzAYFj2K6G2dbhkRZ5pYUd1knZaZfHRs3JrrgwvM823ejkggI+OOlSM7ATeMnve2ejMcxpf8fl7n+fOc7e+/4tFi8Y0n7AR273DzyfiYksTKhbtgnk7Y9bMWbQL1m7N0q0k+6qLM0HYVx88uZ4BMgeMNbjQiow2agI+9Q8K0G9C3c+VjnnKdS5APQZUEPuTf/ajv5/Pfv4bhGig9hwentCGhsKUD2V/382jY3e6I909ehSdj5XkxpWZJrSxL7b4GNFhY8aQW93HCcwqR4gib9wyXc+tpki9X62PuBhogqdK0sMmhJ5568Fb+ixrDENr+/6vVeN7yWSRaSKSraZTz5g59/y0HWBJDoNGK1xq2ZgMLIvKSgtJMlVRSnr5dKY7KVICRRfNT7qeqMLqDUOmVG+40i3WF5Vj1XpKa5gOLFvD7AJz2EkkQ4g9G9qNroeqMzYB6SOcrcVQRLGRU2ZG7OoPBkWPgLVWnCwb7p3VvHxvzmBgMR3A8wGXjn2WDFPO32XWjWfVei5NCsrs4n2z9bEPdH9Ydvfd6ABi7QJ/8+VDVi99U37xvdZEKcv2YFD0f/fO12/CtFatmOXMK8dZ3TJrW+a1o/aBxqV5mgidNsh/Z1r3rHJnYtMk1raT8+oEmFcp0/D8yIxCYVinkPphYfmnPn2dL3/+JXxeQlZy+/aM2gXK9xKIU0aLC0zH+Cglcr2yRJVlksetya/tsJsd0sSY8sbEHCOyscTtbh763L+DZCCSKbHL9TFSpX/XYZMd17Fx4Xs957qHeneFhkAdJRtNoZL9vsIERb0M1HWgLA0uXSQhOAav3CZ7/CpmMqAo5qzXnkXrk/GKpkmAspsWpy4AgbHRjLTGqNjnunWyyEFnLhChe0BL6HZk5QUYBmCoNY8UOdcuDdm9OiG/so2dDmAwELZNawFrMUKTHBibBtoWd7amOTxjdrjk6LjirHKsUrWtq5wVaDl2PmIzTTGwmOkIf7rg3osPeO14zTrd5CX7JAWCp8ZjkXIpdJH1PWV6kKHLDKZTGI4EdHSgQWlwNfHk3saRsQu3fqcjRnk/1xJP7nHvv/gsD9o3+5peHB8e5jB4iOHiISB6lCCGJYs5nB0TZ2dwdibnajbbyI1XK5GcTiZQreVYGEM0BmUzAWTBC2Cz+eZzBqnBNqaAdZ2YOOtQg7HMKNegfvKnufz//K9pQitsnGuJyzNxBH2Pj+8lg+sAnErfRwVb+RaTbIILjkW7YmgllBugCU0ycYi44Fi1FVaLrG+UDSit5Ml1WW9rV1H7hkW7onINPnia4AgJHHZOkn1/igYfPJWrOy9CKl+TG2HcjDLkiYGrfc0wGzKyY1x0WGVpVdMbYGjE1XDVLsWNUufsl3us2jVrV2O13HNuLe6RabHdn+bjXr45sAOkWyD0TFuMkag6RYO4bS7aBcfVKS44RtmQRyc3uD66xk6xy9CMMNqmHrnv/VDvIg98dDShZtaccdacMmvmVH5Nm4Bupi2TXO4bPkYmec5uuYtGU4WKNxav8dr8dc7qBfPZktFoQEySLOc8PknJrNZ9rx2I/PN+dYhVhkk2IddFv1CR3q+GZeo5tDojENBRPxQ2ThhOx9qv+P9887NwUr/di9l6ZJdMZ33B6WEMUX6EtJ9L5q3EWZxUM1zwnNZzhlnJwBbMmxX7g20m2Yg2tMyaWSogiKNoTPLabq52I9dF+iwxT1GA0RYbLaUZ0OXTferSJ7i0u83dw2MoDCdnC9Zu+d52qFQboObjW35FZ2vv071qXFpxf2xdigdKfVo+JimYvEkbQmrBUExsRpGJjKxjF6pWWK/Ke2rve2VQm4rmIGsQrZJcUndFFnmNdRswpRXU7iIb5HwU45CuQKa6MHKRJepMDEAaLyBzMrCsWk8TfW+kclw12EZRWtO7VyqleumgFJZsv89dj1pXGFvWnmXj0v3CcnlasjWwlLnpg8frduOUcP6K7owuzjtzunTcVqknrwOkmdFM86yXXU5Lw3aR9/t8tnbcn9Wc1S33T9YUyRAmywxtuwkI12+6SyolzKHRYphy3jik6/nr+sI65vNhgLnzkTmnq5b/32deh/Xs7f6A0Y3HKI1JiraHCygbF5g3jnnbiux25Wl95GjVMsoNpdWsWs/BKGOUaZoQOK2b3gn1fCB7B9y7MSq6aJTNfss5F7a29XKef+qRPSY7E04feMgHLM4WrBrP1vCdt/28u0Bclli4zsxkOEQNBgLgvBdN/HTEznaBP0kXmvc4oEvuGiQgBMK2ZVpRplwzraAKkTqBryq5KQnrRg/kYFPRujAiOCIrD6WGVp2XPAqIa5T0nWkFTRupnGeQGYrCEIKhvnlMduMAlWmaxuN94Mg5ciUGJ1UMrJK0sOvPczEyc54Zvs9n6z4X6HPWuhtpZOO0mWvN1BiuDnIee3TC6P2XMZd2hW2LccO0eS+ALTmChlWFX9T4RUVzvOT4uOL0rGHhPXWItOnBmSvNQGuGyZQmX9dUtWeSG3HMtBY3rzg5rWkSaC61Ii8M67UsRl2M0kunIMuUSGpLqZ6avRxilF64ooS8QI0m6XwkgBOiSCnXc5ExmofQDxdDbygSX/oGn331hLcL5zUo3rczhJ2DTYP5O7gZSZzBSvrxOnDaGZkkYM18jp+v0a0j+oDKLWq5JCqF2lXCWgIs50Sl0VvnwFZIIeAdYHNN+m+dnCpVuu5a+TdG1LUneOZgxJ1bp4yMOKrGB7fh6lM/9H7+QzOUSP/Os24XAFx6lGe6YKfY7g1I1q6iCW1/gx8UJU0Khx5mJUNbJsmgPMTXybTjrF5QuTrJMh1tcqUMwROIuJBMH9hIlgCa4Fg0Al4EbFlyY1NPXUYTmpSlpli0S0bZkmk+FRmlUuTRYZHrp/E1TWg4XB8ysiO2i21m7ZxQnbJqK4zS5DqjCS0P1iecVDOM7iz+bcqVi5SJFWxDm6r0vt8vqy1b+UTCsUfX2M53KXTxPSWSkY1ezBMIyU6/8mvm7YyzRmSqTbL97/rpRplIMDOdUWQZs7pmuyzJdY4nsGoXnNan1F56Etermq3tCdW67kGcaz3GdJl80gMIkJuSWTNjmI16trBn55PpS2fG8TD74ToWrg0Nt5Y3+cLvflvug9/vI7Ti8Ucvs51vP7TtcKHFhbZnQAORxjcS0RCDmPW4mta3nDAj1xlrV3PazOQaSVLLyq9FwpuKc51DqUjPktQ1OlTSvHTxBZnOiTFg0/ts5zs89b7r3Ds6IRaG1brmrDnlYHD1oezvu3F0Er3+v9VmCnQtHlLbFW3jOBlbqKXIKbXf/HGRWepW2CSjJBNukJve6r5uZdG/aj1rJ0ooUQSkazJdmy4VP2LcuIArpWhDZOWkP6vxgTIxehJvIGxgBzQkQ056zTpwd37x3AGe+bolt5pRYRkXnlkVeyMVrSS7rqo9i0YnNgxybdLcUn0fW5ev54KwizEK+zcpJE9vVJielavSMeqOdQeUO8f0Lry7MxhxPrCofS/ta73k0uVWHDo7p8oss5yuHZOiIDObXrn5usWlYzefN0zHBauqJYRI2wbq2olLpdk4JoLcDubrloGVHkdrNixdF4VwHtQ+zBGigKdXj5Y895WX3349pA2PPHGJSdlJ1N/5tnQGM/16PsaefavawFkt8spVMiDJraa0ySF9pNCZwkWZgwCTQdazq92579jT8zESndJDa4VODDQatkc5jz2xz+x4RihH1Oua+brl6vY7Vwm8O0CcUomJM9L7lmUioRwMhDXojp5zxKpmMDBc0gPys5pXVzVz7yU8WksOXBc2rRBABWLRv07grQkbySRclFCeNzXpJAfd9x0V3s136atLpiDpe5NAVn5uwnof8S5Qxcjh/TXmudfQg5zVyvXNtPdax240jLRJ27cBlPrcewUEiEK8sH1d71y3TVOt2css16+M2H50m/LxS7CzI+DYe6jrjUSyaQhVK1/LGr9qqM7WzOct80XLshEZZr9dad+H2rCdGUajjOHQYo1ie7lmFQJTBaujFTz3Gm5eSX5G+lujxOyluxjk5xGiEiKtsMIOdmzsYgGTLRhvCVOblRcYIzXdhQjRtXL5d5Xw4H8ou/8YwoaFWy+In/8MX1l8/yp3JFJqzSMf2EftX3tH4G3zpgKwY70izo5hvRADmarqGTi/qIgu0J6KYYAZ5pi8kuvH+9QcmUkMwnT34vGxipTSnuIGNj2IgAA6m0EoUK5JD4cJ1z56FW6dUmrFwkfp0ftvwXjLGT0H4PoRpUcoMxk75Q5GG96Y3+KkmhEIbOVjfAzkOkumIDmlLdFKs3JrkaI1K1Zt1fe/AQm0uV6i61O12587Xzr9vKt4yyYqcmPJjdjiW23JtE0W+fI9wNqtz/UczQWkkJwFiTS+5e7qFa4Or7BX7rFsV1SuviCTA4kd8N5TuwadmHSjDNTS/xeJvSnIVj5hr9zlyvAK++UlBnbYxxD0hzOBNuFnxMDDR48PjqVbUPuKylec1mfUXiIOmtD0wGlgS7aLbSbZhKEd4aJjazriaLni0a0tjqoj7q1uU/k1K7em8a0Aj3VNCKGXUHrnaV0njQ19Jp9SGhca7q0PeXzyGEM7ess+GGUpTNnPk8qvGBgBK912/qCjY558dLSh4XcPv8L8xbe5DiNQap555CrbxU7/Hu+k4t31ornQsmgX1KGmchW1l3lxvD5j0Vb4EFg04pw6yQPLdo3VhkmWshC1YWCk99FHhwrgdMo9RACbTv+LXBSCGmUxOiOLufytUnz6kRv89heeg0zjGteHxr9XR2QjPYthcz12jMr5W7pPwGQ6yLDJ6fCkkmt8K88vsHFWJWmeglUjjNSq9anXLeWqpfdtQ0iB3vTGHiHGXkYZklrAqs02dVI1raBILJlWG/v+zChhFtP7+GQ6KtlwHTsnC+jDWc32MGNrmFEnhtCHi+s32f9A8Io2uTJrpdBOttkk7wCrFVuF5MONEsDq8tZCCP3xNue2v3PYPm8737gga87G0ybg1jFvIP2Jk4H0qeVWWMjt7ZKzZcOTe2UvdezYvsYHjquGZQoi79w0u/u2c74HE91oXeC0ark6LSVq4OKjSsBLBxYRm/1hYfrj+k6AXYwSXfC3XzmC2y++3QuhGPChp3bZGmYbyfs7vDcJ2PYsKifyYC+Fh9pHjteOqhUjmKr1iYW0rFtxFO3aqDItbp/DFPsAGpz0Hto0rzvDwO5zu9EVJ0IEHWXefujxXb7xpZdR1uIakdI+jPEuAXGgrN4EfReFALi8lKPhnLjkOUd7skRrRZZpLh0MOLvlqJJEr0ySyY7xaWJMVH8yLAkXzUrOg7e+IT9t0lsAXGK+Sq0YGmGfxkYzTGYq3aPYk9bfMfbfQ8QGjc0Uq5Vjcbhg58PXOD6pWXjPUGuO8Zw6T54JCGxi7AFlH4PwJpaw2z6roFCKLWu4Oiy4cX3E4PoO+eUtcZMsNhIfVitYrwmLlTBtq5qwbFjPKqras1y2VJVn6Tx1ujm3ccNYdsdgagw7k5zpJCcvJGMkhMhAa2bes+8C9++v2U1a+6Y3OYCJ0TRNqmaxOV/9BZyLjJbxGObz9P0Edi9L4LUxYsyRD8C1qOFEHCptDtM9qYgsTgnPfxH9iZ/9IYBcFAbKNcSTQ+7+zW9w6gJvV8G+mhsGH3pMXDOVfudArmMC20Z61s5OYbWQ41FVhMYRXcCvG0LdYicDQu0wbSsxB02D8q38zdY+sVqhlCbGgNq9dhG4nY8aiAn4dRxPVmzCzbOc/OlHKX/jOzRR+h84PX5n+/kP0ehAW2dk8ub5EInM2xkhBqyyydVxzrxZEtEUNscoTeVrWi9MWe2lob32DatWgr7P33uaFGTt0wKiW5V1C6MYIyY52WbaUJqMST5kt9xiu9i6EHatUNKTFOV8t0F64CpfoVAUpmDeisRtaMc8qO6zdhVDO+Bw/YDD9X1ujK8xyUZUTooajd8Ec3dumeYcMHFBFteFydkpp1wbXeVgcIntfIeBHX1Px8YYw4ZpQ9wP125NHWrWbkXjGwFdocEH1wOHkO4xWmnG2ZjLg0tM8y0BsCqj9hWT6ZDZ2QJ/JXBnecijk5N0LIQtvb04I88z2qbtFxNN6wkhAIZ12yYQJ5K/lZ/jgmOcpJTn96QDnh07F4mUZohSitpX3F69wWPjp35IIBdw0bFo5/zKC1+FWfP2Bezdkmcv3WBgRzwMc5XzILLxNYt2SeUr5s2KZbuiCS2t96ydo3KOaVFQOZfmi+kDydduzdhO+jnY0jDWU7qYCQUXzquoIWTOxBikNy6F0Wsiz+w+hjUid3Oxfc+DuP4snltA9pK0KMzshdqckiXVuDCMCsOyFVOS3OreYt+HSOU9bSXsqg+S+9apfUTiGN/CvJ1nPRSyFuLc/Sk30k83yS3D4pzRBt3fke5p0ksVIzQOBiFS5kYKvEqYrTrZwA9yw8mq5XTVsj8RRq5OPXFdb5wPndFS7KWDSnU28YrSakaZZTrMLmxT1zPXcUMip94AuHQY0r0Y1o2j8SL3dEHuzV1AeLdfSgmrszPKKFLEUkT69ba3S+6drGivT7izXHOtKqW3K62hXj2pk4t36O9NVeUIIZLnRoLSO0koAr4bL8fImo2EO0Z6t8uOBSRCmQuAO1o0vHp/yccf2/6BgVzX09ZFF/ztr96Bevn266HpAc9enzDMTeqkemf3po4F7HrZZk1L5T3LOrCsRcpat4HGeQGupZXvnWZHW5wXpcvKOSYp7F0pqNrA3jjv5wBcZOW60X3bMamNFwLoEzfG/GVrCD7g24p5497RfnbjXQHiFEqklNYKi1AUYsbQTaAQRD4WAmHdUI5yVnNZRFyeFhwdObyS3rTugvNxI5cELoR7wwbAuTdVa7rRVY2sEteZqRXgtmsNo2T60YTAwkvFxaUajEVdkDx2WuOzusU28rOT05odxIL/sKoZaZ1s2yOLEBhpTaNi38/XAyh1bj/Sdg604mqe88Ent9j66A30pf1Nb5v3AngSe+PPFriTJX5W0a5q6tqzXntWq5ZFJSYwXU9ep/SOSUJqkZ69XCtGWjOd5kzGYsPd1J7FvGWxkIrrOkTaVv7eGM183vTb3YTIMDN9eG535LWI1WhdxAwL1N6+ZJ6dncFkApMt9P41MfggGW5oAzRQjMQO3zuUa4lZif/zf4bX/+Pf4In/+tfhB+jZirGTaHr5uvs6X3z99G2llArFk4MM9cQTIuV8KExcgur1OuVXKGJdyTmtKsKqEQDeOPxCZF96kMxJOrnleiXZccMHqGtPSCj47pVzXe/6nI2V30ge+qe+EqCXFai2FgD41Pso9d8iBHFoijdffef7+q4figsrZKXeMhe6I1anxWhAGJvtYpuTupMfGlyy5ffRs2iW/d93OW8g7ETj2yRLE2lTG0Lfh9a5wgHkVqSSk3zIwXCXg8Eee+UeRhmRZTZn3F2Jq6T0tmW9ZX/nKhliZO0qTpszClPgo+fGSEK+76zusFvsMrAFbXCc1Kds5VOWbsXa1Qxs0TOFLnh02FRSxc6/4LHpDZ6cPsGlwRVKM3wLaOkYNx89bWyTZX1L7WtqX7H2awEJrupzx/oMPSKVq9I+WYwW8LxTbLOVb2OVpfENiyDGG5PpiNdfvcuybZnVC0IMLNslTZDj/+L9B+Tp/iQOu4lRTP/WdZuOm7Bxx/URpSlTwHjey0DP952VZtMnG1Kg+W/d+U3+gy/9Cv/fP/ZnGL0pGPz3Gn24dgwc10d8+WtvU+kGUDC6POHJ7UfEIOQh3J9i6p910SHh3Iq1W+OCo3I1i6Zh1bY03jNvaoxSjHIpYtRezm/lJAB9aBcclJdw0THOpnQl0fPzpAsO78CwmGAlwy+d0SbW+NHJDcoiZ101oBV3lnff8b6+m0c3yzpnys7tEejv5d1rjBIGLCILzO1hxmydzp/amHyEKOzaKkjhsg1hY86R7kUuBNoQyfTGDfGiTT8MrMEqYbamubBbXdB058rYOJEWdv1GNjFDXfwAwNlaZG+51QxzQ0QW6ceLRkKwrab2EpcwLi2lNVTOk/fvEeRxGjfrP5fWIQejgukg68FMiLIw746dUpJ/11n/ozZPgtZH6tTj1jFnHYjpPqNxAauVsDdGMyqMHIfMpPMmf1e1gUtbA7754gOWTeCsaQU8p/d2MfCNN84oS0sIcm8Sn4VNHMKicokplH2drVtyI8dMn9vuSEdS0Aeud0BUAf+3z73CX/2tV/nb/+bPsDs+1zv/9zhC2qfDecW3v/7a20splaK8dIX37Q4fmrlKX3xzGzfmVetpfGTZBFb1holb1U4AWU76m5h6OyOzxjGqHLvjHB8i00HWyz17F1Al8yWm4sj5gknavTTvFM/sjsnyjKaW1pU7y7ca5f0w410B4oSJOwfirE0GJ1oWrd4JKCFR2cOconGcnTVMJzn7s5q7TYtGHBrXoaNjU9Wa8+BNgFsHKrpeuZBo0S56YGw0W8awbZNDVmqgr0PkXluzStWRodHsWcvlUU5Zdo2Z9BWREOndg7RWPQV++3dfJ881uVIsQyBXCqe6PBWJA+icM62WNnofI3m6GAutuZxlfPhjlxh+6hkBOkrBei3yw7omVA1+1eCOF6yPVywWLc5HcTRqA3UTOHMC3sSlpzsd8j+XtqVEet4kS04A3HBgaV1kvqhZrz1VK+/jovThnVQt24Xl/v013zpbsfJizhKQXkVjNEWhsbV8qE4XgTEK+/Tj8OQzAmRefB41Ggk4Gk7lYbFeovLUvzWcypVTe2GsjIF8wPJXPysXVFYQF6eQ5WJ+8vc05IkY25r47a/z5UX1tq/WwBPDEq4/lvLXfnj77l5K4N0GyHnfFzEAYiUFjNh6YuvBB/Qgx4wL3MkSWxRyDSklf6tNOn4DYiVB1BSDzR3Ht2mbA/SGAlF+FtnEDTRr4o0nmBpDEyNDDdy+/UPv6z9M46IL5eanpAXl+bu3UXIfaJIV/06xjQtH6GTg0Pimrza2wSeZoe2d+2q37qWU3WfZZOldmA60jbg6PmCv3O1dILUyrNySr97/BieVNJKP8yGPTK5xY3ydkR337pF9H1MMNL7ut0Eny/95e8Ykn1KYglkzY2AHhFZYMKMsZZIIbqq7wsJ1csmhLdktd3j/1tMclJfJdN5/rmRDChSR/riWpVuwdiva0IpkMkrP3LyZs3Lrfv9if0+PPUNTWulv67LkdoptxpmEqy/9grVfs2pXrNyay6MRt4zmlZMTtsuSz935Ir/6wje5MhnzscuPcOfWA7Jc3DrLQYG1wuoYrfvw7618O8kmI3dXdxnagcQd6Iu9uMJubsK129DQhJqRnfDXXvq7rBsJvF65JVZZcvP3npEUkULAd89e5vjFw4uNkW+ZvIpHb1zm6vBKclh954ulLpswJvDdSW8B1q5GIUCgTaYXpbUMs4yj9ZzC5uLumeZBN48KXdL4GgxkZD1ok364znL+4raL46shNyWtr7k8vMx0PKSqG4w13Jzfe8f7+m4e55k41S3Uzx2jmCSJJHauWyhXrWSSbQ0z/DL2LFPtNpElMZKKURvmqg2B9k39uN2wWpEbwzS37JR5b6bRmZ9VbeDwaMW8bcm0Zmgt24OM/UmWIg6SDLTDUJCA0SYmoOtdmw4yFpVjUTlyq3sQZbTqJZDdXMm1JkSog5ielCkUe3uYiYIodhJldc6dUomBkU5y0BCp3WZvaydgoJPEnd/PDsTEKE6FXYZcbjVbCTCGGJPRSaBOQdSXpgV5bnjp3oJJYfjr37nLX/3yHR49GPNzT+/w6s0ZNjkhToY5R2YlSoxUbOrOWTcFTpYtk9ymnLtNtAAkl/Vc94xi6wQwjkvLb3zpNnluKTLNfN2SWcm7+3sdHRP3tcMZ7ubvVWDSXH/sEjfGgwsB8e9kdKAUNgUJEFC9aiUkvpO4RmCQW4rccLpsKK3CqKxnk7u5kFtN1XrAUGQbA6AuiqKbP93nd5egVuK82rjA5XFJOSpp6gaT57x2+jZGVD/AeHeBOGMgz1F5sVkIB7/pA0pATpcZ+dYANZNqxcGk4OzEU8eAiQI21uduL1apvsdMvB6FYQM5yF1u3Egrtq1lL5MwxVXteeBaTpxPfWgySi35c/uZ5dGDETv7A9rasV7LV9cDB53eerPQEf8QsYVto2S1zX1I2yPSTB9hpA0L78mSFMEoyJRmZAwH04LrT+8x+LEPwP6+LO6rCpZLwt1D2qMF7eGM9dpxNmtYLltqHxgVFu8jS+dZ+UCdGESN6rM5fJSFVqYkzkC+zuW+5aKVX62lyTYmUFyFwNIHPOKCeeY9q3Xgvzlbc+Y9BsX7BxnXCsvIasYjS5YbzFnVV1cVqbK0swPT3WS44SRSoE1MRTkRiSBKpJVKi+QPUJMdmOyB1oz/pX+G8WRLWLrFiTBNP9CclH6x+nNf/T2llLlWPPXBfbj8SO+M+UNLArwjGiv/OpHSibSy3ZznJKOTzVSo3KKLDHcszI5Zr1EnJ7C1LXeULO+ZNjXeScdLyft6B0Rh3LRJDGSgDwDXJkkq07bsXWHHGh44R6kV7e0H75KbyI92CBd3UUzZjTcV33oL+trXadG/xaIVo5LCFJS2xDU+SZAEnHSxAW2QPiyTst26jLjSFkzyIZeG+1wdXiU3GbNmxt3VPW7PD1m7zQOhsDm7gy0enzzCk1tPsZXv4IO4N54HSR2b1blndgxi7WsWbk7rW0Z2xKyZYZRJLpQTXGjZLrY4qU8BYUxssv4vTcH+YJ/98oCtfHcDbKKANxda2tAk58iWeTtLUrw1k0wy85ZuydqJOYtLIelaGVx0NImxzHSGVZLpU5iiZxcHdkBpBjS+7rcvEmhCw9qtuDIeM54MOXpwxm+vG37nb/5VOFzD0PLcH/kIddMymQ4ZjkpGZUGRZ7TtRvbivaeLmvBE7q0PeWr6ZH9/OH8va2KLmKAIgLXKkiVX2H/6A7/A6CNDcl2w8ssLzN3f63wM0fNbN78GZ7+HlDLTvP+xq+wPDt7Ss/eDji48O8TQh713OYCdLLhbaIPcBzOtKa3ltKpwIbBVrDlan/L49BEioZ9/AKUZ9HMmxkjAJ3wqi+rOjXQTOq1699JIZJJNmU5HHB6dkmWWW/Ojd7S//zCMEBKLoi7gtwssHMjvOkt8m4rJo8KwrHQyFUkmJr0kT+zWO2bChY20UCslBVetGWeKrTxnmvrIjFZUrWe2dhxXNbXf9OpZrdgvC3bHOdvDrDfb6LLgOvBzPnsXkvwvxr63zKVsu1XtJaIgATPnI5PSpsKLsCVadVloBWUuRindHO19B7Qi75wHE9ipW0/TiDyyzKXVoHOWbNL6rjNi6SSU3edqrSgzTZmbvu8ss8I0uhCZV65nL4XRC9zYLtjdGXDnwYIHZ2u++Nd/E07v8vnBhK/9/M+xWjVcujRie1KyOy64lUmBqQMNvfRTpV7BdcWTO+O3zAsFVC5gg0rHQsBmPhSm6V/9hSe5MR4yyAzzyr2FXfq9htayhv3N54+gWrz9i7OCDz61x9Ywe8fmKp0xTjc/Ola4TdLRdZKhSguCovXSg6kUzFZJRdZm3Fu0PLVb0sVrhFSj7XokYdMyBZvrqisGvEVamY7fqLRMt4YsThcoo3jj7dyEf4Dx7lh/KSXMgbVilZ6fy6xqUz9O3FS7/aLG7o7YWdSczRq2pjmTWc0yCDDyUazru2DuEAWkdRLBUmtyJYzQ0Gh2rWV/q2A8yjg9q7k5qzlau16O2TlF5un1W8ZwUGRcvSIU8HPfOeLYOQZan5N7JKo8yjnsJIohnXyxhO0cKOWkD7TEBohJi9w8O6ZwqDW704JrT2wL83b5csflCvt2fIy7/YDq5jGLs5rV2uFc4PZMQNLIiBvmqfc0QRg/RwdsNxl5uVZsGcvIaHH2LDegpKftFw3zytGm7QvAyoc+PsDFyMhoPjdbU4XI9dxyu/GMjeJqnnH92ohymBF9wN5V6bQKmFZKwbVHUduXiLMjmROTKayXsq/lSKS2IN93wMPmvcOi0gb9y/+SbLfWMN270HT6e8/HFE6xnPHSV+7g3uZPI5FLmWX4EdlmrH1nEQchMWfeyf7EINtTrYVVy/Pe+jz6gB4W6CLglxXBebRNnz0YyOu3dkEpYr1Gj7flvZdnAsy6WIYsFU06Ns6ck1ydc+nEZKjxDgcHA55/vRL3rwdzStdIP+J7dFx4tPQ36M1C5/y/RhkqXzGwQwpTSCabHTCyQ9a+Sg6NAZNAcmayZLev0SH0TFlhMwa2YLuYsl/ucXl4maEdcdqc8PLZK9xZ3mfZrokx0HjpOxvYgmkx4tJwP8kXLwPw7ZNvcnd1j5Ed9u8vphS+B3SNb5KZioBJAZCa3GRkyYhFYgMUbWjZLnZYuTUmOS+O7JBpPuWgvMQomyY3xnSUkuyu8itmzZkwbjH1oC3vADCwJbWvWbpVcj0UJq4JTW+iEmMkM5a9cjf1uRnG2RijZREvIemGpVswa+a0vqEwIvesfc28XbJdjDBGMxgU/M4XvgWnDTw2gdcXfPfVOzz52FVuXNljlOWMsow37H2cE8CtjSb4gEJMTRq3IsTA0A57t8puyAI4Pwf6EbCR5s9PXv6DaTopRnb8A92f5BkDTaj57RdeBhe+PxMXgZ2Cj1++zla29T17EH+QEaN4Q/aFgOQUWXtxUi1M3j9nW+8Z5zkuBOZNI0HMad4PbUmIgYEVp2HJIxyglaHy65RfKP1uVmU9gxiV6p+X3bNWtsVhdcbADtk/2OalVyQz7/5q1bugvldHJ+vqeuG6664DKBFQMYrLp4+JWRH2qshgWBiqNvRyyu4Wl6X1jFHSUlGmNpKBNRTGMMgMk9IyKm3PtD2Y1ZzUTR8o3iTZfa41k9yyPcg5mOQMC0vjAvfOKtaNp8y6IGoBl52px/kvl75sB0S7nDal+m0IkRTALUWwzCjKTFw2M7MBip10UN5HkXVy6XMSvAfzBqXEhCQEAXBdnl6M0qvW+k5+J7LJ3WEuTpBaGJiOXerkoYtaWDef+tG0ErC4aBzXJzm51UzHBf/Nb3wVVmdw6Ql48DpvvHLI0x+6xuNXp2wNcoa55ttWU9cCmozZgG+QfDhhmcz3vNrHhbkAmjbB5oo/9bFH5GdasTXMfrC1EwJk1o3n698+pM+d/d4vhMk+z96YMirs92xr+sE+d9Pv1/rNeWySGmCUa07EA07ktEWK/kmS3m7+jXMxURqktVTjAsPEKs8rR5GMaDbncKPQOb9OBpHctl7mxiA37O+PuPlKwBjD2arB+XBBOvzDjHfHnU0pYeE6GSUkKWVD7FwUYwTnCM5TzysIEbs9ZJjcYq5ul9w8XRNRLL1IAAYdA6ZS5QgBbhNj2B1kXDoYMNobEhvPzdfP+OJrpxw7v6FiSSHhOjF1RrNvM6Yjy3icc3Ja8/zJiqPW0URh94ZadOM+xu8ZU9DHAiCNvyoBRAtkSqzqB1qzM7CYSibGqLBcOhiw+5FrmA89jRqPid4LeDs7Ix4ds3r+Lndvz5nP28Q6Ro6co9Saa9MCYxSzWSNNn7Fze9tIM0OMrNN+7+S2DyjvMIR34vhUtxIxUCUb34g4f64SgLZKMfOej++McWcrmhg5bKViO7WGaWGZPr5HqGQRl6lT2vTQr0PEtAl4FAOYHUvId5FsWNtaJJVZQWxrVFMLoMtKAT3NupcgKnNxav9AzFhireLpfV6ar/sF+vcysgB4ZpjBE0+gxlsPId4gyj4EL+6UbTI3sel9Q0BlhhgjdmdEWDf4dYMZFegiRQEMhwnEOemLq9eo3cvE1VyOQxctEJJU2WbIjCQB0HMrQoXs02AC3qFGWxw8uYd54xQFDH/xD8BqDtO9d7jf7/LxlvkjS6UOpMBGKhgQiWIHmKQ3bgdfHaGUYtWuyU3GtBgnpslgdZfjlrFdbLFf7rNb7jGy495G/ov3vsRJNaP2DUppfBB75Ek+pLA5+4Mdro6ucnV4lYEZ8KC6z7eOv83txSHzZkVhcsb5AKsNjXcXHC9lN2K/ECxS3tva1ZQmp7TFhQy4STamCQ1WGUbZiGm+xXa+S3lOPti5KLah4ai+z4P1febtHBeEBTypTyltyeXBJQpTsGiFgVu0C5FzBwEJAyvX/zz1EO6VKe8sxp71dMEle/s6sXjCHBvd9QbKcdsqJmij+ci1K3zx735DANDhGmJkNCzZ2h7z9O4ePkaGmcgp2/QcaeqWOtuEjc/bMwHGJu/DqM8PzcWH8/m+2jf3Bf4g96dOuLNoF7z86p3f8/Xj61s8tfNIipF4ZwuGQEQhPYkRkf+6LsxeyTnrjG12BwMq51i3LaM8pzTSzzTKB5S2IESfTGkkh7DxVVpYS4d0F9EQlVhqKaXQUV84jp2cstAlLraUZsCHLx3whRTY+8vv/zS1X2P15B3t97t1dKxVjJuWke4X3b2pLzslyVfrQ2IgJAB8e5TzYFajFNSNJzNi9OGjqHSUgp1Ckye2a1SI1E4rkV/O1y2H85q18xvpWvrc0khG21aRsT3KmZSWzMhi+M7JmsNVzdI5iULKM6xWfZ+YqJhIJiFvApcKTAjYjhXXqpcsDnJDZ58/zA1FpnuTi54hht4NUyn6QOjuc5eVY5Ab9iY5hdW97LEDuy4dm0666VopUEwHWR+43UkzgZ6963qxlCIBODEAaXxgu8gxWvHJ9+3y3/z1tRRPT+9CDORlznRc8IHLY0KMbA8s1upeIltVrRTc03GfV469MpfgaaX649dJKjtGCTY/68abQcUPdG9KQGpROQ5v3n/7FyvF4OoNPnAw7Hsl38mI578SmKu99JIDNC6mwHeYlBm189StT/ELcoyGmWaUm2TuIyB9MuiklBvXSZ/ksDZ2DpWdXPUi4BUTFNOz3k9enfJ1LV4Ev/zRA5a1Z2v4XgBx3cgyVFEmJqLtLfB7S/y2hRBpG0/brBj5knyY49YNe3slR7NaMseU2P6XWqqgxTkzjoP9AcP3XcZOB/hlxauffYXnHixSqPbFkScguGMtAyOVpKKQiserdxe8UTeswiYKoAqJtSP2cs2OSYMuBkAYOJHjCCsXYiRXCqUlmiBTivE4ZzSSbIqDaxOGH74B169vnCZXK3jjDZp7Z9R3Trn/oGK5dDRJ8nC/lViATCnmy5YmijnJtjWUQVEHce8s08aduZDcJxWZVdhMy3F2XTVDQJoLwuA1iZZeJ1AoN3y5gNYhcrZo+4ppFzz+4rrhk5cnZHtj2qOFSADTA8gT6WtGeYHKcuLpA9Tla3L+xxPiaobaOhDQtppLjtpwKqAnKyFv33HQt1KK2PWQ3b/NS1X79q9H8f7JAPXok5APecfOlCEAblPY6EbHVFuLyiQAPawa6YmLEBonhjCddv30lDgaoYZjAYEm2/TGZSU9x1+OzrFwbH7ef6+48AQAiscO0HxX5u/Xn8P8C4MLYOC9OtS5peP3HDGxAsETVcRE02elTfIxZ80ZQAr4HlAayUPLdcYwG7FTbIscLN8m0zltaPju2Qt8/eg5TqpZ/4AQa+NAYcXQ5OroMrvFDnvlHqNsTOUrvn36bV4+e5V5I3EAMUYWzZJlu0pRA7LQyU3Wn/Ju8W2UPHQ6pk6MKDzjXKr5IXoyk3NteI0QPdvFLgM7IlNi6tPlfHU9YIt2zkl9zNItqX1NiJGz5oyzesG+tizaJSf1KZnOmGRjcp3RBkflq9Snp1i6FT56SlWQ65zCFJLr5isUuneq7DLifPTEKNLQta96W3GlFJe3p7x6JueCEGElvzu6eUTxkSe5NNzhrFlyZbTXmwfEGNG6k2HJATupj7k0vESIHtNJUlNl63zMg0yN72+M9MPMQ43mrDllfjjrfvj9XswTj13lkfENMlP0YOuHHlHKFEp1VlQyhDkzfQGgtI5F09B4yRNrEivXLahOqhku9z1bnekMlQLmjbJ9QaQ4H55+7tj3m0NM/WAC8DyeR6cHaKVw3vO1w+f5x574k+/p+5MwAPQ9cd1C9vzKvHOPrFoBaYqN9KzMdL+INYm92krFyDz1Q5W5sEvdgj/EyMmy4c5Zxcq5fg3U5dTmWjPMDPvDorfS7ySTt05q7s2rHvQZpai8p6nCufYR6dELfiNP7iIAQNYjsu/ioFlac6EwsjXMetmn9D/JBnZrsdxKe4hCXBzr5GYYI5ytWtbeobVivnYcJ4fHcWkpskjVeFofevZqVbu+8J9bnXr0BLRprS4Ee7c+9mxeB+xi2l+H4urOkBfuLjeF3EbML05ff4PyU49yZZJxVnuujPP+3tS2Hms17pxkaFE5tge5bMObpn1M/3c+ouBhXRpKyfserWrc0e9tKvTIE5e5MR5SJGOZd3KNhhhRaRmvE0PbmYAZnRhXrRjkllXtaN1GmlvmBqOk1+3eomV3aBlY0xvAdLEXmdFJoqsYFXrDfL/pWjv/rO73KcIjuyXaaLzzfPHmgl/60LUfen+78e4CcVqfMzRpiKulALm67nPNVLJKXa0cMVYMBhbnRIs8sCYl0CvGmSGzip2dkq0rYwbPXIcnn0SNJsTvvsjit77JS989427T0gQxDOniB6xWlFpkk1Nj2BpnojluA/dnDYdty6nzmzgCzjdSCt3fgbUOzJkOvKnNo68NoZcxBgVaSRC5VnA2a3jq2Utk2yPs+x8Tm/2mgaYhek+8c5fVi/eYH6+ZzRuqyvdNyctUKSpTT1sVJFC8TTK8cTJJmKQJeewc9bmKXesig4HCG0Vbe5oYe/MTF+mDvmOSigY2E1chjpkvVzWL1OsXYrIbBq48vY/KLNn+BDWdMNQvceY9PuGECMnUI8LhHXjqAwLiBmPi7Ah18GhyLtWJgWtFHpgPvkdTwA87D42wU/fvoYFCbQLk38zK5Urx5CevwbUnZLuMfeeLha5/T2kBs9ZKXxvIfuc5Zhzxy1piOQAzyFFZkmu1rRgElaVIUQcj4uIMtXOQYjsSmLO5HL+Q+uI6dk6bTXnONfJ9PoC2kkiHZ57ho3vf5Mbj25jdLfx/8G+hHnkM9fGfRL3/x36obL5/WMZmId5lG/ZWHakCuJknbQpCjkR88GTaigQsMVk75Q4jO2Yr36I0w97dsA0ND6p7vDZ/lXurwyQHE2DVeEdhc7aLCQeDXQ4GB+yX+xSmpA41r85f5fX5Gxyvz5KDYacq2GyvBZSS/tvufcXYwCZ5pEhbRNIoc3HFGqMleFmjeLC+zzPbH+wNPSTHS97fI1K/WXOaDEvW4izppSBS+xofAlvFmNKUVL7ipD4V2WQI7JRTSlsyziRP7cH6OJmbxNR3VTOwA3HxbFtCMtYQk5amdwAFerYROsYi8sH9A/7qF74K8wYyLY3A6evZy5cpbUFhcz6w8z7Kwec5PV2kOkaUrKj0fvfX97k+uo7VEuHQGbacHz+oFOnvaQ4qgXH31/flhplpaEM3LdOL0r+Z5mNPPsKlwWWyJEt8hx9OiCEtkGWuGG36eSQFCpG7L5oGq3WS+lqyxI61vsUndneYjSh0wcqtGGcTrLKo3v1Teu9i9AJbu4iUcw6gMSkvjLJEDdp7Prj3Pt7/1HUeu3rApdEuf+Xlv8T18XWemj7F5cH1d34M3k2jQ3Axnv9247CYRmccFlF9VlmuVO8MmafeqBAjo8IyKiQgunsLRXqOpxaTs1XLfO2Sbb/Canq57DTP2B5kTIdZH5LtfOBo0XC8aDhrEkuuFF7JpSeqoLQtWmSIfbak6txKpb9S7q30AHDV0ud1aaVYasfWIAMlYM/5DVDpJJZGy753YKvrcataKToMrU0MnLhPHq8aXIjsDgQ8iaujHIeV8/ggANb5wLAwxCgGey4FfHdmJx1Q7ABUFxTeZWF++tEx/95/+SIsjqXNoVPLBM9HbmwxyETN9KGDLcajnPv3l1IET7m7HYCfVS1Xt0o6Y45z2ppz8+Th35u6cbiu0zoqtbnApqjQU6olH3t6n51R1sti38noChgdC9p9DYzpixMCvGBRt1gjYDu3OhUoxJ1ymEFuFOMsIzO6N3zpYji69X13LWhFAoAX2XAfNuc3IkDyk1cnPPXMNR69OmVSaP7c51/h0a2SDx9s8eSl0Q/l0PnuAHGRc31xSTbWbMKoWa/l38RBl6UR0FJLkCJA8JE802RWMc00w2HGzpUxwx97GvXjPwE7+7BeEv/Ob/DSX/0yr56sxMWSDTsWYqTQii1j2MtE6w0wW7Yct465931YePc3TX8iU48bG4dLqzYWCJ2BSowiNfAIc/dmIKi0VMSWjaM5XjL45DOoa9eJ85lIJ49PqO+c0jxYcHpas64cVSX2qQ4BgXWUm1uRquKnzlGHxJRFiTHYs5ah1txr5XfddoLc+EK60bgYWSUWrk2MW59T96Z/6SZshFuNYxUiu1azCpF1iDQB7HQI4zFqMkFdf4TR6Hc5nXmMomcoKYdgLLFtUVv7IqvMSzEy/cuFiAAAgf9JREFUadZQjjdGG9qI9LJtNqzSOxzCxlnUH/1n+Teamupv/zYvfvkOr61qXq9b7jWehZc+whuFofjkB9HXngRbvHMA1wGp7nulxdhlfoaaTIndNbFaYcoMV7XYrQHRB2g9qshESjkeo7Z25O+NRQ2GcvzaOvXAKYh28zldz4h+kwW5NhuTEy8MofpDv8wzwzHq9/1h1GiL8LlfI37rG8STI8xjH5bz8F4c545LB1h6+JYeUEYbVFC982NMC6Y2tFidkWnLwA4ZZyMOyktM8x0KXdLlOi3dghfPvsPN5S0qJ66ouc5olKMNLeN8wJXRAddGV9nOt1FKMWtn3D17kQfrI5btGh8Cw6ykDY7Wu+SuJjI3owyFycm0QWvdA0ulFKXJ0VpfyLADevDUffkYOGvOOKmPuTYS2/pAJAaJCFi7JUu3ZNkuaELDsl3hoyMSWLtKeum0pkhujMt22UcwGA3zZkVucgZ2wIP10QUAB9I/FWPsM8KWydVS2L82NZfrtO2hL7zYVFw4GO4yGBawdLBbQu1g1oKP7A+2mBZjro2u8Mz2ByiKvCeiz8tNI5HKV0zyaR9GLS+8WIn9kU1FFL/v8k/yF/5X/0t+7eUv8qUXXuX1m/dY3l/ASS1uvT7CpQGfvvY+9stLb+nb+2GGRhG61RLC2pampDAFo2yUpLKBebNimGVUzrFbln3fUGktg6xkWoyY5hOsMhhtyFJMgNMFFiuddt3iPTmmihX+pkdbzsf5GAJxev34/if4P/wCPLv3MQZ2xNePvsK3j5/nqDriH330j5Or91b/rgJiNy/jucV5P1/lP3VqGvNR2iI6N0MfYnIwlKyw3GoGqZ1Cn28PSbEAJ8u2Z5NEIisMU2kMe8Oi73nzIbKonACdxkv2nJdiu49R2K8EHLO0MC6Mxirds34kqVqhTZ9Z1xlK2ATygHMSzBSOnYfeNVAndqiTTkJiwVJEgABZkTZWrayd8vTade1ZJUM9qzSzumWrFDfNk0XD2vsL7HDtJP/WGgHFnXyyMz1RidXpAFcPBJDjfDAo2doqJVttvCdqo/UcXMPByLJX5lydDLi8VfSSyM71vIts6noKh7lJxfG/fwy0kBSRn37igD/3b//T/MrXD/nmCw+4d+sB1YP7MLsva7jgYfsKf+CpbXZG+cOpvZ97E5UYuDIz5M4zzm0/R+a1mPy1rmEyyPp+y8IqJoVhe2DYLrL0niK5dV7kuLnVOEgy1dRtktbsb8Zf+ty116QWr0/d2OF/9499iA9cmlBYzbfuzvnG/RltiNzYG1D+EAXwdweII25AnDbQNsQ2ySmrSr5A5JZGo6yhKOTAtk2gTc2oSkOeWQ72SwZPXCL7Rz4Nz3xEqgG3XyN+9Uvc+htf5+XjFTPve9TeXYKFEunkTrKSfrBqeNA6FonZ6kZn5lElxySgZ91yJRlxeaJy2xh7YAdQx9ADwc4wpQvQLrQmV5LFBvDGzSXj129jL12SnLfbhzT3zlg+WIqtf510uloqXXUI1GnRaIBMSzRCE2NvmgKQK83cex60rZiXpJ64rn5dB3HPLHKDiwIMmxg3QJOLN4ausmOTft4hxwHg2G0WUQsfCHULly6JTPLSVYZDCzP6hmoNqNG2ZJPlBWq8RVwnhyNtRVI5nEqotslEdmAyyVPLy4d3w1IKtX0J8yf/ZQY/8XM8e3SXZw/vEO/egjfeYPX8HW6/ekqRG9THPgXDLTFReadDJzlmdzErJfO3KGE4RtUVcSHHQ2UGMxkQWgc+YMapL64sUdMkM51sCajyfsO+GSv/pqwnjNilpw+Ufy5UzZTcdIsRZB51uYCf+ROo6T7kJfqP/Wn4wyvCtz4nzN57epy/Y6TRSVIQRqDr0+l6tTqDjsKIFHArn7JT7PbujSI/9NSh5rXFy7w2f53Tekab+uU6R8lRPuDScJ/Lg0tkOuP28jZvLG4xq5e9a2DnZNn4lpNqxspV/aKu0B37IYvoTFvqVCXNjMjhat/0AC5EsdY3iaXr4gO63qdby1vsFLuMM4n5qEPFop2zSrLJLoQb6PvVujy2zqiiDS1NaNkqNvEHnbPn8ycvUdqCUSbRIKu26t0zXXQMzDC5Tq57wNmFn3cRCtDlbIaeKdJKMRwN5Ob74FxWz0KMXS4PL/HI+FGGdsykzDen+BxAc6HFKEuhSwEWCYSf79d6y8x5iIsppRRjO+GP3Ph5PnHwCU4/fsKD6gF3V4e8fHqLb92/x+t3H1CUOR/d+5CEfD+kz9dspJQKhVWZuK6akjZrmTVyfzJKsVUU1F7C0odZxjgrGSYmOsbIMBtiVda/l1GWLkh9I/XSFxbKbwbJncFJrgsylZHrgt936ScYZROMsvwjl3+aTx38fm4tX8MHB/q9A+LOsw+w6QfqRlfZ71QyRitUlIJG7aS/Kyb1UZGJFLAncROQESZJzDKO5g2LxhEQ4CELY1nU7g8L9sY5Sinuz2pOVy3zpsUFcflTSLB2GwKr1rP2IkuUApImN5pcSxi41YrWi3ogTz1wrYcqCFMmi2bVf/XOktDnq41Lmwowqjeg6EBeF6AN9GycgMpIYbrPE1fOgbF9b5nRilXjOV0vKa1haAWs1spjlEgnWx/JrfQeVu2G5VNKPA86xrMD3F28k9EKPIwGiciYHW5O5HpG7SNXxiWXpkUya7HJzORiMaPruTNa9etO0ry4KKFUm37Kd+gMeX4opdgZZfzc+y7z7KVtzv6RJziqau4ua158UPHyvTmv354zHFqePdhiVJiHcm/qmNbz+2iNzI3SaBpr0EoKCQrFqLBUrSdGMYAZ5JZRodkqBfBNc0uWohuskiJAF/TeHbcOwJ3f9/PbA3LciwS4t4YZn7ixzaSU6IefGud86rEdXr2/xPsIP4SlwrsDxHVMXJb2wLXCNnQALsYL/UFKiRtP6/yFCulwYNm7Mmb46WdQP/nTsoDVBu7eJH7m73L0Oy9z93CVTIs3Hw0CekbGUGjFifPMvWfuQx8tcD6SoHkTCMuVSiBM+tlytQn6bmOkC+teJxv+Hrwltm5sNCOtGRlNoeQG4qNUie599SbXLonDoF/WLB8sOT1raBtx3LFWgiRLp0BrMiUh5z7dZGdeZJ8+CnNkgEUU9s0qUFEx1ArHpoJXh0jbBkajTExMzs3SnrU8d/pM2t9cqdT4Ti8/BLicWXIND9qAn69RV2+INNRmTMYZuVK9uUkAYluhVjMoB2CTvX3boIpBCr8OMBgn1ioIwyQz44eegm8eSiliPgBt0I9kcOUx4hML1HpOrNeMYuD9MUJWCguXlw/ng03WAyGlNTHLoVrBYAjLhVwHWsNkgrZrdOnxqxpzeRt3NCdag6prYlWhJlvCULpGAO5omgAbydGzABU27GWM8pkd9YDqF650PzcWqiXxtW+jnvnxVFULMNpCf+wPiezyPTjUm5bm8ugUOdf5RZQ550DY9UG56LHKMspG7BS77Bb7DMzwQv9YHWqOqkOOq+Peul0kjQ4fAgNbsFfuMLQDjusTTusz7i4fULum73GT06VYNEvmzYommXtYLYYpW8WEaTGiNAUDOyDXGbUVoNWFj5/W815CGdM9ZJQPmObj3sq/27eVW/L64lXet/WBHpDNmjNmXWyAq3pGrJM7WmUJKvTH6aye9Z/XyS07NrEDpnmWiQwqFTaqLtdOWRrfUrm6l3p2Z0l6E+U9usWK1joxRZHTk7mYmigFj6aw7ftrlu2aS4ODPjz6YDgizwytSyHtPtCZtZS2FFlqx2JfKGxtnPZ+VMMoyzCbcFln7BZ73Bg9QrVd8ZNXGuIHxHzEKMt+efA9jVd+mGGTU6kU7tK+e/qMPtVKFMC0GGG1wcdA5WqGWcmD1Rxvpcey8hWjbNgzpeJ+OtowqIQ+DuH8lddHC6RrZxMwnV6jNLWruLO6xWOTp2iRyIPCDHhs8j7p23wPDlnAQgwbuNsFf/cSPiWyOqvEYr77nUkArsxMKtxsjBq6fi5rdA9GICmKCD0DsV3klJkR4FY5jqpawJvW6XNEcrl2npXzAuwj5EZjtWZkLePMUmaazEiMUZ0W2CFKntrKuQTEwEUxViut9C7Zc/1KHVCzJlAkW/+uN25WOVa164EObGSimVHEuGFP5rUA0KDEQ8AoxfqC8V1knFm0USgl7GLVhl6u2sk0jd5IPTv2rQOi3bHs/vUxcO/+Mrk6ath/VH45u8/p2jEdZKwaz6S0HExLisLSpuPkU8RA7UJvIlTYtxaW/34Qc10GYW41B67gejPg/Y3npx6JvRV/mRn2J/k7jhY4/5ndse8C1msHhdEURgCcUrA/tCwajwuarNGMCsvxQpwiV40UGIbW0Cb5q00OpyaxIF3LVVQXj+VFAPdWMAdybh7MG8rMUKXomlFhePrqhMz8cMfh3QHiQFi2LLEDPvXBpXy4mBaXGIOyhtA6isJQN76vtBS5Ye/aRKzef/9PwV6y4L93k/jZv8vh517i1u0l6xAYayM2++mjQ4x9U+OD1rEMQWSS6ffn51iT2LcOiHWZcSMtDJpVAuTauGHpPLD0/oIJSse+TY1hag1ZAkIdQPJRXnN0VLH95e9SPLqLm60phxlP/dhjqA99EDUcCWt5dgYnJ/gHJ7SHM24+/4Cbp2vWfeRClM9O+9pJO7s+vaX3SQK6AWJN43FtYO5TmCWb/rfOeSrXmm1ryZSijiKNKM7tRyRSKM0jheFybvnMWcXi/pJhXsD8DIB8ewicynFK20qIRO9ga0cOVttsJIYmbYnNN/a1efnw+uHODaUU0eYw2oKmQA0mEC7LBdplqdkc8sHDYeG6z0Rtev6KFhU80bcwThl5U3Elpa6JbYuZDMF7zNYANR7DaISaTEWarI28T3ds2lp+3vXDvakPLobQ//eb96mv3D14A2Ignh4STw/h/m25Nj/4aelZ/PvxlPgHOM5LKeFi6aBzTZT+HbHWjzEyyIbsFnvslQdJPtk5OAYqv+Le+g7314e0wTG0QypfE1zsjSAkDNxzd3XIWbVg7WokY65bcInt+7JeUfmW2jUiJ7EFO+WUvcEWAztgZEeUtsQHRxvElt37mlmzYFYvaLwslHwMlMnxcpKNUGojvYxEMRKJigfVEdP8Dtv5DmfNKU1o2Cv3eXLyVIoVqKhTtEKbogOOqiPOmjOW7YpVW+Fj6MPJXXAJHIjsUynFrFlgtWVgC0zK1Fu1K0Z2zFkzw2gJUZeeuC4HL5DrjGk+QSlF5Spc8GgCVhtOT+dyQxsadq/usD0Z8fLsZV47O0sB3CtiDIzzPFXMxTK/CAGQ8zq0A2IM56SUFx/iP3JJpVIYDIUpsTqjMAPGb/pMqy1WZQ9dUqWUJlMZQYs5SYiexjZUtmKnnCYX1ZbGOUbZgEhkpxwxLUZM8iGT1P8mmYimL5K46LDKYjCE6DeSynQ9deYmHUh+837FGJk1p0QiKzdn0S44a04BeHT8ONv5e89FN5XbgBQrEGOqiwvg6dYc3bMf6O34BcBJdlqXcdYtqp3fgL/5uhWr9UIYPEJIbaSRMoVX31/ULBpHG0K/RoCNYdKyld9VPmAUlEb657aKjCIzG2fJIL1qnfHKqvFUzveSXBCHyp0yo0x9ezqxZCFGGi8rlbr15CnLzvnAsvGSUzcpqJ38vnFB1j2pL6pqPataXCgbH6i8x4WNZFP68lTfpzdr2p6py5QcQzGPUaxq3/ffxSgum20QkFcY2VelRMbpQgQt+3Z8tEz0zYDy0hXGW2MefO2MV+6vUEqcM33ImZabnkXvQx8x4FKfVyfffMt86Rm4jpF7x1Pwew6jxVa/sJpxYS4wVhH6Y/NQFQokCaTV5Gm9HUJklFlWzrM9kO2oXKBykWlia3dGGdPSMCmk57CT8/YZz8h5yq2WNuoQUxD8xoW0Y+c6RvDNI4TI6VKyrY8WDavaMascRimu7w64slX8UPv87gBxik3EQPAipezcKGNEddEDSqGMpq49eW765sLMara3cwZPXUJ9+KOwd0UYjfkJ8QufY/XNN5jN294Gvw2RQmvpTUtHvY0xGXhclEhK06k4LDYx9ict18JgjY1mbDSl3sgQ2sTUdSCqSk6QPYBTMEp5c7vJyrd7HZCqzFK1CSFy9+aMR6/vMPzFP4B69Enil36Hu//xr/GtmzMO25ZVEJfJXWt5fFLyyONbXH96jze+84BXT9fMvMemG11nYCTunUl2lPTYW8bgiUk+KjeDNrGIzbkHgAJ2reXpq2PKwnD//hoqGA8kbPNB3XKUqnZNjNxvA6vQsvCBk9OaS1kuzFIxEJv8uGFEPQiQnx0Lk2qtSAGVIjqHion3MJkAkraWHrny4cmFLkxNpYgmg2Tfm7QH5xwb9UP93BjjxnhEt6i8lJiBcgTZTCSVTU1sGrk+6rpnsVVZwtYWams7gcBMwFWWy4M9BJS2wsBpQ//oD16OeV/NfhtAvDojNjVq/xrxtW8R/85vcPKb38C7QJZptv+9/xPmo3/goR2Pd9PoEpg6Fq5fLEF/vDqGqZPytcGRacvQDtkudnvzEtJ7NCn4eukWVL7qTTqGdtDLHSPCZlSuZu0kj6uLF+hYoGW7pnYNPobUY2IY5UMOhjvslzsMsxEDU8pimEgbg+S1BcdRdcKqrWTR7Vu0UkzzMfvDbXaLHVzKkXPBiamFErZFxYALLXdXdyh0wV55wF55wFfu/y7/x+f+Bl/+zivcvX9CVTfkmeXy/g5Pv+8GP//Eh3lm56nkOHnEvFnKe6L63szC5EyLETHdl43SjLOxANV2lYLAhYVrvBjI+NBtm2JvsM1jk0fJdc6D6gEhBjIdefHkVf7Wd1/g9mtJqrRyHN894XS2gLOG26czMp1R+QofPeO8pHW+X/DEIIuf1tcMjJgpBUIvp/x+182Psi/FKCPGMm9i296xE+X3GTqZjIj7m01S24zMZGJIEz1VkuR2IfRWW6Z5yVY5Zjufpp9lyRRFtjvGiEana2jzPO2ksV0B4e1G7des/ZrtfIfbq1t87vYX+C9f+jqt85SZ5f/yM/9jnpo+89CPyT/wkQBbN7R6k6g3CqugzKZPv3ZJymh1z44UyTiuy9rKrU7W+KFnuAqr0V4y4ABWrb8AeLSSVg6TGNI2BJbO9a0YViuG1rBd5EzLjGFueut3ubYCq1oYr1UrrJ2PsWfvxpllq8jYGma9OYk7dy8+L6tsfKREpKG5CXz5jVP+w995g6996x5H947xrcfmlp2DHT70zD5//GOX+LHLO+RWp8+Uok2mNTpuAOTQWgFg3os7ZmaJSFRB50JZ+0CTis8udEQB7A5ybuwOMFpxvGhEzhojXz2c8Ve+co/DF78r56xeUh3epTodwuqMuyerHmT7KPEQzgkbGlLPXYhyXvMUP/B2l8vbAY6HNToW8nuppH4067UNoO/mbm41uRO21xWBxkVab1i1oXc73c6t9MIlH4xcixmKPceOCdubiqZpCZhqJrztgU5jmebGpLTcOav4m6884LPPP8D7wKCw/Dv/2Ed4/5XxD7zP7w4QB/2Cs++Dq2WhqpTqARxKoQuL95G69r0UYDAwDB4/QF27CpevCdPgW7h7E3/3vjTBZ/oCuOqcG0FkjotzTpHd6MBbJ4fsbpJWiXxykHrfQMKuA/QGICsfeuB2ngErtWKkFdvWMjTSm7b04UL6u0X645wStjCc1fhFha0qPvuv/Bn+2tGc1bk79nnHRH28JH/jmI+Ncn7iypRPPrHNi2/MOWkdPm0fwFiL9GAdIoPUF9ck9rAOYttbVUnWlTas24cda/jwI1N23nfA7JUH2EwzRrJJnrgx4UMfucY3/tJXuZsu3Ndr129r2wZYzkUaCNjtYc9aRkCFAIsTYcDKEWowIe5fEWnBeedEbeTLtdL4O955OPPwewzJVhMpV19d/xHd/FQC7xuGUUNToYoBcbIjd4zFmZiX1DXqyhVhBb3v4yficoGabm0kyDHAeBuVl+Kg2W13t/A09oKUUr1NMG48PUTtXEblJeFv/RXu/Y2vsv34Lqs7Z8wXLeM/939F/9kfQxXDh35s/kGOzdInXmg6OQ/gusDpbsHZySJLW7JXHpDr4oK5RIwBHyVjK1MZa1f1vWSZzvoeuqVbcbw+w8fQA7XcZLjgWDdLOrORNgXrFsZSmJytYsw4G6KUZpXkjSF62uCYN8LmdcCwCU5yj4xlWozZH+wwtEMW7ZKlWxFC19ch+1iYnKBkP0/rM7bzU+6t7/Kv/fV/ny//2ldgfrE3sgEW+i7f/cwL/Nrwt9h5ap9/4qd/nD/8+I9RmFwkkUrTpkXPTjlFK828WbBdTMhN3puWVAkYtKFFnA8L5o1EEBDh8miP9209xZXBVQ6re2hlOKnO+JuvfIPrkwn/4id/hs985uubdcUr896so21alu7/396fx1t2nfWd8Hettccz3vnWXKVSlebJsmRbtiXLAzZgwGZwAqQZEtIk+dAh6e4MJOnk7U4+3S9paN6k03QInZAmBDAZIBhiMAbPowZrVmmsuW7Vne89857Wev9Ya597S5YtCauGK/ZPn9I5Z98zrL3PPs9ez3p+z+/Xp5f1yU3GZNSkKApyR6ccDBMSbb3NQhURyQj5KoykL7XE/UWUwssAe65bam2ufUKlqZk62mh6WZ/IC4mLlEbTxoGkSKn7MUoohsWIulcfV2iMMURe7IR//PF+lElbqXxaTkq/2XHs5V0mgkk84fHA0gP856cf5vD0FGc6HTa7A/7tU7/JP3rr3yd4I/XFCReZzJY6YTn31ObieFVK45fea6FvpfZLw23YSqTKKokQW/1dmfPljQNFaBRJVjDMCwrXP2bcgkumDf0iH1coUve5nrT9bzVHgwSbdGTFFnUzyW0VLNOaYV6MF9V9KWj4Hs3AI/IVvVHu+ta2+vo8KdBmS32yO8wQwOLmiP/utx7lsT/4DHRXLjp+uVScf87n/EM1/uS3W7QPHuSD772e/+b2PUxHAZkTHymrgBNRgBTQTXKavvWFy5043KCkXetSaVORFJYxlmjNXC1k31RMM/IYpJbet9gf8R+fWGTfZMhP3LOfT/3Xbdfo5ZPjcaaprRIOUyvoN1XzyHNNllq2x3AoyZwSpqcEzch7xSpbmYBc6th0OSGE6+cEEicwEweWXtrNMuqBNbpvhiHaQKZtNVkIW6FrBOqixaKyUu2799oeZuV4KlVS9r/xvnaGOY3Iw1OCz57s8pknFzm4q8n5tQHrmyP+n4fO8E8+cB2hr77he7wcro4kTghXhTN2MppltmcKtvyx3HNUI8L3JcNRgS4MYahoTNfxdk8jZmYgrtvJ/foy5vxZTK4pRhnLayNHkbSebKXgiBKCmqvKpS4RK5EbnKnjVlXOE1a4RGKrRgOtGWgbOMtELHWvK19fvsYTNvGLXdVuOcsYuKpXSW8UBrTAripjE8xQSJ740ml2Pb/MuTS9qN8MLu4Z0FjK51ODlPOn17mlHvDmgxOsbySc7SQMnHdcagy9osAXlge+mRdkxqpzBm58+TYPE+ES2YaUHJ6uM3PbXmQcUB8krG8kNFsBN/7ovYjrb8I8/QSJNkw4Pva6C2yxlISh62ObmoXQ0v9GWlNgKZsjbWB91SYbc/vs/rWmMX1LtxJlYlNWrIJoLMF7OXDZAtJ2aV7l2YQ2SzG6gOk5hDagFKbfd0mt3LLhaDRspTNJoNEGP0DEDatKCfa4Fbm9NQbhWX+vV6J/GV1AvwOtKfTCcdIvPITnScI7b0R/6XGSUZfBs+fxV84i9l53iQ/QlYC56L8S239/npNxL5USYxXR8tsX9fuU71T2Aw3yPqvJ2rhvzJc+SZESqRApJA2/ziAbsTGy/WNCCNIic6IpVnWy9MQJlEfNj1HC9n+tjTZRokdJDg9VQK5tX9IgG9FJ7GKKr3xbvfNrNIIaUkhWhqtspj2yIsdXHr4z1val9WGTSFJpF9qOrT/DI0vHOHVmcUvu/qWwV0wY5qyfWOHfrPwxnz58jL/07ndx7cQBulkPH4i8kFGesJF0CZSt9KwON0iKlIYf4yuPwuRuDJYyWhjNRtJlMmqxt76XA42DKOERq5iHLjzGmc4af/stP8zR9g0cW38Khk6ZUgArI0et9Gi16iihmAytV187aDBM0nFPnR5Z3ztjDA2/ua0C983PnDeSR5mtmiowBWBFfAIZksscPMN0NAVAIAO6WQ+JpOZH43O25sVjf7iaquFJj0CGeE7YRrjfT1k1LnsdXyk+aVddbvhN1tM1PnvmEaSU3Lf/Fj5z+gleHKU8sbTERrLCXPyt+zNdrVCW32UXn7exXIz7W6m0F/mSWqCcMNwWLSxzsvyBo0l2HJWypFumubb2AzhBiFzRyzIybamJpfdtpkv5dfu+vpLUPEudTQvNZpLhZ1vm7YGyoifaGIZ5QTcre3qtKJsvJZGyDKzuKB+rRpZ0RW0EYKuKmdtHKWyC+icnV1g4t7l1Td0OXVzErNk8dYrf+Og6n3toHz/9oRt4654pW+XKrQLnKC/ophm+lPha0humpIWmEXjUfY9SVl65uZRVss1oBT4zzZB6WCqswpfPrnJqLeF/vPca9k7FPH++ZxUpmzN28bW7ascYNYhclahds4njROSRjFKKvEB5itEwZZjaeVAt/OaJgI1Hhlf4Se1ISLdvYKtnNp7Yc3LKCVV5UtJLC3fOwyizAj1hKPGlrcJGvvU2rIdqLPhTUnbLeFS2O7zSIl1pNu8rwXIn5dPPr+P7ivuPTPJHxzSjUc6z5zZZ6absnXptugJXiWGKpYOhC0y61QsnpNzyjiurcb5P4LJZ5QnqdY/o0AxMTECtYSNROoILZ+HUKUyas76e0HVqlLkpG0wNI6NJjS3Fb9Eit4RJAsHWfUedbHmSwH1XI217zXqFFSwZ6C065vYErrQb8ATjnrdOUbCWlVL19vmlfH/uqnmpMSTakBj7/p6SXBOFNNQrf22ptu/z4jDjs8fXqMU+1803mHCSwB3X66aBjaJg4EzCc2N93kpj78BdDMBSMA82Ig7cfQB19BrEkWsxWcG+o9Ps+8sfRBy5fuxP5gurRtlxtEqF4HumGkxOhBz7B/8K89jDtr+r2WToAndZ+WThtK3WeW6NIYwtLfAi8RBjE5FSafENhK1gIKw9QFQvu9YtzTKuQ2sCpma3qJNKWVuByUl7vISE1gSi1oK4uUXRxL2P2dakrh1d7JUS4Ty1vXCf+S+YX/9XrL+4QjwZI+56u1XKVM6/8YXHL9GRuYJ4aYAeV2Qv3i5df085CY29mMlwCl9YM+Otl+txv9x6usZGsmF7usbqjYJRYSs+Ukhm4kkmohY1PyJUwZhKWSpGBtJnImoyFbeJ3O+hk/TYTHqsjzp00wH9dEgn6dPLBnTTwZjGGHoBsRda6wEnfLM+6rA4WKOfDsmdVUHmksa0yEjyzCaC+cj9LePo5AGOXLsXat9EPCLTUOhyhYwTZy/wf/zuf+ULZx+lFTSp+TG5LlgerFlKXp5xob/CZtKlMAXDPCFUgatYpoReQFKkKCGpeRHXtA5wtH2Uht8mVDGPrz6Br3z+5pt/nOvaN6KER+SF1lutm0InLb84jtx3HZNRxN/+zC9xsnuKpBjRDBqkaTY2/M615mzvHIN8MO7lunj30kveC3f1QOAJj8AtNpQWAJGyHn/NoMlE0BqLzsRexGTYJlQhnlQ0/AaRFxOpGOnsLwAnFrQVn6xXnFUY/WbIjZ3UP7z8EL/9wsd4anGJ6XqN22duxZMSz1MMkpRz/bOX7pBcIZQVONhaTzCGi87FknIHtmo17snK9TiMGUeZlK66108KusN8LDBSzgVGWTFWeJyMA5qBT81TzsfNvtYKSljhknbgMxEEY5+33NgqWz/LGWQFvSyjl2UkRUE3zem7BC1UkkBaYQpfSjSGTpqxnqQMc1sFTFz1yfbbFeMqXuak/QttuG2uyZGjM1D/Bowdo+31LU9ti0aec+H0Ev/br32N3z52Ad+z/XvGwNooIdOapNCsJ+lYcCXTdpKeZNb3NvIUqWNHBFKxqxUxWffH/XGfP75Cw/f4qbcf4uBMzVYpA9fDPti0DCMAqdh/7/3MtCL+8q8/zNOLHUaZphl45GluKd7aUOQFS/0RSV5WUS9ePNrOMtveD/dGW2Aqd8dTclxd1sY+rnkeTd9nIvSZjDzrHycFrUgxW/cJlE3i2kFA5MvxYkWZ7JWqoiXK39Mrhfy8sL+xJ85v8ttPX+DMUo/pZshts23blxp6DEY5y53kNe/z1ZHEifII6S0qZV7Yianvb5NdlxBFyNC3FYBA4U83kNOTlkpWeswNe5iVJbKVLsPTqwwGGdfONbjvLfs4EAVjpUlb4jYkbsWqpBXaW0FNSWpKUFNWvCSWAkWpxgiB2FKt1GzZC+jtFbhtCZzvqAmJ1uO+sxLbE7+SflnKAoP9orJMc93hNtfH/kVf3EurA2UiWPbY9QvNwwubTEwEHJqrUxjGFgilJYHEVsICYRt0h85WICqDshDsDgJueO8RvLtvRxy9AVZXEb4i/o57EXO7bfIcRoiDh/ng3glayoq97A48fmS+zd1v3Uf7xt3c8MGbEO+433rA1evjPpay18gsLNhKnPuSRFRHeAEmSzHrSy7ZcMlI6X1W5Lxa7IxJlk3g8Mv+NRy9tGGT28AJu0QxYmYOEYZW6Cau2+1KweQsGG0Nw8vjBIw5AUY7tUp3/5X6+4xBzB1AfvDHIY4ptCE+PAfz+wnmbJ+LlALOnrACKW9AlMIKWxOmi49XORHVRjvvrAah650av4erwuU6YyNdo5f22N/Yx1vn3sp8POdeb3//vbRPP7MJQztsMBNPMB23mYxaTIRNWmGDVlhntjbJfG2Khl8jkL6V5g9iQuXbBStHQYy8kCTP6KcDwFbmymTQVzZ+dpI+a6NNhrlVrkyL3NI1i5yssOIkmbb9c8U2muVk2Ob+I9fSODS5xTMxL/kHdoUpKSApMIWhPxjx0U9/lceXnqXm1RjkQyIvHFseSKwpeSB9moHt7RvkQ0bF0PXJ2d6e3Y05bpq8mclwBk/4PL95jJObC3znoffR9tvjqs7++kG+/dvfCg3flgl21bjzI3fzfW+7k9vm9vHh69/EDRPXE6mYyIvc/m1Ndk52zow/UyDGFNnCFPTz7iv2bb0RYPdbjvvxACIVEagAKawHoK2SRkyGE4QqpObVCFU4Pj6toDV+n9wJ3wAuCRBj0ZjttMpXmnBOBJO8fde9xH5EluUcnZyiHUwwU9uidy/0z497Vt8I+Hq7HzHu130pykpC6KoMW1W4LQNjsHQ0hPWTm2kGHJyp0a75lGIpZb/YyCV8Dd+zPW6BT93zqHkercB32614Sewpq0Yp7ES5TOhSxybwhCQtrAplYWwfGmzRJJUQjPLC9uBp7ZJBmxDaCp6Nm7nrCy6PhxSCmTjkfTfP0T546OJF3+10U2MgG9l/eWIpiv0hv/b7T/OJF5ecb641NLd0eT3u+5MCap6VjR+mBUlWEAdq7P82Vw+ZbYX2OEvBi4s9hnnBu66dJQ62vA93T0R8x/e+zSabyoOZA7z5h36AH3zvYe4+1OYn7z/ErbvbxL5NSADnLWzQWvPiRt8Ja4lxRRBsstEd5S8799kZ86HXhrIvruyPDDzpbC4Y98GV4ji+tIsN5fkmBDRCe2yt2I2+SJkV7DErE+VvJCBz0fOBiZrPWw9NE3iCotAcnmvQrvnsmojGyeC5/vA1fx9XB50SnL5qbmmUpS/cdiplWZWr15Gxj+yOCGoB/mQdomirUpEk0Fm3ao29Ed1eRr3uM3vNJP5skz1LPS6c3MAYxiqSBiu/b71P2KLIwJhaaLNwOyzBVhIkAcqWPaykf2r0uG+uTPJKv45U2+StTLA0lFctcrNV+Sp/hOXJUWDo9VJmr53irqk+J0Y5S5mtnPhCMOFJRtrQK8w4wUuNNdmOpKVPfuGZFe6/ex/71kYsJKnrDRTjYG9tEaBbWPPtkaNeCruL3H7TDN6974DDN0AyZPjI88TvvMMeq7XlLVl7XXD0r3wH/8u5c6TnVnnmS6e59UM3k6/1+donnuXA7ga737YEuw8hmi0idwEByAwkz54muuPNcOE0pjWNmJy3tMnNFczKAuLQLY5eG0CWYLIEUbx6ZZ8dsfJULmqUCWuaYIY9O/Zai7EtQK9rE1knFAPA1Iy91QUEEabfQTTdCuSoD34wVqwUbgHFip68wppOMsSM+tA5TX76ApP72ghPwep51L330Tj/MfKNAabf49U0+u40vNTY++UitxTWuHiYjwhlSNNvjRO78fu4qkJhcrpZh7pfZ1dtN7GqM1ebY2m4TK5zAuUDnqvKjcY9d8IUaOPjS6hLaxXgK4+syMfqi570iFSIL60Rd9ljd7Z7jp6rwJX+ayVlUQrBMBuR6nwsSFFeUHKdU2CrdhqNMFb1zSpZFihjV8lvn7uBN995hs+e24TFgQ2WvrQJU1LAqLCJk3HUyrSg8BSjUcKvfuoL7PqeaVpBg342xGC25PuB0E2+1pNNQhXQTXtjiqoxhhsmrmcinLF9V3mfj5/4E+7d91YynbEyWmY2nsOXAYEM+Rfv/dscu/ODHN88ze8+9yg/ftt9nNxc4De+/GUO7JvjzXO30w4maPh1gsC3kzVh/UGfWT3FLdM3sJGs0/Bb1L0mBuuTd2Gw8LIKiJe6J+5yQwiB1sVY1CXVCYN8gEAQlQI6xth+SqMJZGATPARtv2194LDKlKNiSKTsuZjqBE/4KPe9j4/ZK/TCAWTOh3CYbXB8Y4FrZqdpR026WYf37L+Hc90/YnUwoJ/3L+mxuewoqYBsrZ2UKpVbxLJtt8ZKz1vqpBkrFRbGWK8qAAFZbk2RA9cvNFkP6AytR5xyn1dW7oSwRvBG2OoZ2ElyKWyRFcbZMXnUPMZqkIYtOfj1fsbi0M796t7WJLr8rGFe2Aqbq26Vn59rMAKkMmO2g7V20aDt2JUUvHXvBG9/2zX8wcJ5uPCCnS+GNZswpUNrsF0umGYJRTJCyJhklPD//P6z7P8LIddNNq1dk6tCGsPYHFwbQ2eUEbpErtx3A8y0QuvbJgW9Uc4Xz67x/mvnxj1ujdBzNg+S//sHbuW5e6/hhY0uH33wPH/jXdfw/Fqff/snJzi8v81tcxPUAkXd9/DDkoIsyNKMJy8MuX12gn6S08w8aoGtJA3SgrVeysRLWBLbTp03DISbQ5dG78bYc1lKQS10IjojMMaqpUaeInT9bo1gS2RJObXSWmhFa/pJQegsMMaLJfbZrxibSgrzai/lheUhB3dZS4HuMOcDR6ZZ3Byx3BkxyPLXTHG9OpI4oyHLMELAYIDJC4SSW4qVRWEntGEIcWz74tb6yNhHNSL7POP66TrrsLII/T7FICVJCmamI8J9UxQDS3VpeYoiMwTS9qBZURLbD6YpTbvlODAJbBKVYydyobB9bb7YaiYfac1qnrOSFeMK3PYpce6qfdsrbmOILWsB7RI6DQhjTRytqSasDjP8Y8vMzcXc2084OUqZDzz21yJmpiPStODYYo+HeiPWsq1kMTdW0GWA5ulHF7n5rj10v3qWAsbKmGUFMjMGJSAUksTRKaXb3/ptBxB33gdRHf0ffhlvqkH+3AmK7hBTaKJDc9BsYXpdRK0G976bcDjgtncuITwPfzCAT7/IifM95j73Obw3vRPiOpGUTgXToID+2XWioa0UMOxDW2/1cQ16W4HWCyBq2G8gT99wEyUr4uL6/4oMkoGlG7v+QJIRbK5hlpdBSsT0tE3Q+l2YmLbHpLcJOrfm6Lqw1WrhFkSEtBUzIV6dRYLRiOY0+vwJZOxTe+d7ML0u5ulHEbv2oocZzQ+8BTEzf0kPy+WGdqboppw44Fa8X1KFK6sKvgwIlG+l38VLL5pWD1YbzagYkumMpt+i4bXITIY2mrpfp3C9cVIULrHKqHkxGitqEnvROMHxhCJ3Iiq2tySg4TdsAiJtZWRUjHhu4wWOb5xFY6ip0JpiGyuKYoqMzFXYMl1gXKWiwPYoCWMnblamX2CEFTCw9iyKTOfobIASkncdvJaFNy1z/PQFpiea7Nkzw+RUiyTJeOH5MywdX7I9adpAqikiazrc6Q34dw9+gX/4nh8k18U4MR1kI1phndiL0EajkASOUllS80IVMB3NoJAYo/nK4pdoBnUeW35qbF/w/oPv4rapO9CmoOVP8I5d9/G2uZz37LuPXOccah7iN/kKx08s8NkDX+YnbrqOulcnDgPy3BpWCyE4ublBUiT08z7FNsXOTKfjZBu2LvJvxJVusOeFwjI1rJm7tZIY5nYinhQJm8kmq6N1BJLpeAJf+gzyIe2wTU3nYxXQSNXQprB9ce66WtKSX63KpsEQe3XWk1V8Kfneo29nWIx4duM5dtd2IYEPX/9m5uLZS3tgLiPKFfwyYZOuP+yliZsQpbauTaBKhcNSDEW7ia71S7PXglwbaz1gDAqrzBd41ovLc/L/o8ImVk3ft90uQhA4wZKxkqI2gHZ9cYJG5BG6MRisoMniZsKprk2ua55yAiWWuqaxgixlv1zhxlzmm9storTbeU+V8ZhxdbHmebz7+ilOvvVmTr04Q3Oyyf79E+yerjFIcp56ZpkLzx2H/oa9VmYpRDF5mtPv9PlXnznJP/v+26h7Hp7Y6t1rBB6hsmIZylWAbP+THFeEYjf5B3j83CaTscdDC2ss9q1Y0/sPz3HtfB2ARuRx58EJbt/f5t6DsxgDe5oxvypPcuyFVf7o2mX+4l0HCJQkroUko4yiKJBSsrgxtEqhmXYUcHuMklyP++XK8+HiM+SNBZs820l44Si1VmV16xj085ylnu3pnq75+FIwGha0At+e2663uxZaGwJvm7KrlGJcgXs1sUkbQyPyWO6mNCKPD988y/oo5WSnTzvwGaUF33fnbmbj6DV/I1dFEmeSHLpdSxFLUztp9TxLpfS2DdHzEHGMjHxkHKDiwKr0SemomEMYDjBraxTdAcUow/ck0Z4JRByhV7qkmR6rPybOAqDEoLCVJykkoZSE0spe2745W43ypTXk9sVW8tYtClbygl6hkTCW8y8xpkluS97GHnTbbqVb6cWtjoRS0lTK9uoFCs/bqszd/0N3YfIcPcpsj4mSCCmYX+2x96EFvrDW5Zz70Q61IZAGz8DJUcItSnJ4d4NnFrps5PmYSjlwlITCGDJp8BBWtQ2oKQm7d0N7BrrrpE+9wPKxRZaXh/SLgkhKbm/G+EEIwyVbGfIDa9J95EaoNxHDAc3ov7I4SNl47AzTqxegs24DMFsWDIuLA6Y21xFRjOmtw6YNbnY5cHqrgqQ8UB7GD6G7ZpM875v04+wgWJXKLVt10Zy0/Wh9V3nLc5tYFK4pe3UVMxjA9LTziPNsEjjo2EqmH1mDdCHHSXCpqPSqJkjGYPobiKk90N1A7tmF/K4fBanQn/pPiLe+n4YfwKRryH4lpYcdhEHeJ9UJvgxcv475ugSuRGmAHMiA2ItRzlvNLnm6377RaFPQz/t4wmMynEIKRV4MxpNW2/eVjpOsQlvhjlAF1KKYmlcj9iKrJKczhM4IZGCFSXxrzO0Jj0QnLA2XeHbtOIuDVacEGNrKG7YKWxjNsEhJde4UM/VYZc6eIxopS0uXgkJIQpeoNoLaWEVTusn3LTMxf/+De1kfdei5njrLLJDcuW8PX9jzIo8+/gJsJHb2mBTkUqKk5MUTCxzfPM017f2sjtbpF0NCz8eTHpuJFWgptMaTQ2r+VsXHlz6+tKpuaZHwyNJTPHT+FAsr6wwGCb6vuGn6Wm6fvhONsfL2wkMqxf7GNWAMw2JAq1Xn/PlVHlg4yZ+/rks/76OU9a7KHXV0cXWTbtYj9mp0M5sgNv02AmFtB77unLj0nnFXAuWxxxhqXt0adBeJ7aF0yW1pur4+2qCX9pmrT9MKmvbcQjDI+7SCtjULl9GYogqvPT6NigEtf5JBMWBvc45799yPEoqHlr7K9RM38tfu8Gn4jXHv3BsBg9zK+pdVHusXucUUENtplUKMJ6NQKijaP5UVLW1sm4gxjJOsLNd4gaIonD+sk24vTasBNpKMyJPUfascWSaKWaGdv5w37jEqTY2zXLM5zFnsjlgdJWhjbAIntip5pUx/4ipf2/u6ygqdvVba8QvM2OOrHnjjxNPuI9yzd4pD31tjbXSEblqUUyeMgTsOTvCZvS0ee/A4+doi6II8TREypMgLjr+wzBMrm7x51yQmwQqzKDtH7KQZhbYLCVGhiDyFkmZMC93y3tM8udzl4TMdTi/26PdTajWfo1O1cRJX7pOSsGcyRmCVv9vtkE5nxEMnN/mh250KpSfJlKQoChCwsNKjk2Y0Q49hpoGcWuhZT2Nffd1v6Y0am0rhFoxNisH2ccrcLiqUvZLawHIvZWOYs7cd0Ay88Xk1SgtaNZ9Alf2jW/RU+xmvMoHTht4oZ7oRkGQF105H3HNoGgM8dnaDG+Zb/J37jxD5pSfma9vXqyKJy9Oc/PQFvP3zUBSWohW4BE2psU8YUQRBhJpsIZc6qHoItdo4iTPdjqVTrq6iXRUujhXeRA2MQbukrhl7MIQLzpTSl1seKxrL9pHCyvH7jiYZCkGoBJHnzCi1oa8LVrOc1dyag28JmGxJGJQJ3Pbq2/bEbfutNraPrqEkM77Hwdk6c9fNEB7eDVNT9nhsbFCcPY+45VZEUSBOnyJ9/gybJ1bpdFPm52ocPNCgKDSf3+jTdb13qauq5cbw/NfOc8uPvoOz//qzJFqSYxi4YwE2mQywgTA3dnxNTyEmpxCej85GnHnkHGfXR3SKwjKmhCZb7eLP7oLz5+wOGW172/zAVs2mmhy4dpKVJ5ZoHZ3HfPoP0OfOj/dfIMgxbIxyGAxsoqJ8m7TUWraHTvmu52vr1BXKw9Ratlr1BknioAyw2OStcPYKOod6Cy6csVTKLLOLHfv2IWbmthY9fGfRMLMH0ZpxwiYX97+5D3l1gylFT4SAlQsQ2D47MbkL4hqiMQnX3oL+9V+CdhvufB8Er01l6WpFN+3z/OYzXD9xs6vMi3G1ABj3+JQT0FjFjPIhgQxR2+rxGmOTQCdqkhYJgbL0PoDC5CihaPhWyXKQDxnlCZEX2smLzl1CZM2wywluSZVsBS1age39KnROL+txvHOCF9ZP000H+FIhlUfglCg1Zuw5l7r33g6NQRqcbYJdTVfCKg3OxJPsre9hLp6j7jecfYKkMDnryRq5zllP1jnZPc2x1eM8s7JCZ5Swt93i2j1zFIXmiSePwyCD3CZmhdYMRym/fexr/Itvu5de1mciapIWGeujzrivz5MK5SrHZRWs4dfH8vS5zvjUyedYOLvMxmYPKSVKSZ5fPwkHbfJR+pHpcoorIKLGrft2s7y0zo0zs3x18auc6y3iKUmW2UljpjWdzT6DfOAqR944KQhkyGQ49bJJ/mtJSHYStrqxNZ7wGJkhNa/G8miFQT60VgxewMH2HmYiu1ihhCSQAaGKaAcT1LyG/U62+Sdutxl4NRiLngjB6nDVqbBm1IIGvgqIVY3dtT384ek/IvJCrmvfdEmOx+XG5jDnzOqQa2YtHbWUtgfGlbeyerAdBsZiPdsf+54cV/OUsEqWBnv+ekpSCxVpbhOzTGsipZz0vjWsdux8WykrLaACRRwoJ9Fu32/o6H3nukM20wzfKTlK10JSVtW0sb13mTZj24QxXQ7b7qKNoUCghCFQkoloSwXSV/KiS1yuDXOtkNVeyomNPo9e6HJsocdqd8TB2QbX759A62t47EGNHvRAF+hCUxQFyTDhow8s8K4/N0tWGFrGY1hYFc202FrcswqaW6z7yJd4joKX5prPPb/GucUeS0tWuKTX83l2dcB7t1Ebt8cKg1UBvWn/JAsLXa7f3eCRs+uc74/GVFgAow0bGyMGzpNPia0WoMhXtGLzDWPQGzE2gd3/8rwstCH0Jcv9hH5uqZSBJzg0FTIbh+Pqb6AkgSdp13zasY8qveHc8bRUylffllO2RwGsjBIi3yqmtmo+oVI0I4+pRsDvPH2eVqQ4PFd/hXe8GFdFEqe1ITm7how8ZKNmE7gguLgKpxSipFfOzKDOrVgqpRB2sl8U0OvBaESx3iXfHDAaFUxOhojAs0lebv06du+uMZsbzOkOpxJrthhJied+DC2lGGlLMyyEoaXsyooQMMps5W2gNZ3CqUs6KV3pMvVSaRG2TMLBngBlll1W3rajoSR7w4Dbbp6l/sF3Im67C6bmrZhFWLPGzyvn4HMft3S5jVWGj77AJ796mi93RjSU5OhSl72Bz77pGrdmBV/rDa1fHYKRtuN6tjvglulprt3fZOPEBkO3ylWOJxBbl87MURVmZ+NxFYzeJuudlEAK5qXlC+fGsHKmwwFATE5BGNnvpN6wCUSWQBBRv/0Qk8+v4919O/2PfZZhZ+R84rYmw6k29rvMUkRUw6wtItszmFoLUW9t0Sm3QQQR5jWIm+wEGF1s0TrSEWbYs8e01oSD18HcXhtQZvZiuuuwcNz2Ds7vR7RnrKplfeLiRm4hLvKBe9WB22j7frrALC/a5DHPwAsQN78Vgghx+HbEh3+Ixf/u7zH/7i8jb73vdT0eVwrDPOdL5x+k6TfZUz+wlchtw9ZjQaxq9GTv64y9McZVugpG416hi73jlFBMRpNMYZOB051zaK1pBjUKY/vd5uM5+nmfTtYlVhF76nucyl/EMB+wmW6ynqxzprvAQm+ZfjYaj04JSzdMitSJlmSuR8+aZZcUy9J8W7gquUJQ8yL2Nue5fvI69tcPUvMa434/MZaB13jCZzPboJ/3eWzpef79H3+JtacvQKRo7Jtg7+4ZZucmuebgLk68cM7yogoz9mJ7+thJ8vflzMYzLPTPkxRWQTLyQowxhJ4/VujMTY5EMh1Nj6mrSTFkfa2D8hRzc5O2ypAXfHXhNKNbB4QqdmIcW4ttBoOSHnfuOsIjU2d5x94385+e/QydJCFzVMpysjRKMmdmnSCFpJNuWjEV6dPwW9+kSvvGmiRptyCR6ZRMZ86sXhOqiF21XUyHUwghmAgm6ed9loaLhCpkKpym6bdctbqOEt54AvxylYJXA1uNtZXytWTdVbE1SiiOtI7gyYBdtX28e9+7+Kk//j94y9xdr7n35GpEkhV85vQqrdhjrmUXg4ybZxibfVmqpdhK5KRbUCi0cYtRFkqKcb9PWd3Ls8JJ+NsEYLoRWNNwIehv2utt7CkCbemCk/WAYVowSPLxRLgUksgKTZJpBmnB+iBlbZTQy4qXjIsxbTLXVnGyrICUyZtga65SuAlyzVPMxCEzrZB2bAVGtLYzitKfzh4Og+dojV88tcmv/96TbD7zOMQtHt+7j937Zjh8oM2BI3s4+cxpyCwbwmhDrnOePrbIICmoBS6ZLawwTCnSEijp+uMYq3c2Im887xtmmqW1Ab4v2bOnZfc30zy10GOQFmP7gZdCScHdBxo8fqLOO/dP8rFnlhmmOUVhx1Yiy6xqZlYYCgPDkfUmCzyJFC8/3X+jxSVg/N1nufU2LIVJfCXZ246Zza1HXCv2GKYFS92EyFO0Yo84UES+ohF546oxuOron+JQGQO+shXAlWHCMLULHr6S7JuM8ZRg31TM+w/P8tP/6THu2Tv1miiVV0USB9DvjOD4MrWj84h2y1bXSgjhRE5sP4+YmEQ1XS9cllkqZZK4PriEop+ghxlSCWQcQKHRWYLJNGlaUK971OcbzHVTzi5mpMZgtCaWkpanMAY28owCm9Al2tBPM2cjoC+yESgFSuS2f+BMwilXlOz9b9R11FCCg1HIm+8/TPhdH4Cb3oyoT9g/bjNsLpMUMT0H/S5m8QLxO25n6uEFJIJvm6hzeH+Tr53YYHFtyP6pmPNpyvm0sJVCZSct3ULDiy8y87ZrESceJpCS1FGFtlcSS12wupJMH56G1qQ91umIYaFZL3JrhIlN9tIlw4F+D/YcsL1syQii2Pq+RbFNRtptbvmL98HaGssLXRoN15jrjpldPTRQFJjVZTsJLjKQ7vsPat8w6Ah11ZzOrw+EtCdNrYmIapYWmQ7t9jCGoDauSApj4Pq7XZVNgFSIl0l2/9QwxlbWssRWST3PUjyltFU/rcH3EbsOUW9FPP7n/iY3vf+N4RWnjeHYyhmawVf4tv0NJsOZl31eOR0KVESowq1z2d2W/XC5ycdKfLEXU6rvlb5xZZWiFbRQ8jyjIiXTBe2wwa7aLgAuDJZI8oy9jV30sh7drEsn7bCZdhhmI9ZHHTbTPkmekhUFvtqqOpX0zMIU4/sltlNryr68mhdxqL2HW6dvYW9tP6FXu6jCuPXarWpIVqRsJJu858Bb+MTUU6wFy9zy9hs4sn8XDz3xAmJ5g7ldUywsrZFsDkFrCm2V27q9Ac+uP8ct0zez0D9PqOwiRJJneFJZiwB3vHNdOOn6qXElJzc5o2HKxmaPrCgo3Eo6QD/rUfdabO8F2V4hPdw+yN+47ztZTzZ4YXmVqUZtfEw0ILf5Am2km0hs9RGcMqkM3pCTopeDrUhLIlUjkCEtPyXTtsckkJG1HnCKktpoDjWudb8HcVHlbfxe3yJ8aatvvbRvzxNlf1ue9LDLmIqJYJJ2GPJDH/2fWe6f/5Y/82rAsQs9GoHkO67bRTN6mWugS9RsPmcuStqEayzzlRyr7ZUwbu6ixm9jk6nAk+NkY1QU+EZS8xWT9QAhYGOQMSoK5hohaa4ZFIZhWjDKLC2yn+X0s5yR63MLlbyIqlYmb2Xfm9mWyBXaIJWljCphq1676hHTzYC6Ewcpk0bhEjcbd+02bayReT8p+K7rZvn9qQabQnD47tu48dppHn7iAucWexzcP8HSwhqDjU10nqOlRCrJsDfkudUud+2bZGOQESnlKoV2P2J3PS6T6NCzXnwl8kIzHOasrw/I0gxdaFfp03RH+UVJnE2ct76Po+0m//23HWEtSTi90mN+IraiLZ5Ca41UZRXVsJGk7DURuUskrcjKK6u7vlFQHoc4UIS+HFePpRRj4+7SmNsYw8GZLfXa0uT+9YLBVkKzwtBNrP1DKThTGogrCa2aTy32+fO/+CXWNoav+v2vmlnvaFSg14ao8xtEYWBFTIRwCn16K5EDiGJrK9Dt2ipckmD6A4pegs5sn5jOchuQtEGn9iKr8wKtDZudlKl6iOdLvG1lb4PtcesXNoBEUlCXko3CStoW2CrRODF7yVKeFFviJNurb6VYin0N46pdJAV7Ao97bttF4we/E+54OyKqY3rrmHMnLG1teg4GfczyBcT1t8BwAHO7bWButjDPPMX1+1ucTVKOXtOmcXiWWzLN0tKQMFTM+j4X0m1iKy5BGzxzntp330csH2GY52ggFGLcn1YYxoIm04FPeGgeohiTDiHPqSnJmVTTK8z4fc8lGebZpxAf+D44/jTmsa+RvnCW4bl10lQTRYrmB94Cvs/6732JvDDkuRNMMOYiWiWDgU3MdYHYd9QmK0K8dsLwDoZVjlRblccgBiZfnvogxMULH683iswqgQ67kKaI3XvcuITr0XPfVXOK+nfcw8bPf4zPfOypSzeey4wL/R6PL73ITDzNPfNvp+Y1vuFzlVDEXs1SvIzBiHJCZNX8tClIdDKmX9qJ7Va/XO5olYEMUEJR6IzAswqS3azLMB+itWYyajEXz7LQX2CQD8cVq2FuPdRybaW6S1GDwJkpF1qT63xcfSth2KJ+SASe8tnXmuf2mVu4tnWUSNUQCLIiYWBsEhrJiE62wfHOi1w3ccO4EjMTzSGF4vnN5zh4YJ4zC8scPbCb66am6V2fsnB+lTAMmJ5ostAZghB4yvYdCCF4fPlZ3r7r7eO+q1wXY488u18aX3rEXkTTbzIRTI6rnrnOCaOA7sKQJM1QbpJ4dmGZ5zefY762l0IXdLNNVkZLbKYdR2X12N84QFqk/OaxT6G1ZpTnKCXJ862qna1Y+KSFTVhmY5tYl8I2f1awZbEgAesXBy9PzZJCblG4LwFK8/dcZ6Q6Y642M65wa6MpdI4RVvjkQ9fdzT984jdZ7fQu2XguJ5Y3RzxwCuYbAXfvmyb2S6q8a8Vlm8gOWxRLsP1xUoixaAMv+bsQFwuIaLMlWOJJYSt2wj7uJ7kV1MDQCn0akcfmILN+bYXrt9dbFbZMWw0BbRhbM9netq1KXDmW7Z9dCpnsqsVM1QPiQFELbK/dILHJYuhJ6i6hLbShn2TkhWayHtCuWa+2Y4sdjlwzxeK5oxw5NMnBmTr6ll2cWugQ+pLmZJNBp2dFw6QYS/k/eqHLPYem3XzPkolrvu3lS1zbQVP5KAnN2Bpzlyi0odEIOH92jTRJx4tC58+ucWK1x24nN5/kmt4oJ8ktAyDwJAdmaqyeTfjPT62QOqGSMllh23ccKGvVoJRkuqG2fZd/duZO4OKTwF3LJLVvIGAu3Pl/qaDdOT/KCjJtONSOLL1W2Gpt7npLJ2s+779ljp975AwbmzswiZNKkKYFnbMbmEIT31qzyVuWuXqkbysxZabUbFrKXZqOqZI6ySh6I/Qwc5QCRwMojKvGFRTakA1zeit9dGHFOzwpmPY9GqHH8jAlNYZQSqY8Ra/QrOcFEhtoQvf52/vbrHSuPQm2i5jAxRU4KRi/z5SnuGO+yaHvvRtxz33QaGI+9XuY8+cxWYao121v0ca6rbytrWEe+CJids6aPB+9FeP5jB74LeK6z3uuncYPFMnZNVoTEdPXzpCt9phYGox96gK5ZWSe9BPqs7useIsQxEKMaZFjzi/23+RECPNOcXBgL3w33DTD8mMX0Ca3HilSIgUMv/IEtXd9APP5z/DsHzxNd2BXl+bmajTvuQGxbz9f+/u/wnU3TDM7AxcWB3gCSotDjaVIjCuQnoeY2WfPBQDemL0lrwVXZN+LHDPqY77wcZtg7zuE6W8imtNjkRWkgnSEmN/NrnbIWje9/OO8RNAGTm1u8oWzD6OE5O277iWU0bjSdnFvoSBUMVrn9q+mVKQsyExGWiRoU4w9sLbD9rMVJCQUJh9XnvY39jERtlnoL9BL+0ReyKHmQdaTDS4MlhFIAuWNE55imw9WqKx6o5UUzyi2+Sht92MqEzhf+UxGTW6dvoEj7aNMBJNoDE+uPcrScJnCFMRezJ7abtqBVRxcS9Z5ePlBDjYP0vRbNP02raDNp04/wFQc84H77qTu+5za3GBXo8ENt85woddjud1gQS2DsFW4wPfwPMXKoE+kYgIZkMmcdtgcm31LsU2JDmgGDUIVjfdXCcU7rj/M0tI6nZ5VuQ0CD6UUnz/3IPfsuo+NdJXHVh9llI+IvRqz8Qyz0RxCCP7xn/wmtx3Yy+7JNmeX1/CUIsEmrRo7EYtUSGEKBJKWP2GTcWF7CP+s40rEp8IUpEXCk2uP00+H7J3dw6gYUvMaFKZwtDpFrjNm41nm5iZZeoMsCCopWOsm/NGzawgheOv+aQIlxovT5dfh1rTJCk3o2T4tKc24/02ILZqi2U6E2vZZWa7H7+NLSaQEM62QZuSx0k3ICivZPt0I6I1yNoaZU/5W2+wP3CIxoJxHlxCCVNv3ztxCeeE0AkoamzbWcqAd+My6GbnWdr7y4Ol1LvRHZNoQKMHRiSa72xH1UJFrw+YgG5+XrZpP6Ev+63OrtGo+3/mBWxACTq8OmG1FXL+7wVI3pd2OWXTVK+UpPN/DD3w2hoWzRZCoXFD3Pat+qIuLrA+ElDRCNS76G6zh9Adu38WFC13WV3KklPihj5SSz55a563XTJMVmgsbI7JCEweKZuxTDxTdUc7Pf/IFbjwwgRIxC+sDPE9hjN03rW1FL1C29ceTYizqYcxLLlEVLhu0sUn5U+etSfu+Ro2ho87mboVECSuguL8VMjnTYv01LMhfFUlc2TQ7SHMWl4akmWbP7jVkrWaTOCGc6beTXC8K2zPnb4lY6LRAD1N0kmPyYlwqRRtrWSAE0rdUSa0No1HBcJQ7BUhJPfQsn1gbatJW6FJj6BQFkbSVooETCbECJqARSKchKEWpmL3VDzdWqnSPPWGNw6+LI+5431H899wL194EWcron/8iv/CHzzDtKz5yyzyT738z4s33IPZei5ics6bPeYpxXmmmu47Yd5TontvJn3qeL/3BMTRw763zxEfmUG97G+Gzx2iceQjZtZ8dCts8XHrX0WjaZv1tEyJP2KROufuRlExOR4iJSVsNMxqyFK8dM+97RNJW62q+slSo8x1qTzyITmxgmZkImdvbovamw4ibb+Xs/+83bP+b1rTffTud332I+rAgM3YClDn+Pu22/Z5Le4ntogtVRLr8kAoxOY/4zh+jWPk5OH8Gc+Es4nt+wp78bpVdP/sghBH1uk+//8boURQIfCnpJAkPL5zH8CB76ns42r5xmwDD1v/B4AmPlHzc61NW2Mr+IYlEC72logX4rlJWqvplOiP2IuZrc8zFswyLIcN8xFQ0QeRFDIsRqyMr4pAWORtJl346JPSCLRqZsSqTSkoKbZXexj6U2IuHEtbjLZCK2Au5fuowN0xez0w0R6xqpDrh3x77Nf7BL/17GtMN/vIH7+e9B+5hNp6j4bXwZMC37/8uwFZE0iIhNxk1r8Hb9tzKY0vP8NHPP4Ax8J4338SNM3u5e/4OHl95mhMXXALnSwLfIwwDfFVKlNteqWFuFQ9FGZuET6g8fKcC2g7a4344gyFUEYcm5tm1a4p4IyCKQ2q1ECklz64usTg45+h8itl4lvnaLiaCSQAeXfkaURySac2Hjt7Nv+l9hrgWkuUFeW5NWpW0Qipryfr4M8fnyp+hStzVBCkkDb/FW+fezoXBIouDJZaHK9y3590XUQhP904Qq4haPXpDLASWc6feMOPJ42vkheGaVp19U1ZUqlyIFa6nDGPICkOwbeZn+80YizeU0GUVfxtbSQgxVvazPXA+zcgb09Vqrp9IG6vI50tbnRrkOcO8sEbZAnwpMMYuoJeL7WUPWdnHVvaylfsRSMGhdt35d2mmGwGeEvzsZ17k1/7lx6A9y7d/8E185M5dzLdCphoBkW/FUmaaofsM62tXCxT3X9Pmi6cFv/XxpwH4tvuOcPeBBnfOT/LUyibHTq2DAKW2Ejjfyc/bpMkwyvU4nnpS4Ak5rkwGnhXI2L6u4ytBM1TMzNQIAkUU+bRaIUoJzqyNOLs2ZK4V4ilBPQqYcD2FWaFZ6SZMNG3y+l03z/CbD59n1ApI05w0LTCZ/aR24NPPXt7Yu8LlhxCCVuzxtmumWBklnOkNONMb8K5rZy/qVT23NqThe9Trr42S/6qSOCHESaCLtQ3KjTF3CSGmgN8CDgEngT9njFl3z/97wE+45/+0MeYTr/QZ2hiGw5xhVhAOcpJz68TNOrRaEAQIP7ioPwwpLeVyMCBf65Gt9yi6I0xh/TGUK1fmSYZfaGtLEHj4nqXnZLmmN8gJpSB2yV2vsMlEXVkLgY3cNt0W234MUthqG1i65chlbC/1fisTOLDJUCAFk57iHUemmPrIuxHXXg/7j8Lp58j/6+/z7EML3FoP2R8FTP7wB5Dv+z4r5x43HJVQWnEJLwQvwKwvgtaI934P6swv8swwxRPwnvkW6js+CPuPuOD98Nh7LpSS2FXMwmYEUo3tBcroLdzj8hyKpSDcM2lFTeot8APM8WdRzZjrb5ujdsNeqNetcmYcIw5cg3nwK8jJNrvma3iNkNqN+xBvfgvn/+mv8MxCl/3tiGE/Qz74LPu//23EH3+Q7EyPvqMieAj7va+uYvIU4fkwGDkz+BFE35jKVuESoSjsye/5iF17MU8/YWnMdx+3KpWDTZjcDVEdeh1LOfMv/YT2csQmSynSJEnGoD/kmcDnoaVHmAgmmY13OZGMl75GIpyISGEKUp2S6lJ+PbOTfWO9tGJVdwmKwhMeubDy7L2sT6RCJsIJhBB00x6FKZgI27SDNucHFyiMJne/m6zIUVKNlSgbfkzXVeQyXaD1lkeOwK6C59raB4RSMVub5E2zt7G/cQBfBkSqxupoiU+c/mP+4LmnOHzdPmbnJvn+o9/OLZO3E6hoK4kdX3Q8fAW60EghuW/3uzi+cYZTLyxAqDjyvnfzgQPvYTaepzAaKb80HlMQ+MRhgO8pZmp1m4gKhe/oxHaipFBiS50yVCHtYAIp1Hgsi8Pz7Gvs4v0338CuxgytoEHsRURexIHGfp7bfI7bp29nLp6l5tWZCCZRwuOx1Uc4P1jk0NQkK4MBXzr3FH/1zd/Grz35WU5kFxgOAezqeTtsc76/SKZTJPKiRK7C5Yd2VVElFPO1OZ5ceZZBPuKmqZusJ6Me0VIRobKLH9JR5C41LnV8Etg+q04nodtNOL3c48vn1vi2aI5WbL3bEFuJUtkjluUa37MJR0m33D5vFMIu8IwPkaOlgUFrwyDJ8ZWgHnoIYeXb01zTrvmEvqI3srYiljIpGBQ2gRvkluLd8D2GwlZISyET2EbnFk5V0C2gtUOfve2Y3ihnkBYcmqmx1s/4t187x2cfOkvr8FF275vir9xzkDsPTFAPt8REytikNfgKwPb/3XNohkcv9Fg/eQqiOrfuvYN7D84y3QhcAsuYWxqEAWEc4vuSuYY9rkoKQiXJnS3MdmNyY5yh+TZjaGMMS5sJc3Wfd9w0z137mjR9j1BZ4+6Jms+zKx1mmzNM1m0CKoQVxDi/MaKfFFw73+DCxojPndjkR+/ey396fJHhMMcYS+32fUXD91gdJeS6iklXA7Q2SCcaNBuHPHKhwyjX3L5rglwbeknOZD3AV5KRW8h4LetLr6US925jzMq2xz8D/Ikx5meFED/jHv9dIcRNwA8CNwN7gD8WQlxnjCm+/i23MBoVZJl2CmeGwUofeXKR8PrQUieNtmp4Sjm1vnSrUiMFMvDQniJLC7K0wOZ8W9YBSIHwJPW6R96xiZ71RLE0ntzZBEhsNW1TWwVK2BIvKQU/UmPG28oqna3QOb+zbc/1BDSVZH8YcPeHb0Hed7/taYsb8PDnME88Tr7e5/A1LW77yPuQ930nYu9ROxkue44wNoEpMns/sFYLDHuIRhtxzTX89R81iP37EO98HzTaNunzA9Z76XicZdXMF4Lo0Axk6bjytZ0GpLGJnBIQRx7+gXkbldIRZn0ZUW/gv/0teE8+gfrbP2tl/7MReuksLJ+1SZ0xtO48hMlyxFvuYfTR3+GZc52xuk+SFlw4tsLU4lfZ+5F3Uvv8ozz8yAWMWxUUrQnM0hJsrth914Uzux7ZhL4UfqlweaCUNUFtzcD+w7B0HjY3MZsr8PgD6ENHke/6AcTUPOa2tyHlf6bZuGx2D5c0NhkD/TQjTeyFcpBmPLV8gonwId61534afrt8JpQ9bsaghEemUwzmIvl07T5OCeWoXgaBlb0PVMiwGI4Ts5pfJ1IRuc4ZFUM86ZHpjBOdk2wkHdIio5P2rSqk86STCHrpkMwrXA9ZQWEK548mx9U5KRWxp2gFDfa3dvOmmTfR8JsooZBCcaL7PE+uWrPsO/bs5uff+1c52r5h3Bt38THavoAlxvsWqohbZq7j53/qL3G4fYA7Zu4gcl5qgQzobFqDXyUVtSik0YjxfY+jkwedcL2xlCP33tY/ycqK+1ISqpCG19w2Ds2h5hHm49340uPb9n8HAkFhcpJixHqyRqFzulmXvfX9ltYqJCd7L3JhcAGAyPNIioKHjp/m9OYmf+m29/KJ5gN8+pFjGGOpSg2/gcYwyAfjautYxObPON37SkAJj0Heo+G32F3bzWJtiY2kyzAf8Mz6s+xv7OOO6bto+k0Otw7b11zKHuKLccnikwEGI1uJASgKzSNne7Rjj/sOzhIF6uJfqhPLyAqD741nF+PnFHqrSg924SS3zWp4UpBiZfK1sSbIypke54WtzGWFoTdK6Ke24m/l7rfsOXLX6zbMCwIlyZz/ogDXY1eKcAjqvqLpe0zXQmZbIcsdS6XeMxnz/FKPz59eZ7GTctPRGX7qx+/i5j0tmpE39mRj2z4V2oqrZIW2lMdAEfuSe/a1+dl/8GGum6pz866W9eN1PX/r69a0XnmKIAqo1wOiyOP62S0RDCFAmK0EWAp3PMWWIqEQjJXPj+xqsHvSUr+/88bdNlktDMOsoDeyzJWlTsKB6dr4+13rpwwSqxIaeZJRVvDY8VUW1gb8xbfu4+Oxz+e+dm48nihQFMaMzb2NcVwP978qNl1eKCkYpAXNyGNXI2J/O2F1kDHKCp5d7XKgWWOi5lOPPI5ONZBSoNTloVN+CLjf3f9V4DPA33XbP2qMSYATQogXgLcAX/5Gb2SMIXNNf2CVZZK0IFztEWxsIiYn7ZmYpaAVJs9hNIIswxS2H250YZNOJ0N5gjBQ+KGH0RlFrjGjDBPaSlwYKsJQMRjYxv5I2cpUP9f0tFVxTI21DYAtjrg2MHLiG6kxztDbGmPWpaTvEsBSlTIQNmma8jzuum6K9l/5Qdiz3yZX6QjzlY/bSlOhCQ/OEX3o25Hv+4hNTpS/lYob7RKYISR9zKgPvQ3odzBKwWYKQYB8/3fA+TPQ27SvieqYJx/jxCghN4ZYCnwhid0JIm+4DlYW6Ws99oIrFZWs+LZAIZibi2HfPmi24YWnMF/5EtlqD/+maxm+uEjtkc/a5HpgJ2MoBZOTiENHYH3VGnaffJETj10g0YZACpKkwPOsBPCxhQ6rv/THzM/FdhXLJda0Jux7LZyBm0fO58x6xJnOKoR1W6GrcHngBRA3wQuRR+5Anz+N6fdtlbjRspYSsNUXJ2DPm/bBsReuxGhft9gENvFK05wsK8YKbwu9Ho8tPcPe+l5umbp9TIUsqZGlHpoUklQndLMOo3yIkqV6mUJjBUaM0eASp1jFDGSfpEjQRjMZThDIkG7apZN26aV9zqTnGeQjCu18ynROoTWjwvZt5TpHSYkSktgLCb2ATmJ7WTOXHPpSUfdr7G7McnTiCNc0j6CNBgxJMeLp9adYHa2R6oyD7d186Npv59rWDS9bddx+nAqTU2grMmGMYZDbz333vneyOFikn/fdqrXPk6tPc/LsIhhDFPqEgU8UBYRRwC3TN5HrjGFuE9rSeNwmmBKBQQnFbDzjKoKQ6oR+1qWf9xjmA55ceZ5bpm8lKUYMc9so7kmPyItoeA3qXpOkGJGbjPXR+jgJy7QmTTO01jzx9Al+dvW32T07YVdTPYUf+NS9BoH0WR4tcaBxDWqbfPc3M4OvcGmghEeoIjzhs6e2jwu1C/SzIZ6w4jdKKqfSKCl0jpSCOLhi14/Xde6UJDY2ldjoJzy20Oe6iSaHZutW5VGXcclCG0NRWMVq4/rklNqiL9pfGO7vW3VmTwmS3D6nFFAZZZp+kjPICtKhJimKsYBb5hbCU43r17W+vACekES+oIdLEAuNJ+2cqxV4TEYBs67f7szqEOmqX58+vsi5zYxRrrlxV4379u/nxr2tscn39m4LK2piE6TuKGeQ5AyLgokooBl5RJ7ifYdnWe9nJLl2lTPN40sbnD+zDLogCG3y1mwGxLHP9VNN8sKMLQZKiqg3jlG2Che7BNpzoi3aCVhs9DOeXBzwpt3D8bEvxWV21WJasT8WmSoTbm3MWBQmL6zYydPPr/BzmyNmJ2KU8+ALnal6ICW9Ub5la7UtkatyuMsLz5mFe8ouQGyOMjZGlq1U85QTORHjhN7zBPHLqcx+o/d/lc8zwB8JIQzwr4wxvwzMG2POAxhjzgsh5txz9wJf2fbas27bRRBC/CTwkwC7PUWSWJ0fJbayUJ1rsvU+QXMFo5SVkC+KLVsBJ2giPEWWWT8IkHg1gfQUvl8wHOZkGwNkPUQ42mTkkjiJIIoUvUHOZpEz5Xnsnoh4brXPYBs/2yBIttkK1KSgpiQKy3lIXJJkAM9YA8qGlFw7XePaH3gr4sN/wSZinTU48Qy9j36cYK6FaoTIPbsQd92DfMv77STZXWwuQpG5Khzgh4jp3TA5D711zIljNqGN6xDXoLMB66uY55/hy//uy5xJCprKjjdy0qn1uoe44VbMx3+XxCWfutxZIMfgYzno7Zv3IOb3kP76b3D+0XNIJWi3Arx2jPCVVdA8cAR2H3CS8woRWm83pubgzHGyJ55lZWCrfnUhKQpDnlsDz8wYVtOM/kKBEq53T0loNK2R++YaZCOIm4jGBKa75lRLc6BK4i4HTJ6hH/kT5E332GPfmISZXfDCs65CXLjFhtwmdX6A8iT++98Lv/GZSz48XufYBBfHp3CmRpba359Stvez0Jr10ZBja88wFU6yr3EIz/ldbSexSOeflhQjR6O0NTclFdLYBC/RCbH0LOXGWQwAhCqgHUwwKoYs9BeoeTX2N/bz1NoxlJRj5cbCaEaubywtcjzpMRE2iLyQrMhJ8pTYj8bVsdgLmQhbHGju52j7elq+/QxtCs71z/DRZ3+X2dokNT/iQHMvN0/dwu5439gTbnzgt1WcykqcFAqlPHxCMp3SzTbJdE6kYkIV0s969LIuxzdP8H/+yR+QrA8QDZ9GLaZWjwijgN2TbQ40DrGarFz0WYXRVjxEWEXEmhczG82jhOLC8BwXBufHtKVO2sFg6Gc9pqMZ5uPdY/pnWTUrzdULkzPIh2hjzcwLrcmzgjy39gTrax163YEVNxAC3/do+A1aQYNO2iHXGWqbvUmVwF1eFDrnuc2nONi8FoCa12AmnuFk57StQBtr31FWXT3pE3ke7fCy0PIv6dwpmJhnOMzR2uB5Es+TFNrQGeY8sbJJM/KYbn69LF9ZYVPbVSnN9s/ASZ8LCqcIiaMMYgyeFIS+FQ3pDLOxJ9xKN73I3Dhw1bncaHINDV8RKkt9zrQmLzTNwEMKQSANvhK0Ap/pplWRDD3J6dUhSa5ZG6b8888dZ6YZ0ar5vHlfnbv3THNwpvYSPy97q10ClDhBO08Kphq236g3yjm13qeb5uyfqBE5GfphmnB8vcf//l+eYbS+gVdvENdjarWAIFDsmawx0wwZpMWYUqkxeFhapdaCyFOWSikty2uYWqpp4EnSwh6vVmQl56caAYGyxxJgz2Q89vAT2ERulBauQursF3Jt57uZZnm5z+bmCN+3333gehJbgc+wfJ26uK+xwuVDXmheXOyzb9qyT+qhoh35BJ6t0mpjq+CF82WUUuB5islLkMS9wxiz4ILNJ4UQz3yT577cFezrTh8XzH4Z4OYwNMbJxoa+rZQ16j4q8tHDlOzMEj5ghLA2A1kGeY5JreiJ14qZuH4X5pkLJGlhV5gK7S7oMOqn+MMUEXioyEdkNkELPcloVLCS2QTuTfcfJpifoP+fH2M5ySjcClSpjFRW6XslbxVIXCUrkoKWshO22dDnhrcfIPyRH0bcdDemswaLFzCf+2OO//aD1GserdgneMddiPf/OcTsPvBdJWPcGO8OWZHZyl0yQEgrwW2Soa3EFRnsOYQYDjDPPgFLS+SnzrPwyFm+srDJY72UmhJMeIqatBMQKQX7bp6HyVlOf/o5UqPHQiylkqZkS9kqXerAJz7BY596kZHz0tOFoV5o4u+4H258E2JqtxVcOfMCnHoBbrwDMbsXowvMsqUoWdNwCIX1pFOJo3+Y0nrB0qM8IYhjD4YDRKuF6XYxw55VQay1IBnYRLe/iVH+G88b7mrEqAfPPI4OIuRt9yP8ELH/OswjX7HfRZ7BaAj9Tfv8ICKeayLu+27gH17q0b3usQkujk+Na6aM1tpSZAKPZhgyFccESrHQW+ZrK48ghWJv/YClTZqtVW+BJFQRU+E068maFTghR2pbUSp0QSfdJHSm3770x8nZdDRNWiQc75wg9mrcMXMHvgzppB1WR6tbvR6mjEeCwmjWRx0CZS0JeumAtMisHUFtGl96TEfTHGgeZCaaJ5Aho2LAqBjy5Qtf5Jcf/STNMEQJyX177+GWqTu2RENeJmmzq/R2klwKJxQUtsKIZjKc5mj7CC92XmBpsMLxjbN86ewpHnjwGIMzGxAp4jCkXguJogDf97jvwPXEXp3za0+QabvYVqptlimylbZXJMWIbrbJsfVj9PM+sYrwpY+vAv7CDR9hJprHEx6jYsDqaImF/jmOtK9jMpgGIch1RqJHpNpOPmtexCDPyTJnS6M1aZbjeQpPeUgpqNUjPBkwG89yYbBIZjJCtvz+DAatC9unVy17X3IkOuFE5ySe9DjSuhElPWajOULPLoZoo50Zua3G+tJnplbjnFf7Zm/7euGSzp3qe683Zc9NHPs0Yp+pRkjkKy50Mh5b3OBOOclUI9hqLXHQxlaTIt9ShG31Z4uRU76vNfve6lcz2MlooQ3rvZTAkzQiz9IhCzOmM5YxovTd0towyCx93BhIdUHu6JsztRCDNcZuxR6xE0pbWB+y0U/53Jk1/vXHnyMMFd5ByQ+/aTdvu2aa0JMvW1kqVTg3BxmbgwzPURv7SU43zVFC0PB9YuVxZmPA0mDEs8tDvvzCKg89cILBudPgh4RxSKMZ2ipc6PGuoxM0I4+za0NGue3305jxsQkds0u4uVZWaDYGGUlmexAFEAeKH3nTfuqhQklBkmlWeylrvZTdExGt2ENhqzJ5YQVftLGvG2WaJCvGx7f0kvM863s20YrwPclEFLA2TMkLPRaK2krWK0rl5YI2sDHM8Dcl18zW8JRkoh4Qe2qssmx9C3MEloI7Pxmz6b/OSZwxZsHdLgkhfgdb4l8UQux2K0m7gSX39LPA/m0v3wcsvNJnCCHwJDTqHs2Gj9+OkZGPHmWkSx10khEaY6XuXXAQSmIKDVGEt7dGfbmDXu7jedJW3fIC35fkuaboJ1bKNfbxhim6MPSygs0ip608br5hmvBdb2P4h5/D9wS7VGCl82s+07Mx0f5pvLkJkJLeg8/zwNMrdIqCQAiaSjLne8xOREy0A6a+7z7kd/0Q1FqY1QuwsoD51B/yK7/0aQDeVI+Z/5H3I777xxDtWUsTtAdh2zKShjy1fWC99TF90gx6tk9sc836qNXdauLaGskzp/j8547zJxsDBoWhoSTzvmLG94ilXUWLIkX0wfdhvvjHvLDUt32A237QZaIqhUADg6UeLzy2SL/QNlFt+EzvaqBHOSqKQfmYpTOwvGDprvUGdNZtgtnZQNQbCCGouf6DkdbkGILCBjRJKRzjaBxSEPgSLpy11cWVFeh3bIVHeYj6BGbYxQw6ls/fnK5olZcQZmMJs3IObrwDTjwLh27GtGYQU7sQd73D9m4GgVMRLWwid/4k0X13Iab3XPrxXYbYBDY+BYFPsx4zFcdMRhGhF9DPhjy98iLaaN6xy2cu3n2RYqXBVqdir0E/75MVKYWrCICl9+Ums9U4VcN3Rt9gRU8uDBYJlM/RiaO0gikuDM4ihGAunsWTPrFnTcGbfotY1RBCsjhc4NGVx+gk1opgMmqxv7mHuXiOpt9iLt5F7Nm+1WHeZ5D3+Nz5z/GXfun/RAjBHbce4X+86we5berOixKRl1M7KytapXpkoa0CZz/vOc+4kMiLSYuMU50F/v1nv8zpx07BqIC6h2pHzE63abbqxLWIiTji2w68h810jQuDC2SFtVnwSxqqs2VQQqFNwbAYcqp3kl7WQwlJoALm4jmbOAfTYAy9vMNqskyucyIvopd1CWVohWcw5DrDE7YakOqUjdGIorCKxkqpbT5MoJSkXrP0zdl4jpPdUyTFiIbXGlcBrbpojsKg8KoJ0yVEP++xnqxwpH0tZ3pn2VPbT81r0A6muH36NkuxlAptLAVtVAxZTVZ476HbeUp86ZU/4FvE5Zk7YQUtGgFTDavK2AgVvbTg0YU+mda8bd8M7Zo/fn7Zu5XmdnEk9pVN4rZVbsrTtvSDK3/9JTVzc5gSepJm7GTssQnbZN0f0wNDl1zYqhJj+fx+WlDzPGJnR2CFHcRYAAJgYX3I2fUhnz61ys/9wu9BMmDqplv4yR+8nbcfniZw/msvFasunM9aZ5iz0klY6A2tunCWsdxP2RjaCtVMw6MVepxYG/HE2Q5feuAU688/a5k/UROvPcnU3AQTExFx6DHTjHj7/hn6acEwLUicWIvnYnkwpsXZhBWgN8pJc7sAGHiSqbr1qFPKJsPDtKA7yskLQ+RL5yemx72GYG0JfG0T7o1+SlGYcd9UmWjbx4KWU7NsxR7LgxFJrqmFpc2AGR+vqjfu0mOjn5Jrw4HpGhc2RgySgnrkMVnzuWN+YlytLS+ro0zTHeZ88NZZjr8G37pXTOKEEHVAGmO67v77gX8MfAz4MeBn3e3vupd8DPgNIcQvYJtzjwIPfNMPMXbyHoaKRsPHa4SoeojRBlNokl5C0rNOYmEQWOEMF2VkHFra3dQUtTRl9KXn7J88CUoSlAInznpAxQF+s8As9FnLc2pSsnc6pnHfbeD5ZKs99h9qU79hN+LAfsSBQ7YfbDjAnDtN/vgx1laG1F2gCaRgthEwNRlRa4bUP3w/8rt/1O5XZw0unMI89Sgf/zef58Vhzu5A8aY/fyfy+/4yYnKXTU62L8AZ42T8Exj1rbnyoIdJ7WMGHVv1yHM7ppVFK/ISBITvegvvu+EgK7/4SY4NMo7GPrsDn7aniAO76nP4nkNw+Dqe/8l/xHqekxtDKZ8igBxrCi6AYaE5caZLv9C0lLSCLqMCoSTHv3yS6+YnEZ4HQeikn3yoNSzFbjiw94/chHf6FKF8kc28oBAGiQ06RWHGKlja2GSuKDRR5GE6HdAbVgFx+Szi8O32WHk+pPZcMOkI0V3FNKcQXoBx/T5CXkz7qvCng0mH6N/5ZZiZR9z1HkzcwKwsIKQH6RBx8EZIhhh3vPWFU/DEV2BmF/K7fwThVsIvFS5LbHKQUhJGAVOxTeJiz1KUMq1ZHgzopc/gS5/797ybht/aGiOlRUHARDDF8vDCuGplnPiJcX1ooQzxpE/DbyKE4Hz/ApEXsa++j9loFxhLD9xb38NsNE+oInxnCA6Q64x+3qOX9YhVhIqskuPu+i6mw2lXEZwh9upoo0l1Qifb4NmNZ/g7v/X/ki72CHc1+Vv3fpg7pu8amyVvO97AxcmcNrbqVt4aDJm2YkqjYshaskpSpMzE03z34fdz1/yt/PD6P6V/vkMwW2f33BRTUy0mJpvUfZ/vOnonu+O9fOHCZ1kdbrgk0e6HJxUFBcIIPAy9rM/xzosM8iGhCkmKhGE+QgrJ2d4Z0iIZ96cVprAm7Com1xmryQq+9J1a4dAloJqhTigKje9742qclHayVBQapRRz9TpSKJp+E20MG+k6U+HsuBKXOyN05w6INLKaMF0CZDrlj89+gomgza3TtxOokE66gSc8Ep2wq7bHJuiuX3UtWeFE5zhT0RTv2fse/oX4pUs6vssRnwx27lSv+8y2IybqAfXA/m4LAyudhLV+ihKCew/NEm4zntaGLZETZb6uojWuqGH7dbS2DfPawHovJQ7URYmh1oZ2zR8bh5eWBaWwSFn5CzzpFu1twteIvHHiplxbyuLmiGNLHU53hvzcv/wMrJyGyT38zA/fwX1HZsYJXPnZwLha2E8KOsOMjX7G+f6QUVGwOkrojAp6qaafFmwMc06sDsldz96R+QZHvvtmfuk3ByQry4Qzs0zPTzEzU2NmIqYe+Xzw5hnmWyEnVwasj1K7+KxtT5xyPX2+sVTvYVqwtGl983xlqZpJVmDwWemlY0uqkkpX9k1hLP1TCDHeRylglFtz9CQr7HxWO18/aW1P0rQgijwm6yFS2Ipmpq0h+ETt660i7PGqErlLhVFW8Nnjyxxs1jm6q4GajBikBaEvyQrNTDO8yFJjo5/x/GqX+VrEfQdn+b9ew2e9mkrcPPA77sv2gN8wxvyhEOJB4D8IIX4COA18BMAY85QQ4j8ATwM58FOvpP4G4PuCWs0nboSohqMWGgOuf0prCJa7yHgBf9+cFb2Q0t7GMaJWh6NHqZ9YtD1wgYdJC5IkJ880kSwo+gkyDpCBRxAqvJ5gTyNk7mAbcf1N4Ps0//z7EXv2w/x+Kyby7OOYhx6g98gJTp7osDRMGWhNWyn2NEKiSDG3t4U/3yK4/x2Ib/tzCCkxwz5m4Th0Njjza5+irzXXxh4/+j23In/6/+MSuG0VpPIXZrRdCUqGmHRoJfWNtrTKZAi9rv2XDDGj4dgzTxy4BvZeA0XOO3/vIaYWurQ9Rc1XRJFCKcn83ib+T/xl9G/9Gs+vDTCAX1Kytp0QvhBjjzhPCDKjUcpOaoJAEu6ZYGZzaC0ehNwye1YeuAkMBw4hWlN2+3sFNz51nPSLp+gWGt9RDUxhLzSlSFhhIHPUhPzYC+QbfaIDM3DuFGb1HGb5LHL+AOQJKB+hlK1WDnuY+oRNfI3G+FFFs3wdYE49jX7qKcQNBWLYRe46aP+QpzZhdrYXbmkR0Whj9h6EuIHYffhyDPGyxCYAz/doRCETUUTNC8e+a4XWDLKMUZ7z5MoLTIQT3DnzZlvpAiemYBUjY1Wj5tXZTDfGiZBGY5yHXKpTAhmghEekrJH4TDTDdDQz7pM72DyMVyZuxiZMvbzParLC0nCRpeEyvbRPzY/ZW99D7MXMx7tcT1pMqCL3eRndbIN+1uPnH/htNrt9Wgem+IUf+Yt8+/4PviIV0FKitDO83no8KoYMiyFJMSIpElf9CpkJZ2kHkxxqXstb7v49njl2ina7TrvdoN2s0QwCbp7dzfcc+h7OD86yOFjGc9U3XyoyXZAUKTUvJlSB7W0StsIyykfETlgnUiFNv8WSWGIz3aThN8a9hhqNNtb6YNIltQCxV+dIe8Qx/Qyrw3W01uPEzRhrV1P6juZ5QaQUnXSDYT5ACcnaaI3dcZ9utslMND/2JSvppUaYsepyNWl6/bA4XODRpWe4afowo3zIVDiNATKTYZzsuz0vrTps7MVMx9NEKmI6nHvF938dcFniUxAomvWQiUZIM1T4rk8rKwyjrCAfaR4+12cqCrlpvkXky7HQRok014T+xZ5m2ymUUtjrszGMBUTaNX+bAqNj0LCViBVOtTLJbLWpnxQkWUEcKOZa4Vj8oxROKUVVNgYZT13o4AnJP/8vz8D6eZjay9/9W9/Lj9x5YJzw8TJj7Sf2s7rDnPVRammbhaafalYGORvDwoqbpDmFNtRDjzv3N3n7vmkiX/LVF1Y5/mKbVjtmcjJishnSigNu39/k/sOzdEY5/dTaJwRK2oVnY20XImV74ZS03n3a2Kpa4PoUY5dca22F88rtJY0VbamR9dAjdPYCxhimGwFZYVgdJGgXj0ohG9/RTovCkKYFtdA+rgUK34mb9EY5a/2MA64v6+LjZsafA1Tx6XXChY0RTyz28aVkTxpTjzwwliK7vTVLCktXjgPF7npMLVTMt7++h/Wb4RVnusaY48DtL7N9FXjvN3jN/wr8r696FALCQNFs+FYwQ0knbVRgCo1SEs+DNC3QJ1cwhSbYN2tpXKGrxAUheB7hbUcQx06AEBgzGhtZZplGDjP7voVmfs7yUycnQ+Lr9yLuvBeiOiJzScGLT1L84cc5/fkXWV5P6BQFibb9Y5EUzNR8pqZC4tgjOjyL+tH/FnntbTapkB7mwgmYmMF8+XNkuWbO9/mut+0m+Ec/i5jea9X+Lj5olo6WDuznj/owsLRBhj1bfUsTK1zS69jDJgQ0W7DnAOLQjYjGBHrpLLvvOsDEi0sUmbVt0NpQa4Y0/vu/Ai88zUO/8yQ5Bk/YFbPcTToCaWmPuYHUaGIkidaMtCGKFMO8YNd8DbV3nqkbjiBmZmFqBtZWbDKtC7sfaWKtBqZ2IfwQDt5E9F3v49DJ3yKKPE6e6gK2T2686wIkhgJBmhRsPL1AURj8yTpqZQmxsYQYWydEUGSYorCJXJFbUQ2p7JVm1MPEzR1XkTPaqgNeDeM2ox7ma59HjzJUmmI2Viz1VypMOoLuOviB+85dT1ZjAnHrO9Gf/xgcXoGpS0unvCyxCWx8Cn2m45hWGI6VH1OTWR8kYWXvF7qbfPX8I/jS400zd+FLa7pdXhilkLSCCQbFAF/6FKYAbel3WZGSymQshDIXz2MwTAST1L3m2ActVh6lTcFGusap7gnWkjX62YDBWIFRMR/PMR1NU/ca1Nw/6eiDCEEv3SSQIU+sPUmSZuzbM8uPv/NePnLkB1Hi5SmA48TTWMuCwhTkJhs/tjTKPn2nSKmNpu7XmYnmaPptfBkwyHvcf/AI8/W6G6vEk5JdjRY/cfOPYIzh+c0XUELhy62JRWEKIhUQeeHYCN33G2OfvMiLyHTOVDRFJ93EEx6toEXdb7CZboxVNY0xpDplM11nV7x3XKXZU9vPynCFlt/E9x8iGaUUbqV07LGlDYWr9peiK5PhBCujFVKdEHt1hJAo6ZHrbNwfp5BviMmSNqX42JWPT2mR8PzGc2RFRqZz+nmPut/Ac7Yew3yAJ72xoAlApGocbh7l0dWvMR/vvuRjvBzxSYCtwDQCpmo+gbKTwn5qRUM8JfCUYr2X8skX1/Ck4Jbd7bGzoXSsm1wbhKuSlfREW11jLDhXCtO2az6RL4mcsEkcXEy5zrVNajYGGUNHPSwVFkNPMt2woiWlcEdJvTTGJn7PXehyoF3jo08uMBwkeLsO8cM/cBc//c5rxsnNtuMFbvydYcZ6P6MzzFgcjNhMM3pJQT/VjDLNcjejO8rGFax2LeCOvXXevm+a+XZEP8l51w2zHJi1LSqestTOa6YjfuDmPSgp6A4zPCEw0lLhhDZkRhNKReiSslKkQiPICydokmvqkcfiZsLIJVuBJxmlxViUxTg20iAtiALlKK+CZuyTu6RPOSXM0gvZGONIUFYwLvIEWW7pmHO1iM4wZ74NzcgbV+G2mle2nUdljNuhC01lb2C52HYlMcoKTq8PbP9iYRcN6oHC92yFtp/k+EpeVBWth4poOubY+S6T9dfGYBJXg6u7EGIZ6AMrr/TcqxgzVOO/kqjGf2XxjcZ/0Bgze7kH83pCCNEFnr3S4/gW8EY9t3YKqvFfWVSx6erFTj+3YOfvQzX+K4uXG/+rjk1XBefMGDMrhHjIGHPXlR7LnxbV+K8sqvFfWez08b8Cnt3J+7bTv5tq/FcW1fivalSx6Qpjp+9DNf4ri291/K/eFrxChQoVKlSoUKFChQoVKlxxVElchQoVKlSoUKFChQoVKuwgXE1J3C9f6QF8i6jGf2VRjf/KYqeP/5thp+9bNf4ri2r8VxY7ffzfDDt933b6+GHn70M1/iuLb2n8V4WwSYUKFSpUqFChQoUKFSpUeHW4mipxFSpUqFChQoUKFSpUqFDhFXDFkzghxLcLIZ4VQrwghPiZKz2el4MQ4leEEEtCiCe3bZsSQnxSCPG8u53c9re/5/bnWSHEB67MqLcghNgvhPi0EOKYEOIpIcTfcNt3xD4IISIhxANCiMfc+P8Xt31HjL+EEEIJIR4RQvy+e7xjxi+EOCmEeEII8agQ4iG3bceM/0+DnRCbYGfHpyo2XR2/jZ0cm6CKT1drfNrJscmNp4pPVwF2cny65LGpNPi7Ev8ABbwIHAYC4DHgpis5pm8wzvuAO4Ent23734Gfcfd/Bvin7v5Nbj9C4Bq3f+oKj383cKe73wSec+PcEfuA9aZsuPs+8FXgbTtl/Nv2438AfgP4/R14Dp0EZl6ybceM/0+xvzsiNrmx7tj4VMWmq+O3sZNjkxtXFZ+uwvi0k2OTG1MVn66C38ZOjk+XOjZd6UrcW4AXjDHHjTEp8FHgQ1d4TF8HY8zngLWXbP4Q8Kvu/q8CH962/aPGmMQYcwJ4AbufVwzGmPPGmK+5+13gGLCXHbIPxqLnHvrun2GHjB9ACLEP+CDwr7dt3jHj/wbY6eP/ZtgRsQl2dnyqYtOV/228QWMTvDH24RthR8SnnRyboIpPXAXfwRs0Pr1u47/SSdxe4My2x2fdtp2AeWPMebA/dGDObb+q90kIcQh4E3ZFZsfsgyunPwosAZ80xuyo8QP/DPg7gN62bSeN3wB/JIR4WAjxk27bThr/a8VO34cd991UsemK4Z+xs2MTVPFpJ+3Djvxeqvh0xfDP2Nnx6ZLGJu91HuxrhXiZbTtdLvOq3SchRAP4z8DfNMZ0hHi5odqnvsy2K7oPxpgCuEMIMQH8jhDilm/y9Ktq/EKI7wKWjDEPCyHufzUveZltV/oceocxZkEIMQd8UgjxzDd57tU4/teKN8I+vByuyv2qYtOVwRskNkEVn2Dn7cNLcdXuUxWfrgzeIPHpksamK12JOwvs3/Z4H7BwhcbyWrEohNgN4G6X3Parcp+EED42CP26Mea33eYdtQ8AxpgN4DPAt7Nzxv8O4HuEECextJf3CCH+PTtn/BhjFtztEvA72BL/jhn/nwI7fR92zHdTxaYqNn2rqOLTjtqHHfW9VPGpik/fCi51bLrSSdyDwFEhxDVCiAD4QeBjV3hMrxYfA37M3f8x4He3bf9BIUQohLgGOAo8cAXGN4awy0b/BjhmjPmFbX/aEfsghJh1q0gIIWLgfcAz7JDxG2P+njFmnzHmEPYc/5Qx5r9hh4xfCFEXQjTL+8D7gSfZIeP/U2InxybYId9NFZuq2PStoopPOy4+7ZjvpYpPVXz6VnBZYpO58qoz34lV/HkR+AdXejzfYIy/CZwHMmym/BPANPAnwPPudmrb8/+B259nge+4Csb/TmxJ9nHgUffvO3fKPgC3AY+48T8J/CO3fUeM/yX7cj9bCks7YvxYBbTH3L+nyt/pThn/t7DfV31scuPcsfGpik1Xz29jJ8YmN54qPl2l8WknxyY3nio+XQXnkRvXjotPlyM2CfeiChUqVKhQoUKFChUqVKiwA3Cl6ZQVKlSoUKFChQoVKlSoUOE1oEriKlSoUKFChQoVKlSoUGEHoUriKlSoUKFChQoVKlSoUGEHoUriKlSoUKFChQoVKlSoUGEHoUriKlSoUKFChQoVKlSoUGEHoUriKryuEEIUQohHhRBPCiF+r/QoeQ2v712ioVWoUOHPCIQQ80KI3xBCHBdCPCyE+LIQ4nuv9LgqVKhQYTu2zZkeE0J8TQjxdrf9kBDiySs9vgpXN6okrsLrjaEx5g5jzC3AGvBTV3pAFSpU+LMDZ9D7X4DPGWMOG2PejDWK3feS53lXYHgVKlSosB3lnOl24O8B/98rPaAKOwdVElfhUuLLwF4AIcS1Qog/dKvinxdC3OC2X+NWyR8UQvyTKzraChUqvBHwHiA1xvxSucEYc8oY8y+EED8uhPiPQojfA/5ICFEXQvyKiz+PCCE+BCCEUEKIn3PbHxdC/BW3/X4hxGeEEP9JCPGMEOLXXdJYoUKFCt8qWsD6Sze6uPV/bXv8+0KI+93997s51NdcbGtcttFWuOKoViIrXBIIIRTwXuDfuE2/DPxVY8zzQoi3Av83drL1z4F/aYz5d0KIqmpXoUKFbxU3A1/7Jn+/B7jNGLMmhPjfgE8ZY/6So34/IIT4Y+AvAJvGmLuFECHwRSHEH7nXv8l9xgLwReAdwBcu0b5UqFDhjY1YCPEoEAG7sfOiVwUhxAzwPwHvM8b0hRB/F/gfgH98KQZa4epDlcRVeL1RBqRDwMPAJ93K0NuB/7ht0Tp0t+8Avt/d/zXgn162kVaoUOENDyHELwLvBFLgF4FPGmPW3J/fD3yPEOJvuccRcMBtv00I8QNuexs46t7jAWPMWffej2JjXZXEVahQ4U+DoTHmDgAhxD3AvxNC3PIqX/s24CbsIhNAgGVAVfgzgiqJq/B6Y2iMuUMI0QZ+H9sT9/8CG2WgehmYyzS2ChUqvPHxFFsLQxhjfsqtWD/kNvW3PVcA32+MeXb7GziK5F83xnziJdvvB5Jtmwqq62iFChVeBxhjvuxi1exL/pRzcftT5G4FdlHqhy7H+Cpcfah64ipcEhhjNoGfBv4WMAROCCE+AnaCJIS43T31i1jRAbAUpgoVKlT4VvApIBJC/LVt22rf4LmfAP562dcmhHjTtu1/TQjhu+3XCSHql2rAFSpUqOC0AhSw+pI/nQTuEEJIIcR+4C1u+1eAdwghjrjX14QQ112u8Va48qiSuAqXDMaYR4DHsEnaXwB+QgjxGHal/EPuaX8D+CkhxINYylKFChUq/KlhjDHAh4F3CSFOCCEeAH4V+Lsv8/R/AvjA407OuxRX+tfA08DX3PZ/RVVxq1ChwuuP2FkMPAr8FvBjxpjiJc/5InACeAL4eVzPrzFmGfhx4DeFEI9jk7obLtO4K1wFEPZ6V6FChQoVKlSoUKFChQoVdgKqSlyFChUqVKhQoUKFChUq7CBUSVyFChUqVKhQoUKFChUq7CBUSVyFChUqVKhQoUKFChUq7CBUSVyFChUqVKhQoUKFChUq7CBUSVyFChUqVKhQoUKFChUq7CBUSVyFChUqVKhQoUKFChUq7CBUSVyFChUqVKhQoUKFChUq7CBUSVyFChUqVKhQoUKFChUq7CD8/wE2HFJYP4oITAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, (ax1, ax2,ax3) = plt.subplots(1, 3,figsize=(15,15))\n", - "\n", - "ax1.imshow(Idata[:,:,0],cmap=\"Reds\")\n", - "ax1.set_xlabel('Red')\n", - "ax2.imshow(Idata[:,:,1],cmap=\"Greens\")\n", - "ax2.set_xlabel('Green')\n", - "ax3.imshow(Idata[:,:,2],cmap=\"Blues\")\n", - "ax3.set_xlabel('Blue')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Manipulación de imágenes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Intercambia dos planos de color" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAEgCAYAAABIE1IQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eaxtSZbeh/1WxN77zHd+Y2a+nCpr6K5iT1Szu0VScpMESVsNAYYsS7IlUbIt2IZp2JYNWLIli5BlwwZFy6Agw5JBGSRNTSQlgIYkQhZb1SpSTXZ3DV1DztPLN9/pzPvsISL8x4rY57xX2eyqYhc7s3Uj69W7795z99ln79hffPGtb60lIQSuxtW4GlfjalyNq3E1fqcM89t9AlfjalyNq3E1rsbVuBq/leOK3FyNq3E1rsbVuBpX43fUuCI3V+NqXI2rcTWuxtX4HTWuyM3VuBpX42pcjatxNX5HjStyczWuxtW4GlfjalyN31HjitxcjatxNa7G1bgaV+N31LgiN1fj73iIyD8vIv+v3+rXfg/HCiLymd+KY12Nq3E1PplDRF6Kz3oW//2fiMg/ufPz/6OInInIIxG5IyJLEbG/xefwL4nIn/+tPObV+OGO7Lf7BK7GJ2+IyB8D/lngVWAO/IfAPxdCmH7c60MI/6fv9djfz2uvxtW4Gp++ISIfALeB2yGEs53vfx34MeDlEMIHP+jxQwh/dOeYL6BY9WII4Un89vgHPfbV+J0zrpSbq/HUEJF/Fvi/AP8bYB/4GeBF4D8TkeJjXn9FkK/G1bgaz473gX80/UNEvgQMfgjv8yJwvkNsrsbVAK7IzdXYGSKyB/wJ4I+HEP7TEEITd1j/MAoi//0oz/5FEfnzIjIH/tizkq2I/BMi8qGInIvIvyAiH4jIH4w/6167Izf/kyJyN0rL/7ud4/y0iPxXIjIVkYci8q9/HMG6Glfjanzixp8D/omdf/+TwJ9N/xCRfRH5syJyGrHify8iJv7MisifjHjwHvDf2j2wiPwXIvI/jJjynwG3Yyjq//0xIawjEfm3ReSBiFyKyH8Uv38oIv/f+P6X8evnd97jZRH5sogsROQ/A06eOYf/IIbBZiLySyLyo7+VF+9q/J2PK3JzNXbHzwF94C/vfjOEsAT+E+APxW/9g8BfBA6A/8/ua0XkR4B/A/jvAbdQ9ee53+R9fy/wOeAPAP+iiHwhft8B/0sUWH42/vx/+v1/rKtxNa7G3+Xxy8CeiHwh+l/+u8CuZ+VPo9jwCvD3oUTon4o/+x8B/wDwE8DvBv6hj3uDEML/D/ijwIMQwjiE8Mc+5mV/DhgCPwpcB/5v8fsG+LfRTdsdoAT+9Z3f+wvAr6HY8y+j5Gx3/CfAa/GYX+UZHLwav/3jitxcjd1xApyFENqP+dlDtruX/yqE8B+FEHwIoXzmdf8Q8FdCCF8JIdTAvwj8Zg3M/kQIoQwhfAP4BhqXJ4TwayGEXw4htFFB+n+iQHg1rsbV+OSPpN78IeAN4H78fiI7/1wIYRGf7X8V+Mfjz/9h4F8LIXwUQrgA/s8/yJuLyC2U/PyPQwiXUYn+MkAI4TyE8JdCCOsQwgL4V4jYIiJ3gL8H+BdCCFUI4ZeAv7J77BDCn4nnXgH/EvBjIrL/g5zn1fjhjCu/xNXYHWfAiYhkH0NwbsWfA3z0tznG7d2fhxDWInL+m7zvo52v10RDoIh8FvhT6O5tiM7XX/vNPsTVuBpX4xMx/hzwS8DL7ISk0E1SAXy4870P2Sq8T2HIM6/7fsYLwEUI4fLZH4jIEFVx/ghwGL89iSrTbeAyhLB65hxeiL9rUTL03wGuAX7nc81+wHO9Gr/F40q5uRq7478CKuC/vftNERmhO6D/PH7rb6fEPAR2Y9cD4PgHPJ//B7rjey2EsAf884D8gMe6GlfjavxdHCGED1Fj8X+Tp0PdZ0CDhoTSuMNW2XlIJBI7P/tBxkfAkYgcfMzP/lk0FP57Irb8/vh9ie9/GHHv487hH0ND838QDa29tPO7V+MTMq7IzdXoRghhhhqK/7SI/BERyUXkJeA/AO6hO7HfbPxF4BdE5Oei+fdP8IM/9BM0FX0pIp8H/ic/4HGuxtW4Gr89438A/PwzKogD/n3gXxGRiYi8CPyv2Hpy/n3gfy4iz4vIIfC//UHeOITwEPXG/BvRQJyLSCIxE9RnMxWRI+D/sPN7HwK/CvwJESlE5PcCv7Bz6Am6CTxHFeWr8hafwHFFbq7GUyOE8H9FFZI/iRKLv4nugP5AjC//Zr//beCPA/8uugNaAE9QMPh+x/8a3SUtgH8L+Pd+gGNcjatxNX6bRgjh3RDCr37Mj/44sALeA76CGnj/TPzZvwX8VdR/91WeSXD4Psc/jqpEb6A49L+I3//X0NT0M9T8/J8+83v/GPB7gAuU+OyG1f4sGqa6D3wn/v7V+IQNCeE383pejavxgw8RGQNTNLT0/m/z6VyNq3E1rsbV+K/BuFJursZv+RCRXxCRYYxZ/0ngm8AHv71ndTWuxtW4Glfjvy7jh0ZuomfjTRF5R0R+oJjp1fjUjn8QeBD/vAb8I+FKIrwaP4RxhTNX42pcjY8bP5SwVEyVewutb3AP+BXgHw0hfOe3/M2uxtW4Gv+1HFc4czWuxtX4jcYPS7n5aeCdEMJ7sZDbv4vu5q/G1bgaV+O3alzhzNW4GlfjY8cPi9w8x9NFmO7xm5fgvxpX42pcje9nXOHM1bgaV+Njxw+rQvHH1TV5Kv4lIv8M8M8AFEXxU5PJIUVuKIoM7zzL5Zr5Yo3zNQCGDJEM6Q4UsNbS61kCnk3ZYKxlbzJkOOhhrAWReCLy9BmlM9n9ngjp1fomAUS2/3zq7+3rnv6g6RUh/i8QQojfDc+8cvcYkq4JIrJ9heyeqnTHSKe3vRI7n0u2x/nu83z6IoSnfvm7h4Ysd18gT7/f7meRnb+765beOF2P3aPsnH2I1627X898smdP4WPPeffzxN8OT//K9trG7+7ev/Te3SWTp385Xtx0TfSvwG5Y96mf7X7g3bMMPh4u4Jyjqdc0zZLg2+773gdaB86BzXuMRvv0ih7GmKdu4e59386vneu5c2UkSHdN0zmn+dn9+6nz/Y3nx1NzOb73o8enZyGEa9/96h/q+E1xBr4baw7Hh5jCkEWsWS/XrBdr6og1GRnZTrP7ELHG9iweT1M2GGMY7Y3oDXpYaz9mzj9zNjvfe/bZDCE8Mzd3P+DOPHzm+yH+t4s16Xx/o2N8HNY8e867WJM+w7PH/NthzVPvuXs+vwnW7L6HfOytffpcP+4zpOvxse/RPQfffb0/9hx3H6Odr3df+xt9tt3jf9f1ld/gWsn2mBKxpru/H4M1u/f+47EmdPPCOce6XrNslrS+3f7cB6065KCX99j/DbBm50J1nzldz91r8uz3fiOseXp6/cbz4+Pm4en3iDU/LHJzj6crTD6Pmku7EUL4N4F/E+BHvvD58H//U3+KXmHwvubXv/Y6/96/80t869tvsw4P8dQUss8wv46VAh9aRAyT/T5/7++9w2gk/K1f+ZBHD9f83M9+nr/3Z3+C45MjbJ6BMYix8T314hgMiKFbUMUrcTIqZIkxmAABjwiImI78iEngYDDGYACRLQkQBO8DITR41+B9i3ceJMR1PiDGIBiMgLGWzOaIGLKsh7Wi74fXo+kJAAEhnTPgBY/DuRbv00QFa4Usz8kyS5bl+lnEYOyOSBfAuVZ/xwW8b8EYCKKfGSHgCMHjnX6qkNAsXUixIAYRwRiLGIu1FmMN1ui1EQJGDD54QvDg9cEO8dp633aFy/UB1fuh55oeEP3dePX14TABgoXg48/jcX1LCAbvGyUP3iFiCcFjjd5fQ0YQj4jtwDndB2PAGhOvmX6uBPU+OIIPOOdxrsU5j3cO3zTdQ+t8g29bgpd4boEgggRDaB0uNLRtQ/CwqUqePHybu+/8IovpdyAI3lta5yhLx3LhuVwEylr4/Jd+Fz/1U7+fa7du6WXHxPuh90TnWyAEvWcEPV8EghMQT/B6nULQr713NG2L846m9bRti/ceH+KRg5KkEDw+pO9vSVLwAR90jhIc//Kf/NM/aIn8v5Pxm+IMPI01n//C58Of+lf/FKZnqH3N619/nV/6d36Jt7/1Ng/DQ2pq9mWf6/l1CiloQ4sRQ2+/x4u/90VkJHz4qx+yfrDmcz/7OX7yZ3+So5MjsjzDGIONWEMAj8diMWK6BdWLJxN9LaB/x9ciYOIztYs1JmINQJAtCRCE4ANtaKldTRuxJkgiqyFilC5U1lpym+vnyXqIFX0+4zOfyELCyBCxRrzgcLROn9cQgj7LVsjzHJtZ8izX90rnurNLaXewpvWtYkOQ7n0dTueS296ztOCHELBiu+tijdU/EWtMxJqwgzV+B2vStW19S3pkuk1nxJr0Xh793V2sCSZgg9Xj4uOSIfo5gqHxTXz2HVb0dZnR+5uR4cVjd7Am3QcM3bmnz5VIpYtY452et2+9boR2sKbxDW3bIl4UX+P8MsHgWkfjGxrXgIeyKnnn4Tv84ru/yHcuv4MEwXqLcw5XOvzSE+YBqYXf9aXfxe//qd/PrVu3wNLNg45wRaxxwUVc168REKfz23u9Tj7o18472og1fgdrtpsqxZV078IO1sAWawTBBcef/h6x5odFbn4FeE1EXkYLHf0jaFGkjx15nvPZV19hvV7y/vvv8sab93n0YIXBYqTAhxpHs/3QmPjQOGyRc/32mNc+W3N+9j6nZ1PWZcmJkTiJMowRBecAuvv2GKsgLWmRRjBG4kKqIEIATBZ3PCZOzhDBBwSPGEvwTv8tgieAhJ2dSMDajBDcDpuPxxAQIxEUMkR0QigYJbCx+nrS+RoCDrG6UIMgBpyrsTZDxEcAyLqHVN9XsMYQAO8aXSB9q4t2CHjXYEQXcyVyEZCNJ3iTeCBBBMTGI0ciYEwkB0oKntWHBDqgTtuTECROaKcLOx4hIGLwzj+tYvnQiRE+3p+EhMF7Pdfg4rF9/BzEoKueL0YiadH7TZS/ZOfrKMYoQUDvqx7LY7A4XLxnBvF6nyUz4PSBtGRIpgAAVgkiBgkGb/SUA+Cco96smF58xGr5PiE0kdzUeK/z2xrILOBr3nvvW9y4eYfx3j6DcR9MJKFi9ENKq7PDCKEVzM5O0ZugrzHS8eIgSh6tjaqEgLdWr1NoCZHAuLggSDDgHXijZCfOxk49+A1Uh78L4/vCGVCseeUzr7BcL3n3g3e5/+Z91vfXWCyFFNShptnBGhOxxjtPVmRMbk+oP1vzwekHzE5nlOsSiViTmQwxkYAHsOhiJ1avT7dIR+Ki5HCLNVnEGhOxJshWYfDoc+10t9GRkCChW9wCgcxmuB2s6VSKHazJRN8nYU161qzYbhEDJVUOh7G6UIueHLWryWxcuE383DtYoxseJWONazAYWt/qok2gcQ02YYhIt4B647HebslbPCdFmi2RsRFrfiP1pduAxvkpEWucdx2p6sjQLtaILqTsYA2Ai1jjvV4vF5xuYonEBfQxJJ5vvM7pfhPVOSNGyemOeuGDEuCOHEVC7HAd2Q2i52QyPd8Qgt6PTAhOyZ/D6TUKRnHPRRLmWtbVmruXd3l/8T51qJEg1L4m+LTRByzUvuab732TOzfvsL+3T3/c13mKV9KKoZU2rguCtPLUPQhGjycRa9IcEgQi1iRyZ8XShrYjMIl8mmBw3mG86QhNR6wI33XP/3bjh0JuQgitiPzP0CqTFvgzsXLtxw4BjIWq3vDgwRPefOMC7wo9lk57Ag7nK6zNO1btWk/rPHt7+7z8qvDkbI5kDa0rEQEreqPF6MPhIzCEaDUSsarsJFk1uLjLShfSxs1xVE9EfydEVUUXQ/8UkMTVEYLEiWkgeFWFQpIk400KAsHgPWD13IwkMqVEqyNkojcasR0RQgzGWJ2kRhdqIznWGIgPhAA+ODJMXKw07OF2iU06ZRM6ghfCdn+IBAxCiOe1fe8ckaC7H4limCQ1LK6vaceC0esWdOIH7whB1Z0gKIkIaeek5C4pNgQheBfPMxBapw8XuiNC9Hrre20VIDGZPjAEQnrI0klFIkU8Jw+IA8RjyPASQCLwmXgNjL5eb6/oH6uEUbwliOvus87bnI4xuUh0yWjbhuXyjPnlO/i2xCCduhWcXnWTQZZBYWExPeOdd77Fteu3uT18ATEKNgqYYI2Nb+MQKzsqmcUEp9uBON9CMATR+WuDJ5Dr89UaWnEEb1EpMC52IVI00QU2iMHg9V4QNwzht4fcfL840w0Lm3rD6YNTLt+4JHe5Ho+AVz2UylfkO1jjW09oA/t7+8grwvx0Tm1r1n4NKIjvYk0iISZijZXtgpx2oAn4lWDaDh+6HX5c7Dpl4RmsSbt4iffKiz4/Zgdr0oKQFng8uIg1KfQmcf7p2qO777RQJyJkRFWp4FXNMGLIRdWatPgC+rkimUkKT+MbJTbx33RYY7qdejqPIHHHHrEmvXduckLEGl0w2JK/nX1TIkser8cJ6GIZtkpUUlh2yZ0P/ikSRMQaF7HGRqzZPb9EVEREiWmKDOxgTbq/nUIWw2I4VMUjU4K6gzUhYs2uUoTQqe/WW5w4vc+RNOQRa5JCFghYLHVbc7Y8492Ld1m36+5e+x2sIYt/LJxPz/nWO9/i1vVb3BnewSes8QEMnTLpItYklcyK7Uhfmm8mmG4u+eDJyZUotQYnDust3vtu/naCQMSadM3SddWN1m8zuQEIIfzHwH/8vbzWh0DT1LjQYjPLcFxgMos1OcZl6M687SZAIr6tr2mcpyj6PPf8gJ82gfl8RlaoNG8zCyaxPcGYTCUz3cagGoCqIxJ3/BInrEdimCotlt3ZkhndMfsYu2Tn+TKoeiPd7iDD0xKX8Z0LRFxcI6BhuodxuytPv6N/RJL8qqGrzpNjDMYWRDiIITMlXkFUCXBe1YGAU/bvfJT7HD4EDDYSH1Urgt7EeK6eoE+RLpxGQzbGEP9WBUfMrqqVpEXQaeai9JOOGdJFIFEBvQboziOGPDQcpA+t926rrAWDMQ7BqNohPpIdUZVGl5CovMQHAw3dKBfahl/S/FBg8QRRMmDEgE3XOn22LMrV+rnSghNC5AReQ0UhKKn0zsWdDggWA7TNhvnsPuXyPloZXidE8OCDzjEjYAWMDUjw3L37Di++/DlOrl1jNB4R0HOycYHQy2iUlAUl9kEgBF0JfHAEXDevdObl4FtSXoE4MCI4cSi+C944VakCqoC6OBe6Ob5dcH87xveDM/H11E2ti7A15KMYVrE5uct1Yd7BmvTI1q7GOUev6HHj+RsEE5jOp4QiLiSZJXTzXxc77xXYO7UmEoa04+8WR6QLrYQdrPH4LqzU7mBNGmnh9PG/TDJa2u772w+93UGnxT9hjZe4wHdPbOgW4y7UkdRNNJSS27wjbYnU+Yg1Bg3VSIjhJud1zvjQERyLLmStbzvlIxGcpGSQVFqjIZu0sHZhKLPdxadzJqhfShVW6Y65u2gmxSUpcuncE+FMYTfnXafcmGBwRklb8EpELLYjIym0lpSvtBi7EEnSTphwN+TYEZp4jVOYMJG2LGINRj9XR24Dep4+qmxByYaLWINR1RBg02y4P7vP/eV9WtrttYokM4VDEQhWVcB37r7D517+HNevXWc0Hunn3iGjiF6TuEfs5ocE6ZQtx5a8A+TkGspLOUxRWXLiCE6VqNa0ip9BNwne+e71aY7/tis3P8jIbM6gP+DOnZv87M++wMXZBYuFxbSJETu8bxBrwXiKfsa124fcvHnIaDygP+iRZ8L5hcW3jqoqGY8nCjpRvvchqNIRAkGshkCi4TeFRCDt0DvmoAuTJK+MLl6IkFlVG9IjBuBDS0ICiT6IbmPRhWwsnoDBoyGxOOmNwYpEidNASBJ0VBiiVySgCkt6KEJHlJKyoNCmfpP43gghPQBeH16Nnyayp79jJYu+DT234B3eE0kfSAxzJP+PGA2LmfTQRiKgn2AbotL3iYqMygpIUGKrD6yLV0RDQLorjXK7d/Ez+e48Eb2CAde9S4hxHyEQuhBZCkd6QjBK4EKMv0cVJ4gS2+ANIgU+3WuT7j3dbiSIRP+Oi0EnvQ7BB4xVVUzvm8G5eC4+qA/H6Ner9Yz59EO8W0Wi5jui1V16BGsC1kBuYLGY88H7b/PSnc8xnkyw1uzI61Y/AwUmtDhvoi8pxcl99EXp7s61rX42EXB67ZUTCtJuw3sJABHBI7pYGzDBomFB01HvT9PIbU6/3+fmnZu8ELHGLmynnjjUs2Ct1VBJz3Jw+4DDm4cMx0N6gx6SCfbC4lpHWZVMItZ0gB6iorbjGdk1VybyoN40iQqj2SoSO6EVEQ17dWGseMXb0G7nfvI+xJEWgd3F4SnCEn0xndIUn520W05ekS4EkUhOfE1SR9JnStcunbMP/ruwpgszxMU+k2yroEhUuzxdmC6FOVLYSkzExog1HRGI/6XR+WZEtgtimqiyDcelEJCq1/osuYg1qlJGTI8E0O1gTbpe3T2MKlkiDCbo/W53sCapYlYsxhsKKTqVxpgYTpKnP19mMpxR0tL5X3wg2NARRoOJIW/9nnghRKyZr+d8ePkhS7dUIpzmUFLRItYEo6QIA7PFjLfef4vP3fkck8kEs4M1SSEsUD9a914Ra7zXUGUesaZt261i6WTrzxFRVSySTTzYYLvP7r1Xkha2Ibfvd3wiyI0gNLWj2XhGoxGf++wLnP3MBRfn56zunxK38iCe4UHB7RfGvPDiIXdePOGlF28y2RsTCPR6PYIXHp+eUuQHHB6dkJsiRkIMJgjeRQUBIMr6QQwSfCQMtnsQgqQMkzgCcVEI6XFTUiEefAqnGIJu4VVpid6MbnKmsEkUnK1egA5AND4f1IcRQzkCuuJ508VziUqAXsCk9Gx3B/oOEbDQkIQPviMrukPRUEgHephO7QlBOtNXiO8fAgQvGLuVkbfXSsmLhO0uTENUqmWRyEEEAAWmJt4KDTGpfwaC1wXWp92TDx0oh3hdo1C/JVRR3k5qmxq9lcykB9n5Gg1fKenxcdEngJMWIxnBarx3q0KlUAJdGI8QIqFLqpESJIJBIulKwIdkatqmxSJsypL59DGr2V3wFVFwITRhhyRLvI+dEIUEz0f33ufRk3tcu3FCfzzQ+x/S7i1J5QYbFxexakrUUJkaibcyo4bU0pVUySgaIwMEI7gYE1eJXUOdCaB1rvmONH9ahiD4xuMrxZoXPvcCF6cXnJ+fc3r/tFtAvHiKg4Lx82MOXzzk+MVjbr50k/EO1ogXTk9POcgPODk6oTCF7mqjMuLcjvclBILExcFHRWIHa57dkUrYhiiS58CI6QybBhPn35YcBB+613dYg3pFdjN0OrJi9bM2odEQQgwBeHx8BrZYk5QAL/pe6TOl47puYxFDO8F1ZAXPUyQmnV9Se2QHa4BtiMwL4WOwJpGN7hmL6kgX+hHZhqEi1jSm6c7PYqOCryErQTqlJuxgTTpfSGgtOwkSoVPbgI68JqypvXpbEulJiz4BWmnJJMNFrAkm3l+2PqJEspJyk+5vMqWnkM/udcgi1iT1rtyUPJo94u78LpWPfYsj1gDdvOrUwqTghMAH9z7g3pN7nNw4YTAedCQw3V9kqwb64FX1cb5Td5JqmUjdrnE7XeMU/hMjnf/mWdKasOYpde17HJ8IcuOc4/U33uPeR6cURY01LTeuTXj11RNOz06p1zNcqCh6hpde2uPHfvx5nnvhhKOTfcbjMSazONdiMsFkhsVyxvnFOS9WL9Af9GM4x2i4yO6ERtIiEs2oSiKSFCuEIIS044o3XiMmbacGGZMWIqMPccxE8d6lPX23p3CdEiPxfaySJWujMXc7w1T9iGoHaaEMHS/DB/V/7jB6PXgg+Vr0vaKKGc8p+XhCSMdPb6nn5PAxtELcGXh8G/Bty2ox597dd1kuzhgNhly/ccy167cY7R/jPBS9ETYf6nUyceG1MYQRSUXy7/ho3JO0a4qGb5320ZsDquJIG++hfl8kLfy220d1h+/WiKj4+KBZTV7dFKqIdfqbEinZUccIuhNRrYKkwqVrpipSvGzGRA1OjeWEgIQU0ov6h8TMpRhWq6sVi9l9ms2FkmJU6El3Y5vaquKLxPBUbmA5v+Sje+/y4suv0B8P1UcTlSwJidRpKDbNX+V3AYJF4kKYVElJypfRcJkYg7ceJ0JoVbnzRgmtmIA4usUoQrq+/6dIunHO8d4b73H60Sl1UdOYhr1re5x8RrFmtp5RhQrTM+y9tMfzP/Y8J3dO2D/eZzwZYzNL61okYs1sOeP8/JwXXlCsSapGiFiz6ych0Jl9Ow+B7HgUnsEaUKNlOmYyK5sdrHHedf6e3VDULtYkUpXMuKq2Jr1Df96FatgSsXQOwYfO27GLNZ3/ZAun+t7xnNKC1GUaxdekkJF/Bmt8UF9T61oWiwXv3X2P08Upg/6Akxsn3Lp+i+P9Y4IPjHtjBsUAhM6vYW1UmhKpkG2GTyIAnccn/Tt5c1AC58R1ik8iTek9gM7omz5Huu5JnXIRa5LasOsRcX5rEk5KSDChU8o69SlizS7hSx6cZCwPQbO40uvT/UihP+cd62rNg9kDzstzJQkCtNtn4SlCnQBRAAOXs0vevfcur7z8CsPxsLueQEccLTuh2CBdiM8G25HuXVXSies8OyZijYjgW7/1rEUliB2sAXaEgY9/rj9ufCLITdO2/OJ//g1+7dceUhQVh4eWQT+wWrZYyRHJEWratmE2X/HkyQJE2JQNJ9daDo/36fVyZDDk8OCQg4MLmmZDuV5zeHhIkGTGi16EkBZ8InnZLmTWSlRfiHK8jz/RQEy6YUZXRlJW0VYW1mVKSUUkKZGpRpkoMtmYLmgzjSWn+G0HKPp3Woa3RsOAmIAxeWTFKQwUeU3yXRAVokBcqDXMgksxVs0IQnz3mhAgxLit94HVfM7pw7ss5mdcTh8xX5xT5IbhoMCMJtTlnCcfvc/e7JjB6Ji5N6zLmsHghNHBdcaTE3pZTz9bSIugJRjNjHJYgotMPISniZnES2kkShvRdGxjaFACyRIV94sdAAgZRiT6iTyta1QVEgMmpoFDVHBSRkW8Bt6pOZutzJ58NEm6hrCNM9sUDkwjakp+J9xpdXdSVQ2btZKb1q+wURXTj7hVajoVPao2NgvYRgiu5d79D5leXnB87Tp5oUZY32XH7KSFEl1ear7SECASb3fo1BxjrBJxY/E2kJFD2xIsiMlxLqWUA7mA0yxF9Q1oLZ60u/00jLZt+cZf+wYPfvUBVVGRHWT4gaddtuSSk0tOTU3TNqzmKxanC4w1NGVDe71l/2ifvJczHAw5PDzk4uCCsi1ZR6whYk1axDow9mxTlRORsHREpVtQ40ikIO1+UyhlF2vS4px2x0HCVnkw0u2Es+/CmpjRIttz656DHawJootvHrFmVw0ixEUuKkWJMKTPZoxm9oAuUhb71C6cQOcRCT6wWCy4+/AuZ7MzHk0fcTo/xeSGYlAwGUyYrWe8+9G7nMxOOB4dY7zek+PhMTf2b3Cyp1iTcCN5e7zx3ULsItYk8taZrOPvpGtGiAbwqGwFCdvgQfrP6PXKyDTEErGmcY0qa2I0pBmxRnawJl0n552mmj+DNbuEMIUwETUU74ZndpUQvSVKQsUITd2wWq24P7vPyq86wzQRazoiI93B9GdZQBrNsvrg3gdcXF5wfQdrEjnvFJsdwptS/NN1Sv6lpOZYsR3BCVavnWsdWMhNriEs0RCbRKxxEWswwPeJNZ8IclNVNd/+5n2mZw21W/PBuytCqNhsFrSNx0oPF0o2zZoP3j3l9GHNYGA5OBrw+S/d4md+9gvcvHUECEYyTg4OWZUNm6rEtw02z1VhEYtTA4myYtGMHQAxVkMKQaegNdlOBkFSBPQp6EBLkjKjO1gjQqDVXbyPZtgAIlkMV2jYxcSYd0pp1IU6yXEenI/rvKopxhhCSKnoUdkBkvISvHS7IfW2pHROnRH6s6YjCEFQAhc066WuNswvp9R1SX/YZ1NteHj/I+59+G2Wi1P2xhNe/cyrfOELzzEY9JmMDyj6BU1VU1cVVVVzdv6E9aqkbh3l+nU2dWC8d53XPv/T3HrhVfK8gOjQV0AjGg314nben+j/oOM5SWJPTvy4O5NU3yZekujJUc+P1rYJ3uPaBuda8F5T5cm6XQIhpnnvZKpEFqD+GHQ+gKaaq3qjniAlnEouU4aZEioN6RnxYK3OB8DGebZaXVAuH2OD1jkKwaXAY6RNbL0uke8JYAyIg/PTxzx6/Ijn77xEr18oOfJZVFO22QoqcllM3EF51HzsCNggMUSVE8RhrO44rY3+Nkt8RgSxHnFOPUat16Qv1EzvfTQZ+08Puamrmnu/fo/mtGHt1qzeWVGFikW1wDeenvQoQ8m6WXP67in1wxo7sAyOBtz60i2+8DNf4Oj2EYKQS87R4RH1uqbclDRtQ57nXcgpSfM+eM1uiXPAGl3oU5g228EaeHohfBZrEsEQEVparY/ipTOvZqIp2okoJdNrwprk5+lCXM53x+9qtIRteniHNJGwyQ7WbIn01rcjIjQRa1J9l0TqCLCpNswuZpRNSW/Qo6oqPnrwEd/+4Ns8mT9hPBnzmc98httfuE1/0OcgYk1d1VRVRV3VPDl/QrkqVfFfvY5vPNcn1/k9n/89vPLCKxR50WUDBWUSGoZKJHI3xCFsF/14fV3EmuQ58rK9RghbNUXMNvPKe5q2oXVawyWzGdkO1tiwNZInrAkRa5J6kwy56Volc3UiuEm92yYxxJCeeKy1tFGWSfPsYnXB48XjzvybspmeGuGZP9ARiSdnT3j06BEv3XmJoq/Zy1nEGvcM1qT53hEes1PbyWumlBNHiFiTRawRG+eZVxLunMMZrYdDVHzaWA9NjGC+D6z5RJCbsqy4/3BKJhOM6G6xLje03nW1NiDgQ03jKjbrms0aphclmIzXXrvJtZN95hcL3n/3EYvFkiIX2naDd45+r4c3ggsea5J8G+KOJeDjA2iMjQsEIJGIsGs6jsQhhiC2xeVU3jciaAZNDSK6aHqvO2vstqCWgRRi2pr7AgEXWbgaZ02IZui0q+hSDHX1Tx4ZSCEd32379ZKpuTkRB4OKIEkWapuGx/fv8uT0IYvZlKq8ZLWa0tRLstyyvzfglRdf5eaN5zi+dp2iKMiLXvS1CFYyeoMx/bYl763w5pxmvtAid23F2eM3OXv8LjduvsrN259h/+g6R9duI5LthMlQHxQhhpaikpaUqp2HRQEmhmICSAiIZCR/ExBJTqrAme6h4DqTcLreqThVkmdDd1012yoS3ZCyWkCC2ao+O+a/ZEDXB11DV94IJggiGcFqJVzftqxXlzTNZcdYxGu6tiPQpbGzJTVpqlrd6FOuVjx6cJf1+kvsHRzFudrG+WC73wni4rFiqrAx0Tidrq8Bn/L6LCYEggOxBVY8ErySm+AQSX9itkVHRr2WKEi7+U/BqMqK6cMpE5mQR6zZlBstNBaxJhCoQ03lKup1DWsoL0oyybj5mZvsX9tnebHk4bsPWc6XSC5s2o1mU/V62xo2EWuCj4tY3CmltOqufoo8U6QStgZOszW8PksiMjKtWyJbMpUMppnJdrCGjhAlguMi1iTjrA1bQ3Xn/2PrGem8JjvKw242WTI3d2oTdGEKgKZp+OjBRzx88pDL2SWX5SWz1YxFvcDkhuHekFfvvMrtm7e5ce0GRVF0lXIFIZOM0WCEax3L3pILc8FivqBxDVVT8ebjN3n38bu8evNVXrv9GteOrnH72m015HpNpGBHLdolXQlr/DNY0xGQqAQlA/Su5ygRivQ5O1K6gzXJZwQJa+iua6ojI0GwHdYETDDbTLIU+on3r7sv0aydFKdMMq0/5LRQ3sXqgovmQm+FMZpCHhW/rt7OLqlJX0coXa1WfPjwQ760+hJHB0d6nyMGJA8WASUtMSNNQlTQI9ak65WIfvLu4KCwRVe+IBF0J/qnq6cjWxXLy9bk/b2MTwa5WTeUdsVw1I/ZKaZTKIzJEL+Vd31o4sTU3Xm5rik3NZtyw6OHl3zlK2+zWtQ899yA/ckxd25VmPFQQwNBoik24KJa4oLERTKGGyJLFq93WYJjt/5cSpkOwce4tRIkkC60YeLEDcGh2cQx7mgiKTGCTRKx0R18UiCSJ0IfrLSLY7vYQ4xXO0xXJTaeHJo5Iwjet7oAiZC8Oxp2UWl+cXHOO29+nY8+/DbG5iwWC7zbYLKW8XDAC8/f5tq1EyaTCYPBkKYq8a6lbipG433yXkGW57SNIzNCsbcHoSU4x2a1igUUh1xenHP3/W/w4Qff5Nq1l3nuzme5futlxntHiLF438TErJh51kkxns4s2wECxNibrtuiakW6JgQtxJgWeK374wnGIMTrbQ0pjV5ZbYaSw+grId4PE4s6Rp9PMIJ4JcLbEKGkaRrVOxAJhKjUdSV3ENoQaNuK1fIRvlnvKIFpaqfqSwljomweX5XIjmscDx7eYz6fc+Omx+YGH+Ki6LdkGzTNMu0MJYYuENEaNRKVJmMQ7zGmwFGrl0sESeCajOcYXCfdq8opErCS4XYD+Z/w0awbVnZFf9TvjJrpfmYm051hxJomYk3anddlTR2x5vLRJW9/5W3qec3guQHHk2Oq2xXD8VBDA109p9CpJRLv065JGKELRSQlAeh26onYdKpB+r0dghGIIfGUSRTNyCmVPNvBmu2EejqrKBF1iIR9ZwHviNAzC3gqsNf6tiMJKSyVMmCcc1xcXPC1N7/Gtz/4NnmWs5gvKF1JYxuGwyF3nrvD8fVj9iZ7DAdDyqqkdS1VU7E33qPf65PnuVbetQ37Zl8XPOdZRawZmiHnF+d84/1v8M0Pvskr117hsy9+lpduvsTR3hHWWBqvFXutsU+TGvzWLJt8AZEQpgVfRDoymhSTrjBpoFPCjDFdhWJjzTZ87XV+JXKYMsGIWLNLcsRIV0ywU9DiPUrzIp1fUuq684wEuW5rHi8fs27WMflkq9jserM60rVbPyb+2DWOew/vMZvPeO7Wc5jcdHO4K3OAkq1drCFiTSK/KeXdGCU5hSmoqTuDtNnBmq6IbVR1bLAdqUmlDr7X8YkgN3Xd4lyNDxr7tzYnZcYY0To3gkr8PjT40KLViy2bsqVc1UzPF3zwwRM+em9BXbXMpiXHJ0/47GfWHMqBhoLQ9Qyr8lYAMi+4VL6+M7zE2KgEBK1Vo4X7YhXdnV21xFRuYgYNqfZA3JX74LAmAzSTBkQ/nwmxfDjbnb8hqjV6fBt3WaZL805EJXQLWqpLk07Ix7YJkESA0FUmbpqG6fklr3/rqzy89wbjkSXPWghrXnzhkLw4YjgYMeiPsFmGbwPL+ZqqbBlPRowmQ0yulXSrssXXlUqxrcPYjLpcsF5OIZpo28qzv3dA1a9ZrxacPnmb+ewhD+6/zfWbr/Dcnc8yGO5FgHGJnnUp95rREAsLkh5+rWic5CmthbF7bZKfJl43m0qf55hkpowp/0TfCRLr60joCIsCigIUiTwkJgPxAVZS02WHISiLTp9F1TvnPS60VNWKzeoykrACIdfdLStMyAiZYFyLuOTZCtsFS+IMELg8P2M6u6RtWmzeAwxGQoyyhcQL4/kIRrbycLeIxZBnRx6DIJKDNPo7QfRZCUbrQ9EqcRZBqPV8RO+Lzu9Px2hrbVXggsb+84g13se2CBgsKvE3oaENLRZVNZp1Q7WuWJwvePLBExbvLWg3LeW05MnJE9avrtk/3t9WrRX1SSRPhHjpytd3RCJiTSI8mWSdagM8ZUhOZCfNi0SKdnflSbFJmTS5zXUhtdGwGVO/U6ikE1l2sKYzFrPdjSeTago1qc68rQWTFK9UmbhtWi4uLvj6t7/O63dfx4wMTdawDEuOnj/isDhkOBwy6o/IsxxaKOclbdkymowYToZILloAsHRUEWtcqyGNRbngcnnZETtfeQ73Dqn6FYvVgreevMWD2QNu37/Nqzde5bN3PstkNHmKpCRvUIhY03mVIta44J7K8EwFEtPPk3qRrpu1qrzkknfG7d2U/071CVslLT2PXZ2bmEK+GxLs7tEO1qSwmRP31L+997ShZbVZcbm+RIJQmEKL/BlYsSILGWKF1m7bdexizS7BPjs/Yzqf0jYtvby39V1ZOkUykarOxP0M1nQhtPgaCRrSbaTp/o1oOC0zSmASca6pt8chFkv8HscnB5W04hhGMkyeawaHsdGIpwRH6xTXeN8iWR+RjKbynD5eYJ3w1htn1KVO0tViw4d3T7m4vODWrWv08r6Gl0LAhdTfxODiOhciUAeI9XBiOCqW39/yWgddlk4AtunBrW/jTdCFwFiDCTFzKFbUTROeJDHGEIkkEDFocEFS8SrZWYBC7CMlaF2YtHNzeJ/aPIR4rVS1cW0LmaHebHjy4D6//o1f5sP3v82gB0W+z82b15ns7dPv93G1xsrrTcmq0boINrMcHhyAL6jKBUUYUOQZWZ4RbB/TWvxyRblegFhOrt1msym5OD9nUc3ZNLAuV2RZD8SwWJ6zXM949PBN3n/7a7z2hZ/m2o079Ed72LwAsQQavcZdEUVV15RcxArRAZRNxvTwEE2SpHmk11JEe11pm41tzQ5AM4xE73dSh+jM2PEvH/lKJAuqWqhSh0SzIaoGEVqQVEBNz8UFp/PWOVbrGZv1NCpKBVl2iAsbpGkwYpjsv8h6fcn07L6GgaKUk4g06EO+LtdcXJ5TNzV96ZNJoapccFG+DR1BBp1/Jmh2gg8+AlPMDAHEaFhLDaJFB/SqMkb1AeVNIbhYvTmFcX1X+fvTMtJinUmmvZFiC4HKVx3BCQRqtF9TP+sr6ag9y8dLnvgnnL1xhl/rddosNpzePeViesG129f02YhpvE3QJptdWfzAUwtXl1IcQlfgD7bkoQtNxH8n827CmrQQKAlXVSJV1E1Yk3bNuyGSlN2SFpz0e90ilXbnIc1h3xGD4LXNQwihU2lERA2hmWGz2fDg4QN++Ru/zLff/zahCOzn+1y/eV3L+vf7NLUW+iurkvVyrbiVCYcHhxShYFEuGIQBWcSavu1jW8tqtWJRLjBiuH3tNuWm5Pz8nHk1p2kaVuVKkxiM4Xx5zmw9480Hb/LVt7/KT3/hp3nx5otMhhOKvFDCStNlku0SOZGYMh6xZjft2USsSSqJxJ2HEUNhiq5A4y7WJN/LLrHtSEVSXbwQ62MqWYlhKiGauyXW/RHT9TxLSl5S/kLEmtl6xuX6klRJ+jA7pAoVTcSaF/df5GJ9wf2z+1vDdBo7WFOWJWeXZ9R1TX/Up5CiI35dLaAd0cd+DNakisqAFuqLWFPsYM0uYU/n4ILbEkdjOxP29zo+EeRGQ0WRJERvhMkyaJIsb3SFCYEQGlyo9XL4hqbKePuNMz7qTbn7waWaZCPhOH8y4/xiRts29KWv9T8kIMEQwlYt0BIeO2TGuK3EH2VjYjo5kQKFlBmlp0wQj42rUAp7aHXcnZ5LJlZAFt3Rd+lvEkMJEeCIPVskFfiSmHob9Fpo+nQylKFqAxo+0J2FAZ+MxJ6mrrm8POWv/bW/woN7b2ClJbQ5+6OctlzCcACtvs96taTalCxWC9p6w+HBMdMQqMqS8d4e/fGQyWRCWJeslws8AWM1Fd+7iizvIaHV4nO5QKzfslrr8ap6Tb83Jgislg956zu/yP27x4zGN3nlcz/O/tF1JXUinaE6xchDLI4HQPdgQ4hZG53MK0ncianReBAfr5OQnMipSWgXP4qTURUiT/C1km2XAo+xKnQMgWGS58mByeI9jJkgcfHxQes/NE3Dej2jbhYIQt47Yjx5haq6xM037J+8zI/+7n+A6fwJX/3rf4F5dU5UtON9109uCNRNy3R2SdVsQA5ImVJ4G9MpPYkZmVTVW5TYG8AFT/RJ63GDthxpvVOSLaoBahq+Fr4UF7p7IV46MpgEok/NCNsaIogqFlmWdYWiDaZLLW5CQx2xpvENWZVx9sYZ0w+mXL5/qUbhiDWzJzNmFzOaptHyE3FBMsF0Bsz4Bt3u3IpV8+ROTZDgt+pJAv0ulTougimttzMci4bOLNsWD9bYbhdtn8GapACkgmwpZPVUWCZslYK04CdiBlsVw2Big1pd+Ju64ezyjL/y1/4Kr3/0Os44sn5GPspZlSsGw0HXk2ixXlCWJYvlgk294fjwGAKUZcne3h6D0YC9yR4lJfPlnJTu7ZyjchW9vLcNx+XS1W9ZrPV463rNuD8GgYfLh/zid36Rk7sn3Jzc5Mc/++NcO7qmOLujLiSs6YrjwVOeGfMM1qQ/XXZW9IZ0pvBIZlKdnN3eUikd3gevRSPFYty2DlBHhpKPJc63Tp2LWJOIbtjBmlmpfiZBOCqOeGXvFabVlM18w4snL/ILP/ULnC5O+Qt//S9wXp1vyc02YgWo2n85vWTTbDiIWCNo400MXWYYbMNPu5+xC6nG45sQw1h+633qiilK9Ji5sPXw+J05Cd8X1nwiyI1K+B4f2p1U60wVDzH6NRZH7IQdanxoovnYc+/uFABXq7dEUD/OfF7z5MmU1WrNcDSM2289dkrbTm3bXGgRyWJNkigMSPTokBaZSGzi7l6SckPEnagYYGw0WqJEzW6bxEkE1M4cbOjCXmnxFMlIBmQCYBKJMXEnrd4ZCfq7WqQrnk+I7n703E1mmc/mPHr4kLfefpvLyzMOJjlFccDDJ6dcXp6xP7mPWKgqGI/HHB4ecnx8TR3/ecZo0Gfv8JDx3j5HJzfIMovNC4JvmU0vWM5nzC4vsNZQLles1yuyzDIc9DGTHkXPcnp6Smug1+/j2prWB3xzSbl6xHp5g9P8jLqt+NKP/15Gk73YTiKu6iLbVO6nZrdETuK7z20SuxEQciDEkjnJKZCOowTHx7o/CbhTKm0IDeIF47w2KRUt7EecMWpq9h0IaWaDkoTkm0rhTu89TbOhKpe4ZoOYnJsv/gQ/94f/KT5452t87b/489x4/vP82E/+N7iYn/Lum19mcX6ePkb3kY3oH1rPcnZBXTXqh4mN6kKcoxAXPkTnTDyQdkxv47WI/CRdYhtDaA6wQYlSUO+NiSFXYzOs99qMM9ahCH5bi+LTMjwq3afskYxtinRmMqzX59XhtJFmaMglxzvPtMMa14WwfPDUs5rLJ5es12uG42G3484i1qQFK6BVa9P3d3fJuwtLAvdUg6bz1ez8fNcgnIia3cGa9D2zgzUp7JXCC5lkHSkioJ6JqFSkxSuFHrKINbvp3119lgBZljGfz3n46CFvv/U2Z5dn5JOcg/yA0yennF2cMdmbqDqxgzXXTrZY0x/0OTw8ZH9vnxsnN7CZpcgLWt9yMb1gNp9xcXmByQyr5YrVeoXNLP1Bn2JSkPUznjx5Agb6/T5VWxFc4LK55NHqEbPljNOzUzbNht/3E7+PyXhCYYtuoU0hld3WAWkk5Wb3c6frnJN3BCj5oJ6tCt1lxAU6X00QJdHitehj8unsFvZLzVE7rMF3JKGr+ryDNVVTsSgXbJoNucn58Rd/nH/6D//TfP2dr/Pnv/zn+fztz/PzP/XznM5P+fKbX+b8/HwLqzt/BwnQwsXsgrqqSe0w0jzdrbita/YWa0zQLKenQmtprttYwNJBsEGft7ATkjOaOeW9f6rmzfeLNZ8IcpMQXJcfXXyyvKDasL0gxOZ2wUXfTczSCAHfpLg1ceesBGZTNjx4cM50Ouf4+ARj065EFyaiYiRiY1uGbXRiG5dIMmIiDzE2G0LM+QfiZAO2JuO4W+rARdBQm0i3SEvsZUVSGeIuQn9Gd7zoUIyhD3WnW4EgsaqvxKomYRsiCCHQtjXLxZy7H7zNr/3KV3hy+pjFtCS0nuevWV54/jY2yzAEir7FGOHw4IjRaD/u4g3GCllRsFouca6lXM0ZjMf0eiOCbzE2Yzw5IO8NWMzm+LDCEyhXJf3+gLYO1OWG8WRIllvW6zX9YYYxGWVlyQ0EX3HjaExbn/He23+Tl176USaHt7FZX5W2eD1DNEbDNmsjGYo7v53A1pCuZETbJuxMtpBUB50HydgGtiNL2son+qIkV7WN2CbBxLRMiEpgnDESQ1xpBoUQFS1H27Q0dUlwDdb2+F0/84f58Z/9ee589gu89/pXGE1OOD65jeQZvf4etigwbQNlBF22nw8Ci+WSqqoIQaLCov2ovPH41m2BJqpMqnqpyVlSvylRc55m5FgyUfDyTmXkFFP3xmtpBBNwJsMYr8TNN/E6buuzfOKHJKTZdjsuigIqukc+Z1vTo4lY0/WBiljTpRTHLJWmbDh/cM5sOuPk+KTrBN4ZgqNiZMV2lWoT7ieFZltdfKvYpO8ns7H/LqyRLlSRsAahUySMmJgtZzsSFELYKhZpcsXjpR202cEaZJvqm37Hh22IIBlY58s573zwDl/5la/w+PQx5bTEtx57zXLr+VvkmRIA21ffzvHhMfvD/U4lESsURcFiuaB1LfPVnPF4zKg30mtnLfuTfQbFgPlszsqtCBFrBoMBoQ6UZakVdSPWZMOMzGRkmwwsVL5ifDzmrD7jl9/6ZX70pR/l9uFt+lm/y8RJ4cEUckvhqi6VeocApOdsNzy0Xc+lCzF19zNijQ3b/lmKY4o1ueSd0gPo5jd5oFLmlt/exzRC0OKHzjmapqGsShrX0LM9/sjP/BH+wM/9AX708z/KV974Ctf2rnHr+BZZkbE/2KcoChrXEMqnQ0xEdXC5XFLXWnE5zY8g2sXd7WBNUplSyIqINQbtJg46L5NJWIxgPxZrtD5RZjKtU+RVOQW21+V7GJ8MchMZsPfavVpVLoPNCqwraP2mMx4F8fjomO4mE7qf9qFRoCcqF0549OSSy+mcpq3o2R4heFxoFPODdMQl0mmi+0X1mBjy0S9SyrXDu5h6K8loCqlCrprGIBlSu0UpqjVpwmh12Zbk35HYoTepP526EAzb1TPWdgHUmxI9HiGFwlTuq6o1dbVhtZjz8P6HvP/BW3x4930W84rNBh49qXD1fXq556WXX2Fv/xBPwAqMBnuMBhPyviXvFVibUfT7GJNhjNC6wIMHj5levk2vyOkXfY5PjnFty2IxY7VYMp+d0zae9XpF3dRMDg4Y9kfs7Y2omwHL+Zqi6FP0CubTC2bTKYv5jIOj6+TW88a3Lzi69irPv/wl+sOJXgsr22w3ifc7yuGkmF282ip2mS68kjpZp/sdvIZltKqv/k5S7JKMkxZs73X34k2rBe7QbKPUkHWrwmm4J+2iPCG2j1CC07Y1TVNHy3PBZr4iOHBNg2881vTiXA6AxWZDsnyFGnyJu/C4oEmgKtfUm01XZDrV2gBtKUII0WNmYpNP8CEqORABVgjBgElZhAl0A3iDk0YBKGTaQLMjBkrKRQxeHMHtBuw/2SPttp13nbHWYCiygsIVbCLWmKD1TtqPwRqDoQlNF4YQBPHC5eNLFtMFVcQaH3xX82W3FH8KJ6VjJqK+u+NPSk3rtimxz5bJ72rPJB9fHLskJ5lkW9k2qcx2sCYRoOSD2G3ymJQIK2qwTudgdrBmXa3ZVBsWywUf3v+Qt95/i/fuvsdmvoENVE8q7tf38bnnlZdf4XD/kKRI7Q32mAwn2L6lKAqyLKPf62/rfzl4/OAxb1++3aWGn5yc0LqW2WLGYrHgfHqObzyriDUHBwcaitqHYTNkNV/Rj1hzMb1gejllNp9x/eg6wQYuv33Jq9de5Usvf4nxcNwZe7vKy8JTobftZntnPoQdRUW23b+TCtSFJ9l6Y3TfHLr7DYBHEzRMS07ekaPwFNZsyWWn2LDtidW6lrqtqZsagIKC1XwFXk3eoQkUpujIq8EwzIasshXNDtYQsSZIoNyUlJuywxoX3NaXF0lWSl/vXANhOyfT2p28SgSQiDUhBC3IGLEmC9pLK21Cdsm2E4f5PrDmE0JuYop1VEoURUMnsXf9nkBBmw2t35CZaKSULUNG0mQTnG85O11wen7JZrOh6BUQ6UuIk1aru9qYDh4XLqArMS9Ba5eEmIISTcnaYTmPzDtounH0viBBi9TZ+EBIImB+R0XQJycEBx2RSW0f4vtArFcCWnRPP39IuwOfSJmnbSuaTcWmWtM2NY8e3ufy7BFNUzEaDVivS9omhWCEysGD0zV7+6cYCfQHI7CW88spHuHa+DoGYT2bUS4WFIMhWb8HYpkc7DGcjLDGUK1XvPfOd/jmr3+T6aLi+PCIft+S2cB4ss9o0NdnRVLVXsfzd57nre+8TVluODo64uDwGuvNkuFozMXllOXiLh+8/yEPHzzk9/y+P0pvMIo3ReKimsdKwjYqaaCNHEO8vxLNyHrpTSQkXRw7ye1oWDIZ2VKWWaoDFOLiEUQXLxdbFQTfYIPdKm0SOn7lUU9VKp3uY1Ev33rattbaPrS8+82vsb//13j08HVW0zPqek1Zrlgt1LeRZX2MqRAavX7KQbBxOrVNTdNUhODJejkmZGzW65j8JXhP/OOiB0fnjCRJPO7eFT+jT4sW54OG37yL1zbuXEXN7yY1E43FF8Xb7np9WobFdopI6mOTdsGp1kv6+YYNG7+hMEVnnH0Wa0Q0HXp5uuTybIs1XauCtEAG1/l5nlook5IYpfdtO5Ko2uA0LBa2PY12Tal4cBFrOk9MxBoMnarggnvKUNz5TOJnd7Jtnpm+v+sFCmg4pmor6k3NqlrRNA33H93n4dlDNvWG/qhPuSrxzXbnjoP1kzVP9p8QJDAajLDWMr2cIgjXx9cxxjCfz1mYBYP+gH6/j8Uy2Z+oEmMsq3LFd979Dr/+jV+nWlQcHR6R9TO89exP9ukP+vGC6vm2tDx/53neef0dynXJ0dER1w6vsdwsGY1GTC+nfLj4kA/e/4AHDx7wR3/fH2UUsSZ5R3LJVTUy28alydid0qBThlhakNP8EBHExL5VUQlKob50rKf+jsQiYY01ltrXZCF72htE6Oao7GBNKiDonRYUdF7J+de+9TV+8fAXeePhG5xOTynrklW5Yhaxpp/1qU1NszWePUWi67qmaipccAx6A7KQUa7LrrAemkisnzP1MYv7tGexxsT/WrQDeDDbDuy7obynmonG4ovWb+/B9zI+MeRGC4tp5VfQ+L6xyl4NNoZkFFV1V6MxQNu1IUhZKpEchYCRgtWi5tGTc5bLFXt7E+JWh8QvkpqipCK2Uwgu1qyJO/jEs3wTVRhdIbU4ny6oKRyms1dN0XhVmkJo9fVWSUynLsV+QJikEoW4u0YNnGlBEtmKN0kp8rHwXXBUGzX3VuWaslyyXM5omoq9/TGt63N5eUGvsAz6FmsDPsBo2CPPRmzqHOcM1gh7BxP6own1puHRg0cYA9YIo8ke0tYUFAgeGxzNpmRdLlksFpydPiHrjxhSMF+vOb1YMRzmZHnBeDRkvZyxmgNG6PVy7k/f5Xx6ycOHFwz3DjncG2JsRlvXtG3LaDSiqh2np+9x78M3eem1L5LlReSIqix4AUOGFwfBIeSkFhrK+bYSOgmAfCKGqowpIUkhm+1iowbPLcnuwMS3XRkALwGTOpkHpQdBPMHLNq3U5jR1jW9anG/j7zscGy5O3+dXv/yXWa/PaOsl5XLOw3sfcHp+j2q11lTxSJYlgLEBi5B5MFbLozdNg8kM+/vHtM6xLld457CZjYS5BemCaeAj+Q6ptpL2Net2XiaPqmYKBSYdU6+R1otUb45mTKVQ2FYe/zSMZz0Vmc00JTzuFI2YrjFhQAv6+eC7NgQJa3YVlYKCellz/uSc1XLFZG9C8iEAHWlIz3PyUHS7+LSDj7eqU3xMVJGib6fbtUe5P/hIdrxWqm1Diwmmax1gve0aLQZC56np+vYIBPd0WjLPYE0yf7rgKDdqAC43JYv1gtlyRtVUjPZG9F2fi8sLbGGxfS2xT4DeoMcoH1FUBcapMjI5mDAZTWgi1iSlYG+yR9M29OjpwodjU21YlksWywWPnzxm1B9RULBer1ldrMiHOUVeMBwN1Xg8V7Uq7+W8O32Xy+kl5w/OOdw7ZLg3JLMZdV2zaTeMRiNc7Xj3ybu8+eGbfPG1L1Lk2gC1KzgnaKsAcbjgyMk7xY4YWkpYk8hOl/UjbBWMGLLp7nuci9082sGatiteq/cq/V4inF608F0iNrnNqeuattHQVPKUbdjw/un7/KX/4i9xvj5nWS+ZL+d8cP8D7p/fZ71adw1fEyEJNpJaD2KFxjU0TYPNLCf7J5r5Wa60qnmmz0vLNnsrEJMO2KpaXap8xJrc5DQRa0B/nvpxueBiHVvpMs86E/33gTWfEHKj/hNVURR0bNYjy/pYs8aZGq2+qmnCARfNxw4bYpYKiZwAIl1DRFfDg/sXzOcrbtxwZJkFtK6JhrdimW6VSfTWpOaInVqTjpeariVPTIi7VqU4IW7ftyGlqPBHr4NxcbdlAomtBAmIi+pDiNla0Y0vKaVQtH9USEpDPK+2qanKNfPFJYvLC04ff0QIjtFkQq+XY01G7jPKXsHB/oTZwZRNVXN8MCHPLT/zM1/k3r0HPDk/Y7m0tE3FrRf6ZBaKvMC5liwz5HlOnmkJdFvkFP0+vV6B9xUy9xTFkB//yc8SWvWCXE4vWMxnrNY1e3sHeBMQk2NNzmw1BW+Z7A15+OScX/7lX+fHvvQq128cgQlU1Ypmeclq0yBS8M1vfIWTa89xeP32Nq5ro2KAKioSQSheHb2ukahG1Iyijo8qjlFCCQSXdgLaIb3byUqi2Vt5mhD0M3fR+Ez7MBlDMKo8akuLQJ73sbbHpqpZVXPatlFiFQKBlrqaspw9oGrmtO2Ky7OPeOeNr3F6fpdyeYqYAXStMnQDk9lAbkWrbHuH9y29/oDxeMKmrggB6rZmmA27LKcQhNBG4Tt+juADYjMtSBgCyDajLEQC6HzAuUjWkvneCGIDIc3XRP7C9w44v91DkG4XnghOL+vRz/qs7Zra11rXBk0TTvVuXHBkIet2611Bu53QAzWcPzhnNVvhbjhMZrq+QS0aXkq9ulL9lNQZOakyEuJOX7b/JoaXUjn+3Z17l8mT+GvyOiSssdv7EyRs+z2F0C0cXYaY7ChZ7HTuDoG60RYTF/MLLqeXfPT4I1rfMplMyIuczGa0vqXoFUwOJkwPptRVzeRggskNX/w9X+TB/QecnZ9hl1ZTi1/og4Ve3qNxStQVa3LqqiYvcvp9DSlVvsLPPcNiyGs/8Ro4WC6WGmpaTKnWFQd7ByzMgtzk5DZnuppivWU4GXJmz/j1X/51Xv3SqxzdOCKYwKpacbm8pNk0FFLwX379v+S5a89x+xmsSQZz8dsKu1s7xJaoJu8TQb0jQjTJRqxJ1z5lSO1iTTpW94yGQOWrHaTJNNXemK75ZGqS2c/79GyPuq6ZV3Pqtu7mRxMaptWUB7MHzJs5q3bFR2cf8bXXv8ZH5x9pY1IzeKo2U5o3YqVTmlrfMugNmIwn1LWGvKq2YpSNuiwnCdoEUzdDocOazGbdZ0p+Jh+xpgvju22V4hRKTZ3G03MWvk+s+YSQG13sdf1Ihft0h21sDk53ixJ7+mhNjxYfWgI5qpy4bRgh+iYMGQTHk8czzs4vufPicxibRZIUPTQpO8bHSpUuqjVej5l8LhBbuovWlUkER1szuG6B1eJzKWW51e+nXjOgi4FPKd4x+ypR5u7/tZcS4mJV0WS01r+9a/A+UG9KLi+ecPb4Ho8f3cW5isneAZk19Is+1maU5ZrFdErblOztDwjzwMH+mB//XZ/nxvVr3H7uNg8f3GO1nHN6fsrF9JL+YETRGzAajTAEcIHJwR790QhrLMvZBU3dUlWO3mDMy585Icssbd3Sy8f0c+H46BBrLeV6w+HBTZxreXL2BHyPTbWmqpfcunHIdFQxXc45Pjmm3+tRljlNuQAcm6rirTd+jefvfIGfOr5OUfR2KmMGfHfNpFswSA9WQIvaRSDRhWw3VBV3w6KKjPdBqzp7CHitdCzZDrFxEJIfTOeYj3FuI3a7U/OAGPJ8SFb0yFZzqnrDZlPqfAuqtjm3oarntM0K7yvml/d5/62vMp8/oK5m5FlGx6/RkJRYwUSjs9fGTgyGexS9Ho3Tlh9N63AuYK3RlhPRDEssfaC7P1GFMKR6HoIL4FzAuRCl7S23JxCvXQzhZj6mlVud/58i5Sb5PUAJRRaxRkTIjZo5U1p1Umhc0J1wTt7NG7+DNYHYBDA45o/mXF5c8lz9HJnVY6cwhoZCNeyQsMbjMT6m+e6qOG5bV6YjODFEZTsyHzrvUEvb1bbpauNIUKWErSqwVbh1GExX8j6Fu1L4zaONIIMPlFXJk4snfPT4I+4+ukvVVuzv7WOsod/vk5mMsiyZzWaUdclgf0CYBUZ7I77wY1/g5MYJt5+/zb3795itZjw5e8L59JzxYEy/12c8Gut5edjb32M00tDVxewC12iRvtFgxMmrJ9hcsWacj5FCODw+xFhDVVbcPLhJG7GmF3qsN2sW9YLDG4dUo4r5QrGm1+uRlzmLcoFDiwR+9c2v8iMv/gjXj6/T28GapEZAJCARa2QHa1LX9FR/JpmA2cEaRBWZ4EPXL8njt/csYo0L7in/SghbT43dxZqgysgwH9IreizWC6q6YrPZdITXe8/GbZjXc1bNispXPJg+4Ktvf5WH84fMqpkWUYzHS+csVqClm7dGDJPhhF6vR+1qndetIzg1QqeMrqQIpjBcak6aQrGdj8iFjtR0joL4J7UYscbiMyWB3Zz/tCk3KoXqwpQVccfQWExkfFqNOOtkvzTZFKi1zohm9kQzJNItZg7D5cWaR0/OKdcb+r0BgZYuw0N2BJrkk8DTdR4KAefbeKMc2wq42/LlKuOkkIjHkE5DM2lCLNtvrYauQnBozygXgacLxqF3OqoO8cHRvj6QKijXTa3E5vIx995/g+nFI0AL7rVNzWw6ZV2W5HlO07Q0riHPMw739xgUGQd7Pe688CKz2Tkv3HmOGzdv4f0JdetYTqcYC3lecHB0SJYPWK8WPHzzHbJezv7+MeV6hXcNg8GA3ApN2dIETX133iO0mOBomprJ/oijo0POnpwyXK+4uLxgvZ7hQ4MEON7r4wNcXkx55ZUXEGC9WhOaGRLUp/K3/sZf5cVXf4TbL7yKzaLkazwmxFakcZebQn3b1OcQSWFqtqmzR9Ne4+IOeG8JQbv5ep8qSit5TQqd/v6uFye2wCB7ynIS0D5ONs/Jsows0zTWcrPGu6CRSOc1489v8FSE0FDXc+bTR2w2l3oUKbT1SBSeJNNdVNaCtWoAzoo+g8EQm+eI1d1z07a0riXL+kpsSApOksejz0ICglVfTvR6uOA71WbbfFHrDWlZnxwfKjUYZwGtgOmi8vPpGMncCBDyWCCssd3u0mK7Qn5PhZ/is52k8ySxA93rDYb1xZrzJ+ds1hsGvQENzTaEkWBiR6lJ5uHUAqCNWOOC2/bv2cGa3Zopz1YHJmINAt5uC/AZMd+V6ZMWkC4tPGJNyo6SHaxJxOaND97g4flD3albS9u0TKdTyk1JnuWaEdg2ZHnG3v4etrD09nu8+MKLnE/Pef7F57l16xbH7lgLzU1nBBvoZT0Ojw4Z5AMWqwVvv/k2eZFzcnjCcrWkcdqmQayw3Czxm/gceiV7Ljh84xlOhhwdH3F2esZyveTy4pL5ek4VKiQI/T315EwvprzwygsAlKuSaTvFe0/d1vzVv/5X+ZFXf4RXX3gVE7HGm217hqSodenYO1iTii52YSa2nbI7T5e3Go6JBCczW3KdFLrkbQI6wuBwZGSdqTcRLGONFjrMMoqsoPEN681aq2PEMgJtaNn4DRUVTWiY1TMeXT7iYnNBQH1FmdH5zw7W0CrJCQR6RY/hcEieqSqWWe3o3Totcpk8MykTMKmiCWsstjun5CuTEFUb8R2R7FLrTU4VKm1ZkSlJ3y1q+b2MTwS5ASiGBbdfmvD8zT1m08D9e4EqZSoJqtokqRBDnvUYTYa4Bnwr3e7Sp91lkvgwbNYNjx5qaGp/bxLr58QQQRBSh2ni+6VJG1zbTWpdKFGjZTp0QI3EujGO2Tearhx8LHKVKuOGEGW4yOO8i4oMkemqWXarFEDKvgJIdWxa5yjXC2bnj3l4/x1mF4/YlCta5+kPR4SwYbOpCHMYjvbZ3x8z7Ofcee55wNE0FYN+zuNHD8jzjAd37/PCyy8hWU7bePb3jsiLDCsGaw2bqqToD7n1wj6b9ZK63ODamrKseP+9tyhXl+zvHTIYHjDZP1KJusiYTCaMRiPyosf0fEZVtRxfu04gsF5O1dMQSWh/2CfPhfl0xvzyCcuFxtd7wwGTvT0uLh/w9V/5Mjdvv6jeG4uqDw7tSt0ZsOMc0dVDaw2hpj41hwhIujfSlfh2wUUZX0gNOGOCbbzXO4uJD1Gl0xu5Bb5YyjhAlseMD2uxmbbeKDebmE4ZvWPB4XyDcyUh1AQHdTWnaUrwAU+zM/d1slmbYazDGgWdwXBMrz/sdopZluO9o64r8iJTAzBWPWRIVAhBgsXjCK4hhUO7vyKh0/IIEUtdLAooPhIcjw1BybloVsunaRTDgsmLE/Zv7hNmgXBvJ7wTCU6XGYShl/W0HUAjSMSabne5gzUGQ1M2XDy8YDVX300ygqYQU+oDlNSUXUPyLtaAel0SGSGw0zyW+PzEdOWINV2absQa0Nd2mT6w9eo8gzXsYE1K9XWtY7Fe8OTiCW/fe5tH549YlSuCCwyHQ8pQsqk2MIe90R6T/QlZP+O5557r1JBiUPDg0QOyIuPe3Xu89PJL5FmObzzHe8dkhXbONtawrtYM+0P2XthjvV5TrkvqtqYqK9567y0uV5ccTg45GB1wtIM14/GY0XhEv9dnej6l2TTcuHYDQZiupmQhbpLFaIHFXJjNZpxenrJYLFgsFwyGA/b29ngwfcCXf+XLvHj7RfXepD5hjs4cm+ZF5zHxO3VvYp8o8bHzut8qMwlDWhe7d6dCmztYs0tcgw9dWFN2sGa3u3g/72vvMGsVczCUm5K6rrHBdgS38Y328woNwQUW1YKyLTXNmqab+zrVNJTkrOu8UJPhhGF/2GXi5bkarau60nsY518i0SlsZ4M2iG1cLBuRwkpp7kk08aeMThczzkR7UKXQWyLp3w/WfCLITVZYfv8f+gyvvXqMtPD6d6Y8vF/FKr4ZEt3T4iKQIIzHQ+68dEDTCPc+mBHanSwjCco+gyAtBCc8fHzBdDrl1q0TsmTQlRgzjTfDRBVHJWL1T4TO2Z7CZqqdSdDdPT7VXoFgXPQTt9HA5wnSak8Za2KGT+qQaiOu7MYR49auazuQKmPGCe9b1uWKJw/e5/4Hr7NcXLDelNT1hsyq52PdLinrFcPRHicnNxgNeuQ3r2N8Q9NWjIcTJvt73P3wA4qix2Kx4u033+L69evkRQ/nPOv5nLYtGQxGHJ5c43AwoG0ajG0xZkSWXcc5x7Xb19mUJYvLGXlR0OsN8a0nNC2u3DCvajAZxmbsHxwynZ3TxhTFy+kZvaJHvRFY9ag3qviIyXnhzsuUbUPdbMgQ6rrk17/+ZX7i7/n7ufPy51SOd6lIokDqnu5jaHKL66ia5lT6j0zB6laLpIMaiQ03o+k4fd+HEBf2sL3XcXcl6f64FokN8YJoBleW97A2U5XIZmR5TuMa6rpRchU8jhAJgiXEXG3nNjhXxo7ptRqQiSngVjAWMsVA+v0++wcnZFkefT5aACwEoaw2DAYjstxo+fMQzdPxini/rc2jSqKPcy1m44gB4/FBM6FMjJOHeE0k7uytzXZqBH06hs0tr/7BVzl59QQczL4zo7pfaQE/ybpS7ymcIwjD8ZDDlw6RRpi9P0PcdpELBCSPalAL4oSLR4o1J7dOtgbdiDWCdGEm/I6C432XRZNCIF3IK2Tx+fdduMNFrEkGYo+njVhjrKYuJ6zpeiBFrOkWUHzXdiAZjtPPWt+yKrUr9Lff/zYXiws2mw1lXWKtzodVu2JZL9kb7XHj5Aa9QY/rN6/TeO3UPRlN2Nvf4/0P36dX9FgtVrwVsabf6+Nax3w+p2xLRoMR106uMRgMaJoGZx0DGXA9T1hzjU25YXY5oygKhhFr2qalMhV1XWs9G5txeHjIxfSCqqkAOJ2e0iu0W3t/1cdVmkWUk/Pyiy/TtA2bZqPEoC758te/zN//9/z9fO7lz9HVKYpYY4MaaFOGT8IaoNsomc52wM7GOHR1hlK38M4Ske5L7POU7vWukmOCUUU2Yo0TDdsUeaGtMCIhyfNckw3qZpsNF4+fhawLp5WupGxLnHfUXtuMAEpmrGiAIhKOfr/PycGJdvGO4dNU0XpTbRgNRph8W1YhXQuISmJUFk2I/bXifO2yBo2SIB9858lJHjMi1mQ/ANZ8IsjN8dGIf/AXfg78hm9+410ePFjhG4MxeVRhTCQD+jeo4/727QnDQY+6anl8fwUuYIuMw5MBB/sDFrOGy3NDUwfOT1dcTmdUVUWWF3ToEhWXEFO+Af3bb/u40CkuyYSgCo2GO5KEq5CkVf5jhckY6tKMrNCFwJLnJ9Wg1F01nTdi6+dpdcEN4H3LZlPy0ftv8ODe66wWF1RVTZ7nBN/gBTabNWW1pt8bcnR4zKCfk1lDMdrjxRctbetoXEtb1wwHQ5bLJUVmqZuaux99SGYtVVVhbUFvoN2yi2WPptrQtNrAbLi3R3CePLf09g9x4wmHB4cE56nKhs1mQ9O20DTaEDWE6OcNtM5zdHyLpnYslxtq19IzOa6tmU6XDEZjJns9+r0+t26/xAfvvUFVrSj6I9brOd/+xt/g+TufweZZJDTRRB62GUohgULMgJKdehAavhJCdOzoA4qaahN5JZq6CTEjDUi7XLYSNJLSaSMRjaFEY6wWvIvGcyuGXjEkz3uIyZREBIeVjMH4Gk29oGkuQITeYEIwnqpe4NoK71qsQGshy0BMIMsgL4TbL7zA0cl1Ap6m1aC1tboDrjYVTevJC62YvF1gdX6b6ClLKfGC0XT3qBZq01d9P1wgpH5qolmFCm5K7oPxfIosN4yOR/zcL/wcFRXvfuNdVg9WmMaQm1zL38f/kqk4pe9Obk/oDXq0VcvqvqoXWZ4xuDagv9+nnbWYc0OoA6uzFbPpjGpTUUyKjkgkxSWYrbISgpqME9ak76fwRzKUpp26mB3PjKerZkvYZoF1/X48T9XiSaE2oPNGJKLVxn57BFV61ps1b3zwBq9/9DoXC61Qm+e5FlMTKDclq2rFsDfk+PCYvJ9jrGFvtIe9YzUt2XmqumI0GLFcLrERaz786EMym7GpNvSynmZWEegte2yqjRpiBfb29vDOYwvLUX5EO245PDjUVOdNQ1VWtG2rWUK1Kl9ErPHOc+v4Fq52bJYbWtdqqKOtWFwumIwm9PZ69Ho9Xrr9Em+89wbLasmwP2S+nvM3vv43+Mydz5DlWafk+WewJhGQpFbs1p7xss1oSyQy7pm25JXQhbG6gogRa2QHa9K9SkpRUuysseQm71RBYwzDYkhRaH8rG2xXDfva+BqLesF5o9WIJ4MJ3ngWtdZlal2rc0Y7BumcykAK4fkXnufGyQ28aNG+EEJXi2iz2eBbjym2NXgIbH1t0VOWiLYmymwJvzW2q0Qc3E4/tUhqUoNbg8Gbp8nkbzY+EeRmPB5y54VbvP3W27z51ilnT2oCKXYXs2LQqsPJs1JXNb1+wYsvn4ARfqV+RN14Xnptwmsvn4DzvPn6BZfnK7x3TC9L7j98wufmawaDobZESNLYzmTztBEcItlJGVTJmCOiIaYYU0xNMNPMTaGR1OhR5T7f7c5TF+ogWrwoBBcbPNqOXIXQEsTGXb6eQ103fPTBOzy89yauXtPrDTCSUVdLNps5wQubTUves+zvHeB9zXo5xzVrjAhFnlGtlKnPFzOmF0+4OHvCtZs32BsfgDHUTUXR79HvFxriIGM2vaDIhcFggs1ylrO5NhPMC3xwBOdpKkfja+qqoq4a9QTVFeO9iX6v2eiDWPSZzy+Yz1aUZcVqXTKbtuofyTOm8w2rzYDPf27MbPmILB9y/uiUvf2Cuq54842v8VM/8we5eftOjM0aTMwuSZWcU6VmkVhxGjXSqrlb4yxeAmI8uxsvIYX+ktfJxhpDyRwe6xNFuZlYOh3j0VJFqcGqgFj113glp72iR38wJksNYW3OaO8WX/jiH6GsLvj2N84JDl54+SdZlTPee+uculwRXIMIpMLamQhZLozGGZ997Ytcv3YTm1kSZbG2IMssq1jEaySjrr4QKSwhRkOoJtOpLwpWoXWR3EQlJ+leEm0iKavDJPKtyqPrlK1PxxiOhty+c5t33n6H07dOqZ5UnbKRQgdCDCNESb+ua/J+zslLJ4gRHtWPcLVj7zN7nLx6gneeizcuWJ2vcN5RXpY8efiE1WdWDIdDrN2aRXcXtpRBtVtaPu1Y0662K5rHtohb2s3vhs+6AoCyrWCcjPQJa1xw207VEWva0Ha9p9IiWTc17374Lm9+9Cbreq21TSRjWS2Zb+aIF9pNi+1ZDvYOqH3NbDlj3ay7Xl3VqqL1rbY7uDjl8dljbty8wcH4AGMMVVPR6/coegV5npORcTG9QHJhMpiQZznziDVFruEJ7zy+9lSuoqoqmk2jYau6YrI3UTNts8GIYVAMuJhreLAua9brNe20jWHjjM1iw2AzYPK5CY+WjxjmQ04fnVIcFFSVmov/4Okf5E7EmlTpOWFNMpwntSEREoeqQiZiTarkm7wy3f2X5BkNGrqJaeYdARW60FZq0+CNmm9TE8m0/gS37dje6/UY98fkeY4xhsIW3Jzc5A9/8Q9zWV1y/o1zggv85Es/yXQz5eKtC1blSsNGMUyUiIXkQjbK+OJrX+TmdcUaUHUmtzk2szRt02GNbt636koqfZA6ebuINa510XaxJYTANiwWtgpX6iAOdMrW9zo+EeTGGENdtdz94JS335rjXH+nkE8yXFkMedxlanOwqvEcHh8w3h9TDArEGF584ZjRIOf9dx9zcVmihDhQbRwPH1wymy85Ojnagn0C9Dj7TNzphHjRfeqcTIYPbbd7UlneRs+vaIn+kIp86WKSSp7rpnlbRTjEMFfX18irZ0PijZNU6CsW+Ave8fDe+7z39tfw7Zq9/X3qcsOqXrApl1SbNXXd0uuNODq4QWEyaB31Zk1dNnjncG1DtakQCWw2JfPZQ9arSy7PPE1VcnR0C0vOcrGmKiv6RUavqDFGaDKDkDM56DPoD6g2G9pGjYNBIDQtRd5nsrdP6xwms8ymC+q6IuvB5cU5dVOxWq6p2oa6DjQ+49Fj/doYiT6aht54xaaqKfIcEcNi1bCpZxA8vUcPeO+t73D9xu2tukLoGvgFo6nLJNKILubWxwy3RFyAuMLrPZU4v2JNok6e97EKbyItQVUdb1w3BzrTqVc/irUK2DbPwHvEZNisR5EXGBOPEQbkZkw/2487sB55r8/h4fMU/QlZb0LbLLDWE8ThPWSIphaHwMHoiFdf+yKHR8f0B0Nc23TPS573aF1DVW1w3pPl+oirxKsVlq01mnFnvPqQArEQpl4fVbYgVfo2kbhpFlYi3UTytlNg81MwjDW0Vcvp+6fM35zTT1gjpjN3WrEUaBE+Lxr68LVn/2Sf8UHEGhGO7xxTDAoev/uY8rLUHjgEXOm4fHDJcr7k+OR4K6UnQEdZdddoMWJN6pyckdE+izUx/VeQrqDfLrHp2itAp/iIkW1xtMjkU8bWbquBXU+D844P7n3AV9/6Kqt2xcH+AZtyw6JesNwsWW/WtHXLqDfi+sF1MqPG0nJTsii1bULrWjblplN4Hs4ecrG6wJ95yqrk1tEtcnLWEWvyIqfpNd2CmpPTj1iz2Wxo6gZbKAFr6oZer8fe3h6uddrPajanqisIcH5+TtVUrFfr7r5Zb2keN4RGU4yptI7QcrSkrur4bBqalZptQwg8ePSA77z1HW7fuB3bkzyNNd5o6nIijQApOyiZzpPdIKkubWi7bDwv287aHt81TO0abIZtY9VnscZ7rbnUsz16RQ+bawaVNZaeVaxJ/qB+6DM2Yw6yA3LJ6VtNrX/u6Dkm5YRxb0xoAt56nX9e55jJ9PwPh4d88bUvcnR0xHAwpGmbrsBeSuHfbDb4Z7Aml1ijzhqaiDUSsSZVAE/zFLZeo0TcQsSalFrf+nbbtuR7HJ8IchNCYF0teXw+ZblskKCVhLtIgLEYk2Elpn2jn7ENDXnR48bNE65dP8SHQD/PeXDvMe9/MOX8dB0f/gzfCvcfnnN6ecmt6jo90yMTiyc2GCQquRIffCvgYmYNCuYm5OjuHECrt2pjT11ERQuQRLDUxSGFlRRMnC6+sTYGqRZLEDwqC3Zu+6QUBE+5WfPhe9/BuTX7RyfgHOVmxaac6e7MGoyFopdhc0+5mTEaDgjiaOsNy+WczGgNAmsNhIZ+r4cfD2mbkscPlzgPx8caymqaDZu6parXCC1FMUJshpicuopmVTUMYAxkZptJdOPWTcYHR9is4PGjR8wuLij6Iz768B38akHTVtGHE9g/7PPoUcl01rJ/IBweZly7dshsNsWIp23WDAeW5arFOc+jBw/5znd+jR/73T9Lvz9QsqBxpbgzjgtx3IGmukfBmKg+xLjg7q4Yi6ONKkaIDzXRxxJrMXTdvzXcZbyJBj+iISbOYwlkRa61OvJCO4PXNdYIedFTf4y0wJrF4i7fef0/pW3XlKsL6mzAwwdvsS4vqddrsmyfNs8hnEf5VgtbZkG4/txneP6FzzAY9rBGO91rJp2oCTh4ys2KplWiGaIPTcOqUWUU0EatPs5T0Uh32BJ+kVjbBm31YQiRHGpNKh9DXl347lMwQggsqyWX55c0y4YiFB3AJpk8M1mXAZVGExp6RY+9m3scXjvEB09RFDy+/5jph1PWEWsyyRAnnD84Z3o55UZ1g57pPfVcp/eCGB6yoim1ceEkQB5yUln+VBckmU6TATcpMwhPhT6CqCcjdVROXh6DFidsPwZrEJ03682ab7/7bdZuzcnRCcEF1ps183KuYQWrPq6slxHywGwzYzAc4MRR1tq9GwOh1RThOtQUvYLheEjZlCwfLiFiTd7P2TQb2rplVa9oaRkVIzKTaQipUuLjRQkKFl2xopfl9u3bHB4c0st6PHj0gMuLS0b9Ee98+A6L1YJNu1Gvhg30D/uUj0raWYscCtlhxtG1I6azKV4863qNHVjalYbTHj14xK9++1f52d/9swz6AyVFaW2Iz0ciPRK2mWtd368g36XAWWzXziNEX2jymiSsSd2/ga1/J1aaNjtY4/GKM0VOL+/Reg3PGatKcZEVtNJSUvLR8iP+6ut/lbVbc7G8oJf1ePvB20w3U9brNfvZPnmecx6xBqOFLSUIn3nuM3z2zmfpD/tdO4ZOXYpYs6pWuFYL+qUwWgrLJaNy2iik1PeU3ZeuZYhYk65RCtOmxrQpk8p9H1jziSA3ItDv93j55Wu8+topd9/VXaR4XaAsFicWkQyRjF4mvPjyAbdu7pH3DINhwf7+mNZ7phdzHt6f8+5b57gqxL4cFisF508WPH50yurlOxRFjrfJRGni7j1WI0a9FMYmEqL3PIjHx5oUCUgkLioB35m1TPLYdDcvfhl3/roY+C7ktXs851vE2i48EgjMp+ecnd6l17OE1rHZLHCuxmY9QrOhV/QZDCbq7veGyfiQ4XBMnhUQWkbjCZPxiLaqwHvqtsdwMKDdO2a1nPPo0YecPrpP26yYjI/Is4zBYMRwPKLoZTT1WuO4meDahrwoKAZDmrqmXK4oN0uMFQ6LPqdPzrVdgrc8/8KL2CxjtVhR9EYYk9PrZSwXU2bTBa52HB4Jw7EaOXsZ1Osps5lhbzzCGGGyN6Jq11jXkveE0yd3aeoNvV6PEGK/rjjxdS4JmmIP7LSz8N7gvJJR7bwQw4iSGk/GkFTM49fIpGyNb1gCLip1dOn7qToxIojJyfIBNkq2vvFa5dla8rzAZgVIRgjQtAumF+/jXUMIWtTvwYdfp25rfFthe2OSed4YTfO3YiAz3Hru8xwd36Ao+lgD3uZYiT2RYnx6XW6o64r+oKdAIzYSGwAfd+mptUOOa5tYHdtqZrdziLW6w/LEVhPgg2BiyX9IEal03E/BEOj1e1x7+Rqnr50i7+oCI166InlWNB08kwzJhIOXDti7uYftWYphwXh/jPee+eWcxYMF52+eEzaKNVYshRQsThecPjrlhZdeIC/Uj7KbPpxSfRNeyA7WgHpuUv2btHvt+go9gzVhB2t2pX0rtiv9nxaaXW9N69suwyYpE+ezc+6e3sX2LL71LDdLKldRZAW+8fSLPpOINcYbDseHjIdjXUxDy2Q8YTQe6W4+eIq2YDAYcLx3zHw558NHH3L/0X1WzYqj8RF5ljMcDBmNR2S9jHXEGsmEuq0pioLJQAvHrRYrlpslYoVe0ePsyZm2cvCWl194mTzLWS/XjPojcpOT9TKmiymLmWKNHAnZOJLWDKbrKWZmGI1HiBFGeyPW7ZrWtUgh3H1yl7Iu6fV6WvU5hgd3sSapNrvtLIw3nf8Jz9Z4Lju9kiLWpBT8XayxaIbRUzHzeE/T+xe2oF/0NTxkY1uCSICKvFCjcazTtWgXvHfxnlYaDg2basPX736duqmp2opxxBpBdA7HqsMmM3zuuc9x/fg6/aIPBgpbUJmqI3cWS1mWVHVFL2JNl0FIJN1iusaXuclp2qarPoxFKx1HrMHTtWrQVkWh846l0N/3Oj4R5CYEGI8mfPa1l1nNNvx195APP9BKsNYWOFthvYYpBMPepMerLx5xfFTg2jXlpqDIcwzaB+NiumY9d3pgH+t8eEu5rnj46ILlYslkb9RhgTG6sAWMdroOQusbNU2KEp0QiyjRtbrX9gs2gr6SH/08XXt6UhQkmjYRDXsEkGBjYacoS/sYZ42pylr2X8Hr0f0PaJsNedaPjvmcLO+TtxvWyyXGWkaDEa6tcW3JaHSdpqp14TUZg0HB/t4BwTUQPD7AarWgqRoGgz3atmY+n5HbjNCWLJYlVTlgMc2ZHOxzdHxC3uszny7YPzigl4/Jejlt25L1MvoypN6UrFcr9o+Oef+dt7lx63nW5RLalvH+gMP1oaZffvQ+q/WaetNACORFptfFCd4FCA1tU1LVBiuG4XDIYbBMLy4ZDfrs7Q3JMjU7y84EUs9N6O5FNDjoV4IqVkT/Saq4S8pGizsSm9G12/ASG2xGpYdUNFDfR6eC1+rE8XvGWKzNYvo3mLgb0dYzsfFkSN2BiQ+rJRUEbNs1ztVdqJO0o5G0U9T2F5O9A/r9AdYIT1UITlk3BOp6Q9tqaCOlnOpn28l4ilfBBy1LQGcd84m5xd+LIVVS3Yro3UAJo7Wfnjo3BJiMJrz82stsZhseuodUH2gl2MIWVLYi93mXXl9MCg5fOqR31GPdrik26hEBqKua1eUKN3edGdgai/WWal1x/khbMYz3x9u3N6EzLbeuRYLQ+EZDYtHbkQq2pfRiY0xnrOwm/cdgDYHObCpIF9qyEWv8M1iTUpVTho4Rw4f3P2TTbOh3WJPRz/ts2o2agq3twhNlW3J9dJ26qlW1MhnFoOBg74Bm1HShsEXEmr3BHnVbM5vPyGxG2ZZcLC8YlAPyac7+wT4nxyf0iz6LywUHhweMizFZkXVYM5ShmpmXK05OTnjrnbd4/tbzLMslzjn6e30Ojw6ZTWe8/9H7rNdrmlLL/GdFtDg4Vcqa0FA2JbbWTu35IMceWi4vLukP+wz3h10n8+7+RazZTZ2WHaxBNPQJxNpR2z5UW0VeM5u6atKxjUIykaf/UhgqhRNThlJA51lutZYWySdjVE1xbLu1p1YGhG3fNOcd62ZN7eqOMCT1JKliqZfa4f4hw96wU212Kyv7oEpMVVe0zdNY8xtVYHYh9VuM8zUVw9zBmt0aOW4Ha/z3iTWfCHLT1A2P7p8RguPFO0eUP1FRVWfc+6hBYo+UVE5fRDRdeb1msZgzWY3oD3uMhyOyLGc4yHn+hX1efO2At7/zhNAGglPvStsGTQmfzblx8zpGPB5HkAwNPplY2y02SCTt7mMQKuiCaJKvhhCL0amqhE/yv/qCJKn4cfhY6E4zVCKRCSGGsFzcXZloB9K+PoTA6dkHtK7CmgmCo3UVg0Gfpi44PLqB957hYMR8dspgOIS2ZrFasqlKBv0RxycnNGVJlgm93pC29WSmxhY62Y+vPU+WF9isx3i8z3jiWS9n9AcFg/4Y3wYOb51wcHSNh3ffZbNeM5wcMBhNGAxHBOOYX87I8x5ltcFLzrtvvcHx9eusVwu8azk8OuLi7IK7Xlgta2xm2WwcPecZ5MLlKjAaDfAhcHZ2xmI2JUhG1hvT1hvaFpDA+dl9FvMLhqMJYlI6vXQPaNfIlFgSgJQptUsEYil7k3as2iPMmowQ4+AS/VSIJZhUdCoV7RKCOILJSAUCTccMuqkRJevkW5GOb6kxdGsyNdLD0UR+YQi0aNPKNs4NPX1EyWqe57Ehn3rD2jY1yvOdGVhTVV0Mm8bQUQjJDhaVAK3gnX4nqZN6WrHGT+ftSBJ76qMFHiWgLqWRfgpGUzec3z/H4Ti6c0T1ExVnmzOae03XjykRBq11FSjXGm4Zrob0hj1GwxF5llMMCvaf3+fgtQOeRKxxLjanbAOXjy+Zz+Zcv3ldPRa4riN3CjEl0pIWNGLoI/iwPYc4n5ugDVszyTqTaaoJAmwXWLaLRvLYJMMwQlf1uAtzkTA28MHpB1SuYmImWqvGVfQHffI658bhDVxwjAdjTmenDAdDalezWq4oq5Jhf8jJyQllWSKZaLq289R2izUvXHuBIi/o2R77k338xDNdTCkGBeP+mNAGTm6dcO3kGu9++C7r9ZqDyQGT8YTxcExrWmaXM3p5T4sHSs4bb73B9evXWazU83MUsUa80Cy1J1K70XCT5EJYBQajASFizXQ2JZOMcW+s6eOt3oMHZw+4mF8wGU2e8jztYs1umnfCmqeLiG6V+VToL6BEMHlukuHc7mBNUvhE1IuVmexpy0K62RFrUmhLkC6EBqqCJOUPoJCCmrq77w1KQlOoMk5OJVDWavViSxfa1AbAbVe6QBCcc+ozkm23+K5yc8SaTLKusnen6kjyuZouLJo8aWl+p5BpqivUfh9Y84kgN5eXS/7Dv/Q3OTjM2N8zhNZxOCl4ZMsY80+GT23BMFus+fbr9yh6Y0ajAw4PtQSJd47BaMBLL1+jXG8oy4p7785wTisYS8g5P51zfjljU5eM8yGWPAK95i/oAkJUcXRH69OePRoptTx2RhCDdwFjYlGz2CpBb13K5U9m1NScUVerICkjZWsKjJv1OCIQtQ3LxZyA4EJLW28IQSfw0dGJPjBtgxDY29tHglCWc84vLpHQ4Kolw8KyVxhCYymXJU2rDdasEXzryMiZ7B9TlzXitQjdwWGPpi7xrcdn8OijuwxGI64/9xLr5YrFbMFiuqQ37DHZ17Lc89klCNSNsN40bO49oN/rsZifMxiO2Nvb4/BozHy+pGk8+0c92hpGgz6f/ewNrl874dGjj3jy+CGNa8nyjNa1rMsNR8djxns9ppdPeP/tb3Lr9iuAkk5ilES2hpGu6rSPOye8ktMQ6BSYVCBKH3yri7zExpCujUWzFUpIdyvdoDgfk/IT2YfOlxg/d0EiQRLAdqTGB5MKciNYjBkgpiRlZYlsy5Z38yEAOIzJYxp2iN6gtJuKxCYQ6/ZYRGws5AdeLKk/mY+x/S4ebmwE5dDtQkOCz7i4Egu7JXakimc0x8dshk/DWE6X/M2//DfJDjNkInjnKfYLyofl1rwrtmvBsF6suff6Pca9MQejAzhEM+6cpz/qc+3la2zWG6qyYhaxxmDIQ87syYzZ5UwX/nxIHrEmSMyUktDVBkmF9tJuPi1IXU+rmBWTCrntdgY3mKcWt66QWsSarsBcwhpdLbbhjjgP2rZlvpwjCE3QWjUp3HLt6Jougq36IfYn+wjCYr3g4uKCJjQsqoUafwtD1mSUSy3C1zYaCmvbloyM44g1eC1Cd+PoBmXEGjK4+9FdRqMRLz33EquINcuINXsHe/R6PS5nl/r5G2g2DQ/uPaDf63M+P2c4GrK3t8fkaMJyvsQ3ntHRCGroD/rc+OwNTq6dcPfRXR49fqTnVWQ45yjXJeOjMb29Hk8un/DNt7/JK8+90t23jlNEb4l06YR0Kk3wocOVREZ2sabzkcS5ltKwu47fcaT7m+ZjOlYXFmOLNelep9CXGA0bmbDNvrJYBmZAacpO3esyvbZl8vWziNPQXsx0YgdruvYjcZ5aq+eXuqOnPmXpWuxijY1YE57BmvR5d8lity6iqpT3ntx+71jziSA3y2XNV/7Lj8gyGIwCk3FBucpoXYxBS2KxBiHDe8/jsxm//q2PuHn7Frefa7m8mFFVDfhAlgvPP3/MF7+0YjWvuXhS4n2LiGE+Kzk7vaTa1IwHE0LyaIkaJy0+VhsGn7q7hsC2OJwuKir9RVUgeMTEtguilWl1IQxokbb4WlJ/5hhz7YxowrZeSogKFVGOdFooLkCzWfDg7EOGowNuP/8Ko8FQfUBNg3cNeQ6b5ZLzyzPW6w3Be3r7YzIx5GJYrxYsVvO4YFmtdEuGd4FeMYTCavfqKtDr9XBtzXo5xZqc4d6IslzTuhD9I4aqKlmezlhOLzm8cUBZrmialiwf4Bqomg2bcsPp4wcQ1gyG+wRXk+eW5coxGhcc7I85Ob7OeJhTbWqG/RGTvSHTaUmv38N5ODk5YDQeY2hpNiWvf+tX+PHf/fMMx5MYDiAaa9ma+4JXwutjWCmk0ulbZaULu3i3Q198vFcp/BQrTu+khBuTepOZbu6kB1HwpHR/OrXDxBTcbEuCMBhT6B2XWFVbMowFotEdk1ofJKB0aHWkPBa3TJ8lgYMCRL83wHuJBtUoC4sao8X7aHxXwqIZfLFuJHG+ountxG8pjBoERxAbyZ7vGnPSNR/95I96UXP3l+5CDmEYKMYF2TrTXX1UM1J4KItYMz2b8tE3P+Lm7ZvcfO4m88s5daWLs2TC8fPHrL+0pp7XlE9KbaEghnJecnGqNWLGw3FXFC0tQKn2DYFtUbewzWxKIQmH61QBH7xmuREXPbvtI5XCT8mXA1usecr0arbdm9OumRiuaFrtRr7cLLl7dpeD0QGvPP8Kw8EQH7NUG9dABsvVkrPLMzZrzZYZ74+7zLP5es5iudACbV4r0GZkWt24GGILq1WZI9bUbc10OSU3uXpfyjXBBfX2ZIayKpmdzricXnJw44B1uaZpGob5EBrYRKy5/+Q+ZSjZH+5T+QqbW9zK0Rv3GO2PuH58nWJY0GwaJoMJ8705ZcQa7z0HJweMx2NaWspNyd/65t/i53/3zzOJWKM5JHEjGtsqaOVyug7du5Wo058UdkmG2M47lUhnVM5S5euOfBjb3f8ufBS2mVXJ5J1UJBOxpuuZhs7lwhT6/qIp4xmZNgWN7QwSsU9Yk1pz5JJ3JQcS7+rUFDH0e/3vIjDatNd055aIYDK/d8pQiM/ADtYo0myrf6fMVWuUsPnvA2s+EeTG+0DbOJo2sCpbLs5arO3hYpquMRZjcnLTJ5MeDZrCO5+tubwoWS8rLp8s+Oa37tNUcO36kMm4wDjDaNzj8nyDBIvxGfWm4snZjPVqw9Fh2PHMxN1ukmgBnOCl7XarxJ14iE3QNPwh+BBxK5qsJBCbCe74buJ7BPwW2NiRN2OsPKk6JrrowZBnfc4W77OmIgB5MdSDBiU+vUEPa/rkJZw9vs9yteTRoyW9nuW5mzeY7E0wIuRFQXNREoKQZQMaXzMY7dPL1Hi2ceqDkdxSbyqMHaq/QKBcltie5eLJOa5tNTMrA99WLDYe28vJsyHT84cMJ5aqblktK0IoKTcbTh8/YdR/ROVBgvZwevBgxmi4YbVYcLB/wHIxpfWOLAtkhZBZw2A0Isv7iGRML8+ZLTbcf3CP+fySYjDQ7DM0fGKE7YIRPTOCRRusarNToFNcXGjV35Sq9MrWxOe9ppW7APjYGNXoPVa+nTJpJK0NcW4k8pLmBzRtw3pVsVhX1I3FBK2UlbwsIPhQYWScdCBSaYJuMyVCKhrZfR6S7ygVGzRYmzGe7MUwYxbrMYWOLGs8OyleWn4gGEF8mo8aVkVabRIaDDivGYs7MlIKBe6GXT8NI/iAaxyhDbSrlvaspWd76k+JO8vc5PRNn5701BsTWtbzNeV5SbWsWJwuuP+t+1DB6NqIfJwjXuiNe2zONxo68hnVpmJ+Omez3MDhNtslLVpdqAgQJ7TSbkly3ImnhotPla2HztBJoPPxdD+X7eK5W8QvLYx+B2u8+C5jRxAG2YD3F+9TodV9B8WA1FOrbRVreqYHG7h/qlizfLTE9izXb1xnsjdRw2tesK7WSBCG2ZDKV+yP9tUjElCDqQdyqDYVw2ewJutlnD8577w2ZNqF2m88eS9nmA15cP4AO9EmmtWy0nYQ5YbHjx/zsP9QCQce5x3TB1PKYckiYs10MdXwSRaQQlOWR6ORtjOQjPPLczaLDfcf3OdyfslgMFCvEjshv4g1yTNj0aJ5XbNTthlpbdBQTiKZ7hms0eSZsK0obXaUG7Otv7Q7j3dVnDQ/2ralWlfU6xrbaiG/1Ek+eVkqXzHOxx1sdJjJztyKpuA2tDt95rQuUjqWtZa9yZ6al7PsqRYmCWt0Su401YwKjL6RvqaVVhXMYLRoYzIUR9LXffbvE2s+EeQGiOm4KWQDqWhe2DUgxZCBiO4866ZhMdswvVhw+njO137lHotpTa+fM97L6RU5s8sNoU07W0NwltPTKZuyxjlPlkUjn4keFxPvsgtb45R2F4wgsa3m6uOECugOW1AzsBrOdCpq5lPyUIgubHHHnGITFtOFmgLb4ke6u/cMhgPaao3NNLW8KCyb9SXVWugVfYajCePJGN/UrNYrVos1Fxcbbj23R2Z6HB9fB1cx2T/Au5bL81Os8SyWM/JsQNG3ZEVGXQY2dY1vN4jNCHXAhCH0+4QQ2Cw2uGbDajFjYzNCCDRtRVOvWC8X3LrzWbz3zC7neGB6eUrwNcv5jOWyxtoe682G+UI74k7GFrGW1bpmtniEa1smk4yj4xPadoNYS55nNE1D3axZrFa0re4YN+VGO7mnHUu8drrDjcZZp0bgELRwnwmCsZl2bZe0Y4pzLpq4iUWzWtd22Ss+OJ13QQtK6lyJJCH6Wuh8KTGDKighqeuGB/cf8rd+7au88e1vUV9ecDJyHBvIM83Wq+qKuvK4vIr8q0gPgRImHwl10MyuzrNDkrFj2YRYMbUoejgX1cJALDCo4dOQPBikpqMGEzPEjYlF+dDeW3hVkLJMFRqtDu7Rvmj6DHYGwU/RaBPWxJHmUCorj2wBPhGQpmmoZhWLiwXzJ3Pu/a171NOaol+Q72mPo810izVGDNZZpqdT6k2toJ2yUOIut/NmPIM1qWv4bjXXLlMmLmjJYJnC9qBZeS1tR1RssN2OucuuiiqOGOnOE4mhrYg162qNz9QnkhUZ0/WU2XpGr+gxHo0ZT8Y0TcNqtWK9WLO52GgFZ9vj+vF1qrbiYP+A1rWcnp/ijGO2nDHIBtiINaEM2pSzLTVduw4Mw5BBf9BhzabZMFuo+TiEQOUqVtWKxXLBZ19UrJlPNYx2enlK5Stmixn1sqZne2w2G9qINXasKle1rni0iKGoScbJ8QmbVouMZhFr1s2a1WoFrZqhN+tNl02XDMWQsCYu3G5LPlNF4cxm2gYjZVlFrEkmbvMxWOOC66oLC0l9VZKQahElkprmBTEc1TYtD+8/5Gu/9jW+9a1vcXF5gRv9/6n7k2Ddsuy+D/vtvc85X3/712a+l/myr8zKqqwqVBUIESAMgIQEszcFCw47qAhGaOIITyVPzJEiNPLIA4UGDtmMsGhaoQhroKAi5CAkEKDBBiaqUJV9n69/t/260+zGg7X3Puc+FIksGgazTsbLd9+93/2ac/ZZ+7/+67/+S8Z06ELWXNM2+MbT+EZiBVX+HJGQlXs6qNw5mAwLM9MH2Z15FGNN+mxJP+a17z2V6AXrJDWGltJunoru5fdMYfJrJ2Ca7sGfNtZ8ZcCNgBmF906GIWJFL5HqlzEYqEijiZCy4/R0yaMHp9y7d8bqosFZz2bpWS+30d04tvgqeQ6jSk6OVzw5OePWc89QBgEuiuTpoWMmLwgVH6RzhhCpxShuVuL1IpuHiuSZwyDGdjptnj7DnKhd0EjenBZlyvplPIG09cXtKgS0KpjO95hMF4RQMx6V4DuW58eMR1PKUQlKaNHl+Tknx0uaDhY7BeNRhQ2e2XzOYnoVby3T0YRCK1ZLcR61dkthNaPpmCv7R2zbmq6pQRd4LCo4Lo4fRNZAM5qM2NvfwzYNm82K8+N7OB9Ynp2hlKauV7Re4zxsN2dsVkvJYC9aAhU7+wvUyTHWBibA3m7J8fGWzaalNOJm2bU1q/Wa+cwzGc3o2pbz83O0KZBKpefs+CHXn3kubhL9hGYCOGflPrVWGJ3UZaB83PQFFggVE7KIVkCOlYDlvPyJAzg9UvrSBpxKXkbRHTjEIlbwmfoHaXF8/OSY//Ef/yP+H//1P+Dk5ISp8Tx/RfOKWmKKfbp2xenJMZ1tGE8KlA5YXzMaSakkZUESxHRkhobgP/6JmiLnHLaztG1HVXmSKF1Kc/luEyCoooA+JpGpiyqkeWlDRbwijqmQr1MZT9HzRz8rR7LRT26zFiuaCB+ytf4we/VBJkYvT5ecPjjl/P45zUWDt556WbNZbnKGnoZSBmTa8vJ4yenxKc889wxFKPrn1z3QSNlw8EEy+Ph1yngLNeis0f108oIiA7FhrBHvob50kWJNukwhyPpOQtZUEilUwe58l8V0QR1qypGMWzi+OGZaTSkr6RxSXnF+cc7qeEXoAsWiYDQeEUJgPp9zdXoVay2TkfjDbGKs2dgN2srwyqP9I7aNtBCn0ovzjvvH9/MYjBRrmqZhtVlx78k9gg+cnZ2hlWZdr8XLxytON6esVivquqa9aClDyeJgwfHJsQDOAOVuiT22tJtWZq4pQ93WbNYb/MwzG89o25aL8wuZEh+Zn4cnD3nuWYk15qlYkwZCJoCSYo0fxJpkARAIl8Tf9qlYk1g1iKUvEy0BlM7lowRy08afDuccx4+P+e3f/W3+/n/99zk9PsUZh76iWaol+8U+q3bF8ckxjW0oJgVoqH2dy4XDWKOD7h2z6TufUqwJMda4ztG1Ha4ajBDJOsYUacji6MQWJXF7GsmQNDbyYC59LX+pS39/meMrAW6Sq2/IpR4fW3FT+7VAvSQqznReaHlyfMZHH814/Picutlg1JhktJe8ZxKKUEhL5XrZ8eDhE9arNeOqFIc0NGDyLCgpF7goIra5ltoHivicqRQVg4wwL0TH2gJUKnLpSAoFQtAQVd8qahxQSXcTtR7ROE2pwM5il+l0BqFkuz4V12AlZk0aw2Z5wXZ5wcNHn7NaryjHI/b2JoTQMZ0uGI8nTGc7jMdjEWsfXuHu3U9Zne3RWWGvtDZMqhFH5RitDdZ2WN+yXp6BrmhtK5oRPE1TU1TCXSyrks16jdGGkwefoasR26ZltdkQQsnJkzXOe1YrR9suZYyD0RgdS4JBcevZa2ybBpTjmRu32G7P2Wy2KFXgQqBuas7ONozHI2znOXl8xt3PPuDVr38L0hgBksZFQLKzjbRyx81dYVAmczVyvnVA5ZZsnzd47x3OxUGG3sm1NCVaeWl9JgaeeF1TCVJFRi9lV03T8cknH/E//c7/yP37j/AOaiUt4rPJFq2Osc0TNqstutRo0wIB6zugQQWHc8lYUm54k1i93IUlomEVO2wIgc12xWazYTJexPdHZHUUoqlJdBAR1GuUk3tGjPmisJk0+8XG0m1kKuOokCymTjfkz8AxFG2mzUT5vsMjsSJJxJk+Whc6To9PmX084+LxBZt2w5hxpvSHXjLpOVxw+KXn+OExq9Uq+92k2VXJC0UrnbtN7E+INUm4mktRg5JF2iAKXWRQpYPOugYd+g6TpHHI4wRiNp6N05QIhWfTGWUoOV2fCgjrxI3WKMPFSrQ0Xzz8guV6yWg8YrI/oQsd88mcyXjCTow1zjquHF7hky8+Ye9sD2ddHgswrsZcL69jdLTw9y1nS9HctLalpMyTxVUl4K2sStarNcYYPnvwmQzebWS0QhUqVk9WeO9xK8eqXaGmUm4KWjp/VFBce/YaTdPglOPWjVucb8/ZbraywcdYsz5biwan85w/Oef9z97nW1//VhbXpnlRCSQ3tuln24U4FsP060wp8Y9JwuOhC7HzcayEF7CSRLNe9d1IYvESgfOgBJnYEKUUtrF8/NnH/Pbv/DaP7j2C1L9CYDPZcKJOeNI+YbuUWNMaGWDc+paGRpIyR24HT/odFD0TqIU1Tt18gcBqu2K9WTMfz0nePd5HsXSMNUMNmdY662by+0/MoxYdVnrfEMt68bXSev2yx1cC3PSIL4oxHXjdB2uUTG72cd6LVhWKLT5YTp6cY7ewqbc4X2B07wKaZwzhMaqKoruKtt5ycnzBdrslsA+xs0TKXmXMdlTM2uRkJo0MiN4iFaR0FmTGFnHtIZgYXBJoGVwgZVA+oE0ZDYoi3Z9exycg5tEYlAnsH+6y2N0D39I2S+rthr3962hT0dRrFI62qTk5ORbDNaVZrbZMJiMWM2lbLYqC8XhKWVZofZXdgyucnxzLRPGywnYddrthsXNINVtgu5q23WDrBg+0tsO2HdoYuq5ls1qyvjhjbDQPH91nVI252G7pfEewNbaRcQttY2k6RWehay2nJ2thOJyiMCVt52C1jlPc4cG9e7RdzWbdonSFKrYoLEVZcna6BhXobMuHn7zDL9QNs9kIUtky0b5BzPakq02LMDeti2xRnxZfUuRLWUkAjYiUg0sdKDoyazbWr8WdWOtURhX5X7qBfRADtrOLC97/8D2WqxXT2YT1cosPsNwG7h2v5NyHhpEOTGYBazu0UnTOU3RWmBgrzIpkkR0ES4gwI/8JAR+TAR+Eeq7bLQGHVtLCjupnnoVojhVCwjz9lOKUCAhck+fXsayVy2A+dWcFfEilrJ+NI7EiaXPCkQdZDjtgjJJOk1KVWXdzfnyOqhXbekvhCtmwIBuwpYnGVYw1VahECHtyLqWNg2h8pkSgWcZYk0Wlg1iTYljqQEk6B1SyElB4LXoZNBm0DDeDpLUoY6xRPprIpXJ6bFtO2pxgAruHu+ztyryoZbNks9lw/eA6lalY1+sMOJ6cPIEYa7YrEeTOZ/Mca6bjKVVZcVVf5crBFY5Pjtk2W6qqwnaWzXbD4c4h89mcuqvZtBvpoFKiUevaDmNk0OZyteTs/AxlFPcf3mcymrDdbMWQztY0TcNmtcE2FtUpsIjr8clazotTlKbEdpb1INbcu3+Puq1p1y2VrqjLWqaFlyXr0zVBBVrb8s7H79DUDaPZKJcS0/VxkfZMsUYNYk2eg5T+yk0Hwr6Jri/k7rtkQTCMNQolYDbGmiEYyLEmaC6WF7z7wbssl0vG07HovAKEOrA+XvNF+wV1qGWtz0JMVqUDz3Zx6KgT7RceOjoZF/EUUxJCyBqj4AN1K5PiHS7PNUvrO4P01GX2VKzJpdnBkcpaCcikFvTEBv3MCYqzWChICclbcelNvh7BO5k+7F00MouTwZWj7tbYcwEyhR73DFDKKj3Rs0aAjgoG7wzn51vWm1rASxR+4j0+ukbK4hMqv3epjSm0vGmZe5WofR+QhMmgVSE+N5JiyXvRcQMkILKbKHbVMrDQEud6pBJKcHhA+46qKpjPpjx5fEY5mlE4i/eBentB8COCazk+fYS1jnobMKVhu3Uc7M/Y39+jLGUQplaGUTWlKEZU5ZSqnEnWV5SgNZuLE0ajKbPFHqPZLtZuqNdLmmZD18ngSW0U3oF3He1mxWp5yuPHD9iuN1gUDx/dZbNZ8cWDe9SbxxTGcHLhCF6A2+lxw2RmWK0cdQ03bizYug3buqVtHeOJZndvRlEanO1w1qFVwd7enIDn/KwGAqvVhjQTLA+DTOWbxEz4cInWTNcvbSExBcY7h+BoFQV/ItYV0i/pciKLQwAKAaVKS/d/nFMFsg6DD7Su5fz8BO88P/+9X+LBo7t8/tkn3Htwn3ZTc7Z2rFeWRRW4sS9+Kj46KMvX8p58fKc+iHDdW7n20d5U3lOILEpqpfQyVsIYHTUkAt5iXSOWL7TobSJol44H0Q5IYErsQMwySaWw2HGGmEEm/5yflSPr+oJkwNaKS29Q0XvEO7yWLLo0JcYJyHFKjM/UuWxMYz3O7sEZjPh+qGHSTRhnqM9r6k3dU/ZEzcIg1iTNwzDWqEGsKXSRwU1qpS0QF+U0miGxUkOzNyA7LzsdN+Ica3qGCUTkW1QFs9mMs8dnzEYzbCGlk4vtBSM/ovMdD08eynToGGvc1jHdm7J3sEdVVpSFTFifVlNGxYhpOWUWY01ZCHNzcnHCtJqyt7PH7myXjd1wsbpg22yxVgZPprEU1llW6xWnq1MePHrAZrOBAHcf3WW9XXPvwT0ebR5hjMFdyGcLPtAcN5i5wa0c1LC4sWDrt7RbmSKux5rZ/gxTCnvkrPjJzPfmeLxoqAhsYqxJbrvpVhr62ISfEGvS9Rvqp5yLQyNjrEnt45J39cDHxVhTUOQBmsRYkwBOet3WthyfH+Os4xe/94vcfXiXTz77hAcPHrDdbnFrh11ZQhVQMdYEFwScu76DK4GwJGbvrIi+hyxTH2sYxBoZB5JAd9bnxFiTPGoyY+WjpUGMNcRYMwT1w67BVJLN/jlf8vhKgBtQYprmPM52EjC9RRcyboHBCYOIXjMY7CQbU2nWk2w6gRCFc0YCsgdtFFoXeAfnp0KvOtsRyiIGKgEVIQIbEYeCisIqyVzjQMZcW/SiJ9VCNguNAxA33MgWpAWfmYDEAikBcSYowmCmhnidBHQapoKh67o4XXuCD5a2WWMM1PWWrg1cnG/QhWK12shz+8B8Ju2ZhoLCVISgaDuLbbcoUzCdTSiLCSiYThdoDNV4iplMqdhhPNunq9d0bUNRjChGY/GAcQ5vO+rtOVefucPy4gxTjFhtVpydPOHZJw/47NP3ee/DL0Ad07Qtm42nbgMEcevdNi2ffH7CZKIpjMYYGUaqUBRmBDSsN+cEp5nN91nMZxitaBrPgwf3WK+WTGfi/qpj+dEnP4lIeQrU6UtRebgpIV/rEGxuB09mkZHZl1PvE4Mh18KHIOxbdJFGx44WEgCSktWoGvHqa1/n5VdeRytYb1Z89OG7/OEP/4CPPnyH43uPYRvYnQbGI0XhPSRLgdBXn4RhCTgrRm4pe4l3A0nzQySwVPxfGpmgo8A9lcK1VngvYpvEAeVOTw24ZEWQQF4CBNKKKcEwlpJDTMl+Rg6FrDHvkvGhw3pLUcRxC8NYE+i7kJDSVJqbkzY6PYg1RpvcFqyMkjKGg/OTcy5WF3RWhs0mj5PkfZLHLgSyiFOhLjnN5mAfLfbTe0X3JmiJLcixJpa9Mu0f/UdUUHnGUZ4cHgIlZf5MKdZMqgk2WNbNGgzUdU1oA5vzDapQbFfb/B5TrCkoqEwlr9NZtq2IhiezCZMYaxbTBRrNdDxlNpmxww77s33W9Vqs/IsR45G4JDsnLern23PuPHOHs4szRjHWPDl5wv0n9/ngkw/44qMvOFbHtG2L33hCG3BLuTfbpuXk8xP0RDZiFWMNwMiMaGhkHIPTHMwP8kgG33juPbjHxeqCeYw1qWSYrl8Wy9KXU1IXbAKcyRvGBpvZnuwu3Tde5lspDXH1waOdGDVmgBpLRQmUhCCx5o3X3uD1V14HBavNinc/fJc/+OEf8M6H7/D43mPCNhCmATVS2Rcpyywgl82CD9JNGGwvFqY3e8zvNX5OpeJaV/QC9/QwLZqo7AFEDwLRoF1vZpmZnHgvpFiTwNVQk/Rljq8EuJGAUxJc1KHEgBF8kI0DIIp9tS7QcbpxiBtUWhGOlhDnCqko3IXoHhw1MgSH0QHvHLYTd1eQRemiZ40PQBQXukviSuLOkRZxrFmHvkyQNlShk0O+UClopsCpokZESh7EB4mHSGpH98rjbWC99rSd1IPLakxlCkLXYb1oMtrOst60bGvRm7SdYzaNnQ2zHZyzeLx0Uj16wPL8lOAdi90r7B5cYTLxjCdTqvFMymtlJe/PFGgF1URE1mY0phzNcM0GrzuCt4zHC8pqyni6iw+Bxf5VFrv7HN24xfN3Xuflr93low/e44MP3+Wjj+5Snzs6B7MZhA1YJyCyqAxlCaOxuO+2rbRpj6Ylqiho2xW26zg63OdiVVMURmzOpW1NNm/vUVE4K4E/+rkQdVyhz0Kki0rE5CEaWIXoHF1o6RIKOpqraaIBYGSE4sbuo75HeWns9j6VLiV7ni/2uX7Vok3g8OiQwhheeP4FDg72KbTmDy7+KdvTNZtGsWMD1gaKUjQ2CSQlROK8p+1aHEnELLdFUL4X6w2yKm0YMDfk80Aue8aSRACZSB+reyGBISmvOkdma1TsJiOyNvIeFAwAwFf9UMQSRYw1ehBrXIw1idEodEGlqnzPpk4kgJa2nwYds1JDdA+OpS2HI2gRXvpO3F2B/HrpuRJrNxRXppiRHp/jRp4P1rfaZo+Rp2ON7jtc8kYa180lAXSKNc7j1k58Y5qacTWmKAoRjHoHTrL5dtPia5/By2g6EoAy2xFhLeIg//DxQ07PTnHecWX3ihgBTj2zyYzZaJbnIGm0CHgV6IkIWcejMbPRjE2zodMd1lsW4wXTasrudJcQAlf3rrK/u8+t67d4484bfPG1L3jvw/d478P3uPvRXdy5AwtMga2cZwLillxCOREWyXbiXlxNK0xhWLZLuq5j/3Cfei2dVNr0WpMEOobnOzkQS6RJera+1OhCHGSa2Jx47VMZRsdYk9i8BGZTaTGzfj5GM+/zmtBaZnzZa5agJdaYGGv2D/YxxvD7F7/P+nSNqhVhKuAF2UZ7kBTXkI+x5pK9APRmkIkhjrFGGZWZm8zoxDWewF0CLbntPBPJsSwajMhRkj5H9YL4fJ5Rl5KNP+n4SoCbzLIomb4crMuaFaOrfJPnCd0RWKh8hlSmxj3iSUIYiokj1eYtWnmmuxNeeOkmu7tz0U0QeiYosjZghLbX0jQLyL+9pnfFlQugTRHZm5gFA9m+HilVSYlBpk+rmCJL1UMWi/JiipbEW3KzKHywNHXNF198xPLsgqK8oNtWFIX8qVtL3dScnp+hK40Knsm0oCoLDg8O0VrTtpaHdz+n7SyjyYydw6ss9o5om5bT40fcW36Asw2j8YTrz9zh8NqzjKZzlG2gKESTFJk133Ui1I2mVErL9FhTgW22BAWjyQ4uQOc8BwdX6G47RpMJV69e5fHJKU3X4N2WH7x9zHIVWDWeRdtxeDBGK83ZyUpWhYKi1ExmI4xRzGZjZosDXDhjMtmnGo0otMEGB8FGFsZFIBPifq6kvOTjqtFA8Lhgya3NERBrlbxsAibE665iKTKyQRkYkWhZF0tiCqV91u101lPXW86Xp4xGFUfqKqNqxO7uLocHRyx2dqlGY5ZhzbqBplOMLHixlZH1qAREiK4lYOMQxKzLUgoVND6kMpKUa0nrUkl7sAA3WYs2iJdRct+GCFrwEdhoYXXSfZkGxPo4Dyufkxhsf8bawFOs0Uo2fBdjjcdTPRVrhvOAUvaa23CR8k52m00C4LgWrBd/kMnOhGdeeobF7qIvbcTJ0amsYOhbxFNmqmOsSRtO2iBKU0ps1HFzoWduoB8wmJgZBuxTAsHW28wypVijgsI6S7Nt+Ojzj7g4u+CivKDaVoyKEWVRYmOsOYuxxnuPmUoL9dHBkQCF1vL5vc+xrWU6mXJ0cMRRjDUPnzzk/eX7NK5hMp5w59k7PHv1WebTuXTwFIVokowRtqbr+pIP/aRqKtg24ii9M9mRc+k9V4+u4q1nOply5eoVTk9ORX/ma47fPiasAr7xdG3HOMaa1ckqXzdbWqpZhTKK8WzM/mKf83DO3niP0WgkXV3BZc+aND4ht2PnJCmiAU1ma3JrcwTERkVdphLRd9JMJWPAIVsB5LJQWl9e+6zb8dZT1zWnF6dUo4qrMdbs7e5x5eAKu4tdxqMx67CGlqxLIuX/QYBLZm5cyANXE0BRSuUOKgK5oy2ty0DIsSZtl13o8vvOQF314E9rnb2DEkhL4Cp1DWYglbWRX/74E8GNUur/DPxl4FEI4evxewfA/x14HvgE+M0Qwmn82f8e+DuIXvt/F0L47//E10BhdIkzXbyRRY+SsmlvXRYgaa0xqkJHNX3Ky4UB8fhgKdQobT9y4oJ0PRFadvZK3vjWc7z55gscHh4BRhqXDPH3xZ7eh0YEvSp5msQMTwVhB3Sa/SJMjRgPiY6BCJhiUQqP0P7KxyCkY7//IGBqXUYgJAaFRB2H0vKctvNYBwTLsnWMJ4HgG5TZYK3HFCXjomLjtpiqwLaWoytH8jxoFvtXWOwdsNg9YjKZM54uUKbAtUk7c8LjB59x/7N3uTh7yJXrdxhPJpSjElNN4nWxuG5L124IGqxtsa3j5OFdlhdnbLZrUIa2a1itL2ht4OTkmJPTY+pmS1FOuHFtSme3rNdnzGYXnJw3NF3g7NSx7WqcM8ymicoEE8tsRmmmc0/bnnBxtubFl77FeDQGFDoQ3YhtvEFDZjwEsUZtTex+klIhpHrTcKaYV/FGUzJINV1LHSAkwDO40ZxPZS5LiDX1tu3Y1GvqekthZKzD8uKceqM4OX7C+fk5220bgZdi2wbqTjHuPEVkhbrgcD4QZ53itTA61nm6rokbU4LIUTcTElCPwNk7AS5BGBfJOuP9oCNoI2RgpAudy3bChAHYyK5FiJ+7CFVfdv1T0tz8WcWaUpd0MdYkxgUlQdU9FWtKVebOHeASE2KDZRRjTQIayYukDS3lXslzbz3HnTfvSDatDMoq6bRLIkkPTWh6gEMPqlJ7bB62GZmaZACY3GgTAEvvDwXa9+LjpJuI54xSi4V9EkonsJc0E64TlsYGK4aH40AdajZ6Q7CBoigYFSO2bitDLRvL0dWj7PB8Ze8KB3sHHO0eMZ/MWUwXlKakbVtWmxUnyxM+vf8p737yLg9PH3Ln+h0mMdZMqknWomztlk27kbKSbXGd497De5ydn7HarjDa0LQNF+sLQhc4Pjnm+Ow4j7uYX5+z6Tacrc+4mF3QnDeELuBOHXVXY5xBxVhDAFUoNquNgMy55+z4jNX5ire+8xbjapzPIUHODa5nWVKsSec9dT+lOOEHsSaVYRjEGk1/LQlkwDPc1FMXUpoD5Zy0YW/qDZt6I+VW7zm/OEdtFMfHx5yfn8tYnThGI7QB1Sl8N+jYijYIdGQpIkpATtM1/eRz/rir8lAnlNZr0tqk+0Fpdan7zyCxJpXtkl7NYnvPJ/rPneL1kAn7MseXYW7+S+D/BPxfB9/7T4D/VwjhP1NK/Sfx3/+xUup14D8A3gBuAv+DUuqVELKZ+7/y0Nqg3GBwXRDAo7QWcbG3JD7LqBKtRvjQEHC4sMWoCSE4XGhRahE3rFRCsCjl2b9a8c1vvcjXv/ESN25coaxEQGitk/ZeRD6Z+Jes50sXIAYw0clIUQoFhoRoE/2DmMalHD9tIgpAiV6HIF08+TlVzNZDbCGPFRc0k9kO48mc1eqC09MopD1tKAsoS40pxchPK0Wz7jDFCK0Me3sHBCV+FuPpgnI0guBou4b2vMO2DU29xXUbjC7ZOThiZ3+ftm44O3/ErFuw2NlD6QJtxFm0bda07RbnA3W9oT5fsqnXoA3zvSMmix3K0QTrW1CGum549OALPnj3B7z/3h9RNw2LxR6T8YK9vRl3HzQUAZSDTe3ZbhXzaUHQHtd5zk4kyJeVYrlu2W7PmYxH3Lz5PIUxONuKINhZnLOCAOg7psTzI7X3R8ZBCVvho88JaXNKbr5xnSXwkG7KZM7ok/NxTFGC9+IXnLoIQmA8nvHsM3OeffZZnG1livJmLddVazESjILmxgXqBvw08rUqoI04NLvWZe2X94HgPF3biu6JPgj4YJFykce6DlDRoBJQJouBVVxrhGFZVzReMqpBDPs8DutFG6CTYFtJ5NM64D1oHYTF+9Mjb/5L/gxijdEGPYg1KsiGr7W4rlpvcwAvVclIjWhCg8OxDVsmaoILjja0zNVcxjREyj45ulZXKl749gu89OZLXL15VWYXeYezvYahL1EnsN3HmhQXTIw1GbTEWBMGsSYPbSRcZpBS9k/oN07S9ZffExsLlTfe3dku88mci9UFmxhrmtCgCoUqFeNyzGK6QBlFu24ZFdIifrB/ILoQY1hMZdacC46ma+jOZU7Vtt6y7bYUuuDK0RUODg9otg2Pzh+x6Bbs7exR6ILCFOggPjbbdkvwgU29YXmxZLVdobXmaO+InfkOk/GE1knnT9M03H1wlx+8+wP+6N0/omkbGbo5XjDbm9E8aOScOaSstlUU00JYkM4TTuO5qhTduuN8c041rnj+xvNSnrMd1tn8J7EOSUOj1EDnlBg+JefZ5VhD1mv9MVbwqViTdFNmEGuSMZ4axJrpaMrsmRnPPvssbdfSOTFYTI7A1ttecG4DNAioI2q0YlnJtS6DtOBDTNRa7CDWJLuCpNnpvPj8pOnkRgkjmPyVMhvFYEJ6LOGZ2P2cPI5SrEGRRfKpIzFr036KWPMngpsQwv+klHr+qW//NeCX49f/F+C3gf84fv/vhxAa4GOl1AfA94B/8q99EUW8WaNeIsiG5JWXha513DyENzN6hFZlnzAm6i6eUB86pGvJQHCgLEfXdvj2917kzW+8yPUbR+jC4F3AWUurFZWR0QvyPCKYTJ46AS/dTspEJ9uYzVNGrYImRE8cWcyqDyxBHq+j6V9ytE2iVgE7sYMnbr7DG0Obgp29Q6qqYLNas9m62O4NXSGlkMnMstidsFmtMJXGh8B8MWexWKA0GKOwtqPZbjl+9IiH9x/x8NFjzldLWWy+42Bvj73FgoP9fea7C7QxNPWa0XRC4SqUDgQPna3ZNhu22w3NesPq5Ayr5HMYH0CvQGmKaoQ2mmJeoa/fQGswRcUnH79DCAZjKuazCYUMU2dsgDTHQmsKA8uV0L9VJY3xde2pG898PuL6jWfE3dN2oinyDue62JYrVxEljtDS+uxj6EhGZxGsBB+NiaUs6r0wMD3tE2GOEYfjgOonxvt+zQUvoNV7R2kKJrMphYkt1EHEq9vpDKMLLi7OuXb1KkVVURSKroZaEkFMofAoiiJ2O9WO4XYdlKNpZNJ6b6oVP3ESCCv5/Ll7QWuUDf20YKdih5+c657o0tHIL8TkQiaja+8JWkcBdpBRDPG284D+U2Ju/ixjzbCU4GOsKU2Zg2nyLRnpEaUq01LImWMK3smAzygxorPKsnN1hxe+9wIvfuNFrty8gimMdP1YK26sxuRSUZoblDx1PD6y06bXVSgR+6K45ImDGiRegZwJJ9O/S462ad0POrAgspYx1hSm4HD/UPxk1mvc1iVSUNqnNdiZZbw7ZrPeYCppK5/NZ+zMdwSrG0VnO5kp9/gxj+4/4vGjx1ysLgAxvdvb22O+mHOwf8B8d44xhnW9ZjKdULkqe8LUtmbTbNhsN2w3W06PTy85+66MsDejaoQyilE5wl8Xx9uqqHjno3cwGCpTMZlPZLcLCEsfY43WGgzYZXR2rmIHWe3wtWc0H/HMzWdyV5J1VmZwxVgD5E3cYAR0qJ7FyKyD7nU6SaNjvc3XJgxiTTA9I2IGsSYDBt93LxWmYDqbSsdfBOud7ZhNZxSm4Hx5zrWr16iqSq5hDaliqYr4GlG/6GrXz3lCAMayXQqbGe+ZpM95WtibYo3WmmAjqDEq++3IFqp7hot+5lQS4xNLUlrrLNZO5bun778vc/ybam6uhRDuxxe7r5S6Gr//DPD/Hjzui/i9f+2h0IyqiuBrGiC7ryqF95JZGFMRgsdQoW1DmhAu3Uuis4C42QRkAwoOsBwezfj2z73AW994iRvPXKUYjfDOY+kgiJArOCMeNUm4HGlfATIDUzNTAj6LUIXSVYRYt9YkQBQXfRBOSDZX0DHwqBhQVEgIPm5K4XIWF7xnPJrhQ8XFhcUFwffWCnOkCwFd69WS5fkF4+mM8XjEtaPrTEcjRqMJEGibLY/uf84/+b3f44vjCya7V/jik/eETbCer732NV5/5WXazZb5codr16/hixLXdUDAlFO67RprOzbbNWcnTzh7fMK2rtmu16yWK6rxjPW2BTRFWTGajtndXbB/sEfwsLtzwI2bL3L85CGdbZlPprGbw1Ma0ZrYDkajikI3HByUUmXygNLM5zK+4Zlbd7h54zZtW0vnUPB45y61Cqo4piOopBFJ51RWCTnQx1JikG67HuDGxyhZn7nMGTI5jQhxRd+FEi2Mj07Bdd3RdEsKrZlOJsjcJ0NZlcznCxaLBeNRRVlVLOstmyZgbV/D9kTQkphwL2yid4F6u6ZtW7IQPW5uIcTSlOA6tIrvPDhQQSqmXuOVaIyInQxKRZ1x/CNBUsm4ChW3XxUwpohrPxA0BC+Cbu//RLLk/5fjTzXWaDRVVVH7GujLQ0qJBbxSispU+OCpqGhsky3oXfwvZ9Gx1JC1GFhmV2bc+bk7vPyNl7n67FVGMdZ0dNJS7h3GGbz2WbicS0wquhbHi16a6IMziDVpAyH0+pr0XkyQ7p/kgptATsix5vJmrPzlWOO9Z1aJgZ+9sD0LZGP5xAjoWq1WXJxfMJvOGI1HXD+6LmZ+1YRAYNts+eLBF/ze7/4e58fnHO0c8f5n77NerfHO89prr/HKK6+w3WzZWe5w/fp1XCEam0BgWk5Zb9d0tmNdrzk+Peb48TH1tma9WbO6WDEbz+jqDoWAmvF0zHx3zt7BHsEHDnYOePGZF3n45CGtbZnGWOPxJKkdHVSjisY0lIdlOpFopWVOWF1z59k73L5xm6ZtRBgeu5Sc62NNGtPho7g/XZPEuCVQOWyJzgJv+sckZi4zsgNKNNkLuOBEtxIF6CEEuqYT00KtmEwm6EGs2ZntsFgIk1ZVFdt6S2gCehBrAk+xIi7uPS6w3qxpuzbuaf0Q1qTPSeEnfdb0/oixxqlepJ/XW+j/5NJWkNlqGcybKDuJSYj2Iuh2fzIxm48/bUHxTyKNfiLUUkr9R8B/BDAZ7/DWz13hwT3Pu2+f4pyWaBsie6IAEp2r0KbE2ApNgYvt06lYKAMSI3jAstir+Oa3n+fNb7zI1etXJCPWOoKKZKQELnhKVZAMU5IkQUUAopVQ9ULNJUqPKEiO2oc0TDFtOiF2nQjPFrNGHzPoeJVj+YlET0azJqEwPcoYimqEKffBaPZmFV3b0jUutgkHutZzcX7CeCydNEoHbl6/SVkUVFVBUZQ0qxVPHj5gtV7xjW9+lze/9yv8vf/8/8Dt2y/zzvvv8ezLb3L9lZc5efdfYFTLaaHZ45DZ7l6kXT2uq+m6lu1yzemDxxwfP2bT1IyqEdOdPT748BPefu9dHj055dr1a+wdXkV5y82rB9y5cwdrGwpdMB7P6NZt3NwVTQtlAWOjCFrhVcF0NqK0LdvWorWAwrIqmO9M+cVf+otMp1MBNLEU5Z2AihBrwkF7YRQ0GbBEmi0GlZRZkS5APP9yTo0uSC3lxODj42N1KCJoivUiU2Rhcde2nF2seHJ6wQcfvc/uzgGvvPA8hwcLGd+gNUVRMh5PmEx3mS9aNpt71J2nbgJzr9AKvANjiN1ccoO7GEybuqbrbPTWSGsp3h2DOrWK5l86eq9IzT6u7aDQOjGMMhgT7zKYDKETliGKX5UXO/lEp7vg8+v+WxIV/xvFmp3xDle+cwV/z3P6zqmUp3zMHmOsGU5hLk1JZSsKVWSWJvmWOFzOxi2WcrfkuW89x0vffImjG0eSEWud9RMyo06y0ySODSpkV1iUaC1yp1UCIYPsXz64yuZ+ww0i6yFirPEx1mSPEdWLVWV99LHGIyWlUTXioDqQTqZ5Rdu2Uq5IXTqt5+TiBDPqp5HfvH5TWulHBWVRslqtuP/gPsv1ku984zv82vd/jb/7n/9dXrn9Cu++9y5vvvQmr7zyCv/i3X9Bq1qUURxxxF6MNT546q6W+VXLNY8ePOLx8WPqumZUjtjb2ePTjz7l3ffe5fTxKVevX+XK4RWccxxeO+T5O8+LQFkXMlJh3QpzUSlogUIYpsRyjaYj2kq8b9ACCouqYLoz5dd+8deYzWaXSlEha9DkfHsdAWRqy4dehJvASqou/IRYU8RYc6lMGR9bhKJngnzc9KOWp2s71hdr7p/e5/2P32d/sc/zLz7PYn8R73sdzVvH7Ex3aBYN9zb3pATXhB5sOKR/JsUayJqZupbrkITFg8wu/zuBbqVV9nlK87Pyz1OZLchgzOyt40V4LLEmjjt5KtYMtTl9avknH/+m4OahUupGzKRuAI/i978Abg0e9yxw7yc9QQjhvwD+C4Dnbt8Jf/4X7vAv/8DxwXv38XYtDr6xjKOjxb6KqFFafeOIhNQRRWS/giOoDhVKZjsl33jzNt9882Vu3rxONTJoHbc6DYUyWFSeIeSjd4n8ONaic6YkXQ0pS06W9zm4pO6nKDgNxFZvNfAzSGr6S+/ZQxQtD+psAqBUSYjU8lvf+Xk+++SH6LDBLAqW52vqTaC1gdOzDaNK03aKvWoEAQ729iirEVU1yozTtRs3+IXZDlqNKTdn3Ll1h48+eodnDgquXbnK7edeZHv3A6pCsXMwpywM3jp819HVK1zXUK/OWZ6ecrFcslzVHF29QqkMu7e/xicPTrjxwht8+uj32Dk84Jd+7S/z3vs/4u0//H0ePLjLK6++CsEzGlcsV4GqMownBat1DJ46YBtL23hGR/tUYcNmu0QXBVopNquG/YN9nr/9AsoTW7+TZ0MXUb2sD01k02QriEElOWZCUlf5ANonoCnXUJPKgqlkKAA118lVXEDJk0ZB0DLpe7tp+PTBZ/zBH/2IDz74mKtXn+fx8Smvv/wsVw+PAAFrZVlSlSWjsqIoDG3jqTsBNcoIaFJaRafkXkcRFLTdlu32Ams7TJHcrZPrafSmiWygAJiQPAbjXSLlVfkskoIpXOzcEIAd0jnRAphD8oHKmX48Zeon4ok/zeNPNdbcuX0n3PmFO7j/j+P++/dZ23VmSFxwlyz2U0aZBZ/0uhUQrUWnOspQUi5Kbr95m5fffJlrN65RjIoMRtD0c6riDKFkxAeIUVvaDJMeIbnTBrLlfWJS8vDCyMokgTODWDNke4ZMU/oseROLAKpUZR5M+P3vfJ8ffPwDNmFDsVOwPl8TNoFgA5uzjXRlWsUoxpr9vX2qqhIAEQHhjRs32JntMFIjzjfnPH/red7+6G2K/YKrV67y0nMv8cHdD1CFYnG4kLKIFfZmVa9ouoaz1Rmnp6csL5Zsl1uuXrmK0YbXbr3GyYMT3njhDX73we+yd7DHX/m1v8KP3vsRv/+D3+fzB5/z2quvCfs2rgirQFEVFJNCWt1TrGktvvHsH+2zCRuW26Xo1LSiWTXsHezx4nMvZkCatE5djDXp+gzB5nC2WLoGqZxEIHcBJXF4ki+kjTsBpuGEbY0MNY2/IB1lyBDQzx5+xo/+6Ed89P5HPH/leU6PT7n18i0ODw9lQKxWVFUV4420uvvGi3jYQTCyFjPQHcQaFGy7LcvNki7GmsRyJsF0bvtmoOtKuSQqjxkJiN1AIAhwV6EHPfGcGB2Zx7iWc3dUjDXhp4w1/6bg5r8F/jbwn8W//5+D7//flFL/R0Tk9zLwT/+kJ5vNxuzs7vLkpKHrFLmzI+ogUKBNiXcyFbswE4yr0K5CUefnkaKQASyTWeCNN2/x7W+/zK1bNxhPxoL5TEAbE5mhgAkx44/oUOt+QWaGZrihKeJm0gMboP956NvnwuCCpCASe5H7oJUQu4odVVnsKV9rZSiU5plbL/PiK9/iRz/4HSZjQ+c029bStrKBbWvPdGro2pbJZERZFJRlwWQ8BWUYlQvmO4dcvS6fOwTNL/35X+f7P//L1OsLdhdT1p+9y9H+LtW0ZLa3R+4ScwHnOlrXsN1uWa2XdD5w49lnoeu4+dxr7D/7HNduXOX99/8hz93a45lnX2BvXPH8tat0z95itbmg2a6ZzefMFnvU9QprLTuziuPjRsoogNEa29aU5QjvHZvNCd1FI0JMFTg8nLKzux/rLj7qYCSIS6eCABSlU3dJGpyhMlgVlk8641TcGAIeA3J9VJ899UBGGDxUKgNJ8T7o6GniZR5a3bWcL08pqLlza59qWvDpF/c5OT3l5edv8Oz1A4KXeV4BRxen87Ye6i5gnYBmrcGFCJzyTS1gx7YytLSzVtYyUk/qM0RNwMaRIPG9CyVBLoKrAhcEnJHLqMQxBBJ0dOzoC1rFzVgcmX1wEnBxOWv7/+PxpxprxrMxu3u7tCctqlNZv5EYDlQsBzmp/Y+LMSM3onIV9SDWpPlQFkuYBZ5981le+c4r3Lh9g8l0AsjGYUwchxD6PzkTHcSaS0Ji1XfVZD+RMNA5qOit4/tYw0+INXmD/AmxJm0eqfShVD8F/eVbL/OtV77F7/zgdzBjEV/b1kqnjVb4WrLvtm0ZTUaY0lCWJbPxDKMMi3LB4c4h4XrIvjC//ud/nV/++V/mYn3BbDHjnc/fYWd/h2pasbe3R+oS885jnaV1rcSa1YrgA7eeuUVnO1577jWef/Z5rt64yj987x+ye3uXF2+9SDWuuHr9KrdOb3G+Pme9XTOfz9lb7LGqV5y5M0bzEc1xk9kHrTV1I2yQ846TzQnNhZSfAoHpwZSDvQPZzLXv2bEYa4Y+Q4kdy6xfBKs+/jcEocN2/yQGz+8pxhod+p8lsJtiTWqVbruW04tTNmHD3q09iknB/S/uc3p6yo3nb3Bw/SDrcjz9JHA8hC4IaxlLSAmzX2KWPDL+YrMUJ+/CEIb/xc9kseJz81SsSeeiUEX29Rlyq4kxVVrljj4VY03S2rgYa9y/Qaz5Mq3g/xXwy8CRUuoL4O8igeYfKKX+DvAZ8O8DhBB+pJT6B8CPEdnS//bLdC8opfn883M++WjVj373LYUeQfBoVeK1FVxgIZnfRfVp3oQNFRoYVwWvfu06b33zRW7dvsFkMsLoiBJjNk+cuaM1KOeyKFMoASmDQF8DzSUjksmevI9U9pCL5yCYmN2KwNgHKQMkSjhZC6jE4MR9Uhg+0djkbilAhoV65rMF3/1zv8oXn3/M/bsf0W4dmzpgtMJ2MJ1IaGzbLYeH4stQlCJCrMoKMxnJxwtgyoqyrLh2q8Ray/L0Ed36Atd2VMUBRVVQFhXWdVFILBte17V0XUtTbyiqip3dfQ6vHFHqgu7sPj/35ltc39vn+MlDRsUUvzxlbFvm45Lp5IDSFMwXM8bTEevljM1yw/7OnLvVCm8DVaVABbrOYm3LfDZDBbg47+jagCkUh1euMRpNUIo4J0e8jbQWDVY2LGJQ7yYI6FQa5aOWKwNUEXhLGVJF7DLQ3SjiWksXJD1v6qQSwGS0xivNzs6Cb1y5zne/9XWssyxXa3749vv84Y8/oW02zCcF45GhKAqqqsKUmul8QttYtm2gqT3FVDqj8HFshUufQTJOHxzb7Yq2baiqKnYSiODb2eijEUeDiJWAPI9SSjyZlLSREgX6kuHLgNikP9JKXJp9Gq+gTO6Oks/tEVMgYYr+NI4/i1ijleb8i3OWHy9zrGl9y0iN8ngAq6U8gSWLevVT/1VUBIQRuP7adV5860Vu3I5JVIw1wwnRaZilcy53vPgYa4qfEGuGBnxA704cY40LLrewJ4Fx1takhoR8Yoksm4AgYqxJAzfTxmqUwSvPYrrgV//cr/Lx5x/z0d2PcFtHqGN234GayHvbtlv2DvYYV2PKQuZXVWXFKMYagsSeqqwoY6x5dPqIi/UFXdtxuHtIURVURUXnukvDJZuuobUt63pNWZXs7+1zdOWIQhfcP7vPW2++xf7uPg+PHzIxE06XpzJwc1RyOD6kMAWzxUwMBpczNqsN8505y2opgtdKQJ7tLG3XMpvPIEB33gmIKxTXjq6J3YTq9U0Ol5mTPDMpAstsiJjun5zkChhIAu/MSgQuOxtHUKueijVyCVUGTQlMLXYWXD+6zhvfegNnHev1mvfffp9PfvwJm2ZDMSkwMdaUVYkuNZP5BNsIUPW1h6mADOfjSA6rCEUfa2ywwqQNYk0aFZJiTaGKbCXgVHwepbIxY1rz+TMG6bhKXlMJFCUmyCgBcuneS95QqVT7ZY8v0y31W/+KH/3qv+Lx/ynwn37pdwDYzvH+Ow9Zr2STklZYoc5dZzFmhDIFPmxJd6JOtC1AFIIaDFUBd1444hvfuMPzzz/DfL6IXSvAAKSkEfQyI0hFfxsrnSBpAQolkFi2lFfhc54bHxPkO1KD6tXkKlJ0ufsmt//F54uxRpiCVPIYdFKpQEA2nKKquH37Ff7a3/o7/Lf/zd/j4w/eQZuGEDyjSnQaRsGoLJmNp9Jpg6EwBaPRhLIcU5Ryo/rO4XyH7S6wXYcOjrIaU1RjUIayUhAaTLrVjCj7bWulE2g8p1mu6LoGrRRlNcYYzch77ty6zjPXD/FobOfAtFxtb9B5x3wy4fDqIZ2vmS/2OD29YGc+YVQqtjZgDBgdcM6z3dYcHuxRlSVaNTgP+zu7fP97v5QFlUHJuStMKbOYVLo6MWCoVC6MZz0ybVKSkStKCJikHYkrS65u8oRR8fpkxBSDT2LsBNwIlTxiZ/+IK1ePmO9MsZ3j4vyCut7w/sdfYCKwCMEzm855+aWXuHHtBk+ePOSHP/yXtMs1dQcTJ0AuachSFdMTYgsoUVTcEMI8frY4+yVuWsYkIA5aVTgloyZSbwZxrYnpoTxWzCt9FCYLs0VQqATKtUJlZ12Fyo6lP83d/q8+/ixijbOOh+88xC1d9KYSo0MfPNZaRsWIwhRswzbHFzOINUlvYzBQwNGdI57/5vM88/wzzOfzbOk/BCkp1qgYa0II2Ujv0qyiAe2egnjI14vM+gCRLexjTSoHJIFoZm3ikbtyBpvwsJMqKHFg1koE16/cfoW/87f+Dn/vv/l7vPPBOzSmyd1EaeMty5LJeIIqhPUpTclkNGFcjhnHWOM6R+c7LroLuk6GMY6rMeNqLKW6SlrNE4jTg1hT6IL5eM5qKWUqpRTjaiw+NMFz/fZ1Dm8cSmbfOVrTcqO9gfOOSYw1ta/ZX+xzcXrBZD5BlbEd2pA30Lqu2Tvco6xKGtWAh53FDr/0/V/KXTxEBjVpXpIZnR7EmkuJcIw1uXU7MjC9rUivz8kAJmmwnoo1YRBr0u+P1IjDvUOuXLvCdGeKi7FmW2/54uMvsqGeD57ZbMZLL73E9WvXefTkEf/yh/+S9XINHTLfqVCZHUksTlqveFhv1zRNw3w2J7GLaSyD9z5PLQeoYqxJox3Sf1rpXMqTGBwyC5ZF/aEH5YnBSUaTyWqBnyLWfCUcin3wPD5eCx1OaheLNemcjejYaSSbvVElRlVSKoiQwyjF1cMFb379BZ5//lnmi3ksLREXijxWK4NXCvG/0RhVRJ+QgMkdUiGXxIRGlp7lBFRU3HhAygs+OFQw+TPJ+ActDBHiHIwKvZutRKLc8ifxIq0soXKSlkcr0eMURcmdF17ll37lNyjKkg/f+SGbbU1ZKioNlVGMyorJqJTMXUNZjilNSaENRitMMSKYgOssWhWMxpr5zpG8ZyB4S7s5Z32xzlm+9wHvOry3aFNgSoPGEzpHWZRUVRE31ILJbEYViKMLPHpUUM2mbOuaqiiZzWfUTYEpziiLgsm4ZFRpujZQGEVZaYpC4VxL2zWMRtC1EhS+893vcufF11G6yL5HKl+fyK+oMoKBEG8EFddVfKz3mSUTwWUse+qi30gCcm29GjBz0R6AZPjnY3lArp3WBl2NGY/HFEUpNL8xjKqKa0dHvPnqcxRaMZ1Osd2WyXjMc7deoG037O4s+OSzD3l8tqbtwHkVb0zV/z8F2Lg8nXM0TZ0H8aUsMuSJ3SkDTGU3FcFMIMR1L4RHLJ/6ZAQY9WeBOJE3wjwF+BBHM2hxOCaBxCzo+cof3nvWT9ZZQJzLRar/2ygZo5A2++R1k0BKKiPND+bc+fodbj13i8VikbNwAvmxaUJyylQLXYhvSLgMLvQg1hSquGRdnzaegkL6tYLLnVFAFq6mzTYZqhFjTfI4SbEGBl054fLr5DlTRcmrL7zKb/zKb1CWJT9854fU2xpVqtzyXRUV5biU96sD4xhrjDYorRjFWNN1nWT3Y81RjDUA1lvON+dsLsSATrpDA52TcQtFjDUej+3i/K8YawpkwCex5Oa9pxgVTKdT6rqmKAvm8zlFU3BenAt7MS7RlRZmxijRDhWKxjY0XQMV8jOl+O53v8sbL72Rxa9pY02xBsjzvTJjxuAcx1jDINak8QTFU7HGIaMZEjOXQEAqTT6tQUnt75PJhHIQa6qq4vDokNuv3kZrzXQ6ZdttGY/HvHDrBTbtht3dXT767CPWZ9Gt2KcYM0ANMdbk9249dSuxZmjGlyZ26xhrEhOTNUMh5HVvsRn0ZUYmuU/H7w1b53OpGJ3dktO6/bLHVwLcFMbw+pvX+fzzYzbbQoZbRlMfkI1EY+KYA02wSeApgzUDlhAsVdHywo1dnnvmkJ2dqVSRlAh2tYqTwTHiMBxEQ6C0GKYRlMyWUlrYo5gNiRbHELCIvb2PGb10i4So1yB6qYREKwJKBVQcpimbi3jjiJdGBEmDCb4qdnylhZzU6AFii7r43rz5ze8ymc4pjObJ/S8IzUNc4xmXmumkZLbYI5CqaJKXKyUbsNEGVRgKZRiVFR6L1jJkRClFsz5lU4t5l9EF1nUY39HVG7yVQWreWkZVRdfWuLalmM3RpTxHSYGLOqam6ZiMp5hDQ9PUdE1N1za4LprJmZJRNaLQyCwkpZmUGus8bevYbtc5QNy+/Sx/9a/9FvPFrtwYGlRkKoTAEVsAFW80EeClIBNyd4O05BspFQ6uVa+riqCWIlF3soVHEJ0kcfl3I/hRSjMeTSiKks22pW4jGCSwu7PDm197maauKYqCi/Na+CWjKMoKUxaYohDdTRuwTlFBPyDT04tTI2nobEdTb2i7WsBaAnPx8yod5Dp4J+s3JEdSfwmsiQTJ9yxOUH2ZVAkozwyjDtElO9LLyuCV/VNjbv4sDmMM19+8zvHnx5ityZPAs8A2Btjkr+WtnLch4LHB0hYtezf2OHrmiOnuVM67Eoo9lXekbBoykAk69ALK+L3UXZLKGUaJjseogXFbco0Og2w3TQJP61f1QCpl+2WMNSm+DKeFJyCUfGOGnTBprRWm4Lvf/C7z6RxtNF/c/4KHzUN841GFopyU7M33cqzKpTAVRa/aYAoZBDoqR9JRpktSeeVsc8am3uQNP4Gadb3GxlhjrZXW/bamazvMXPQ9KoiWI53frumYjqeYI0Pd1NRNTdM20hmEMC5VVUVhn2ySuhSNj+88m+0mg5Sbt27yW3/9t9iNsabTXQ9wABPEFiB39+ieVQiDWJPWgISJy7FG4rqc+4LikhFjAsYSaVz/uxH8aKWZVlOKoqCtpcvLepnptbuzyyuvvULdSKypL2QavTKKqqwoykIM96LuRrkIOGKsYRhr4v3QupZNvaHu6ktgLn9eHfIoiCHASeL2LL6OgC+zONG2QmJJL4oH8sTy9FpGGayyP3vMTVkavvu9F3nw4An/+B9dsN0ovLOkkQpxLUTxZEKZseQQWZASx55acWA2THUQpoR0cvosHlJxSZHc0UL2J0jlJgE5PYiJ2ocMdmLmqkDqTtHELyhkdciMHwFHFhNK0piGhHrJQwhFRS7IXSGyARGJyvOpDHZkzhVMZzu89rW3WJ2f8sn7P+TBxxYTLCF0TMcLjo6uoVUhgM56yeY7j1ctmDFGVzgTCG0T2389wXl0UdK1G1xXC5ArZEowzlGo2CpsW7q2ISiYjCtsK4CljHNhQLI+ottrVVXU9YZgO4IxOGdxLnYb6EDiQTXQdY7CaDovupt6u6TZNhwcLvhf/W/+Ns/cel4AY1DgtZwv5cDJ194r0QMjpQCvVAR1MTsICnHgJQtIxQMm3WSyrkIUGofIVqRglG5WAUIiqgw+iCmyF/an7gLr9QXrbcOo0OzNK4qiYG9nl01ZUNeNGA9ai/PyB4hzxaDpoGsjoCkiJylvS74ORM2Fp2m2dE1NNRqRvaGkZ1cGw9o4QTwmOz6CwVz+ULHsFj+zaAP680D6OtLGolEJ8Q6MtXCjGLRifeUPUxpe/N6LPHnwhIt/dIHayEyl3HEUP7YZxJrEaiQWxOFYqRUbs8kzfoDM/JCy+Jy0qOzPkbxQhl0mifHxwWfNQvq3VjrPFEobXxJXJu+TtCZtsJShvKzjiKxebquNsUZplXU7IcYa9VSsAdiZ7fDW197i7PyMH7z/A+zHli5IeWk+mXP96DoFhYAxG2cddZ5WtYzMiEpXBBPiPDlPQ4O3nrIsWTdralsLO1bEIZZOgJ3zjta2NK2IYEejUQYtaQZViLFGD2LNpt5IZ48xWGfpYqxJIyxS+cR1ToZhetHdXGwvaLYN84M5f/t//be5c+tO7ujRXkYjOOXQTveeLYNYkwXEOu5XoTdmTLEmjVzI5cl432Xx+FOxJl0bP4g16XGFKaCDi7W8b11I674pDLt7uxSbgqZusNbKHy9/QhC/IgLSMdUig0UTaBjc+gRyXNg2WxFfj0a5jJTAd5ra7pzLJph5mvcg1iTWJ5toQj4P6Ws/iDW5iywKs5VRPTv6JY6vBLgJwM0bV/j+91/k3ueP+cM/OMY1YilvQTxtTIFSBmMKbLppY+uiDpod5dn3DTy6y+bxF7irVwijEegqcvnplTyKgqAk+yaIqM7R5blSOraQSEYe298IshEGCINMKgOn1HUApI4UuTCFbDwx18f4QdcN/fd1iBlz7PZJ0Hhoka5U1NJoJpMZb771ffZ293k7rNmZjDg9fYz3nsViB1NVBGcJ3mGbGl0iGonK5YDrg8fbVrqGggAFby1FNSIoE1kahytljzNGsrCiKnCtwyiFa2pcVzMyM5QPkUGQ2ViFKkBZqqKkqkqaeottW5ztcK1FeWF0nBXWxFpoXcBo2G5qLozFuoK/9O/+Zb793V8U40adBN86toLrvIbMUFQZVGZnRFMgYzKC97m0I6LkMmeyAmZVvpaJ/kq6wRSEiJoUF4hBToC4dZZgG9q2w3cWp4rY4SdMlu0s9XbDtt7Sdq20BUda1ugChzgVN1a0vtnAMJAz8JRUee9pm5rOWkxREojOt8rggpX29iCzr2QwaNpAZZwDaY2FpL1JOhp50YT1NPIceVovieGI+h2paf3pBYM/g+PKjSu8+P0Xefz5Y47/4BjVSNkIEE8bI5t1YYq88efSZxCztsY33H10l7uP73L1mpj1VbrK7b9pTRUUsilG8FTogo4uB/A8FRrdl8kQ/QvhMmszLDWlY+jJk7pS0r+98bnrBgaAK4L9YTty2ohSrBHxuTAGs8mM7731Pfb29liHNaPJiEenjwg+sLPYoaqq7Ny7bbZQig5oVs1ya7P3nsY2WVuRWZmikvjrZDQFJbnMMow1SisBN13NzMyyHsMqm1kcq2wsk4tZXdd2sum2wrI0TSN6G4WwAi6AhnpTY43FWMNv/PpviNZGmQxUUmdaGngKXBZwp7Z7+lKSRn6H2IuAQpg0Qt/WHQbXMoKgBCwSq5bWHjHWWC1A3FpLYxu6tsN2kelzPouybWfF2Xl7OdYo+tli2Pgn3b7JmK8XmWbDwLqpsVbOr6K/Pnn0RHT6Tt1N0I+lSJ8ngfW0RhOIS68FfalrGGuSGHmoOfsyx1cC3KzXNR9/9IBgA1ePpoyqgmadSjfI4MxSGJN0IkOM+iooJnj2dc0CRXO8YfnJ5zTXbzGajClM2ROCQah0QoiitL68aHRJZ1ucD5TpTKsUxAtSF5XQxw6NEYFndAxOQAR01HQEEr+vSBobYplIxRIXpIclh2Wjq0gIxcnmKhnziZGgRmZtGW04OLpOUZYUmydgN7zw0svc/+wTRlpKTmCEAStFUCyDER26mkIVd3c02nZYu8XWLnZrjbDO4TsrPnU+YIqCQlfAhsloznr5iGXnGJdTfGcJoy5mfFJStLYDI2DC6EJq7iFg25a2FtGet5bV8kLKKCE2qESvl846CJpvfe8v8Bf/3b/FaDyOZzGeDxUFcLHjjdjOTyoXRvAm10HJcM0QUCZ2sGn57GkF9JPk03XvwaeK7IVsWpGmQV8SCCptUKqkKAx7swI3rSiNoSrleXXrUEZKd1oXFKZCoUnNSNL1JcxNY8HagC5jvEmlqPhuQ8yoOtvSNjVlOZbfD0lvQ1x3Sb8W11faJIWGJMTPL0yURqkYjLRBBcnLJLBIdBaBccrsRXuDA130+o+v+lGvax58/IDgAtMrU4qqIKz71n9rLb6M84Giz02a/pzYklpLS/jmZMPnn37OrRu3GE1GlKbsNQGBDFay7Xw8Sl3S2ja3vwI50Kc5VSnWPM2upMQkTZNOQGq4Fodt5Kmklt4ToW8pr3QFkCeEp8dlK32EETHacP3oOlVZ8WT9hLVd8/JLL/PJZ59kxsQgTMmkFEGxLoSpmFUzqMjP19mO2tY0dYP3npEZyYBGKzEheBnMWemKDRvmozmPlo9wnWNSTrCdpYuxJpUUE1PjvPgUJcakaRvauo1jWiwXy4ucTGTmInYYaq/58z/35/nNf+83RSSNirYiZNYldfWkTXZoLpcEtKnUkhiSEHrtSLp2w0nyw1iTWYqksUH15cPB9TVKyqmmMJiZoZoIY2NKeV7XOkoTQYiW8RPCwMfXSmuxQ9ynbYCId9J7z+vSy78b21A3NeNynIW/STOjtSTcw/WVy6gx1gydl7WKXVWhX3vAJWAeBrEmnT8c4uv1JY+vBLg5OV7zD/7+P2U0Ctz94py2tTHYAkHhvcwOkuFc0oaqgkaFwBjFkXJcVZqJKmhbxfGHn3J08yaTxQ5FOUYVfUalUTHbESt5EfVGxkTpGPRTp0zMUocDMgYZT24HzOFfOr2SG2PmX6LfilI9A5M21ZBGzSuVBZ8yOiIG2LjgJeDEix0pZq0V8509nn3pdUx7SlEZ9hZ7oGXoorddVusH2xFU9PdRCj1doIoCbx+xvXjCenlMV28pJ3MUBbZrZE6SLqRd3gfoOipVMKKiq1u2dgMexqOK0ahiNJ9JaA2GECxE4ZxtO1wn+hzX2jiMrcN6R9tsqbTcZ4WR0lTdBG7cPOLnfv77/LW/8bfZPzgit9+jIpgRLZVszInml9AuCZUSrU0uOWmZ76AUKjJ+GdwRhbO+J23SvU3yYcjfS8PlVKZ/JIhUjEYiKFZKWJyiKCiMsIPOS6nVWRvp3TEuWKxr4/uTT9cFaOOcKQJxbpOwSSoICUnKYpyj61qct6hcNiIGB4dP0VvJmw/Bx3JqooITk5nWX2zxjtozvMumgPEhgOmZSx/fWyyt/Swc6+M1//S/+qcwhvPPz7GtHXRHSgeSy7GG3IaaygdOySZXqALVKj754BNu3rzJzmKHSTmhGsQaFWNNQZEDfoofehBroI81iYnx/4pYkx6ffU902g5kjSa/lay/UT0g8jHWZA+cEPLm8nSsQQ0eh7zO7s4ur7/0OqftKSbGmjQrqxvEms52/WwspWQqeFnyyD3i+OKYJ8snbOst84kMHW2seMsUuohWYcJyFqqgoqKtWzYx1oxGI6pRxWw+E/AVDDYIc6G1pmtlSGfTNtjO0rSNlKa8Y9NselaikNJUaAKHNw/53ve+x3/4v/gPuXJ4JQPUpHNJYuAsvg4p0uj+fhv4DWklWh6lVDZGHIq+Q8pknoo16qlY4+hZkWGnVGUq6UobjXMprygKtInsiJfv2RhrxqMx1ot30JARyQAvJUAp8U5amFTODl5Kil2TtT1p0GUquXZ0smYTKAv9VPQEahKoHnoABR9y6TX5C6XPn0FgjDUKGQL6ZY+vBLjpOseH754S4gL00F/wQclHTqaRheEbCgJz1XKoLXsqGmcR2By3nL77HtP9A8rZlDAay+YQL4SYBtn4Eh6tDUUAqxTOd/hgMDpOdMzvQyFKtCEtJoLgYVamIoCCGBhitq8jdZQYm7w5BEAHNEY2FJIoGSLqipuKR+lKQI6W5wzINNadq7dRS41SnumtCdvNkvV6i0OLp4vytG5LpccE7/Gbc3yzplsvWT7+nLPH91mdnzJdHKC0YzQqouYgTmYPcfJrVVF2MpxRacNoXGC7jicPH1GODOV4QqkNWhdUozkYI7b9kl7KcEvvaJuatm1puobgOrztmQtnA7PZlF/+1b/Er/76X+fw8JpsyipkViURwEqFS0CP7OAq4FGZMt+wCSPIzV3E6xmzLEDhwejIrA1mSUVQgO6DP8ROCGmbEiEuXmbvFDLTysXJ0iEQh1xayYJNFO56C5lpsfmm7rx0h3mr8V5AjgtRHK7i0o+spZS6OmzXxYAZoq5G/I+MMZFhSZunlP8EOBthsnKGGIWlWuOVDJRFic7Nx9JWVBuKyFhHnZn3/CxpblznOH33NG92iR4H8voA+dvEWNOGlkCgUQ1WWyaDWNMdd7z37nsc7B8wnU0Zj8ZZv5JiTQrIHp9dWJVTdL7DBMnCw1OxxmD68kV8racZoLSRKHoDwvR5AiEzMcNYE7QYwiUQNGxlTqJij6eKsSaBHJBYc/vqbfRSSnPjW2NW6xXbzTa7LAcV2LotYz0m+MDF5oJNs+Fic8Hnjz/nweMHnJydcLA4wGlHMRL9TJrM3sVYU1YltpPzZrShGBd0Xcejh48wI8NkPJHv64LZSIZE5kGjEeg756ibmrYT7Y61NvqkxXNqA9PplL/4P/uL/I1/729w/fB632kW+vOrkc9rlMlA7xKLhgiWM+MxiDXZfTp9P60DYy6xckOpgP4JsSaVp9J4Cq21dK0qnafYAwJqYqxJ7Fn6nQQ4sg4mioq1031pKr33uBYTwApBut66GGuCD713jZYW/gTMsvFkZCMTg5nOZ2JvkvO2jbHGxFiTmNLsg6PjqJMoRv6yx1cC3BCC2MOIj33MImQDl+4XwEVBkVYQHJqGPWoOdcuhKilVgcPTBYtzmpOPHjE5eIfJzh6j0ZTK7EgbY5BumWgDiQ6xdKNSa6jD+0ChQSYmS6eWjyjURFZFxKxhMHMjoXaVP1bf0RBpf/qLD+RsPQ0rVCpm2SEa+RHblpWOrE8Ug+WzE+v1oxmh3acMF4yqCfPFAn18xnp5TNNsKYsCVZQYXdLWK6zd4NqOerXm/Pghj+/fR1WGvdkMEzvLitKAdmhlmB3coKhGbFcnqHKM3lxI8A8iIH7w+B7BOIrRhL3dPcpK46ylMDO0KQjO4oLFeU9nGzrncJFVmUwmLKYNqvOsas/+Ysbf+M3/JX/pr/wHjEfTnC1JeYhY6Yt0p0rdagJIUFJ2lMAQO88gdt6pGCBcZFtSq2bsIIpB3IdBIMrrMLbtZw2WZBPeIxqeDMBTBh3DVXDIpG2Vr1mATPX69HekYAMCZhoLbRcYO0jdS0nr6rXUsp2Xm71tG2zXgFI5gCXWTGsl2vZU9wpB1Mk5MMcjrjmi5YCsuyDt4ZEyVlpnzZJLeoMg3/e5hPfVP0IIMhgw9EJQiJtY6rSLsSaJbpvQUFPT6pZSlXkgpQ0W7TWPPnrEOwfvsLfYYzqashNjTRKFaqRTygQp3aTSgguO4XTq9Hg3iDVpPtQw1iSGQA1jDb3YXf+EWJM3tBhrfIw1SQcknYQCiIwSlihpbpImCGA2mnHQHnARLpiUE3YWO5ydnHF8ccy22UrLdVFS6IJVs2JjNzIDab3m4ZOH3H9wH11opjMZZGmQcorTDqMMN/ZvMBqNOFmdMC7HXAxiTSBw7/E9nHFMxhP2dvbQlehPSlNSGNHu2CD6n8aKiDk4OW/jyZjtdEvoxMBuNp/xm//+b/Jbf/W3mI77WJMBb5DzNtSK5HOhBiM1VA8SrbeyjkLP2gCZxcodQYrcbZXYHohdVakkqHrmInnOZEAb32cCRi64/LpymeP96QfANgl5h7erFYCT7gkJMvFnMdbYYGOsabPfUHpNG8SPSGklfjepMSFEX6fUOp4O1Qvl+w7W0GttIJe5EphJ7zmxZ1/2+GqAGxTeiYGfxkhrskqeLzE7djLjKHQW7bfMVc2B2nCkZKidFBhk1TigaTRP3vmE6f4R4/kOuiwozARltPjRKC87RWpJi5qWzgfpMCkUwcWOKJWQZiodxWyIuIhy6SNXKgWM9B8vApwI1gZlKRM7oGRj7stXqTNKxU1dR5+f9NqXNloNzK+wPV5TKpgvdpjPHednj+majq7sJMNGUYSGALT1hs1qyZOH91lvG569+RJlYXDbLW0AMx5LOyYdZb2ma2rapqPetpydnJG0Yk29xlrHyekZ+uMPMc/fYTZfoIsSzwYfFLbtwCtpW+xi95YPjKoJz9y8zWQ84eO7J7z+2nN8882v86u/8ZtMxwtS23LefIHIg0VAEe/2lPRGbYwAw4IiZqeqn1AggtAg70EhwDGf91j6ymAjThTP/kMJXGFiJVGuvTSIp4cIQMhTqoKOQAtAx44IMrTwzuOczx/PA52DzgqwwacS6YDAlJYpIGBtR9e26KKKPwNCqssbKl3igpfxENEQ0CepEdG4L+vCBp2E8VwYLa7OSiUqWhy3XQiZ6PhpvCf+bR8KEbMml9lSl33pJWoJnJMZR7az1L5mq7Zs1IYqxpr0PLkU1Gg+efsTDvcP2VnsUJQFEzMRJi9IW7j2fftr0rQEL69VFZVswnGIZp4QHpmatEGmEuzTwCYN/IxvLD8ugbdcsE3DNtXl8tVwLlL6WRFb9Z7eaNFwND9iebwEJWZ3fuZ5fCKxxpayEWo0bdMCsGk2LFdL7j+8z3az5aUXX6IoCrbbLQQYx1jT0UkHVVvLjLm65fz0PNZoYV2vcdZxenrKhx99yJ3n77CYLyiLki3yXG3booLEGt/1w0on1YTbMdac3D3h9qu3+fqbX+c3/+e/yWKyyJ2Qco8nyNADmSyCTXlpBCqFLigoetPEGGsYxJpUrkvlyEuMWYw1nn5KfGI9SOwhPbOWSjtDliixS4lhStcyMyiyeKTt3fkevICcWyvAJg3LzCEARHTtIktpO9q2pSqqXFrTkYwwWu6l9HkdLoWRDKgzOB/EmvTe0/qU7tN+blW6Hun4mfO5AfC47FooJR2Dsy3KFCht8J3F2g10F+yx4qrasK9LCgxNbLOUQoq4xbgA25OOJz/6I6a7uxTjCl0UmNEIH+R5UfGixhNeGCM1xShgJqSatUKruLuoAS0ZBJClbhxF9P4IntQSnrIA6QAoM+uTnJEleMjEcRGsFai4EyvEDAutoupeoVT6OSS3+RBAmRK9f4vjx59ydvIpq/UFbdvRFC3FdosvDdZ2qE6A4ma94sn9z7jYNLzw5rdYzGZoPK6Ai/Upn/zzdwkBDm/cZHulRmnFdr3h4YO7PLh3l81mzWQ2k/elNUFp1tsND+59xo2btylHE1TR0VnR2HR1i3WOtm1kqrm1jEcjdiY3KcuKV159i6tXb/DKz/0KO3tX4ngAMsPg47Ui0uY5ziS2TCmSNkpGXiiiPxUa6bJSXkTkeGTkdsjwFPINlxIrnY3dBvUw8tBTLxuHVx4fZECdsGqJt0lHT3GnzjrvPd4lLYsetD0KZmm9gBs3CDa5HdyDjEqI901kcXBddBiOHwthaEScmihumWauglTAQaNNEhm7BNHkBGkVX8eR9lGRKEl9XOsCj4teQz9bhxvEmrRxt7aVLiltsJ1la7csuyVLlmzUhlKXwqoMJjxkMBigO+34ox/9EXu7e1Rjaf8fjUa0oY1dbLrXTiA+OhJrPL7s9TXDoD8sgbjgcmdV2ngS4Mgam0GsKU2ZWR81iDUKlcc1ZDO56K6bxkYIURl9ZOLr5c8dZPbW7f3bfPLoEz49+VTGKXSy8W22G0wpGpzQSUa+XC35/P7nbNdbvvXmt5jP53IPF3C2OePdf/4uIQRu3rhJHWPNZr3h7sO73L17l/VmzXw2l3bumNVvths+u/cZt2/eZjwa0xUdNsWarbQlN20j/7Ydo9GIm5ObVEXFN1/5Jjeu3uBXfu5XuLp/9VKsAXKX0jDWpM+ezmPSRmVmOYLKVE7UXmcWxJi+Cy4/R5/6ogexJs+agsx66EGssTHWGB1ZowFSyayM6pm6PFqBvoMrg4UUCy1/HNik9z4wi3TBSQnM9UAoadGSu3Ja40kYn9gZaYSJyUPotTUJ1BG45HODEqbGehu7mV0/SfxLHl8JcCMUfqTfMoMf8M4KeHAB33UoWubunJv6jOsaNBXraKXvA5RKemmEPhSGZvXFisc//iHVzoJiPEEXBaosI6AI/etBZGgUNnQ4F/Ut2eCqf2z6tw4mB3Y1WOQmlrNQsomo5GSJlDBkYnVqgVO5xq6UyRtgiDScvF5kspI4SyUBc7yh4s/MaEr1zKu02wuKs8dw/228CdTdFmsVRitoPdvliof3PsEqePmbP8fe/i4mKFzXoaqSiVHc/vqrEAy28zx+cJ9mu+ViecGm3uKVRo8rGt9R6IJRVTGaTJgtFtRdw9nJCbtXr4Dv8F7Rtg3L1Tmb7YrOtfkzzmdTdqY7XDm6gTKG6y++wbVbL0YAGe8yP8hEoAckqYVIAZhoSpc0OHFARgSjKXMA0Zqk80jKhOVCJMxJrFZlFkNl35BUz3doI6aPKmZ0ZrhW4qPT84e0ZkJ6/8IYeS9TvIeULATaoOgcJIJmWA4nSLDysY7uvIusZ1qn6c2HXiQdRYw9JR61CQjwCXiUNjB0JIYIgOJZSG7hyLgKAfZRtP0z1Aoe6AdXoiBoWUvWyTgEHLJRq5Yzd8a5PgcNFVXOwBMQCXEdBqTktPpixQ9//EMWOwsm44mUaMoyC0nzTQvZ76YLHVWONSrrVhjEmqDCpU1muKGmclYaB5BdcwcgKHmPDIWtqfSUGYI4iqJU5SXn5KdHQqSfTUdTXnv2NS62Fzw5e8KP7/+YYALbbouyApJ861kv13xy/xN88PzcN3+OvYM9VFB0XUdZlSijeOXrr4gxXuu4/+A+2xhrtvUWrTTVuKL1LYWWGUnT6ZTFYkHTNZycnHDl6hXZdL2iaRvOV+estita1+by2zTGmhtHNzDG8PoLr/Pi7RcFVESbBT+INek8D68xigxw07nIItm4uadYMxR1Z03NoASa10Imn5PVQy9mDvFeV0ZdGkWQZksNGb38/INYk953cvl1Icaa1GRCBHG5DfOpeyXImJCk25FY48W0MK7L3MwRdTjpfOUp9aqfD5W6DRNDM+zKyiNEoAd6DMY2DMYxfNnjKwFu5Ii6FC8dPTLjyRCslY07bFi4c66qU65r2DWGJig2Q7CnFAaNDQ4bs11nDWcf3GO6/2Oq6UKGRs6FaZBfCtLlrVzcxOICDYh7cKKHleg4QvKzUWW8ZA7pkpJW9Yy2VXKdNP1CDuTuBnFXToAlCqWSvgEFOjEG0iGmtbgz57pjkA3J5EUtpRUwTBYHeGfZPC7Rxki3U6RXnfacL48Z7e3y8stvSO3bFBhdSWkuFOiuYW82RelKvChKzcXjYzrXoscaGzxNXeJDbNssx4xGU4pixGg2o7Ety7NTJvMFHsN2u2W9WVG3DS54fBDXXJyicx1FNeXOG9/j1kvfkLbi4CH6c3jtpEwU92xQhDDIb5XoaHpdU3+P+tBJeSiJdRgEDjyZpVcg5UAJ+iabC4q+STbEqEEhskJeYbTHBYUOKZPqAY1WvZmOTh0tcfBqb4AV8FEoZ13PgNgQaK3C2rwc+781ETTLR/LeY20rJoBx0CYEnBfLghRsMtAKydcmfbKhCFLawbNhH3IeFGL+Z6JoU/QDSZAcWc2foSMFTeMlcUpuutZavPJswoZze86JOsEbT2GKaBzZP0cCCdnLQ0FhC+69f48f7/+YxWxBVVX9ZHZiNu3JHVcpkycmMklkmbL0pJ8oVUmaOG0w2Qk5xZoixhoziDXDFuS0HlNZI5eYiPeCFhCTxK+FFnfmFGt86P140nN5RB90sDjAOUf5WMYuJPdfFHjtebJ8wmJnwddf/jrTubjqVkrOSxEKmq5hOp3KzCbrMJXh+PExbYw1zjvKRsS6xhjG1ZjpaMqoGDGbzWhty+nZKTvzHTSa7XbLcrsU08AowDXKoKzEmkk54buvf5dvvvxNTBE7xUKKjS6XWwR/XBYOp+6ntH6GRxe6/JhszBfPr8df8o5JYtk0INIgbtRZQxN6sW7S26Sp5CrGmtQ5N7y2Sqn+mus/3qWUAMqw4yiEgLLqktA6ree8liII8t7T2jaPpEgAJImAh0AwnwfVi+CHsUYpFefd9Z81GWQqVJ7h5X0vSM7A/0seXwlwkxgIibhe/o57u/dbRsawF5ZcUaccaMdcGyrlscGQnTpUyNtRQMpSqduuWxuOf/Q+5c4exXTKtDSUuoj1UZUN/RKQsZ2L2Z2Oi9JJd0ggb1TgCEpFHYxcNrGjHzIFIW5oafFF4ELqTklw2ROCyTdUAPCS8WtNpIq1eKnoxGGYKF5OguXoOwIQhW/WtWg9xxSa0pTSpgx0Tcd4PsN2HdtNw2gMvoydM9pQ6Amj8YLRfAfvHLPxDrtXrnG13tDWW7ZNzXJ1Ttt20QXXQujYNivqFnamM7arFarUBBSb+oJtvaJpNnGRFsx3d3npze9QFiXXnn2Znb1rUWblSLOgZCGnUQnxnMZhmMEnr6No3hfbXHPVKDINonNSwjykG0vLqtMkABsIQcqfAoIUQYMOIrQk9DQ1ETzIQgtxA0iBJdoJoAhYspQukK+9zgA6MowuZtSD+8EjZobOiz/P8EZxSoKMWPrI8zjnep1Q1BNJF1acdq8gGfVlDUYstxqlB7+bCmoug/Hkm5MckBUqP1fS33g1fPdf/SNvINFPJt6CbP0WYwwX4YITdSIiVx1HKcT7M5vpXX7CfJiN4f0fvc/uzi7TyRRTSEePuESobOiXYo3rJCuulIwGSCUj6BMhh+vLRKH3rhkyBamElZ47b85pw1T9RmcGsQYQsaqEkjzN3Oik++tnTvXu3Cob2qWMu3UtczNHD2INSKyZzWd0tqPZNDCGUEYWRBsmesJ8PGd3tovzjp3xDteuXGNTi9ll3dScr86zIZ914pC8albQwnw6Z7VaoUsp6V3UF6y3aza1xJpCFezs7PCdN79DWZa88uwrXNu7lsWyqbNtOCohr5FUrvO9w7RWOrfU53skMg0p1uTSUsyRsjYrdgcVITosx2sZtHwvtYkPY02IsSb5JeXSZnQ9Vigsfbdlej8p1iRWxQUnnlSqFx3n5etE/MtTy1opsUaQYb0+M5xZJxQTnQQikxA+G/VdijWh75oaxJqszSF1oEIepEn/XLnb6qeINV8JcCNZaH8DiieJI4Sawm84oOOWXjHXgYISrRQGKz1PKnaTiNI2z++1yGydoDQqQH1sOfnx24x2djHjClNUaD2Wak9QWZsqrZpdbs0UalE2hzQHalhrT+WmPKcFLagsCJsi308tivJtPQwsKs29Qt5AFKl6Fx1gszFgb6jVQ2ufAU568sTi6KgpCd5iijnVaEw5rihNxZVnbqFNQbtt+Pz991herLly4zo7u/tMZguqYoQ3mtBqRtMdqoM5vutoNhdsNiv0+RkqaDZ6y3or4xqs7fDbBodnPBkxn0xiC1+gbRta6zBlibMWHywHRzd4/a1fwphCYoASfYeL3UFostoefF7YOsQ2a5U2ZjHyI2VNCB+iUvCJKyz6QMt5Vsg4CQT0CAPkcwZNFpkQ5wCBUk6MAJGil4qdfQJidGaVBJHH3ZIifj/k5wyJfSJkptAnS4B8L0hZquugSkOJ01vK9HFs+47A2qcxGiQmq8BoMThMMUvlklMSrut4bkIeNSEaDyPu0yp2TUVwL0veo9NHRc7BZXuEr/4xFIymAF6Hmq3f0tKy0iuCltlMSsnmAQOwkDYyBmWBQZZqjy3v/Pgd9nZEf1MVFWM9ljWdGKAYazq6/t9RGJzLDj8h1vinYk0eEaB6QWnPxHEJxCS2IH2WLFJ1/tJmrgexJmXbyacnG8rRl7h0EccYeMu8mDMejanGFaUpufXMLfHB2Xa8+/67rJdrrt+4zsHuAYvpgqqsRJPUaXanu8wP5nS242JzwWq94vziHB00W73N840629FuWxyOalIxmU4yEGs6afkuy1LGDgTL9aPr/IVv/QUZWUBvyjf0c0mxxj8Va6zvO2ltsLnDKXdBMQA6cS1cEr2qvqsqgQ4/iDWZwVOgvWzkyeAur9HY2WexmRW7xPIg5o8kliWVvwZrNI/f8H35B+jLUh1g+vccP0wGIsNxCGmQpUJAXxJUPz2TStF7+6RZaemzpsGYJhiSODuoOEsrxpqsJ0qJYdCX7BH+pOMrAW4gCopDwFBg4oUsQ8uOuuCGariqFWCwAZKBWnKrHo6rlHqjwoVAF9LGoAjesPzsjGrvx4x3dinGYyoNphpl8y6jZR6TCgprO0IYiyLeFOhUnvIJQaZgHz1sgnABIQKbKA/FIYLWPJMqARytUKogbsXxvSc9iMzsCWiULqL7bdR+RFCfBKJJUwIR7gSPVlAUo8goaJTRcQMvGI2mTMY7dF3DeDRjd/+Q3/7v/nt2r1zn5ede4OD6dUaqYjLZlSAVxzhgCupNTW0bVusly+UpZ+enbFZLjk8f8e5Hn3L1YJdf/St/iZu3nqU+WzLfO2C1vqAcTaR13onTsa87dg+vUhS9Laa0XIbMnEibdKJqVb+7M9BJeTUINGmjTpxM3+qstUbHjCZRggJUiecISO2zKTuIIEQHB1rhPH23SZByUvJOSr+Tfk2CWIoMMdCk9xn6zgvvIjjJTqd90Oqcoo3a85i0xGcMmZkR9gesayl9GbOm9P6jPFilMyigNzZHEbTGBwtpeniik7UYDNj4orI6RcfUw6S04OKU8J8tbCOCYkJ0zdYyCDO0XKgLalXHcxDnAuWEQX532OmSMnUfIhsShPkw3nD22Rk/2vsRuzu7wmJoGA1iTXLSVUHR2Y7xINYkVidPlU7sY7r5A5eATS590Buf5XKAkveUxMFps0t6kDyzB53Lc31Zlfw503DHwb6YdRVjE93Dlc7t40YZZqMZu+NdKRGNPEcHR/zD/+4fcuPKDV547gWuX7vOSI/YmezkWGOdTAOvNzWNbVitV5wuTzk5P2G5WvL47DGffPQJO3s7/Ppf/XVu3brF8mzJwd4BF+sLJtVESjJOSuZd3XHt8JrMu6NnZHK7MgI2h+64Qy1LBoh+UOKjn1E1/BrIG3NK1IMKOW5kI9lBrMnxJp5PZQRspN8JIeRZYtkcUvVrMsP0xPhAvhbDWOOcu/Tv9LhAkOGZAyYqHel5HVLJIEDnOipfyetH4XnSNWWmZvD6RLBug81WC2EQa3LZXPX31iX9Tfo7NvLwU8SarwS4URHjqRAwXlEEDcoxVUuuqxVHRjPShjZl9fFKaAJGpRZwOQyiu+mCx4aQy1NagWsN5+9/wfTgPcrFDroco00pwd4HghJDP3F/lWGSymgJ3joQfPTZ0fF7yktRKJi4oenI+ESeIG5M8iGli0eAio4JQ79py4VWcTOKgzOVkvb4xBrl+mqPykP2NgnxtWXhlNWUYjRHKU1pKkJIHQFQjEfooqRdr7n10sv8xt/863xxuuS5N97i8NouzYMTqv0Dlh/fhapi8/BY5kGNKs5PTgha07UN1cxw//4TfvDOO8xnC37+F7/P7ZfuUJYl42sLxrMZm+1aQIsuUMpGkzk4OLoeNRsJZMj5kz4z6XoSj5eoZZIHSVkuakiCChSqJOAIXkFU46tIz6RSkABKYdQEGBJfdygoluumlE5NcfIaRuXAJlqTgIkrzutASnd0ZAh93lFEOxRCHJiaWJMYQJyVtkxnrYhyUfiYrSnABmi6QBVBTwLF8W3l4Oy9xVmDLTq8ix1PCSMi/j1pNk4WV6dFmZ4sZUaRNvbpax2nhLsA6TpA9rWRjzJc5F/9I2WTIUhQT7OilmrJSq1QRmVTuZQ9ZvZkwIIMnyvT5pADumkNd9+7y3sH77FYLBiXY0pT5qw1D0OMscY7MYHEIwJXr7LuBd8LM02MNTrGmpydDzampHcwMXak96oGsSb9O492SFqbge4nGwPG1/BPxZoEEqajKfPRXMS/phJWJLYqjsYjyqJkvV7z0osv8Tf/5t/k/PScb73xLXav7XLy4ISD/QPufnyXqqw4Pj2m6zqqccXxyTFaa7btFjMzHD845u2332Y+nfP9X/w+d2KsmV+bM5/NWW/XEGTCuFU2u+heP7reM2twSROTZ3NFkJo+cyoDpTUQVKBUpTzeq9z5I8tC9WsjRJYklS5Vz5oMQdMlAJnu+xRrIrDNlQDI2px0ffPvRCCZnLTT50uvDTJewjsvHWwJ0IUeOBCQCeEpFibWL8WKmNdYJ/O3uqLrW7VTLIr3R4o14SfEmuE9lHU08WunBcAF1/sKXfospFj+5WPNVwLcgKBa7QNF8OxMYWdSMj9rmLeaidIUQJs/l5QTkspEtqkkp42bgWx5cbNEsmwVaC/g+EfvUe3tU85mmKpEVSOSniAgglEXXLwhkrZFQA0oZPCljxsYqLTZ0ps2pRsk4+OYBOBdZglC3GRlx02vQ26NU1FnQ+qEiehZxUnASVvT72ZxLAUKU1SMpzu07ROcG1OWJSG2LYfg0aagGI2wbcvt115jcfc+y+NH2KsLjt54lXKyw971Z1jcfpXTD35I6CyjowMefPAuZjrn/MlDHj36nOLhPX753/nzvPLaS8yPFqA1xXjCYveAenWO94F628hrFiVu01CNpuwf3UTFkp+cPo2PU2u97xmcBPTkRo6bqtYizdIR5IYCSZyFBRHixkegmFTDIsgxyuS2+rQb5O1KKRELE1AxOOkIlLQ2OFT0i4lAyEvXUAZffYKPymWfBEj1H7cT0Kr/nWgkmO5d58E6sD7epPlxYL0YTfrBQEzn5HshdjwpNEbp/pxFkKS1ZHHytRkEuUQRpReK1DmKYFInSHouD8FEMOjEl+pn6EieHj54mEAxLmjOG1Tbd6tkoIDqy+X8cXAjD+1/np9fBVjCez96j/29feazOWVVMqpGvdYibnIp1uSRCWnN0IOvNC9pqFV4OtYMS1ggk5mHLEHaTNPrQB9rhjqbVCYgcGnqeCCKU+OGn3x0SlOyO93lcfuYsRtTFmVuW05s1Hg0pmkbXnvtNe7dvcej40csri549Y1X2Zns8Mz1Z3j19qv88IMf0rUdh1cOeef9d1jMFjx88pC7j+9y7+E9/p1f+Hd46bWX2Lmyg9aayXjCwe4B56tzgg/U2xofPGVR0mwaJqMJN49u9l5AgVxuyiAtbbIDt+B8vSMT57WAyyIUBCM/S74/eahqvBeTGDzFmty9NlyDkX1J7E5ac4pBm/dTouI03+rp50sC5cyeDUBT+gyp8zat1+HP8UhpKrEi/RIXEONDP1sLiTXB9aUqE0xfXoNLa8u5aNMyiDUJpCT2Ka0pRQSNyYIjnstUunLK9UM/v8Tx1QE3XjaE3UPDK197jivjGzQfdZz94XvoFiCQvGjT2Zev+v/3JEmk+SK4UQhzQ8zY1g82nLzzDuO9XYrJlMrETRZxL1ZKEazDdR2hGifzWdmAs64GlC7JtvQo8J6gdHTETe9joANRpretRwZbEml/0qeIQjF0ZDXijhfiwpByjaVzHtt1tF2H7Rxd00LcfLWWzgKrxmBTnVWybB88znURp8UAqw2zoz3U/WPqdz9hUxt2bs/RVYlfL5keHKKLCq1KZgdXQSseri7g+JxvvPg61XRMGIEejeS55gcoDG3b0jYNzlmU0bi2oes6dq89y3S+G4OLnLts/uT8JYGrThoDVMw45TqHPEE3lpVS90ehYkabLL8T+CtyXT6NbFAMuh6UjudZXJnJwsAkmpTXEv8cLddaOMEMyASkCXgJEXBKFh3fI1G0HXpiuG/TDhnYBIS56TpoC9Amrd+0xkVvg0qv7WUqs7OZsfEJ2qf9TylCsBFkewhFRksiGo7rM0RmUMc+qSDnVhEiaEobevKciIDoZ+nwkrGbA8NzX3uOG5MbdB91vPeH70Hbg5VUpkjH0/+GPtZc2rxUb6K2ebDhnbffYXcvCoyNyQE9jUHorNjaj6txCmoZUKRYU+qyH+AZN740kyfFmvTehuZ8DkdFlTtyhl08SZQadN/inbPxCJKss5L1R1NDZx1t0/abrxYn47EeE2zIWkWQTb9zXWo6lM+jNXtHexzfP+aTdz/B1IbF7QXlqGS1WXF0cERZlJSq5NrRNbTWvP/p+5w+OeX1F19nPB3DSEp8RhsO5gfiU9S2tG0rgM5omSnVdTxz9Rl2F7v5PskMlBe2bMg+pGsCXNKP5GQzgsQ8JDPGmjzNPd73xSDWZMuAQaxJQt/cyZXAML3OJDFriQkZDtBMc5bS7+WylOpLV5f8efKy9/k8XMJagTjcj2QW1/8oiJZK/7FY0+uCHO7S6ymlsMFmEFyEIpdAE/tnlMldall0HfpzO2wTdznW8Mc+07/u+MqAmyLAwVHFt//cbV5/4xYz0/JwL8D5KesPH+F8MqqUDUvFG9/EbNvGAGyURkdXY0cSFcvGnoKAt4azD+8xPnyfamcPVRaEsorgI5aeokuiZMcKtHTtoLRsrFHAJZmdbGCxviU+IHHvTYZpabq34JeE6KXMQgxMYlgo23ca5Om9x7eOzbJhdbHiYnnB+dkZq9WWZruVkfZNTdtZbNvENmsgOHZmhrde3mWxGAvYKTq6LlCYEhmb4/C+A6Uwo4ryYIfuyYrl2x/CacNofw9bntBu1+iqpFttWJ2d0tmW8OgJRaNoTMu2aZlPdlGmpBrN0MrQrFasL1as1hs6L+/JWkfbBW7cfjVSr7Yv14RoaRMg6T8InpCmopNo47SZQBJjQ57GJRu1TjcH8XsBp2zc0BXKO5Q2hKyBCsK+KUXwCqUSixJBjVYyODRBojDILOKaS5obORLtL8+RAGzqckCr7JJM0LE8F0GYLBG8jwM0fcBrFaeayw+lO00eHlT0wnA6ZtupuylleTq+j77TyanEGMk1yBEmBHxsadWQpG2R9dTxvChUtDgWT5yfKt58NY4Ao8MRt//cbZ5941m6oiPsBU7PT3n04aOcwaasOoGMlG1nG/7Ujh36DSbFhBRrjDXc++ge7x++z97OHkVZiIhWJYNOyU6Tn0jK3IlMi9Iqi0XThpd0QEO/nvR+E7ABMkuDJms/EggqYqxJnyNtoq5zNKthrDlns9qw3Wyle6musZ2l7VppKU5AbWrYeXmHelFjChkzUXe1lOKMPKbzMs27GlXsHOywerLig7c/oD6t2dvf46Q8Yb1dU1Yl29WWk7MTOtvx5NETVKNoTUvTNOxN9iiLktlohlGG1XLF6mLFerXOAmBnHaELvHr7VWnzj7EmXZtUasntzGEwFZ2+2ycduXWbftP1g1iTl1YIWGXzhi6GlzprUC51Vvler5I1P9HPRS7f5ViT19zgmg8BdzJ01INYk7qNvO8HwKKfAuOebOSXgFy6sXPb+CDWaKfzvKoE0oaMUWbCdDS9TPuk70XGIYS+fR6VPZeSON7nWKPyec1g/0seXwlwo4DZrOCNbz/Dt7/3Otev7bPdHNNsX6D99hkP1r/H5t55PhEKUMqR5k4ZUpu+BOUinTAG28UgwfRAt9ac/Ph9JgcHlNMp5eEhqihJ5YE0WDB1t8jziRYBldTh6QNYdBCNjsf2dGDMVtCiHdHaiH9PaumOYl95rEEbRZohZW1gu244fnLKyeMTlhdLNuslbVvTNFvazuFdh+1amkZcOK21eJfqqprzU8WVRWBnR4z2bNdS6IDzXS6BaCPGgcEqismYya1dTKPZufIso6NrtE8e411Dff8J7WqDKQqajaWxlk2o6bxjUs0pqoKiqBiNJvjWsjlfs16vWK9XBALWeuq2ZTzb4+bzX8P5vsUgbwzxhsosbbxZfLzGKuoB5Ichgk1hs7IgODImqU7Uz6CKXU74+Fi5vYWJi8Wb+HsCokx+nWxOFRmiS6Z1IcnfAjEFIS22/DaIZcwoe0+aKcFxLnbPJX/tXGjE+oBzCmfA5GpDBFlheM5Uzx6ROCHRL6VylDBWg79DIES3U58mhQc5xz5kG0R5/1rAn4obgtGlrKGQXuencw79t30Us4Kb377J1773NQ6uH3CyOeGF7Qucf/uc3938Lud3+1gD0ZcmXA6qPfemLm2CefMcbD56rXnv7fc4ODhgOp1yeHgopZu4gT49WDD9Z5QR0bNKlhRglZR6vPPSxZXp6ripROCcxMGp1JS0NAnwKNO3kwcXaJctJ09OOH1yysX5Bcv1krqr2dZbXOfoXEfbtbklu+ukLTszXEbhF55ip8j+PkEHOt+RbktjojbRypyn3Vu76EZz68otrl25xuPHj2lcw/H9Y9arNaYwdBuJa3Wocd4xL+cCEAuZjG07y/p8zWq9Yr1ey2brHG3bsjvb5fU7r2fGBv54rEnnbyigBgE4Q1EviuxTNHSSHnbO5fbnBJi4POhx6D6cfm8IqpK+JYHqxHKkY8hq5FERhPyaRMYvzbpK2p9cToqzrrKwdwBwgo/C4tSMS8/eDWNN/nyJPaJvOX9aiJ0E5yGE7Kyc2sVlWxzMl4q/k8FijDWVrmQNBflsQ4fwP+n4yoCbW3d2+Pq3XuGZW9fRxlHXmvHeLgcvv0Z7fsrm/J/B0kcBcWpZ9BRR3hnZ3AhMYpswkbkhCM8eV7MCQtDUT2qOf/w25WKXvdEUU43T9hPnE8VOkCICG12K0Z1OXiby/zQUU+kATnwxVKybplIXWglLE39f2JuEdmOW78VHYHm+4fGjM04ePeZieU693WC7js61bNYb1usLzi7OOTs75vz8lOVmTd02dE0rmbiCUismVcnezp/j1s0JO/M5ujB0VlO0DXoUHZERBkEbRbCGoppgKkXdnrL6+AF+U6PMBKsCrjKEQuGsh3lJaCqMgtlsQVGU6EKQ+npzzmp9znJ1QWstISiapqZrPa9957tMZztR96GjviXVYE0s96jBuUu0bspO5KueXA8YHXU6eUdJAYbItAjjI78bmbWkHyHO8Eo3ZjRlSyZ7IbVYh8FzxrEE3omOJ0Q9T4i145CfPwGYCJ5SvScObg0hRPO+4egGOTxgvcJ24A14JZIvi3wOH80Qk6iYEKLbsRXKJZW+goqgLKBUIUCGRLFLx5TO5ysFLieMYwKbGAidTDT3Q61Y0nz9bHE3i+cXvPqtV7lx+wbOOFSt2N3b5dWXX+Xk/IR/dvbP8EufN4+0YZis6ItHBKk6POVWnDar+J8OmuZJw9tvv83Ozg7T0ZRxNc7PVehCNisPqojMSuymShOi0/PljVUHTIw1Qyt+Q2Kfdf9HXdbTMIg12/MtZ4/OePz4MecX52zqDW3X0tqW7WbLxfqC84tzjs+OOTs/Y7Ve0bQNTduIHgMBVFVV8f3F95ncnDCfzzGFQVtN0zSYscmiV++lI8hYI51NleK0PeXBRw9EI2Mm8pkqIyZ71lPOSqpWZqelWVImxprz9TkX6wsZAWE7VFDUdY1vPd/99nfZibEmdeGkDdUok0GPIo6kIJWrVd6U+0sdwYzuN3boN/v0mKeHbA5/Puyyg36kRdLW5BbrMHjOKHT2Ljr8Dhx/h2Ajv5/Qvy9Fcr4XMJH1L6Z3u86fz6u+HTwG2PyZo+YmlahCkPeaSqKJ6UwlsRCkE9ENYo1W0jE1fL/peYZgs6CgDa103UX/pcTkpPP5ZY+vBLgxheKNb9zi9u0bTKYT2mYFKlCMRsyuXuHgtTdYP3yI/cNPkM7cgFIOH6RFu1AaFZxkniGas0Ug4wj41EIHeeNEeYIrWH36kLODtyl3djCTikLNJctQslk5HyiVsC2XYnjsjpKTneB/AcrHQYMqvosIquKCMdqgjKwgGROvUWic9ayXHY8eHvPk0SOWywvqbU1dr9lutzx+8pDP7n7GF/c+4/jshM12E8tm4dK5TPmmUTCpNF23xgdYrcWgzKCwZUUZArgOo0tCYTEKcB1dt8Jrg/IGi6UrGpTvaM0GNSuwrsWNwPgK40uqUUlRKExRgBZb9fXqjJOLx6y3G6xzNN2Wpm5ZHFzn+VfekneZiI5UhooZiohc49fDktMgA8nlnvzZ5RokzxvJOOKGoERkHQkOdJynQxgEscF1zU3ckY71IRniKbKhXYYgAp+EKg75/aSnk5tWESfPxfeeHItDbOlO7ytSVoKCCASsF78b58AXKY5IFOh1Ay46rYZYjiKbCUaORzqfon5Ix5Kpd31pV8B//Hw+dqolFiHIsxRaQkUXBl7tQZ4jBc2fhUMVilvfuMWN5yTWrJoVQQVGoxFXrl3hjdfe4OHDh3zyh5/IZVMBp1wuMySPFMJgI0mbQAiXTNzSf155Clfw8NOHvHPwDrs7u1STinmMNUmPkPQbqR07LaRsJjcQkhY6zu4ZdEylAYTDWGOMAB9tdAZKwQa6Zcfxw+MMauq6ZrPdsN1ueXgsseaze59xfHrMpt5IR9dTPf8Z6CnQpWbTbSDANsYahaIqZchi5zpKXWILSb4617HqVgLsvFh/NEVD61s2ZkMxK2hdCyOofEUZSspRiSoURSklta7rOF+d82j5iM1mg3OObbelrVuu7V/jrVfeIjNp0WMohN7CP01dBy61yg/ZDlRvKje81mkK96Uyleo7lpRS2SdoyGpcxsby3uwg1vjgM6AZECs9UFaDmXeDI60991SsSaXH4fOlKfNClkTdpVei+3BkVBCIzxnHNrgYa4Y6pQya6Tv0kn4oA2nXl5QSQEmjY9J6TcDQ43Osya7Hg8Thp4k1XwlwMx4XvPy1O+wf7lIUCtsojCqkDXpUMbtxg8M332Dz+DGrz9eQM2n5fZm/3d/4SZchwCYyXHGfUTD4X6Dbak7f/Yhqd59iOmFyTaGrMUrrDByExUn1ajmyhoIgRoEKCC662kaL7igYJvrXaD0wAtSRawrQdZaLs47PP/uC4yeP8NbTNDXL5TkffPQ2P/jxD7j36D512/yxRf30kc6Bpy8z7B/uszpfMRmPZCFpGeIpi8hiigKNohgXdG0jQ0VDgOApR2O6eoMqwDVbnINuu6ZrNkzHFaNpxaisICh857g4fcLy/JTVdoN1sgE325ZgSr7+3V9jMplnX5TgY0dRpBxRIrbOJZIguiATJzGLc3Es72gdy1eXQU7A46R3P75IZNgSk+ITBR2i16IsjKRVSq6/JDADBJ8yJXFUGga6zAiGFLdUH0TyVRGWI/nvpDRl2MarVWKrBDCouH6tUzgXF2/8VedSWUrE1yYksJfOnZDiitioHpIoO75d78Wf5ukSG6k0AoYCFyw6dQUCKIUJIYpZwSF6osQ6/SwcxbjghddfIzFbAQABAABJREFUYPdwF11oVKMolYwOqKqKGzdv8Mabb/D48WPWn69zJt1f0/46wYDxu7wT9Rdf9RuI3mo+evcj9nf3mUwnqGuKcTXuR6rQsziX9B4DYJPKJy4I4EqePUkwnDqhEmuTYk3aSF3n6M477n56l4dPHuKtFxfg5TnvfvQuf/jjP+Teo3s0zZePNXndKpVjzSjGGrQM2ix1icVSFCIaKMYFTdvkoZI+eMajMZt6AwVs2y04mQS+aTZihjitqMpKNtzO8eTsCWdnZ2w2Ar6CD7R1S6lLfu27v8ZiusisQhJgp1ijle47ztJ9heunvofeMPFSS/iQpYkC2czIpIQqJU5+0BaeWvwjWCDHmp6dya8b+ucdjsnInW8xwcrAbXAMy1L5+oTLsUYNYk16TEDKUsGFfr0HckdUBniB7EicQEryXEpAMOtitPx+KpUOwXEqQ4GwNTbYS6AyMTzJ68nH/36aWPOVADeT6Zhnbt9gNK4Ivosf3EfZhKKcz9i78zL1N49pT3+fsAFRBUSxqUoXP9EzMduPm1d//QelgvgdE6A7bTj+8TuY3V3MZEq1bzCmwnuLta0ED5MoXXNJSQ99wPNEgXCQGy2Ic1wONtLSXUj5Sksqbq1mddbywTvvs1otccFRb7e8//47/JN/8Tt8evcz7E85DRU5BbhYqphMp4DiYrVmoaeSxW2XVMVYJiEbQ1GO8K5D6TFiLuhRWuOaFmPigMRSY5SnmlaUixHKaJT2eBto2xobLJvNlvX6Qlxfmy3rzZr1ZsNzr/8CN555IZZUIHWYJf2JnLcQAU7I104FgwseQxR6k7w35Pb16RqHpIuJj4mZRYiARwXxRMoeLVrhgkcHQxIQ58ATotBXpdKMQgUTtSk+Yqnh5hbiOotdR4OSZL9GIjuVfjcKVZWSkpm61KrZZ8VdkJZwF9LNqpCxCmkH7fU31nWio4lkYnbV1iKUDgTwGot4Dfn02RTgfc42hQGTTrXcRZbul3iZZK3HgGl/dpib8XTMjVs3qMYVXZBY45TLQX82m/HynZc5/uYxv3/6+7DpO5uADFZyVhr6TebpIZOXSljyTZqThnd+/E4/nmHfUJkK6y2NbQTAxFhj/jWxJhD6oZkx1qhBrNFaCxuhI+sWQFlFe9by/jvvs4yxZltvefeDd/mdf/47fPrFpz/15OX0ufDSNjydTlEo1qs10xhrltsl40GsGZUjOtcx1mMKJWMHtNbShRWHROpCykjVpGI0H6GNzkxVHWNNKps579jGWLNZb/j5r/08Lz77Yr8Zk5jgfuxFCH0nU7p2JphLwt6ka3n6cSnW5PbvAdjIACiuDaDXQQXTG94lRiREoe+ASTHI7KbkZDwE0mHwX9JW5TLVYO0lpiZ59Hh8Fulqc1lflNdpagkfAPkhS5kZlMjE2WBTCMogME2hD8g089zpFHomxw9iTSp3DUuG+Yi5YCp9KkQo/mWPrwS4GY0rFotFznylZmwGZlOayd4RBy9/jfXde6z+6ENEeSO5sKZvlRVFg8IoFTP/nrWRK5E2BAnqQSnwhs29U87ff4/x3gFqNEHpguDB2Wi9ruR9xLNNP/QyZfAqdx0L05OQadxglUIpI6+X6uZBszmreefH77Baruhsy3J5xj/+/d/mD37wL9g29dPA/F97pE8npTpFqTW27Qjec3B0xP3P77Fcbkit55qSsphIqc9ICciogC7GlOMJzna05RLbaNrGEDC4ECjbWtqOlZjQbds1nbM0dc1mtcb+f6n702fLrvO8E/yttYcz3nPnKe/NCZkJIDESJDgPlmhRpChZsi1bUkWFqsLubldHVERHR/SX7j+gI/pLV0R/cUdU2eGqDjva1VaVSiUXNZRFkRQhgkCCmIecx3vzjmce995rrf6whnMuAJKgpwJ2BpA3zz1nnz2s/ax3Pe/zPq+agBFMxhMG/RFaxKyfesSyV+5aKu1bUphpvy5pEMTWiwdH8fvLGFmAiWwUYu+i/59jefxz4QXC/mF0No5Yf0WDU9biO4jjquu8zYDxIlk9fajtEx+5NIAPnOz+pPcdCituG7gZL0J1q/BgyiZcbyb3XZGMbPUK07eXy9KKv8eGQlvfGznVOLsJRQRmyr4+PVIX3QXwwZmVuWItC8XS7tfvU7hgUwrL3ClhdVC2dNSmd32KTrjxLpiyF5+ELS2nzDXmAHtvvb/LtKGtZGVhhcuXLrO7s8vNt25O0z1+EydZi9nVvwOEE0HIrDNtbGJauy2u3bjG0uISlVLFBh/asipASH/5CXW2A/T7vy/2adbZY/KBkZiu2IUWZJ2Mq+9epdftkRUZnV6H77/0fV5+42XG4/G/1fX03yEjSZEXaK1ZWVlh9/4uw94wrOITEipxBZQTFrsFQTkuUylXKIqCbtJFZpJoHFnPGeMCGWUbmhZFwWA0sJVY4zGD/oCJmiAc1oz7YyIRcWHrwvR6CVc27xhXf5+NNFPGAHOCnZPRNH3iU4zeDfrEfWYaGPhJP5Tb+8XZjHh2Vk/jx4fEBQAzWOOZOF9WH6qlxNQLyXsMeWuA2XQYON+iKAr6H2lsew4fYM6OZVm24m8zdhOmr+CAsEictsIhnK8//8AAOazxxoh+QrLYztRHxxB+7/ul+XMLbR4cgxUcwv31/qRpbuI4smxG2FwAIOyEYQBRkpRXVlm8/CT50RHFbi9gdzRD/UKYuxxtZhxx69M00/dMh6ZAZzGd6/dIl5aIaw2iNEEbyMSEIstIknSG0vM0sQuUmA5u4e6ojGJXXWuCXkfKGN/LqCgUlajEtWuv0+t1UUpxfHzAd/78D7l+7xb4h+vnUMOzW3jufDpNG7I8Q6kcgWbz9CY3r99gMhmzOD9PJFLSuILUEpO6VEiWWY1KVELKiIiYQlvXZ63tRGpzydbTZzQYk+UZ47yg2++hdIGUkuGgT6/XJ1OKUr3O/NKKi1L8w+7N+XzVlMF3Are3xPibaIMxDUib7BM4AzvjWQXl2AR3Fby41+3XB1Fgq6N8LzEZ+TDAv8emodQMBesjJm8JEK5vCBy0G1sKE/QoYoaFmb1/3ovChEDMa7KkT1NiiCPJ8soiQig6+x2ywqC97sYYx375Umz7fbO0sdEKhO1rJRGuasr24TL4oM6em9UK2TSdb7KJAyOBBbQocqyVciyTmB6/0TNI/wnYoth2Yobp0+/LWP1ELEuS1dVVnrz8JEdHR/R2e9NTFNPP+X/DyVX1B5gc9xm/uo6zmHvX77G4tEij1iBJE8vqiAlZlpHOYE0o653Bt1msEdiybo81vow8lnGYmIvC9nx689qbdHodtNIcNg/5wz//Q27evTmdyH8BrPFbmHiVIcsycpWj0Zw6fYrr168znoyZn58nFSnVuGoFpKn9TJZlSCMpRSXLNBEj1DQYA6eLcczO2GGNKhTdXtf6r0jJYDCg3+tTqIJGvcHq0ur0PhlCCfes23RgSwRT1sQzMS6F5MeDbx1gjDmhaQkLsLCcOIk1ISDSBOO/wPC4FM2J59Z9zlsC+Pd7Jii0bTHTLtwhiOAk1pjpQQZI8kFXCPCwLOHiyiLKYY0pTNDdzFZJzY7t0NjSCApdUKLkhvn0eZptNBrGrJhe99BaBDElMRzWKG2LNXxwGU5FG07i6c/ePhbBzZQqtMGHDU4c/SS0ZcaVICqXqZ85Q/70Uxz1XkZ3bGftyHgex08/ntEyKKaFqn54TUMaMMb1hsIw6Rg6V69TXV4jblQxaRm0Qhc5AoMw9q7bm6MQWKGxCQPeVT5JOwykjEBG0xDIsTZFPmGxscSVv36dbreDNppm64g/+tN/xa17d/Ecwke9jUJMG3wao4kjQSmSlJKISAp0nls2Jy1z7tw57t67x8HRMbqw31Mr1YnzlETGRHEJmZQQcYIQhihOSZIKkShbhfxoiO2zFTEaD+gPewwnEzrdDqPxmDQtMcpGdLotJllBUilRrsyRlqq2ezfYwEMCngYWAuvuHE8nTmMsoeIcRH33bZ8Wkk6NLABpLDMmEY5WdxO/08+E4FPYcmYlNLFMTmhTpPO8wWi7PxOhgg8PYZ+eNhEOMHEgETraagvElhX2OXo9Xdm5AMqvQLRRVvQsffNNe99r9XmSRNJt9ihGilxBbBuVYQwURe7SUGWMxnXoNVbPFJgoO+YiYZxhs3tChG1+qbAxpBdN44Iumx2MEZEztFT+aXGpV2QQHtuWAZ+c4CakiH3wIaYmYUYY+wgrQblU5syZMzz99NO81HsJ0zFTS3k/ib1vMplNDfjXZgOhUE2CwXQMN967wfrSOtWGrZ5SWlmLfExoSOi9RSKs0NhPrkGHI+13+LLv8L2O/ZlkE5bml3jjR2/Q7rTRWnPUPuIP/vQPuH339i80Wfht1sVYRHYMREkEEeS59bIpJSXOnTvHvXv3OD46tpMmUC/VSXKrwSnFJdI4JYkTjDC2vDupUHZYMxwNQ/piOB7SG/aYTCZ0e11GoxGltMQ4H9PsNCmyglKlxFx5jkpaCZOqdlgTzWCN19YELYxPI81gja9M8tc6iGRn9Cu+WkwbHUq4fZDi962FJnFYM5sewz13wtiWGr4Kyd8/jxe+smt2zGntAiOHNZgZg74PYM00cFXGprpm3YoBGvUGURLRa/ZQIzUVFju2JSts0Fo2ZXtO2qYHPdvkS7lDMDKDNVrMpMvMtLx9uni0gXjksAZ9kvWUyCA8lpEMHkAfZftYBDe4B1FjbPpGCiJns2wh1QYQWkB5YZmlS0+QHR/TfO06IrcpKG/iZtf5toUCbnEdzMb8qtRtBmuJH4Wu3ZLxXofuraskC0vEayvIaoU8t+I6GcVWU2G8lsHXZUVBrOx9aqSQyDhh6qLiBq7W1Ks1Ht475Oi4iVKG0WjEd7//p9y6f3dmFfDBzaYUbIAkpSCOBGkcUy7H9qyNsop2Z0qXxBFRbBs0IiCOIuYXFnkkjdm594C9wyPbhmGpRClXJNWUtFxHJiVklKAmI7RSiDhx/ZwiklQg1Jhs0mc8KhiPczrdPr3BAIOhyBTtbptMF6RpghCSxuIaaVqaquoRoTcNxlG2BqSrBbIVPcKWJDPtpRVKnP1qGc98YAMdIdBaBA8d48qlvQmdD1QkXvhmGSSv7bKsWuTMBTW+WbdNeTntDmL6ohtbdkUknIZlSmlLf+xIJ761xzHrOyKlJI4i4igJvkm2ukJSqzdIygmTkbIiYjcwlPOlARfUCOWCEuNe9l7e0rEzwjFgBGC0KRiBEgJhtAty/DmB9D5ELoWIkSeYLAQuiNPuOfhkbLMpHx/oeEt3nw5Q2OdleXGZJy49wdHxEdcd1oTVPVO2eJY2NzPXZzaw8ROkL+WVRtLZtyLepcUlVtZWqFQrTBzWxFE8TSfMiIMjpm0EfGWKFJIkToKI1GOI1pparcbh/UMbYCjDeDzmT7//p9y+93MCGzG9VkibqonjmLhsBc/KYY03OYyiCBnJ8FoURywuLBKnMQ/uPeDo8Ig4iiktltC5RlYltXIt9NwaTUYopWygY+x9EKlgrMb0J33yUU4+zq1hX996Z6lM0el2bCVWKUEKyeriKuVSeSqm/hCs8cGAHw82Ta6CxsayqyIEo7P3EAjpJqHFCddj32n8/dqRUJ3lWkD4oDTSNqg5URllpgHD+xlA47DGp8c8W+jTqZ6d8R3cvZXASayJrbGixxpt99lwWKNGtrWCP5bgS+PGU+hY7gI4H0yFXlHuevr3++fEjyV/ruH6uAWhf49WM2k9nwlxWKONnvqcfYTtYxHcCCw97mMPCxrefVNiRDENXRJJZX2NpctPMT5s0r/bRCCdt82Uk/FD24cV2k1IUzLXReJggwGs5b3JJIPb94mX15grlyiliS3ZVcaqjx3ge0DzLI0fZnbGla4s3E5rOA2DEDAZjylFZa5fvUE+yTAK3njrZd68+uZPpYUjKYmlZHG5wYUL54jjmP29A1rHR9bMa+JE2G5wZcqW2dUqoPLMCoWBNC5BJCmrnK2z2+zKBzzY20O6MkjDAqYSkWhDwYgiG6OzHCMEWufk2QQTxagChsMxzdYBzXaTdq9Plufkk4zBaESUxlQqFWQUYYxgaeUUaZy6DtKuAik8sJbtkiYKaR3bDdx5JeD1HraaSRpPreJAinDPAaLIpl+s740PeW1PLeHYHq11oO9dROooZ8sK2TJrO3ICA+Mqu4Ixl2OR/BbcgbWxnkbCdjYXxlPExgVpzjXY+R5JIa2uywVb9poARtOYm2euUWfcGYdeU5Fr2DebNrNpOevLoxyjwgz7adO7OrS6wFV52OPStvmmcg08jWWlrA5AhNSu9dDR4Wfh25VrQSQ/FjDykTaDOZEuAsJkIIWkEEXAIBlLVtdXefry0zSPmjTvNENwcUID4/7MfMmJcvATDI+YgrrMJPfv3GdtZc02mEwTywYog4lMAHyPNZ6lCQGVcDoeGZ9kJBwTMR6PKcdlbr53k2ySgYIrb13hzfd+Otb4SbCx3ODcI+eIk5iDvQOOHNbkDmv8RKYd1lCZrvCFEaRxShRF5Cpn++w2D+QD9vb2AmOywAJRJQINI0ZWW5O5MnGdM8kmNt2mYDwcc9g6pNlu0uv1yPOcLLM+PLHDmiiybQy2VrZI49SZU570RvE6lchEIa3jnwMvbPYMBzNY44Wtfgvpl8gGeT5A8GOpMMU0mH0f1oQqIC/49YJwB2beC0jOYE1gkdwWKo+0SzE5xgOHNX68+TEdfI+EtEavRp8YrwbDwtwCdYc1XlgsIjENRNzfvkO4cVgjka44Y5qGCn5GTCvKPLNZ6MKaP+opKxWakXocdljjfxbS6ZQK8QntLYWwk4MDV3CTgpjm+ZQpEAbSapnK1hbzlx9j1LqCbhUhLUX4244nFUgz3Ir7g6yI/zbP+kyaY9q3rhMtLZM06hTFGK1zjJauEsaWBPv+TH7k2rjGMwHGgaQXj2p0oYCc3fv7tDtdiryg1TrkhZd/SP4h9fuxtN+htdWOPv30ZTbWN+j1euze37FlnYXt/aJmBmHhqLtKaerea7RGRBFJWsK7Ja+tr1Eoxe0Hd+n2uqzO95irzVOqVJwuxNh2BNIKbAuVM+l3GA4HHB0fcdhscdw+YjgakeU5mVGUy1XSJEJKQSQlhTIYmYaL76vJfCRurw8IYdBaglH2PVq7q2w/5/Pbtr4ystd0dnVscL1aYpcyKtykbx8rcyK4EP4jjr52Y8SVhGsXTNkgyznogU3FSMCtjmyOyK7YpPsuN+fgS6yNj4exrJPRfuVj02F5XtDpthmNeuG+G2NQSlOr1lleWaW5f0xR2HspXXml7SPlyuBdCs6mphTK+d8YZQNFKxo2gbmyaSzl+sN4GhvXTNKgTWbZLimDRs3fK4xnhNz5S/tcfpI2LzL14Ao26PABidY69MYpV8tsbW3x+OOP83LzZYrW1JX3/WmnGaQJWPNh2+znxs0x129dZ3lpmfpcnUkxIdc5Usup3gTpMt4nAymfHvLpNV86rNG2B5TJOLh3QKfTocgLjtvH/NVLf0WhPni/bDUnYbXw+NOPs7m+Sb/XZ+eBxRpVOOM2PcUanyYwJRNKn7WxXiWltBQqetbW19BKc+fBHZZ6S/Tme8zXbMVY0HC4jtgK64jc6XcYDoccNg9pHjc5bB8yGo3I8xxlFNVylSiZmhYaZSjJ0pTN8BgjpyXLPvCU2gYmoQM35uR9dexJ8ML5EKyJhTVaLChsSb5PC2FC4HmipN9N/H7/vlLIV01FREFrpBzWBPNBd2+VUeG7QnAevDUIxymMmKav3O+LvKDVbdEf9cM4tVijqFVrrK2ucbzvUoju8fb+NqEbvDEhNeWN/EQhpo1oXXouBM+uim52H2HcGMhMFoT9ZgZrvADcn7dEoiPbwuOjbh+T4Ebge+BIXyLrJj3rBomL5owTD0tKi/PMX3yMcfOY0ctXkdqztfYCWSmy9U3xwkvjQcH9bAeIY3mkRroJxyjoPTgm3bxPdXUNs7KOUZ7GtKknnKB42jMowgs1pZzyR3awaYwWdFrHLC4uce/2u+SFRmnNrXvv0B90Tl4NIagkMUrrEPScP7PF5ql1Dg8P6HR6DPpDsrwgK6aTE8Y6MmtHWWoDnf4EhHDaDkOclPHly/XGAhtGIMU+Ozs77DzYYaFSY2V1mVKpTBwnVoMjhLVcz3KGwz5HR4cctY5pdpqMJkMyo0hKFSqlOUpJgowix9JYE7q333rAYFTimWceo1avIrGlqUGDY4x1SZaCQhVT8PbBoRBOZGcFwREKsAGOcN44xollc5O7h9kHU45hA0Lexwe4RloHa0+zYv2BcD44+AdMCpuWATfCpt247WrD3WvvqePxTGAbpYbjFM4OwKYzbRmnQWU5QmviOCLL7XUQAmrVKtvb5zncf8hgr01RWKbQMixWFK2xBNIsm2P9MNz3IcADhIgpXNBmWRibYtVauRScTWEasCyn0iAKvIjeAraASLgGrsoRQSe1Jh/nzZ6JPZfQN0o4EambqP1q3AcMjcUGj116jKPmEVevXA1VH7OMjK96CWXCiPAe4bAm6BDkjOeHguMHx9zfvM/a6hrr+bp1vrYHe7JTuMOaSEZTPxApwvcjHAulBcetY5YWl3jvznsY1zz37Xtv0x60T14PYU3xvGMxwKnTp1g/ZdshdDtdhr2hrYQqTopf/c+eWZr0J5ZBMgojDWWHNQbDQmPB6ktkxM6DHXZ3dqmWqyyvLlMul0njlDRKEcIKoLM8YzAYcHh0yFH7yGLNeERhCipphbnKHEmSWMbGlx8rw/2371Mal3jsmceo1qu2L5c5KWz13iuzWOPvtT9+sONDYfVO3nlYocLvPdaEfEBo5jv9Pr/70NfJTIXBPp0UhLbYai5f+WSRZtqNO1Re+dTUzP5hJnUjTvaW8posIwx5nqOVJkoidD7tn1WtVjm3dY7dvV3ae23ba8q5Mc8GseiTIujQU2rm2dJGW9bdBW0ea6SZafSKCOPNCGMzEA5rTqQHI8tKhXvyUxjHD9s+JsEN4Fga4yclMfUz0djVoTHaGsxJSVRKqZ/aIH/yKTo7ewzudpDuonkmcTZdMVvhZvz3MZ2FJCY0vNcI8j50bt+hvrnF3MamM4bTaC0QzjfCV0F58JdRFPYaInbHROV5xrU33ubzX/06rU4flWdkxZjbd66fuApJHDNfqzIaDSiUFQdvn17l//hf/AOuXbvKeDyk023Zni9+pa19xDvVdkZuXrv38IjeaMIqAlMUqCInTkukxq4hqrUqqxvrxKWUO7dvc+3hA96+c500LpFEEWmS2KaRAgql6fW69EcDMpVh0KSVKrVKlThJiaMUKQ1xbPUc2ThjlEWYrODWzQcc7h/x6c88yfb2FiJy5mj+bkkB2nbklkaG1ZbBVkVF2FyUxFdIuXP2/XWkAO3NpvBRKJhp00ofZOACPymcT44Bg7QTu39w8ayFC5bFFHACnvjjiYQNhlzTU6/xEaawmh986sOE0SilnVTKpYSlxUVK1cc5dfYc3V6PSKacOb3NoxcfRWlFf9Dmzf5LZOMCFBSFsWkkF6ggYheQ2NJyP3HbKMtpvoyhcDqJ8J+2QWEo9VbT1Zlluqz+yFLbGmGc74oQbkwIlNLkxSeLuZlNTc0GO35l7XUQUWQ1C2kpZX1znaeefIq93T06dzoBoGe39/979vumbPK0qiroKvpw5/Ydtja32NjYmHb/1iJ41EQzWCORoZzap66AwERlecbbb7zN17/2dXrtHpN8wkRNuP4+rInjmGqtymA0sNUpkWBle4V/+F/8Q65ev8pwMqTlsManEcIkN300QsrlaPeIyWhiJ66iICuywN4YhzVr62skacLt27d5sPuA63euU4pLRJE1UZwVy3Z7XQZDizUaTbVSZa4yR5rYQMhIY9tVOKyJsgiVKR7cfMDR/hFPPv8kW1tbaIc1BjNNo2gVOlN7rFFMXYd99ZyZwRrfy8s3t/SpJZ869AxD+NkzN44t8tcsIjrBZEjkiQacs1jjN388IhJB+O4ZIJ9OVTNYE5gZFzDFSUxSSlhcWCStpJw9c5Zur0sqU7Yd1mit6Qw6/Lj/Y4pxYQMcZYNenwoLJoczQUjwz2HahkS9D2u01sHp2HwI1kQiCt3HtbSeQD7l5rU3Wmny4hPH3BiM0CHH70WRNkyxg0Ap+3sprKU4QhLXYua2z7L01BP0mi+jenYCmRWd2j35kAmCwBL/bAqkMM4bxg4LDGgtGD7s0L9/l+z8RXSeY3QNGU9BylL0hEDMTp4RXmxqxcVWv3H31i5HRx0G3QmT8RilbaBw6959RhPb3yeOI06tr9FqHpMrTb0i2Tq7xn/2+/+QenWOh3sHjMZ9ismEyaRAKaeBmGEe/CaEFYje2z3mR6+8w5nt0+hCobIJcRxTrszZtEUJ0IYoSYgiSa26x3G7xdFxk85hi0G/S5FlLvdple1JKaVWa9CoNyhVS/ju07aKymqftEsrvfveVe4eXuWXv/IttF7n+9+7wmOXj3n2mccplRIH9r6E2vnoCixFHaqrICjg8NG7/889VE4jYy+9lXHbgCIKqxhrwmedjbVQaGNR2eps3HX0i+YZKlpKbNm5MCFY8Sto297BBhW+HYZdwNnAc9bhwCDBWCPHSCZ2cpmrU6/XWV5eo7Gw4MogoVarsbG5TZKmlCtlWscH7Fy7SVEYCuUnYHsJjPLGg3Z823RV5KI2jXHtJ7QCrQyqAFVMu3prZUsjggZB+2nTgpZGERmJiF1rDBeUKlVg1MnmgB/3zeBEva5vjWc7/CrZn7/QwqYdnFdIXIs5u32WJ556gpePbe+pUOorTu4//DyDNeACGy989325jB3rnd0Od+7f4cL5CxR5gdQSMYM1JyY+YVfPvvElWIbHm9w9vP2Q9mGbrJvZPkta0+v1uH/3PsXEro6j2KaKjlvHNrCpCNbOrPEPfv8f0Kg3ONg7oDey1UlqosJk5FmbD1xXYzh+eMzbV97m9PZpVKGYZBOSOGHOYQ0lywAkSYKMJHvVPVqtFs3jJq3DFt1+l8xhDQ5r0lJKw2NNpRTEsf6ZDilGDFevXuXqwVW+9ZVvsaE3uPKXVzi+fMzlZy8Tp9YZ2Ts6T9uOTLHGb/J9WDObsvJY4+/d9EmZukP74MmLl5WwQuMgEPZ6OYc1J9JeklAurd6HNdphjUSGIAExkwaauS0SiTS2k3nisKZer1Ov1VldXmVxftEybMpQq9Y4feo0aZpSqpTYP97n5rWbGGXQhZ5WchlCUObPI5gQzvwM2NYlytgAqZi2vPB9vmaxRgSsFiHAtC1lpr5AhbLyi18Eaz4WwY3DYEvduxNCO2rdgFaFq/jx1K5dVQspqMwvsXThcfp7exy/fgethIsEZxbSbsI7qQybBR1JJAyx0OTGgGvGqceC0c4ek3YH2/5DgInDKs+ulq3nizU+85kPV7bmNBHdfsabL71CZT6l2WyT5zlGGLqdJqPJBCGglESc2T5Ns3nAeJJRq0Y8/uQj/Nbf/ntcOHOJf/Ev/znj4YhikjMeF+RKocN8djKwAYilTbeNM8Uf/Ou/Yjic8J/89m+wtVUhynMSEVGqVsmLCWlSQUSGZCWllJZZ6q9z5vSYXq9Lq92h3WlzdLDHaDygMbdIrV6nUqlY2lkalx7xLq62t5ZR1nRr97DNq28/4MHuQ37lb3yTy489zZtvXOfooMmXvvxp5ufnwPjSYlsl5B/2Kbtm3PXVrhzbW6PjWBjLItiO7d4u3NgAxYXIwhCYFi3sPbYxktMp+NWBDxC0S0fZGNaxH7YtiE1L2RJ/NBRGW3NDpSm7gMmv7G35uh+EJjBKUkriuESpZJu1Lq+ssr6+CcICQBzHLC+vkFZqPPr4Uzz33Jfpddu0HhyRZRqtwGiFUoW7ZrPj3AdtzrLcWIdppQqKoqAoFFopF+xZ8DQaTFhNOX7JFJadxE5KuijcxYjcM6sptELpTxBz4yYVrw0RRgSDM4BCFahChSDEC0OFFCzNL/H4I4+z93CPO6/fsXb1boLEk5Buwjthfz+DNX61q4RNYflmnGIi2HuwR7fdhcJ+Jp7BGiA0n4wd1uC8iCzW2Aku62e88vIrpLWU9vEUa447x4wn1qgvSiJOb5/moHlgGY9KxLknz/H3f+vv8/j5x/nn/99/brUtWY4aK5s+8Km4DwlsRGQnbpUpfvi//JB8nPMbv/0bVE5VyPOcSERUq1UmxYRKUsFEhnQlpZyWWV9ZZ3xmTLfXpd1u02632TvYYzAesNRYolavUa1UKSWloAnyWOP7cWmHNZ2DDvffvs/D3Yd865e+xVOPPsX1N67TPGjy6S9/mrn5uZAa8exM6FzNVG8Ti3iqAzJTf6LAIrhKJC1Oll2HVKSZYX6EvccYG7SE/c4EOkYbx4hOx48wwhVUqKk79kxKyDfSFDNY4/ua+Xvk05mRjCjFJcol26x1dWWVU+unAtZEccTK8gq1So2nH3+aLz/3ZdrdNkcPjtC5hsIyaYUqQun5bGBnfcMcE+l+VkpRFPZZ8iyxxxo0IVj26bXCFFMrA20oimKqiTME5ufD9GI/bftYBDd2s6gThKBSuVWJRBX2Yhk0URyBtKtTIWNkGlPbXGPtqWcYHxzRuT+wY8RMKxXcfBUYlcAFCPCOMhLrd2Pf4pgfI5gcNxkd7TMZ9aktLrr0g7R6K7eKwuWVZUh9uBnRGIrCcO/uIdevXuULX/8c+cQKEtGa4dg2eysnMWuryySRoNsf0phP+fRnn+ZXf/XbfPrZz/E//A//ip29fbSe0Gq16HYmM86yHwxsEimIYxne0+6O+J///Edcv73L3//b3+DJxx9leXGJuflFSpU6MMTkOUmSEiUxtbmCPM+YTMasT8Zkk4zm8SHHx8cgYpI0Jpb2Oiof3RtlLw2SwmQoNIPhmJ3DDtoY9ptH/I/f+QO+sL/Dl7/wNXZ2NX/yZ3/Jl774Gba3ToXySU0BCLx22Kf4pjoaL/y0UwgohHR+Q2aaQ460dIyKZ2+sCNZA8Gjx48A4kPQjwzNDRmsiKZyrtHDj06d6vJofxoWBxL7P7nW6ovJePH6K087sz+rLBFLGKJ2TqyKIQ/1DXiiNyDOiKOLSpcscNw94qfd9hnlmuzIr39TTV2rZIM24VKVw5ZnKaBfMWAZUu6DIB0Neh6C1snzpbLDiPCu0043ZZ0MFQDdGf6IaZ4JbcQodhKBKqKnuwWGNdlhjpAkC2TiNWd9c55mnnuHo8IjBvQFAmGTCk+jTEMwwOYKT73HDT9hfIIygddxi/2if/qjP4uKiPSZX+uqxJpT/umfCT7jGGExhOLp3xNV3r/L8Lz9P4bBGz2BNnMYsrywjYsGwPyRtpDz52Sf59q9+my986gv8wf/4B+zt7THRE1rNFpPO5GcHNtJWlfn3jLoj/vrP/pqdWzv86t/5VR59/FGWFpdYnF+kXqkzZEie56RJSpzEFHOFTZtNJowd1hw6rIlEZA0O5TQIsFhThHRMltuU1Xg0pnPYwRjDUfOIf/W//Cse7D/ga5//GnpX85d/+pc8/6Xn2dzaDFhTUITr74/fX9fA13hdltNUeT+hwLa44DgIkMXUFRgIHi3TNPoUa/w19ffIM1H+eQsaFoc1aMuCkDCTfZhhb2ZSrYapUNkH6rGMyXVOUZzEGoFAKUWW227cly9d5qB5wPd732eSWWNJ3zjVMvI6MEf+vgT8dnjgjfiUdgGJmTJMXowsEKFpqL8H4dy1C5hnsMaLmz/q9rEIbjxF5Vsm+IGFsWkA5ZibKPYeD24F7JTwSbVKffMUC49dYNh8g2IAQkzpRBfcukKA2dJMb24kEaIgksbpdlwVD6D6htHhPpPh0DE1VqpsO6u66DiKcdkwvFCsdXREFBkKVaLb3iEuQxr7iNoej1IKKQSL8w3ObG/z1tvvUq3GfPbzz/GNb/waTz/5KfrdHq32gFgmtHtNJpOC8cR3kf0g2CSRpBRP14rGGMa5olRo3r52h+v/1T9lsVFncXGe7VObbG2usbK8QGOuwVyjznyjQa1epVypUKrUqRQTtNYsLC6wuLTCYDikyDOEEyBOxmOyIg/3pNCKSV7QanV55a1b7B31w7GNJhP+6sc/4PBon2/9yt9CyCW+990f85nPPsljj1606R933a2mwzJtNn3iqo+EfY/1GgLflFQIifDNA6UVHls9QmL3JyIrL1e4VKECPC3qYxc3SkLc41gMbVCicCXPAny3WiMYF5qCmHptjnKpEqrB3EzkzsdPdHb02TTmDL2OLdFUqiBOEgqTE4uEJI6JooQkLTO/tMyTT3yaTrfDndvv0e33GI1HVGt1pLGBmNZquooqbF80/Dg22gJUKOm26SXjzf/MtMzbTp6OnRTaMnPGVUkJiXBGirZZoXIl5p+MzWtdfOWMf83rBAplS1U91oSSZ4c1lWqFU6dOcfGxi7x+/DoMCBNgYHHcNos1PrUkjdVH2L5zTI8F0APN/uE+w+EQmNFZ+FW9wJZHO3LOY83x8TFaaEqmxE5rB1M2mNiEKiqwWCOEoDHfYOv0FlffuUpciXn288/y7W98m+eees56yLT7JDKh2W9STAoKhzUfFtjIaJo68+9RmUKnmrvX7vJP/p//hPp8nfnFeU6dsiLlhaUF5hpzzM3NMTc/R7VWpVapMVedY5JP0MpizcrSCsPhkElugyvfciEv8nD+SiuKvKDb7nL7rdv0jqYVh5PJhB+8+AP2j/b5zb/5myzKRX703R/x9Gef5sKjF0IlEjCdnP3kGyKdaXrHSutc6wMhA3NEREitJMI6Tftu4NZNwU7kJ4IaQWA63s/WGG0oRGHL+xFTJ2Ij0IUmNjFz1TkqpcpMxak4oXnx4w0Ix+v7PkktwxhPkoTc5CQkJHFCEiWU0zLLS8t8+olP0+62ee/We/Qc1tRr9ZPByQxLkxXZdBw7rFEzWOOrt7xWyT9vPrUmsVobXHGExAqVvZHi7P4+6vaxCG4skaGCGZgINBvBsMiW1lqKikjYFgEuVy6kIJqrM3/+EqPDQ1pv76AKGdbYM3jDrL+Nf0XjvFYQxFKTq5lqBwXDvX0m3TaqKIjSBG/2Jtw3OHWqS3oZ8jzjr//yz/jM5z/L9vYpjhdzavOCXrfF5roklgnKZEhhWF+eZ2GhRhIJEDnPf+5TfOMb3+bRi4+TxDHfu3KFQkXkxYR+r4fKBVmWf2hgE0eCUiyQkSCRkZvUICsKslySICmUoH9wxO5Rk3dv3AVs9B4lgljYKqdyWmJpscHi0gKrq8tsbW5y6tQqlTSy3cQj68CrBgOKQjHOMrJsQrc/5LjZ4uqNB7x3+5D2ILNaqZmtUJq3r71Ht9flb33rt1lZWuGHP3yF0XDA0888QRxFlgFzXau1y29rZkV+dqxE0lZS+aaVUkjHehhiaauF/FWSQqCN1fcYJ/hVOseQWzdOP5bw1VcaH2YrLLOnigKkt2UUTFRBpmNq8ysszi2QltIQvAgKO7X5/TiWY1qK7vKmbuLMsrGliKMoiKKljKjXaqwsrTKejMnznM8890Uwkn5/QK/XpV6fQ4py0Fgpb0CITTV5Ey4fwPgHbqoVUCijUUWO0QJlCuLIMV1gAdqlqqx/x9SFVJkipLM+MZux18QzIrPUun/mfVkuxqZcpHGrZ8ek1Ot1Lp6/yMHBATtv7xAVlml7v6D4/ZyqX4nPVk2ZGawRSrC3t0e706YoCpI0sQ63WG2a7zfkK6Qs1uT82V/+GZ/57GfYOr1Fvpwj5gWtbgu5aQ0KM5OBgMZSg9pCjSiOmJgJz37uWX79G7/O4xcfJ4kTfnDlB0RFxKSY0Ov1EIUgz/KfnoqKbTWLZxoxUBQFMndBmRIc7R/RPGxy97o1KI1khEimTUFLpRKNxQaLS4usrK6wsbnB2qk1ZOqMCWNpu4MPBnYSzTKyPGPYH9Jqtnhw8wEHNw/IBtm0ysxtWmneu/oe3W6Xv/etv8fK0gpXfniFwXDA5WcuB1fcULygp0GqxxpfLj5bdq9nsMZggmFgCDqFHU+KqalfrnNyhzVe4+XZoBNMkRuPRVEEXyOBrSyKdMTy/DKLjUXSUhqO0+uIgp+ME/96FkggQosDbbTVUc1gDdiArFarseqxJsv50nNfQhrb3qLT6zBXn6MsyiHo91ocn17yWBPE1nDinPy55kWO0BZPvKYNsDodt6/CWFbNC7ELXYR01kfdPhbBjWdp3LoWT/1rt8qyVL4HHoXRdgJyagpLr8cRtc1NVp58htFhi8nuEOkAYeaLXJQ4BQeD1VloV4p8MiAyCCPJmm0mrSZqMoZy2e5IeCMABVGEXyELN9hL5Zg4sYLEK1deYpwN6fQ7pKWYLJsg0MzVKlx85AxpOeb4oM3zn32aX//1v8Wli4+ytLBCnuccHjXpD7r0um36/Rzpmlf6TWCp4VhaxgZPdbvBhrbNEbPCdr6WUrhVuF1VSASFyoh0zMRF0l0x5rDVRV2/60zFbE+eWqXM2uoS25srbKwtEUlBrz+i2e5w694eD/aa9Ec5mdJOp+If9JMwbzDce7jDv/qjf8G3f+XX2d4+z0s/fpPRcMznPvcp0rRkSVlhz2Pq1mmXOX4la5z43D/EMggsHbvmKXwXvKJ9czZnCohAihghNXj3TWyySztm0IrkHBNkrGBZS0muFLmJqc4tsrQwT61SQRlneOdZJr8yFy714IMdY12yZsXzURSH9KYNgkDIiCROWVpcRiNAK1RhdTP37t2m2Wox15i3Ak1Xch76zngtkVZIVzqspUBo3DiQIe+t9Yy3DxqtfU2hcs+mr8RzH3arMG0MWhV4Vu2TsPnVuZ80gkCTKe3udQDKqNDZOKysjXXf3dzY5Jknn6F92GawOwjBh/+OWXbFv+YnQJ+CgJO/l0bSbrZptpuMJ2PK5TLgn1OrFYki36SV6cIujYjTmDiOeenKSwwnFmviUmzZEKMpV8ucvXCWuBTTPmrz1PNP8Zu/8Zs8evFRVhdXyYuc5lGT7qBLu9cm7+XBdXZ2E0JMGZsZrYcv8fWpIwTBfM2fg0CQqYxYx2HVPh6M6Ta73L3mOpI7rClXyiytLrF6apWl9SWEEIwGIzqtDnv39jjeOyYf2rJmDy4+Rff++73zcId//kf/nF//lV/n/PZ53vjxG4yGI5773HOkaTodC2IWa6bX1wcszGCNF3NL98djTfjZYY3RJvSKikVsA1ptyEUegl/PDAahrtfNGPucKq2IdczS3BLzC/NUKhW34Dch6Mb4ikyPjS7IcX/86z7d6o/Xp9eklKRxyvLisg1EtPUaKoqC2/du0261WWgsBKzRM1jjgyalVbApEFIEz6STWDNlbTSaSEduATnFGhzW+CDRV+oVqpiyah9h+7nBjRDiNPD/ATawh/tfG2P+X0KIJeC/B84Bd4DfMca03Gf+b8D/Drsm/j8ZY/7sZ36Jj/7E9OdpBQ4YU2B9TKIZYySfw5xWLKX1Ogtnz9N//AH95pvIga3S9WXhIZhxK3HpDlC5ahf7Xu35GHz/It0bMTzaYzLoU55r2ElIgZCaKJLYPuQWzYSMSJIS2+cu8eDudfYf3uXe3QeMR4o02UNGAm2sI+38/Aqrq6uUSikHB7s8+9zXWFtZoVquIKSm22uTpCmdzhF7e8ckcUqnZ/P8sZSkiSSNrfuxS1g6sRlMyO1q2w2MSaaIpEAG4ax7vxAIE1G44M6XQRsxNdMzGCZZzmicsX/U5bV3b4eAodCeppxqVsJthal47n2rWIBWu8m//rM/4lu/8huc3X6E116/RpEXfOVrXyBJYrSJkMKVIGvvE2FCSseWVMfgejP5Z8MGqdIFC0xTiRisMlw5PwmB0ZYOtRUTHgCUG3du1HiBngtgC2UYK0G53mBhYYl6tYaUkWWpDAgiwLpq+3GBu67SMUv+d5GMsCXXji0yBsG0E7cQgjRJWF5cQquCwmlnhJAcH+3TbDZJ4oRKpYxxky8eECiCD4XGe0hgm4nrHM81OqR05+mrT6w3khTSUcH2uINzM9YTRyntbBL+3bf/GFgT/Fnc6jOs0p2mpTC2pDaawZppWtH+LYVlb86fPc/O4zu80XwDBgQ62KejZv8O52hmSmhngNqnFMa9MQ+PHtIf9Jmbm7NYp0BLa3w5u1iLZEQpKfHoI49y4+4N7j+8z/3b91EjxX6ybzt1u7L25fll1lbXSEoJOwc7fPXTX2V1ddWa6ElNp9shTVKOu8ccPzwmjVOGPZcekxKZ2PYLfkINgYSCHOtKbJR9AFU24yrLVBskhHUH9sGdTz8ocdJML89ysnFG96jL7Xdvh9ScUWba1+in3NuTsoPp1mw3+aM/+yN+4xu/wSNbj3Dt9WuoQvH5r37eLkJNFEqQpZ4KtH1KR2N1V6E3kw+o5JSN8/fRp7gKbTVdQrogWk9TLz7Y8K0+QkdwhzWRNyZRBqEEc/U5FucXqVVrVvPjgoWIKHQ2D2POpT8jGYUgzbNmvvN2MLEMWGOPKUkSlhaXrLA+YI3g4OggYE25Ug6BPtiAtvD4ImT42T2f5DoP5+P1Q2FszLSv8JVv4dxn3qeUCrqfj7p9lLqqAvi/GGMuA18A/kshxBPA/xX4C2PMJeAv3L9xv/s94EngW8A/Ft5y+GduIvwtHXdizd4kYL1tcFUfhqkdH8bqCYQUxGmJytIiC488xtzpRRJpsF2X3MARfsK1f1vuxaCQaDPNTUphiIUzLDMCPVH0dx8waB6jCuUmIBfhh/I/63ODS4eUkoSi0CwvrXH23CmWl5fYf7hPv9+mXKqCEaRpjThOKZdKnDm7zfbWBmkpJkkTut02BwfHnNo4xcOdXUYjW+USScnifI2l+SrVNEFGtvxaOmM4KWOS2FqRa1fFY7CuxVb8a/9W2rIMeaHIVeH+symKQhUUhUYrY9kH46ZjIezEaCBTmnGu7PuMv3/iA3cVPkjPg83I1MqC7qDHn/yv/5r7u3eQkeTNt27ww7960dGmcRDwSRlZx9woCulLG9hIpIzdakESSXfHpWdvIvCTjBfX+OBYCIRb9Qhhc+tSOJM01zvMipFjm7JBo41knENSrrOwsMxcbc5aEzBNa4QRLfz3Oz5ITAOcKEqIZGLPyzM2NjJy5ZY+jWRdsdMkZWVpja1TZzl1aout02dYWV1nOBxx3DxmOBqR54U7Z68lECeodkvzeqNB58kkJFImRFGMFFNhrFbajhOFdcjWhkLbCj0rPpyQF5lj9v69MTf/UbBGMDMRuYkpJrYTAlFonDjbhdgbp3ntTSktsbi0yGMXHmPxzOKJFIK/j/YmTL83rOxnsMbrYnz6QE0UD3YfcNw8DqZ5PgiK5DSN4j14BNbDRBWKteU1Tp09xdLyEvt7+zR7TaqlKsIIammNJE4olUtsn91mY3uDKLWC3U63w9HBEVubW+zs7JCPclRhJ+XafI3qfJUkTWwq6n3GcNEM1sxOdkYZTOEmZ+20jcVU0+RLigvlzAFdYOTTg37yx+stMmUZIc8W/QJYgwBRFvQGPf74z/+YOw5rrr95nRcd1sQzWOOff3+NwZal+1YX/t7F0vbZktKOI6/J8fffB3QWe6YpFumwRsxgjZT287GIEXpaEk0OtVKNlfkVGvUGcRSHsTK7RSIKbtu+SsunzpLI6ml8m44wphzW+DSSxL4/TVLWltc4e+os26e2OXv6LOur64wc1oxGI2tX4P4YSxtZvcwM1vhz940/pbBp0tlz8FijlbbLE2em6Vk8pRWTfELmsOYXSUv93ODGGPPQGPMT93MPeBfYAn4L+O/c2/474G+7n38L+JfGmIkx5jZwA/jcz/4Sx3b7P0K7Tsn+l251GQauC28MCP9A2bUkxJLK2gorl5+gthwTC4i8xsEFNS4XABAcVpQ7BuGCISHs+ltgQAn693fpHT4kHw8J2XOnTfATrqX77WDdvnCZ1nGLV197ibl6g7XVdQb9EW+/9SqLC/NWvyMk9doctXqNp55+itWVVR45f4m5+jx7Dx9y984tOp02rXaPRqPGYqPOysIctXKCjEDGEYlrWGewgZ/WikIrokg4JseepzZQaLvKLoym0LaSyzV3BSPdIHOvafv+QhtyJzr17IyN0B1++9Wq8OHNh4PO+zdtoDPUZIWm3evy53/xxxwc7CDjiDffvMaLL17B6MJS4JEhiiTRTDUBwhIyMiIECJ7t880rT0wwjgkxeppe0NqzDo6NkH4M2slf+iosYZBxBCJiojRxpcbC4grz9QZJHDviw7cOEYFJBHFCG2XTYCY0XJXufCIZW3APz62xrIjWaJ2DC8zSNGZleZWNjdNsbGyxvrFJY36Rfn9Aq9lkNB6iihyw56VcdZgFVLeS0iYIgE0oX/UBu19R2maZ1rU2s2PC9TwqVE5eKOuXo6zN/78vPfF/LKzBYY2e+YO/97PiYN6XTprREWg0MpasrK7wxOUniFfiE0FKWNmLD3keZlJWYSL336UEu/d2eXj4kOF46JGGOIrDZOW7OvtJ8fIjl+kcd/jxT35Mo95gfW2d0WDEq2++ysLCgtXBCEmj1qBWs1iztrzGo+cfZb4+z+7DXW7duUW706bX6lGbq1Fv1JlbmCMpJxDZVJFvjikQod2H0soGPULMwnMQkgYtS2HC76XDGh/QoAmMjNJ2sjUzWDOz7j3x90fFGgzooUYX1u/nj//ij9k52CGKI669eY0rL16xKchIYiJjz/F9WIMl6EOA6dk++SFYE1oVvA9rTrAOchqIRWIaVPmmo5Gw7EytbHUwc3NzxB5rQg84F6S7YNO8D2sMJpTp+/OIZRxch/2Y80FDrvNwLnESs7q8yumN02xtbnFq4xSL84sM+gOazSbD8ZC8yAMTE4S+Zjrm/RgBgvA5tI5gGvz5e5+pbDoGlCFXOSq3P2uHNb9IBvwXct8SQpwDngN+DKwbYx6CBSVgzb1tC7g/87EH7rWfvW8XVOCocd9c0DIpwlmFKLfStroFnw+VQBR7Iz1Baa7B0vkLLF08Sxr7/kTaLwSmwINLVhiBNtIJTe0bBMZWbwlrvDbcb9O+e4dxt2sndmckKF3EL2VMFKU2ApeW7j9oDrh06TLtdgcZQa/X4cUfvcDi0oIb/CApUSlXKZfmWVjYYHF+mXptnkZjkYe7O9y6dZWnn7nMN775S1y6fIEkjm3zMwcOhVJkmZ1wikKR5wqlwQhJ7EvVwbE0BuUF2trXjgFaoLShMITu01pDUVhxdaGMDYYUKOUyQ17vMjuIxDTI+fB7fHLzj6I2huN2h+9+7zsMhx2iKOEnr7zLq6++AcbRqX5143pWRZFjPZipTnJBisDbk8+kXOw4nQlE/EF4oLCl/MKthqWcNri0Fu8RuQYRl5mfX2ahsWAdVV2V0SzAGabluWI25AsTndcKReE1peyq1j/4StlGpcqbdbnVXyktsb6ywanN02xunWZ5dZ1ypUa316PTbjIaDihya66HExH7RJIJZaESKSLbZcJ7RwkfrNvrJV1jTFviqkJjTetfkdnScqVdEPbRXUM/6vYfCmvCqpJp2mS2uaCfpJVrVxLEmXI6sKXDGmEEjbkGF89d5NyFc7ZCiZlqG/uF03NCnCgd9kGWX9n7FX1nv8Odu3fodrsgCDqGOLIavkhGpFEauj4joN/q88SjT9But0FCt9flhR+9wPzSfAggUlIq5Qrz5XnWF9dZXlhmvjbPUmOJnd0drt66yuNPP84vffOXuHD5ArHHGtc4WGlFkTnvkkKhchU8g+QM1viydF8M4lMPgGVxvKW/7z6tCeyNUS6wUYSVp/gwUPnpRPHP3IwxdNodvvO979AddkmihHdeeYc3fvKGTdPMMCl+TCRRYl9nWp3k75tn4kJIHDDGTANiM/1ubfTU0fcE1kwZuUjahqLluMzywjILcwtTp+cZ1mU2DTWrI4PpNfPjzLNKQGDQPNbkyjYqDa7BM1izsbLB6Y3TbG9ts766Tq1So9fr0Ww3GY5cWw6vp5kN/h3WSGEZKSRT7yjhHLadtiikMF2/Ld9Y01dh+ZSUUuoX6i31kYMbIUQd+B+A/7Mxpvuz3vohr32AKxRC/CMhxBUhxJVWu4UME4MBo6wmxgnajLaTkXH0ON6lUxVh4pJmmiMXSUx1aY3lRx6julyx7seW13FMhZk5KCuHVEjXmND3cpk9cokZKlo3r9E5fIjKCkfnyzBJiTBhCYSIeOmH3+PN114jKc9RLVcol8uU0xLXrr7HeNyhXKmiVEGjukQcJ6SlEnEU0esPyfOMhYUVesOCOKmzvb2FFJLTZ7ZZWG64SNkwyXPy3FasFNrY5plYViWWETI6SV9qF1AZF8z4lXehXTSt7X61sj2q/ArKprGmDJd3xhXY9JJNi2GZlZ82AtylTKLIlrO+73Vt4PDoiO//4E/QOkdGCT/669e4evW6nWwRxCHIEcE2YLoUt8yMdeR14jSnnAp5Xu/NgHAaFwNOPOqDHeHLZ33U5lJLmTIYkTC3sMJ8w4KNBRX3tWZGDxAcqv2+vYjYiuWnFVM24LZeELkrT7dAWShbdacKX6otAruSJDErK+tsbp5l89QWy6trlEoVOt0e3V6X0WhEVmT2WbFRXTAwxviuWMY1GbUAKyJ3H91iAo1bdTKNEbX3uplWUAki697873H7D4k17XZ7Jgidmq958WyYjBw9HglbEj47GUQzWBMlEavLqzx64VEqy5UgnPVHMpsmmU1xoacswOyRSyRqpLh28xoPDx9SZEWYbP0k5TU7Qtrj/v4L3+e1V1+jXq5TrVRtr6Yk5b1r79EZd6hUKhSqYLm6TBqnlEtloihi2LeeMyuLKxSjglpcY/v0NpGM2D6zTWOlgdd95HlOkRVTVsW4kN0FX+J9WGPxZBrM+MlJuefO78c2dz357xAbzow9f7eDwNdPGD8jwIk+BGv8fo+OjvjOD75DrnPSKOXVv36Va1evhSBhmpqeslI+mAhBhhfvMxUWzzIZQS/izjn0g/LBzgzW+HRfJCKMMiQiYWVhhYXGAqVSKQRL/j+tXdn0+7AmBOM+kA6aO3tRlbYBglbTIE0X2voFKX2CbQLL4KyvrHN28yxbp7ZYW12jUqrQ6/bodDsBa0LAakxo/unP12CNET3DRMSJxYTQIgTCs+fn9+OvXUQ0dUD+CNtHeqcQIsGCzb8wxvyP7uV9IcSm+/0mcOBefwCcnvn4NrD7/n0aY/5rY8zzxpjnFxcXXSoBq3YUIKMY6XOE3uFVu8lI+1WXncyFjJxm1FMHgrhaYm5zk8a5TaLYud9iAxuFCRVDfn2vzIxC25nESTz1Z8Wngwf7dB4+YDIa2v0J6dgD42hm56qsNa/9+AfEeszh7h0buElFHEeMhj1ef/0lVpaX7DGIFK0kqihs7vvoiL39fcajMeurqzy4f5fmcZt+v8fxUYu1zRXiRFIU1pAtKxSTQs08TLjIWDotyHRTBtdY0z6mRkBhAKfD0OFa+IcXtBYupWU/h/+8v3ieuvUr4UCPffgmZcTm6ippcrJ1vTKGTBse7O7y8msvEMcRSgu+/72XeLh7ECZhn5sOfIiZPtBhxTRdKhEE0jMl5dZR1wRwtgyKtHfcTJuiSqdfKTQoBNW5BRbmF6iUK+58lbsevj8ThDJyBxDGjRPh6eCZMee9baz2QFmaV9tgzWjFZDwiz7OQ8tLGC/CgUiqxurTM1vY5Tm2dYWllnbRUodsf0u8PySYTlMqdsZ9bUWnfhXgKzjoYCkqnw7HPj636smyP1kUw+fOl9F7Apl1h67+v7T8G1oRGfw5r4igOOgD3/gDy3nfD3jdX9iw5kbYoVUqc2jjFqXOnULEPrKeszGy6wP0iYM1sGsyntIQR7N3f48HuA4aj4ZTZkc6LZaZKRxvND178AWM95s7uHRCgpPUE6w/7/Pi1H7O8vIwxdsKUynoqeazZ399nNBqxtrLG3ft3aR+36fV7tI5arGysIGOJLnRIC6gZrAHH2nwI1vhnMbCXFnw/kKabbcIotGeVTfisF38TFo5T1o2fgzWRjKyI+n1Y4+/v7u4uL7z6gtUNacHLf/kyBzsHYRL2WOPv/YdhTbjX7lhn2zMYXLn0DNZ4kz+JtP2T3Pl4IbIlZQQLM1gjONlB3Fem+dJqMYM1nuHz3jt+HFqsca2MChVSQD5YG01GNsDx6XUz7SpeKpVYXlrm3PY5zmyfYX1lnUqpwrA/ZDgYBv8hn3rzqS6PMbOBIA5rokAITE0TtXFtZXzHcVdKL2awxvysG/6+7ecGN8KOxn8KvGuM+a9mfvU/A/+5+/k/B/5o5vXfE0KUhBDngUvASz/zO9xtMMZghPMhiWIHIFOKzQhtV8XSdSMWEZLYphKkDSwiaSusoiQmnW/QOHue+loV6T6rMUFkGxYEBrSRdvLWfiXnRITYtbQUgrw9on3vDqNe16Z1POjJyFXaaKTOMUd30Uc7tA93ePv1G1TnGvR6Xaq1KjKK+MFffY+5Rtl2xVYaioQ0qdBqt2m2mhweHtPtDdje2ubLX/oqFy88isklrVYbVQhqjTIi8r4m0x5BfhVjNbR2xXRiYTjzfj/x2wopHzALy4oZQegTFduqI59ecZ52GIMToPpxYu/Tzxt6WZ7T6bU5tbZm9Sqzv1OaSZ5z7fq73LrzNmkpod+f8Bff/Wu6g24YrcL31XDhisBRwFr5Ew0rLfvHdrq2DAg28MBXVbiKMRnbIDmSLrCOkDJBI8i1oVSeo9FYoFqu2HFkihNjaPq3YzuEwTVYcd4ztn2Ir5bClWnneR5YAq08SNpqhjyfUBQqsEMYG6R7xqhSLrO2ssGpzW02NjdZXl4lSUr0htZ0q8jVVIelMjfRuv3NLIeFdFoKCb79hYdtY/wE5EXO4MNgIQjl5v8+tv9YWAPuWRB2kgiBTQjYbemyEQblsCYSkRUdy6mA1LMpcRIzNz/H+bPnqa5Xw2d/WmATevH4dI2YMZRzgcy4Peb2vdt0e91pNYtjmLy5Wa5z7h3d48HRA3YOd7jx+g3m5+bp9XpU61WiKOL7f/V9SvO2J5NWmiRPqCQV2i2LNUeHRwx6A7a2tvjql77KpUcuIXNJu9VGFIJKo2LtxTy7EihOdz6Re+61OcGizL4/BDkzXbNDOtCIkJKR8dQDKARE7iE7ERQJPhAkfdiW5zmtXou1tTWrV5nZtNLkec67N97l7dtvk5QSJoMJL/zlCx/AGo8iYXI1lgHx5zmLNQr3ume3Ztyr/WQeSydliGQQMifS9dnThrnyHAsNG9gYYSjMh7ccCB5wrnu5MspWaLmUqhesa2ywkOXZNFgvmC5wtGaST1yxjL3enpHy51cul9lY2WB7c5vNzU1Wl1cpJSV6g57tX1ZMNVOZtlijjDrBXgZGLLKmiN7J2bNPPngM5n6zAY3DGvULYM1HYW6+DPw+8HUhxGvuv28D/w/gG0KI68A33L8xxrwN/P+Ad4A/Bf5LY8zPPCI78Tj31MLayAvhhL3SV394sNDYpoAAtlGmlFjzN1dRk8QlZBQRl0vUNzZYunSRuOxWo2bWlcOEC2cAbSz0WbmnsZORmwAFBpkLuvfu0W8d2WOUnrFwa1dtSO+8gv6Lf8ZnZJ9hs8kf/0//E3duP+TquzdI0gihNbsP7nPt2lssrywDILRE5/aByLOcSZYRxZLNzQ0eOX+BX/vWb/Hrv/nbJGmVSZbTaCwxt1DGLkisx40UEAlJFE87CdvqlveHG/58PR3sER03EHUQvAJIYWwLAgcwHlJmF07+Z/9g/MwAR8BgOKbb7XBmc/NkgGNglCkm4zGvvvYSo3GXpFzi4d4RP3zhRYrCimttJ+yZLzOzX+74GSdkxKWePDhhfDsGy9YgIxecWv2Ofd2+ZoRtYRGlZepzDWrVmp3QtQ0QtDJOe6ICaExTZa4Wz2iMtnoVKWxaTUjPFLlr5y6edl26PbMwmYzJsvHUTRmcQFm6VRKUSyVWVzfY2jrD+uYWK6sbxFHKeGSrmbRW1otGe5Myy+CECdMIbCrPr6BdOwe72sCgsF5DxgWRygVv9pit0+/Pn2g+4vYfHGuAsDLUhQ6lrn6lHpxq3UoyclgT/EQkQRchpQwdrcvlMusb61y6eAlRnuog/Ob3GRYgM9fMszF+AjQYRCG4d+8eR80jm0LwJmx4Fs7wk7s/4Z/9m39GX/RpNpv84f/0h+ze3uX6u9eJUlvie3/nPm9dfYuV1RUApJaQARpbcp1liEiwsbnBI+ce4W//2t/mt3/zt6kmVfIsZ7GxSHmhbC3/3TXyq28xgzVeCDy7TbHVhHTFbMpOo6cGeBB6eH0gmDF88Gfzvtc/bBMwHo7pdDtsbm6eDHCMLVkfj8e89PpLdMddSuUSx3vHvPjDF8mLPIwBf2+m+DYNXL0/UhD5zmCNb27qA9JQjeVSi/53XlOFhnJSpuGwBsHUP0iZaY+mGTbRf5dn8QpdYJSZipTdd3nmyd8P36vJY814MmacjYObMhCYKI8VpVKJzZVNzmydsR3sVzdIo5TxeByqmbw+xo8F9T6sCSLzwBxPv8szNSFQdMGRP2avb/qo20eplvqhMUYYY54xxnzK/fcdY8yxMeZvGmMuub+bM5/5vxtjLhhjHjPG/MnPPwxDUeQYrVDGOmLahydCiiQ40WJcrhFXWucBA1cOHMXIyNKkUkZEcUJpbp7G9hmqq3UbwXISdPwaXuP8boxxkh7t0lIQCePF8kz2WwyPDlCTIpQLW5M0iLqHyGsvcO/qe5T6bT7VKNNvH/PaKz/h1OYWpXKZ1ZVVlpcX+Tf/65+wMF8njiO0Uoy6Y4osoygyijwDY1hfX2dtbZVSmvDp5z7L3/07v4OUKVFUYnFxnbnFMpWqJIqEK2GG2Bk04USzHwhtPCsTKjR0YDSEq64KUbPT59jskxNZy+mQ0e4zoSJIfCS8wQCd/oDhsMe57S3SOArHow0Mxzn9/pCXr7xAWhJEUczbb97i6rUb7k5NA91AUXvsMQbfY8mmi2w6B3xjTeHSChLhUp9OcIKMYtuvTNgScw0URlCu1KlV64Hu1VozGk84brZptTqM+gMmwyEqL/A9zeyj5ZghYz1jlOvr4ntgeX0Xxpfl54H1MVidw2Q8cj2kjLs3swABAkm93mBtbZvTZx7h1KltVlc2ENKKQYs8s6XcavpZG1yBT01qzzZh4xQpI6tvcs+RkBYe7WTlPYamvBg/xXfkF93+Y2CNwV5npRX5DNZEcWTTNrOi4tCK4qSANJY2jeWxJpIRcRwzPzfP6e3T1NfqYcX5YQGOTz0ZY4Ol2dVpWMUC7YM2B0cHJ3Q3kbt3R70jXrj6Au9ee5dWv0W5UabZbvKTKz9he3ObcslizeLyIt/58+9Qa1hnYqUV496YLM/ICuv2i4H19XVW11dJ0oTPPvdZfvfv/i6pTClFJdYX1ykvlpFVOa2MkgQzuFnR7OwWWBn/bKOnjIbXsZhp+i9oLHw/pxmsIeDT+5ijj7AN+gN6wx5bp7fCMft95uOcYX/IC1deQJQEcRRz661b3Lh2Y3oPfXA2gzVu7J0wpfOpTM+w+eskpWVoYhkHEbj/t9ei+OtVr9ape6xx+5+MJ7RbbTqtDoPegOHQCnn9d/lybD+ulLG6mlzZ8R3Ey0IEi4NMZYH1MRjr+jwenuj+PhuMYCy7OFefY3ttm0fOPML2qW02Vjdsz6o8J8uzIAb3n/XjNUgAZicJwbT0PppWAvrrHOwSZv/8Aljz71cJ+G+7aY12/YmMFmhdIKRtUyCFy0caETSjwqVOZgFHCDDBdTZyyvOEuJRSWlikfmaDuKzdRG0H92wSxRreOYbCey3gnyE3YBHo7ojB3i75aGQrBRwbEBcTGg/foKwKJHDnfo/LSzHnt9d5cPcOk9GYXqfPqe11VKHodlq88vKPWVtdsYNtNOFw74hWu4kxhm6vR6lcplwukRc2rfIrf/Nb/Mrf/CbGJHZSqy6xsbHG6uYClUpCHEe21M8YsiJnarc/c6mNEw0bpuwBvgzYXQttFSdeeyFmAg8f3AifB7efwDds/PmbfU+5VGIwmRAJzdbmBpFjwQQwyZU1DNw74MG925TLVpf0wl+9Qq8zsClB5YMXJ1B0WixL1kRWXxLSUF7kN7N6Fm6yxwdoYIR0rE1igwOlQQjKpQppkoJP6ylDp9vj2o0bXHv3Hfbu3qX1cJdht4MqsrBS8ayeP+/AnBhsB27XCd1OaMJWuxWZe7tgNBrS6RzT7XTp9gYMhkMm2YTxJMPv1up+NPXaHGsrG2xtn2Vjc4uFxRUKpclzp5XQBb73FEY54sWDtkG5pnSzKStv8hfhKjlcED9tWSSCR8YnZdNauyDSMgmFtoFDIhMrEBbRdLI109SJXyFHWLD2zqy+jUASJaSllMWFRTZPb6LL9prMlnmHzRD0JVOsmUUa+2fUHbGzv8NwNLQVRY4NyIqMN3bfCE0He/d6xEsx69vr3Ll7h/F4TL/TZ91hTbvb5sWXX2R1dRU0TEYTjh4e0Ww1MRh6vZ4teCiXQ2rim3/zm3zzb36TxCRIJEvVJdY21ljYXCCpJEQzWJMX+YeOAZ+awhAm8HAdTmCNCIHLbOARgpsT5PI0zfXzNv9dpVKJyWSCRrOxuRFYMACVK7JxxsHeAbfu3iItp0glufJXVxh0BqFSrDDFCWGwv3+RiaaslTlZBj6LNZ5x8EGd150kMiGRifVvEVBxWGOMCdVjvW6Pm9dv8s6773D37l12H+7S6XZc0cA0ZXmi5cGMwNczlZ4hFEJY3Y3DGmEEo9GIZqdJt9Nl0BswGo5s08xJFgTevhHnXG2OjZUNzm6fZWtji5XFFcsk575ApQi9p5SZpu/8PQsNMGew5kSA5qrGwkrYPRe/KNZ8LIIbozW4PhVaF1OBoxSWRZHipJjI5UGkO3v7fmegJEBEgjhOkVFiWYVSwtz2Oea2l4ilwklSAD+d2slFI08IjWf/A5uikZlieLBHNugijAX+NB9Sv/0ipYNrRBLW1xaRacTCE5/iP/3f/z7PPH2B+7evc+/OHVqdNrVqCaU1r77+EkIIyqUqpoC8m9NpN5lkAybjMYeHB9SqVfqDAYPBECElv/c7v88Xv/Bl8gyEiFlZ3eDChUucu3CWNEmdhkbjvWr4AAjYq6iNwSh3Dc2sfseu3o1PlRj3mgcDY9sJBB0IVnsTJu2fCzr2imd5zsLCHPtHh2ysLrO0OE8ptd8RSUFvOGA0HvHOu68Rx9Yy/PCoxU9eeS2AjBe1+mNReKbGBDLB93YSGITwHdtdICW8i7H7GT8wLPtTaIOQ1tbe95/xehMJiGxC1mozPDxgcHzAZDhAFwVaFxQqI3d5bNv4FesurAqngbFiX4GwTevi2AZq2oqRlcrp97vcu3+LnZ07PHy4w/7eDkeH+zSbh4xGgwAY3sKgPtdgaWmNpeVVFuaXiSILkiFtpl11obvBxq3IbMsBF5AZYYMXAUIaIhmHVZWt6BDBfh1fWv6LLKP/N9601qEnjg8OQjWSNbaaet/gxrNfcWJXumFV7rAmjVOS2DZNTEoJZ7fPsnR6yep1YJqKYqq9iJhpbSDeF/y471GZYm9/j16/F5iDUT7ixTsvcvXgKkYaFlcXiUoRz15+lv/s//CfceGZC1y7dY07d+/Q7rQpVUtorXnptZdA2smTAvJeTrPTZDAZMB6POTg8oFqt0h/0GQ6HSCn5/d/9fb78hS/DBGIRs766zqVHLnHWYU14JgwnUiXhHNw5GeNW80zZmuC1IqbnHxgD/GJKh2AgTHIzwc/Pwxq/nyzPmFuY4/DokOXVZeYX5xEOa4QUDBzWvP7u62iHNe2jNq/NYM37q3kUfvE0ZXJme0T5cu/AroipnigwNY4R9MFRMLhz13V2zhtnY9qtNgcHBxwcHzAYDCwzqwsyZRk4X+KNnlpLaK3D3x5r4jgO6SJhBLnK6fa73Lp/izs7d9h5uMODvQfsH+5z2DpkMIM1vrS8MddgbWmN1eVVVuZXSB3WKIc1hS6mTJaZjhOlVfg5XFMBRhprijiDNWIGa7yO6BfBmo9FbymdZzCZQJQgXA2/BdbEesdEEbGU5MW0UZdETNlwqW1aQdtBEwlp3V9F7gAFysvLLD32GOPjK+QtOwHKkMvz6zKbQhBSOyYIp7nxD6oh0obR3j7jdguRjak2r1PefYuoe4AxBaiMxaUFqtUyceeY29/7cw5u36fVm1CZr7G0WGd7a5tXr7xDq3nAa6//hM8+/3l27w9RhWLSyskXc2qVMq1Wi2q1Rq0c0+k0qdfrrK2t8w/+4T8iK3Leeut1FuYbJIkkjlO6rQ69Tj+AR6HdLHWCGheOJbGbcCmqQL+7xYatonHBI9qu4c2JXbn3ubDHD9KfE9sYcGX/tjx0+/QG9x884KnLl3nnvbdod4ZoZYgjSXfQp9IucefeTc6efhxVKH7y+ntcfuIxlpeW/Qng9SKWLLE6F0TkWAgNRJwIWUU4ekL6SEgnJjfgvGCM0c5Xx/pO+DUGGOqVEufPnmG02EVoZYXILqdvjCGb5AyGA5LYruht4FJQFDl5noVJ1AhNJBOSuITv0C2EnXBzlTPotqhW5mlov7rtu1y0JC2VrMmgq86KREy1WqdaqxMnJUQUWeGzid0qKPKEUrhRXptkjO0ArpUV0PpOySKyTGqYlBwbJYjsGDES/VMEjx/HLcszJpMJSZxM/UKEBdZUpjbdJGVwB/ZBRZjAXBsEjzXedTUXU/+N5eVlHnv0Ma4cXcG0TAiQwsTnAidhbPNMv5kZrPGr7/29fVrtFuNszM3mTd58+Cb7nX0KU5AVGQvLC5SrZZrdJn/+vT/n/u37THoTao0atfka21vbvHPlHQ5aB7zy6it84XNfYHjPYk3eyskWM8oOa2rVGkk5oemwZn1tnX/0D/8ReZ7z2luvMb8wj0wkaZLSaXXoz2CNLV44aSQHTEu2IaSoPNb4a6oc1sxem9mAJlyfkDvlxKr+Z27u63Wh2Ty9yYMHD7j8xGXefPdNRp0RRlnTvv6gT6lT4ubdmzx+xmLNe6+9x2MzWBMqe9xxeEFsJKa6rMg1VJ4VRXutlO8k7luaeCbF7ycwFu4SeDajVClx5uwZuovd0PQ1TqZYk09yBqNBYA+VtuxJXuS2qzpWIK+FJpEJpbg0LemfwZpWt8V8Zd5qo4Sg77BGrNkGp5GMQnVWLGKbQqvVKSUl4iimMAWxw5rIRFO2zTM2DmuksYJ436leax2wppjBGs9G+Sa2xvx0cfWHbR+L4EZNJkyOjhDrluYUUYQkAeH8ZIStZIHCqmYEQYODf7iEDn4bYcwLWxmllSaplFk4d57J8RGHr9yEQgQ2wkfYyhgKIMX5t/jA0ljWxs5wkuzgiOHhQ8T9hPLRa8jxEBFHtrEihmq1xqWzc1TzFuN2C9PqYqIy3/z2N4iFQKY19nbatNrHXHnlBdJShUfPn+PwcJdJd0J3v0P5dAWIOT4+plqp0O2NqJSshXq1Wue3/+7vUC5VeHD/Lp1u0+ZolXcZVuTKa2nejxCg9FQ74/P+1szQhHnP6ngiVKEptL3egSlwV84LsAMOmZ+PODausAFVp9PjySce5fiwRbvZ5NKFC1y/eZN2e4gUtqHnaDTm6nvvceniZWQUMR5kvPjSFX7tm79qWb1wPLaUezp7u8nCnb9wGhpL3NhABiERRtmxpF1Aa9dWFmYNmMKQZwVZlLvAx9HRccLc4iLVuXnQVuwrY9vA0BhotZrc37nHwsIypzY2KFdSpDBMJiPKpRKVcplSWiKbWJ2NUjmFSqwBXwlkZLsiJ0lKmpap1+dQ/roX1rlZKRPIXGMsJqZphWq1QRQnFL59gjIY4Tx0jBNEg+0EjgCk07xN9QX2sukTdLB2gKjNdNXqK7s+KdtkMuHo6ChoGqIoIiGhENbFNxa2eqWgmPb9mdGHGG1X5e/32/DXTStNuVLm/LnzHB0fcfOVm4hiJu3kdQ/vXyWIsKNp52kjOT48Zvdwl/RBymtHrzEYDYjiKDyHtWqNubNztPIWrXaLbqtLKSrxjV//Bgiop3VaOy2O28f89U/+mmq5yrnz59gNWNOlerpK7LCmUqkw6o2olWqkScpcZY7f/e3fpVwqc+/BPZpd219IBqzRQUD6gcDG6Tvk+7AmaFfc+YrIpvd0oUO5+CzW+H19YN8fIbrxAVWv2+PRJx+ledjk+PiYixcucvPmTYbtIULYhp7j0Zh3r77L5Uu2Y3g2zLjy0hV+9Zu/ak3ozFQGIR3WiBmsmQ16/H31gYwUMgRxWusQ9HhvHBzWFFlBERUn/JKSOGFxcZH5ufnwrEUOazDQarW4t3OPpYUlNjY2SCspRhhGkxGlUolSuUQpLZFPcjDWtC8pLNYwgzVpnFJKSszV5wJrVhRF6GV1QpgMVNIK89V5kjix/kQKK3wWKrzPVzflRR7ON38f1vjAcBZrgseaOZny+0XSUh+L4CYfDji68R6rSQnZaCDjxLVesJUtXk1ujAbtKlLElNMUrmJDu0oPEUcnAEMZTTlJKNfqLFy8wGj/gMHdAdoI4kA7WChX2kY1EkOEspdc+CqGiEgUmN4AfXSPtN4l6x1RKqfINLWTtk6QcczWxgaq2+PSpuTp3SF/dTSheXDMl77yRQ72Drn85CPcuznPzTvv8IMf/Anzjd9lrt6g22nR3jsmqZRoLC4wnowRUtI8PuDosMkLf5VTrVX4wpc/z698/de4v3OP/+6//X8jhGAyHjsDPt+D64Ohhh9QUtgKGIwPbABEcKYNFIuw1ViFnlbrOLhx/5+CzEfT3NhNCoFSmna7y/kL57hx9Raf++znObU5plLucHh4TClOGQ2H9Hod7t69webmRYos59q1u3zmuX3W19YCIxNcgolcM1BXBu+YDWM0UsTTYxWRTas4Zg8RYZgxYBOC0aDPwWGT/Z2HVOsVS+kmKUnsnGKjiDi2q/0kSShXqpRLJYbDAQdH+7z7zmtsbJxiYX6OuivNjccDkiSmXK5QqVQZjiYUeU6hCvJsQpbllJ1dfrVSIY4T5ubmWFxcIk5S/JJVOCdsjQcD+/BLEVEu15FxzCTLybKcJEkxxomAtbaux/gmmNbQ0IvK/e+AE4JCWwlhQVkryIsC33n+o0wyH5dtMBzw3o33KCUlGo2GTSdJu7KNZRwqpjzA+mDDr8Rne0xpY1MYIQDC3oMkSajX6ly4dIH9/X2Gd4cnHInBoZaWGGnHrcJOCP67IiIKUTDoDbh3dI/eTo/D3iFpObWdrIUg0TbFsLG5Qa/dQ25IhjtDssOMo4MjvvSVL3G4d8iFJy+wcHOBd+68w3e+/x1+r/F7NOoNWp0Wx3vHlColFpYs1kgpOTg+oHXU4soPr1Culvn8lz/Pt3/l29zfuc8//mf/GCkk4/E4tE/4ac+9xxrPyoRgwP0duoYbpmkId+1hul/x74g1Qgi00nTbXc5dOMet927x+c9/nvHmmE65w/GhaxQ6HNLtdblx9wYXNy+SZzl3r91l/7l91tbWwhjwQU5ENGWrBIHZ0EYTz2BNJBzj4c4jElGYzP3xDQb2Pj/cfUi1ViVOYtLEYksc23RNKSpZ4XucUK1UKZVKDEYD9o/3ee3d19hc32Rufi7YAAzHQ+IkplKpUC1XyYY2fVWogkk+Ic8s7kghqVQqJFFCo9FgcXHRph3d8Xkhu3FYg8OaSETUynbBnWUZeZZbaYSRgXkMDJWeMTT0wcrPwBqvQUJZPzDfef4Xue8fi+BGjSfcf/kFonKVpQuPkaYlR31bN9bQJE74mMb29QZcjX9BTApGgxS2tFc6CbAAX0YbpSlzp06TPdEib71C3vH7MfimhgpPNyvrjeNWCBIQQoGE9e06n17JWEqHmEYdo20FjClslRPasLq+SmuSU6tW+fr5FiaJENk89doCo7kRmxsF+7uHpGmZyWTE9//yT/n1v/XblMsVRoMuB3cegDAklTJxFFOpVXn1ylXefvs6jz56lkuPnSfLC6SIqFar7Dy8R3muRH/Yp1DKevn8lIFghcGCCOv26/1LDMYyIQKEkcFgbroiwbEjOiw0fVDhlCof6X6LkN8y3L37gC9/9YvcunGbO3fucPHRC2TZTYzS9HtDiDSj8ZDbt25y/pHHiKKE4XDEu+9cY2VlybpYgy3hxprSgWPljHQBjHHaGoU2znzPNXObPfpgIW+sqeA4y7l79waHx0c2hBKCKBLEcUKSJCRRSloqU6nWOHf2IpcvP8FctcJoNGR/fwddFIxHffq9Husr1msjjmKbEpUCGdkUT6EyIiLyQtHrd8mVpZJHoyG6MLSaR8zNLVOpgjXRs+c1BJRj6oxf2WhDr9Nj2B+gYu3KwcvhzvhAz+qxLGC8HzSME15pnFmY1qjCarKU9nbrNgj2Ae8nZZuMJ7zw8gtUy1Ueu/hYsLW3bNy0f5IfB1roqQeNsN2PU9JpGiFokWRINQKkacrpzdNcfuIyr7ReQXd0SDN4Ez4fLCmh7Ep9ho1QwrJGta0a2UrGMB1Sb9RDl28v4jXasLa+Rj7OqdartM63iOKI+Wyexdoio7kRxUbB4cNDymmZ0WTEn/zln/D3/tbfo1Ku0B10eXDnAUaYMMFVa1WuXrnK9Xeuc/bSWc4/dt6u4EVErVbj7s5dSg5rfOPFnzrpuMAldPZ2wUxYtQvr+1N4rPEjVRDKm8OuZpicj4o1swzQg7sP+OJXv8jtG7e5fes2Fx+7yM3sJlpphr0hOtIMx0Nu3rzJY488RhIljIYjrr19jaWVpWDo5xtBelG5wLbU8McvhAhlzUqrEBhYpHHziZAnjjHLMm7cucHR0VEIlkVkNTJpklpWJS1Rr9a5ePYily9fplKtMBqN2NnbIc9z+sM+vV6PtZU12+k8ikJwKSPLHGUOa1Sh6Pa71swPY80ileGoecTy3DKiZoMNfw88a+mFwJ5R6Xf7DAYDVGQFymVdDucVmBYnzv9pWCOMvV4Y+29TeFmFxZoTHcg/acGN0Zq9V18lnmtQrtdJqhW0KwETUjpxsEAYGSpLbD5zWo2inVBJEoeVOG51gPATtSKdn2f50uOMDg5ovnYXoWxG1K8PtLFNAyU+aSVdOkIhBaydWeBr3/oMy/UKUmtEtQxJjB6NUMMxKKvXKJfLjMYjShIapYhn5ke82ezx6os/4fHnHqXVbvLoE6d5uLePUQWtzh4//MF3+drf+Dr5eMB4NOTozi7V9QUEEYuLK6ysNVCvjxgMeuw9fEiWZVRrVUqlCqdObbG00OCFH7zAaNyfYVg+uPnUkDFWMIoTh2pjr5VxHgjgHYcleCYEv0r1k5tjvUI66GcPPk8K2bBS0B8M2Ll/yIWLF7j67jUevXSRubk69eocO/kOWtsO1N1ej36vhYwjZJRw7dpdPv3801SrNSxz43xlMAhh2RohrFmXEdIJrY0bL+48Q8oKnIMdjhdHCEF9bp7LTzzLY4UiV4rJZMxkPGI8GTIej2i2muSdNlEc05hbIMsVg/GYB7t3aR4f0Gg0kJFk0G8zzibU4krgGsOdMIYsK5BRQVEUNJuHHDeP6A8GZJMJRVFQrdY5vX2RucYCOHD04r1CFRhVYJCBgen1Ohwc7nDx3GkeOX3KTYI6nLPRNsDTobrM3UM9NSoLn8G149CKQmnnIyitDsfLlj45sQ1aa1599VUajQb1ep1KpRLKTaWUpLEVykqHNUE94UuemYoiYwefwW3VBTmFskZq8/PzPH7pcQ4ODrjrsObEit25wPpnyAc/PrCZPzPPZ771GapzVbTWlKtl4iRmNBoxGjq9iJCUSiVGkxEiF0SliNHCiH6zzysvvsKjzz1Ks93kzOUz7D/cp1AF+519vvv97/L1X/o6w/GQwWjA7p1dFtYXkEhWFldorDUYvj6k2++yt7fHZDKhVqtRTstsndqisWixpj/u/9wJx7MbsYxPlBZHIgp+K3YBMjU4DGtOcZItAQLz83MDnPB2ex8HgwGHDmuuvXuNS49eoj5XZy5gjWacj61Dc88GiUmUcPf6XZ7+7NPW54rppG8wgZXBYY0vhJmtDpJ6ijUI7wY+HQtCCObn5nnm8jPowgqAx5Mxo/GI4cQ6AB+3jmm2msRxTKPe4FJ2ifF4zN2du+wf79NoNBCRoN1vM8kmVOJKGLvhcphp2qsoCo5aRxw1jxgMBkwc1tSrdS5uX2ShsRA+O4s1ucptQO4YmE6vw87BDlvntjjlsMan4XxFojJq6j7tg5T3YU1geJSZVlMpF/j+W2LNxyK4wRgmrRE7L/+IuZVVSvU6pZVNTBwFD4kkSuyKymC1HQLH7vicnV2xY6xPB8ZgnPhIYDUNShWUShXilTUWH32cycEhowe2lUKYNLAr0TgC6bQ8BqjUEs49scmzX3qChUYZ7dJZYjJG5tYoyZSrqEEflEJgSJIYlKKcRCzVMha7b3O490VOP9zl3COXuPfgNqurc7RbHWScsPPgOq9cqfH0U0+QZUPG/YFLVyjm6vOsrS7xhS89x+7uLu32Ecurmzz2+GWeuP4kd+/doFJJWVpd4qj509vxTMsudeh47TN8wq3StYtApIhA2rXoVICNY0WC7s3uV3y0qDowJQZiaeXaOw+P+NpXP8PNGze5eesGFy9e4ubtW5x/5Bx3bt8BqRiPhxwe7bOycobJGA6OjtnfO+T8+arVztjHxN5HpykxXmTDDD0ajsN7vQnH+PngxolupaRarbEwv0StUg2UszXSKsgmEzq9LkVekCRWB1UqpRw3W9y7d5ciz2nUGyRpijaF7ROlSo5lEtY7Rlixbp6NiOIILSIOjw658upL9Do9ROzt2OGtd95kfW2LRmOROLaUd1HkpKntEyRcwGYnAoUUMaooyLLcUeK4NgoGY05OFqEMV4JQXlRu2bxCKdtUVdkeZtr1ecOxfSJI7j8ZmzGGUWvEj176EavLq9TrdTZXNi1r47AmjdKANT6dFFgFQ0ghYWwqwvuc+C1Xlu6vlCqsr6zz+GOPc3hwyPDB8MTq3R8PkVuxOo+buBqz+cQmT3zpCSrzlZDOGk1GxHmMQFAt28ompez3JnFi2ZUkIqtlvN19my/ufZHd3V0uPXKJ2w9u01hr0Gl1SOKE6zvXqb1c44mnn2CQDRg4rCmygvn6PEurS3z6S59mZ2eHw9YhGysbXH78Mk/deIrrd6+TOqzp/gysAUJQ6DteE7BGTNs4+EBHnkxHIaZprJM7/ehY4z/vdT9Hu0c8/7XnuXnjJjdu3eDSpUvcunmLcw5rjDQMx0P2jvY4u3IWxnB8eMzh3iHV89Vg8ugDk+CY67VCM1hjD1UE1+IQGDnPmQjLBEkpqVVrLM0vUX0f1uTKGi12eh1UrmzKs1qnVC7RarW4c/8OucOaNE0pjE05lXQpsEg+1aqMYuSwJhIRh4eHvPTqS3Q7XdsR3V3T199+na3VLZbml4jjGI11c66kFetkLnxrGnv+UkiKvCCbZCcXAPpkawg/HoL2SonA4mEILGCurGt7aGnj56NfsLj74xHcANpIBg877L78IrXGIktSEi0sI6LYUsNOY+AvjjQ2P220QAhrgKOxnbx9qbJ2Nf24un6lDDKKMSVJfWuL1Wef5WD4Mlkzs341WObGCDsZREJghGJlc47Pf/NZzjx6FqktiyNkgprk6PEQ4ZxrpZBQq1G0OhijWV5f5/DBQ9bWTtMcjdkw+zT377O7U+LMp1ZIalVe+8lbjIddqnMLbJzZpLFcY++4zfriAt32MZPBkGE2IUoiNjc3OX/+NJVqybqHLszTmG+QpjHlUolur0eejzF8+KrGnpOr/3elwEbbFFThHTYFQaSrtMI2eYQ48ukr10TTeGZr9gucXufnbD5ASlJJrVFhMh6TJPOcObvNwe4BpVIJIQznzp6j1WoxHA1QSnN8dMjWxkV6QiK05N13rnH27BmkMM6MSszs3YmCta2WQlpdlghuo44BFLMaIp+LMEhhiOMY2zJHWVPIKKZMipASVVOUK2WkjCmlZcsSGcNx84ij4wPiSIIwRG6SzPPcMh/aglkSp27SEihluSyZxCRxibOnH2H1mRWqc9VABZdLFc6eeZStMxcplcoURUaWTUjTKmkpRWDQxjpLa13Q6bRoH923bIzykwYubRdjXNpJaIPn0qQRGC/SNtMmktaYayalYBz7Z+wC4xcFnf+tN2kknYcdfvTyj1icW0RKyfLCsk0ZCn2iqZ8vfzXCrkK1ONk52YuNNTr8WxUKo4ytvCpJtk5t8eyzz/Kyw5oT1VJi6odTUFDfrPOpb32Ks4+etfdeKFuNNcmthqIaB21KrVaj0+qgjWZtfY2H9x9yeu0049GYfbPP/f37pLspK8+tUKvVeOsnb9EZdlicW2Tj9Aa1lRrt4zYLiwsct48ZDqyPUpzEbG5ucvr8aUrVEtkkY2Fxgfn5eeJSTKlUotfvMcknP5NBCX5ivhRYO3ZKTVNSZgZrfGpPRDPMx4eUmPt9f9QUhUAgU0l5zrLpjaTB6bOn2dvdsw1wpeH82fO0Wi0GowFKKY4Oj7i0eQnfqf3q21c5c/aMxRkxDVCtZMGKgrW2lT1SyjBmgu4IMW1y6f54LYpxWIO0gXMUWQ+hVKTURA2lLdbEMqaclsN1Ozo+4uDoABnZ6iMfkBd5gS5s40nvou0DS6NsYBYnMWmccm77HKvPrFKZq4TO79W0yqNnH+XimYuUSiVbdZVNqKQV0jQl6I2w1U2tTov7R/fxgnogpK5i4pB2mvb3s0GPL3l/P9bMdo6fWY0Gxuyjbh+L4MYAhYkRSjO8fZ+9n7yIiSMWL15Gzs0jlHa9frxfgJwK0bA3DCGd/lW48lirk5FOJFjkOV43YYC0Mc/ypcuoXpujl9/CjAG0TUJJgUgFlQhOP3maZ7/yJAsLcwhRQBShsxxRjIniMqY6R9HvEpVSW+VVGJvyyQoqtRpJmiCihLOnztMe32Dl+CoP7m9y78ZNHv/0Z/jm3/p1bt26h5AlnnjqCTrdHnfuXSUvHuH02ird1iFqknN49z5RJFheXeXUqVVazT5FnvHKlRe5efsutXKJZvMWBwftEF/4FIhlC5w+2P1bGUPs6N5CFxTF1PnZC42tlsIxOWKqrbCD0Ztv/WJA47f5xTpLK1VOb53n7p0Dskzw6KOXON4/oN3qsLa2jjKay48/wZtvvk6cxExGE+IYhNHIKGF//wiVF8gkOnFvjTFTN1TLdVvDvBOTlQIR41NUUydVgRYK63ptWyKMJyOybAKC4MWABlUUEBlsqXXMYDBid/c+/V6b+cY8eZ6Rpkloimmdca0uJs9yhLGB42g8YTIeMt+Yp5QkrK+tc/7seZaXl9GqIC8UQkacOf0IZ85eoFqfI89zRuMRSWwFplop29y0sPn7aqVMTEZJTlwqTrqJArCtYx0DKtw4sfo07Xqm2Z5UJlRI+fvuc/gY5zIlPlnVUgCxidFK8+D2A3706o+IkojLly4zX59HKx26dfuOyrNeJj4VhBv3nrkBQs+gPLNl4X5yn2/Mc/nSZdq9Nm+9/BaMp9UhQgpEIqAC209s8+RXnqSx2KCgIIrsvsbFmHJcZq46R7ffJS2lVk9R2HtRZAX1Wp20ZAWo50+d58b4Bu8dv8fm/U1uXL/B888/z2/85m9w79Y9UpHy5NNP0uv2uHb/Gufz86yur3LYOiSf5Ny/ex8RCVZXV1k9tUr/uM8kn/DiT17kzs07lColbjVv0T5on2BVpmJ8pqwLTCd3hzW6mGpT/Ko9PLMzQY//bCjH/7fEmtpCjepqlfNb5zm8c4iYCC4+epH9/X3arTbra+soo3ji8Sd4/c3XSeKEyXgCkROIRwlH+0cUuWXGZu/tLNYIBEb6ReEUa5RQxMIybnIGawT2dxIZPjeaWPM8jzVRFFn9SVFgIkNsrKvxeDDmwe4D2r0283PzdvGU2uaYU6yxAUWWZYFpmYwnDB3WJEnCxvoG58+eZ2lpyWpiCqsROn/6PBfOXmDOYc1wPKQUl0jTdKqzKqyLeqVSISNjIifTAMSlkBRqGsyIkOQFQfCbCh3hPdaYk1jjKxP1L4g1H4vgRgO5kZSlRmQ5navXUGkKaZm5M+dA2L48MrJltloXtqLJXSykXaULZ9ccRYmdeIQVbfp8ih2EmryYINOIuc1TmKc+Rd5u0X3nAShLsWsNjbU6T33lcbbPbRFLKPIcMoMoFJGIkUmKySfIUgUxN4fqtBFJgkwSokqZIhsTGcPS2gp7t+6wfvY0j+WKo+ObPLj3Nse3FrhbfpPBuMezn3qCXi9n1B+yt3OfdrdDt9umUv4q60sbHB89ZDLKeXjjLqqYcGr7LI35Mt32Ee9dv87NG1cZDfoMhm3yLKOUCibZ9Pr6dYIUgkjYgCSW0nnXuB46EqygWjsqfpq+8IyNr8Cabi6d57UrENibnwU/Fy6c4z/5T36H115/FZAkaYvhaML5cyssLC3Q6bQ498h5ev0ez1x+lgf376OF7bZdrsSOaFA0j1oMeh0WllfdRO3YGJw5oaNicWyVcgHO1MHbCounNu9+RWlLxG2XAft+rWxfq8JMEFI6TxodUqAySjg4eMjOzm3bENVosmxCkiSMxyMmkywEidZkcdqNu9vrcu/BHc6dPku9ViPLJuTZmCSKUDIw+UyyIUpZJ2+MZjIeM9JDImLGkxHD8ZBhv0+v36bf61JNobq8AK56QZvCMlrGeW0wXYUKYYHYClztc+K7iNuUDC4oFOCcRwU4sdUnj7kx0gaY169ep5yWKadlzp05h5FWRxHHvj9bMe0AjjMVc14lUkqSyKaDvGjTX4rQkLCYEKURpzZP8amnPkWr3eLBOw+QyqUQtaG+VufxrzzO9vltkJblM5mxE42ISJOUST6hUqowNzdHu9O26bM0pVwpM87GaKNZXlvmzq07nD57GpUrbh7d5O17b7Nwe4G3qm/RHXV54lNPkHdzRoMR93fv0+60aXVafLXyVTaWNnh49JB8lHP3xl0mxYSz22cpL5Q5bh9z48YNrt64Sn/YpzPoMMkm1gzvfVhzgtUS05RQWKFLAtsRWDEzZWv8hDe7hXTeTGDzUQKdM+fP8Hv/6e/x6uuvEomIVtpiMp6w4rCm3W5z/sJ5er0en3riU9y/fx8lbBPKuDLtm9U6btHpdVhdXp0es2PtfNDiscanq054+aBC6wV/PrZqVYZr4k3tcmX7Wk3MxI43hzU+kE6ihIeHD7m9c9s9x5qJw5rRaEQ2yUKQqJl24xZC0Ov1uP3gNmdPn6Veq1vH82xMEicnyu1H2cimh1ygMRlPGOmRDawmY4ajIb1Bj06/Q7fXxSSG+eX5UClVmCKIkUO/NjETpDqs8QHLbBdxYBoMzboca/PJY25sRRJIImI0ujfk6LXXkJU5iBPSlVUENpLVrjlXhO3crIw+kQmR0dQ91A806UrvdJGT5zlaaeIoJalWmD99juLZ51HtLsMHbWpzCU8+f5HHP/UI1XKJ2CiEAdvU2RCXaqAVrjgHNRwiy2VktY4a9hFRgh5NiKIYowtKlSr1aplsNOTsmTNMCsXdH93izZ+ssXPvKp//tV/lqcef5Af/5nuMRMRg2EcYQ32uyo0bb1J/9otsnDrD/u59RsMJ+zf2EMSsn9rEmAkrS0t8+YtfRcYR//qP/5BKrU+lktBujhmPC7SxHj0hahbYCinUtFkkxpXbC1CFm/QkQriqGj482yTcqt9Pvj6t87PgZn6+we/8vd+mUqrQmFvg8KhFvb5Er9slkqc4tX2Kg50mlbTC/dZ95hsNzmyf4bC5TxxH1OpVF2gVTPoD2i9+l7kv/jLx0ob1r3El33bhoIhk7LrAz/aGMa66ygZAxh+6a9AqjLaTuJSOFTQIdz8FgtAuRAhMoZlozTjT3L93i077mEq5bEulKZhkVhi4uLRGY37RpgGjBCljx6gJlMrodJoMFleplqsMhyPanQ7Ly0MboKmcJImZjPr02k1UkdNqN7l+/Rq9bpe8GDMaDen12nR7bQaDPkJonn/2M2ysLNqTc+yN1+bYScEX0nuBsnUytS7LOmhsvGuxxgaYdiwYq0PH3otPyuYB3IPksDfk1ddepV6pk8QJqyurgMUa3wgwNnYF/f4eSqEPlZs4ENbJV6PJ1RRr0iilUq1w7vQ5PvvsZ+m1e7QetEjqCRefv8iF5y5QKpemlYnaAnktrVlgd1gzHA4pl8vM1eboDXqkcWrZzCim0AXVSpVytcxwNOTMmTOoQnHrR7dY+8kaV+9d5Vd/7Vd5+omn+e6ff5c4iukP+mCgOlfljRtv8KVnv8SZU2e4v3ufyXDC3o09YmI2T20yMRMWlxb5yhe/QhzH/OEf/yG9Wo+4EjNpTijGznxtBmvcKmM6sXsRrmPGClXgK4e00FMR30/BmhP/5ucLiucac/z9v//3qZarLMwt0D5qs1RbotvtcsphTXOnSaVU4f79+8w15jhz+gz7x/vEcUzVYU2hC4b9Id998bv88pd+mY3FjRCUxMJOoQoV2lEEzxYXqHnBeZiY3aLGi2l9AGiUS1G5+ykQoV2IECI0etWZ5ta9Wxx3jimVStapmIKxw5q1pTUW5xdBY12PXXNTKSWZzmh2mqwuWKwZDUe0O21WlleQwpr5xUlMf9Sn2W7aIod2k2s3rtHpdJioCYPRgHavTafXodfvoYXmM898hsWVRWYF1wIRBNdBY+aw5oR7si8vdxqdwPj4VBXumWDqKv5Rto9HcAPYDia2VxBFxPi4x/2XX0ZUKqw+8TSyXsMn4ZSyJkAiJaQhBM5G3VujG19uGYUIuigU+WRsWQmhEZEknauxcO4RJsf7mNFLPPvZCzz9mceIjUJqBUoBKSbLkNUKopJiJhkmzxFEUOSofp+oWgMdkXXbJKUaZmwoxiOiWFBbXKT1YIfxYZPtpXl++clN/uCNNzmIP8VbL72GVjl37t6gfLTP4vIm0ULJtjmQEbduv8VnP/MVLj16mZs33qM/HPLg6m0m4zFbZ89Sq5WYm7vA9tnzRFLwP//xv6Q+VydNWjzcaVEUvp8WLkB0jTal9HQGkRSW3HIP2nQFNRX4vb/cV8z8IGdCG193pj4kGiqVSvzt3/oNhNS88dYbrK+u02qPWFtd4eHuQxDbnDt3jsOHxwghyYuMvMh55MIj9Add0rREHEWuLxNopejffofMdODyF4jOPYFISvbL3ENgNSZyek44cbSMQxrKdmOwDIzAC0fdxO98f4zW02tifArMvq/IFc2jJru799DK9lXRmUGpjFa7jYwiNta3WV09hZAGZqlVYc8jm2R0ui3iOGZnd4f+oGvpZClZXV3hzKkt6pWUbNxkPDrm2s0b/PilH9NttzGRFRYLDePJhLzIKSWJvU7CEDp+M6MNMZbsslULzoNCWQ2bcrnvIvhNRPhO6Japs8yTJZB8VdUnZ7NIY8tSoyKid9zjpZdfolwp88wTz1Cr14KeIndY4+elqS2CDJM0xu4zIgpVPqpQjCdja1UhFDKS1Bo1zp8/z5PNJ/nx6Mc88vwjPP7844HlKZQtM8+yjEq1QlpNySYZeZ47q4Ccfr9PrVojMhHtbpuaw5rReISIBYuLi+zc36EZNZlfmmfzyU3eeOMNnouf49Ufv4pCcePuDfaP9tlc3qS0WAqswFu33+Irz3+Fy49e5r0b7zEcDrl99Tbj8ZizZ89Sqpa4eO4i58+eR0SCf/lH/5J6o04radHaaVkTPgjgIKV1nfVY47ubIwiTun8uZ71tfiobM5Pqmr704exNWkr5jd/6DUxseP3N11lfW2fUHrG8tszDnYdsi23OnT/H8cNjJJIsn2JNt98lTW3qTysd2hm8c+sd2rrNF5/4Ik+ce4KSwxo/4RamCG01ZtNqsYzxhRwIV0ru01lM3xuqrPRJzZvHGmMsm9c6anFv9x55YQMRkxlyndNqtYiiiO31bU6tncJIc8Jfx2D1e1mW0eq1SNKEnd0duoMueZYjI8nKygqnTp0iLac0x02OR8fcvHWTF196kXarTS5zSmkJYQSTyYQ8z4lT185BTDt+wyzWeH2smbJ0ympr0AStj1bWO8d3QveBku8O7hmsj7p9LIIbKSAW1kSvUDZ1UmjJ+GGLg9deIamUKZ8+g0klxrklGmlXVEL47st2hS1Dx2O3Oo9c524RoYqMyWREktiGnEKAjGNKS4ssP3aZlUrB448sIIcD8vGEuFoiqVXQuY1E81YXjCCuVqHInDBOoScZIInqZfKDPoUcI6OYqJSixiPSchUZSeIkQQ6HPHN6DWXgX9y6yd78Z3j8wjLbp7a4c/8eg0GPpZV11jbPMM4nTPIhV157gS985ss88/TnePPtl2l22ty/eothf8jmudMkccHxwT5f/NLXOTzc5eUrLzLXaJBnOUcHPbS1/yGSgjiOnDuxsRU1kSbCr8CNl6iQu6oaW7r5QfA4sZLy9A0W2/XJl8K2fWodQcErr7xCFJfY2zsijuvWFU7bCbM+36BSK5OUIqJIMJmMOXvuLHfu3iCOJNlEBSW+EZIsyzHNPbIffwdz/z3KT38NsbiMkTEGa8xnD9GJ14isiNgAkQtwXB7cLT0dpe69Y4w7Nlsuj/HpGu2E14LRcMDO7m063WOSJEGpHK0MWTYmzxU6yzk6OmB7u0epUkEpWz01Gg0pioLxJOPouEWn06Nauc3RcRsQvPPOe8RJxLd++Zd47Ox55mo1jIB8kqNzq6spJ2vEaUSaxORKMRwObbM7oRDS2ADH3jB8Y1kfpFntlSL06MIaXiptrGmj8Zb6Vofjg1ytfJDoJzPBJ2abYXSFsvdaakn7YZtXXnuFSrnCmTNnkKkMzqzKYU2g1zGhF46n/n2ayjdEzIqMUcAaGxnFUczS4hKXH7tMXs5ZOL/AcDRkPBpTqpaoVCvowmJNt9VFGEG1ViVzWKOMDYIlkkqtQv+gz1iOiSMr8h2Oh9TKNWQsSZKE4XDI2uk1MHDj1g2ebzzP0sUltk9tc/f+XXqDHusr65zZPMMknzDMh7zw6gt8+TNf5nNPf46X336ZdqfNLYc1p8+dpogL9g/2+foXv87uwS4vXnmRhsOa3kEvPPxCCKI4CmX2sYgxUbh6waUXCF4nsxPjiVv2U7DmZ23rp9bRQnPlyhVKcYmj/SNqUS1ghzKKRqNBuVYmKkWIWDAajzh37hw37txASonyWONSK3mes9/a5zs//g7v3X+Prz39NVYWV2xna9dawR7iDHvhgt84ngrBQwsKhzVKqKnuyGHNCUM7d118Ofvth7c56hyRJIkNvpVhkk1QuSKf5BwcHdDb7lGpVFBK2Xs7GlIoW9HUOm7R6/S4U75Dq9lCGMF777xHlET80i//EufOnqNar1pdzMRWX5XLZVZXV4nTmDiJUTNY4528jTLhfukTC2NXQTVTEg7Tdgx6BmuCp47/z+0zpKt+Aaz5WAQ3fjMYrEGwrfeR2jC6e5/jxhvUhCbdXCOu1TFa2JUjKQKrEtfOKVXi2BuMBXhspRVChNYEOpIOrBVCSkqJZG2txMb8FqnKKYYjdGy1OrqwKYmolJD3RkyOWwgDUbWCKHKkMZisQI1HiEgS16pkg77tXTPObL7ewMLWNoPDY6Ikohh0efb0KgeTXf5i5yq9jc/xd37nd/hv/+k/odvrMu53uX/7PSpz85TrDQaDLi+89D2evfwcX/jC3+AnP/kRO3u77Ny6y6DXY+v8GSZZTqlc5de+/Xc5OHjIrTvXmVtsYNB0W2NUoUliSZpIcD4FhbGpFSE1C8vzVMp18nyCNDHHx23anb67Lx++eQG3T0zZcSc+NIclgHb7iJevvESpVEGIEo3GEpsb57l7d5e5hTqRtH3B6vUaaVIijlNUUbC2usHK0jJZkTMcDl2pt33wH2aKS3lGogXcv0p//y5y6zHKj38OubSKcFRxEMIKgMiloMBIG/x6lkpg04+AFSFrbdtvGBcmOfbC5pNtE8xm65C9gwcoVZAkMaPRmPFoRJpW2Dp1kXa7ye07NymVKjQaS3Q7x3Q6TZRrZKl1zmiU0xwNEKITLl+vP6ZUShgMhmHCEEgiISlXyqytraKUJo6tK1M2yUiSlMl4gtIFQrrgzmuRvHOouxa2+7Wjuo3tDD7b0FCKiMKooKHyE4OPhDzVrsS0DPqTshmc/slXtGjD/bv3eX3udbTUrG2uUa/Vg09HSmqDmEgGV2aJnBq6CSuc9KkqrVzvHFf5o7DVQCIRlFZLbDW2yFXOaGgZFyFFqLBKSgmj3ojWcQsMVKqV0Mm8yApG4xEyklRrthzcC2D9yn97a5tjhzXdQZfV06vsTna5unOVz218jt/53d/hv/kn/w3dXpduv8t7t99jfm6eRr1Bd9Dley99j+cuP8ff+MLf4Eev/Ijd/V3u3rpLr9vjzCNnyLOcarnK3/3232XvYI9rt68xvziPRjNujW2Alkj7n8Oa3LjUitTML81Tr9SZ5BMiHdE+bjPoDn72DRNTBiPoNn4KawNw3D7mx1d+TCWtUJIlFucWubB1gZ27O9QX61b3IyW1eo1SUiKNU4qiYH11nZWlFSb5hNFoFIILbTRqosjyDKEFV+9d5e7+XR7beozPPf451pbWgiYmPF+uZNoHxZGMpk1n/Th0xx+eLTN9bfYZK4xN4xy2Dnlw8IBCFcRJzHg0ZjQaUUkrXDx1kWa7yc07N6mUKiw1ljjuHtv0khPv5jonH9peVB3RCeA+7o+J05jhYDgV02MD9kq5wuraqvXxiW26KZtkVgs2nlDoImjRgobPiA9gjWdefBDng1rPZimjPnA9zL8D1nxMghuBMsK1NzSuz48r7J0UdN+7xjgyLMbPUS9VUO6iY4xbkdrpBgyWrInxlTFSRq5KCCdGVgiT2NWq0sSmYK13k/nJEVE2wciEuFIBlWByhUbZyL5UIpmrMTk+ImtKynGKiAWyXAJlMKMxepIRlctMDg6glFCeX2DSbGFiRVqvowtF76iJTKuY8YCvP7rF/5+9/3iyLMvvO8HPOefKp127h44MkZGqshRQBUUrSJIgwSbbbNg9ZlyM2Zj1crbds5rt/AHdG25IthnHZqzRMzTAGiSmQRAoVKFUlkhWqtDStT/9rr7nnFmc+557AoUGwAHRVSRuWlhmRriHq/u+93e+v6+Yvv+EP/zaH3Lz1havv/UmX/vqV7EGsqKA4zP2rl+n1V9jMh3xB9/4t5yeHfErX/k1Pvrh9/jg4/c5fXnI6OSMy7euIpBcvnaHX//1f8w//+f/A0k2o782YLAGRaKZjCYss1AAhGdp92I2N7dZX99qXpyGMAwZnBzz9MkTzs7SPzXdCFgxXwoXgbg8EYNzXWM+vZqywHSWIeQZVy9fA2V55+3PcXy0oNft4HnuB1QUGZ1OC08JPKXQtqbdatHtdlmkKWlSNNStoa4qXsk2w6JgtwVCW0Q6g4ffIz14hLj5GVrv/Dw2jBqHndOXLNcwLO83u/y6xIW11PJ3llS5q/6wWmNsk2NtLXmecnxyxGw6RXk+RZZycnrMbD7l5vU3iaMOB9k+337vj/jOe98iitos0jlbG1t89p0vEEVtorDlai/403Phyl5pXU3CcoBUyiMIIoyuHeVvDJ5S+EpBEFDWyx23dJ/3ioFzR2vHwGgaPHXAo7X7fdMwPJiV6K9ZegMN62WXhxG9Ggx/Eq5PAW/DICwturrQPLz/EDz4nPc54jDmYrLuxRWUdf/h3HONhknJ87JArANo3zqhptGG2tY8mT/htDh1AlDpu1Rg7aMr7bQpoSIMQ9rdNmfDM+SwCRb0BGEUYrUlz3LKoiSKIk5OT/ACj7X+GuPRGO1pup0uunar0lbYYpEtuPz6ZZ784Al/8LU/YOv2Fm+9/RZ/+Id/CAaKsuDs+Izr16+z1l9jNB3xb7/xbzk6O+LXvvJrfO+H3+P9j9/n8NUhZ6dnXL11FYnk7rW7/OO/94/57//Zf88smzFYG8AAdKqZDCdumFuuRDxL3I3Z2tpaDQLaaqIw4vj0mCePn5D+CKyBcz3Tn3RjAU6Ia/70kJPNMs7EGdevXsday+ff+TzJUUKn2wHPMQFZntHqtFy3lVJUpqIVt+h0O4hEUCyKFfNQliVt1aYoCmg5tmmWzvjeg+/x6OARn7n5GX7+nZ8nCiPH1DWvj9UwBhdwpWF3+PTDG86ZjmUExEpMa5v8ndMjJpMJvueT5RlHp0dMZ1PevP4mnajDQX7AV7/zVb793W/TjtrMkzmbG5t84Z0v0Ik6xGF8Xmb6Z2GNWZov3Nt4ylnQ6wtYo5RCecpZw+uG8W/W/6sB5oL2aNkWDqxC+qxtnGXN92IlMOaC1uYC1mihPzUY/nnXj8VwYyzUWLzljWDBNpkdAolOcsYf30d0uvidNrLTAT9cgawQYlUZsJz2VnqKZUS2cA820YC30SWi9tgq9tmoJigrMEY6tqfXRtXaDTd5QbFYYMoSFQQoP0SnCdXcI+j3QAhk5COrAl1XiCog7A3IRqf4QYjf61Au5ghq4vU+i/mCD374inffvYqsa/7Ovcs8/eOHvHx4n729XYpaMJzNiZXAU3D08jmXpETFIVIGPHnxhN/87d/k7/7y32V9fYOvf/PrnJ6ecf97HzM9m1FXBZvbl/jlX/41fuu3/t8IFFtbO+y8tcP9+x9zcnSC9AS9dptut0+nM8DzfOpKOeujMSySIVmRuzZ2T7hCtOaF4PmCKPTdIGRcynBVV5RNi7KTJ7tXRbMQWb2GXO1DiPQDfvbLX0HJiHYbFsmUrc2us/BTIRRUVU2yWDidjR80VHvEbJo4YsFKdJ0zSSvGHmz6AuV5WGPxfIHIZugPv06aTIm+9OsQtpt7QjZMxrIyEmgyKsSSdbLnOhJBk09hBViXlOnqI9zXNZvOOD47whiLApfYefSCPMu5ce0tprMpT54+4umTJ4zHM7RxScBvvfkG77z5ecIwJgidluhHXg0AuGZu4RjIxsqtdYkF1FL1JJarpSVwnLsQXPJPM9Q0w9pyvbQMbrTWDTTYZbmf21FKI7DWKaoEEmMrrGnAWPxkCYpXoAkrrJH2vAohT3Luf3yfbqdLu9Om03Gtx1zAGoR7n4vJuhdXETRr8SV4l7rEqz0OygPGlVsDSON0P+1+22VwVZoiL1gsFpRlSRC4EsMkS/BmHr1BDyEEfuS7XqC6IqgCBt0BpyNXrdDpdZgv5lRU9BusefXDV1x99yp1VXPl3hUe/PEDPrn/Cbt7u4jaFUoKJUDB85fPXYdRFOJLnycvnvA//fb/xN/75b/HRoM1Z2dnfPy9j5mdzSirkr3tPf72r/xt/ud/9T+jPMXO1g47Ozt8cv8Tjo+OEZ6g3W7T6/ZY66zhez6qwRprLcNkSF7kLoiywZrVAOALvNBzQt3Gar0UaS/XNEth8Z8SFxsIlWur/srPfIVIRtCGSTKhs9nBkx4lJSjQlWaxWLiSycD1N8V+zKJhrqWRFHVBmZbgNZ9XgzXCF8yyGV//8OtMkgm//qVfpxN2VqzNkhk8/7TOsWY5yJg/gTXCCtd+3WiSlu8+nU05PjteOcmmsykvD1+SZilvXXvL9WI9fcSTJ0+YjWcrYfq9N+7x+Tc/TxRGRKEL/fyzXhvauIFqtTJr/imNs8RdFEVjz7Fm5XgyF34uF/RUq/XScgVlxcott1pRNoPq8s8k0jF+pjl2CvOTKSgGmhuCBkib1FWcpawea4YffkzQG9B97RZeEGGM6+ihYXmQUNclRi/bxAVLWkEIgdUaawwCg7A1W+kBg+LIfRzpIQIfi6Wep+4h6QXIKMTrdDB1Sb1IkUEz3ExnSC/A6zQUZ+BjdI0pcuJ2m+nBEVVdE3ohpqiRvoewhsHWJhvRC3SSQhjhG8H/6Qs3+Pf5iLJ9hbV+l153nfnojLatyKqag+dPaQ8GdHoDuv0+abLgf/yX/5yf/uLP8Hd+5Tf49re+xocPP+bJJ484Pjjm9XfucfnGVf7B3/sHHBwfUZaFC69aG9DutgmCkL3dq0Rhh6KoSbOcs+EZSV5SVTl5viDNZhR5hTYW4+RMBIGgN4jp9Qa0207gbaymLg1ZnmONJvBjsHA2GjGdJZjmpvaUxxv37vGLv/RrvHbjOkWuOD4a4vk1mJRebwPfk4RRi143oSgqsiKnE7ebTBlLHLYYn6YrG7YQNf1eD6XP0JVbPyEstq4xdY3n+6ijB/BgC3nvZzBhDMJ1arG0aRoLwjTMX3Pv2eZoaK1jumzzAJMeRuvV/VRlGcdnx0xnc6RSzNMZw9EpyWJBK+4TRT2SZMFwOGrcAXal4xkOzzg6OkTXJXmW/mlwbi5rnRDeLB+k1jRjSsMoGRrHoDsdmUYfs2xrxrhgyqWeyBjbrFWaPbZ1jJbVy8Zd6dZxzde/XAEo5WOsoW7i12uhwYjGUfUXEEH8uF1LEsCK80CyBmv0WPPxhx8z6A249dotoiByoC3Pg9iQrul4WTx4sUDROeAcrW5wjM1BesBhcYhA4EkPv8GadJ5irSVQAWEU0ul0KOuSdJESBiFJmjCbzQj8gE6ng5DCJdE2Ef2ddoejgyPquib0Q+rCrSuMNWxub/IifEGaOJcVBm5+4SajYsS11jW6/S7r3XXORmdUtqKuap4+e8pgMGCtt0a/3ydJE/7Zv/xn/MwXf4bf+JXf4Gvf+hofP/yYRw3W3HvnHldvXOUf/P1/wOHRIWVVkuUZ/bU+rW7LdWztXKUTdpx+o2llL/OSvMpZ5Atm2Ywqrz4V3CYCQTyI6ff6dNodd3K3GlMasixzdRS+6zEaD8cks2T10FdK8cbrb/Crv/Sr3Lh5A5UrhkdDtK9JdcqV3hU3wEQxaTelKiryPKcTd5yOUlvnWjxNV6uUiop+r89pfYrXYI0VLn+mrl1K+cOjh7z34D1+5o2fIQ7i1YCzZPxWjfIN1gjrHuTLQWCVqSQat55eHsydHujk9ITZdIZSilk642R0wmKxoBf16EU9FsmC4XC4yqFZrriGo6H72ejSdUj9GVgDTgi/HNovup6ssQ2WfBprlmyP1e7Pl6zoshF+meBsrGu5d4uZJkajWVkuDxnL16XfYM2q6kHoc/HxXwJrfiyGm2bF78heu2RcVLOacuF8Eo9kP+H0wx8gOzFeFCF8D6WcT0E0PwRTV9Rl7oDZNnbfJgNHNLQZBtaqORucEXgKFYSgBOU8ByS6qt16wghqXeG3BZ5Q1KGPNiVCKERlKYcTpPKQvo8MQmSRo8sKW0p6GxvMTs9Y21aE/T62rqhmE7xWi1tfeJN0MuLDh6/Yn8Avf/kar0ufD4uUbhSxtvc6vXcU0+9/h0U651QKktmU2WSElIogjumubfM7v/dbfHDpBn/7K3+XnZ0rfO0b/47Ts1O+9dURO48u8fo7b/H6nbfptDvUOue7P/gWeVHwa7/6D/iFn/8VgrBNms353vfe44/+8N9y/8FD6soynSZMpjOqomJZkCgE+L5P4LeJog6tuIfvSypdorWl1ancfjZsE4YB3UGLR4+eMJuVDbUpHL1uYHg6ptIBs/kUrUtu376Gp+QKcLqdPi+ev6QuS9qtHrO5628qEkcP69pSFQVVNkPVLTq+ajrIfIxwa01d10gl8IVFPP0uFAt4+5ew7b7TGUEjhBXNHdKc5qXTbwm51GU1in98tKhYJl4bo5nNpxyfHDd2cc1iOiFNE4KgxdWrr9HvDnj87BGLZI41epWvo6TgbDjk333199ja3ODVq5ekaYG6UGL6qdeHNU0q9DkbL6xbN7lkV+VAuXEu6RW1bRqWUjuGZbmqsjSDlsXYqnnlieb10bwiV3kTS6bD1W8o5aGFQda26SX934LKH99rJehEoKxarQ+EEHgN1vzgwx8Qd2KiyHU6SeUcUUvAr+qKvMzdSsqqc/am0SsssWZRLTjjDOUp5zRRgnyeuyGxclZYoQWVrhBtZ5/1Q5/SlE7TU1kmw8mqfT4IArIicw6XUrKxucHp6SlqW9Hr96h1zWQ2odVu8eYX32Q0GfHqwSuYwLUvXyOQAWnpBp7Xd19HvaP4zve+wzybI6RgOpsymoxQUhHHMdtr2/zW7/0WNy7d4Ne/8utc2b3C7//x73N6dsroqyMuPbrEW595i3def4dOq0Ouc771/W+RFzm/8au/wa/+wq/SCTvMsznf+d53+P0//H0e3H8ANSTThFmDNcvBBuHqJNp+m27YpRf3kL50JY/a0u60EVLQDttuhbfW5snDJ5QN1kglXTs1kvHpmEAHTOdTSlNy7fY193P0FK2oRb/T59WLVxRVQa/VY7qYOpdUgzW2dmLdWT6jVbdQvmoSxv2GtTQu50g6ZuG7T7/LoljwS2//Ev12fyUmX9njOWcOpXQPdynliuEQQuDjUzVYs6w4mM6nHJ0cOWG50EynU5I0IQ5ibl69yaA74NHzR8wXc8duLNkvKRieDfm9r/4em1ubvHj1giI912f9KcLrou4OzrVNDdaoBms+pZ9phM/L6AQrrFtVuS925f6qrBtWlhk3q9X2ctV0YZWHYJUYbmu3Av7LDDbwYzLcwJLlEo3ivIEa62zG0jo3ldQesydnBOv3CdsDlB9glI9EgdBgJRooqwIlvIbKNyuBVI0Fq+lScHlxShAIpBeCdYnCyvMRnodUAhW3sLrGyxodhvJQkY8pS6yyUNbYuqQc+4Qb6wgJKu5izQJrDVG/x8nLZ7SrLnGrjck1QgrK8ZRobZ3peMrjl4a0toxPz9jdu8Sz97/O3b0B33z4iM+++7Pc/MVfY/r9b9A7PeaBMaA8dK0pkoS62mdj5wrj+ZB/+a/+R77w7pf4W7/4d/ngw+/z+NEDXj59zunRMddv3+X2G29w8/Zt/g//6J/Q6nR46613CaI2eV5Racu7n/0yN2++zuPH9/mjP/x9/viP/4D1/iZvvvk2WZ7x6tVLkmRBqxURBDGe18JYn6I0IALnwpKRs5grD2sVa4NttjYT5vNX7sauaqbTCYf7+5hdjySbcHZyzPp6i253narKqUpNVZfUleZw/5DIc7Tyy1cvmYwSqsJlY+iqZrEYoasFpiyQnmu6Xq7FtHYlp55yCcDKVIjTJxTvV/Dm30IOthHSdytLQXOvuXvOsThutWYxq8HHWHd/0fSV6arm+PSA8WSEFILpYsxkOgEj6LR6bG5u0e7EWFEThiF+ECJlQRyFbG/uMl1MePTkGY8eP0MbQ7sVcv3qFc5GI45PxqvXhcWia4vVbjVkmnyQuq4aJ5fTRivfo9Z1s1xxKd6VrqnrxrLdAMiyN4ylsNos11Taff0Glub+enmqQqJtBUIhm1eopzy0NtgmL+kn7VpS3xc1EUvARYCnPc6enHF//T6D9oDAD/CV7xqVhV6lphZVgSddLoljE8VKQKqtpqDgdHEKAURe5FYOVY3v+S44TQlaccv97DJ36pVKEkTOEm6VExGXdYk/9lnfWAcJ3bjLwiww1tDr9Xj24hm9qke71UY3WDMdTVlfW2c6mWJeGmxlOT055fKly3ztB19jsDfg4cOH/Nxnf45f+6Vf4xvf+wbHZ8eNfsthTZIk7Ff7XNm9wnA+5F/8q3/Bl9/9Mr/+i7/O9z/8Pvcf3ef50+ccHx3z+p3XuffGPW7fus0/+S//CZ12h3fffpd21HbMjLb8zGd/hns37/HJ40/4/T/4fYZ/PGSjt8Hbb71NlmW8fPWSRbogjmPiMCb2YnzrY0pDIFypaaSiJqxVoaxiu79NspnwqsGaunKVAPv7+1zbucYkn3B8fExrvcV6b528ytGlS/I1lXFYoyJ8z+fVq1ckowTRYE1d1YznYxaVWxca79zuvGToHPHvGJrKVDw5fUL9fs3feutvsdXfwpf+pwL+lis102DNUnOyXLFp6+6vusGauq45OD1gNBkhhCvHHE/HCCPotXpsb24Td2I02q3W/JBCFoRhyO7mLpPFhGdPnvHs8TOMMYRxyOWrlxmPx4wvYk3Dwkgtz9dStXbpyA3WWGnxGqyRy3+EdPqgurFsX3BKLV9PCrUacpZt6pjzNdeSwVmuopQ4d595yiWKL/OS/qLXj81w42jyZmqzFpCrbBYlBKEQFEKSZ5Lxx8+IBpt47RZ+GGGExFKjlAe1wogaoVwiqxWuWVwqgazBx3IpPcHqKSJex+gaW5VY4Qo36yRF+gp07QIBWzE6T2FegJD4cRvb0xRnI6TwqGczhO/hd1sIKVFxhC4rBJZWv8/05JT4ehuv20afFWBq6mTB6f4YU/hc6hV02y3sbMTPv7ZNb57x5Njwwfvf5Itf/mXa7/4C+ftfY+/0kJe1dmds6VYlo+N92t0+W9u7/OCH36GsDe+8/WXe/eIOjx+8z9nwhPsf/ICD5885fvtNfuGXvsLlK5dZzCaINENID93ka/hBwFtvf4HtrcvcvnWH6XRBK26RJAs+99kvsb65ifIs+69esH9wSFGUjKcT0kVCUWQIYfC9EITE8wOiMHDDDy40UABFmfFq/xXrG5dJkilr6x5b2y2WRzZjNWmSMh7NeLX/kts372CF5PT4jCqHqq4xWlNVJdPhS9Y3QzqiJmhOPtLzsLrAGo1sTuWY5Uka5MED9OQE7/Wfwd74DDYIWYXSLS2GK2q8yWVoMhbchFC7IcBaZrMJR8eumR1rGI/PnGsh6rC+scWN67fY272E8BX9/jb7B8959OgjdG24dvkW08WY77//bcZN8eDlS7t8+Qtf4tGzJ5wNv42+0AdVVRXa1M5iXruPPU/naGNQShK3ug5gjHVWYSmxVjBfLJhMxwRRiO8F7jAmXF+Yy/8RbjKibvQ2y9PWUhdgm8HI2cWXhaRLPRur5uafvOFmZUq2dqWTAc5dLkIiM8nTj5+yOdik1W6txKI1NZ7yULWiFi4Wv26wRkrpkopr9zFO01Mm9YT1zXW01iyqhQN7qUiTFOm7FnGlFHErJs1T8lnunDxxG91zwmBPeMxmMzzfo9VtIaVzzFWlS7MdDAacnpzSvtam3W1TnBXUumaRLJjsT/ALn6JX0Oq0GM1G7Ly241Zix5Zv/uCb/PKXf5lf+Nwv8LXvf43Ds0PXj4X7eqyx7B/t0+/22dve49sffBtbWb709pfY+eIO799/n5PhCd//4fd59uwZb73zFl/5RYc1k9mELM2aANYmyycI+OLbX+TK9hXu3r7LfDqnHbdZJAu+/Lkvs7G5gVWWF69ecHhwSFVWTCYTkiQhKzKMMAResEpvDqIAU12wCgvIy5yXr15yaf2SY2PWFK2t1urnrq0b3GbjGS/2X3D7+m2kkJwen0LuBgqtNVVV8XL4kmAjoKJauZ08z6PQxaczWRqsAbh/cJ/j6TE/c/dn+MyNzxAG4adya4BPreGssas8F2vd/bTUs0xnUw4brLFYziYOazpRh831TV67/hqX9i6hfMVWf4tn+8/4+NHH6Fpz6/ItJsmEb7//7VXJ6c6lHb78hS/z5MUTvj389nkfFMsOvHplMZ/MJsyTufvalKTX6rnhvcEaJRXCChaLBePpmDAKCfwAwB0CmuRmgVi9dsQFrLnYCL7U8Ah7oZB0KSRvsOYnd7hBnYeuuW0bTuvmHk4KgYeiGJac3v+YcGOTuNNFxgJtaydIVZZal1jhNdS7cbUD0v2dA73AG+9j2zGmLLCVcqususTzfKqiQHkSLwjx4hjpe6i4BaF29JgRqKgFakpdFHiBTzWZogIfFQWuggGwRtDqdTg4PKSsCnztA6DiGF1W+KHi+m5JN9DEQYilZn52xFsbu/wf7/T4p19/wntf+zdcv/tTyO3X6KqAtaN9hmWOUIp+u01d10yGJ0zGZ/hhC6MU3/z279If7HDl0m3WNvY4OnzKbDHie9/+Oo8ffMjnv/glfurnfpbdvctYIVFeiBd2iOKQZJ5yfLiPlD7b29ssFgnaaDa3t7h1+w6XrlxBKoXRNZPxiMePH/Lg/kc8efIQXdXUumY2X4DVlEVOVZW0WxGhJ0mznDxLWMxnSFmyPrCEQdg4eRx96nmCIq355JOPyLKMm9fvMJstGI8W5EXp+pOqkuFwnyw5Y/31d7nqGyI/QAjQRe6GgLomClzCo9NkOUWN7yn09AT1yVcxiyH2zV/Ahh13A4rl8CKcoLgRyYkmBEs0Kx9jDVWZc3x6yNloiDWW+WLOdDYFHI3/+t03uHHjFv3BOq3OgI31S9y+9TqvXb/F/sFL2q0Og0WPyeQYU3yMVIo37tzh6tVrDKdjpBRoff7K0NY0rCakecpwPGI6nTpRr1qefByb44ZVRw+fDM9otWJa7Q6D/qDRIyvXq6VZsV3WNt4ocw44Tj8ssVZfECHbT7tSGp2AFj85bqnlpXBuneXpc5nVsdJD4LQ41bDi4/sfs7mxSbfTRcRO7KkarCl16TJczPlaQUh3Al3oBa/Gr4jbsbM918q1PNclvvIpyxKhBGEQEsexG1ziFrrBGmFc+/dUTSmKAj/wmU6m+IFPEAX4vsMUYQTtbpuDgwOKusA3PtjGQl5WyEBS7pToQBP6IVpoDs8O2d3YpXenx5OvP+HffO3f8FN3f4rXdl4j8AL2j/bJSyf0bXfazf10wtn4jFbkmqt/99u/y85ghzuX77C3ucfTg6cMF0O+9q2v8cH9D/jyT32Zn/25n+Xy3mWkkAQqoBN1COOQdJGyf7iPr1yXWtJgzdbWFndu3+Hq5asoT1HrmtFoxIPHD/jo/kc8fPKQusGaxXyBtpo8zynLkqgVIT1JnuUkWcJsPqOSFXZgV7opGqwRnkCnmo8++Ygszbhz/Q7JPGE+mrt2a20oq5L90T6nySnvvv4uJjDuwS0gL/Kmk88Na5jzwRhcrs3J5ISvfvJVhoshv/DmL9BpsMYKN7xczPZZ5tssh6Tl/xdlweHpIcPhOdZMphOUdSv8N+6+wa0bt9hY22DQGXBp/RJ3b93l9o3bvDh4QafVob/oczI54aPiI5RS3Llzh2vXrjGZT5xzqsGai6sxgDRLGU1GTKYTV8LZYE1tasd6Na4nrTVnwzPiVkynwRpEY+9usGbFdi2dihewBuFE28thzv4IrFlqksxfAmt+LIabptoRbaE0LufGYpHCDSbgMkascJNvrQXDZ2d09h7S29hwPVN+gKAxwojzCHn3gHO9VIGy7C6GiLog9NquOVXixMKznNou0FWFrQwq8gj7A/xWiGq1kFEANkenGTotCNpdKpGiyxxpK6r5AiH7SF80wYKGsNNDhRHJ6YTB9g7hoE8+HGFtxc07l7l6+xLj42OSxZSN7W2SxZx8dMKXd3aR727x/3h/n3z0Id2te4idN7m1c5nq/e8yShacFUOk74ofjTYU8zlRv0+apRTlc169eEJ/sM2l7csMBtuMx0ckkwlf/b3/L9/79je5cfsWd996h2s3b9Hr9fDDiNFoyunpPkIo6soNfIO1NS5fucHm5hZx3AJr0V7AxlZIq9Wh1+1z67V7rK2ts7axSV2XPHv6iJcvnjEavc7J8SHPnj5A6xMC32N9vUWSHuEpD0GE5wuksoRhTF2VfPjhBzx++oj1zhrtVo9nz14yny1czp8uWSwmnB08ojuI2R10ucwYgUHr2g2VWiOs04dI6YSyS0eUlICu0dkc79X7lEIg3/oKwgsbx4/EmnoFMi4x26x0RzTBfWmScnxy0iR01owmp2hdM+iucfu1O9y5dZdet4s1GqUsnU6A5w2oqh3yYkaaZPiepN/v0x108ZRkb/cynXYXz/fPWSRoBHjNcGGMq2aYT8jy1LEtIiTPMhcKmKfNidPtzZMk5eTklL3ty3Q6fTyvSdQ1XtOkrl0LuMGxnEvGiiW1vGRymuGnOVUKwAqxYoCM+YtnT/zvfa3WUO40tXKzGGFWLifgvK1bC86enfFw7yEbGxtO0NucTLHu7eol1uAYGU+5wLpRMqKoC9oN1tD0RuWznIVdUFc1utZ4ocegPyBshbRaLYIoILc5WZpRpAXddpdUpORlTmUrFvMFfdlH+GLVLdTr9IjCiPHpmN3tXfprfUbDEZWpuHznMpduXeL45JhpMmVne4f5Ys7J6ITdnV223t1i/wf7fDj6kDe23uDNnTe5vHOZ7/7777JYLBgWQzzfpewabZjP5gz6LoDwefmcJy+fsD3Y5vL2ZbbXtjkaObvy7/6vv8s3vvUNbt+5zTtvvcNrN1+j1+0RRzHT0ZSDkwOnO6rd2m1tsMaNqzfY3tym1XLVB4EXEG6HdNod1nprvHHrDdbW1tjc2KSsSh49fcSzF8+4O7zL4ckhD5895ESfOP3eWsxheuiszEQI3xVbxmFMWZW8/9H7PHzykEF7QL/d5+XTlyxmC2ePrwumiykP9x8S9SO6gy5jxk4grpv0c31e9Ll0moJzRFnpKgbm6Zz3X72PEIKvvPUVQi90uTBIt8pssEY3WLPs2FoOA0mScHxyTFEU6FpzOjml1jVr3TVuv3abu7fu0u113WCgLEEnYM1bY6faYVbMyJIM5akV1kgpubx7mV67h+/7fzoUT58POVmaMZlNSPMUYQWhCF13VVWSrrDGWbzTJHUrz+3L9Dt9VIM1nvFWKd00Ca+1rVcMFfCpeoYVq3Phz5dMqrb6nNH5C1w/FsMNq22jQHPesutOUUvrq786YVoEZQaTh09Y39vDa8dEYdDs/hv9hHX9PwKJ8gI8VbAtcnrZFL/bc6m8xjRBdO4jF2mGJwV1UVCltRNOFRF+VeObDjL0EX6B14qcc6YuKedu516cnYBU+B2XRiyEU+1HrQ7ZLKGzWRAIZyUXSlDMJsSb2wTXrnP28iVnRyd0Oh2Gw2PS4Qk/e+c6l9c6vDcu+Sh5jN95jcxuE25cos6eoIuSGEA1gXJANp2ycfkyRVmwKOc8f/GQ4xdP2NnYZvfKa2xuX2YxPWaRzPn4hz/g4Scfsbmzw41b97h68zWEEghRYI2lKmswNVHYJvQ9lHQ6E23cDnY2nfDq5Uvm0wmXr11nd/cyYdzCWLh06SrlT5eUecmHP3yPf/07v8n1q3sM1jdoxW2k8MAqxzCYCvBRSvH99z7ge9/7HnVhuPL6bc6Gc+pG+W/qmixZcPL0I7zFhM3X36Y9O8J6JVp2EMs0T10ilCs2VZ4r5XFtsy6Qz1cKW9cIrTEP36PwWkSvf8kFNpqqWcGYRn/jIgTsKsjOYLVhPp8xmU0xWjObnZFnKXHY4eaNm7z1+ttsb24jpbtP4yhGeR5a1ygFwhryLEGiaMctbt68Ra/bZXN7Hc9XSOnCEZeXBbeisgaLXDmjlPLIi8IBo1SOTq40db0EAKeVmS9SJtMR6+trSBUhrbcS8a20JkJghULI2rFBywJN2ziibO0C/prXqmWZhVGxygj8CbnOEUSsovKBlUhYo/HxVw8ZgYAMHj98zN7eHnE7JgiDcxdJ8yCo6gppXSZNoQoKWTBJJ3S7XeA8N8QIpx3I0gwhXUtzndSgISxC6qqmYzr4oU/hF4QtZ8sudUnRYM3J2QlKKloN1tBgTafdIZ2lFJsFgXRWcqEEk9mE7c1trl+7zsuXLzk+OqbT6XA8POZkeML1O9fprHUoxyUPk4fc6t5i22xzaf0ST9InLvEaXJVCc1SYTCdcbrBmPpvz8PlDnjx/wvbGNq9dfY3LO5c5nhwzT+d8/99/nw8//pCdnR3u3b7HazdeQypJLnJX81HW1KamHbbxAs+5XpdYo2smk4nT3U0mXLt2jSu7V2jFLbBw7fI1V51QVHzn33+H3/yd32Tvyh4bGxu04zae8FBWudoBU+ILH8/z+P53v89733sPUxhu373NfDhfuYzquiZJEz588iHj+Zi3777N8eyY0ivpyM7qIVsat5YJGqxZtoMvA+iWzJM2mvcevkdLtfjSvS8hpNPmaKtXr8PlOm1lrca5HWfzGdPp1LEj0zOSLKETdrhx/QbvvP4O21vbzkLdYI3nOT0MnhsO0ixFIonjmFs3btHpdljfXkcGTf3On5htloyRtHI1YHnKo2iwRjVYoyunsVkOGxJJskgYTUesra8RqQjvR2CNEE4wX8t6ZfteYs0yMHP5dy61SBioGqzhL4E1PybDTaO5QFBbH4VBCacvAYGxitouRZ5LfY4iPS4YPnpIvLlDu9N3sLW0ZFrAGJSUzZLLsrE4xgt8fOGhS4O0BXgSQ4XfbqGL0p26au2ot2SObZJBkQKfNirqoMnQixIppKOkhUCUmvL0GCG2UWHkQMcawjhgdHqKTgp0S+K1Y+pSEfShHk/wNjZY393l+NlzknlKr9NjOpviez43d/fY6KVsPHrGv/nwKWfhNpcvvU0n3uDFq49JF1N8a0G6F4IVMD48xAjFLCmptKEjDfOzAxbjI9bWt9i6/Bq729tk2YQkmXL06iXH+we898d/RG99iys3XmNrd5cgjIhaHkYX7L/4hMlwn1a7SxDGWAQnR8eMRkP6g3XacUwYBkBFladUZUGWLZjNxgib8Nl332UymSDw8Dy3MzW6wlMCBVR5xXe//R7vfff7+Cri85/9KTbXt8nzzLEm2pAlc05f3ac+O+Da7jqD8Yh8/5Dnaz7+a68TSeckEVIhGgnFKrBt2Ytkm3BIC0WSURUFs2/+DiLs4l27yzKozqVbiyazwZ6zFU2fVbJYkGc5RZEzX6RI63Pt8lXeuvsme7t7+J5qgq4EFkmVFYxHZxwdvmB//zkHRwcEXky7FfPlz32Jq9eusjZYoyxqPKVWe/vlZbTGGsdAtttdLl16jSIvOTs7ZjGfUha5o8nrqmnydfEIvu/Apapq6tq6wD67tLI3ZbJ2KWRcOjpwwuXl6YmmbqHRIGGdwFrYZUYFf8rd9eN8XQxW862PwaCF05esbOFLvVZzKasoj0sePHrAzsYO/XYfAhq3fPM9MWZVNWCxHM+P8QMfXzoxbGlLpCepqFylQlE6u6/vHuCzZEZYh+5ek4I2bTpRh4yMclGiUHjCRfjrUnN0esSO2HE6IOUeRGEUcnJywmayiWy5igZVKujDeDxmc2OT3d1dnj97TvonsGZvd4+0l/Ls0TOeffCM7XCbty+9zUZrg49ffsx0MV0xXK5vDA4PD13VRFq6UkdpODg74Gh8xNb6Fq9dfo3tnW0m6YRpMuXlq5cc7B/wta9/ja2NLV67/ho7u+5r8FoehSn45Pkn7J/t0213iaMYaSVHR0cMR0PWB+u04hZB6PQvaZFSliWLzOk9Epvw7mffZTKe4OGhPOeCq3XtDm4IhzXf+S7fe+97hDLki+9+kZ2NHdfN1XQezdIZD14+4ODsgPWddSaTCQcHB/hrPq+/9vrKyq+EWgXiLbFmqcFZsREWsiSjyAt+55u/Qzfqcvfa3U8F1YkGa5YaMGDVZ5UsEvI8pygLkkWCZz2uXLrCW6+/xe7eLp7ntEzLwbPICoajIS8PXvLs4BkHRwfEXkwcx3zpc1/i6vWrrPXXqCuXKrxsKW9eHE48bFwgZbfd5ebeTaqicpEX8yl5gzVVgzXL3ijPd+WcdVU38g1WWhv1J7AGznVHn2JqsCs2bGVlXw5HVvykDjdLt5QTFStpUcLiSXHeN8GSMrart69KwejRPr3Lz+kM1lGe72zdSAyuct6TDrj9ak5Y57RaLXRRNRoN9yDQRYH0DZ7no6SH8TysCdFVQZ1mLjNHeUgZIDwfFUbUiwThK8KNNXReUNY1dpEg/SmsCwh9rLZ0BwPCKEZh0HWGCDrIIEAq5USaeUnQbrO2t8vpixcoL6LlRyxGQ5TnMdjY5hfevMt6+JzfenDE42dTdvbe4I27P8vp+BkHrx6xyDMXryYEXlWQ1JbEulXeDMGOJ+lI6M1HqPsTqlYHO9ih29mhtCXJYspsOuPsdMKjB/dZ39imtzZg78oNLl++yvrGGlVdM5uNqasTDMbt8mXBePyCjz4Y0usPCIIIT0ln61Ye0ljiuE0c96hKi2hKHOuqoDYlQdQhTTN+8P1vcHQ85ObVe+xtXyEIQoyhCeormc/HTF58gh2dkghLuNYjeHVGag1lX7hsI19QmgJfKfe+WIRyKjSjK0RlsboGY6m1YTg+c6mxQPrh1+ntXsN63uohZ6lBqMZl5MTO1lhqXZEmC+aLOUmSoauana0t3nn9Ha5fuUYch04dY8GUGcPJiMfPnvLi1XMOD/Z59PgjXu2/JC8st27e5Kc+9zmuX7lBGAWcnB67k430AHdatvY8ZM+JTLu0W2uUlSvAm4zPSLOExXxOUZYUZYHn+XQ7PXa3t2nHLdbW1pFqSfM2SzpTu8OCaRw6SIx1IkC3CRYI4a0GQ7O0fF/oiVmCz18GcH6cLmstVtrGdOC0MsvVwsqS2lyiFBw8OuD5peesr63j+z5hEK70OkutDTjrd1ZntFotqsJZequiWpUNGt/gez6e8vBqjzAIKaqCPM1Rwq21Ahngez5RGJEsEqQvWdtYc9UatSZdpEz9KWJd4DdY0x/0CSNX5pjVGd2g6wogPTewFXlBu91mb2+P5y+eE3kRkR8xHA3xPI+djR3uvnmX5+Fzjh4cMX025Y29N/i5uz/H0/FTHr165IaAhmkoqgJbnz+QBQLpOUZgNB8xuT+h0+qwO9hlp8Ga6WLKdDplfDrmk/ufsL2xzdraGtevXOfalWsM1geuHHI25mR4jjWFLHgxfsHwgyGD/oAocEOdVNIdSI2lHbfpRT1sy/1MjXW6mdKUdKIOeZbzjT/+BmdHZ9y7co8rO1ca3Z8LZSzrksliwicvPuFkeIIVlt56j7NXZ+4B2xOUdYnwBYUuXBiecfeKVG6wrXSFrVx79bI36Wx8tioV/foHX+fa7jUXAthgzbKaY+ne0w3WVLpins6Zz+eki5S6qtna3OKde+9w7fI1ojhaDUlZmTGejHn6/CnPXj7j4OCAjx9/zItXL7CF5cbNG3z2s5/lxpUbBFHAyelJ83xswgybayl6llLSjbustdbQDdacjR1zNJ/PKcuSoioIVEC302Vra4t2q83a2toqoHHJ8i0bzsUFrKHBGoQbcDzhrQbDT+lx+A/Hmh+T4WZ5zm46pdB40qKEXJLgqxPncnGngdwCY834kwf0N7YJ42YltMoocQ8EYQy9Yka318b3Q0TtwvwsIP0QiY+uSpQfIiX4RKgoROc+dVmgi5Jqtmjod4PXivE6bfKzCQonyBKeh/Q9yskZIvDAdtxDTlin+2hFmDynLgr80O2TvajlOqkMtNfWKbOU6ekp3VYHz9Qk4xECQWtzm8++foe99T5/eP85//rpe4j2Lhtbt+ndu8TJ6DGPXj0nqSokUOE0YgLIjWVoLIWU+EKwFSl6NmMxfImZ7KOjFlF7i87WGmmZMZ0NGQ+HnA1PePHsGb3WOt1+n956l+1Ll1hbW6PVdnkPUdRxk7hQpGlNXZWEoY+IJMqTCAW+HxFGEWFZUJU5VVGRZAt0aTg5esl0MiPwerx59xp+Iwym0ZcURcXkbJ/y8BFBOueFNlza6hFP5+TzEhkKjAara6QfIJtTmpSSutZI47Q3Vjub83ltQ8l0OkIJRWUN9aP3CW5/nvi1N5u7rRmKmhflysEn3L+rqmAyHpJmGa045u27b3Dr+k067bhZELr3yvOEw4OnvHj6kNlsTpEl6LqiLivms5IXL/c5HR6T56/h+wpTu5OO5ymkECwLS6vaFW3WVekGDkqqoiBZTFkkOaPJmKOjF4zHI7KswlM+n3n7s7x5+022dnZot+LVA84Yp62xy5cdgmUysWms7ygPysp9D5YrOgRO8taU4llxLkj+CRIUr9JTm380Givtyr4NThPg4zfr3gsFgGPD/U/uO01IgzXLjJIl1hhjmBZT2j3XWaRrvRqYQj/Ew6OqKgLf2ZrDKHSJwJlLHi6L0uk+rNNuxK2YdqfN5GziXmvaraA83+NscoYXeHToNCJwi9WWqBWR5+6E3Ypa2MqF0mV55jK+1tZIsoTTk1OXgWVqRg3W7GzucOf1O/TWe7y4/4L3nr7HbmeX25u3uXTvEo+Hj3m+/5yqqv7U99atf+2qX0tFisxmvBi+QE4krbjFVmuLta01sjLjbHbG8GzIyfCEp8+est5eZ9Ab0N3osndpzzE1DdZ0GqxRQlGnNWVV4oc+KnI1AFZZ4sBlEhVl4fRJRcU8m2NKw6ujV0wnU3qqx7W711bC4CVLUBYlB8MDHh48ZJEu0FrT2+wxn80p5yUidMxBrWsCP1gxQlJI5yxrSoeXwXtLkXBZlS4zSCiMNfzg8Q/43O3P8datt1YpvBZ7nlq8ZDGEu6fKsmQ0HpHmqRMQv/4GN6/dJO7EK/s4wCJf8OTwCQ+fPGQxW7DIFm5dV1aUs5KDFwccj45J8gTluzWdEK52YhVAiQvxK8uSsnJC+ZKSoiiYLWbkSc5kMuH50XPG4zFlVuJ7Pp9967O8cfsNdnZ2aLVaK6xZpQm7BcyK3TLNP+Bs3lVZrV5jy9cnpllLLRnihgn7iRQUS6Gpm8oF54yyTgBKo3tgSZ81gG8dEPtGMX8+ZLT5AWG3T9e/jIyaRFEhkNbSrVMuxyEttY0SkiDqQ2PZtEbjwss0woLWNVbXmLoAbdB5ii5KrBRY6WMqg6ktKmrhxTnVaIEXh8jAo/YUZqapJmOk5yODACE9pKcQvkKKgGqWoDwP2QTayThE5ymq3aa7vklRZCymCZ0ooqwyisUcP4wI++tcvXaNfzQYcGf7Bb/98RFPnpwSrd1kZ+suUTTg1dFjRos5tqpXJXOegLLUjCvNTNYcaM22J9kWmk0j2ZIlupiwEAHToM/m1lVM3CEtUuaLCWVRcDo85mx4yrPHz/D8gCAKaUURnX6fdqdD3IoJgpAwighCH99TSCWwxrBIEhaLhKooKYuCvCgpsgonQQjpdbYRePieh8CxFHmZk6dT0qOndKYn2LziQalRoc9Wv4veH1NZQ0tZOu0IgaUsUyQdlHTMkbAWoWuEp0CqZrVTOyam+VWXFTLwKKdj0vf/HfHlG8ggXj3kVqO1cdoTJyh2J43pbIi18Nk3f4o7r92h23W6n7pyScR1XTGfzckSVwgYBAGdVpvNjQ20rllbK4jjFkWRMxqdUeua6WxBXuSr9cNyQJ/MZxyfntBqd1b072hyxnB0htUSjGIxX3ByPCHN3ee+sf6SL777OeIoAimptcGayr3aVqcfg10GGa5iGMCYylk0dd0Iqs1q+MEsBcdLi/xP1l7KYlc5NZ8KVWt0Cz8qbG15glRGMXo+4oebP6TX7XHFv0J0AWustaR1ShiHbKttpJT0o/7KHq6NPtcyWfegrHVNUReYriHNU4qicCFx0vVN2doNJkVcMB/NCePQNTPnzho+mozwPRfs50m3ivF8j0AEJLMEz/MIPOfmCeOmObzdZnN9k6zISKYJURyRlRnzxZwojFjvr3P92nXWBmu82H7B0cdHnD455ebaTe5u3WUQD3h8+JjZYoau9QprEKBLVyVRSyc2lZ5LmJVGUsqSST4hEAGDYMC1rWt0GqyZLCYURcHR8MgNO4+eEvgBURQRxqFLKm6wJgxDojDCj/xV8/jS2p0u3PewyN2gWGUVaPCtz3ZnGw8Pz3OPPdNgzSyd8eToCSfTE6q8QpcaP/CdiHh/7B6s0hK1IyyWtEzp0HE/V98Nt7WuUZ5ynVlar8TC1rhXTlVUeIHHZDrh373/77h55SbxBaxZ6ku0cdqTJYMCMJw5p9QXP/tF7ty8Q7fXdWnhlWOHqgZrkoXDGj/wabfabGxsUOmKYq2gFbfIi5yzBmvmszlF7jRcy3vXRVzMODlz+k/fdynaZ+MzTkenSC2RRrKYLxgfj7EN1rxYe8HnPvM5t0aUEqMNlanOZQENi7Zcty8HqWWRp+FclG+sWQ0/q4HRXlj1/SWw5sdiuFnWJ8hm/ygFTisjGo2NbRKG7TIcq9n7gztx5S77JugP8OOQeHPL6WAw9IuMq7N9ojIDCdo2OioJVi1vcg11vRp0kK7t1wiJCrvIWCICDxUESD907II2eHEbHWYYq5uSaQtBhCkyqskEvz9AxjFSQJUWBHEItaZOEvyWcIVteBhVo7MFfrtLf2OD40XGPCno9WJ0ramSOSoIUUFMu9Pli2/f48buBt+8/5zfffiQV+MXdNZucPf6l5jnxxyfvmA8m1DWutFQuEN6rS2zrGIuBS+loKckO6VkR0k2g5ygyEgXJ+jBGkFrjY3tHcLeGkYoxqMR48mIosxJ5iXJbM7Z2Zlb2UmX3iqFS/5EsIqkl9JDSm+V7SGkQAnPMTso91AVxmW46BpTFejRAf3pAWtpwqNM87wylELw+naf7HTCfl5yLZBsdQ0KjZLu4ay1a9l2xZ3GDZXSMTtG16DdfWRr8IQlrxbE0RphK6aVnGH2H+K/9hn08kFPw0409+iSrg0Che9Jrmxf4/a112hFEYtkhq5rytrF2BdVQZLlJGlKFPj4UhEqRRyFXNq67B5gQUC302Y2m5LmKaPxmGSeolSAkh666XM5Oz3jo48/oqxq+oMNwjAmSQowijiKKKs2rVabIJTkhaY2cHh8yuPnjwmjmLgdAwKtDXVdorVpHE7LhzmNDdqtopbpxgiDNrYZYJqqBRp9SrNIFvY83fkn4VrWJyy1DghWTAM4IPWEh2ywZkWH40STspA8++QZa4M1ojhia3PLrc4xZEXGweyArMGa1bdFuhMqsBLkLwcd2WCNFJJu2KUf9/ECb9UthcSl8sZt0jB1QC8dqxMGIVmRMRlPGAwGxHHsbMppTtSKmNUzkiRBNFjj4VGrmkW6oNvusrGxQZ7kFIuCuMGaeTJ31vQgptvpcu/te2zsbvD8/nMePHzAi/ELbqzd4Es3vsRxfsyL0xdMZhMX4Mb512y1pcqq1bpPKoks3ZCXBzmHxSHHi2PWBmustdbY3dllrbeGRDIajRiOh47Jmpcwc68BKaQrKv0zsMaTrofqItZ4wkN6TXu7dSf/Srssl6IqOBgfcDg5dGxNpjGVs0L3t/tMTieUeYkMJKbnhODLZN9aN8F2yyJJTzkhdDOwWt0MvLXDkkW1YC1aI27FDNMhD1494DO3PnOuu1kyost7tMEaL/AQnuDa1jVuXb9FHMfMktmq9qGqK8dU5TlpljotkFQopQijkEtbl1BS4Qc+nXaHaYM14/GYZJEQKDcUL7ujTs9O+ejjj6irmo3BBnEYUySuvT0KI9qtNp1Wh7PwDF04p9TZ8RmPXzx2wYvtmKWdvaycpX7JXC71Pcuvd5l9tGJlmsRjGvXJsgZixWjBT95wsySKpRBNto1uWqdVk7HBKmsDWNUCufd175+NLWcfPiAerOOFEardRllDb3wIw0N0EIKnsLoCTzV5H5XzC1cl1EuXDMggwDSpjLbWiDCEusYUBVal7uRaFBBIvF6b7PAUhXQPpW5MaWp0MkN4Ct+XSF+hK430fbx2iMkK6iojiDvo2qCCiDpP0ElC1O3RW1/j4NFzOo0LzFYlOkmxReXoPSXZ7A/45c+36XoP+HcvZvxg8pjp5AW7e/e4ffOnSLJDTk9fMZnOyCr30BdAbUFoS6ktWW2Y1JInEgaVYltK2qYiKs8w4pTDpw9YSJ/2YJ3L11/j2pv3aHf61MZydnrGeDqmKErKsqKqS6dnKVw9hZYuVlxJ3NpCCvAs0rhARV1pEAWeEEgMqsxozc9oz0/wi5SXqeaHmWakLaWAN69ssuYp9Lzkiuez6RvQgjBsYY1GG4j85mReFSzGZ0gsYa8FQqKryq19lAQDnh+j6xFVNsf3DaHcwO5/grl6D+F7LC3RyzWZMcYNTBLWB2t87p3P0w5ihBIcnh6QFwVlVVHWlUv1NBW1NuRZQV2U5GWB1jWeUHjtDp7y8QKFFIrZYo61OPo5S13g5AWhX5oVHBwe0ekOwIR0+wFKRAz6W9RVhRSCvZ1rVFVFHE8pyoogUBweH9Ht91nrr+MHHlpb8iIlzwoWScJ87t5WCeUCM2WTJCpMI0oGYb1mfeVWcg7cTePoWuZ6/AnLxY/xtXJLXSgFXDo4lsBqV8Mtqy9tyUwIBGIsuP/hfTfgBBHtThtjDYeTQw7ODlbli5Wu3GleKCrhAuDKukRX5+3GQRCsEmB17RJm69p1MKUqBXBsTiBp99qcHp06V5YKiHsx9aRmls5cLYAv3cqh0nieR9gOKbKCrMrotDqY2hAFEUmekCQJvW6PZD3h+cPnKxdYWZWkietbQrgqg8FgQOfzHe7795k9n/Fo8ogXkxfc27vHT9/8aQ6yA16dvmI2nTk2YfkAsqy6mkxtkLXT46jKsS2VqTgrzzgVpzx4+gBf+qwP1rl14xZvvv0mvXYPu8SayZiiKFxasy7PQ+QuYA3SudGEFNgGa0SDNYUoVkNoXuWczk85nZ2SFAk61ehMr8odN65s4AUe5ZFbuxjf1WO0wpbThRigwZqiKjgbn2GxtHotpJDOTVTrxlQCsR8zrIduReYbNuQG9w/u88a1N/B871OW52WonTEuOmDQH/C5tz9HK3Dt5Ydnh07QW1Wrj1MZVyZaZI6tKkoX4KiEEwX7ykcFjlWaL+YAjEdj0jR1g+cFrCnTkqPDIwbdAaEJCfoBkYjY6m9RVRVSSa7uXKWsSibRxAmTfcnR8RH9fp/1/jpe4DRQaZ5S5iWLxYLpfEpdnvewIfnUKhjAa8aRlej/AiMIfCps8y9y/VgMN+5yu38lcL+k5wYQU1Jb0Fatphrj6JxVHoj7X8lif8Hwwx8Sdft0r1ylW6fE40OoKqzyMRaXPiw8bFWC8rC6RGgnGhXCWbhtXbthR7vsE5Mkbh8YBqsEW6MEKorxQp9g0CUfzogil38hWzEAJkvRoY9sd9FFgtExMm65HIVZihQeQkhUECGUokwWCG3prm/S6p0xm83Zu3IJTO36kvLEZfaEAaIoaUchX3j9BqV8RjhVfOPFKY+fv0crHLC5fZvrV97l0qUZp6cvGY7GJEXlWtGbb5q2UFhDJSCpLEcKfCGIKs2WkkTCYsua6dkh88kR1oKUAVu7u9y6c487n/0MXhBQFDVFk55Z1TVV7dw5eZY1IU81xlrXh2QN1tbIIkUsxnjplCCbEJQJVW04Kg2PMsNBZSicfIXdTsTNbkz95IyuDPARZAaubbZY63Yp5iOiuONWSE03kNUVVZLghz4y9N3P0WqUBVexYJqwtQBPKQJPUQ730dMz5MYuyx4yd6+5h7gVAqRgfX2D12++zmw+42x8Rl6UroFbu3Wg62eBsioZjoYMRyOSdE5VO2bQdXSFxHHL5ZNELYSSFFlFVVYoIZBy2a0OgaeIghCMIS9mqMQQRS3HbgaKTrfFlctXWV9fJ88KimqBkj7tVher3cPRNNoCx95oZvOUBw8f8urg0HVOOed7E0TmXo9i+TAXrt9tRfGI5lDRhJaJP+Hu+nG/lnR5Qxe7dY5Q7vRqWfVEAatT5EVQlVaS7Cd88OEH9Lt9rvnXyOqMo9ERVVXhKxeip3zncCrLEs/zqHTTaI3T+CCaJNxar+LskwZrgjA4T7BV0Ipa+KFblczOZgSR04zEDdakWer+vN0lKRJiHTu7tIF0ljoGQ0iiwLVCL5IFVls21zY5650xn825dOXSqkYiyRNncw4DirwgiiJu3L3BM/EMNVWcvjjlvefv0Q/73Nm+w7tX32V2acbL05eMh2OXnHxhyFmuFRBgKwvK3T+6ckOAFc4Sfnh2yNHkyJHgMmB3d5d7d+/xmc9/htAPqQr3GjG4tUxdO5YkzdJVoJy1dmVlrm3t1l7JhEnqfiVl4txdpcFkxqUbN1gTdkJa/RZnj88IZLDSf7Q2WnS7XcbzMe247fQuDdZUumKxWOCHvsObC6vH5YNaSklA4A58nmJ/uM/Z9IzdjV2WPWTLkLvV60oKNjY2uPfaPebzOWfjMxcw2CQ9L7GGJdaMh4yGI5deXjuRcuAFBH5Aq8GaVuS0YmVeUlVO7G7l+YChfEUQBM6GXswwiaEduS4vL/CIOzFXL19lfW2dPM9JqgRf+nRarnS0KIqVjslo9zNK5ykPHz3kcP9w1RMFfMpptjw4LAetJau6es0uwzH/EljzYzTcNI6phmaUwsNiWMbCL/HFpY04KlzhyjBXtFXtMXt8QnvzI1rtNr1qiswypO85ml1JbFVjqR2ToOuGrbEI4xgRpHDliRakck3fOs9BCHSduhdq6CGCGOU7BshrRag0I0tSgigEKRFxDEWOXmSouOuC8fIcLwzcdJ0m+LEbdpSQYEpU4KOzDKUUaztbHD99SZ6V9Nb6LHWuKo5ACnRZU5cFoR9xZ62F9lJ0+zLfe3zCLB3z/OV3iPw2g8Eel7ZfZ2+3Yjg+4Gw4ZJGkFNo0RY1QNydVXUOBJRUwNxZPCXwp8BGESDwLkVLU6YyD5x9T6IxKax4/fIxaLOi3WqhuFy9u0e0NCPwQU1d41mW1mKokT2bUw1N6WUJARW0shxpOa8txqZnWhsJYalyf2CD0uLnWorM/IteChTXUynJ9L+Da5TV0MqXMU1rtnsvPEZbAj7FSYusKnRfIwAMp0bVBWlZlkgIfYWrC0CeMI5SwJKMD5MYeNDosLiowmvwkx/pZzkZnTCdjVKN1EMqt6NxbQ5EVnI3OePHyKYtFQlmW1FojUHieR6/b48b121zau0wQKDxPoaRACosvoWiG927bOZ567S5KWKoyR+smtqDRivR7XXrdXlNi55w5Uiqn7xLStYdrjdUCiUJaQVkWJIuMsvrJEQT/lV4NoHrCcw+rixUUXNDcYFbN4Uus8WqPk8cnfLTxkaP76ylplrpG7iaqvq5qFzcvXU+RoaHdjWNEkG59gnVNyLWuyfMcIQRp7drC/dAnDmLHyghFFEfkce5aw+PQldXGMXmRky0yuq0uSijyPHdMTFGuuppasWMWSlMSBAFplqKUYmtni5dPX1JmJf0LWBNFEUIJ6rKmKAuiIKK11iL1Ui63L3Py+IRJOuE7L79D22+zt7bH69uvU+1WHIwPGA6HpEnqrOOSVXaQw+pzNswa66za0n1/l24aJRXTdMrHzz4mqzOMNjx++Jj5Yk6r3aLXdQ/rfq9P5EeU2g2npna5Q9NkyunZKUmWUNG0jmuwtUWXGlOb8zJGAV7g0V5vM9ofIbRYaW38XZ+1y2tM0ylJntBtd5sIEEvsO51JrWunYQk8pzupG8fkst4G9/PtRl3COMQKy/5wn72NvZXjzn0azfOuyU9SKKy0nI5OGU/GbvXme27YkN7q7Yus4Gx4xtOXT0kWCWVVomvtIgQarLl1/RaXdy+vmMVVy708t2a3Wi021jbodrpYYcnL3KVwK2+lS+tewJqqwRol3ceRQq5s7EKfRyuURUm2yFY1GX8d14/NcON8UoJlPzFCYrVubLCKRhFw4e3dcWA5xy3HnDqB4YcP2R4MiDvKWZKVal44yx06UDobGrpCBj5CeS4QLwjdCwvZ0O8SG2rq0jV+CykRFcioRkoN+Ejp4cUh6XiGH3j4QeCs0mGIyUpsUaI8n2qR4EURdUNLCynduimuUdJDSoVRAcViRKc/IN/JmYwntAcDwk4bazV1mTlCyVMgPXRRst5f523lEU9HzDuGRyYkq2tKm3Jw9ojg9AndeJ3u2jbbt/bIqhmjyZDpdE6S5mhjqa1jzJbsmDaWSltKJfCkpTCaOIxoxT3agzWiuM1snDKeTcEKgiDAZjnpfEFhDfMgptttoYIAawV5npE12TBozbEQLGrBtKrJtaHUBu2wBwNEQrIWeFzd6hCMMg5z7YTmnuHdSz5vXImQ+Zw0mbtuL+VjTX2u55EROk8wZQHaDZBlXUPtqjrqMkcKQ6+/SbvVRgDKWsR87LRXjQ7DbSo0WOUG4cqymM85ODzgyaOPGA8PUcIjirp4YRs/CPH8CKmc9bbKazdMCIHRliLLKEuDMZaiyNjZ2UWgUVLi+wqpDFCf3+sCwiig1+vQ7bZXQLSyKluLsQJplOvwagDPCYKhLHO01qR5SpblzOZzxtMhJycnDIdDtP7J0cv8VV7Lh4I7SLniP2NceJn8EVhzrjM6d1yRwMOPHrK2tobXcXoP1WDNRduqKZ2TqdKV00QotapdwNLY8B3W6FA7p0/p1lh1VVNHNUY27hLpEcQB0/EUL/QIw5CyKInCiDzLKfOSwAtIFglRFDmGohm20iSljmunW5FutTVajBhcwJrBYODqFqx22qEMJ1KWHmWDNZ7yGE6H2I4lNC54MLUpj04f8eTkCevxOtvr21y6dYlpNWU4GTKfzMmz/JyNalhCbOOy0m7AsdKF4EVhRL/VZ22wRitukY5TV3FiIfAD8iRnMVtgjCEOY1rdFkEQIK0kyzOyLCMv8pUrSNSusNToJqfnwm0vhHCalK0O2ThDZ27QMMrgX/aJr8bMiznzdI7ylBtETb3S80TSrfqKsqClW41bs3Yf09bkZY4Rhs3BEmvckDeej1et4Mt7qqZGWeesspVlPp9zeHDIx48+5nDocoW6cZd20CYKItcyL93wUOe1GyYarU+WZe7eM5asyNjd3sUIl8fkeR5GGjd8X8CaIA7o9Dq0fwTWLJklZdT5cLVkjzSrdVhapBRZwWw2YzgdcnJ6wvBsuFr7/XVdPzbDjVsLuXwbJZ1PBSEwVqDtuXvBMTdutJEr6twRMe6tJGZW0S8zAtMiCH132wQeNs8xRYFYRukrDyHcTSQ9gRe3l58KIvChrhqNQYAoc1cFISVCeXiR70YxrQGLlB5hp0W6yOh2244hwGkUTF4g2xFZmhFqR8MKBLbSeL6PLkpMJLG1c2oFYZuqKljf3uIwLRgdH7Gxs+PEgmXFfLogXRQUVY70afblEfe2dhgEY37/8Zj3RoLMepTCUBjDsDxjdDAkOIrYXNvm2s5rBDcjknzG2ekJp6MxSZpR1WalNXG6XEttXM+NqXKGiwPqdEJVVahuDxn4FIsK6XtE7bYbSqTCE+7nSVlTFhXjIudlMqeoXGaLrl1nUWVXB0UEEAlohSEtoRh0POQkoc4NnoCtluBzl32uboaEpqTKMoqqpt/uOfF5w1osRcXWc2tEYZ191uLs5VIqdG3QeUE6PcMTGmE38UIPMztGGoOhvtCnRLNO05RlwXgyZP/lc/af32d8eojRNPlIPngtgrBNGLXxvIiqrgjVGl6nR+jPkWKI1QtKXVOXNfPJjMlkTKuqmE1nZElCVTr9zrLBu65rdFlQlrkb+htKvjLG9UlpgdbVSqxalo6uz8uCLMtI05QkS0mSlCRNyYty1Rb+n+tlhV0VXS73+6t1FedYc9HNspp3LmgAqmlFVma0TAs/cljjBd4qeG3ZOeUpD9NgTei5LqnmA+EHPlVdgYTABuRlvhI6e8rDj5pVR1M45kmPVqdFukjpdDuOIcANMEVeEDVYo7VehbvpUuP7vitWjdzDt9YuFbioCra3t8nTnKPjI3YarKnLxlWzcNZqAmi1W65temuXcTBm/HiMGAk8674+Ywxn5RnD/SHRYcT22ja3dm8R3gyZZc6JMx6NydJslf2y2gA2VnJhBHmVsz/fZ5yOKauSfrfvvk9Jhe/5dLodJypuWFQjDLrUjsFqnF+mMist00qoevESrFxmXtcjmSSY3K3ORCzwr/iEmyGlKcmyjLqq6cZdls6myiwDXiHwzteISionXM4rhzu1pcgLTqenaKHZbLDmZHbyKev4KhDSGtcoXxaMJiOev3rO/Rf3OTg5AN0MuF5A7Md0gg6tqEXkRdR1zbpap9fpMffnDMWQhV44kXNZu3yhydi5q6Zz0jSlKAuqqlp97KpqBMpV7rJ3rHEaMePYMHQjmjb16u+ta8fs5VlOkiakaep+JSllUa7awv+6rx+b4eb8XNScquxSceD+bBlOKFZv795yJXxcnqawrG2usddv4XvSWYG1waQpJi+wlWvsttJD1CUIJ3SzvkEGYVPFIBvxpOcs4p5CtlpQ1ZjKiZCF54GQzn0jJdYYRzEbTbZIXFu5sXiej61KJC2sNpjSJZWa2q1GVBygpGsSN1WFFAoRKCyCKluwfWWXyfExWZoQ9Qe8/PARk+MZaeYz0yGlsPhBQq9n2dgMWOt1+Idv7nLrcMz/+nTOYe0AsjSaSllym/Ny+Iyj4T69sM36xhbXtva4c+cOSVFwcnrC2WjCZDyhruuVsFYBm9IxK3WRY4QkTRaQGkyhqQpNKaAnJbGQKM/pd6x1cXSntmZRW7LKNklFS8rf/dQ8CT1P4Skfas1Aaq4nlsgI/MjjtS3DrZ2ATqDAGKqspNI1fhgSt7ruMSRcuarRFj/ynBNLG2xZIuIQTyoW1azJpsgJWm3a7Z6r7sAJFOfTp7TS7+O33kZYv+kns01DuMHqiiJPSdMp6WLRvLgtkoqSnMJkWCYEQUQY94jDHtIPMVaClXhC4UtJaSFNKp49e8pockoUhZRlzcnJmOmiIK/1Cg9G4ykffPIBrw5foY2m0hVVWVNW57+0rqlqjdYGre2FAk3TFMja/6yHmYvXRVZmZVdtmBbJj97pX9TpXFxPrW2u0eq3nCPHU07/kaaOtWvSzT3pUdalOzXXEuM7p5MVdpVz4kkPbTXKU7RaLTe8VtXqlL1kmJZBg0oq1x+2SIhCZ0f3lU9ZlbREyxU/lqWzoDdalCAOiKRrEq8qJyRXgTvpL9IFe1f2OD46JkkTBv0Bjz56xOxohp/5hNp9vkmQYHuWYDOg2+uy++Yuo8MRi6cLZIM12rieo9zmPBs+Y3+4Tztss7Wxxd62w5q8yDk9PWU8HDOdTFeiamClMwJXUCmFZJEsMKlBF9q5dJrhTwoJ3jkLBC6nyNbWaXs4Xy+ufu6SFQOja01JiV24ocqLPMyWIdgJUIFLGi+z0uXbhIETOYvzv89qixc5UbDRhrIoCVshSihm1QxZS/ImPLbfdgOaxVIVFU8mT/hB9gPebr3t0rKNWQ05xjhX11IvNJ/PqUv3dVVU5OSkJmXChCiI6MZdemGPyIucC882LjzpVnxVUvHs+TPOpmdEUURVVIxPxxSL4tzpBswmMz745AP2D/fPsaapW1j+e9kppbWLKlgWaJqm0+5HDpL/O1w/FsPNUh8shcYXy7RPwCxDtC7CkdP0nutvlsssELh042vXN2gFTr8gjEHnGbaqMHmKFR7CWJA1WpcoKZ0OIvDBSlS7hZIW1xCt3LoKi4pDhO9jC4lsKWSgnMC0CRXSRlMVJcoPKLKUsN1GeR1oBipbVfhhgNGuvVwI0LrCM5GzLnq+s+d6HrZy+2A/aFOWCb31AUgfbSHshngzD2rF5rqkvxXT6sUYNDLwyKucOp1zb73DZmR571XKRzPBRAYkVYUnLbWSGKE5K6ecvpoQvHSajfXtXW5e2uPe7dskWcp4MmY0npEu5oRa07eWvKpIMXitNuPxjLLWtJRonK+CjnBhgaphT3INL9GclZbMLC3/DesmBa1A0VLud2elRuUF7waKt7s+vufT68KNdUE/VEhRoUuXilobjUbQ66wTRrEL9JI+gde0siORysfi2DBpA3zfo6gLJIKyyAi9ltPQIN3PxfNplYbu6Iyy/4oy2UEQNPkKYK3G9zy217Z4/dY9bJnx+OGHnJ4MMdbiC4lVCilj4laXTmebuDVABa6ob7EASYFsLNZ5WTOfpyzmaXMPWbIaqj8xiCyymvtPDhDiwL1erHMP2ubF82OAIz9Zl3XpqLrBGqRrJb4Yinbxbd2/GmEo53ZWKy3r11xPj5Bi5RCpq5okT1Zt4bV0Dh8p3aDh+z7SSlrtlitYbFrGPeVSa8ModG9TSGQsVwOIuYA1ZVHiBz5p6nJrOl7HDVSVE9yGYUhVV+7AJaDSFVGDNb7vo41zVOnK2Z/bQZukTBhsDvCFE0SHnRAv9lC1Qq5J4q2YuB+j0Y6dqlxGTHejCxGkr1LETBDIwLEB0iX3aqGZllMmryaIl4Jer8fO9g6XLl3izu07JFnCaDxiNp6xSBzTgIGydiaFVqvFfOxEssI7Xw0unTdL9gSNC2Ws7KdWIAL3M1aBQiqJQjkdUV6gAoXf8V3DegdYBy/yqIRjMKx2azKBYL2zThRGBGGALx0+gRuIfeWjcc6lwAZ4DdYIBGmR0vJaTkMjXN9U4AWY0nA6POVV/xU7yQ5BgzXYJpLA89gcbHLv1j2yMuPDhx8yPBm69VATwBfLmE7cYae7w6A1IA5cAz0LKCgcW9j0d6WzlHTmsMaaRvf0JwaROqs5eHLAoTz8lHvw4mvhJ+X6sRhuAISw+NJpD1ST0Fo1oWtuBbWslhDNCsrZN5ZgJJv/C0PJ7mYbZZ21T9faDQt5uhITW+lO/wKB0e5jiBp0VUIiIPSbAMEKEcUusdVasBVeO0K1mhRkpZzzxrgXWV2VeJ6bwOu6QtbOTqmkwJYFSvnYokYGEWCoigI/jl3cvmwGnNKgdYkpc1QUEQZt6qrAKIvVOZeuX2VzZ5eyMihPo3wf6TkwqYwhLTxSoDYatOJO5LMjCw5NwMs65ukko6wtQSCoAkEFlLXlZDFnfzLFf/yQXrvN9tYGW5ubXL79GkYpNJKqKiiynEFtqHVFf6emKHJ0WeIZgapKl6opLOUyRVoI8qoknif4xtIOnQNBGLBWUFUF47wm1xVt4Ge7Hr90NeTGTpc4jLG6pCoTbFVSFxXCCJBuZRkGPu24hSfcSi/qudZbUdegK4T0nEDcaHd/BQFWG6raOQzCMCAMIycALAqEgUHQghcJ5fo+WSWJgi13g9rl8CwYrPV4+413GHT6VDUcnHyDNCnwlUZ4TiPj+z7tTod+fxPleZRlgRQlVWQIAw8LeElOVZWrFm8AJSzaihVn6ZRluNUgq0/lb67/Py4r7HlUQZPQugxdu3hddHGIC1iz/DMZSjrbHbf60E2RYKVJ8mQlJl4yLFjHKBicPqGsSkQinCtKWSpbueJD5ViAylZErQjZlqvPc5loK4RwCb0N1lR15VYGwjlQirJwDEqpiQIX0V8UBXEcuxwYiXvf0lDqkrzMiaKIduBWVFZZcp1z9fpVdnd2MZVBKzfQhF5IVVUYY/CK8+wepRV+5FPIgsAExHVMNs7cmikQiKBZ99WW2WLGZDLh4eOHLlBwa5PNrU2277rgQ4Uir3LyNG9iFWrqnZosz5zDx7jqB4yzfjvW1g2eRV2QzlOstqt13jLttqxKqrzpXwO8jkd4LaS77XqsSl2SlMmqiHMZQCeEWzW2ohZKKuq6ptPtoJT770pXq++r6/izK8eRabAmCAPXAyYlReE+93bYJn2RcrB5gCgF28F2c4M295gU9NZ6vPPGO/Q7fdDwjZNvUCQFxjNUqiKIAhcQ2umw2d/E8zynfRE1JjKuiBTIk9yJjJsW7+Xr4OIadvX6aNaDP+nXj8dwY93iyRduXymFWwdZI5bh58ByJXVxIr/wVzT/v7XbodcKoCyoihy0ca4o7UL6UMqNRcI1RguhaITqzQ64xNYFMvCRgQ9FgfB8p9GJAmQIKg7AnkdWW2NcV5RwThxrNenCBWUZXWORoF3OzVJbJH2fuirQeeksbkHQTG810lPYIMRajc5KvCBChB4oH2M1XuATVCVVXmBrjecLwm6boqjxPUngCdIioV5z6bTdRHFVSO7h8X1P8PGsZLTIscJZ7/u+RIcCHSmK2jDPFsyfLXj49LkTHvouvDCKWvTW94haXaSSdNZ8uqIGbZFKoKQbUj3PJ8sztDbI2rBRFPiTGcls1uzES/KqRBuNb0FbS0fC397y+fu3+2z120glKLM5eZKii7qhKxzjoyUoz2O9v0kUBm7GlIrQ96ktzc9VumWmlNDYMpWSKM8jn48wugRrMFVNLQVWa0TgSir18IjydIboX2LZpeRe7BZrNZ4X0O2uEbXGpLXlYFqRZxZPWDxl8NIZ88KSVYJFVhCELaqqIi+mSFliTI0UBilrZ9oTzpZf2+Wq7m+u/1jXsnGZBmuW6yBhfgTI/zljZHunTdByGpm8yDHa0fPLJmil3G5FCokR7tR+EWtKSgpd4Ps+fuBTFO6/jTXO6h06gedFF5e1dhUYp40zJiwWC7qdLnVdr7Q5vu9KQa20+H5T7dBgTdBgTW1dqm4YhBjrclKiIMILnUBfW5fUW1YlRV5gaoPwBe1um7qokZ5EeIKkSIjW3INbLdSqUFh4gnJakif5eWCiLxGRc9GY2rDIFiyeLXj29NkKa0I/pB212Vvfo9PuIJXEX/epcYm8SPfgN8IQeEGDNW5FUhYls8mM6WzqkorLwj3Ul71FDcvjb/r0bvdoD9pIJZnnTX9TUa8cbQIBPniex1Z/iyAMwHNZUEEQnGudml6oZVIy1rnhfN9nOB+6CIAmUVhI4QYM3zmKjkZHzE5m7PZ3z0P8mhJNbTWBF7DWXWPSnkAN1bTCZm6YM8owS2fY0iJqZ2BoNVgzy2cUsnD3iDDUsnbfN3NB3/Of+PXnDjdCiAj4KhA2b/+b1tr/mxBiHfh/ATeAZ8A/ttaOm/f5vwL/Z9xL+f9irf3dP+/jBFITeMI9qFAgLNoatJUNW3P+38ufy1KVY7BI3Il+d6+LZww6S6EummRj24TjuIegW5kKF6UvnWzHliUaifBi9xwtXGKu8HxEpTHComSA1w4c5bkMOrNu3ys9Dz8MyWYzgiBiPpvQ6w3AGKyQTYsyTqfj+wghMXWOrgp8GZ7vKoV1u9IwpEhmWOVejHWS4rU7KOXhhSFB1KaO3V5fKqcvUVKg/AjfD2kFLUI/w5MTykgwiGPe6G5xazbnuwdnfPNE8HymybOKujZNoqolkBB6EpSgNobaWnSVU5Y5aTrl6OwIg0SoAOXHKD/EVwGeH+I12iNjmqTeuqKqSqo6p6ozF4JnLRHQQRCLRsPjSf7+tTa/cXedThxRFgnpdEaRZpSF20EqJZCeQPkB7TjC8336vQGm6QXy/RClJEZbKgOeJzBGrxrC0RrPcwnBc100QmOD1TXKD1GtlrujqoxsOke/jCjCVwTeFo2nc3XPgSXLE14evOCDB4+YpZoVC25AVIZhNmV/NMfzn+E37IAx2n1vqalrg9aGsrZo12rgIg6WA/OPeI38pw5Hf11Yo2Wz3lDL0MImHr6pZDDi/L//5Dd9lZgqLb29HsYY0ix1604hV+4fOLd5CyE+pZovyxKJJPZiMFAVLjHX95rKBWEJREDQYI0RZnXCBpd2HIYhs+mMMAiZTCcMegOMNisRKBaUUPiea6/O65yiKggvYI1tsCYMQ2YXsCZNUjrtzurjtKM2RexWXsuBTUhB5EeEDdZkfsZEThCRII5jtrpbzGdzTg9OEScCPdNUWeUOkPJ8yJCeC9pb6k3yKicvc6bplMOzQyRNYKEfE/ohgXLDj5IKbbVb0VUlVV1RViV5nTvb+DLtlk+LwYUnaF9rs3F3gyiOSIuU0XRElmbYBmuEEghPuPqHOMLzPAa9gVuzIV1hqpIuoNBYhNe0gTdyLa2ddioIAwpdrFJ4a12771erhUCQ1znz6ZzoZcSr8BXb/vZKb3PxfkvyhBcHL3j04BE6vSDONWAqwzSbMh/OeeY/WzGR2rjqi5raOea0WbV1r1at/4kPOH8R5qYAfslauxBC+MDXhBD/GvgvgX9rrf2/CyH+O+C/A/5bIcSbwH8NvAVcAn5PCHHXutCQH30JCD3rbNtCYnHtzUvAd/eMaYS+q3dhuZxSwsn71jYDLl/ZwOY5tnbDiRQChQuPW6bNujbFurE9OzcNjUDYWoNVEltrMNIxP1WB8D0sFbqQTUmmAiXdQ0+43/PC0FkElUcQxljhPmZVp/gyQGjt0m9xtQQCha7Khra2rOS1AnRVYyuXZUMkUGHg8neKHBnGqDhyX7cX4bfb2LLApAkg0WVB3G4TRhG+p5h4MxZpQlQmXN3Z5NL2Bndf7vP7rwoWXhs7XFBMUnJjmZiatKgpMEgsQaPZtgI0AusLtAArSrQpsKX7GRQZZLoZ0Bpwl0IQWksb8JWgLSW7UhBaxWGtOTSaQaT4r97Y4uevDbB1xmJ0ymKaUFZuYLAGglDgxz6+8omCFoP+GnVVANqFUgUxpqqRnoekdg645QnKAp7f2Bgh9GOwrlMsjNoEYYjCw5YVqhW5BOnFjPpYIm8dYu3bK3G7aBIyrbZMJhM+efSAV/snq2HbaWDOQxJro10Y5N9cf9HrrwVrrGfxGqxZsQEXcH65/nFvLj7978Ya62/4bFzZcGmxdbUKVVvauhHu4SGkswOvBK+WlUDYWOdw0rXrXjLaUFQFnu9RUSELJyZWvtOKGOOGF89zTeLaajw84jB2ehwBaZ0SyACttctDwWkzFIqyKt0DuWGvltkmdVW7ypCyQESuZVxKSV7kxGFMFEcIIQi9kE67Q1EWJGni1kClaxqPogjlKWbejCRNSMqEzZ1NNrY32H+5T/GyoO23WQwXpJPU6UBMTV00+T80Qsrml0AgfIeFpSgpTIEomwklY/V1LAfJi+WPokn4FlKgrHLrQqNRoWLrjS0G1wdkdcbp+JR0mlKX9fKUjAgFfuT0NHEQs95fp6gKdIM1cRBTVRWe57l7R9gVW4N1676lViX2Y8ekGfe+YdgUp5Zu5Ri0AqbzKfJYcnjrcJUZs9J2NVgznUx58PgBx6+OP3WfXtTCaKM/JQz+m+svMNxY9x1cNP/rN78s8F8AX2l+/18AfwD8t83v/z+ttQXwVAjxCPhp4Bt/1seQAgLPRyjVCDyb/ihrsSicPBSW/pGLS6qLEX9KSqpsQV4mBNY6xkYIkAbVYItzG7j0YdE0+grbFGf6EaaqsVo0ycUKRAVKoUIPcI3SwlqUNm7AQTRpm9KxN35IlhVQFWSzOe3uOnVROlPX0oIuJSqMIE2om1oAGbjMAGEM1lNYW6MCHykU+XSC32471w0uXddisZVeBYEZ5aE8H+W7FEyJoahr4ijGArkfMssXqCxgbbDBZ+69Tjd6xQfPR2RvXaYSEXr/hOx4SFnVZA0Aagvj2lAbl2Z8UlWUHmxvrxH3exTlgmcHI2ojUEqy1w7YjlvILMcsMoSw9JRgLxJ0pSTN4SiTjKThi5tt/vE7u1zvByymZ8yGM2YzS5opOl2BHwhaA4UferTCDp12jzSd4fshVucEStHqD5hOp/hSIpRENDij67o5OTuQE8aAUE5joxQmc823ORblSWToO4ZNSYJWTHmWEBYpdZyiZAuBREiFNc76eHx6xMcPH5CkZYNr50GTf3P9h11/HViDcA8gpdSq02a5rlCo8/XP8vc593FezLtRUrHIF6Rluir0E0K4PJolSyDdCXrZVL9MztVWE/mRW1NoQalLlHYVDUopF0mA6+ZZunBU4MLQUKwGnMALKLKCoi6Yz+asd9cpi3I1WBnrViVREJEkyUpz4akmn6T5e2tbu/wdoZhMJ25Y8aPzAkOsq0tpsMZTHr7nRLhSupVM3WANuPbzRb4gyAI2Bhu8fu91XkWvGD0bcfmty0Qi4vjVMaPjkatroFkVWsdEYJ0duqoq8GCwNaDX75GUCaPDEcK4rqqgFRDHMUVekC0ypyFRAhE1gYC5QGUKIw2tjRa77+wSDkKGsyHTsyl2blGJwut5CF8g+xI/8mmHbfrtPrNkRuiH5DpHScWgwZplV9ZyxVg3WCPtBTebUMRhjFKKonas14IF0pP4ge/cb0oSt2KSs4SsyEjjlJZsre6vusGao7MjHjx4QJmW5/fm31x/7vUX0twIJ1D5LnAb+B+std8SQuxYaw8BrLWHQohGDcVl4JsX3v1V83t/5qWCECEMxkrXTyglVrjMRrukYwVNd+FSQHxu2VxK/XzPiXplFKOEcGsQ30fYGqs1VtdYnOCLpj8IoZq4aw8rXK4LunYPKmsRxmlgTF0iiB1NXOWup8qGqOXpyA/wopAobpNMp3hSgOehWgG+jqjyHE81NLU1COXYAGNq6jzH9wMnD2nWKCoIKNMML4yJBusUkyFSgN9fc2F+TbWBsIK6yLFoFybo+1ht8JoVDUKRmoxO3EEIwWQxxyBY669z985V1vstHjx8yMRE2Duvoe9dJV4c0ZmP8JVzgEwWJa/OSsapIM4sYr3L3/mv/xH97au8evmY//UPv4bX7rC1tYPQFbe2d9kKW7z6X34bkSwQFrLM50Up2K8KCq/kF9/Y5Fdf38MWMw5fvCCf55SZpKgC9vZi1nZa5EVCHLUYdNdZJHPiqE2aLEjmI9pBRKe3Rl1pkumQ9fVdBCCVh/QEtmrulCbKHON0OF7gE0QR6SKn1oLMVnh5QZ1XiNDtKKNWm+pshD8V6O4EX/XcKsK6IbYsSo5PTtg/PKW+cOhfrkn/5voPv/5jY00QBKu1E9bZibVo0mEvYI0jEn401gDguUyQKIpWg4If+Kv8j6UexopGI4NbgS3LHBFufVXrejVc1cZpYMq6JG6wJq9yt+KwTqQucOuSMAppt9qrh61Syj3sdUyWu5Tz5ZAglBPGaqNdcrEfLC2Lq+9JlmbEYcz6YJ3heAgC1vprLszvAtbkRe7cUtKxR1bb1YpGCUV2AWvmizkCwXp/nat3rtLqt3j48CGxiXnt7mtce+Mah/NDxvMxKPc9KBcl1WmFSAU2t3TWOvzD/+ofcm33Gk9ePuGP/uCP6LQ6bG9vU5uave09WmGL3/5ffptFsnDsSeYjSic6LlTB5r1N9u7tMS/mvGiwRuaSoAyI9iLau22SIqEVtVjvrjNfzOlEHRbJgtF8RBREDPoDTGUYzUZsD9zt5ymnK1pazpe1CUuGzQ98F644zxFaUNnKOdqKapXc2261GZ4NERPBpDuh12AN1g2xVVlxcnLC6eHp34DLX/L6Cw03Dc37WSHEAPj/CCHe/t948x91eP1TPxYhxH8D/DcAW90u4dqAfDRBqBCERJuyod1cdrHEPaiX483F7ILlB+x2Ffl0hL+3QdTugtHI0AMVY2uNKVzxF55EdjugtRP0Kkl2OoTSELRbSC9EhU40bKrK7SqFdUyPaSobNFijMbpxbykPFUYEsRtwsskQ22sKK4UgT2YEwSay1gihkF6AUD6mLqnLHL9qQRgiPd9tzoIA4fvousQPW8jBJvnoBGsMwcY2KvAREnRRUUxGrvXaWuq5cqxXQ1tL5ZIk4zAiKzI67TZllXJ4sqDf6TPo9bhx4yrj8RA/PaD0Ik4665jX7tGrC7ZNhtUlV09P2D86YXNoCW/d4d2f+hXamzvs3LiHaK8xX0zZ2b1MWeSc7h9z4ws/jzx6yPC9b1IXkrx2p5lLaz6/+PY13tzucLJ/wPBkQl2BUh5xJ+TqTod2v01epQS+74oJ4x5ZnjFLJghbUU5qtm/tIuOIZDSkrms8P8DJjQ0sRXO4YD+kWx9a406tYRQDIwSVWz0agy4qRK2RYYjn+3SjgNn+kN7VEVZfgWVSp4U0zTg8OmQ6z5qb+6/mLLWqEfnP+PqPjTXdbpfBYMBkPCFU4aqOYFkLsPxHiU+zOBcZHACv61J6N3ZdVL02Gi/0iJVr164arJGepNPtoLWmzFzG1eh05NJs2y1CLyQInWi4arDG4sIFVw4uzSpLBOEeqlEYEcYh7bjNcDKk7tUr9miWzNgMNl38vlCEXogvfcraOaNalVuR+F5j+Q6c9bysS1phi821TU5GJxhj2N7Yxg98kE4bNJqMVo3Yau4GqCiMqE2NVK61O2qwpt1uk1YpiwZrev0eV29cZTgesp/uE3kR67113rj1BnmdkxsX9X9ydsLJ4Ql2aLl98za/+tO/yu7WLm/ceIO11hrTZMrl3csUZcHhy0N+/gs/z8Ojh3zzvW8iC1d9oITCW/O4+tZVurtdDvYPmBxPsJVFSUXYCum+1qXdd5+j32BNr+WwZpyMqWxFPanZubVDHMeMRiNnsw9Ct35cVnbY81ZvKd16cSkob0UtRnbk1ozGrRarolqVpPq+TxiHDA+GDK8NuaKvnBdGWsgarFlZuP+K8OE/B6z5S7mlrLUTIcQfAH8HOBZC7DUnqT3gpHmzV8DVC+92BTj4EX/XPwX+KcDr12/YwVufY/jet6By+9El1Q8GT7gWYmEvRKCLiydlixTQCjXtjhPUCiWQYYTXDhxLIiW2rLDNOkkKhRECv+NR5xn1dE5/c426nCL9Fl4cN2JkRZ3XGFshPOEC/5rsCGuMC+YTAoFLM/Y6Mf3tDUxRgtGOOZASJSRZmtDqdlx/ViPMw+L+jrp2jimpoCoRfoAXtyinY2qT4Lc7xFt7pCf7VHlOsL6JarWxoef+jgKXcFxWWGPIs5y6rqipKa0lqD0C5RGHAfNFDZ7HPEnQtctT6HR6mMpwZXOLtemEs2dnLPZukm9cZmBrdtp9wk7MzvaExUbA1vYu/b3LxP0B88WMb37rj/jkk4+wBnr9NVQUs37jDvrxN12uT+pOej93Z5eOzvnk/ScUpWVrd51+v4vng+dJLJokndJrr+F1ImbzMbUu8T3JfDGnmFVQKfx2jLaWJJ2ivADl+47aEwKDRtelO5zKpgxVgLAapXyCqIUMfHRRUwmNbnWoihIvCJChu9e6nRanswVaLzCiQljl7kZjmc3G7B8ekhfVXyk8/KcONn+Z6z8W1ty4fsN+9u3P8u33vo1usAZwomLMSrtiL2DNUgMCrLQhOtSEndDF3yvh8k9aAcJzK5G6dFH/yldN67rA63pkRcZsOmNtc41pOaXlt4jj2KXtNlhTXcAaJZwzyhgnChVCUDVYE7djNrY3KArnirlYLpikiUsvFk6023zyrsywrgmCACUVZVkS+AHtuM1oOiIxCZ12h72tPfZP9snznM31TdrtNl6DNRRuFVOVzhKeZ43uCDf0eLXX6A4D6kWN53kkDdb4nk+vwZqtzS0mDdbc3LvJ5Y3L1Lam3+4TtSKm21PC9ZDdnV2u7F1h0B8wW8z4o2/9ER998hEY15odRzF3b9zlm4+/6dZmqUfgB+zd3SM3OU/ef4LNLWu7a/QGPfCca8tgmGQT1lprRJ2I8XxMWbsBdL6YU80qZNnkEWGZplO3jvP8lUXcWENZu3XRql1bupwaX/nO3h96TlskDO1Wm7Jw3V4mdPdaq91iMV2w0AsqUeFZl3dkjWU0HXFweOBa2v8Kr/8csObPrdgUQmw1pyiEEDHwK8AnwG/B/4+9/wy2LDvPM8FnrbX9cfdcmze9rSyDKqCq4AECEEiQIiXQSWqR6h4quns06glF96ijf0zMjw7FRIyoCUbMaKZnOqLVJiSyKUOoNSFS9CQMAcKSBEGgDMqmz7z+HrvtMvNj7XNuFkhRFEMiC1StCiAzq+69ec7eZ7/rW9/3Gv56+2V/HfjZ9vc/B/yIECIWQlwCrgFf+UNfRBSx/e73sfrYYyAM2rQSNrzfhxKmtelrKTQtSVi2CcYOgVTQ6XcYbp2md+Y83dNX6W5fIdm4RNhfQSUxt159wEvPvYapapRUhEGAUgI9mpENV4j6XYSSmEZ7UIgCCCDsKtK1ASqOCLKYIE1856UlIGMX3gEtsThL6G+tebnnPPfhjUGE1QajLZgTuaAQEmu9BNkz9b1/jpDCk4ajxMuT64qw0yHbPI0zDfOd20x379DM5jgrkEmC7GSoboZMEsIsI+r0COKESEqm02OqYk5dFCihGGQ9TNOgBGhbowJBXk44Oj5i0O2y3Yt5PGi40oyZj495yUVMzzxKfO4aPUpUNUECvW6Hre0zXgEgFTIMsFYzzyfMJ2MK2cFeeoQzT17hY287jRjts3N7n43NFZ569gK91SGN1fQHfW/ciKSbDEijlCSKcE4zmR5htSFLu4xnkK0MUFlKVRbUdU0YxN6N2Dp/DxwY7R2fF92/BetXKEkcpgRBBMLS6Ioin6HLAhV43pJUiizp0OzvcnjrFsYUGNv4hPqm5Pj4mN39fbT1nZw/+zDxJ7P+JLAmiiLe/67389hjj2GFpWqxZjGSMsKcAL9gSRJeSJkXhnBZP+PM5hnOnTnH1dNXubJ9hUubl1jpr5AkCTuv7fDac69Rt1gTBAFCCeajOYOVAd1+65PSYk3QYo3qKgarA6I4Is5iTzwNohMr/BZrJJ53k2QJ61vrOH3ijBwFkY830XbpayKVfEOooRN+nLTIwkrShCRKMMYsScKnN0/TmIbbO7e5s3OH+WyOcIIkSciyjKybkcT+971OjyTycvDj6TF5kfvxmFD0O33flcJRucoXD9WUo+Mjut0ucS+mCRrGzZjj8TGxi3ns7GNcPXeVkpJpNQWg0+1w5rTHGiUVQejdkCf5hPF0TCYyrl28xpUnr3D2ybMcjA/Yu7XHYH3AhXdeYHV9lcY0vsBpgzwH8YAkSoiiCO00R9MjjDZ00y7MYGVlhTRNKQqPNXEYLwuPRcBno5tlhIETJzJrqaRXeQUxVlhK7eMJirIgCAJPFleKTtJh92CXW7duUZiC2tbUtqZsSo5HxxzsH/w+0vtb69+8/iidm23gJ9tZuAQ+4Zz7eSHEF4FPCCH+c+A28FcAnHPPCyE+AbwAaOBv/aHqBUBKxeojb8NMZuS7u8zu3WNBHxY4Hzro5LfcW9dm//ivWRmEXH/yWdb7aygnwbbuxFSApp5M2b2zT5jgAzAHCiEl1e4+Tjdk62uAQwaBV+noBtnJkHGECFvTPukDyZx1COmwpsEPi60vcoREqhgXQdTzSp9yNqYzWEM1DaYqqOY58frQBxwK1b4nPzJxrUOxUK0vThSjOl1fFNUNKtSE3R4d6Zjv3KecHFOXc6LuOlG3R5DGnmOkFDhHaEE1kkDGiGrGqJowyidkUUwjJXGcYCyEQUJjKgzwYHefXqdLECVUZcFqf8AjmWT38B55kbGrMuzGNW6+/iKrIqS3tkG3P2TYHzCeTLDWW/7vPLjB4XiKPfc2VsopV7ua8mCPUMWcv7TG0XTC67f2WF1d4+yl80ShwmiNsBLatHCJIAxjpAxIkozxrGA+F2yeWcM6wWw6xRjrIxukH0E566+7ty8vCZRsrWoCcP5kG4URYShxpl5mZzkRIKPAextJSRhFJMaxf+sOG2cr4jBtnT5LJpMxo+kM6/7DOAH9Ca5/71ijpOJt19/GbDpjd3eXe/fuLROZFxlT0r3xzOfHkScE42AQ8OxTz7LeX/ckUut5FhUVGs1sMmP/9j429hEIauBt8Pd396nrmrWNtRMujvNOvFknI4ojZCiXSp8F1jjpQzcVngS9CNmMVQwR0AMsjCdj1oZrNE3jCarznOH60GcnyYCa2osErM8KioIIE3gb/Tj2SiijDU3doEPtk6Gl4/7OfY4nx8zLOevddXpdn2wdhp6Yvdh4ZeBf06yaMakmjI/GfoQjJUmcIJwgVSmlLnHOsb+7T7fTJYkS8jJnMBggO5K7+3fJioxO0OHU1ilefP1FIhmxsbbBam+VQX/AZDLx78NYbuzcYDKa8OSFJ5nWU0zXsHe4RyQjzl0+x2Q6Ye/mHmura5y/fJ4gDHywpRL+3lvPb1lIzDtJh2JWIOaCtTNrS/6QMb4bI6Tv2GBZSrdLU3rKg4UA3+FaYI0MJbWpl+Z4gfDJ3lHkxR9R5CX/d2/dpTpbkbZYUzU+fHI6mS4/e2+tP/r6o6ilvg48/Qf8+0PgO/813/N3gb/7R34VQpCur7H62JPMH9yhmYzJR+NWtW1bJoVbcuBUy7TxwT5Uu4AAAQAASURBVJneQO6xJy8zzFaRRuAWpn1JiCNHzwvm9/eYTAourw18xR0I5nv76Kqge+E0ALaskWGIaxqW43wlof1AL6+YtUCDFO1ICJbEZCdAWIkMFfGgg9YV1WyOVIqk06MqZziD91+R3s/HWq+IcMYuSc7e2NCh4ggbx5h8jq7mhEGPsDugsynhcId5PqY0D2jqKUlvSJh22wJHeBWQFJ4vYhM6acPI1BjhUEKSqYCqKWgaT5aN44QkUUyrGd20g7E1k4N7JJ0+/STiVCdleDzi/o2b3Hjlq7w0OE/3+hOYqIfJ53Q7GY32VuX7N18huP0i7BxzhOLGSsBKFhJEGj2b0el1OHVqg8HKGoSKZj5nenzISn8NpKAspwSiYdgZIMOY4/mY128c0+8nZIMeVTFlPj9COEsUxt4FLxC+slmoRaxbflKc8gZ8wgVEaeILu2JO02gi7TwxXHmJuGhl+audHjvzCcbk2LCPw9FozayYURTlH/nj/db6o60/CawRQrC2vsaTjz3JnQd3GE/GjEdjP7IR9vdxER52J3bCS7svPXmJ1WwVYcRS0RImITk55bxk9/4u+TRnsDZAoZChL2zyKuf0RY81dVkThqFP/24b6FLJ5eYJQNAW6TSehNy+rMWYC+FjI1So6Aw6VLpiPp2jlKLX6TErZz5tW3pptBN+c10kYy/iABamblEcEcexl3KXc3pBj0F3gNyU7BzuMM7H7Jgdps2UYTOkm3Y9yTkQy9wrIQSJTWjSxm/owvtQBSqgaApEI5Y8HZUoZtWMTtahsQ339u/R7/aJ0oi0k3J8fMyN/Rt89eWvcmHlAk9cf4Je1CMvcrJOtjQtfOXGK3zzzjc5enCEQhGsBIRZiI588GfWy1jbWmN9ZR0VKubzOYejQ9Z6ayBhWk5pRMOgMyAOY8b5mOObxyS9hN5Kj2k+5Wh+hHHGd26M97axzi7Jv9bYFmk81iy8hpI0IYkT5oV3rbbaegf+wEvEF7L8XqfHZDYhNzn9Fmt0o5nlM8q3sOaPtd4UDsVCCIIkJds+zdqTzzJ9cJfyd38b0dQoRJv47EdUElBte1h6mxpWhh0eeexRhDW+m+IctikQUYhtCqrxhMMHh0znDRECow3F4THVdMrqo1cRSExR4KxBdVIoFSIM0GWJqL08WIWxlxorHwQh2jazsxrhQtzCeEkInzauLK6pCVTMfHRMGGVEShEEMYuKSMi2I4Tn3WBaSany3SDwYxQVR5iqbMM2a1QUEA0HiChA7Afk0xHGTSmNxRlB1O2iAoUN/MhPSQgldCTUuiEvClKrSeMEqTJsXVGYBq29zH2Uz+kk2TKbpioKtG1wugahObsyIBnvcvPVLzI6uEV57V1o69g6c6Z1CAZzv2K6d8hmT3NmY5XVfp/V4SpBHKIbTdlohNZILFo78tkE3WiM86o2JWNUlKGiiOl0yu2bR+zuWD7wnjWQinxeUlUVSdwjiLwNvXTGmwgaA9ZibeOVcUr58tgZf82F8KM+ramqhk7WIFQbdeCE/zohSJUiMDV1PSNKfB/RWEtRVVS1aUmob61vpyWEIE1Szmyf4dknn+Xug7v89u/+to9DwG/ODxvmLUdRLcEvG2Y89vhjPmKlJdYWTUEYhRSN59McPTiimXmOhGkMR4dHTKdTrjx6BYXy6iNrSDupJ+GGPkVc1YpSlcShN4mTyvNCFiMtbfUyYHHxXgIVYAMvG4+DmNHxiDTyEuQoiAB/4pdCLjkhi+LGObeUxIPnjERx5BVRxlCbmiAKGKwMCKKAYD9gNB0xnU+9W7ERdFusIfAjv+UJVPpxTVEUaKv9+EplPoXaND43yjlm+YwsybxCTKYUeUFj/X/XQjNYGbA73uULr3yBG3s3ePcj78ZZx5kzZ1ikadcPag52D9BdzermKv2ex5owDn36eaNpdOPl5homswm69lijjSaW3ogwiiKmsylHN4+wDyxr717zUu68oiorulGXKIw8uduZ5WfAOEPjPNYsYjKMMy3fzzsSa629WWOql6Ggwgnvji0EQRBQ25ppPWUr2ULgbQSquvLGjn/GDff+faw3RXGzJN1mKZ1z51h/+p1M9+6Sv3bLOw8vPGq+5X8gkMJx8fIpuqHPbdKmBudwTiOtppmMyPf2uXd7xNpqQpLGBEnM5N4OSSfGTEpUL0UlKTIIfFCmLNFFRTWeYq0mTBJUkhB2UoI4QwTSC7fswtOipTWbNv1K+BGWFAEyUMwnOWU1Y/vMJoHyr81J1YKAAuMjG/wHWHguT8sTkTLAhTEyTjBVjqlrhAyRcUjY7dFVAUGUMB3vY8qcWoyxtiJK+wRxgouAtv0dSUmmNbXWGHxQozU+d0k3OU1TeL8GFTCeThgMh+SzOWurGdPZjDRKSOOUum7oRh1Ob5SMq5yXdh9QInjp5qveTGo6ZXg0oz+HYCCIkwhdFkSBHzFpZzwnpi4pJhMPBDjWNra8rJQYYzWj2YQyn/HgzpSbDxLWVyRrG0PqomA6H6NrQ9hLkCqEVrbujAcdgecz+fvTehoZ39kREnC+/V7lljqrKfIaFcwJk7g1TFTESULPJghn2g3OK9G0MRhrl7q9t9a3zxLCdzHSLOX8+fO88+l3cnfvLrdeu3VSxPxrlhOOU5dOEYURuvJhmM754EttNaPJyCdd3z4mWU1IkoQ4idm5u0OcxVSTirSXepJp4Em3gQyoiorpeOqLgMR/X9pJyWKfNo7yHRyPg+0g29hl0SKEl5erQDGfzJlWUzbPbJ6EcoqWwyeVz8ByZtl1kC3WOOeNDeMwJom9c29d1z4gMg7pdXutiWbC/nifvMwZizGVreinfZI4gYjlqE1K6QsLrf21sz5/y0lfDBYt1gQqYDKdMBwOmc/mZKsZs9mMpMWapm7oxB3KjZKiKniw9wDhBK+2WDOdTZkdzWAOYiCIkoiiKojD2Bd+jc/eKuvSj7Kc51RttVgT441Xp7Mp02LK9M6U5H6CXJEMN4cUecFoNkLXmrSXEgZhe6ht34/13kWyxRqN9zQSxhcuSB/m2dQNNrdUaUWd18zDOXHilXJKKuIkJjFJi4Vy6Xa9SNv+D0Hd9O96vSmKG9H+nxOOcGWFtetPke/vUR6O0NN5u5G0vtHC6xZk+2uShFw8t0UzOcLQMtZ1g1rJ0PUx1WTO5HDK8bzmyukeQRh7id10BnWJUhFR1SfoZAjlZXy6qKlnc6p8Tp2PQUrSbp+kHGC7BrXgtgi8P47T3uAN4zdUABxOCISSZCt9bv/eLXrdmNWtzZb74T1ThH8z7RzX+PeppB+zOHDCIOIQpWOvqjIa21S+uFIKmcSkm6cQQcD8eJ+mmIHVCOtjJpwLUUmMCmMsFZ1+H6Ekuta+yMBgkVjTYJsaoRRpt0vT5EyOGkIZMj7ax7qGsbMkWYfC1FgVYJ1B5zMG4SEbF65TRhFRp8+DL3+WsK6QStDU3gPDJ5YXSOPBr5t0kd0+UgUExoCzGGup6pKinpPPRpTTOaP9ir3DFAi4crlHnKWMRofM8ykqDIlU2I6i/K/W+NOUdZaAAOfafA3hQ049d8KPqBqtqUtHkRccHzzA6oo0zYjihCDLiOOETrXgWoBruz/eTv3flQD8rfUnvlqsGQwGPHX9Kfb29zg+PCaf5v7etsZ1CwdfIfxYKogDts5vcTw5ZiHXbnRDtpJx3Bwzn86ZHE6o5zW90z3iMAYBs+mMoi6Igoh+1SfrZP6EbyxN0TCfzZnnc8a596wZdAcMygGma5bcFgQEIlgmiBuM3wBpuULt6GmwMuDm790k6kZsbW35LpQ88WARS6zx73PhUYPzZOowDol1vHyOqqbyMRVKESURpzZPEQQB+8f7zIqZlzxb/0yHLiROYuIwpqKi3+8jW6wxLdZI5/knTdNglKHb7TJv5jRHDaEI2T/a9wGjrlUWmXqZ/zXLZxyGh1y/cJ0oiuh3+nz2y5+lqir//mu59BsqmgJl/Mitm3Tpd/vLa26d9TyZumRezxnPx8wnc8r9kvQwJSCgd7lHmqUcjY6Y5lOiICJUPvcrFOHyZzTWd4QCAs+/cgIllFfdtf5FxvrOjSsdZVFy//A+a2aNLD0hZKdxiitPeF0LA0WvHH4La/44601R3ADt3NIhwpB0e5u1tz3N6M4NDr76VbRuoJXHnRQ2/p/heo8sMJSzHaJIESQZIoSmzMHVFLMJk8MjOl1JN0t8NV9VOCsJg5Di8BDbGOR47tuMVUlTFuiWAKbCBGEMtiqp8eTUwHj/nIX5oC+62o5Ay6WRMsBK76GTdTusbvQ5OJwSJSHJymD5noHWKbnNzLJuOeISyvv64CwyjlGNxtbOOxprg1D+NCelJB2uEYQx+dEudZ2jnQVTE+gOIPzPUiEqFGRphhYVttFY4bCuwWH8pm98lyLJOjhjSVp1gG0suqpau3mNrWuaeYGeNXTnr1AO1zA64PLVq9RHu3SikHM3X+Td187S66QEoWqbXKLt1C1OyT7qwhlDnU8Z5xOq2QSd5xTjmtlUoY3i6mnBhcunqRvNrJyBM4RRRhBGvn9iapxSaOOHl9YaXw63IXRyAe5CgJA47U+tQeSompq6zGnqDqFUCG3AOlS/Q08MKc2iSFp0a/7wE/5b6829hGtN98KQ7e1tnn7b09y4c4OvfvWrNPpEigsnhQ1Af72PDS0PZg9QkSKLMwghL3NqaqbTKUcHR8iuJMl8JlFd1kgriYKIw8NDnxo+nmOdpSxLn3RtvKQ6Cb1aqazKZZq1Md4/J47iZQK2FXY5+lmEf9aiRipJ1s3ob/SZHc6Iksgrg9q1KMiEE54Ma09yjJTyvj7WWeI49s7BtfPRBdpgH8KateEacRize7TLvJpjnB9hdXSHRdxDqEJEizWVqPzPEz7t3NAaHBrPietmXayxSyWSbjSucpRVidaauqkpZgXNrOHl+cusD9eRWnL16lV2j3aJoojnbzzPuUfOkWYpKlLL+ywewhqJj7owxjDNp0zyCdPZlHk+px7XqKlCGQXbcPryabTWzKoZxhk/tgr9mK82tb9epnWcNi0hvcUa8RDWKKmQ2ndiXOT8eykLqrryRar23Z9Ov8OKWCEwvkhacHYk8sSS4K31b7XeNMWNw7PLZaBAJaSnz7D65NNMHtyluXUPIXzAINAKxFsVVTWlnN6iM+gRdiJkLBBYrDVU45L5wRG20Zw+5yWaKomo5iVxmhKmKXZyhClLmrKkrgq0KdFNjXOSIAw9kU8KjC5bFrBXWSFScE1LovOtY08kltimaonBEoREhRHr2yu88vxtVobF8iTlP7NBW9zYkwmH86aAztmWpNxyfaIQdIOznoNkm8YXLVIiw4BouIJQIep4lyaf49wc027mMk6QkWv5Q4kvCJSEWlDrxr8OJbFWLEm1sfKREyqIUM6rCozT3k9GSqIgJApLAmcJxocMgyG/+Qu/wHR6xBqaq5FlZTggSlOc0Vjd+sIIiZS010e0+aOWoiqZj/agMTS5oSwFRiu2h44nntomCBUHo32KfI7A85eCBQ/KCXRjWumrabs5QRvS52sqX32K1nyxoawNnZUYKX1Qnk/P8qZ+uigQaUwmQuqi7db43g1SqeWp+a317bcWnQ4VKBKVcOb0GZ5+8mnuPrjLvVv3PE/LnnztYvwzrabcmt6i1+8RdSJELJb8inJccnh4iG40K2c91oRx6J1/k9SbwE2OKMrCFzVVQWlK6qZGOp8gHYgAIX2gohTe40ZKSSpS733TetigPJFYhpKqqXysQ8upicKIle0Vbj9/m2JYnHwPXsUjpTyJnYDlOMq2WLOIBQijkEY3Pm+pNRhUyr+eIAxYGa4QqpDd411PQHbz5cgviRJc5KXmSZgAre1FLbzhJoH/s/W8Emfb14BXcMUuXqaWLwjJYRBShiXWWQ5GBwzDIb/wi7/A0fQIjcaEhsFwQJqmaOM5NuBVUMi2SGiLHIulqir2Rnve6yg3PqpBK9yKY/upbYIwYH+0z2w+8yngQbTkQQkn/PfpkxFfQHBivCZYjgsX3CXTGOJB7PeLwKu0JBJnHUVR+A4dIbbwHaGlmWQbhPnW+rdfb5rihhZwwO9LspOQnT/P+tPvQs/nzPbGgENil5w1AWyuhawMeiSDDkHqR0vOWGxeUU0n1JM5YRaztr6GzjVhJ2X2YI8w8j45SgicEFhdY63GGev9ToRXLSjhc6es9iRlIxQ6jBCBQijV8jpc64prMa5BBgoZhD64U0pM6y66Nw2J9nLOXTeI2H8/oiWmtsFvTltceBIdsDwJKO+J4FSAE96nQrS8HGdNq7DShJ0MxBZSHlLlM1wxAwRWgFAJQkYI4UnLKvAhnkY3KBW0/hneO0hKUEEIzvl077r0V98UmFrTlDVFWZImXVxvFbGyylNSkooOXz/eRcYxkxBuzi3nVEmgte/QCDyPKFCgWv8ZJYCApqnQZY1ooKwMTSMYDixXrq3SWx9SFAV5PsdYbwYWR7EvhkXr59EGYrZHHnx4pi/oxJKvYP28XDt0Y1FhQ9rrEaddr6qyGoIQ0+SoqkMSBzA79iGYi/uhFOqt2ubbdrmHsAYLSSfhwvkLvOvpdzGfzxnvjZejAWDZpQvWArr9Lp2VDlmaLUc6dVEzmU6Yj+fEC6wpNFk3Y+/BHjKWy5O8FNKTZa03+QuCgLDFGil87pTTnpeihCIKI1SgfGEhvOJJWD9WalyDCnzyt7Yea6z1o4xwGpLv5ujrGhV7botpsWYR4mm19eldsHTFXZCUpZIn37P4px2xKOHzqNJOypbY4lAeMs2nzIrZssuQqIRIRkuSbRAESPwYLwg81iw5TuokcLLRjQ/wRFCYAl1r6rKmLEu6SZdhb8hwOPSSbdFh52hn6fRr55ZKecKyacyyc6IC5dWS1mdPBQSUTUld1tCAqQyiEdi+ZXhtyOr6KkVZMMtnS6xJosSPtYS/vtKeqJ0Wpn0OX9AtuFGLzDGnHba2NEFDr9+jm3aReAfqMAjJm5ysygjjkOPZ8dKQEXxR+G92o3tr/UHrTVHcLFyGaU8g1nkCXbS6yuZTT2OLnPwznyaYNzjCVnAnyCJ45NIqWT8j7GQ+zqAtJJp5wfz4CIumv75GtzdgNDtERTF1VdJZ6fi/PIj8HNY6hAhQctlQ8MndDu9E7BRYjalLn1+kJEIoRNIqBGz7CbT+9062AColTliKsuHGNCBIBVYIlAyQ0jsl+4gG2uws57s4+NOGazdjAYgwRIZ+hONHYO0LFZ5D4izIEKJeBxkEuFFAMxvRzCcEbQFl8V0eGYZgHUEYE0Y1cRRThhLTWIxxWOtdSI1tMHWD003r82NpZgWVcQw3TtFZW+fFg5zOcAup4PyZAXbjDEYF3J+OeTA1XJjlPBFZTsWq5RdptPbeQEJJgjgGqdpgSt+Bcdax0g3Y2Owz3FpHG8M0n1EWU4SThGHizftEgDEOU7XERWfaElggXFv0IZddG1qFhaXt6FhLPSsIXEDQiQgbjZJe/WbLijCJsUe34OJTIEOECAmDBBUEb03Bv03XYqNekDattQxXhzz91NMURcGnPvMpmnlDSOiRxgmIYe3SGtkgI+tknn/Rci7yec7Rse8grK55H5bD+aF/pqqSzsBjTdRiDZa2I8zylBbIYPlaFAptNGVdLgsNJTznBem7NoA/jFgvPV4UTlZYdKEJpgEkbcim9B2bhex70WFYbMDAMk5gkbIdhRE2bA8NauH0LU5SsC2IUNDpdbwZ3Ugxno2ZzCfLAkriuzxhGOKs8/5SUejVYKHENn40hQWjDbWtaeqGRvsuldWWYlZgjeXU+inW19bJD3NODU8hlKB3usfp9dOEQch4MkZPNfPZHBtZVOxJ1E46rLbLBPY49l42SirfOWqxJugE9Lf6bGxtYKzn90yLKdL57lMcxAQywBmHbrFmSf5Fei6Ut5b1XZuFfUBrR7G4t0WLNVEnomk8p9FaS1VWJEnCraNbPHXxKUIVEoqQJEg8fYLiT/gp+fZfb4riZiE48o6/YG2DMQ0qjhiev4rNa45uvcbxi6+jjR8NRFKwvZ5watO71cok8VVyqbG1oZrl6DInTEM6/UF7EvN8FlNrgjDBNg1aG4yp0aZColCB8F0Z184zpESKAGsanBOYuvCeEdg2jLGLJPRGf87/fFtXSBf64kd4hY4xjtrCuKL14bGeY9NyOURb5PjxlPC8Gym9mmohM0d6+XfTznddm7klhZ+7aO+iiwxRcUK2tkkpAsrpEc18jDWG0DpcmnqzQAEoSRCnpHXDPJ5Rl8fUxYxACETUFpJCeMOrWoNxZIMBw8EqUZJA2uX283sMzTcJexkb7/kw50LFczfvkawMkQJ2raYe7fJePWF1sIJoLy1mEV8hkUlEoAKwAq0tQSDoD1JWt7cIsi7zMmc6PcaYhjDuE4YpSkpPsDbGF0qAsJ4s6qk94UlnywTtaajtFjkIJEhrMWVD3oxRVhL0ukghCIXC6obAgTp+jXp+g6D7CFIKojggDN4Uj85b64+zHMvCprENjW2I4oir56/SFA2v3n6V1154DWfcssuTrCUMNgeeBNpijS41pjLks5y8yAmTkJXByrJ4staia00S+QRwo/2IojKVD04M/GhMujYxXEoCEdBUDcIJihZrLH5U0RVdAny0wNI8ri6JnFfcLOIArPEjblELGtMQWy+iWHA5FkWOdT4byVqfiaSkWnJwJNK7Jj+ENYtrIZyg0Q21rb2CKk7YWtsiFCFH0yPG8/FSSZSmXhmGaB174xRda2bxjOPymGkxRQiBjvTSCVooH1/hjCd9rw5WSZKEbtpl74U9vmm+SdbL+Mh7P0IQBdy7eY/hcOjVSlazO95lMp+wMljxxaM7kb9LIYkSTw6W1neSRCBIBylb21t0O13yMmc0G9GYhl7UIw1TH6lhtFcvtQUhS6xxhCLE4TtbQYs1i8/BortjraUpvROztD5zbDF+1NoHqL52/Bo35jd4pPsIQgrCKCQI38KaP856k1y11vxOKASeL2GdQ6mQMO3TPX+RtaeeZX5wSLWT43AEUnD54oBuJwWpvNV4U2Oqhjr3MQNOCJJujyhLMdoSdbuYpsbaBim9H4EnbmnCMPHk1EDBwu9CSFASW1cIJ2mKOcI5mnKGNBrpBFIFXoizPBUJnPScH6EkIghBhgRBgJWO0th2M3b+/UoFrlVNBcrvu8aAUn6sYmz7NaL1xREQhmC1H6FIBXh/G2fxYaHC1ztCSpLVNWQUkx/voIsp1jREdojqDhCRwiEQIiKMEpJOn3w28eqISGADf8KRIgIboRKHVKnnpwQRKs0oneHewZSkmxJK2Pn8pzm1tkrHQlGVCCEJlGQUdXlt5ybCGIbDoQ/jE55nZY0GTgChMZAlisHagKQ3pDG179qUBUIGRGFM2HZOmrrCukULOgAhfUGmAiRi6W2DAnTbtXGOKFBkiT891doSSEddzqkCiIPYX1OrwRmCynHw4JdYuXwOh1ja6b+1vv3WYhSihFccuTa2I1Qh/bTPhXMXePbJZzncPyRvsUZIQf9in6Tbjia09Z+bqibPc4qiQAhBt9clSROstnR7XWpd01jvFbXg5minScJkOW4CX2gtuC5VXSGtZG7m3gemnKGNRjg/LkpUQiCCZXfESb+hLngpofSboROtWZ/23Rgl2mfZ+bHJQrJtjA94NM5LjpX0adULl+QwPEk6X7wPYTwh2VgDBoh8Z2d1dZU4itk53mFaTGlMw9AOGXQHqMhbr0YiIo5i+p0+kxZrROSLPCUVkYiIrM9dyoIMEQiiICJLMyyW6cGUtJuChE/95qdYXVsFC2VVesm7EnTDLrd2b2H+AKzRRi/5MRYfSqoSH3mx0luhMQ2zfEZe5D4ENEyWI7Wqrvx+0XbapPBdm0AFS18a2WKNWGKNN+2LWqyx2uKkY17OocUai+8AGmeggl968Eucu3xuOVZ7C2v+eOtNctXawZRwuPahEcKhwggZKqJ+n+G168wPdpmNvgRzSELB9qkBNs4gztBNg6ksuqio5zOqYo5TDhXFqE5GPW+IeiH1PEclGSpNiAcD4pUBVje+gAC/2St/wvfBmA4Xx5ioRAWKKp+imwqMRpfTljcjUalCBgonLGiLcBDIBKFChJIkSUgWChpjsaYl2IGXkQvp/XX8v2ilqicFlrP+dEAgEEYilC9KbDti8XM060c+TvoOVVEggxCZJcThACklxeiAqphSHtekUhEEfVxLZg7jiNT0SLoDVGPopSverbnlVjoH0vlkdBmFEMbINObo7h4H45xTZU0nSYmdQ1cVZ/vrvFo0SGWRKkTEKTcrSbRzhySJUaqD04YgCj0gWIGuG5raUtWC9bUOvdVNnFLMJlMm0wnGQRJmyNZ4rDaNL2icQOI7XxZaIIt8oSw8Qdh3Bv39sbqhsQZrDaH0vIJKW4KqIso6aGeQQCgEQiiUixm9dBcGP0+YfRdVWVHU1Rs+wW853nx7LPcQ1mD9Sd8JRxREqFDR7/e5fu06uwe7fKnFGhEKBtsDOnGHLM5omgZdaaqiYjafMc891sRhTNbN0HNN2A3JZzlZ7Ds9g8GAwcqARjcnY4u2S7HozGAgjmPKFmumxZSqqdBGMy2nS96NSj2PxApfvOAgkYnvRihvxCdCsRyByZYgtjSMa7FmkYX0MB9ogTUiEEjTZk8tRiwL2oCwniPkvEdOURSel5IlBKEfgR2MDpgWU+pjn63VD/q+4906IfeMdz82tWElXfEJ5Sc3afl3hXFIFEbEacz+vX3ycU5d1qRJinOOqqpY76/TlA1WWh9WGafIUnInv0OcxHRUxwcER8FSLdY0Dba2iFrQWe2wubZJoAJGkxHTmY87yMLMX2dnl5J0HCjUiamegEhG3t9GyBP1WSsHb3Tjvb+s8ZJ24TO/qqqik3V8QQPLDk7kIu6+dJefX/l5viv9LsqqpKzecij+46w3SXHTzn9bgpYngoKUAikUIlRkG5usPvoEh3dvMHv+AZ1uwr1Zyr0Xcta3E6JqzMYgJg1CamdpyhwVBCRJh6DTpTrYozNMKY6PSQddX1xISZBlIFxrnOclwCyIzdqPO2yjkGGEjHyQZTX1oxttau93IiSRlDgX+tGH8iMiGwatMkgRhAqpDMY5TFPiXKf1tXFeOSTbjlEQeKKwMaBCbKvgEcKPr7whn8AhESKg7bmebKxCgtX+IdM1FAYZRkTdjCA5TTCZUE720bMxQRgikwThHEEQkEYJg+EW8/EB2jmyKPZy0TbPxuHdomUUYYOAWjfceu0ushbksxK9tkLcHzKfjeitDNlcG2CAw8kRx/uHHB/lFMqxVZRefeAcYeLdWBunyedjitIiVcD6qU3CTkbZNMyqOU1TIoMQEYSt41FrkmX9nBvp74OAZeaTgzb3xhOJWcSDtwEeYRBAI0gCQWkadON9hIyuIIzAGgQQOEdxF8xaQffSmOPJIXlefcsnWLQFzlslzrfDWpBBDR5rUH5DUqFic2OTJx59ght3b/Dg+QfE3ZhsljF/fk5yOmFcj4kHMWEQYpwhL3OCIKCTduh2uuwf7JMOU47Hx3QGHa+ykZIszXDSb9oG02bUeawx2o87VONJxEnkbfuPp8fMitnSMHChigpbrBHKj4gWRYWSPu7BKP/zy6ak4/wmarEnfBPaIgeWmUkLBc8ipFMFbRcHPy5bFGELQzkpPCnWWp+MbQpDFEZk3YzTyWnGkzH7k33GszFhGJIkiVcWBQFJlLA13OJgfIBzjjh+I9YsOmxRFHnCtNbcee0OohaUs5KV1RVW+iuMZiOGgyH9oZe8H0+POTo4Yn40xwXeVyYOY6y1xC3WaKuZzCbY0hLIgM1Tm2QdX7TmdU5R+2DLUPmCS7RYo1qsWdxDYMldEoglgXihPFt43ixCTkXjlVKNaby1htFUuiIKoxM5uXO4u458NWd8eczR5Igq/9aDVLs/vYU1f+h6UxQ3C/dhJRXaenKvw5+026wFVBwRb22w+uiTTHeOiAcbJOcfJ0pS9vcecPt3XiMddnn80YsMogH0ZihpiVZXkHFEXef0ZEJdVgw215FhzGJ+4433vKutRYMxntxrdEu7kYjEvxYhLMgVhJDUxRRrNHU+AiEIXIcgjNpZLAhdo8IIYx1SCjqxYjpv0LX2X+Cclx63rELfPVp6kCJs0xKS8YWNA1qSsR+1KDCN92ARIKQ/NTjr35exDlFrhAx90RQp4sEQpQLKySHNfEooA2QcIp0gigISF2G7K5R1TVprgjDACoEzAo3waehBgBOWB3duMT4csx2EdJuKGkFsDdI5bF1z8fHLPPru97G3s8Mv/uwneOG5F9jRluTeAd95RtNL+sTtSbEqCmbjKVUjOH92yGBjC+Mkk/mYeVlirSOM/C1T0reflQgQzrW3MWizpPxYzl+j1hjRuy22rXzZnrp8sWOVg8bfn7KyVHlBEyYkQeTHjYEHpuHwFIPrf5GjvODgaJ+ibv7Az/JbHZw3/3K4Jb9kwatRQrUiAUEcx2xsbfDkY09ytHPERm+Dx88/Tpqk7Ozv8Npvv0Z3pculxy8xiAbM+jOssAyHQ+I4Jq9zEplQFRXrG+vEUbw0z1sUDlJIL2E2vrjSxpNUpZSoxH++rbCsyBUvQy+maK0Z5SOEEHRchyiMENaTfGtdL7k4QgpUrGharBGu7bq0/wj8puvEAmn8WERKjyMPe6zY9jkKVUhjGn+Wajs3AML69+Wso6k9QTYIAlSkWB2sEqqQg8kB0/mUQAaEcehHbFFA5CJWuivUdY1usUYIgTC+UxQFkR/nC8vtO7cZH44Jg9CrqYTnCuGgbmquPHGF9737few82OETP/cJqm9UWG05SA7QaPpJf9mVKouS6XgKDQzPDNnc3EQ6yWQ+oSgK7zocyaWP0EJh5fBd9UAEXnGJWY63FsaIiy7YohBdFNBCCK/Yavz9sZWlmBd+RBlEEPjg0TAIOTU8xccf/ThlXrJ/uE/zr8Gat9Yfvt4UxY1f4oTFv2D0t442SkagJCqN6Zw5y+pjV9g+c42V06fRx4esB47w/FmCUHHvtfuo032UHKJ6CTrIoNbUZQON9SF3cQIYEKHvErUdkOXZ25oTUz23+LMvK0SaIcIYGURwLGiqHNfU6GLqoSDrLd+OVIr5fMxrL71CvxvRTyTTmZdgOmijHlrpdaDaBwPv2yIETqiTKAbAb8jyodgH/6pRIVJaP0ZrlVXOBQitffu5lYfapkHgiHo9rK4xxiBw7YwdlAhJLZA4KmGp6oJAdlFSePdnoXCtr04xH/Hg/n2i0HB+1dFb7TKXivLwiDhU5KMJTEcEUvD2d76XrdPnOX36EndefoE7927z3LjgCetb1EESMz48YDYpWBl2OHvxHIQhs3nOdD6jrmoCFSGDGKW8mZaXY0uUv0k4FE4YsAFSWoTIfKyFdb74IwAaLN6rx7aEbuO8tYBXTjiqvEEnFS7LkEHqR4BOMDhzjaDTIz845ODgGN2clDCLnLPl/fgjZk49nFkECxXLWzbr/77XG667Y6nscXjujVCCOI05e/osVx69wpXTVzh9+jSHx4dYZTl77iwqUtx/9T7d012GYui7O2GGqY0fkWiLbnymksEQCt/lCUTQ2jiIJQFVeKOnpdR60Q3I0ow4jImCCHEsfCRCUzMtpj5s8SGsUUoxySe88s1XiLoRMpUw9Vgj8NlFi4JEBnJZyCwKOiXUMooB/Ia9GLMsnZrbbo+Tnsy8UFYFzqdsI1pKgfVjH4ej1+t56bvRvsPROiaHIvSHwMSbEhZ1QVd2l69RCbX01RnPx9y/fx8TGNyqo7PaQUnF0eERKlBMjieMJiOklLz3Xe/l/NnzXNi+wIsvv8id+3coxr5gieKIOIk5ODwgn+R0VjqcvXSWOIyZz+dM8yl11ZKkg4RUpT4pvH0dC1K1QmGEIbABVloykS0J1ML5QqjBFyQLyT+OJRFZWIFrHE3RUKUVWZaRBJ7PhYNrZ67R6/Q4PDjk+PAYp9+INQvsX4wK/20/84siTfwZx5o3TXGzLCS8ltpv/lIu02aVDBEo4pUBW48/zZlTF0HXdGJFvNanh2Z2/wFWwpX1VYzuk549T9yLmN68RX91QFNWRGmCDORJ9AES8GZVti1ifMmuEMLitMbheSlCKoQAFYZIOmAdciJoyjmmzqnbYYgKEoQEIyR3bz3g3u0ZvcdXiJTGWkdVGzBeGeXjpBZxDAKhQpbGBkK8cbN0eDWVapVV1noJtfAEP4REyPZrRetKDFhjsI3/O2UrTw/SDnY6whnrux8IL5sOwLkMhcQYTWU1IQqDxAgLeB+OvZ271GVNp+cIQsvq1XPM1q+z+8rLyKxP0zSsrm8xGR9x8doTXLx8lf/kb/wfKaZjPvOT/19e+MrnYX/CkypC5QE7dx9Ad4tH/qO/TsfOyXfvcHRwTF5rnAyQYYIKQk88DCKUlEglvGGf9RJv6SS2PY1KIbwQrfW68U+2RKAARW0tcSiRAnRtMQ0YLTAGrG5tCULlr7FucE2B1YbJeMzxwTHL+pvWNqD91TrPsXz4vy1akyftZNrXuKzhAYFtv861oPVnF3b+lFdbSFisP33jOyYL47VQhigUg5UB73jiHVw6dcm70saK/nofLTQ793Zw0rG6vspADzh39hxxL+bWrVsMhgOqoiLOYl9ItLlDEuk3vQUZt+2OLPxTFinX1tml+kmGkg4dv3FOBPNyTl7nLLxnkiDx8nAh2bm9w/TWlOETQ7T0oZ4L1dGiyyHUwqUbz9FpsWbhxLzcLNvNWCm1VGYtFVnWFz5OuuX3qhZrjDGYxhONhRRIJemkHUbT0TKsc9E5IoDMZV5KrX0+10JObYW/N0477u7cpSorXM9hQ8vZq2e5vnmdl19+mX7Wp9Y1WxtbHIwOePza41y9dJW/9X/4W4ymI/77n/zv+fxXPs9kf0KkIoIi4MHdB2x2Nvmx/+jHyG3Ond07HB0coSu9JBGHge9ARUHkO/dKLAs30WLNovMlWgAwLZ1C4ItlhfLjPGuRYdsVqy00nnCMAae9mioI/dc1xudgGW2YTCYcHxwvDSX9X/bQr98KEA/9u99n/PfQ9y2k6Yvf/1kN5XzTFDf+JOM3ID8KUsvf+9yU0PNXwpC17TN0ux2qcUkXjXUQNA2Ns1w6u0GSJRhtUKZGRglCOoan1ji8cZve+hAA19TgJChvZLcsIKT3r/HdGuvN9az1sQimhiUYQNj3JydrLabK0XWDEwVh7Hk2xmlGI40KQ+IgJVETrHM0tcZo35KWMvSOtypCxBHLT/Jyput5OScfcLHcrL3M3HeWROvAaU2bKt4S25wUOAKvrtJgNcjAIgKFSnyBZusaghAhHKFSraRdYa3GOItzonXn9dCTz8ccHx4ihaOTRIgoIF1do3vtEQ7u3SHeWKfe2aXfXeHU2QtYHEGc0GlPo9/xAz/Cra9+kZdzidzfJ5vPKUYl1z76YXrf8RcYTWd0o4ArpmK+e4v64D5uNseOdpDFHNnUCGNxtvFjJ2lRQmJ1vXxwfSGmcEJgdE3g0mW72F9TaGqHzTVN7sgbaKzCaQCNDAJUmCyvv84n1GXJwfiQ48n0pEBpSxYl/QTVON6QKu0Pou3orJWlmrZjIFv7HZ9u768xDnxAvPB8LvfWmOvf9VqQeSVeDq6kWv5eSF/cSOFdes9un6XT7VCOSzTak5Db9Pr1s+ukWYrRhsY0pFEKAta217h947ZX8sDShXihqllsJgvvmWWQZSvldtZRm3pZeCCg9xDW5FVOUzcUokDGnmejnaY5boiiiDRMmQQTnPWeLI1uPK9Ghsu08CiOliaFC/6Icd4ctK33lq91cb2cdUtvFyEFzrQp2Iu4GOm7FtpqnHYILbCB5+50El+g1XXtDftacz/nHMoq3+FopemL7ohEMsknHBwdeNJ3EhFEAeur6zxy7RHu3L3DxtYGO/d3WOmucPHcRZxzJHGy7Hz9yA/8CF/86heRuWR/f9+r244KPvjRD/L9H/5+ZtMZQRRQ6IJbO7e4t3+P+XzOzmiHeT73aeLGesWY00u+Ta3r5aHSCo+MQgifbv4Q1hjrR1euduhC43IHNT6PS/ugTRUo4jD21985JvmEsiw5HB0ynUzf8Ln1N4xlIfOtCfaLrsxCAr/830OeSsuOzWI6bxe4+O/wIXsTrDdNcSOlr/oX3Qy56KwI2xYe3vZfKEU3TIlDQdiNieuQpq6Z1Q1Zv8vG+qBNh7aY6QSdWIr9B4TDFNNoOv1ee8K2/gF0i8pbIqS/HN4kzxc+bhE3sLjzzoIxWOcQcUzU7fjXd2RoTIVtJJrCd4faD2vjFEhHrAxhG+Do1QkCp7xSanGi8nLvhTkfbYfA74Ct0hzbNLjlJ1y0ZnStB4VUvn0gHE4tWP2+OLOAoPV7CEJk4Fn8rmnZ+lHkeUUtyAQioDGNB572JTlnGB8dUDeaJAxIohgbCoIkY/uR6zz3a7/MeG+HbLDC7v3XEP2I9c3T/nQXRljRsHntCU6deYy7v/k5vt4POTPKuXR2E5lm5EXB//DffQIVxJw6s8bmqXXOnH+K1SsrZJ2IbhKhmhzKGa4pYT5FVHPM8SH16ACKCTafofMZpqqxumwTlE3bRmmLUaN9oF8paJxg3oQ4IzG2AalQcYyMI6w1GNOgy2PK0SGH+7vM87K98n6MGAiIlR/tWeewDqIgJI5jsk5Mv9dna2ub4cqQRpceYMuCpq6pm5qyKsmLkqqu0I2lqmuquqHRAuNvnf/otZvinzEM+pNfLdYsDezazoptg1U1XkGlpCJJE0QoSLoJYR1S1zV1VfssoLUVT4I1lsl0gk0s9/fvkw69l0tv0FtyWJx2JyMw6Y31gKXEOlA+FHPRkQH/fYt4gjiO6XQ7fsM8MlSmQjaSosWapUNu21Ew0qCkeqMaqnUdRp28joU532KzlE6euDcDTdMseTqLg8MCa5RUSx7LssPzkBGgbbEmDEJMizW0WBO2Kkmrfj/WLKDNOMPB4cGSjxNFXgWWJRmPPvIov/yrv8z9nfusDFZ47f5rRP2I0y3WRGFEIxre9sjbeOzsY3zuc58jHITMj+dsnNmgk3UoioJP/L8/QRRGrJ9dZ31rnacvPM3K9RWiLCJMQvI6Z1bOKJuS8WxMXuYcjg45GB0wzsfMizmz3I/OS1P6zhVmOQYyzodm6lojCoGwgrAJkUYueU5JnBDHvrhpTMNRfcTh6JCdgx2KuTfvW46VhO++IVkWJKEK/cgti+n1epzaPMVwOKTS1UNY01DrmqIqqIrKy9obb2nQ1I3vJLUxiXCCNd/O601T3NBWoN6d1yJa7wdoR0XuhGQ2zLqIfEY3Tki2t7HWkW2uI/IxnSTANLVnxgeQ790GXeBMTBQFrV2/QkSJ72bAQ606/6ERC4tipJd3I7CuYlHn2FYb7fIKEUqibhenG+xoD2Nqvxm1Jn5JAnVjaLRBG99JSDrdtkPkCyApBMIu/l5OxijOIZxtPXxM6xxs8T5AfgYslEK0KdVCuRMCtJQoIZBKeYCVyjeDjGmJ1P596dqHZoZL/xwPfN4i3aIfkucrIamrkvHoGOEgSyPiOMUobza1tr1Nf2MTsbLC6tmrWKYc7d5p4yGEVzu1r+nan/sevv6rv0YQ5tzJupzLUia79+nVOdbF7O1U3Ll9E2teI047hEmIDB3dTsLaasq7P/A2VBhQlxFVJVgZbLN+bciwl5LGCmUblC7h+AD2buN2XseN9gBaozMPDM5A2UjmTUDQOo1K5dvEIhA4LdCAnhxiv/lF5vsPfHBpizUKiJVkY23Ime3TXL16nWuPXOXChYucPneO1c0N+oNVhqtrxGmCtQZdV9RlQV1VlPMZs3zOfDYnz2cUs4K79+/wO1/9Kl/68pe4t7NLWZYYC9qIZSfHT3G//QHoT2MtTrsLZc7CZ2ahnBIt1oRBSC/rMctnxHHMqVOnwMH65jqj+YgwDambmjiOIYQ7+3fIdU5sY4I48CNUobyJn9XtX85SSYP03JJFF0kFXsVUuQo0/iYbf5+rvEKGkm63S2Ma9o73qE3tNzcX+jFPDLaxvmtt/c/tdDrLkdtCCi6sWBZ0i87MQuVjtf9+Z9wyQXuRgbTo0jjncMq13ceTAkm1WKOkWhaQiyJIIGhqH5q58M9ZePUEgR/JLOT5xvruUFVVHI2OwEGURmRxhmix5tSpU2xubDJYGXDt7DVmYsbtndvL6IIw8N03pRR//qN/nl/7lV8jD3M6WYesk3F/9z55lRO5iOpBxY1bN3jVvEqWZERphAsdSSchXU152wfehgoVSZmgKsXp4WmGjwzJ+hkqUtS2pmxKDkYH3Nq9xeu7r7M/2vejvQU3qT1jykYSNN43Z1HILbBGaP+5O5gc8KVvfomdvR1/L8SCD+o5UiurK5w+dZpHrj7C1UeucuniJc6dO8fG5gZrK2usDld9R9EaqrryQZ2Vty2Y5TPmszmzuceaOw/u8NWvfpUvfelL7O3sedm5xXsZPQQv345Y8yYpboTfcO1JG1SqNlDSyvYs42e+tW0IFjkr8xl1qOhsrZNliqjysmYRCIRzmHpMdXhAdzjANpqk26VFL1/9tk7A/gBncKIl98m2RGbhGLxI/vb5UW2ME9bUOG1RYUKQdQiLBFcVGFPh1TqKTiKxxvmK3kqiAJI0BhZdmrYdE4gT5ZavJjDW+aKmJXKYljvjiHB0sVairWrlmQYpG5RokIFBBBoNKBWg5KK17NuWzuFVWAsiD8YbC1rf2/EFSIBQBrRECk+U07ZmNh5TFjVJHJKmqVc/4DsVYZKwff1RnvvNz3D8YIfszIAnTr8fa7QfnamgNSSEa+95L4NTayTsESYRLx/NkLM7dA4PSZIY6+o2FFAgW+6AyTXTUcF7P/gkncGAnQcjsizlN379dzncmyKkI4klWScmy2LWN1fYPrfG5cuP8tTTH2H0z/4+cVNgjEVbkAZKrSgaRaFDUuVdjsMoRkVx2y2zaF2jqxm949tc0DNiKQi7HS6eP8/TT72dD374wzz1zDs4e/EiWSfzhY8KPH+qJYmzuNSExHFC1u1i6hLW15BB+FBj0Hf7/lpRcHCwzzdffIHPff4zfOlLX+SVV25wcDxBG/cG/6FvP9j501sCr+4RD2FNoLyMWrZYs5BMa6uX3jKz+QwVKta31gmygKTyLsUi8D9nXI/ZP9hnZWUFXWu63a5/1lqsWTgBLzZv02KNkC3XhYctF9xyROXNJ30StdU+ObyTdUiLlLzMqUzlyb9SIlOfdWWMQRoJASRZ4vFUtpEwwsuRfW7eiXnfYtzmHsIa0xgiIjp0vAzayjZA1lLLGi00JjDowBdugfKREosuw2L0IaVcElkNPtx2ISlf+O4YZZC6zc5ygtrVjI/H1GVNGIekicca8DlUaZLy6PVH+cxvfobdB7sMzgx437Pv8y7C1izvqXKK9777vaydWmOPPeIkZnY44+70LgeHB8RJTN1izaLo1bVG55piVPC2D7yNleEKx/eOybKMz//655nuTf14KpYknYQ4ixlsDlg7t8ZjVx7jzz375/j7/+zvU1Q+OgKDNwtsFLKRhDrESi8KiaKIOIyXaqtKV8zrObeObzHTM4QUdDtdzp07x9ufejsf/vCHefqZp7l4+SKdrOOLI+Vl6ydhzPiiF+8e3e12KeuStfW1pbwdWHYFi7Jg/2CfF158gU//5qf54pe+yI1XbzA9nvp4DHfyM7+d1pukuHEnk58F0ak9PVlrWgdb4Q3yrKMuC3qmwTSa2f4B1fEhG5sDXFX6DcMahNWQyTbFVlHPc6JQIUSADCOvpAlAaL/xOiG99Ft4QzkWG71/df73wnkVFS1xVGtsU4MVqE5G1B1ijcPpEofGmYY0CwglVFWDEI5eGhBF3osGaMdDsh0neTWUMQ5Ta0zTeOdhpdB5Ql70meZ9RkXCuJRMCs1cN35kZDRZKFjtBHSDitWBppMeEEZTwtgLzn3CrKMN7yLsdlBxgqlKf50bjUyiVl4tT+SM0uI0lEXB6OgIiyOJUoIgJFAxoYJIhgipeOT9H0CogMnsiAvveIY0SzDauykLFbUjPlg7fY4zjz7O3a/uIcOaD57b5vVxzc//zD/m9oOa6bSDkBkWiTbtKBCLcAYVh7z80n22T69x67UHPPaOK3zmV76GLi11DePRHJhx47Vj+PzrrK52+Nv/5x9id3efS4n0988KdCkpa0XRBFQuJKFBBg6pQqTy2Vu6NhRFQVGV9K3l2ctXOfWe7+WdH/tennjmGQZr662VwALM289Nawr5LZWNB33rlW0qTlmSx9tnwP8MRxZGnO/1OHfhEh/92PcwHU948cXn+MynP8mvf+rTfOOFF5nNC4xtC5y3CMh/pLXkGvg/LLsoAk8Y9QpCL8NeAH9jGnSjOTg44PD4kMHmwJurNX7k2dgG2fFYoyJFPs5RoSeTLj1MgkVWm3cT1sabvgkrlhs9sBz/LDb5xes02lA1FVjodDqsdFaw2lJqzwXSRhOmIUhoqgYnHEESICL/vsAXBTI4iVmQwhdDutY0TYMwfnSVFim9vMcgH5CUCbKU6LxN2pZ+lCZCQdANqFSFHmgOsgOm4RQR+9eslGpNWX23udPtkMQJZVVirEE3miiJ3iCZlkL6TV9DURQcHR3hnCONUsIwJFaxD9mUfqT1gfd/gEAGHM4Peebtz5B2Um+waDWR8qGdCDi7fZYnHnuCvd/eow5rts9vU49rfvqf/TR6V9OZdEhl6onMxudpLRyloyTi7gt3WT+7zoNXHnDl6St87Ze/hi0t1DAbzZgy5ei1I17//Otkw4wf/r/8MAc7B4ikvZtWIEuJqhVBExC6kEY0OOXNI8OgzUSszTI13vYsVy5d4Xve9T1873d/L88+8ywb6xtLftSiGBb4zhickIjdQ1hjrfcmSuN0yeFaPAMWTzKPooher8elC5f4no99D+PxmOdeeI5PfvqTfPpTn+abL3yTIi+WY6tvly7Om6S48RfatW6NQMs7UW3MgAEf+diGxYESnmUeYjGzKZWb4sIAUTegG1Ti4+Ol08ggxBhNmEZti9BA4E9qIgiwuj2xKKDx0Qm0vBtrhR8DGa86cNari1gkTuOwuoGqABUQxAnG1mjrcMYQRhFppshnJUpK+qkiiMLFXKGttn1gJEDTlDRlAVZiaou2fWbVFW49UNwcW46cYmojSBO6q3329mYIAhA1tqqQeQNlwVqkOB0Puba2xfr6AZ3OMUFgl7N32xhkFKIihTMSW2qfeWXDpYLLc9AUjbVo21DkU4o8RypFIAUqiAhVhFKSSCqUCugO1nj8wx9hcrTPmauPMzp44Ed4poGwNdKTIKzjsQ99iJtf+TTzskIpyfX1Idfe+2GCF+7zq7/wOSo95+y5a0CKMSAChzUwnRVcvLrN9vYGTV1yPJ5icWjrPD9Ia8JAomtDHGfMC8ODB0eUTYNWPpSwLh3VLKQ0grkJ0G3RKoUkTDJQAdZBZQxlukp27TrR1bezevVxLp46DYHi+ee+4ef7UUwUR6RZRhyn9HoDOr0eQRwtD1JASzJsNzIVPqSkOlEvwKLT044dpSNQiuH6Ou/7wId517vey3/6n/1NvvxbX+T/9y/+BZ/+zGc5PB7RLNvIbxU5f9gSnnW23PDhIWJv6yRrH8KaZX5QO7aZzqZM3ZQgDJYhj2HssUY7vTSci5LohIDbYk0QeMn0AmtsY5cFlZRtoYM3d1sonJxzS8Kxw6G1pqx8oGYSJ9S2blPujQ+FzBTlrPTvKVVEkS8gFiMgJXxgJEDZlBRl4TsyjaVnelyprxDcDzBjQ+ACQuvN9/qrfeZ7cwICamqqqqKZNxRlgYoVw3jI1voW+2v7jLojz6VpscY0hrDFGmkkumyLMRsuC0zwzr+LMNJZPiPPc38gk56OEKnIh4i2HKW1wRof+chH2Dvc44lrT/Dg4AE4vEle+JDnDI4PffhDfPLLn6QqK6SSDNeHfPi9H+bBCw/47C98llznXDl7hZTUjwKVb40W04JT106xub1JWZfMxjPfkWuxRmvtOU+1IYszbGE5un9ErWtU47HGVY5wFiKM8LlTbTEtpc/aWsY3GMMwGfLItUd4x7V38PjVxzmzfQYVKJ5/4XnvwRTFRElEJ/XF4qA3oNvrEkXRGz/nbedP4D2KlgTkh7BG4ceIssUaJ/3ocWN9g4988CO8793v47/4z/8LvvCVL/C//Yv/jc/9xucYH4+XI6s3O9K8aYqbpVrKOWSbbyJwSy4OriXmCUeUZYjcIkWBUm2+B6AciDBAxCEoidFTpGqNlGrtNxVrsFp6/kmb2SHDlsvglCfbtUopjMM1tffPExJnm7YAcO33BRhbY02FKw1BlhGkXXRdYE3pK2MlWRkEjEdThmlAJ0jwjjlt7pR1iNbOW9c+gdtqia4kRXWRm3sbvJordkyHKovZOLPCY09sk3ZSNs8O+aV//gIqKPng9zzKzp0pG6e6fOlXX+T4YMrvHe3y8t0jHp2c4m2nthn0bxJnBaLRBFISBc6rpuLMd5ys59fQtpFlEOFMAQa0rinnE4xzRDJABbG/YxJUEHoPoFb6mcQZDNeQQhCnHXA+ARyrWaR0CyE59/ZnkL0OVVUjgxjXNMgq5/Ijj7Ly5X2EdPwn//sfIIgyDvdHdAcxuhasbw3o97tI6TeD1bUBURJQFLUfKjjjgURGqCilqqbs7Y0ZpB2MKahqTTFXNFpSWUFpQ4zzp2UtYacsuL2/wwPZYyccoFfPYaIYu7+P3v0UFt2CW+OLXoRXxIWRD/jL+nSyDpvr25w6dYbTZ86xtrFFp9cliqMT+b7/4Le/ijf8cVnkOK8dEc6CMARJzKnTp/n4X/xBPvLh7+TrX/8aP/Mz/5Rf+pVf5f7OAca2Y8e31h+4Fm6yC3Lswo5/cZpdnmpbrMmyDJtbr0xqsab9QT7xOva+ODM98+MX/Fhj0QmS2pvBLfKBROj/XtVijbFmqZCq6gqML7Ab26CNXnZ1gjCgtj5005SGLMvopl2KuqA0JVZabzY3CJiOpgRZQKzipXHfojuwiA5oak8klVoiKsGl+hKbe5vIuaRrusRpzMqZFU49cYqskzE8N+TFf/4iucx57HsfY3J7Qm+7x4u/8iLTgyk7xzsc3Tlie7zN6VOnudG/QZmV6Eb7kVjgUIEii7P2kOiLh8U1i4KIosWaWtdM8gnWWWIZL/OXkL775F3dfRZXFmesr657flHaweCvp7baF3J4ftGzTz3r876qmjiIvRtxmfPY9cfY//I+Tjp+4G/8AGmUMtodEQ9jKGG4PaTb94721lr6q32CJKAqKj9ma7EmkhFplDKrZoz3xnTSDoUu0LVGzZS/zlYQWm9iaPFjqbIq2dnfoSd79IM+51bPEUcx+wf7fGrvU76wtb5wXngJhYGPpEiShEFnQCfrsL2+zZmtM5w7e46t9S1f8MTRCWEcluDyrTLx5RjReZWadRYjDHESc/r0aX7o4z/Ed33ku/ja17/GP/mZf8Kv/fKvcbB7cMIlepOuN0Vx0x5YEcj2Wok288i0hmstH0R4Gr3TmgV1XMrQS4KNweiGII7ASVQS4kYeHJx22LoBbSj393AOVNYh7HYRYdASXQECCEBYha4q35ERrZ+BBBc4RBhAs5BnO4SxWD3FljUAYadHEHUw2qJNDU3NoJ/x4N6UYapZ6fgHW7QeLVIq/5A0BqNb6WbVZf/gEs/tRdw0MfOoz/nHt5jOat71setsnVvh3u0pk2lJkAjSboejo4LhRkZ3mPKdP/I0k8OCfDzn+d+6zTdev8/OzSPevfU21gc36PV2iQOHCh1KeE6RkBKc8SO6ltCtVEggGxqh0W2CunOglEQp2wKTa5UX3p9HtGDV6fQ9sS+MqIo5UdZpb3LLZcKyduEK8cYp1IO7vriwDW46Yu3qo4RhSGMcr9/Y489//wd49j2Po40mSWK+8fUXOTocs793yPbpbcJY8qM/9j3cub1LWVR86fPP0e2mXLt2heeee4nZOGdn95itrXPoOy9SVw0Y3y2srVeNhUnFWFb8ZmGZ7BxgCku8tkoYhtjxoW+lm4ZalzjXqusAJwxhmBAGEU3cQRvI8xopDnmwt8Ort16iP1ihk3bod1dYX9tgc/M0m1vbDNZWCcPIq1MW/KdFNwdaxdxiYKF8ECu+e6hUQH8geP/7PsCTT76dH/7hv8xP/fRP8Yu//KuMJzOWqRNvrd+/FqfVttCR0pNtjTvhgyzynxbeMwv/m8Z4WXWjfZK4dD7/aFyO/QigsZ44qw17+3vgoJN16Ha7vhgK/Ck6aLFGWUVVVehGe08UYZdYE4QBpsWaxXhnqqfULdb0Oj06cQerffZR3dRkg4zpvSk609BhiTXGtuqpFmtcizWdqsOlw0vEuzGxiemHfTYf36Se1jz63Y8yPD9kentKNasQmaCbdSmOCzpbHbLVjKd/9GmKw4L5aM7t37rNvRv3OL55zJNbT3JjcIPd3i4ucLjQm/VZZ0+ud1vYSSm9A7Js0MJv4rrRywBPK+3ytSP8WGqh9nI4+i3WRGFEXuR0s+6SzwP+Ob984TKnNk9x9/5dny1lG0azEY9fe9yTm41j9/VdPvgDH+SJ9zyBNpo4iXnxGy8yPhxzsHfA9pltZCz57h/7bnZv7VKVFc/95nOknZQrj1zh5edfZj6ec7x7zLnNc7x4+0XquvZiVSyh9aqxKqmoZIUtLQcPDrCFZXVtlSiMOJy0WKM1pS59Iby4b8IsHY07cccXgnnNvtjn/u59vnnjmwwGA7pZl5XuCptrm5zePM32qW1WV1cJo3DZuXHfgjWLLhf4jo5ULf/MWt9ZGgg+8L4P8PYn385f+eG/wj/6qX/Er/3KrzGfzk/oJG+y9aYobrycWWCtbud5DuFcS5iUy+YN1uKsQUoIAwVRgrAGYSOQtQ9hVBIVBhBLVD5GSYGwfvPWZYWtCkxdoqcj9HxA2O+h0gwVJd6oxIGuKqrRaCm9prUvF63iyLXAJxXIyOJMijYzTDVHqgAVx1BMWmWVJcm8w/K8qEnT1vlYawQS6xy6LNGVbk9vA+7sXOO5SYedeEi00uV977nMZFzwjg9tcPfmhM/8yqsc7h9jDFQt0D33e7fo9hKSJGR9q8dT77zAlSfO0FnpcPvFTZ7/nVf53PGYd1XXWS8Fw/X72NySpt47QgYKbR3WOlQrF6XRSxJ1U1f+fgjp1V0ubPOwfFYNStHGVrbAo7C6QQaKupz7ItGaJT8FBFHSYe3ao8yPblM1BTQ19e5dhu9eIUlCqlnFlz//dU6f2+Sd730cJQMmkylxHLN7fMjq+iqNNdx+5S5Xr13kPe9/O8fHI77v+z9CFIXUdcHe/+cBB7tj7t4Z8a73nSF/9Xep6wojLCYSyKwEXXIfx0HiGIcS20iGdGjKhnp2j7ouKfKcqirRriEMU5COLE3o9zeIVMBab5OLF65y7tx51te3GKys0ul1SNIEFfq0d20a6qrkhRe/zi9/8mfpJh2uXn6MRx9/io3tU4TRG8dYJx9ATk4ALSHW4ZBESGno9wd84P0f5NFHH+Vj3/Vd/A//4H/ka19/jrLSb0bM+VNdAs+x0U6zcJxdcAiEO5Hb2tbVG+kdfZMwwaSGKI6oZe2fGeU7IjKRjIuxj0xoN+uqrCiqgrIqGU1HDOYDev0eWZqRREkraICqqhiNRr571PJsnHPtM8WyyEKBDS2pTpmZGfNqTqAC4ihmkk+Wypwo9aObOq8hweNZW6A55ygfwpp+3eeRnUfIJhmr8SqdQYcr771CPsrZ/NAm01tTXvvV1zjaO/IbaYs1t37vFkkvIUoiuqe6XHj2AmeePENn2GHzxU1e/Z1XGR+PuV5dR5SC+xsea6IWa1TQSsitL+BQnswshO9oLIIiFwauIaHPxEIRyMCrth6S8SupaHSDChTzYu6VYS23aVHAdpIOj197nNsHtymagrqpubt7l8F7BoQt1nzjC99g8/wmT7zvCQIRMG2x5vDwkNXNVay13H3lLhevXeQd738Ho9GIj3z/RwijkLIp2fnvdhjvjjm+fczZD5zld1/9XarKE75FJCizktKU/nOXOGQokdqbNDZVw73ZParay7fLuqR2NWmQ4qQjSRM2+hsoqdhY2eDKhStcOHuBrY0tVldW6fa7xEnsE+GdozENVVXxjW9+g3/5qX9JN+7y6JVHeerxp9g+te2T0h9ai7Fl+5Asu5sLrImIMNIw6A/4YIs13/3d380/+Af/gOe//jy60n8iz++/zXqTFDcsiUr+kgaehmAtzrSyRKuXxEkRRiS9Pkl3QDU6oMrnOAKixx5FdTLsjZcxx3uesKkCEI6k1yFZ6eNsD1fWNLM51eQYV1WEK6u4zKLSBAA9z9FF6dVMraGfMZ5n4ySecCq9T41AINIOEjD5jHo6IRqsECcdzHSENRohA5Ik5N6+ZTAEW2mEVDgh0a0CylqoioQ7O5f5vXHMTrrBI+/e5tGnL3jbmgeCX/m5F3lwbx/b6NbvQGKtH+O52nB8PANg98Ext18/4PL1Tba2h7hYEHU7lGHIlyZHvJvrGFewtrqHkIJUSIIgxGiLsA5sgxBRe8L1aG+MxpimtR3yhEVrLCIEUN5FWAS+oGvJraP7t+ltnaaYTjBN40m6bVifkAoVxDx2+SLPfVVQNTU0DUwOiCR0ujHTec183vBz//yz7O0c8rZ3XGd9vUsYSvr9jMP9feIkZbAywDnHdDZDKEmn1wEMWXcFESTEaY/D4wLXPcOs0UyLOVVimTaCvRx2YscDZSkrkCagE3fZ3TtmNn/AbFZQFzUYiwjACkEoIO1EXLp4me//rr/Ku9/3Qc5fuUDSyfz44aFT0O/7kCOYzCb82qd+kfl0zFe/8RWyX+lw/crjPPPMe3nksbfRHw5bhckf0H55yAofFYBSSFETErO+tsH3f/wHeebpZ/lff/qn+Mf/5Ge4v3f4bUMA/BNbru1o4E3nlsVMizXa6iUehWFIv9dn0B1wMDpgnnveyfVHr9Ppdnjl5ivsHu0uuRNOODq9Dv2VPj3boy5r5rM5x5NjqqpidWUVm1mSFmvyeU5ZlG/g/TjTjjukVxIJKZYn607aAWCWzxhPxwwHQzqJdwDWxjvshkmI2TeIoUBX3kdHCnniHmwhLmKu7F4hGkVsppucetcpLj5z0XdLEsmL/+pF9u/ueykyzp/krS+6TG2YtVhz9OCIg9cO2Hp0i5VTK8hEknUzwjDkcHLIda5TuIK9FmukaEdk2o/iGtsQtVizKDyN8X4vWGgewhpClgVOIII3kFtv37/Nma0zTGYTmqYhUMEyGHSRD3Xx8kX4HW+qqLXmcHIIEuJuTD2vqec1n/vnn+N495hH3vEI3bUuMpBkKxn7e/ue47LifdTmszlSemm+wTDsDknChF7aozguONc9h24083KOTX36ODkQgwkMVBCYgG7c5Xj/mJ2bO+TTnLqo/XsNOHGS7oRcvnCZv/KDf4UPvu+DXLx6kU634yM1/jVYsyjqpvmUX/j0LzCejPnKN75C9ssZT1x5gvc++17e9tjbWFlZOYmW+Bac+NbYDaUUtaiJidlY2+AHP/6DPPP0M/zU//pTfOKffoLDNxnWvEmKG68y8Sok/Ya5uCcZe+7NIkUb4WhmE6SpEbbBOcd8XpAeHxAfGdx4H2cbROR9aqR0hN0MmYSYucbUFTKLSdQa1XRMPTkiao3vZJz42bqQOK0RoSdd+UgnhzOauqqXo5swionSDjLOcMZiyxm6yAmzDmFV0dQNKlJ0+ynP3xJctV75gHIYfE6Ucw5jAo4nj/L8LON+vMUzH71CkiUcH8347S/e5M7ru5RV5SWcSuJQvhsoaCWeIdY27clTUjY1a2td4kRx4ZFN3vNdVyknNS/+1i3uPHeLbv0edvd/lVNbFcI50m7qTfzqquU5uaWpoLEt2ds6bJszsPAjQggfEhol0AZ6KusfuNnegzaLxrSkcN+RY8FpU5LhucuIUJJXOaGVmMkhmJL+IGFnd4oQMDqa8As/+wV+57de43s//k7OXdxgOp0SBAopBaPRhG43Zud+yerGOvPZjLquee31++w8mGCB0WjGwcQwHRfcvTvmYCw4wnE3MOyWltIK5g2EgeboaIei1DRLp9aTRpZ1FhtIOp2Q97/7o/ylv/pX6a0O2zywxVf/69aCP+bY270P+DT2eT5j/2iX3/r6FzizeZZ3P/Mh3vXeD7Bx+vRJkbN8VL4VPNowU+ktCqSUXLxwgf/Tf/m3eebpZ/iJ/+f/i699/fmli+x/6GuhMgGWpnkLrFk49AorlinaCJjMJtSmpmmxppgXHI4O2R/tszfa82qp2PvUOOX85p6E6LmmqiuSLGFNrTGe+pTnhfFd8hDWaK1RLdYgffHVmMabrbVePHEU00k7nrhqLLNyRl5475bqIaxJBynilvCyc21wyodmLgjKgQl4bPoY6TTlVHyKKy3WzI/n3PjiDfZe834nUkhEIDzxFPxzKx2hCGlarJFCUtUV2TBDxpLtq9tc/nOXaaYNt37rFjefu8l7mvfwq/u/SrVVefVTNyWKIh+A2fKdhBBLFZd2Lem6NfOzzsvPF5t9EiVL+btoseZBizVGmmUI6UlGofeHuXT+EipU5FWOtJLDySGlLkkGCdPdKUIIJkcTPv8vP8+rX3mVd37/O9m4sMF0MkUFChlIJqMJcTfm/v37rG+sM5vPaOqGBzceMHkwAWA+nmPGhmJcMLkzgbF/DTrQ2Mp6Qm7j/7x7tEtTNktX6OVqsUYEgqgT8ZF3fYQf/dEfZbg6RLZYI/4QrFn+Nwf3d+/7+x4ETPMpu0e7fP7rn+fc1jk+9MyH+MB7P8D29vayyFk+K99a7OCJ3VZ6iwKPNRf5r/+r/5pnn3mWv///+Pu88PUXls/Xn/Z6kxQ3bSGzyD/B+TEGZukz45akVIcwGlfkhGlA1OsQdBJGtqY82CNMfe6SaNPEUQonNMZaRJwQBBG6KDGzKfHGJghBNTmgtoJQCEKlUFGCigqaeeHjDGTYyu384EUqP5c3uvIkWWcIohSVdUGALucENiPKOjTmCOMaut2AA1FgVIozDbUxOBcgnD9RzfMLvHiQcEP3yV1BthKDk3zyV55nPBvhYkun4/j4X3onWeY4Osp5+YX7dDo9xqOGB/cLkrjD+lafy9c2OXVxlUfedR7hFM9/9R43X9ph2Im4+OQ2+dkV7nzyec6O3sHh8WeJNhSqNsRJSECIMR7UfeIw/j5YL4PHAFYgUAgUUigv1Y9ad+e2+JQIqtmI2X2D3Fyjmk+J0g4LqTPtV/dPnUOGEZVpEC5AV0fo2Zgz5zd5/sW7OCfQxssZd/cO+Jl/+hm+/4fex8ZmRlUa1ja6NJWmrkqMExy/do8vfuGb3HjlLpNxibMKgUVUI77xz/5nJq/dYFzB1FluC8vdiWWuHfM2SDOVllhA5fDk6ZbzIgTEEioniJKY7/3uH+A//k//Bmmanqi9/9DC5mQ1jWY0OiKKIpIkXdqul3XJdD7hxp3X+fXP/jzf8Z6P8aGPfoy1ra0l8fL3Fzftn2Vrkgg4pxkMBnznd36Ms2fP83/7ez/OJz/9Wc+Z+uM9oH9m1qKQWWQtOdzSwM86uywAFiRfbTR5kROkAVkvI+kmNLZhb38P1VGtkaZYbs5aep5fEntuRFmUTGdTNjc2EcIbtC2MMpVSJHFCERUU8wJn3DIiYaFEWRBKq6ZCWx/7kEYp3RZr5uWczGZ0sg5H5ojGNYSdkJEYkchkyREKnDeOM9pwPj9Psp8wMAMKV5CsJEgneeGXX+B4doyNLS5zPP3DT+MyR3FccO+Fe/SyHs24obxf0ok79DZ7bF7bZPXiKhfefYGAgHu/e4+91/aIsojtp7YZnhvy3Cef4+nR0/zG0W+gNn3nJ0xCQnwH5wRr3BuMFDEgrc9oUnhDRG00wUNYszC4G8/HmPuGtc01ZvmMbtZ9w8jR4Ti/dd47F5uGwAUcVUeMpiM2L2xy78V7frTXYs3B3gGf+Sef4f0/9H6yzQxTGnqbPXTp1WrCCe7fuM83v/BN7rx8h3Jc+iBNLKNqxP/yz/4Xbrx2A1f512CkwU5a/uciSLP1ullOLR4eQUt/DeI45uPf+XH+5n/2N0nT9IQU/EfFGt1wdOyxJv0WrJnMJ7x2+zX+1W/8Kz723o/xsY9+jK3NE6z51uJm8ZkU0pskgj8gDAYDPvadH+Pc2XP8+N/7cT736c/5A/yf8nqTFDetgZXV7QnTIdvRxoLUZFvDoQCBKAqcKTG1JIxSbFniZlMcAidDRJxg8zmWurWqDmnmI3RaEPRSZBJTj45xRhP2eti6oWlydD5GRgEyy1BZgtUaXRZ4z3AJUiGFQ0UZ1jb+pKENTT7DNZYwazs42qtogqRDWM4xWpOGklLUNNYwb+Y4FXhDvrqm0V1uHa7xUhkycQ7jHJ/65G+xdT1g48mSMzGEYYw1mrd/xzkCKwmTiOtPbtAb9BgdT9m5V9M/tU04TBCRoh5XfPZXXiVIHKeHKXpnxGvjkoPdnLo0VNOKRJxhZXKRLLnlXY7rgM6gB0K30tO2mHnIXMw57wFitMGEGmM0YFFx1hLL/OjFWk2Tz9h9/ne48PEfQTell0G7RWq5/7rO6gZhp0c9m6OcQ+I4vvkq5y5cJksVg5U+o/GcsnTESUyZV/zsJz7L1ce2efLt11k3flR469Yur7yyywsvPKApLZPRiDBO6HRS1uKCrcOvcfeVG0ydZaosr9SWvcrRWKjbhzjyH0XmDkIJXSWIgkWmDtQWHIJ3Pv0OfvhH/3f0hys0jUZUDUivmFqkvP/BhY7vQI6Pjrj52g16gz6rq+uEUYD1VrRIKSlVzryY8zM/95N8/suf5Ds/8n28/zs+ysr6Oos8sZOfuFAs+O4nwrbqP0MSBTzxxOP833/87/L3fuIn+Nmf+0Wqqv4PusBZmPRp67sDb9gAhceaxX+TSIrCq5FkLUmjlKqqmMwmiI6X2CZxwjyfU4kKEXjS8Wg+okgL0l5KkiQcj47RRtPr9WjqhrzJGc/HBFHgE6GzBK2199TBW/IvohOyKKNpscZowyyfYRvrnXbjjEY3NKahm3aZl3O01ohIUAnf8Zk3nptjGkNTN2Q6Y/1wnbDwqiMnHV/59a8QXA8onywhgTiI0UZz4SMXEMYnpG88tUFvpcfseEZ1t2J7e5t0mKIiRTWuePVXX8UljnSYcnT/iGpcke/m2NJSTStOi9NcmlziZnrTq7ZqRX/gQ0gXkmXMQ5ETeP7RAmt06OXjVliyFmsWNAZtNbP5jN9+7rf50Y//qPcfcvbkvrZft7G6Qa/TYz6bL/lWr958lasXriISwWA4YD6e4wqPNdW84jc+8RtsP7bN9bdfx2g/Kty7vcfOKzs8eP4BtrKMjkckcYLIBEVW8LXDr3HjlRt+T1MWW1tc5dVhbygYFkRciS+QW6zxIwxfwLz9HW/nx/7jH2O4OkQ3mqZqlg7PorVJ/4MKncX1Oz465sZrN+gP+qyvrhPEwbLAkVKSt1jzkz/7k3zyS5/kL3zkL/DRD32UtbU1lll8D/3MxYHAOosVPhC0cQ1BFPDEE0/w4z/+4/zET/wEv/hzv0hd1f8en+R/83qTFDdgrA+TxPpQR4TA6UXHxgO/c5ZYNEQS0LWvDqsGESq625skekYzO0ZGMSLJMFXtb44TIBQ2z7FxgAy9+7GpK4KsT9RfwY0bTNOgi5oojpFBQJAmmKbCNA1Yg3P+g6VCz0SRKvTtbNOg6zlCWIK0i4g73rQuCAmTDraqiIQjDAQGgUERRQlBEmDqhHJ0jVePHeOgDwrWrxjCjQPu3GuoRhn13PgxlDNMb/8y3/XnH2WaT9C15vzFC1hT0x805Ps73P5KztbZNbbO9bCzAjNxRP2URx45yzwv+Xp+l5dvPcDomm+Eku9In+Dw8AbdDALh02+l8z44rh3HeeWXxlpPhraNRkcVwoZI04B2uCha+hS51nTRlDmj57/GhQ99H2LrLKapETJEtLNwnCPpDUl6q8yOD4lkRF01mFuvcOYvvJdBL+NtT17hwc4BUZRy+vwWk+MJ3/zmTV576R679w7ZPLPJrRsHVHVBXfmuCC6gqnOGK0OuX0rgpS9wcOsGx6XhUFhe1pa5hVgKmjaBPmhPTaVzhEKQyHbkhyBKFbPCUDvHtcuX+N6P/zBxllEUFWEYUVYN1mqyLCVKIgwwnU44Pj5iNpswn83I87mPWygKvvCbn+V4b0JdWuaTnCAKybodkjRCtC6yYVCgZMyr1Uvc/Zk7/OYXPslHPvS9fPAj30XW6z4EPALvueRbwdZZnDlpCwcq4OKFy/xf/9u/w/raGv/wJ/8xRVH+B13gaKOXhnoqaJOutS/gF8BvnaUR/nmvW6xpqgYVKja3N5npGcezY+IoJksy6tpjjXSeO5PnuY9gCJUnGNcV/azPymCFZuT9caqiIo5jgiAgSROqpqJpGow1NC3WyNCfosMWaxrTMK/nWGHppl06cQdtNaEK6SR+POWE85JzPEclWWKN4er4KvbY0m+xxlw2HG4dUj+oSUcpdmaXyeS/dPuXvOw7n1BXNRe5SK1rmkHDg70H5F/KWTu7xuD8gGJeYCeWtJ9y7pFzlPOSO/kddm7tUOsaGUqeSJ/g9YPXodPGTrRYYxqz7FbYFmuEbcUdjaaKKkLrlWpOO6Io8gncgLZeVZVXOb/7/O/yvR/6Xs5snqFuas8/ah15nXOs9FZY7a1yuMSamlduvcL7n3o/nV6HK09e4XDnkDiMOXX+FJPRhJvfvMm9l+5xePeQzXObHLx+QFEVUPvXFriAvM5ZWVkhu5zx5Ze/zI1bNzCl8UaQ2i2zuOxDgovFa1okii+KFJUqTOE/gxcvXeQvf/9f9mPHovJdp9pbBKQt1gghmEwnHB8fM5lNmM1nzOdzH7uQF3zuC59jsjfBlpZ8khNGId1ud2n4iIAyKIlUxEu3X+LOz9zh17/w63zfh7+P7/zwd9J9CGsWo1v7ENY87BcVqIDLFy7zd/7bv8Pa2ho//Y9+mqqs/gSe6D94vSmKGwcY411skc4TdYUfbwifEOYrbWPpOOMnwNb7pjRFjosiks11wlJTTzwJ2eQzdDWjyXOCOEQmCgJ/qg56PcJ+zxc3HYvMQgLdx83n0FS4JkPEChlFBGnHK13qOc74zV6IwP8qlQ/bjBJMPacpJgghCZIUZ7yEPEx7WBEh8zndQCCimDBIWqtxSV0qbu12OOqepjGW1UcK6I85fn2VhFUunBtw6myf7Yvr7N6fc/fmTXZ2H3D//m3e8fSzBGFIb3WNuizZOrfNd0QJt7/5gJeeP+DGS3u87wOXsA56awl5XfPUe88Dkue/fpsjbblbx6xVWxTVMWEYohtLEEiEk55k4izaniSTi3aqZPEFqdYNxlhkkiJEO6Zqv6ipCkxd4SYjvMzfq93csu1pibpdgt6AWV0RRCCcpTs/pN9NWVvtknVTtk9vkmYpnX5CmoXUpuHW63tcvrrF7/zODXrdhOuPXUQ3ljyvuH37iP6gz+OPdeHu73L/pW8yrg1H0vJ8ZamsoxNKCuNDLpXwiRu19YVNJkEbmFlIAktoHYV2JHHEk0+/AyMkOzv30bphOu8jgLv37rC3e58bN17h9p2bjCZj5vmMuqnQusEa0LphNp0xGY2QYYRuNFPdADA6HBGlMd1+SpwFrftzhWpCyrrg916a8uqdl/nyVz7LD/7gX+Oxp95OEHppp5OBf4qcQRjpT8Cm5UqZiiiQnDp1iv/mb/83xHHEP/if/iF5Ub5hwvWw18Wf9WWM8d2ZtpB0wo83pDshVlpjl2GUi25OXuY+ZHFzHV1q7MSTkGfzGbPGm85FcYSMPVcFoNfr0e/3KaqCbqdLmIX0mz7z+Zy6qTGNQcXebK+TdnznsJ77jqnEE2elJ8UGMiCJEub1nEkxQQpJmqRII7HC0kt7hITkRY5QgjiMSYIEoT2RV5aS7k6X093TYCB/JGfUH7H62iqrbpXB6QH9c33WL66T38+5efMm93fuc+veLd75zDsJo5DVtVWqsmL77Dbxn4/ZeXGHgxcO2Htxj0sfvAQOkrWEpm648N4LKBS3vn4LZxxRE3GqPMVReeRJxY31BodOohv9xs3SvfF/2uplQneapCjhx1Rt780HQtYVo/HIOx3jx0tW+o3YOEO322Wlt+L9hCK/OR/OD0m7KZ3VDmk3ZeP0BkmakAwSwk6ItprdV3fZurbFja/eIMkSLj5+EVtZyqLk+PYxvX6P/uN9vnbva7zw0guYymClxVZ+tClDeRJj0KrxnH2osPEetdjAf73TjiiOePqZp5FScn/3vu/8zXtIIblz/w73d+/zyo1XuHn7JqPJiOl86otj7fk7TYs1o9GIqMWa5iGsidOYtJ8SZN6eoFQlYRBS1AXTl6a8fOdlPvvlz/LXfuiv8dSTT/lOkRAE0o/erLM+4kPjP3/W+jDXh7AmiiL+4f/0DynLEv4UsOZNUdwIwJjGG1aJAITCOQ2oJUfTOYNwhljXyDiCSWtW5sDMZ1CkiCjyDsJGI3sx9mji86lqTRCGqCRBhN5aX6YddD7HFDlBr4/KEpw1WF1jypwg6vmvDSNkqD3PxzVYrcEUyCCAwCBFgBQCGXWp8zHlfESsFEGcgQxRqUA6QX18xCAI6Gep74xYgzEVVX2VnTrBra5y5aJh8+1dhukz9L/jDGsXV5BK8epv3+flG8esrWY8/b6LbG7BcHVAXVdMplNeeOk51le3uPjoZVbWVxhs9Dl97RRXH19nfJhTV4bJtCYIFP1hh6uPbjEZVzy4d8B9G7IWXmP/6JN0Oh3KoiTtxG3bMsDSYG3TkiB9bAHWe9IEIvVkSOdQcYZzeOWWNVjbYMqapqkxoyPAIkXAib+Cv3lKRaTDbWZTQ5gY+glUBw94/Xe+xA/80LsJkgHaSLQR5HnJ/t4x3bTDsN9lsNLj1Kk+k3Hu2/EKNrb6VFVDGM64++JvwUtfZdY07DrHy21ho4Sg1Jam5SwGbWGThorVRGG1Zlo7lH92KWq/4VVFxZd+63foD4Ycj44oy4KdnfvcufM6O7t3Mc4SBD6g1X+GPWdMa43VjqapKfJiyWlqdMvzMP565HnDdDQjSgP6gx5JNyEKnbc+iBp03fDlr3+BV2+9xEc+8D1831/8S2ydOdOeBL0JpgxSXCRweYk3i/QKHKEUq6tD/su/9V9hHfyP//M/Is+L5TOoggCJ71L8WV+1qb1/hwhQKLTTbyDNLk6nVVMRxRFucjIqmM1npEVKFEe+6DGapJcwvT/1z0KjWy5VQhAFRCoiSzPvuFvk9Ht9kizBWEOta/Iypxf1CENvzLYYvzSu8aMqU/hgycAuQza7UZdxPmY0H6GUN8YLRYhIPZ/oeHzsDfOyrMUay9zMuVpfJa5i1lbX0Bc06TtS3pG+g7MfPMvw0hAVKB781gOObh3RWe1w6f2XcJuOweqAqqqYTqe88PILbA43uXz9MisbKww2Bpx65BRrj61RHBaY2lBPa1SoyAYZW49uUY0rDu4dEJqQa+E1fv3o15dYE///yfvvYEvP+74T/DzhjSfe2LkbGSBBggRIUaRIMUrWzFiiJSvntbU1tUH2eKZqRnLVVq1rq6Zm/pyq9W6tZ2fWa3vklShZogLFKEYTBEiCyCBSA43Ufbv7hhPf+IT943nP6aZMybIJyDD8oFB9+/a55570fp/f8/t9Q4c1WmoMhta1a/K7cCG6oPUtWYc13vv1WErJ8Nk2ztBUwefncHKII7y3K6xZbaKRjDixeQI7t9jUQgp7B3vc98B9vPsn380oGQWyr4GqrJhcnpClGfkwZzAeMDg2oJgUmNaAgtGxEaY2LOMl33jyGzzw1AO0TSCdrwobIcQ6u2v1+fLOoyKFSlVwrG78OoXFN6FYq8uaB77xABujDQ6nh9R1zcW9izz34nO8ePlFvAvRDTrRKBGI2M47WhO6W03bUJZdtpUIxHLnw+PwztMWLYvJAp1pBh3W+Cg8DhMb2qblq498lSdfeJIfed+P8FM/+lOcPBkS1xUKiSTTWZC4F1UIfu2wRinFxuYGf//X/z54+Kf/6z+lKqr19ad1cGR+rbHmdVHceEI70jqH0oFh5Z1Yj6MEhOFBW6KqAtUfYK9cxFmLcB6Bw86OcKMNEJp2vkRELXYxRyqPK1uiQYaMI4RSIH1QQUmFKUtUL0fGKvjTePDGYqsalaZIHbxthNIhj0qA8TWybZEmDkoErRBSEiU9muWM8miPeLAB+QAjNWVdsJhN2dQJg0QglMIUC/AZh5MEdcNxPvLjd0IvYeksw+2cZtbwld9/hMZW7B7fwEwrHj9/QFVM+bGfuYkzN9yEQHD1YJ+P/da/4Kd//tfQcRSs3LVk9/QmOyfGLOclFx67wJc+9zRtnXPL7ZbdUz3u/r4zTI8aDpdzar3F1QPFsePBURPfC6my3gUDRS8Rzl1LRe8UJtIpsBblPTqJkZ1PhXc2qNtMMGB0h1dDNpS3COOQMrgUr9qyg92TmFqydA1bvZSeq7j8p/+UJ0uosi2SnR0GO7vsnjjJjWfOceetZ4g+eAdR1uP733k7B/tzyrrmyv6EydGcczfkfO5TX+FUeYVMlMwkPFc7VpdS668ZhzsClyZWgn4EZWMojMf4UDx3wos1reXCiy/ymc9/FtMaFvMjpDREUUh7D6ebMoxS8d3GAt61GOexJhioxXEa2u1NSJAX4lpHzANl1bCYHdDrxwzGfZJUoyJNFElik9C2NX/0md/hsSce4ud++u9y97u+/5pBl1SoNCdGUC4LnIfWCiJC13JjPObv/59+Hect/+//5Z9TlgF0THeq+09hrUijQnfeMlasx1EQOAVlW1LWJYP+gItXLgaZuA98ncPZIZujTbTQLOdL2qhlPg9hiqYypP2UKI46pWC3kUlFWZbkvZAknXRYY40NB4osQ2m1DkK0Noxqah9GVbGJgxxXhzFXP+kzXU7ZO9pjY7DBMB+irKKoCmbTGalKEWkgLS+KBalPSaYJx284zp0/cSdpPxRY+U5OM2145PcfobIVGyc2qKc1B+cPmC6n3PQzN3FThzUHhwf8s3/xz/g7P/d3iNNQ3Ekt2Ty9yfjEmLLDmqc/9zR5nbNxxwa9Uz3OfN8ZmqOG+XLOZrSJOlCUHdb0OqxxPnTBpA+S81Uq+tpo0QXhhfNuPY5Zx2j4LrfLWq4eXg2Sd29xJpj/yeuw5uTuSWQtaVxD0kuoXMU//dN/CiVsZVvs7uyys7vDqROnOHfmHDfccQNv/tCb6WU9bv++25ldmYUO0dUJi8mC3o09vvKpr3C1uErpyzBaC+S88FlaXdTrD18g5BKBbYKZ4vo2f84q5sUXX+Rzn/8cxhgOZ4cYGRR1osOaQhSBpEzgh2FDh2tlXGtbGxLpWxPMBFedo1VHjOBddDA7IO7H9MdhXKVqhYwkiUmo25rf+fTv8NDjD/FrP/NrvOtd71p3cZRU5GmOQFAsi0AEd2LdmRmPx/y9X/97WG/55//LPw8dHFh3kF7r9boobvA+KG68C4nK3QsvxKpNLMA7IlujvEUlMa5LbHauCWkBTYMtFujhEBmD8w2mKEgGCdY6dJIipAqFiOicdIXsOjU1OsuRcbJuSYsOXGQcE8pqD0IhVVATNbZF+ZZIZDgT3GNllBDlA8xiwuJgn6JYoKKMpmmoqpp+FKNkjG0alIhwMmNa97iyHPD8J7/ExlmHPDqD0Am7p/qcOrPN5Rcuk1QG7RyXXzyiaiu+/tVLtE3MZFZwef8yx898mC9/esrTj/8ep84MeMvbz3Hqhh2yfs5gnNPbSsh6S/J0m0//0eN89Cfv4tztmwy+cZnL8xlLkaHrbSaLy2zs9CiqijRLsV0itrOBmbJSVgo6/yHh8Z3aQaXZikvfEc9cCP504BehVRxcpunup1O/eejvnsIiKZYGuxWTxpodv6QpjzCvvMzyCcHlWvCUEqhUgYiIsx75xphkNGKws8vm6ZOcOnUDOM0X/vW3cMt9tuIlF5zj6cZRENRP360R6oHGeq4Wtiuk/+JlrOP5514gUgKtBVpLmiaQ3ZVqus8tSCFCmjugpcBYj7EOY6GqS5z3ofDpiijfdagRIa28baGta5aLlrwX0x9nJGlE07S0aSByP33hCf7v/+R/5Eee+lv86E/8JOPNzTC79wKdZmRSsJjMsC1A6Cgo4djY2ODX/w9/j8V0wW/99u9SN//pFDbeh3wm568pVYB1V0D4YMRX2RDwmCTXEpsb24RgyiZkHw2HQ4ihpWVZLDussaRpGkzndPCXkTLIvRvTUFc1eZaTXIc1q9N1HMdr52QlFJGKQjCnbdfdC2WCe2wSJQx6AybzCfsH+yyKBVmHNXVVE8VR4JU0DZGIyGVOr+oxjIZ86ZNfwp11nD46TapT+if77JzdYe/CHqYwWGM5euGIuq259K8vkXx/wnK25Mr+FT507kPMPzvnd7/9uwzODjj3tnPs3rhL1s/IRznpdsqyt2Q72+bxjz/OXT91F1t3bHH5m5eZzWdkZGzX21xeXKa306PqsGaViN3adh3oCMHZd1XoORM28izJgDDeWJFb2zb44hzNj8JYyl17f1djFDyc2j2FRGKWhngrmAou/ZKj4oiXXn4J8bhA1ALRYU0kInpZj/HmmPFwzO7uLidPn+SGUzeg0Tz4rx9kf7HPIl6ELmxX2PxlIxfvPLb4t6uJnHVceO7Cmmy8yrDyztN0WIMIHJ6VbxOS4AvXpZGXdRkei7uu0FrxjwVhJNYGM8l20RL3YrJxRpRFgd+Thk7iExee4H/4f/0PfPTJj/LTP/HTbGxurLEmSzOEFMwmM2ihVS1JnOCECwXO//HvsZwv+dj/72O0f41Y87oobrz3tKZmHSrY+Rl4HE7YQM51kqxekriW+uUnEe0sbLCuRXazK98E8pJQAt9YbNugdY6TIKUAFZyQVx8GZ0OHwZsufiARSBJoWvChTygECC1xtQXh8UKEZHHhca6hNTVCxMjWhjgDHZHkfczsiLaY0yiDFQLnPXkCcRdOhoCqUMzrlKm2WDHlkacuMJwNWEwWvPeDtzB7fp+kucKNQ8ub3nUnz52PmF+e8fDX93n8oSOsdWSbnnijoZwLnnrsiOe+PaGtYi4/O+PJp69iZcPOMcXmcAPpNE1lkUry9KOXmU7mIDWH1nA22aWcv8Qoz0M2S2eiJWUIkLTWYZ1AqG4cKBWurbHGQZqh0pxVbKygu4BNZyBWlfim6uS3BhV1zsfdqSsfbSCkom4MRVXhfEuexGyMFB5DU3pGdXjvpLLYpsXMCqqDfRYepl7wnE55ZnyCoyjBNxPeutlyeFjxdOWZO782FvwLP4N/7s+/aK2UCdaBbT11a9cKJiVtUEp1oaO2AzglBc4LbMfxuabiuO4w5b+jcw2Ak9CWjrKuWC5r+sOE3iDFmu6+nESII/7kz36Pi3sv8zM/+8ucu+XmtdxZxxmDMSync+qqRuBI8wwQbG9t8Q/+/j/gpYsX+bM/+/LrxpvitV7ee2pTrxU6K+8UR8jTMd4gnWRZL2l9y5MvP8msnQVjuc7bRSCCR0u3mdjWhugDnQfliwybo/CiK+p9SBv3IvBMehKRCBISmqYJp+7ugyC1xNad344QYbwifMiVMjWxjEN8QuSJdEQ/73M0O2JezDHKrAMTiVkHISJAFYqkTrDaMhVTnn/qeQbzAa9MXuGWD9zCwQsHXK4uY4eWO999J9FzEbPLM/a/sc/Rw0c46/CbnnajRcwFR48dMfn2hLiMmT074+ozV2lEgzqmGA/GRESY2iCVZO/RPeZH8zB6soZj6TFemr8Ucru8Wxv2aRlCJZ1zQRquwgUipQz8JGNJk5Re1gsdYq6poUwbsKZsgiv0Oo8p6l6TTuK/MdoIkv3GUFc1rW9D4OhIYTD40ofixgusCgqzYlawf7AfzrdekOqUE+MTJHHCtJ7SbrZUR9Va9v1qcUnWKigHvg2dmBW510q7LmxWoy7oPnterDk+68dy/UP6bg9PgiuDO3S9rEmGCekg8LW89UgnORJH/KvP/Ste2XuFX/7ZX+bm67AmizMYw7zDmoqKLM8QCLY6rHnl4it8+XN/fVjzuilurDEhMHMlbRNdqF337x5DXk+JzAT2CpwLzr7IFEGGFBnOmkAO7SUwv0pvY4SKNDqNsaYFY0BoRCqDXNu0oUskghmd8CDTEJXgjQNj8EJ1xEuN1B5vLU4IlPcY77BeIF0TFFNtQ5QP0ElK2hvR1CW1bXEEr5VeXyIJap7wnHMalWK8J8lBlTnLeYNpYSe3nPAXugIshjijNh6FxLQVjgipFG3l6KeCUgYiWms8Vy4veNtbz5IPx3zuU49jlpKbP3Ccbz9+RGMc1jqeOz9lOQ8Bn/Nei2h7lEWFt47WO9qqRasIL0IujTXdBu4EIQPTYkWDs4Y4GqPy3rrdKUUXK7Es6ec9fNvglouu02axtkWK0HoXQpAMRygpKY2gLEKuTBInREqQZ9DPgky0aUKR4trQrLbeYw0Yp7hy7BaeffoiPV0R1TXPXq54xTumNvBpXi3qWjgpErqJYnU49EgBzrIOuwy3Dav2jnVH6xpkrUddXqxUT9/5c851t3VQWE/TVNSlYbDpaG0TQEdqlE55/Pyj/C//6z/mJ3/8F7jrHfcEFRACFaf0hh7pw0HAObv2qDh9+iy/+d/+Blev7vPII4/j/hMgE686N0qqazJacS3A0TuPwTCrZxyZI4q9ImQgtSHEMSMjE1kwihOQDlL2r+wz3BiiI02cxrQm8GW00MhUBrm2aUMXQbh1vk+chqiElUJIiRAYrNF47dfXx0q9JXzgKbS2pWkbBvkguOb2RpR1SWvbEHwoHLIvMQQ1j/eezGakKg3dqVyQl2H0TQ02szznn8NlIf8oizK8CaOOqq1C/IFSuNLBiVA0eRP+X+wtOPvWs2wMN3jsU48hFoITHzzB5InJ2tNl+uyUch4k9W2vpdf2qJZVUKgRsCZSYdRhnUW0nTrHdYdQ46hFjbGGUT8ERV7fccNBWZT08z5t0zJfztfk5Na2aBGKKiEEo+Eo7CtGYK7DGqEEZCCywLnxbVeotKEj4n0YlSmnuPnYzew9s0epSuq6procpOfY0DV51T6rnfR6HQuy+t6q4/JdSLmron01zvtzd7j2Bfo3DPrcdYWUDT44pjS4zdCx9DbwolKd8uizj/KP/9d/zC/8xC9wzz3XsCaNU/wwuGu3Lqj+Vlhz5tQZfvO//U32r+zz+COP/7UIF14XxU3Xn0epKIyiCMRi6T3CS7x36Lomb5ZoHLIpQn+gqWnrCY3xJL0x2XgbmfURkcS1Dp3lONsgELgmEFxdaxBqjG1smGUnSQjDFD5kJTmD0J0KSkisCeOVMJVK8L5GyiiobAhp2a6TE3sTNnGyXgi9cymurmiaCiE8/X6ClDrkZjmLlwlGZ3gkSZSSxprSOXSSsDfzxCfuQtYV46xFJD1OHd8kiySzxYKmsTgpgyrLg7ehjalVxJVXZiyWLeNRzgc/9CbSNCLLI8rikKZxXN1bUpYNFouIPTZvcbOIyjlEV4i1xqC0xrRNUPu0Hqn8muTnvcH7GGscaT5GRUkX7hfs3T0eV1eM+j18WwdvIi/w1nX5Uh4hJM5aknyIUhpjYVk4qja0NROdhxanikBITGIwHrAmfE8qWmPYi47x5Fyym4Cbl+xVNS8KT9zPKKbFuli4bgrxPa1Qw3XA033PdgFoYd/q5kzrcobrvu5gp3swwY9i9a/fuYQPt0V4rBO4FszMUDdzxhs5wimEWBDrjDY1XD66zG//7j/j8OAq7/vQh0iyNHRwkozepqIuFoHLhiCOUqSw3PWWe/hv/qt/wH/3m7/J5Sv7r1oR+Hpda5depdeqGi30WsbtvKOpGxbNAoejaIrQqWlrjqojvPGMe2O2x9v0s35QwrSeXtaj6bCmbVqaqsG0hrEa45owNkmSBB2HToySKiRX66CCkkLirKNpAzciUQm1r4lkdI0f0WHN6uvFckGvw5rUpVRNRVVXeDzxIEbL7hDlbCjMdIZEkugEnWiccyRpgp973nbibSHPKG3opT02j28itGC5WK6TvaXtcq46rIlUxOyVGW3R0hv1eNOH3hTM+fKIw+IQ1zgWewvaqsUSuk1N3hDNAzdQCRU8h4xBa03TNjSmCYVThzXSSYw3xD7GGcc4HxNH8bobtsKaqq7Ie/maSCt8IPIK0eWwdfETo3wUIlIsuKJ7X+KEvMOaSEXIRIbi1UNrW2IVh/fLGHajXdRCQQzlvKSugvQ+67DmtVjXvKzCEquwRbHCD/Ed+LHuaK0KnOuwhr8Aa1ZS7/VcvsOaeTMn38hRTrEQCzKdYdLgrPzPPvbPuLp/lQ9/+MMkaRI6OEmG2gw8rxX/Jo1SrLDcfefd/Nf/4L/mN37jN9i/sv+avFbXr9dHceM9WqqORR3CGyGMpfAe7wxxdYRqS4gESI23BiEgjiNIQbgSVx3g4ha/UCyu7pEPe0jvcF4gG4sra2zdgJLoPCFKc6SU6CRFJSneGByB7BoU6IELZK3FIfC2DZEEKKSO8Qg0EmdDUnRrWky1xJmaKO0jdEScJBjjiLREqwghQqCkIMJ5TWMcBke9kGzvDth7RVEuWr78hQvoRKC0ZLSR8eG04tSNG/zdX38bL3ziM7wkb+fLX3+J0ryIbSuE9GFshudotuSTf/IQ7/qBWxj3eyAdV49KLl06YHM7ZbyZU9YG7yDKPbY7CSoCAVhIj/UGbz1t21KVdXhPrMBZgdRd9e8MSkE6HOHxQebtw2jKW0s7O0K68IqKusR30vFVwrvvHGHjLEPFwcdjWXnKumLY65NEKSILxn/eOxIVY7pgQi014Li4aHjK7yKXRzA/orczpF8s8NOCw3lF232WYq1RSlK+ysZS/s99de1A8uf/5drXouv+fLd//zfvewVsHYg5qErPgVnSNAbnPXGUEEUarRQLteDTX/gE+wdX+c9/7G8xGA1D41hFREmKbcL77oRBR4qUiA9/+D/j53/+Qf7x//OfBJ+gN/BamZetTpQrLoYjFD3GGY7qI8q2RERiPUoBQthgCqUr2S/3aeMWtVRc2r9Eb9Bbdxtsa6nLmqZuAj8mTwLoy0AkTpNg2rdSnaywxjQBa1Z+NitlSqxjBCJ0Umxwx21Ny7JaUpuafton0lHgOXTy6khFKBECJSOi4J7bdUrkQjLcGaJeVrSLlgtfuIBIAqcj28io0oqNGzZ426+/jc9+4rPcLm/n5a+/zAvtC5RNGTo3HdYs50se+uOHuPUHbiUf5DjlqCYVB5cOSLdSelshFBIH5KwjJVYJ7F75ELdgw2iprmq8DSRvYQVeXzPqQ8FoOArvm7tmLGqc4Wh6tO4GFHWxlo6voi5W7tNplgZCLAJf+rVEP41SXBYUTg5HrGKcd+QiR6sgf24WDcf8MSbLCYfzQ4bbwxCBMSmo5tV6NKR1CFV9rUzs1sWJ/3N//4tu+1c8sVx/W+FFKBxLz9IsMU0Imk2iEM6ptGKhF3ziC5/g6sFVfvzHfpzBaIDgmrmlaQw4MCIQoSMifuTDP8K3fv5b/JP/xz/BmNcWa14XxY13Fo0IHinO44xF6nA5O2vxxqHn+4GgqmKkUHjbgFCgQSqBTpLg6tmUOB+F7k+scWWFjBTCEUYidYu/AvHGmNHNN+HbpjPKCpxzIIRautCNaesGb+26peeM63gVEo/AOIcTIRVbJB5ciTEWu5wj4wQZZajEIusa4R0gkSoJc37rQmfKOJb7Ebe/eYfDF2rKwiHlEmSOsZqqaqgbR1k3jFSF/+an6L/7F/ngD+0S9VLq2vNn+/t4qxDCApZiueSBex/m7A3HmE5L9q+2FIuKj/yNt/DMUwdc3psGTkDcQi2R0gciSVfl28ZglaGsl7RNhbcivIaCrvYLLfQsGZBvbEA3116lGpumppnNEP2IOM+gqVilqzvrQrq6c12ho0CleKCuJWXZ0ppmTbzEe5xrCcOdCISn0WNenkgePniZZa9kdvUSp++4id6xIUdff4RMSBp7jbSXJAlFWfJ6WP++3RHXdXkEgraF6VGNbafdm9K9MV3S/NceuJfZdMpP/szPsrG9A4CKklC8Ch/MjIUkSTQjEfGrv/x3+Mq//goPfOvRN7TXjXU2yFY7+aw1NpA1CZ0Tbzz7s/3Q1VUxSiga26A6rBEqWOKv+B2Rj0InKNJUVYWKVfAscaEDxBUYb4y5+ZabA78mlqzVLbDOUxIImroJ3YjrsAbRpWN315cSKsQzJJ7SlVhjmS/nJHFCFmXYxIYkah/M+JIOa7zrOlPGEe1H7Lxlh/qFGlc4lnIZNnGrqcsa33jquqbWNX/6zT/ll97zS+x8ZIeoFyEawf7VfZRVWGGxWJaLJQ999SF2b9ilmlY0+w31oubOH76Tw6cOmV4KWNNGLaoJirAVSRgHpjEYZVjUC6qmCnLsFS1DBiNC4QWDeMDGxsa18VWHJ03TMJ1NifoRWS+7llnVYQ3qWjGkhCLTGRMmyEZiSkNzHdZ4H8I8gRAPIRxjPUZNFS8fvEzVr7h45SI33H4DGyc2eOTrj6y7QquVJAnl6wRr/n3Xtc60CITjo5ppO113YyTBn8jjufeBe5lMJ/z8z/w829vbACRRINf7IK9FColONZGI+Lu//Hf5yle+wqMPvrZY87oobmzT4IsSoqDQWV383tlgEtdWxNUc27TIXoqQoaDxNpAcvJeYusEJGVQnSlAXCwZyE2c9Os/wzqHiFNe0mLrCHx0h1Ba6n4f93Fq8rda8EecszlhMXWFdx5mwoeOAD3Ln2tTUtgTnu7aeQkYJ3jTYZYsrW2RcoxPNYLSFzvLQiRKy84Rp6SWayMVUk5bZ5Ypzb1Y8euUiP/jBG9jY3ObRh15mufDEsePcTZu0iwVORugMTp5NuelNd5Jmfdry80z2I44d77O5nXP6hpOUi0M2j28wP5ijsh6f+Nin+Mp9v830yjmEH+NESzJqiV9QWLski7qgzLaBKMF6F06HTUhkx4W2pSK09bM4p5cP6Y93w/tlVt5DgrZcYsuWZHsDFUW45SI4ifhA5A6Khi7DR0i8TnEOWg/LyobMnCxHRylKQttGtNagdMRMbPO5l/rUF7/N5cmEIi647QfeQW9zwINf/Tr2qKSOJdcnKS2K4g2xaa95OoRadLFosPYwyPXRWBvGEFnW8tC3v0XzWy0/9/O/yOZOKHCiOKOtyzA2tC6cqCLPTTfexP/+7/4aTz31D1ksin/vAuz1vpomeA2lUbo++Utk4GeYlqqtmFdz2qYl7aWhkFdy3UmRPpzIpejCC1VIXt7Y3cBbT5qneOdJ4kAWruqKo6MjttQWeT8HwsZemc73wwdfHdtaqqpaFzrOuo675taeOKUt1/b8khCk2bQN7bKlLVvqDmu2RlvkaR66VCKQlRvZBAWVj2knLeWlEv1mzcUrFzn3gXNsb27z8kMv4xceFzu2btpisVwQiQgSyG7IePPtb2bQG/D58vPoK5rBiQHZVsbJG09yuDhk88Qm84M5vazHp3/303zs6x/j7OWzjP2YlpZm3KBeUCzdMhSUHVE40UmIiqiXmDqMg4RbiUoCKboX9xhmQ3avwxo6PsqyXNKWLRvbG0RRxGIZEstDILFdk7qd6wJIdbLSPmCvw5o0Cu931EYYa4h0xJbcYvjSkG+/8m0mkwnLeMk9776H4c6Qb3z1GxSHxbpgXa3iDYI1wHUEQGjmDYf2EOll4IXZ8Jq2WcuDTzyI+S3DL/38L7G9EwqcLM6CWmuFNVLhI8+NN97Ir/3ar/EPf+MfUixem1Ee/DsUN0IIBXwTeMV7/6NCiE3gd4AbgAvAz3jvj7rb/kPg1wi0p7/vvf/0X3bfpipYXHqFYZwi4rhLo1Yha8oYqBe4xSG+qfEuD6oqpXC2CSGOQXuLcxahY2gdzoAUEcZ7hBYII9BZimsNtA1Yh61bUFVw1lUCoiiMVmwbRjB1yIgKYzKL8OExSRnaxta1mDr4ULiVIYpUxHGCSCPaosbOFsRZxmAzJ80GWDy2LREyRsklY+WJpect77iZ7RsVl+tnuentZ3nphZydnT4/96sfwAvJo996mJdfmrKV34z6z3+W8e4xZOwo5iWJTnnv++9iY2ebKI5IeilZP6NanmJ2OAvtwgh2Tkl+63c/zomdH+HYxntJB+HkOvQxRXmVzWHczU08QkqW1YKimOMaj3BgrUAmDh1FJHFKrz+in+QkgzEOj2lLpFAI72mKAt8asmG/836o8Ih1dphzoWAKOTIQ94ITtHeCqnI0TU1ZzNGDmEgmtDR4BEvX47OXBlx49n5OmAW1kNz+3nfQP32Cb37lPvZfuorznnljuR5f3jBgQ8dnQtCJSShLw+VL+5i2pa63cNYxGBp6ecbDT34L/y8dv/CLv8LG5mZw0I6SUJQD3rpgEqgVP/Y3f5Q/+dM/4ROf+ByvDjvp3329ljgDUFQFr1x6hTROiTusWfFfWtOyqBccLA5C0rULah6pQldnlUAtZOgcxCrwQLwJSdnee6QO3ZE06/xF2ibIueuWSlXr2IEojtaEV2EEbR0CLr0L4ZHKh8ckpMBYQ2ObINdt2/WYTEkViPdpRF3ULGYLsiwj38wZ5ANWfj2xjFmKJV6HQ9hN99yEvklzvj7P2befpfdCCMH84P/ug0gheeiBh5gdzLi5dzM/91/8HLs7u/jIU85L8ijnrh+8i+2dbaIkIukl5IOcalExO5zRH/YRiUCdUvzB7/4BP7z1w/zg5g/i+kHSHfuYq8VV4mPxukMllWRRLZgv5/g2nPSFFbjEEUURaZwy7A/pJT3Gg/H6eSkRgkuLIhjr9QcBa6qmYhWOuhpb0WENEEJHuwLKVY66qZkXc+JBTCITGgJ3qud6jC6OuO+Z+1jYBRLJO37gHZw8e5L7v3I/V168Egqoxn7H5fJGwxoRqsxg8Fca9i+FzuZWs8KaAVme8a0nv4X7l45f+cVfYXNzMxSSUULZYY2zLhwWtOTH/uaP8Yk//QSf/cRn/9Kx2vey/l06N/8V8G1g2P39N4E/897/j0KI3+z+/htCiDcDPwfcCZwEPieEuM2vgoe+yzJFyeH5J4kHA9LtYxDHeOuwrqWuS8RySTObkHp7zcnRObwL/jeBVKWRUiF1hDeGrJ8jpEd2gYZeWryLiIc5zkQdMc9iijq0fpVEaI3UEhGlCBkkoSqKoC67CzEQ1KRSKDzGtcEUsCmxrcE4izWGNkqIowgij2kd1WyOUgoR5QilSKQG4dCqoC8XDKIt8kEKdczek5rNczVH1Hzmky/y9JP7vP8jN/CBH3k/4PnGV+6jbAp+5O734YxlsDEk6+dsHN8mzhLKZUXbGJqjBcvpnN0zuzzx6CN87lOf5M8++Tm2N9/NxvBtRMM5/RNTDp/o0cdStfskaRxeE2sxbcO8XFAtG7wVeBNypbSEPI3pDzfoZ8PAZen1QzaYNUF14Dz1fILEEscqZDTVS1x3G2uCgZq1FtsZqkVR3GVXCYpSUpQtua7opTVxPqC2MW1T8NjyGI88+yh3yBkvW8lt73sHm7ee5YEv38fLTz5P5MF41sGrb9TlfQjzRAiUFFSVYf/KpHtNbXCGtiPSLOZbjz+A+m3Nz/7szzLe3EIg0TrCWROsEXzgI21tbfN3fuVX+eq993N0NPsP9dReM5yBcKp+8vyTDAYDjm0fI45jnA3xCmVdsiyWTGaTUHR3hlsrafKq06O9RklFFEXY1tLr9UKUQxdoaKUlchH5MCcyUei+YKmvwxrdYU0apZgOa3SkcXXHAeqwZpUQLp1EKUXZlpg25GIZa0h0QhRF+Cgoe+Yd1uRRjlKBrOyEo1QlC7lgK9oiG2ZEVYR8SuLOOWpqXvzki+w/tc8NH76BD/xnH8B7z9e+8jWKpuC9d78XZxzDjSH5IGfr+BZJllAXNW3dsjhcMO+w5rHHH+OTn/4kn/3EZ/n+8fdz9+huFoMFk5MTek8ECfd+u0+SJljCZ7VpG5blkmbZIEw4iK420yiJ2BhsrInA/V4f44L3ilBBTTVdTENBmAQF3KJerG/jrsOaladQFEehUPUCWUjasqXSFXVaM8gHxDamaAqOFcd47JnHmMkZspbc8957OHfbOe7/yv089+3n1l3+NzbSsPbHWRX2pjRMVlhjwvs3siPiLOaBxx9Ad1iztbmFJPDbjA0ZYNoHPtLW1ha/+iu/yn1fvS/447wG669U3AghTgN/E/jvgf+m+/bfAj7Yff3PgC8Cv9F9/7e99zXwvBDiWeBdwNf+ovt3puXiQ/ejh0N2k4R4vIVQATjatkLUS2xdINIMKbqHvMogERLZBZEJ75BK0FQNURR3t1kZQkmEUogkQUiNsEEG6E0dCiKtA4u+q548oPOUfqKJ85i2aqiLjk/TjaHCYwmqH6Ulwjq8U3jjKG0XGOY9xlqu7k+YGcGJ06dQUYI1LVJV9PQ+G+1xjvaX7J4ccvPp27jv/oc49qYJt7xrzMtPLrjw3BVGmzk3v+U2fuSnfoxLL1xk89gO1bLEOkexKJgdTomTBOct1ji89uwfXuGLX/wMf/L7f8LlS4KN0fvZvXGLwVaNiw+ZvbTDwKTk/hIVRyRxhnMG09QYHTGdHtJUtosHAKUhTRW9pE+e5qRJQuc+FqTh1gR+gPUUhxN6WUYUJWHsV1d0wdc4b8B6nPVdNpVBK9VhhaBpBU3l8QNBnvZI0oyyKTk0OV997hVOqCtcLT2n73kLx+66neef/DYvPnEe7X3wpOpUTJp/w/TzDbU8YDvpqZTQNJbJ4Ry8wDlPa2s2NjZwGdz34FcxpuEXf+GXGY+D14e1bdeoc50Ng+QDP/gBPvzB9/P7f/Anf+2Q/VrjDAQn2/sfup/hcEiSJGyNt4hUhDGGuq1Z1kuKuiBLs6BU4tqJf8V9gY6IrKCpm3WQ48p8ThIKkSRJ1oRk0wZuh+5wRmu95t0ApHmK7rCmqcLozJguudx3naFuhCZ16CQpp4JMusOa1Rhmsj9BGMGp06dIoiSM21TFvt7neHuc5dUlJ06e4PbTt/PQ/Q8xedOEjXdtsPj2givnr5Bv5tx252189Kc/yisXXmH3+C7lMowXikXB9GhKEidrF2AiuDq5yue+8jn+6Pf+CH/R877h+9i+cZt6q+YwPWT7pW0yk3HZX+bQH5LFGcYZ6qYm0hGH00NsbUMPzgMaVKoYpAN6aS84OhOMDq0JhZ0UIbNpcjghTVOSKNymrur1/bS+xVsfxBEmdL10F9wrCIWUrzyiL8iTnKzDmsxkXHzuIpfVZXzpufPtd3LH2+7gyaee5NnHn/1O/5g3dm2zXmuZuwzuyvPD+TXek20Yb4whg68++FUa0/Arv/grjEdjlFTBy4hw3SgZzC3f/4Pv5/0ffj9/8vt/8po83r9q5+Z/Av47YHDd94557y8BeO8vCSF2u++fAu677nYvd9/7i5eDwyefJhqP6I23ibNeFypZYF1LrMMmKkSXFu46iay3IIMPjZAeGQfvF6kUcS8PZmo6EFC70jP8PASCrFeoRCGj6FrXpsMb0WUkgSTKc6I0Icli2qqmrmqaynZOxwqpNN6s0pwt3orQocCAlzRAsfC05ZKt44aIGumCakOpixxvbua5o9A63d3tk3Oc5+/bI97ZY+u0Y3B8m80T212rOxjFXXllL3B9nCcfBvOwy4eXufDs0zzy0MM8/NBDEDkGo+Ocuukebnt7nyRVVM2EixeOKF7ahXnEzYmjOHyOXlqR54Gs17qWZT1juVjiDDgjEBrizDPoD+iPNsnzHkpp2rbGaR1UabbFAsrD9PJltjYGIUFd6kAM7wI4rW0QPhDOQnFj0dKhRIhCaI3AWonwoFSMkBInJC+VQ+rFs4ycxZ8+y7l33sXB3kWe/cajNFXwOCpcyIrKvKAWMHsDtYj/ohXGpqIbUVmcm4fX1bWB4zUGl2Xc/9D9xFHCL/z8L5HlKVpFtG2N0IFIKaRiOBzxy7/0i/zZF77EZDL/634q/xOvJc4AOHj6yacZjUdsj7fpZT2UUJRVSeMaYhUjvFjnOK2cX623wRvHg5d+Ha+glCLrZd21H61VREKIdSEkrEB5hUwksY6Dc7GW6y70KiNJIsnznCRNiLM4mKFVFaIS6/GZvg5rrLYIG8ZWBoPsjEf9wrMslpjjhloE9ZFUklfUK9zc3IyZBBVLb7fHcY5z6b5LXNq5hD/t2T6xzfaJ7ZB/1VqEFOy9shcw13myYXCjvXJ0hWfOP8PDDz/Mgw8+iFWWY6Nj3H3D3QzuGqAyxaSZcPjCIceePUY8j3GJ4/zR+aDGyjcQMmDNrJ6xWCygJXRtNLjUMeqP2Bhu0Ov10EpTt3XI2cKtN0vhBXt7eww3h8hIrl9L22FNa9tApLZuXdw46dZkZmGCKgsg0cnaTXqz3OT8/DzWWc6cOsNd77qLS1cu8eg3HsVU5ppkWlzzoXkjjaP+orV2QgZsaZm7efBxsm0o+MeQdViTRim/9Au/RJIlRCqibmuSDmuUVIyGI37pl36JL33+S8xfA6z5txY3QogfBa547x8QQnzwr3Cf4rt8799414UQ/yXwXwKMpKQpHFcefoLhsdOkwxHJ5i6mKdEqIcnHaJmgtUZJQoRzF64WyLydw7AQYQTSmcV55zrvGhFM+5p2rXYK5n6dEVskkDpGCIXHYVuDtyaQjH1IJvc+SNCjVKN0QqTLrsiJMKLp/C5AOUdjDc61KBkIzkI4nJDMSk2NJxI1iQyBm1m6z3Y74cLVEcXiGEXhGI5z5ssx7dWcV67O+OrVp7BFzZvufCvDzTHHz56kWC4plgVN1XDvvV/gk5/6I67sTajmKZE8R957BzpzGCWZtC1l0bKYzdjuj/gb3/8Bvvnll7ky3WPLlBxOH+eWM4pYC5y1LGczDBV1ZTAmvEZJ5MnzhMFog0FvhI4TQiikw+sYZwzWGCKZgLcsL13ihq1xJ/n2uKrGNlUIc7cO50xHzKZzMrZEEmpLeK29IIpjPIEM2LiI52eSTaYc6D7veN89LOsFz3zjIfavzgM/0K+k1gF3lv8pgA3d83agVXAobRrL5Ki8Ro73jg22cbHhC1/7LJvjDX70ox9FK41AYkxLEqv1dfTe97yP73/XO/n0Z77w1/Y8Xiuc6e57jTVSSlzheOKhJzh97DSj4YjdzV2KuiBRCRv5BrGKQxdXhNdzFeToOwK8kNdM1VYS4xVhciXTbjusQYCONGKFNTqkda89XtowPlllV0lkaN9LjU514Cx0WBNVEU2HNbSsgztb1wYTQhHGWVJIdBWCI2vq4PwrBAfZAZN2wujqiGOLY/jKk49zNhYb9K72mF6d8tSVp6iXNW99y1sZb4w5efYkRVFQLAvqsuZL932JP/zkH3K0d0QySzgnz3F3725c5lBKhfTpsmU2nzHMh3zg+z7Ay195mb3pHpWteHzyOPJ0SE23xjKbzahEhalMKGwE+MiT9lI2RhuM++MgcfeBHxjrrnNjDIkM3aNLly4x3hyvydN1VVM1VVCtdSPHVWikNRYjzTqNW/hAEl9FX+AgchFqppgwoad63PO+eyiagge//iCzK7P1J+16o7z/FAobIFxhDuiwxjaW4qj4DqzZZhsTGz7ztc8wHo/5aIc1CkXbtqhEBS6blLz33e/l+77/+/j8pz//qj/Uv0rn5r3AR4UQ/wWQAkMhxP8GXBZCnOhOUyeAK93tXwbOXPfzp4GLf/5Ovff/M/A/A5zS2luvaY6W7D/yAIOtY4w7IMiSjMjZoJASrrPwdwgt8U4ETo2OkCpwbgQiRCQoBVIGDohkrWxQqpNedknKUmuIFN4LTFPhGoNt6wBMK7M1AeFOuu9JQZSFNvLR0SF1VRDpGC/BC0FRGJpWECeOOJbEqULVnslcMlsYtneHJFEKzhKngnn5ODfZ47zy7Jx3fvgst965xSd//xku7U3QVlFOexzug/Oe/kaPL37mM/TzPmdvvJnheMwDX/8W5x9v2Ry8h15/J3SykOg2gXlOPWlpPMSR4Qc+fCc333GcF59ZEO3t0U6fJo322d3dRSvNopjRuoqiaDGNwDlBHHmyTDDqjxn3t0hijRBgW0PVFJCkNHVwHLWyxTY1sl4w2OqFz7xz2KYhwSOV6jYEu5ZqWmvQ2pFEnsIELolQoHQcNhI8lY0xy5Jp47n1w+9AZjEXHnyYi89fofAQEa6vgQrt5sa+0Sfh37mCWVvn7CrAGMdiXuE5Cl0BoRgMByRJwh9+5uNsbW3z7ve+ByU1xjQYq5FSILRmOBjxtz76Ub705Xupqvqv6ym8JjgD34k1WmuvvWY5WfLNh7/Jsa1j66IjS7J18eJEkA47H3xjhOuuexWFsZLU6wJHqRCMaVUnb/4uWCMQAeDjUABVTYVpwqjKtvaagZoIYy3HtXiItMOaw6NDiqogjuIQ8yAC/0E0AptYVBySpn3tkXOJWRgGu4MgEXcWkQoeLx7nuD3O7NkZZz9ylq07t3jqXz3FdG+Ksor+rA8H4fPU3+rz2c99ljzJufnGmxmPxzzw9QeoHqt4z+A97PR3ED48t6RNyBc57SR0VFrVcucH7uTEnSdYPrdkb2+PZ2bPcFVfXWPNrJhRuYq2aBFNZw4aeUQmGPfHbPY30XF4nU1rwrgoCQocZxytbKnbmkW1oLfZA8Lm2jRN4EYpvVabed8pe2yLVz5wlDrFFYrgJSRDGGfs4qB4ajzv+NA7SPOUhx96mCvPX7k2hureY4F4VV2J/2NYa/do383/DVSziqMOa5RQDAYDkjTh45/5ONtb27znve9BSx0co10otrXWjAYjPvrRj/LVL301jBNfxSX/bTfw3v9D7/1p7/0NBALf5733vwT8EfCr3c1+FfjD7us/An5OCJEIIW4EbgW+/pf/DtGpPzz1y5e58ugDHL7wLK6uUVKGRG6pANbW5b7zVFEqRiUpOk3QeY6IO5CWQSquogihQSUROkuQWqHjOIyiogjrHc2yojg4Yrl/yOJwn8Vh+LOYHLGcTCinc6r5jKooaeqKtjVYK/AqZlnA/pWKqixpG0PdtCzmimKuO2Ksx3VjloO65fmr87AR1XVIzW4to8EhveY89vzLvPLChGLe8t6P3EiexeAF1VLzzS+XfPy3HuTicxeZHR3x1u97B/l4zJ99+su8fH6bk9s/jGQcOiONQJgYb6CtK9qyIlKWj/zIHdzxtht48bkFl55+hXMsmB49zKnjMYNBDy8l8/mSqna0lcc5QRR5sgwGgx7j8Yg87yHjkAjctpayqZH9AU1VYo3BmZZyPqFHi+6S162xNEWJNW03TiSM7awLsRWmRUtPnHi0CAVlFAmU0mitECgq2aMt99i89Sa2bzjNwSuXePGJ55m2FuGDt2NPQ6zCiWqO/0sDMP9jW+K79SmuW1KIdQfHu1Uej2M2qVhMCybTo7WqZF7M+e3f+5c898yFzpZeUlcloe0Z/G8+8L73ce7c6b+eJ8dfD84A683Ye8+VV67wwKMPcP6F89R1vTaHVH8Oa1b+TbGKA7cjTcjznCiOgpV/p2iKogg06ESTZAlSS+IoJooioiiIGOplzdHhEUf7RxwcHXB4cMjB0QFHkyMm0wnz6ZzZYkZZBGt/0xqEDb9blILqShX4OE3g8aiZQs81qlQhF8kKpJW0dcv8yjx0Muoaa4Lc/HBwyPnmPK889wrTF6bU05qbPnITcRbGcXqpKb5c8OBvPcgrz77Cwf4B73jXO9jc3OQrn/0Km89s8iPbP8KYcTjrNRCbGCxUVUVVVlhpedPfeBM33n0jy+eXvPzkyyzFkocOHyI+EdMb9pBShrF37QLnpStsyCDv54xGI/p5P3RtnAtS+aai3+9TloGP1JqW6WxK45tQ2EmFax1lUV5LnvZgrLnGuTEmFDeJX+cyiUisE9cVilzk7JV73HjLjZy56QyXLl7iucefu6aKkoS2QIc1b7hj1L8Fa1bXBY4ufzAoBKtJRTEtOJoeUZTXsOa3fu+3uPDshTVPqiyvdZWllLzvfe/j9GuANd+Lz83/CHxMCPFrwIvATwN47x8XQnwMeILA5/w//9sUDB1/jEgIqCwHjz+GSTTH4pjhqbPBtVPHyK5gQcnw2nowdRNepyRG+RrhYnTeoyqOkFLgXIskAhWGFUIFnnFb1zRFRb2cU84XVIs5TUcYDoGcjhDUGBLEZSRI8uCkG8UxadonilOk1hzNE9KkJY4dVdninUZIT1Mq8BatHN5pam+5ul/QtDU6ycCEUNBYKxL9CGfrLZ784tO866fu4uzNW7zlrmM8+vAliqLGGFguBLWpuemWWzk4PODjv/VZHv9GhWvGtE3TWeuH5ZzBG4mQnjhWvP/Dt3Hrnad47tuX+cofP8HpYsLVl++jl+5xbGcbJQRFtWAyWdA0BmslSnmynmeQ9xgPt+hnfVQkwwbqPWVTULYNMslop1OiKMF7aCZHbPW6KA3jaMuKKtYMrUdEat3CddZhOtOySEKkQAuBlgIlu5MrwQp9WoYsq5vvfguL6YyXnjzP1UmJAXoyFDbeC2oLS+sp3mBt4r/S0/Eh2BXAOtclkzvm0yVShRBUIRRJEnHx4BX+5e/8b/z6r/99RqNRyE/yHmUdQitOnzzDe9/z/TzzzHNrx/D/QOtVw5nVWnVEbGV57PHHiNKIOI6JT8VB4t2d4q0NIbPd71s7zsZJTO1rYhfTy3scFodIKWldSyS6HCYC4RjXjUnKivlyzmK2YLFYUJQFtg3cEGfDZ13KkCAuIkHWy4ii8Lj6aZ8sydBak8wS2qTFxY62DKdgLz2qVIHgqxzaaay3FAcFdVsH8q4N5GSlFY/oR9iqt3j6i09z10/dxcbNGxy76xiXHr4UFF0GmEHjGm695VYmkwmf+a3PUNxfsNFs0DTNtSwiQvEgkXjpkZHk1g/dyqm3nOLKk1d4/I8fZ1JMuO/l+7iYXmRnZwchBItqweJogWkM0spQcPQ8vbzH9ui6aIuOUF20BU3TkKc50+k0kIc9HE2PiPpR8AQyjqqsws9Zj7oOa64f/Xnpw1ilU/84scKaUKSKUlBT8+573s1sOuPZJ5+lnJTfUdgIL9ZZUm+4kdRf4emEDnFHru+6k845ltMlqBCCqoQiSiIuHlzkX/z2v+Af/Po/YDgeBoK+D/ivtOLMiTO8+wfezXPPPLd2eX411r9TceO9/yJBrYD3/gD4yF9wu/+eoHj4Ky8lHVqG8MrqsODqw48QDTaIspwojdEqRgjDdD4jSWNiL8FaZBKF0ZIL1tnEGh9HtNbiG4dfFkQd4dJZh61rmuWCxXTJcnJANV3QLMxaFRRMhD3OBBWWUA6kRWlJkSxBeKJMkfUzojwjSeHk2QHT/SM2lEMryWjs0FJR147aeKz1aAml82jTYpoal/QQ3oCzKCnZ2FjQXH6AG+fv4Zt/+iTtD93OO993Fq0jvnX/88yLmiT2PPHAg2SjEb/1//ki0ysbNGWMdW3nPKuJpA5dU6lQWjAaxPyNv/kmTt24y3Le8JU/fYRjiwVm/0HK5hHuuGnAcNinNSXLoqRqa4yRqMiTpYJhL2U02mA4GJOkWeiaeYcxLVW1pAGQEtPUSBRGNrCcMOhlnbliS1031KJZq6HAY6xbm4wpodFSECeeRFm09sSxJtYJAsmyKrjwwh47t9+M14KDF17i5ecvUTlPLCBXIH0o7FrvqfFvKJWUVgrbZSJBN73ogGVtmS5Cx0V2xEbvQStB6zxVbZFHJWmcMY/maDUC7Xjw29/kc5/+DB/9iR9HKkVdl2RZjvCeNM344Y/8EB/73Y+zWL52Rlvfbb2WOANgRSDK4qE4LHj4oYcZ98dkWUaSJcQqxgjDfDEnTuMQqWAtURJGUq7DGh3roN6xIVizWBRrwqVzjrqqWS6XLGYLDiYHLKdL2nmLrTpVUDAsD6RWIXDKYaVFaskyWYaiJQ1Yk+UZIhUMzg042j/Cqc5/Zxy4Pq4Ofjveho3buxCdUjchnsGYIB+XUrLYXPDNvW/yA/Mf4MlPPMntP3w7Z993lljHPHffc9RljUsc33rgW4xHY774//0im5c3ScokBCJaixbdaA7W3j3xIOZNP/omdm/cpS1aHv7EwyGe4eAhHq4eZvCmAf1hn8qE7lPd1kgjwygqFYFnM9xYvxcrDkdrWpblEggn/bqpUSga2TBZTMh6GdJL2qalrms019RQKwM5fOeS2/GPfOKxKsQ/6FiT6ASFoqgK9l7Y45bbb0FpxfPPPc+l5y+FvUUQiiJ/jWfzRuvarEap1xds3w1rViaWa5l4J8u3taU8Ksk6rBmpES5yfPOJb/KpT32Kn/jbPxEsDeqSPAtGk2ma8kM/9EP8wcf+gOJVxJrXhUMxCBTdRUIwX2uuBv6NyjPGZ84Rd47F33rgcRaTklvv2ObEzg5pnSMWS0SkUFlCtXeJ5bLGFy2b25u0hwdEdQMCisWUajFjcbSgmTc0pcO4cMLSPUUcBWtzpbskcBd8WIT12NqB9djWUdWGdrlERQWkktEgJUn6LA5mZJFkkGvSLKGpLVcPlngvKZzAeTieWagbbF8gve/8XTxpJBgNn8ccRJzceycPfsphPnwTb75nm92TAz79h48x2qh4+IHHOLq6QTnbxNmOjKsjQIbQRgtSWLa3Btz59pOcvWmbze2U55/d52uf+TbHZjOy5RNMyq9xzx19brvpNFpLJssDDg4mGOOQ0hPHnl4e0+8NGPU3SOOgCAlJ3C1VXdG2NZakc1z2eOGwbY0s5mip8NbRVBVFVWCUxpoQViqiMKqyLnTJ6qZCAqmWxNqhFEQ6tPLBsbd/wKTxDG8+xezoiJeevsC0DG3ngRZIPAZP2zkc/8dtfP5vLiWD/4+HoADsTklShhDMdegdYJ1fj6ha69ecsWXVIvYPcdIQaRmSlaXljz/9B9x62228+S13YrvsL+XDafSee76P4yd2efbZC/8Bn/2ru1bcFiVCfADA8uqSBx55gCzPOHf23Nqx+LFvPEY5Kdm+Y5udnR3yOqdYFMhIkmQJe3t71EVNvazZ2t7i4PAgdHcETBdT5ss588M5zbzBlYF0jAaVK1QUFFNa6TCm7bKWIhuFQsV6XOUwlWG5XFJEBTKVpIOUftJndjBDRhKdhxGYrS3LgyXSy6D+8WDzEMVA12mNoigohLTgwvAC8UHMO/feifuU46YP38TWPVv0T/Z57A8fo9qseOyBxxhfGbM12wIbZPSRjgLxVgA2FIqDrQEn3n6CnZt2yHYy9s/v8+RnnmQ2nfHk8knuXd5L7009ztx0BqklB8sDpofTYIAoPT72xFnMoDdgY7BBlmTr0UfbYU3d1iGdvDPuc8JRm5p5OQ/kbBuKyaIqAv+pwxp1HdZYa0M0AyFHy+kO+yO9HhseHBzgasepm09xNDnihadfoC06ZZYS18ZQncPxG20JKdbF20rx51zgoYk/hzXe+Ws0EevXnLG2ajncPwz+TWusgT/4zB9w++23c+db7ryW/dVhzffd/X3sntjlwquINa+T4gZk1xZcuZN4pzh8/oA2/QZeSTIHUSTpZX0un5/ywtN7qDRmYygRxoISNAcTJhf3KSYTTp05zvwA7GKJqpbUTUNxtKBeBt+DKE8Yb8Vkgx5p2kNFEUoKROdqKVSEaYJFukdgmpK6qCmmC5qypa0NzdxBaRBVgxrEDLf6LCYltmiCfNnAooiYVIonC0+uYHeksVWFrUpUrDt1l0cJGPYinH0KOfOog7t5+I/mXHzbGeK8T7+vufHcraTqGLI+ZNIuaFqPUxJjLcNRSpbG9EcZTev5mz/5NmSkKeY1937+JV7+9nluw5O0z3Jl/3O85daM06d2kA7qsmI+LSmLEi1BxZ4kUfR7A/r9AVmWIrTCeA82qKJa01C3BqtSVjuoMw4nPKIM7PlyuWDv8kX2D64yOnMT3oUE4CTWtK3pIhhCF0gLiY5WcnpI4gilI9q24cXLM7I73kptWvYvXeSVi4cYAnk4lD+hG9T4rrh5A7WJBdAa2xm6yfVpVOtrLXcpBa4rZET3d+89xnqUEis+PVVpqZY183hBFCVEieZoecjH//D3OHvuHHkvo6pqsjSMY4/vHOOeu9/+XYub1eP4j3GtRhDaa4w3KK/Yf36fbyTfCGOojgvQz/tMz0/Ze3qPKImQI4k1NmQVHTj2L+0zOZpw/MxxxGFI0C6qMD6ZH81ply3eeOI8JtlK6PV75GkenJHlNQfdSEVB3dOtqqmC4/B0QVu0mMbg5i7kIFUN8SCmv9WnnJQ0RRNGWUYQFRGqUvgidG/USFFXNWVVouPQsXA+KLiiXsRT9in8zHP3wd3M/3DOmbefYdAfoHuaW87ewjF1jMPqkHkzBxPMB621pMOUKIvIRhm+8bz9p95OFEdUs4oXv/Ai5584j8Nx3pznM/ufIbs1Y+fUDnioyopqVoUTugQfe1SiGPQHDPoD0iztDpdBxm3MNdJ1LOM1OXtVGK06Oovlgot7F7l6cJUbT9/Y4YpBxzqkmndY07Zt8MfpsAYVAlEjHdGaltnlGW+54y20puXixYscvHIQ3hRF6I6uPvcdZ+SNNpKyHdbI67BGXYc1gcvq17wc0WGNtz6Id1b3U1rqRc0iXoSwzURztDzidz/+u5w7dy5kgFU1osOaYzvHuPueu79rcSOE+Pd6nV8XxY3AE0mBEgLrwSNpvaKsBdWTl8iHTzLeHUAiuOmGU1x6eZ/ZzHH50oKDl5a8sghcg3bZshEZ7rxlC50kWFNzdDAllQbTeCSarRM79DdGpP0+Ko6Cwqp7c3BhZNTUFXgfxmRSIYQijjS9/ojh5iZ1XVJOFhTTJW3VYluHW7aovmS01Wd+uOTKXoXzkoPlkGdKy0vtktuymDSJsNYQeYMXOqRDS4nyApFoNkYKIZ6ivrrPne6DnL+/Zk/12blxi83dMbsnNnnXD97C9LBCSk/TWL7xlQt85KO3s3+5oG0df/qxx3j8wVeY7rfMDo4YVC3voGV6+X6OZl/jzltiTh/fIBLQmJpFteTo6CppFpJflRIMe30G/U72rTTOBtP/4B0RJKzOgu14MVKotSxf1iXFYsILzz3PhWevkOWC7VMSvAicJi+wpgUZBcVIVSNt4IgI4YmVJJKBszNbzFikI+TOFsXRVV559iUqY4kF9IRgajyREsRC0HpP8QYaSQkRrgkhBVoqhAibrulC+kInJ9xWRxprzXVkQIHWwcwvRJlYnIfFrETriDzrI6XE43jwiW9x37338sGPfIhwtI+RIkJHMT/w7vfw+3/wxxjznXSW/1gLG09wEl6dOCUS5RWiFlx66hJPDp9keGwIMZw+d5r9l/ZxU8fy8pLilQK/CCfXtmgxyrB16xZJEjKeZgczWtniG49Gs3N8h9HmiF6/RxzHIVvHB78YY4OBXVmXncdQkH9LIYmiiFF/xObmJmVdMp/MKaYFbdXiWke7bJF9yWBrwOJwQbVXIb1kuBxiS8uyXYbxWhIHDxxv0EKvizbhBTrRqJHiKfkU+1f2+aD7IPX9NX3VZ/PGTTaObbB1cotbfvAWysNybdz2/Jef546/dQfF5QJvPI/+zqO88uArmAPD0f4RTdVgMNx/5X7und5LdHPExvENEASTxGrJlcMrmA5rhBL0e33GvTGjDmu8Dcncq5GSaQMheBXaqIQKsnzrqOqK6WLKc88/x5VnrkAO4mToPlgTwjWNMcFMsQmp484GjogXIS4jljFSSKaLKcN4yM7uDlcmV3jp/EuhmBXdBmv9mqfzRhtJrbo0QgY/JTqsuT4Q9DuxxuKE674tEDqMpVY+Q96HuA4d6cCfkkEB+OC3H+Tee+/lQx/5UFCmiZhIhOLyPe9+D3/0+38UXvPr1r9vAfm6KG5Cm1h0plkG56H1ksZ7dCWZPfUcs/gG2ixhe3PE2952A+e/fYXDCwVHS3i2cAjhueuk4q13HCd2UB3MQ8ZLnLOx1UOnGWkvR+dpMN1zLiQP2rBl011OQmt85TFtjVQe0Xjo3nShNEpqellOL+vTbtWUsxmLgwWLqqA9qFF9Q3+YsvQRF17SPFm2XGjnRCi0AIvH4LBNgY6y0OlwFlAIH7xKRv0YIfZ45fLHOCPu4Xh8G688teRfTxZsndsm6ys2j/XpDROcF9z6pm2iTHH+8cssli3etDx13wWOZZo7ZE1cXeClFz/PMLvKXbePObY9RiuHsS1l2zKfLcizFCUNjWlJtWY82qKfD4njDPCh62INFqiaJa1p8LZBRb6TIQcwsqbBHu7zyhPnefaZAyIBZ870yPMcj6epW2wvjD+cDK1u09RgXTBWxBMlhHgAb7k8mdOeuZ3aNkwu73Flf471MFCCqRMsogGpq8C3KAH1G+QkJbpYBa0VSgVjMa0C4VSbAD6elUNxcMFWSuOtRSrRxVp4bJcdpXQggrctLJcV8fQIIT1RpDC0/PEn/5C333M3G1vjoE7pSJbvvOcdDIcDDg8n/4FfkVdpiWtAvsockj6MVWUlOf/0eW5MbiTJEoabQ2542w1cfuIyy+eXiKXAFS5siiclJ950AhzMD+ZYY0mjlO3tbdIkpdfvBddhpQMXocuNWvFIHIFM6StP3dZ45amaKnAZJEQqQklFnuX0sz71Vs2sw5qiKqgPakzfhC6Kj9AvaUxpmLUzFGptJuhwFE1BFmV4EUJVVZD5BAl0L2Zvd4/fufw7vFO8k1vjW1k+tWQ5WbJ9wza6r+kf6xMPg5pq+83b6Fxz5YkrIbDTtFy47wIqU7Sy5UJ9gT974c+4ml5lfPuY8fYYr0IXpm1blrMlaZZiZQgDVVqxOdpk1BuRxVl4zB3WACzbJY1paF2Lj/363z2exjTsH+7z7Lef5eDpAxDQP91fY01bt9he+D1e+uBC3dRBoOK6DkwMWgcC9nwy57Yzt1HbmsuXLzO7OlvzSXAwVEMqX9H69g1l2rcualQYlUqCD5GSCtVhDXTZUITujlIq+ASpwGVdFZur7CgcIU18WXM0PQr8sUjR0vLxP/04d99zN+MOa1aE7nfc8w4GwwGTVwlrXhfFjSD48uE9znssmrbLBoqExxxWHLzwEvXGGfqDHjecO82p7S2mkzkvvngJ+ewcg+fNZ1NGaUYUaaKtTXSiw/ywU94gJKIDGd/JrZz3gajiPVJpnPLoJMX7BTiHdQ5BYN870yK8By+Q0qF0wmBrg2w0pD9fUswLqrrGW8FNt57khcU+52cTvHfEQqGRGNPg04y6mJMPdjBCYVyDEqGDJYE40mwOh6Rxzd7+1zicPMYxeQej/O1MH1lysah4yrRYHCLWJLnmyc8r6nlBX2W8dyNipFqq6TPsXbofaS9wy8mI06eO009jJAZnLbW1FEVFkkRY56jrOVLAaDBi0BuRxBEChzGW1lpaC61tOkllmEPHGoRQ2LbBC0U1m/DI/U9y6dk541xx2+07HNvdJh1uIYSkqhZ4N8CYQKRumwZTV1CFdHXpBUkkiKKYuio58IpmOKSYHnL1pT2WjSURYD0sRZ/x1nHao5ep64ZGQPUq400g74avwvBrpVx67c5tYTQnSeOIKNLEna18QFpw2nejp6CGMm0bHo+HRGpaG/ppSsr1j4UfFSAE83lNHCuiWDMYDcB7Llw8zxe/8AV+/Cf/NqEBZJFKcfrUGc6cOfnGKW5gvTF5Hzosq03KC099WPPSCy9xZuMMvUGP0+dOs7W9xXwy59KLl5ifD1YO6Zk0KJgizeZ1WOPkNeXTSp2DY636sT4oRbTSeOVJk5S5n4eCsis8VrJl7/36PhOdsLG1wXA0ZDlfUswK6rpGWMHJW09ysDjgyuxKsLcXComkMQ1ZmjEv5mwPtolEROOarjAOz1lHmuFwSB3X3Hv1Xh6dPsqb5Jt4e/52lo8sqZYVrWlxOHSsifKIJ77wBMWsIFMZ0UaE0YZnp89y/8X7ed4+jz6hOXb62Do/aqVUqooKlSgSlzCv5yBgPBgz7o2J4sB5sSaox7z1NK6hbYP7racbtQlF0zYooZjOpnz7vm8zf3aOyhQ7t++wfWybreEWUoQwzoEbYE1QvTVNQ9VUVFUVujBeIOJgqljWJdJJRqMRh9ND9l7aC9Lv7qIfiAEntk/w0tFLa17VawIAYoU03fKvbZd0NYKKkggd6XWEhe+wxmt/bRTYjfVWYzktQwdn9XlfPd4V1gghqOc1KlboDmu89zx36Tm+8Pkv8Ld/6m+DIeSCKcWZU2c4eebkG6+4CbVNSE+xPgC3Fp5UgHeSqxcL5rcu2NgYhFayVMSxJssE/cjgvKdpatJBRqJDnEI7n+O705m3FhkpZJSCCF0SLzxedizcjvUTohsGqDjBtkH66a3HedNddAbjHMY1+LpCtqFjkPVi8kGGEyGoM84GnN2ZEL8ItQclJIkMeUp4QdtanC1I+1ssSosxFVpKhPcI71E6opdEnDk+Ynuj5erh17nyyn2UZpezm29CJ2OclzgUqgheGyq2HExfYLb/MoflZVI95cadlN2dLfppRBIJhDN4IamtZzI5REjJeLTJfO5xHvIkZzzYIk0SpBQY62msozaWuq0wtqaqlrSNw5oGLYNCp60KlIool0see2HB2YHgnW85xfbmBkpFqCTCy+CGa2zLcjknz3s4Z7FlEQpHAVJDGiuECIF4i60bqZyluLrP0f4ShycWghkRvY0dlmWFMi11x7n5K2mB/4pLCkEWKSItUSqMTFtrMa3D2GCq+GrDjgAiLcnTmDROSdI85G55j44idBRRlyVJmoWxRlmRZzmL5RIlwobmutGiMea6NnroGPguc6dYVESxJo5TokTRmJLPfeFPed/73sfOsWOAJZYpvbzP7bfdzsMPP/EqP9P/sOt6N2Dhw4gCAdJJiosFi1sXDK7DmiiOEJnA6DBOqduabJihVSCjzuaza2Zx1qEiRRqlKNFFNogwerI+xCwognhh0BsQxzFt03UDrMd0WGOswTlH45qOwB9uE/diskEX+RBFDLIBk91JEMp3qiAvw+OQXmJbS2lLtvpb2NJSmSqMJLsCL9IRURIxOjGi3Wy57/A+vvby19i1u7x5682M03EI7hQKWQassbHlodlDvLz/MnvlHlM9Jd1O2dzZJM5iZCQx7lr+0+H0ECEEW+MtFrMFeMiSjM3BJkkcYg+87cZQxlC1FY1tWFQLXONo2gbZD0TmsirRSrMslixeXCD6gpNvPcnWZsgJi5M4SPO7WID5ck4v7wV5fFnQmK440aDi0OWazWec2zyH9Zb9/X0W+wtWMRoazfbGNlVZBZ+cFefmVVwCgYpD50SojhBuuuwu+9p1iaSWxB3W5GkIW12Rz6MooixLsjXWBIXTcrlEdlizGi1ejzWr7uQq36taVKi4ux5SRWlKPvHFT/C+H3wfx44dw2JJZUov63HHbXfwxKuENa+b4kYSlB8heReE8IHDJcB6yaKCg2nB6eM2zPfwCO+ItWZjZElSi/KSF597lp3jJ+mNxiS72ygd45oKU5TYqsL7bt7exTgIAULFCB2HYE0pAYn0KbpuwwZm7fpP7z3aGOpqSVEtwXckZNMQiSCls7ahLAt6quCukeaBSUvUdW7aug78B2eoi5J8W5O7mNKF4D0pXPCH8WHUlkQKrSVZFrG7aymWc/YPvsDRpKFqBXUL4HDGEStPEjlObaWMTqYMh8foZTmRVEhhcd5hbEPtBdPpjDxNGYzHtLZFiDCX3trYptcbApLGGMqmoaiWFMWUpm5oqjrEMrSSpvL0CGZ8bdOAFrRFySCyvO3WMcNRzrw4Yrlc4qznnA8pss5B0zQkcRo6WfUSY2oaCwiP0J6ymHLQwOL0JovpEYvLe0yqFi0EDeCTIVGimC0nSGdpPCxfRcRRQjDMc37mx38W41qeeeZZrhztUTUFpmlZFiVFVdO07lXFOSEFukuN1lEwMcyy3tqYUusYrRRZ1ieq6o6jEbLXrDG0tiWOo1DMdLEBq+R1rULxLgXUje2yi0qkShHSc+Hic3zt3nv5mx/9KFYGJ+kkTbnt1ttQSmLtG8MWcUUodr6LVejSvxFhREUFxbTAXoc11tswvhhZbGqRXvLsc89y8vhJxuMxO7s7xDqmairKZUlVV6Fw6rBmFdkQq5hIh1wqKcMIIPUpbR06Natuz+pPYwzLasmyWobHbN16c1ZK0diGoiwoVIEeadpJG4oQL4MJoDMh8bwoibajkCbuwga9impwPozaVgquKIuwu5b5cs7nDz5PcxjSumm7kZoNZF4XOdKtlOREwu5wlzzPw2m+w5rGNkgvmc6mpEnKuMMaIwxKKnY2dhj2hkghA3G4aVhWS6bFlLZpQzFRG2Qj8fW1oq+ua4igLEqssoxuHdEf9TksDimWRcAYH4okfMCaNE5D+ni9pDYhWNMLj9eeaTGFBjZPbzKZTtjb26Mt27UEehSP0IlmupyuR5mv5rFGCEGWZfzMR3+G1recf/Y8e0d7lG1J27RBNl/VuPbVvf6EFOuEeh0FE8Ne1gsUDBmy0pRUYSzaYU0SJYFz1hWOURyFYqbDGtdhzcqhGxG4Wk3VUNYlqU7x0vP8xee59957+ehHPxqsDLwjTVNuve3WYHHwKmDN66K4gSAGt2HQgmdFHPM4L2i9pLKOK0cF1rSBWwAIKcl7PU7sjvA++LMU8yXPz54my2I2ju2ycewk+WhEHKe4tsEbi1Q6zMG6EE2U7OSSDu8dOBeCHmVoKctIh45KFPJavI+ZL6bM5lOEUAgRZsBSqOCJ4Roa01BVNXdveS4XEZWReC+pKo8xFq0UdTGlmR+SDLcQSMrlAi81zhiUkOG+lQRv0TJCCcjjHuNhinEWY0JRIZTENC44pgpLEkckUXzN88RVGII3V2M9i2nBaBSIjtY7wCBVxLA/IEt7GO8pyjmz2QGzoyWLaUtZeJa1pjQRhUkpLDgvGAnFe1uL7VQIzjrObmmGox5XDi8zOZhxcKUhk7dy0oWgzPA6B+BGKKhLWlPStr4zvbRM6wWT7Bxz55gfXKXYX1KFETmFV+R5n42tjKPDlspZWkKH7NVYSgjSSPKD3/9+/i//6P/KcNzncH/C448+wX1fu59vfuvrPP/SeQ4OLzOdLzGvYtRDrBR5lpHlOb28T572yPI+Ak+cJOHzZz15nlOUS6TwxHFGpDXT6VHoFHTmfXStZClEN/cVGOuIpAQhqWtLVVUoJUiSiNIUfPHLn+P9H/wQo/GQyGqiKOaWm25C6whr/9qiGF7TpTqsEdf954Vf5ww56yiOClrTrhOkpZT0ej1GuyMqX6GMYjlf8vTsaeIsZvfYLiePnWQ0GoWNtGmCH4zS1wjMBMURjnW0w5qPo0LbUUdhTKai4JIc+5jpYsp0Pg2S5w5rVgTh1rbUJoT5+i1PVERIE4omX/k1P2JaTDmYH4SRDZLFchFItsZ0XlMqqKG8JVIRCOjFPdJhGowGTYg1kEpiGxvGSCJgThzFYZziBZWr1iMbbz3z6ZzRcERv0AtRCIT7H/aG5GkOHhblgoPZAcujJc2swS89utZEJiI16ToDSnuNbSytCVlazjr0tqY/7rN3uMfsYEZzteHGO24MRZ0JmVIrrFEi+KuUpsS3XSAqlkW94Gx2Fu89Vw+ustxfrjszyiv6vT75ds7e4d56E3+1LnghAhn3fd/3Pv7R/+0fMRgPODo44olHnuC+r93HN771Dc6/fJ4rh1dYzpevatSDUoosy8iyjEEvpK/38hBjkcRJIAxbyPOcZbnETzxZHEaxR5Ojdbisc249tlp1b1aF+CqI1HZYI5QgSiIKU/C5L3+OD33wQwzHQ7TVxFHMzTfdTBRF66T772W9Poob0Zkt+cClcOuZo8AhabzDeLh62FIUyy7wz4WWbJ6TyB3KxZy4l5KqmMV8wWI6Z//FSxSzOadvu43exi5ax3haEMH50pnOsbIxOOdDCri3dGmXSKVCSrhYtQrDxmLbwDcxdR2SwYXCNg113dA2NpjcCQ9OkCjB940VDxwqjBPUtaQ1BlqBso5yNiUebJAOUqSC5XyK1wrnwbsW4RTOWqR062A4KcMJ0GmLyGJg5T/QycpVR4L2HusaLJ7WWBAa4SWnzp3CWk9rK6y1lOUiSLOVZLJcUFw+YH+/YDo1zIqIwmQ0TtJ6gfEAjlg5NjPLLTuCREucsVhhME2DtyUvvHCB2b5hvlBMTMRbjx+jqiuM69qXKIx1xFGE9kHVUxuCT4J31EvH7Ng288WM5vCI2aLBeE8kBI1MiGzD/uFVnG1oIMjUX4UlBWRasjXa4Gd++uc5cfYEQkn6myPO3nKOH/6xH2Z/7ypf+9J9/KuP/x6f/NwfM10WrwrYKSlIk5g865MkCWmS0x8O6eV9okijVUyvlzGbz4miUKDneb9zwC0ZDDfAO6q6WUvF67YO760MPkt4j+/cuqvKEBcVOgombEpInn7+2zzz5DPc/a67w4YQxZw+dZo8T8KJ+T/yJcR3SnlX/IZO8xe6OR7aw5ZlhzWuw5o8z9mRO8wWM9JeSqISFvMF82nHx5nNue2229jd2CXWMS2d7Pg6QrFpglOwdRbr7bq7szrlyg5rVvLatsOauq7XRUjTNDR1g23sWlUknAjv4VihDsMhS9ahIyLasNFMZhM2OqxBw3Q2RekwNmt9i3IqqGCuwxo6rLHahogGrlMKefDKr6W6tatDl6sN3CGB4PS503jrqWyFs45FtQhybC1ZLpccXjmk2C8wE0NURGQmQ7owLsQHmYeTDptZ2A5jFGssRoROT2lLXnjxBZr9Bj0PBdHxY8epmip0pBEogg9OFEVhBOk8mK5z4z1u6dg5tsNsPuPo8Ihm0awdeBOZ0JiGKwdXaGzTHW5frcomPJ/xaMwv/MwvcPLcSaSSjLZG3HDLDfyNH/sbXL18lfu+eB+/+/Hf5U/+7E+ChP5V+PVCCuIkpp/1SdKELMkYDob08l6QxquIvJczm8/C6yYF/Q5ryrJkY7gRunN1g9Z6jTWmNevR1Gpk5Qh+TVVRoTqskULy7ee/zdNPPs0977oHYwxxhzVplr4qOVOvi+Km4xIDHkcIsRSEeIXGhxO59Z7J1DNdLMiTHkoEOaNWPdIoIo0SKlvihWRjZ5et7W3K5RIrwTYO0zSBGNq1zUxjwKxOTy1SRcFHREcI4RFR1KkqVg9Q4K3B1g2mbhFCkvUG4C3eWbyMUVJQ0dA0BtH6kPOkPceylrNJSm0ldaMoFzUuAltL4nRGPl4g+kOUkiQ6prGhrWq9D+oxY9FagpddVRwkvEKE4FDvRFdk+ZDZ5CSWLnXbQ1tbkjRhtL2FqYMcs2xrmqZiuVhQzCqKyrAsFYtKM68krYmxPsHTeR0ITyodibJs5IZjWxHHd/uMdkfEUoSCrq2xVc30iqH2nsooVOq588Yxb737NqZVDS4kj4ciLfAOvDEYA8aA0uBaqOSARZRRHV7BTAqWNhRvlQe0pDWWZtZStDXKw6ux7UoBkRSkieaO29/G+z7ygeB+LcJnExk8MU6cPcmP//yPc9tbb+WhR+5nfuEF7PcIeAJI4wAoeZ6R5T0Ggw0G/UGwIehlNK1FKcnW5gZSSbIspywL2rYh6+WUZUl/MMb7GUW9wNi2OwiEa0mJ0LmJdURZVSA8pmoxSUMrPSpNKJolX/nyF7jrnrfQCEUUe7a2txkMBhwdzV6FV/l1sLqxgkKtDctWxc4KlP3Us1gs6CW9wLtIND3VI4qiQEC1JVJIdnd22d7eZrkMjsKuDh0ORNei9w5Tm+AB5V2IaFBRIHHqCC8Cv2GVc7TqgBhraOqGtg4F0qA3CEZ/zgabBCloaEKx1HakZe1ps5Y0SVFWoRpFvQgjHFlL5umcxXjBsD9EShkStq8jPbc+JJlLLYMZoBTXQjxXJ3InOguB0A2RXl5L3fZga0ucxGzvbFPXwVSvaivqpma+mFPNK0xpUKVCVxpZSWITk/gw7vB4vPChoFEWkxmi7Yj+Tp/xzjhslj5wcOqqxlwxHVVA4xPP6IYRt73jNpqyWXfhAtbIkFpuTOCCGMLu10Jf9MmiLHRHJtd1R3woPpx1NPOGuq1fPa6N6EbQieau2+7igz/0wXUSvV9hTRJx8uxJfvwXfpzb33Y733jsG1x4/sKrUlxFHdakeUo/77Mx2KDf76MjTd7LgzeQkmxubiKVJE/z4OHUNuR5TlmVjAdjZn7Gol6EQMyuy4kPhwhnHZGOqOoKj6ctW5okKNeSNGHZLPnCl77AW+95a5D3x57t7W0GwwHTo+n3/BxfF8UNADJkPlnvCGwbcHiMh8aFcUVZC64ezdjsjYOxnAOEB6mJIgU6w9Qtpm3pDfrEgx4WiRCSdhEIYs44bNvgjEWiUVGETCKiJEEokCqCLuMF0Z1KhAhZU8bQ1jWmbZFSkPcGOGvwpsHIMhBnlUKXLW1UB9JtN9s9mTacX8SUbcRiZsg2JBrFclbSnx6ikxShFMmwTwo0dUtdLMPFqAWNqUAIFOFi80KgdBoUd22JVBJvw+w8OAMK8AYdpWwf30JGmmUxZ3K4z+H0iHJhmM8800KwqCMqm2Dcyu7No0QYC0phyKRjkLZsDTxb44iNzTF5PrjOLySktpu6wSyOEC2UwjPacNx44zHOnj7L4Phx9soK70N7RkUqBGsSHI8b29ClZ1A3nnJnm4W1VPMJZtFQdZkjNYKNjSGH0znaKTLvsSJs3t/LWvG+Ei3pD/u8/70f4vjp49/hG7P+2gd/jMnkoFPHfO9LCEGSxORZTt4fMB6O6fUH9PIevaxHnGoiFeHXJwGHWpG52wa8p20brGuJs5jWxhhtiaKIZeHAW6TUZFHgXSBDsVPVDlEUeBkI5MLDNx/6Gof7v8zWzhambRmPNhiPx7z44iuvwjN9HSwJ2DAaUh3WrDsR3QdJ1ILZ4Yxxb0yapaF4ECFpWkWKTGe0dZA39wd9eoMektCCX1yHNU3bYI1FE4jHURKRJEkwj1PROk/Kd1izavMbY6jrOjh6S8GgNwgFj2koZbnmNLRlSx3VuMateSRN2hAvYqI2wswMciMQmMtpycH0IBQ/StEf9gFo69ClMiY4ylamCgenDmuEEKQ6BaDssMZ1WCPaQMg23pBECceOH0NHmnkxZ/9on8lkQrto8XOPWAqiOiKxSejOdMXMynPGCouVljZt8QNPNI4YbY4Y5sM1D2T12a3rmqPFEbQEXseGZfeGXc6dOceJYydCuKYLcnIVqdBdIKjQGhOEImjwjWdnewdrLZP5JHRtVp8BBMONIfPpHOU6I7tXSSW1cknuDXp86L0f4viZa1gjrsMa32HNwfQAK+21zuP38ruFCMVNljPsDRmPxvT7ffp5n17WQ3dYs1IVOsJ4CUlQS3m/lufHWUzsYqwJWOMKF/hpMoyZVu+BkALXOIqiIBHJmtB+38P38StXf4Wt3S3atmWjw5qXX3j5e3qO8DopbjxBeRJGUl0oJoTCxntaQvXtrORg2jDdOELpLWKlsdUS33UBpPdEWoWQzEjilcK3jrYsMW1F21ZIIdBRTBSn6DhCJwkqCSchqTVCaQTdh1gEeZsQMmwoUqCToLSSIie1MbY1eOdoTYYxFbZ1JKmjXpZUlFjnsK1nI7X0SihdTNW2oGBjNMC2LcVkQjoYEw+GgMU5T9xLSPtZIJQtC0ylMc7SdIRkL3wgeSkZ+DlSriV7SmvywZA4z3DeMp/PuPLSFfYuz7h61LIoNKVJMC6Mv2QnQ1cdiVsJQywtiXaMeoaNgWJjI2M4yMmSHKU1TiqsMdi6xNYNURxTTWfUkzlLa8n6ltNntjh5/CRJ3oP+mHq6QEYK51p0FKGkxHdy+9b6jgQLVaNoxrsUywXNrMQ2dt2ZUVFCf5BAW1MvChIJR3SCt+9hCQRaQpwodjZO8t73v58oif6CG4cN6LkL57sC73v73RCUWZ3iHK1i0iyn38vp9/v0ejlaafJej6ZLik6zmIPDI7yTRCpmONTUdYsUirZpkCo4Gi+LAmMdUoCxLVXjiKIQL+IFtNYhK4/SbRh3RjGX9y/y5ONP8J4PvpemqcnShO3tze/9Sb5O1ioPRyKv++Y1IMeDtJJm2nC0ecSW3grqnCpwMZRUrJxbhRLISKK0wjWOqqoom5CbhAivZxqngZuSxMRJ3BHDdZCDdxvVSkoruygTIQUqCSOjXOTENg7Gmc6RmYzKVLjW4VJHuSwpKYP/S+uxqYUSYheHsZaEwXhA27ZMJ1PGgzGjwQhLGJUlvYSsw5piUaCqQPCs6zoowITvuFkqjM26LpMkkFGH/SFZL8Nimc0C1swuz2iPWnSpSdoE5Tpvna4zsSJxG2Gw0uK0w+QGNVCkGym9YY88ydE6pLQbY6iaiqZuSOKE2XTGfDLHWovtWbbObHHqxCl6eY+N4QaL6QIZdWGmUeiUOddFYKxyvRzIRrIz3mGxXFDNK2x9DUiSKCEZJNSmppgHR2Xge5ZkivDioRLFyY2TfOD9HyBO4u9+227kd/7C+XXH7HtdqyIaEWJu8iwn7+WBW9QPiql+r79OpY+zmKPDI6STgS81HNLWgbje1M2amFyURXh9RccFa+o1dwxCJ9NXnla3FKogjmIu7l/kicef4L2776VuauIkZmt763t+jvA6KW6Cv40LxY0XOO9DAKL31N1oRXfzodncMp0dgLNsjreJ0153ygBbFxh8mHcbD42lWs4wdYEXgijJSJKUKE+IkhyhRXAo7kzS1huVlNdV6OtyGqk1UZoglEGbCGuadSdIGo0yGqMdOnVEWUxS5lTzgrZq8K1hO2652kToyIcTXC8jz7eYHx5SHB6g4xSZRIhYBuqPFkRpSpTG4D3WeKxtw0YuPLZtEF4iVdcylioorYSnahquXLnEpUv7vHyp4vIUlo3G+giFRAqHxKGkQwkbUtmVJY0seezIUxgPIkajIfmgFyy0dYLUCca0lMWMui6pjWV3ckg2GDO7fIXWNhAZegPFYLSBjiNkmmPyHuZwQp7G4IOPTaxTmiYUgM7JwLmpwcYJbZpTHR3QLisa4zquj+iKTyibBpqSVkDxKnRtlIBYS7I047ab38qb3nrHX1q0VGXJCy9eoFoWq2nC9wQ7aRyRZTlK6WumfTpCSkGkYnqDPMi2owQloa4qemmOcDJI64vgPBzHhjTJmM1nOBvAS4jAKWtMu948vfN4BEqCaRxtZbCRwkpD6TyPPvIo7/7BH6ChIdKane3d7+HZvX6W77AGH8Y/Kzn0d3y/OyTYheVgdoB1lu3xNr0OawCKusB3WONN4JnMFjOKugjqlyQLUv48IUszpJLhILIqEDr1lLwOa8R1WKO1JkkTjDJEJgoS/64TpI1GG43TobiJs5i8zCnmRXAIbg1t3BI3MV57ojQi7aVsZVscHB1weHhIFmchUiKWgbCrBWmaEqdxeD1MMN5bd4OaJkjnVccRkmrdcWqahr2re+xf2qe8VMIEdKOJfMihciKYFnrpQ0ElQmiljSwudpBCNIgYjAb0+32SOCHWMalOMdYwK2Yhn641HE4OGQ/GXL58mdrWmMighoqN4QZRHJElGb28x+RwQp7kCC9CgalTyqbEeRcSzS1QQxoFCfJLey9RLsogve7ei9WYpakbyuZVTKzruDZZmnHnzXdyx9vuuK5D/G+usix5/oXnWS6Xr8qvX3VttNLhcynCiFIoQSyDzUAWZ8HzRkJVVeRpjnSS1gb1VqQjTGzIsozZYgY2dCINYUy4jrnosGZV0Lkm8G9UpDAyFOuPPPIIP/D+gDU60uzuvDpY8/ooboTozPsElmCj33hP7RxB8yHWG1DS0xRVQ1lfxgvH8Z2zRFkGxiKqJQKJaRsiHWObGuE8SdojyXtEWYZK45CboYKqRAiH7GbY4WQRkCYUCUGpJJD4DtQC0ReMaYMBXdtSNyXOWExrMG0bbPCtASQicQjnyXuas7LBHjh6uUNLaLxhczwmzvsc7V2kWc5I4y2EB+Sq/Rg8eBAgE9mR7YKyizTCO4EXDtNaqqZhPpuyvz9h7/KCK4eWo1JT2dCBUEKQCouSLbH0RLIl0Z4kdsRK0OtLellEP03Ieilp1gs+HnGMEDqMBpsl8+kRi8WUclFT15ITVy6TnTiBEJ7hKOXGGzNUBHGSoXSEHIwwcYbuuAa+c8YVygW3aC2pW0ugQQnU9phKQ7mcs1iEKIxgm6+ojaVtQwBe30PSz5F1DXUb3nNr1hLff4ePH0pCHGv6/Q3eec872Nzd+Et/5vBgnxdffp6y/t4F6ALQkSJJMgardOo0IU0S4igm72ckSUykNSpTOGega7HXbYvWIZqhrkvqumSxXJImaRhVWUvdNijZKRu8h07F4IXDeXDOU1WWKDKhrhee555/hrpqSNIYtGZjY/TvnfHyelqr57BWSXUE0ZUK5jsKjFzTVA2X68s44Ti7c5Ysy7DGsqyWwSivbYh1TN3UOOeC4iTrkeUZURrG1Ep1rz2OSHVY466Rm6XoFCWdB86qgFq1sFcy6bZtwwZtg5la24bsJWNNIM0mXVp5T9PIBnfgcL3gGmu9Zbwxpt/rc3HvIrPljK14K2zkHdZY7DoUc4U1+DC+i9II4QROOGxrQ9zE0YzJ/oT55Tn2wKJLTdRhjRACK2yIoxCeVrV45XFJkAmLniDKIpIsIc1TennAmjiOgxJMhALycHrIbDGjXtaISnD5ymVOnDiBF55smJHdmOG1J0szIh1iK7I4CyM/LdfOuE45tNZrQjItCCsYbY8gIvCBltWaLC1luJ1t7Zprkw/yYIdRN/9/9v4z2tLsvO8Dfzu86cSb761cXdW50QloIhAgBRKkxGBJXhJN09YoLHGGI62RZ9kjr6FsBXu8lr38ZaTP0jLHY9njJYHJJMEAggBBZBChAXQOlW7VrZvvyW/ee8+H/Z5TBRAEG+huqEFh16q+1VX3nvie/3728/yDT4633z7WNPNvVKhYbi/z1JNPsfxnYM3R8RHXbl0jzd+YxGwZSOIwZqmzRCtuEcURUYM1STchiiI/fk3Uwjagqv31prQnvmdFRlZkzKYea+b2BeVdWDP3fJLSF7jzsa/JDXVQN6NxxSvXXqHIC6I4QmtN/w3CmrdEceOc59YYNx9FQW4tNf7C0UgCIQm0I2lLKlcjLRyNTuh3V9FhiDMVWVkSaj/HDuYt4G7Hd2bCwJ/6pQPrabJSe0a/L2Ro2o4OIXzb2Z+opDeaqy1VnpFPU7LRmHQ8oSwbnxuH38SVb9uFOvQW1E5g6DERY6zM6UYWNZK4sMXq1jqmzKmKnLjdo720SjEbE7Y6ntQ8l6c3Ml6hvcEfNL4cjQNqlk8ZDMbc3j1h7yhjPHZMM6iMxDgvmQ+EJZI1iapJAkMcWMLQ0WopkliTJBFxlBBHIVEYoqREae3HdEJhcVTWkWZjRscHTAZTytxSGy9jrMcjupfuR+uAbm8J11+ithbduF2K5Q1mzeiqecPRKmyUaAYZtakrQWZ8PMDmyjpZUZFOZwwyQ9uBRmBQaBV4EmRd4wScTFMKa4l0i5/8ob/OJ778u5yMjr6t608gCKUkCiOW+6u8/QeeQoXqW/7M7ds77O3u+twb9/q6Nt6MLUQFGh2EJHGLOIpIkogojvy/ae8gqoOAIgetvR+SHyf6dOl2p01eZCRJ7NPipWLvcM8XPmWJlHdm+ZWp0VJ6B24BVeUo0oowVKgADo53mU0mBOEyxjr6vaXX8QzfOms+klr8tt6jwzZYM+fNOO2QHUntarBwMjphtbvqDfdMRVmVPiFbysW4qdPteAwIvY+Nk/MOWTPCwqtEfDXbkJrvwhrp5EJ2neUZ6TT145fJhFkx8wUR3n9k7kMSRv7ELZF06TIWY3KZYyOLHElaYYv1zXWyym9G/Xaf1aVVxrMxnVbHP4cGa+akYanl17k2S+kf16yYMR6MOdk9IT1MsROLSAXSSLTzW4kVllrWngwc1NjA+nDMlkJH2neyIt81mpv3aa39+Ek0/CfrGKdjDk4OmJ5MsblFGM8xGo1H3H/5fgIdsNRfYmlpCVt7B2eAjZUNX3w0WOOcI1ShL/AwtMM2omo6NxWsr6xT5RWz6QyTmkXXRqEIVOMLVPnMtnSa+rGgTvjr7/vr/N7Tv8fRd4A1ssGa1aVVfuAHfgAdfutteOf2Dru7u37E+Hq71EIQ6Wgh4W8lLaIwImqwJgxCAhV4N2odQAFWN+o5aGJgNJ1Ox/vWJLFXVSrF3sEeCO8rJO7CmtrUvsCxfmTlKkeVVh5jA9g93mU6mRKEAc46lt4grHlLFDfgOyIG5V1gncXgORhziw4lBFpbnKzIrKEjNXlZcjIZ0Io70CREoQKcM8hAoFQEOK94weK4E7MgA4WU2iudGkdIB76gwCsbTJlR5QX5bEw6nDAZTLFV7WW6nQ5Lm5v+VFAbKmuoshlV7bs3ti5wTvr2Y7+NbQdUWcbGWsk014RRm7DVpS5yXNIh7nQosilllhK0ewhbg3MIpUEbby4oPFhaIUhnU7a393jlxpBbRzVZLtBOoIUPn5QCIlUSKUM3rmknhjiEKIAgVLRabVpJhzhOCELvoSMWxV2IDEKcg6LMqUxNlk2Yjk6YjVJM5YgSTTcKaHW7RPkEoRVJt0+VTjE6pp10CKMEhEaduYe8yhFSYqqiSZWV/k23DhEmjAo4qpx3ad5YZXp8xCQtGFbWj8wElD45kuFghDIGLQS9dpvRbMbbLvwA/+y//if8F//0Nn/0uY++5spf0HCOlC/ozp66h/sfeeBb/owxhpvb2xwfnWCMfd0nDKUk4AiD6OscQoVQhFFMGIa+VR8EhGGIrWtM7UFSaU0YaXQhabXazKYps9kU5yyz2RQpFVXD1XCukRw3AG6bwsY6z8svSkdcOqRyHA994nV/ZYm6qthYX/uTQXrfq8uxyFfypqFuwQdBNB0V7ShlibGeHFkUBYPJgE7cWfBy5pufCITfQPHjJIv3c/G2DMoTWqX239tgDeALq0bKnRUZZVEymo6YDCdMB1PPd4hC2p02GxsbPrCw9oqpWT7z46e6orKVdxDWik6/Q9gOybKMYq1A55p23KbX6ZHlGS5xdDodptmUNEvptXuL07mWGqPNYlTmrCf7TtMpe9t7DK8PqY9qRO5JxEqohbNzqUqM9OomkxgIgNB3KFqtFp24QytpedO35iDpcIQi9D45zqeh16Zmkk84GZ6QjlNc5TzBNQ7odrqM8zFKKfrdPtNsSqxi2u02SZygheaeM/csHJjLqsQZt5DjO+dIogQKv8EKKVjbWOP45JgivcskT/hNXErJaDDyEQNC0G63mc1mvOPcO/in//ifsv/f7PORz3zk2+syCBZKuQtbF3jgbX821mzf3Obk8ARnXr8MXSo/SozuxpowQAnluzdh6Ds3gSYKI1+Y1LLBGl+gykLSarVoT9tMZ1Oss0ynU8+NarBGfBOsWczunSdyu9LhlON4eMzgZMDSyhJVVbG+vv6GYM1borhxQO0ExvqRlKGxb0YgEQTIhVtx7RxVXdPSmjCIOZ4MWWr3acUJtS2hksRB6HkpAQgpvX+N9H+WWvmOBHJhny9qnzFl64oyy0jHYybHA7JpQZhEtJIYLTSnLpwh7vcRUlLmKePjEw6vHjM6GkBVIa1ASItSApTzm5b276hPqIWukPRiw/jogI0z56jKorHZrlBBQDEbI3RjwGfBUvo2daSwdU2Wptw6GPPstQm3jg3GeDP3ljS0tCFWlkjXJJGj14ZuL0QHEUIqtIIg0LTCDkmr4x+nA2MrhGzayTLEIbyHRJVTVyW1KZmOTsgnKUoq2ste8RHFbaKkgxwPqYoZy6fOcZxmnP/A3+bye/4CcrDP+Asfga3T2LTAGEuRTj2xzFlM7cnEJYobIziylk6rhet0yLavYyrL1Do6QqDwdgCmNpi6QOM3obCVINKUc+cukjFlZ3ebbqdDK4nZP3xtpyoxvy2d8OD9D7Oy+a3bxEWece36q4xHgya48jtj3MxBUTYBmc5aVHPyl1KipCYMvAOoH234dm9eFFjr6PeXKIoSh/dkAs8bKcocJRRxK2GapwsvlSgIm9BGN38ADb/E+ZBNC1laICRMxISDgwPOXbqAMzX9Xq9xKf7eL26E85Lm+UZhnV2MqeYk47kHSl3XaK1JgoThZEi/3acVtyhtiayk35gNiODr1TyLzUBrb6g374TU/naruiLLMiaTCSdHJxTTgjAOSVoJSijOnD9Df6nviZp5yuBowO2rtzk5OvEKKtvkWCmBU86P2rU/Ks+deaWQmNhwcHTAuTPnEHib/LqufWTEbEyovQEfFsoGa1SkMLUhTVPGh2PG18aYI4M0XnVlpMFog1XWx1FEDtoQdn0RrqQC5Qu9dtim2+4uirrKVgQN1oTS++bMx21lVVKaksFowGwyQwlF0GBNK/YBosPRkFkx49zpc2Rpxt/80b/J+9/zfg6GB/z+F36fM1tnKDKf/D1JJ2yaTX/N155MrFAw9N26pJXQ6XS4fvM6trKLYg6a8UltvJsx/rOatBPSNOWec/eQypQbuzfotDvE7Zijg9fewZmrzx667yFWtr41UT/Pc1699ion45OFWd53QipejGObgExjzaLLOE8CD4NwUZBr4c0n5+PWpf6Sz9TCY9F8jJk3WNNqean4HGvCBmvmj3VOYnb4AzoWirQACWMx5vDgkIuXL1Kbml6v580i/zwUN+BVUqYx7Cudxc15NvhuhA9FAGENRW2ZuJS1QFFUJePZhCiKaUVdbF1i64p528fRJJVKhVD+g+zN+7z3hDE1VZYyG40ZnYxIJwVhHNNf7bN25gxxp4Vo1BG2rinzksnxHgfbu+zdmgEBna4k7CiiIPCqLeW7LF6BMZ9pK4IoROvAA14gyKsUoQRpOcHmfmyQzzKCOKdWovlAGkrjPSJ2jzKuHtXcGmgyI1BCEAlHN6hYTQr6HUu/BVEQ0F9aIk4CrHPMphNase+mRFGEltrzLXAgNIFue7l85d1Oy7IkL6aYuqQuC6+KymriMKK91GvycgyB0sRhQlik5OkMGSWcevApLv/oX0IEAVII5NYWB+WY8eSA6XRCnU2wdY0VGoRsCNyKsXNMrCPudqmlpCpyotpS4Zgh6Dbq9l6nw3ic+mLHOnaOjqiN5cuvfIZ/9E92uH7rmgd6Ib6tksNi0UHA2x5/7M9sEw9OTrh+4xqz6RTzOtyJlZJY4wiaQl0Ih3PWp/E2vhyLqBDhC5e8LMBJOp2YqioJAkUUxQwHY5x1VHVJFESk2YzxdLYgJjv8hlsbQ10bxLxDAQ2hFu+07BQCKKuK/f19aMBodWXVn8SovsNn+9ZZsvk1dwm+28jvbr7LfESUuhQV+MDGyWxCEiV0o66Xw84DLhtODdKrqcIGa0xtfGxAbRcxCOPxmOHxkGJSEEcxvdUeZ86c8UqVBmtM7eMx9o/3ub19m9mtGQEBoitQbXWnAG42mvljFtK7LIexj3kIdAABpA3WTMspRV4gpPAxEbF3jfVYaCgarMmOM+rDGj3QCCMWcu1KVxStwnN52t5ReXlpmSAJcM4xmU6I4ohu0l1gjRX+dQ5UQFu3kXdjTeXzo8q6pCgL6rqmyiqiMKLX76GkWrgmt8IWaZEyy2YkYcI7HngHP/GBn1iYzG1tbTEuxxxMD5hMJkyyiS9OhV6MA5VUC5Jrt9NFKumjDUxjhsidcUqn0yEde56Ls46jwyOssXz2ymf5xX/8i1zdvuqxJv/25JLWWcIg5PHHH/8zseZkcOLJxNMZrv7OuzZS+u6VVpo4jP0+uMAa5f2wmrGka7CmKAqklbQ6LZ/gHiiSKGEymOCso6w81szyGbOJx5pAB4v7M8bH7cy7oXBnLOyMQzk/hqyrmr39vUXhs7Ky4m0OXifWvCWKG+fAOEGNo3bzRq3nEgSNkZ5oHHclliQImOUVsZ4SqBaHkyO67S6uNsRB7AsR64lvDoMErHA4V+GsoS5L8mzGbDxjcDziZJChVMTpc6vc87aLJO3Yt+8AlMJaQ50XzEZDRvsHnOwcMppWbJxa58Llc0SdmHQywVQFwlmk1qgw9IWOligdgGqUTNb6rCpjsabCFDnGVhhpkRbq2pDmM5yUmCony1JOhlOuH1iuDiJmtT/tRMKRKMdKq2Bj1bLS9x0miSMOA3r9JYoioyxS+t0eraSLlPj2VxCiwwgrZTP2C5hOhgxHB9TOUGU5tqppfOJRDsJ2h1anCfkrfM5NknRI2l2EK4nKnFsHe7zjJ/8mItDMDo/pbq0zigL2b+2yu3OLui5QRe5bl0oC3lDRKM1h7ZhauGdjjfF0jK0qggocgtQ5OgisrRgM9zDOMyRaAnTjSbG98wo3b7/qPzzGz32/nevPG6Utce8D9/6Z37+zc5O9vV2KrGwKgu8MdKQQOOmLHKW0v04Q6MCfmqq69MRxvINzWWYEoSZOwoX9AVjyIkMqQVU3dv9KY60l1BFSzl8LL9cUTdgdeNn9vLCRArSWxFFEVRQY7djduc2cLzmZTuh2umRZ/h0917fMmqukmi6Xa37dLXGenzCt8662VV4x1VNaqsXR2GON+SZYYxqNsBOOylUYa3xeUuZTvEcnI9KTlEhGrJxb4cLbLpC0vZIKWJyoy7xkOB6yv7/P4a1DqmnF+tY65+49R9yJmUwm5FXuH5/23AmpfKco0MFCkWWtL1issVSm8uGbtsJKC5Y7xGgpyaucNEuZDqfYA0s0jAirxpFYOJx0vqhZs0T9iDiOve9PqFnuL5MXObNiRq/bo5t0F69jGIQLbg0CAhEwnAw5GB1gnPH5UVXtx3PWb3ztVptet0cYhswarOkkHbrtLiU+RHR3f5e/9ZN/Cx1ojg6P2NjaIIxD9nb2uLVzi6IqvCN65b175plYWmk/FrewtrHGZDqhrEoofXE7J5tXrmJvuHeHMCzueCC9uvMqV25f+Y6whkaN12/1XxPW3Nq5xe7eLkVWvK6xlJC+uJDac2YCHXhFWIM1ZVUuCn1nHVmZoUNNmPiR4ZwblhXeY8k0WKOVxpqG89RgjWiwprwLa7B38d0atVgUeddzqy23d27D3VjT7ZK/Tqx5axQ3+JiFplvluSbc6dooQOKN5QIZEEqBjGBS1XRtReZyhtMBkU78CEZIyjRF1p5jY42jqlKqImc8nnB8NGX/pKKoBGtrS9z7wCW2zq55jxwpm5NcE1I3nVDnM6YnJwz2j8kGKTbS3PfoZbbOnkG32witSZaXPX/GNXP1ppCZPz/PFG86UkKiNTga5VaRYxGUZcYoTQlrL4mbTWccjgquHQfcmiaUzr8ObeXo6ZrlVsXpM4q11RVa7b4vOOIWvW6fyfiEUXqEMyUIi3YtkriLFDEoR1r6DlccxshWQFnOSEcjhPIkVS0EyIYvEESEUUSoY7RUCGsIw5ik3UcGCldVBIMT8nRGns9oa013cx2EQKuIPKs4PNgliUJIJ1jnmnGhI4xidBSSOW8a2llb4vh4D2slyjgCvPuwBXrA1FmGzf8XzXWyuI6+0yJDCpyF1eVVTp3Z4Fudw5xzXLt6lYODfbKyeF3mgUJKFBatFQiHlMpnOFnvP6K09rEgzpLnBa0kQWlFluXeo9o68sJLL8MwJIkjJAJblfR6fcbj8YIwHASeN1Ibu+jWNBSr5nlBVVsm04wgEATU3Ni+RlkWRHHMtWvXMY0h1/fyWoyeFs/bLf5+cbrEd2IC5TcAIm9eVtmK3OYMpgMS7aWyUkgf4Fh7Mqo11pN3y4zpeMrkaEJ1XEEFy6vL3HP/PayfXV9sKvNf1lgm0wmzfMbgZMDRwRHpSYoONZfedokzZ894B1mtWV72xYRpsGZeyMyfB47FCEMKCRoCPHE4L3IEgqzMSFOfkD3HmmJUEBwHJNOk4SD6oqYOaqpWhTqjWFldod/yapZW3KLf7XMyOeFocOSNOIWl5Vp0W11iEXvuUuk7XFEQEbQDZuWM0WjUHCBd47QuPc8j8MqdWMe+a2MNcRjTb/e9fLiqORmcMEt9mKjWmo3NDT92VRFVVrG7v0sYhUzSib/OG0lyHMfeT8YCDpbWltg73kNa+U0zm+5WQn0jtryuIsPBytIKm2c3v+X3Oue4cvUKewd7fiT0OrBGSu80rZTnSSnpR6ZzrNGB9nxOZynygqTBmjzz7sLOuUW4axiGRLF3lC6rkn6DNXNejW6wZh5+uXit5o/f4Unz0wwR+HyvqzeuUpQFcRxz7do1avP6seYtUdz4UsJRNWRii/e1CYQfvWgBoQAlDU5KImJ0CFPjqI1BuYBhlrLRT6iswVlIm020KDJms4zBMGd/bNmbCJRRrC1pHn90g4uXzhPF4eINFFJhraPKMvLJhOHhPvnJiGJSAJLlU+usXzxHt9dFBAqUV16JMCDQvqL15DUDzuKkwBmBdfXi4pH4okFIh5IShKJ2fuSmOy1ubw8IAsfRxHFzFDOugmYs5+goy5luznKnZqkr6XXahIFCYNAqotvqAt4zqNddo520MMa7dU5GJ8RRByuhri3tuOVl3tJHXtSmQFlF1KRQaxUQ6gDV/A5kgJLCz9UDiZDzjUDC4Q6bDzxFkHRoGHkIAStbpxh9ekyWzpC2xhwfIq3xSh+lGg6IoMYHlMatmN0bXtKPsbQFnFiohb9YC0A7nzH1Rrg+OKCyDmUMG+un6DWurXcYpnd/syNLU65cfdXzJAqz4G19J0vgCxwayaS1Fa4xGjPWYhr5ZZ5ltNqdxTw8iWNm0xllVREEIb1un+P6GOsMxtZIpcnSlMl0gmnUOnVdIwDdmM3d2cib/4pmI2y6RFIqhuORz5OSgrc98oiX2Ooptam/pyXhcwLxfPOa8wHujkAwwhNrY2IIfRvdGENAQJqmJEuJ59dYmKQTwEuXs2lGPsqxY4sYe6zRfc3629Y5f+k8UeLDT40zRDLCWUee5UymE/YP9hme+HGVRLK2tcb5i+fp9ruoQOGUfy+DMEDchTXG+bgWIQXC+M3CWrtwYFaB8pJoqZqRsh+5tTotBtsDXOBwE0c8igmqYPEaWWXJOzl1t0Z2/XhCBQojDJHyoyeL941Z7a7STtpkDdacjE7oRB3vbVJbLzmOPB9HOEHRYM08hTpQwWKMFjRYIxqskYFcEJClkOwc7PDUA0953yHEQpmztbnFeDr2bsu25vD4EGOMz+RqsGY+gtSBJmkl7Gzv+EDSxnyu8R65c624OzycN+Tas/6zvrW+RbffXbzW4huwxjlHmqa8evVVBocDH7Pxej5zjoUJoDU+BmSeeWatXUi9syyjcxfWxHFMOvWxC2EQ0p9jDX7MqpUmbbDG3YU10ERX3IU1i+faYM28S6SkYjwZLwwB3/bI24iDGK306ypy3hLFjSdCuqaD4+nUCkkoJYFwRMKrZQTer8EKR6xChJTUskYrX5wUVU5ZFhgL6WDA9GTKjWO4PoPbhS8qHupr3n5fyLnT67Q6CSbPqZs2GUpTpSnpYMD4ZJ/ZYEwxrQh1SG9jhaVTm3SXllFS4GwN1iGt8MoA59UozlisNVhTY40ncM1bwxivPfXmgRopFS4QaBMSND/X6fdwYc4rtwtuF5rKKlrSkUhLHBhW2iUbq45+u02SxIRhhNYtlApoxR0/Cy0Kqrqi0/amWFKteGO/bMJ0NKScpSz110i6Xf95dqB0hFIBdZF6WWC05C8wqVFaoQJvnkfTCQDffhf4D2I5OGAjSmgtr1CmM4SQhK2Euq65deMGdZlzPNpnduUVsiKn3fanP8y8TwZhFCG0J7XKcYpxjq4QnGCp8EWucdAVAg1kQPUG7LHWeal7aTKuXrvCmfPnaLXb6Hm+GDB/0idHR1y5doXjkwFV/fpiH5wDvVDqWWztqE3tfZNsx/tGFN5V2yUehMqiJE1TbAMKpq6p64q6rMhzH+Qa6JCpmRIEAa4qyQvvx6GlAu7ayJvRi1eMSZQS5JUhdILQWHZ2b/DxT3yM23v7vPz8Vf7e3/57KDQvvPIc//a3fpni22nHv0XWfAy18LjBeQZOY0i3uBiFxxonvJRYNlgTqtB/lpq8JGEFJ4MTpidTOAZmYAtfVOieJrw3ZP3MOkknoSiKhdR6vikMhgMOjg8YD8cUk4JIRyyvL7N5apOV5RWEEl7NZH04JkFDgHaiKYKNLza/AWuc8W7LQgu08C6/IhCEJlz8XK/fIw9zitsFutA+YkA2uU7aUHZK3Kqj3W4TxzFRGNHSLQIV0In9BlhkBWVd0mv36HQ6rKgVnHRM0gnD8ZB0krLW89lkzRvgpcgqIG2wph/1SYJkgTU6aGTlc4UNLByNnXMcDA5I4oSV5RXStDFNbCUYY7hx4wZ5mXMwPuDlV18mL3L6HY81om5uTOA7D4GgSAvSUfp1vKkF78bx9YXNG4A1c75PYQuuXb/G2fNnabfbaK0X9zX/enx8zJVrVxgMBp7q9rpqGy/pxzUKvQZr5mHGxhjf1RMC8w1Y46xb5HJVdUVd1uRZvjD/m1qPNWVV+hw16ztE4i6smY954U44rKnM4jre3t3mY5/8GAd7B7z6/Kv8/b/z99Fonn/leT74Wx/89kZ/zXqLFDeAcBjnixyJIBBeIRUIQSR9HpFzjtpUFEqhCAhkRCgDhFQoITF1QZYXFFXF3mHOy3vw4rQmtYaODHh8RfDDjy1zbus0URz6N6EZCSAUxSxneHib0eEedVHT6vTYOLNGZ3mJMA4BB7XBlAaVhMjQS6Yt+IKmNpi6wlQVrpG8mdo7CWOaXJo4IAgVQlgfpuVnBF6t4rwkefNMmxvHFbPUx9a1gpqldsnqkqMdS9qtFqFW6DhAqxAtBXHURgURpsmfUUqSBIknmVYlPkxHIVVM3JJEccuPyYTE4lOjwziiSjNcbRvPg6RxsdRI4cDWWO/yhhMKh8I10nlRlNidGygtEU4tTiJhnGDrmvHwiNGtGxzdOKSqG5NEZ8FZjIAx0Iq9hLXMa+KsIHfQaTp4M+foNMnWY6DvnxHZG4E4eHLyR//o97n281d56OHHuP/Be7l4z0XOnTvH5tYpVlZWaCcJV159hevXrzIepa87LNM5i7EN6b0B1LzISaqENPdy1kBrdBhirOeH5FlBp91llk7Js4y6rhiPx8xm6SKPqKwrdKhxGRjje/BKSeraNJ48886FW5BQcZZ6fkgSCmsFO/u3+ZVf+3Wu37jJZDzlmRe/xtnTZ9ha2aLX7XJ4fPx6X/Z/J2vepZ3zK+YeHkIIalkvuBeVqVBKERAQyajpXHo+S1mX5HlOVVfkRznsQT31m0QgA8SyYOmxJc6cOkN4F9Y44b1t8jRn93CX3YNd6qKm1+5x/tR5lpaXCBN/WDPGUGc1UeL9R+beLcZ6oub8tL1wWq49ydNZL+sO4gAVKm+812DNfHPFeVlw+0yb6rhCpn5sUQc1ZbvELTlk7CW/SiuCJCBUPjqiFbV8bpCpKavSh7gGiVdcVaUff1hFLGNkS5IkCdZ6r5QanxodxRFZ6h2B4zj2xY3Si3T02npvFCG85FyhFtL5siy5vnPdd7+dWGBNHHnPlePhMdd3rnNw4wBX3xlLWe7IkcMo9K7HeU2RFYtC5m5V0TdCyxsRfQC+e/ORT3yE63/3Oo89/Bj3PnQHa041WJMkCa9ceYUr16/4MM/XjTXu6/ycoMGaOiFvsEZrTRAG3jYCX7h2211m6Ywsy6hM5T2XZjNPeC/9IVoHGlIWpOyFUaK7M5Jyd2GNddZzEPBcHmEFt/dv8+u/9utsX99mOpnytRe/xtnTZ9la3qLX7XF0/O35CcFbqLixDirnsDgiIZuxFIRNTIBFYq1EWIeRjrquULImCtqoKMaZknSWMhqlvLJnuTIQ3CpKamfZ0AmPdgRvuxiysbpK0kruzHuVdyIuZhnDkz3y2YhOd4XePet0lnv+w2bB1X5kgADdbaGSCKEDLD7l2hQldV5iioJsMkIIRxi1vMTcWsIgIIgVKpT+JI5/k6vKZ6ZkVU5lLVYoknbM5QsxR7OKooZeUrK64ui1AtrtLlGcNCdLUGGMDhNoCNDOGQyOVuzll0VWIGyNcRapA1aX1xGBIJ/NKNMZgQ4RUYDWIWHQZmpHWKeJ4g5RkCCEQzjjQzkX4ybtSd9SUQvvYaBREMYgJDoMsMZg6xodetXG4eEuk8GISVGQz1IvRWTuFC19N67XZTicUlWWdlljHIQS2sDYOWZOIJ3nXkmELwrfsOvPMZrNePXKFcaTGc889wzdbod2u0u306a31GVjfZ2D4122t7cpqtc/E66NQSOpa4trCJ515YNf86wgCiIsjjL3xOKqrGi12gxHA9+hK2uqqsJYT3xNU28RH0cxWT6lKAtv3IdovIXmYHPHmdd33nyhOO9o+Nt1ICQHeweMR2OKqmZ3d5+d27ucPXWKrPjeJhYvnGjvIhLPYwIk3p3XWc85qeqKWta0gzZxFFOaktnMk4TtnkWcCMrCEzITnSDagvCekLW1ta/DmrnVfTbL2DvZYzQdsdJdYe3iGv2V/gJrqrpacGja3TZR4p1bFYra1FRFRZEXlEXJcDrE4WjHbb95WU8yVrFChYp5lIR1FlMb8ionr3J/GheKuB0TX4ypZhXUUMYldtkStAN6rR5xHC8KgjiMScJkcSo3zuBwdBusybN84dqrtWZteQ0ZSGazGbN0RqhDgsibnLbDNiM7QjlFJ/ap3E40IzZjF+MmLXz+1sJh2/r3Jw5ir84JvamnMT6NPNABt49uMzoZURb+fZpjzZxo7YSj2+t68nRlqUsvnZ9nRznnFgXj/PV7owqb+e3PZjNevfoqs8mMrz3/NTodT5judDt0l7qsr6+zd7zH9va2NxF8ncsY/xrYuiGTG7Nwuc6z3MvAucOrqcqKdqvNoMGaqqyoysq/zmHI0dEROEiihGnhsWbOIbsbaxby72/g3cyxZp5qL5Hs7e4xHo2pq5r92/vs7uxy+tRpsuI7i754SxQ3QvhRp6EhEjcqKT+O8jM7Z31suDR4bwWhEY2k2VlDmc04Os64sit4emwYN+THNRXxWFfx0OmazeUWzhZeP9/ELyC8f0yRpgQqoLt5nrjbI2glXl1kjLe7l34jVlGIjLxvjDWWqswo05wqzaiylLpMEcZzFspqig40cavlYwK0l95aqbCVIZsVpNmErDTUddmAQoTSMRsbHS4PBxwcFcSJo9NvE3dWGFnBqIDCOhKt6ZeWvqyJXU03dGgHOoiJWwk4SbuX+HNNoFBK4ozxPCUZ4k1FDdY3xgiTFgKJ1hFREOBMga19KjFSI5RCSEUNlMb4bhUCEYRYIaC/4nk0dc3g6k2KumLl3Gm6nRXStKSztMnoaMxsNsbUtXdiltJzARB0WgnHgzGB0oQNR6Ry/iI1wLTxQGqcSLDfjtb7NayytoymE+q6IooCwij27sANabO2tU9WH81edwo5+NgD05RndZ1T1SGRSMjzgjgp/YiqqJAyA5mAhvF4iLXWy1glSOGtB2pj0FqhlGY8GZNlGVopqrr2HRp/jLrrBHiHS2DvOhXeLSvudVqcv3ierCgIdYy1hvF0wo1bO1T19yi5uLlm5s/zG4sbIQTSNgTdBmu00AQyWHRAZvmM/DiHXTAjs0g+DlWI6irqUzWt5RZFgzVzSb8Sd/xjAhVwfvO8D51sJaD8hjPvWCilCKNwwVOxxjIrZ+RpTpZlZGnGrJwtipRJNUEHmlarRavjc/Oca4z5KkORFkxTbww4V8ZE2hN3O+sdBqcHFIcFruVo99usdld9V6QSi4LJVo37sDO40J/E4yD2BZyTJL3Ev6aBf/yLokOGoL1DMA3WtGOfoh6piCAIKIzvAggp/HhKeYmywI/ajDUIvPpKCMFKf2UxKrl59SZVXXHm3BlWuiuUs5LNpU3GR2PGs7H39dHBgnsj8J41k8HE8zrm1/Jdn2n3zT4Tb+CytWUymVBVFUEUEEcxURB5ygLeGXsymzAdT9+YcZh1i65NURdEdUQiEoq8oEp80VIVFZnMSITHmtF4hLGGbreLqJoOmvLXsNJePj6ejMnSbPFezA8N7i6smfNs7u7kzP+++QOtdouLFy96MrP2fLbJdMKtW7fuvD/f5npLFDcOmvgFP5LSQhA2hY3Ec1kMAqwGK9D4YM1QOESgKcuM4bTk9r7i5allbH33YlVGPNFRPHiuZGttmU7cozaWosiJhPRdCOsBLkpi2r0eQRIjte8KOONHR0I6RBD6CAcpQSrqqqCcZaSjMdl0hMkLTJkjTO0Tx5MWWkqiTocwiRCBBBl4VUpZMh2NGE/GICXONWoBBFIKjJUoHXL+bEJZZ5AIvnZiuXHrGNte48zlB9g8cw7dijmscm4OjsgPtlljwL3LbTa7bawSxGGCkA1dRAic9SBhqgqkIE66ZNMRVZY3agLv6dPudNCRd8J1QdAUNRKLZDQdcjw+xqHodPtIHZKXFtrrrG1dbCp1QZ4XnBwes3rhHEvrG2R5TtiJqZQizUufL9NU+lIInIAwDjgezGhrX9yCd1peXCNAIgQVMMUnxr/Rq7aOaZ57eWiasogcc/7famMxb0Rl0yznvPy/LCp0kCNSv9lmaUocRkylRitJFPqiumqyW4bDE6bTlDTNyNIc2/jXGGsIQ0/KrBqw8ZwhmuuMu0Iz/YtbfxOlCAhObW0xGAzZXD/LUneJxx59lM5Sm9u3b/Grv/l/MBgM37DX4bu6GpCdK5UQntNhsYsxh7K+XT4Hait8NyKrMspJidyT2IkvdhyOSEbojqY8W7K8vkwv7mGNJS/yO0GZTcRBHMf0ej3iJF4UIfOui5POW+A3SdZKKoqq8P44wzGjqSd554V3843CiHbSRkrpuTFJjAykN8pzUJUVw9GQ8WS88MCRjSJUSF/IhTokOZuQ1RkkwACOd45Zba1y76V7OXf6HEk7Ia9yjgZHbB9uMxAD2stt2t02QgmSMGn8mPxzNA3WVJUvWLpJl9F05NU3zmdBKanodruEkU8814GXFkvpfYiGsyEnoxMkkn63T6hDbGlZa61xscEagaDMSw4PDjl3/hyba5t+g+z4DlNVVHewRtx5v4MoIB2mSC0X3YVv1A98HRH2TcAaZ33aell5bsvi/t0d4rF7A7HG0yR8EZMHObLBmjRNiULvSSSVXLgUz3OiTgYnpNOULPVFdW3qRcEZNFgzL2yARSFDgzUL0jd8U1UawNbWFoPBgHPr5+h3+zz66KN0ljrcvH2T3/jN32A4HH7bT/ctUdyAH0vV7o63TSAEWvgZnnHzzBGwVhIisRiQIc5K8ixn/6jm9izh0Ex8MjiS82HAZlLiDMggQGpNr92mqg1FniGUJAgjX4gEGhX67gTONDwciVQgghipI09otgZT5hTTlHQwIk+nmHLmZcthiygMiFptn/AdSlQrQgQhSIFxgnKWMx6PmU7GBIEmCmOEUE32RoWpLaUwaCfpdFq0ljN+70bO2cee4O/+nZ/n0R+EYzHwAABLVElEQVR8L731NYLAZzM5a6mLnHRwws5LL/L8Jz7G7Ze+yL2dlNWOt4inNshAg3XkkwnWGHQYUWQZRVFRFjM67Z7vAghJGMXgJCpJvGRbSExtORkc8OK1l6jqilMbZ8jrGtNeof3o+yhaHfTGaZwQCK3YeuheNh+8jA4DOv0+SmlkGFEqTZrnPotL+O5ZGEdooehGMTtFiclS+s7dIS5zpwDuCGghGOF4s7xyjXXk1vwJlYR9MwAOhxP+usrzjCiOqesKUxuyIqXdTijKApVJjLFYW+OAsqhI08x3IYX3uBESirKgLDxgFmVBWdfNLNwXuXPirFfu+eLqm61uq02322bn9i0efehJPvD+H+PMxVNIqXjy7U8QRgH/8pd+qeH0fO+tuUR4vunVwkcQzI3FhPUbv0Ri8N0H6TzW1Ec1ySxhYibMCclBGFAmJVgIAm/U2W63/fuYZ0jl84RaDdbo0Hcn5qRliYSARYI1NNdEmZNNM4aDIdN06rs1xtEKWwRBQLvlR2UylEQt3wWRUnpF0qxgPB4znox9BzmMUQ3WVLbyxn3CIJ2k3WmTrWTk13Mefduj/Pzf+Xl+6L0/xNr6muf6SE/wzYuck8EJL7z4Ah/75Mf44ktfJO2k0GCNqc1CVjydTqlrX4BlWUZVVMzyGb1Ob2GsF0ex7/q0El/UCIk1lsOTQ1689iJlXXJ2/Sx1XbPcWuZ9j76PXqfHmc0zvhumFZcfusylBy8RhAH9pT5KKx/AqTRZ5hOslfAdmyiO/DgujjkoDkhzTyb+xsKGRiz5Ro+k/sR1aJ3vSn0D1rwpxVTzPIz112Qcx1QN1qR5StLyWCMz/x7Uzo/rqsIngc9jKObGfEXpi+y7DRjn8m++AWsWIP5NVrvVpt1vc2vnFk8+9CQf+Asf4Mw9Z5BS8sQ7niBMQn7pf/qlO7f9Gtdbo7hxUDfPXAkIhSAQBomjQvm0cCexOIrKoWWMFA6hA6oq52RccDyMOK69u7EA+jJiSYOUjkAqoqi18LDRWlPVtfe+qUtUGKCT2Oc4SbyCRylUE/zYMKEwpsaUFaaqsaVFaU2720XKHsrNQ8X8rFsmMTKOsXi/G2MMxSxlNp1RlSX9bt8beDUnauccppbUokI7jVGSUEdcOhvxl952Lz/+f/kHXH7ynYiwtTiJ4wDls7PCMKC3ssylx59g58pVvvo7v8rJ9ac5HVoSHRLUIWWRY+uKpNXCOkGeTQmjmCROkFhqY9Ha+77YqsRZgWq1cA7GswmvbF9lZydjbU2TIQjvfTvZ0gYf/e3fYnwy4P/59vdjqwprDEHsAdpaS5HlxEnHRwRISTqdNcZjGpyj3erQjkOiOKQqS0yZM2q4f5I7QgGL794EQIQgfTNBhzcHYP7E/TioKouzJQgoi8JzJKyhNhWBjhBSo5TPysGJRRdAa01tPKEU56jLGoHFmIqqqqlrX/4J6UMFjLHU9k5JaL/FqbDdbjMaDSkKw5lT57jnvgu89OJzrK9vooN1nnz729n60IfYub37Zr9Eb+y6uzU+7zII333xw1Hf3XA4XOmIu96oL9ABRVVQTkrCoVcczdUfkYx8EKb0ipRW1Fp0R/x7VJPm3lMmCAPixMtckSwCISMd+Q5SwwOqTe05DpVPptZa0+126cnegvyqlUaFijiJfZFwl3Ff2mBNURYLrEGw4JLIWlI1WCOVxGhDeCbk8sOX+Qe/8A9415PvohW2Fq8TDpxyC9Lp8soyTz7xJFevXOVXf/tXefrG09jIEqqQqI4Wm16r1UI44XOgQo81Fm93gPbPo6xKhBW0Wi1w3sTt6s2rZDsZes1vUU9efpKt1S1++/d+m5PDE374iR+mrmtMbYhij9PWWvI0p5N0PL9GSmYN1milcc7RaXUI45AwDj3fpMj5s4h7b3aBA98drMH5cVjpPNYUDdYYa6iM9yHyAhKPNeJPYE29uH7qskkLNxV15d8H8AUNsFDkLe76z8Ca4XBIndec3TrLxfsv8tyLz7G5tsl6sM473v4OPrT1IXZ3vj2seUsUN/NTuaQx7sOhhZ8QWicxTjWFnyAvPOM+EoraGMaTIYeHinEVkrsMcMQozgQxiSxQkWTjzBbdzhJ+D5AgHUEYIitBbSqy6di345IA4azn4yjplSXWgnS4ZtN1xvpuQzchaAVgDMI6hHXYuvTOxFoj4gQnpR/tVKbJRPJJzkv9JeJWiFTKF0zGgblDXguEwJmQwBp0lJDHjuO9Xc7nOWHYWsiSEc3xAgE6QFiL1gHr58/y3r/587z8uc9w7aO/zHlRkNQ1Uij66+s4Iaiygv7qmu/+OEeeTqnLjCCJcGWO6PWxdQ3Oj0hu7GzzytUZk1RSxS3W3/GXeObgKl/+4AcZH6RsXb5IEIbYylAXJUEc4xyc7O0RyZjLpx/hyo1nqOuKLE+JkxhnwNiapNOh1+/Sarepy5pAQCYcCu9rUyoBte/keK9dN3/WbzLkfHeWtRa09x8pS5/vkyQt6qokTWfoQJHnOb1uh0ArXI1Piwfy3J+arDOei5HnjCfjRiHnfZRcY5ro1VHz64w/dbwmhWCp32VzY5UfePIHeOzxRyjrgq985cu847F3s7S6TKfd4fKle773ihtYXDTzTcuKRqLq5J3ODQJZeqxR0vNHBpMB8kASVRGZzRYFUaxjClkgI8nW6S2WOkv+5OrkYswkEFSmYtxgzTyuQCm1cCi2xo+lyrIkL3NPrBWCpJMQJJ4466w/CZe1T75WWvnDiZR+s2+wxtZendTv9YnaPiRxLhl3d2GNEF4ebqwhiRJc4tjd3SV/KKcVtu74IYk7Y7xABwseztnzZ/n5v/XzfOZzn+GDH/0gJSWm9t4y6+vrCOFFDWurawulzDSdkpUZURKRVRl91fc+TM6PSG7evsn06hQ5kyRxwk889RNcP7rOL//KL5Pup1y4dIEw9KOsMit9ceNgf3+fUIY8fOphnr3xLFVdkTZYg/EKrE6nQ7ffpd1uUxf1YiQ5X0IJH3Ow6Br/eUCYO2uhEL4La1pJi7IqmaUzVIM1nW7Hf199ZzxX5EWDNT61PsszxtMxZVkyl5r7rDx5R404v37+FKwRQtDr9VjdXOWpJ57ikccfoTQlT3/lad752DtZXvNYc+nSpe/N4gZ8ZrdqSMSR9IZ1BoFBzg0lvZ9KJSmFl7aaImM8tozShMIKDJ6z05Mhq9qy0qpZXm3hlOL67R36/R7tpEsoQ7SQyChAVTlFUZBNptiq8pEJQdCEbBYIpOcz5CXOWqRSSB0gtEVqhYoCaLozogiQoUKGEU4ITGWxVe3VVHUNzoe1Je2G1zOP6Wta03dOEN5rQlae2a4nx2w/9zXuedvjbHSX8Ee++faOzySSCqE1KghQlUYFIZd+4N24QPPMb/x/eVtcstpdwuEl2FE7wrkaawW2LqmqirIo6fTXKIsUT+G1mLJg+/Y2X3lhn+0TQaYU9//IT/PM1a/y3Jc+j5sYrIHhyTG3rr7I6fvvQycRzlqGh/v8zgf/NTdv3uAHf+xHGH3omFtHh6Sz1IOtcwgrCYOI3sYGKIlwPp4is97jhkjTljAbF0gg4o7X1p+f5ahrS2oLHI4kbnmugmhiF/ISIpjNUsJAA14Sn6YpURSDcAyHA8qywBmLUiE6sFSNAZZSPhmchfRZ/Bm8IUFe5NzY3ubh+x9i89QG03TCaDQi6misqZEq5NSpUwvp7PfSWhAcm9bgXLkxD82EZmxV3VE5ZUWGnViSNFlwcQSCUIbYwFK3alqrLbTW7Nzeod/v00k6fpwlJEEUeG+comA6mVLVlQ+GbMZIhfbGfcb4+IV57k+gA6z2G1IQBV7xYi1B4WXeYeBv31bWn6CN8eOBBmvidrwgqcId7575B8g1WGMbrDmZnPDM88/wxKNPsNRd8orGOVcFvs7dNggDdKUJg5B3v/Pd6EDzP//G/0wRFyx1lhb5XVE78iMOi8/jarBmrb9GVmTedBBLURbc3L3J3gt7iGPf0frp9/80X7v2NT73xc9hxgYMnJyc8NK1l7j/gfuJ4ghrLYfHh/zrD/5rrt24xo/9+I8x+NCAw6NDZrPZIv1aWh90urGx4btVziwKRiEEOtKgoBgV3+1L8ru2HA5bWwpb4JyjdRfWuLuwJp2l3kXbtxNJ05Q48sq5wWiwcCBeXP93YU1dzbl+YnG732rlZc729jYP3f8Qm6c3maZTRqMRQSegNt5b6jvBmrdEcTPnVAscgfQjKSHAWImZfw4dGARZ5X1ZamuZzWaMR5KyDhunEC8j7ytNJ6jp9B1Jojg4OuH6jRlLKwPe/uj9JDrxIxgJIggJcVDX2KJxAbWNIVZpfdel8o66CAtWYiuf4i2okdorGepZStLpEPTWsVZgygLXGBTZpmUXJBE6DJCh9gQi5xAqaObMNcJahJILFZJrTthhXXDjled5+atfpL+xRdRd8V0L5635F/PaRtGlgxCpS6TSnH/b40zHf41XP/6rtJMS5xRBpBuymv+xMi+RQhPGbQhq8klBXZcoFXI0nvC5Z/Z5/sByZAxv/8H3MFZjrrzyPLULSAJBLmrK0YRf++f/L45ub7Nx7h4SnfA7v/o/0d08w9ueeAfPP/NlXnjlRWZZTlrk3niuMoAgDCPWNrdA1Cz1EkZHORNr6UrBysYGWT6DccE8gDtGYIExr00KLsSfzi15K6z5Y5Oy8SsRnvNVVjnTdNJ0WyQCX6SEofcY8fLvGWmaUVfeodYKh9aKvIQwiLyMuSH7WecTyH2kw5/+gmgtEcoxm5RUlcDYmr2dPW7f3ueLX/wCP7byF4liSb/fXwTkfS+thZGf9CMpBEh7J5LBc0ubzo3whcIsnSFHkrAOF7cxHw3Vusb1HCpRDI4HTK9PGawMuL/BGmt8oGYYNnLbukLlX481rnS+OKl818MK6zfgyo8Marwb7Hzk1Ol0WO+tI6zwBmeuGQU0WBMlkS8+Qu0ztJwjaLCmNt5oTSq5UCHNMSSvc55/5Xm+8NUvsLWxxUrXp1b76+cO1shG5RgGIaUu0ZXm8bc9zs9MfoZf+cNfoUxKVKHQkc85c6bJbMortNC04zZ1UFNMvAlgqEImkwl7z+xh9/1o7d3vfjdTPeW5l59DO40IPDdqMp7w3/6//1tu7t7knnP30NIt/tWv/CvObJ7hqSef4ulnnuaFl18gz3KvBqr9eE/gHY+3NreoRU3ci8mPch9VIQXrG+ukReqLm7s4N/P3+zWtt3o7ed61lL5AN5iFKeXdcRUKX6TcjTWzdOa5N6VZBGwqraCA6G6sYe72Lxq3/j/9BVHafw6KSQGl767t7eyxe3uXL3zhC/zFlb+IjCVLS0vfNta8JYobIQUKQSghFo5A+PiA2glvbNdcabVzzAqoaoGUJVlek+cx4POQAjRdIehJRaQLWi0fu753MKMoJEIUpEVKK2ljrDfOC6QmjNrUdQ7OYmswdQHOBzXa2pt6qTBGOEud15TFjDrLsGXl002B3uktovVVLApT5d4a3QHOIKREa4kKAt/5aRj7NOQ55vbvSiDqObvEHyuVDujGgvVqzPWvfJEzl+/lzH2PUJQlxwe7HB/ukbQ6nD57nm6nj3Q++TYI/ExZmYD7nnonn92+wq3tL3K2jTfzk34mXRYFtXEoqTGyRlhJELb9CE1a9o5O+NpRztW6pr28zD1vf5jtGy9y6tKTKBVR7dzEfukFhHAcvPQc/5//5h8Rtdo88f4PkNU5B88/y9t/6EdZXt/k1u19PvXpT5BOZ+RZipCh504pyZmtdQ4O99jcXGd0PKJwBitg7dQWuze3G86NI2/GliHirnP2t15v5cIGGrxxLDyRoiSg0/NKtzCQoGuEskSxptPueOO+ZlOw1hAEAUp5C/ulfp/d3V167Q5ZnuOsIa/Nggz9rXg286W1pq5LVpZX2Dy9ySuvvEhAwPv/wg9x/doNRvtDan1CkedvqDX9d2MtuhCyUUgJ64sZ10hVm46Mcw4KELWgshV1VhPnMRLfzdF4R1klFUVQEDZYM9ufIQtJIQrSPKWdtBejJC017ai9CL2k9rJc4Zr7aDgNcRhjG6yZFY2BWoM1AJunNlldX0WhyKvcS2Wd78pIKf3YKwwWsmcEC6KuuAtrXO0WjrwSr5oSsWBcjvnSV77EfZfv45H7HqEsS/YO99g73KPdanPhzAV6Hc/9mRc4VVURmIB3PvVOrty4whe2vwBtUNZLuqWUpGXqwyulppY10kraoSddW2k5OTohP/LPZ2lpiUeeeoQXbrzAE/c8QaQjbu3c4oUvvYDD8fzLz/OL/+wXabfa/Nj7f4zSlDz73LP86A/9KFvrW+zt7vGJT32C2XRGmqWE0jtLSynZOLXB7uEuG5sbjI/HGOcL3K1TW9y6eQu46zrgT0YjfMv1FscaYME7s9YStAIv4Zf44lHXWGXRsSfE13VTgFalV0cFAaLBmn6DNZ1OhzzPF+aSCwn4a8AapRWVqVhZXmHrzBYvvvoioQv54b/ww9y4doPh/pBBMCDLsm8ba94SxY2KIiIl0DUEokYIi3Waujmhq+Zr7Sxl6agNiLKgzAVF7ZOUJRAJTSQ1XWUIYksQSsbTktEgBGmJI6gN5HnuFQAGVKBQoUaFbUxdYfOSIp9SVxWWqmnBRrjC4qqSIp1SzGbYoiZQmqjdoX/uDK1TGwgZYKoMZ2qwNVJqhNYIJf0oSwqElIg5qdE5nARnhO+6iABBjaigtjl5VVJZ732xJiTHe6/yB7/xy7RWP05e+nTcIs+xAk6fOsuTT72HCxfvResQpWWzSRnCuMWD7/0RPv3c51nWOTpso0N/KizKEq0jhIBARyANdV2B1NQOTiYZN2tDHsCjD99L3O3y5Ht+nN7yCkJLbn7pi+w8/RJtbSgqR5aV2LTiD3/9VymEoLe2wWwypre6zqOPv51Pf+pjKOkwtkYhcUoDjjOnT3N8coiQsLrZpdwdI2sHSpJXvj8z97rJgRUBsRBvihz838WyzmKr5vRcZoRlSCtuE8VJYx7piJOQVisiSZbpLy2RplPyrGT/4AgdhCxFCceDQ6q6ZjKdNXLcOfFV+FHua1AcJElCmha0AkdtCz760Q8zOJ7w8AMPcTQ6Ye9why9/7WmvinHfWwPCKIk8SbLGd2WE9V2B+YiXufePxVUOjG+bi1wQ1MHi37XQaKmxymJji4wk5bQkHIQ+bDL0Y5hvxBodatphm6quKPOSaT71ZmoN1kQ6whbWcyCyGbPZzHc7lKbdanPm/Bk2T20SyICs8jlOta3RUqO1J4MGDdbM7fYXniMNgVlKSShCKnygZ2ELiqrwUQ6Nz86VvSv88m/8Mn+09keUZUmWZ+R5DgLOnjrLe556D/devJdQe96P1hpTe97Oj7zvR/jcv/wcuc5pB21kq8GaovBKMOEjGIz0Xam5bD2f5JjKQAD3Pnwv3W6XH3/3j7O6vIrQgi9/5cu89PRLmMDgKj9CqdKKX/n1X/Gdl9V1RpMRG6sbvOPxd/CxT37Mvxe2RuIjLxyO06dPc3B8ABI6mx0muxNc7flPprqLBPsNxPPvtfHrn7ass4gGa7IGa9pxm1bc8l024QiTkLgVkyQJS0tLTNMpZV5ytH9EGIQkUcLh4JC6rpk1WDPPMxP4VPDXom5qxS3yWU5XdyltyYf/4MOMj8c89MBDnIxOuH10my9/9cveOfnbxJq3RHETtNssb2wwubGHEg7jJJUTlHaum/duvIVz2FpQ1H5umBeS0vq8HC0cXSVpS2jpkijx5LDR0JJXbbrtGRIoy4w8DIiikKgV+QQEW6NVgA5DqrzEVjWmyL2poBbUtqTKBhTDGbaySCmIooj+qQ26Z84Q9HtepVCX2MoHdwqhvPRWKWQQNZ4uTXNTSM8bcXUzGhKAwtUlRV4xmgzYHxxxPJkxySqyGpR0RK2IZ65co+6us7K+Rbe3RLe/RDtscXxwzFe+/HmqquKeex7wZlhao3WNs5qNs+cRpx/ipe0v8vimQKYxDkGn3/OFl5DYuiLLpmilkFJQWxhMMzLrqBVcuHQPDz7xGL2lLbQOqW3JcOc2I6toGeNztip8MGflKHEcHA443N2jt7JOXmQ8/uhjrC4t4Qy4pu0rEaxvbBKFXkra6bQI4xwzLTg8OaYocqS4k+NUAyfOc3Le6l3g17qsAylASc/xyrMcLUImdszy0hpxlPjztVDkecl40gQElp43UOQFg3zKyfEhRVlSVtVd8tZmw36NUspuu81gPKTT6WCsYTTK2L61z32X7md75ya/+aEP8cPv+iFO0hFSqu8pOXi71WZjY4O9G3v+JO+8bHpxypwrg5xD1E13o7bIQqKM74Q44Xk4SChVCbHHGjuytKs2s/YMhN84gjDwZnytaEFqDZT/u7IoMZXP9HEN1pS2ZJANmA1n2Np3WqIoYn1rnbNnz9JrsKas/c9ivIU9wvMdogZr7jYpBBacF4FAoShNSZVXDCYDjgZHXsWZeZdiJxzbrW2uXrnKenedrfUtlnpL9Ht92lGbo4MjPt9gzQOXHvDjOe3Hc9pqzp09x8NnHuYLN76A2BTEWYxwgn6v7zlGQlLVFdN8iirUQpGTTn2OEQouXrrIY088xtbSFqEOKW3J/u4+ynpyt7CNukCCq/yYcWAG7O/us7GyQV54SfvS8pI/FTVYIxBsbmwunI3bnTZFXJBPc45Pjr166htA5Y0Oz/x3vuYjtyaLLM9yQhEytmNWl1ZJosQ7OgtFlVcLrDF3Yc20mHJ4dOgT3+/CmsXhwL42TGh1WozGI9+RtjXpKGX/5j73X7qfmzs3+a3f+i1+6F0/xDgbL8wsX+t6SxQ3KorZfPvbsdOP407G1E5SOUnjf4tYdG4cVe0YzRw9CXmmGgqxI5aghaQtc9phSbvtK8ciVzgn0dIinWSYjkiLGaauOLV1FpyhyAqMtkggGw3AWsKkg60LsuGQuqipp/6xJO2IpNuic3qT1uYqutUBPE/GGX9ClkqAEj6TSTZeGtwZjzjXjKyEREiHs5ayLDg4POKF7V2+evOEq4OS4wImtaWwhiUleHI95Wi5QpiQy/e9jQ/85F/l4r0PobXm9s1rXL/2EtvXXqbV7rCxfgohfIvad3FiHn7Xe/g/PvX73LfUIkwSolaClA5hPaGvrkqcNUgVgHNkRc7xJMVaQCrOXDhPp99jOhsQhi2sq1m/cJbg1DqznZ2GHA2F8biDgDovufLKy5y55x5effFFfuDdP8hyzwfZ3WmbC7rdLnEUkRU1SnnPocLmnJwcU5XlnyhgamD25+QkBf5kKKUgjALiuE2r1SJptairmiyfobTPL7uxfYUoahEGMcZYhsMhs+mM0WTE3v7eQrkwz40C9+2P5aQgzwqW+ksopej3VrD2Fts7t5jNMqaTjFeuXeNnfvY/5ulnn+HK1Wtvwivy5qw4inn729/Ox6cfZ3wy9qZ2Ti7GMwuORZPV5Ga+46EytRhJIX3RUMiCMiqRHY81Klf+thqsGaUj0iKlqivObp3FNFhjtQfowXCAtZZ20qasS4bDIaYwmGnDD2lHtLotNk5tsLa1RqfVWRCKFxEFyv/Wd2GNfwL+i3E+40cKr9yy1hN3j4+O2d3e5fjmMeVJCYWXCRtrEEqQrqdUyxWhCXnk3kf4qz/5V3novocIdMC1m9d46epLvHztZTrtDqfWTy3GYVJLYh3znne/h9/75O/RWmqRyISkleCU93Sx2DtjDuVVY0VRkI5TaExVL1y4QK/fYzAb0Ipa1LbmzIUzrJ9aZ2dn585znDdahPdjeenll7h0zyVeeOEF3vvu99Lr974Oa0SDNVEUUeeexxSEAbn1xU1VVt/0uvnz0rWBZjQrBWEY0opbtFseb+qqJi1SZOCJ4FdvXiUJE+IgxlrLaDBiOp0ynozZ3d9dYM08N2qeWfftLCklxRxrtGKlt8Itd4tbO7fI05x8knP12lV+7md/jmeeeYarV6++5tt+SxQ3Qgl6l+/Bzqbsf+YzlJN6YTDmoxkctfNfjYPBCKI2GOuzpwBCaUhkSaxqksgRKEVVGqoyIhD+iSohqIqM3byirGvW104RKEUQKoo0pUrH5NMhK6cuELXapIMTSjEDEdBei+mudgnbCbrbQXdb6CgGHWDqajHDF1o25mASqbTvSzSKDO9QKhsarJdklkXJzt4+n39ln89fP+aVYUFqvchUCC+BLykY1YajSiBUzObKJrPREOkUSyvrvPL819i9dZMHHnyU69dfZPv6q/R6y4RhvLAcxwnO33cfIxIO05KlxFEXBUGgQSmMKagLz6BXUuKk4mR6yOGkxjZz5263g1YJcaAJoxgpFXpV0lpa4ujqDh0BoRNMcCQIKue7N3s3b/GpT/whrobT589gq6I5CVlvEugsYahRQtHv98nynChOqN2EbDojL+tvukF/72VSf+slJZRVxfHxMVmWk6YpVVWSzjKytCDLa6w1RGFIq90GDEVeURQFVWXekA6WQFDkXi3S7XUQQpFmKVVdM54MPaE1Ldg5OGRpaYV/+J/9l/zO7/4eH/r933oD7v3NX0IJ7rl8D9PZlM985jPUkyZXqDnNzgF6AdRDoIMPbWywxkhDKUsqVeGiZpxRGqIiunOCFYKsyBjnY8qqZGtta+FLk6Ypk3TCYDrg/NZ5Ou0OJ4MTZmJGIAKitYjeSo+4HdPtdWl1W8RR3LhOVzjpfPeowRop/chFIhfqr3mRYH0K3AJrDvYP2Htlj+PrxxSDwsc3oHz3BygoMLVBVIK4wZrR2GdAbaxs8MwLz3Dz1k0ee+gxXrj+Aq9ef5Xl3jLxXVgjnOC+e++jRYsyLXGJL1504I0LC1NQNFgzJyYfTY+oJ56MKpF0uh0SlaACtTAfVKuK5aVldq7u3PHsuYsj5XDc3L7Jxz/1cWxlOXPhDEWDNRbrjVKd9QaKDdbkeU6WZIzdmNlkdidn6s/5ElJQ1RUnxycUWdFgTUWaphRpQZ3Vjdt5SLvTxjpLmZcURbEIxXzdjwFBUXis6fQ6qAZr6rpmOB76LLQ053D/kOWlZf7hf/YP+d3f+V0+9JEPvabbf0sUNyBorW8hH4R8MODoq8/j8kbR0Py7bT6mAhiNJasth1IOXTkCWZOogkjVaG0JIn+6skaicGghUEKgpCPQmqmsKU1NaQxBGKIJsaomN4J2f50wSbDGUIxGJP0ucbtN3Gp7IAk1oh0hwwgavgiOpmtDQ55TPtqhcQpdAKWgSeIW1FXFwdERn31ujz98dcyVyZTS1cRhzDkNVZljdUW8oTjYl7RkzNQVyOGY49YtsrxkZ+82lyYjnnv2BfZ3t6ltRXdliYP9XcbjEaurIQgvG8Y62r0+S+tb3BwdcWnFEkiN0Mq3x+sKIQKUdNRlQVnl7B2fMMgc2vcwQUKr02V1o421vjvQ7fd48LEn+c0vPgtCsJEo7llK2FhKCEONU47j3Zd49mTCB37qJwjDmKLJ0bLOIq0DYRHGoE1Fv99he3vbO+uCN4t6Iy3I36LL2xw4ysqSphXHYoZSEil9svzdROA0K0izN0eu6hVbliQKfSctnzEYnACe2ZYkEdbC3uFtPvPZz/MLf+//zHve+97vneIGwdb6FjwIg8GA57/yPK5wizGOaLBmMdaZSFzbeWVT5ahlTaEKauWJly704ZrKqIWCSgiBk97wrpb1wq4+CiNCEVIr7zez1l+j1WphjPGt+V6HTqfjk7iF5+dE7chb4zd8kbkqCjzWKKkW/JpvxBpr/Viragrmvef2GL0yYjqZUrvaj7ACQV7mVKpCbSjEvqCt2hSuYDwcc6t1iyIruL13m/F0zAvPvMCN3RtUtmJ5dZmdvR1G4xHhangnP8g6et0eWxtbHI2OsCueRKwDvVAvBSLASeddbivfNXFZI8lvOlDdTpf2Rrtx07Ys2SWefPxJnvniM74bkyiSfkKylHhVlrK8cvAKk5MJP/nTP0kcxn585wzKqgWB3BjP9eksddj+2vYiu2guYf7zvpxzC3PIKq2YidlizOpq93V4W2SFT01/E5aQPrdsnqGWZimDwQDwhXmYhFhr2T3a5XOf+Ry/8Pd/gfe+973fa8UNCCWJt9ZZf/IpXFlz+2svI5z3vhH43CnbVOdlqchSjbaWUBUEVITKEoWGMLTo0B/FhDUoF/jCBoHCEaiIpdhhZOM4XFdMByeMj/boLK3SXlnGmJrJ7gEQsLx12qcm1zWGikBplPRJ1jjXSL0r3/rVGilVIxuXvktj5yWZP5MYUzMeT3n26jEff9nywhCsjrnvvnNsrKwSxT3y4wPs+CbDcsjl90VYu8Jod5Xtay+yc3LCdOeAn/6PfpKTkwF/9OFfZzyaocOYo/1dDk8OUVIymUxYXlnDWEtdVRhTYayh0+9x+8a2d8CtDVU5RUiN1oEfZQiNEzlFkXI4yMgrn84uhODwYJujwx1OnbnsLevrCmsclx58CMKQS13L+x89y/pKH+sMk8mYK4cDXjkq+dv/+L/k6OSEIq9odZcwdU0QeCKzaLgmsrIoCVmWcjTM6Ta8hz9H0+7XvhyY2r5pERN/2tJa0enE3H/hEqe2NhkMhyz1O9zePUS4wF/7zts23Lx1k9s7+ywt97/Lj/L1Lakk61vrPPXkU9Rlzctfe3nhywF3CLgOhyoVOvVy6kIVVFRYZTGhwYYWF/mNwFhD4AJf3DRFRqQiXOy7E6Y2VHXFYDhg93CX1aVVVlZWqE3N4d4h2mrOnDrTOJUbKjyJWMkmybrBmqrBGq3v/JtELtyJ7yZG16ZmNplxdPUI+5KFIUQq4sy9Z1hbWaMf9zk4OeDm+CbDYkj0wxErZoW1vTVeuPoCJycn7N/a5yd+9icYDob82u/9GrPRjDiI2TvY4/DkECkl4/GYtZU1rLWeHN1gTb/fZ/vaNuaCV9FMxhO01ATaj6ICEZCLnLRMyQaZJ7k29l3bB9vcOrzFvWfuXVj+W2N56MGHCMMQ27WcefQMSytLGGeYTCacHJ1QHpb8w3/8DxkMBlR5xVJ3yZsKBnKR+i2l9wUSQpBmKfkwX3Cs/r1czo8kv9tLaUXcjbnnwj1sndpiOBzS7rcRuwLtdDNx8DvnrZu32L+1T3/1tWPNaypuhBDXgQl+wlk7554SQqwA/xa4CFwHftY5N2i+/78Cfr75/v+7c+7D3+r2nXPUtiJsx2w+8AjaKYZHh9Q3j9Gi4drgFqnhEkGeB3REjj+mWJSyhKH/LQOLsxXOREjhUBh8hLRAYGgFMZUEZwyj4yPGu7f9DHtZUKapl3IXOSunzmCtQeiIIFTIKMSaGucszlgc3p/GGYtUGqX1AlocNJp86yXmVpJnKddu7vHpK46vHobsTrc5dXaL/8c/+e84f+89fPEPPs0LLz7Dc8NDdtOS41HOF//tGC0PiZxjpRPTTjocjlOOR0PCTo/773kXa6tw9cZL7N1+hVeuvMKFe+/n4j0P4Kz32KnqirosMXWJjkLGmfV+ONrnU4GXhNrKjz2stUzTGYOpoXQCBSgsJ9f3OLh9SKu9grW2Sfc29Fd7PHz/AyyPXqHbiijTKYdHB9w8SvnyTPDjD59jtR1we3fGc1+5yrt+6D0UeYoOQoQTjQOsY5ZPkVJQlp5TUCOJHf9+Fjf/jpaxlsFozMnxmK3Tm4SthM3V8+ytjFDqjtvoxQvnwRaMxyOSVviG3f93A2sqWxG1Ix554BGUUxweHXJ889h3Vt3cBedOJyfIA3I86ddivUIqbH4H1t+ejb4ufBN8CnYcxDjpuSbHJ8fcvn3bE2KXvRtvUXvJ+NlTZzHWEOkIHWjC2PuLWOc/C3ODP2ssWnll1Pzxgccay7wbKsmyjL1be7hXHeFhyM3pTdZPr/PP/8k/5/J9l/n0Rz/Nsy89y9HoiCqryEc5438z5kge8aJ7kbgT0026zCYzRuMRw+GQd158J2JV8PKNl3l552VeufoK91++n/vvub8RVHisKcuS0pSEUYjJfCp6qMPFyMzz+/zYwzpLOksxE7N43ayz7F7f5WjniNXOKs46xlOPNb3VHg/c/wCvjF4hbsXM0hn7R/ukRyliKjjz8BnCbki6l3L1K1f5wR/6QdI89S7RDdY445hkE1Bgyzuv778P46i30rLWMh6OGR+N2Ty9SavV4tzqOUYro4Vrt7OOcxfOUbjCdwg7rx1rvp3OzY84547u+v9/BHzUOfc/CiH+UfP/vyiEeBj4OeAR4DTwB0KI+51z3+IQ6kBIkrhHK2lT5hmrjz1COf1jqkFJ5RzGzcdUXl1TlREmroi1pRM42okjDC0q8EGE1kKgLVoZsspLwKvKEcbe0bcVdzEIpoMTTFHR7neJ4w7VbEoxGNJe6SECP4fG1MhWC6RFhQnOCOoyQ0chOOeJw6oxwhJe7TJf3lirYjgY8+nnbvOlow2ujmZMqle4/8GH+fGf+llWN88gIsHh7JCPf+ojXLlxhZMiJ204RhLHkpKUNqXXjXC14VMf/yg/9R/+J9z7+OOEgeIrf/xRvvTHn+PGzZs4BPYvNF4DzvogxaLA1hV5mnl5sK29KSE+IsLisLXBWkftLJPZjKOJIHWGzMFWd5m2ajO8OeDTux9hNhuTpTNPhN4/YOPiRfKnrzMYHpNnU/YOK748g/c/cJYfOLvC/t42vdVlTg4H/PGnP8vb3/1OdBBB5HA6wNiadJLSWm6jtU9KjwWE8OfNjvgtveauuMejAbv7+7zr3e/m3LkLZPWE/d0DwiDEWEugNN1WG1tZyqp+ox/Gm4Y18+ymXtyjk3TI8oxHHnuEP578MeWw/LquzZxgHBURVVJhtcUFDpc437UJ3MIu22qLUWYhH6cCYs/D68QdBILjk+PGBbxDJ+4wnU0ZDoZ0V7qoBmtqU9NqtbDSkoQJwggv141CnHNopT2JWAik+HpTs3lnZzKcsPPcDhuHG6SjlJfLl3n4/of52Z/+Wc6dOodKFCf5CR/51Ed49car5Hn+dVwjqSSpSzEd33H56B9+lJ/7D3+OJ554Ah1qPvaFj/H5L3ye7e1thBP8xA//hL9/ZykKz6cp65Isy7DWUlsvuZfIhcmbqb0zsLWW6WyKmIoF+Xm5u0xHdxjeGvIHB3/AeOrVOkVVcLB3wMV7LnLty9c4Hh0zTadUhxVM4cwDZ1g7u8b27jZLK0scHx7zmU9/hne+551EQYSLfEaYsYZsmtFebqO05wgtTlDfx5rv2ppjzWA0YH9vn/e85z1cPHeRmZmxv7O/iPnQynvu2Np6TtRrXK9nLPVXgfc3f/5fgI8Dv9j8/b9xzhXANSHEq8A7gc9+qxuLooQwinBCojoxK/c9RD1Juf2Fp6lmBiEcwvmujRICZSXSalRQ+ApcgFTOuw5rhaktTlmk8onI1gmKsia0iiDsEOgIW6SYNEMiCOMQZ2uwju7qKq2lPi6Q6FYC0gcZChkgRYCKFXXhxz1SBQglcUI0s/BmfOZ8JyRLZ2zfPuDDzxzwcnWJw8khOi55+2Pv5fL9b0NKyUd/9zf5yG/9Gs/deIX92ZTc2UXkhEQgUVQ2YlYHBCXEoWNwdMS1l57ltz74v7Bz4zqf+fTHOTw6BFlSZDntdhvwpLEizcmzlLqYcXJ0zJqWiMY5WchmRm994KgTDmMtJ+OaWeEVIi3haI8HfO1jv4twil/79Ec5nIwQSNpBQKeT8NClh1nfvJ8rt75CKC3PlZJHzq3xrovrOAm2yIk6azz13nfxyrMv8ge//WF+6Ed/jAsXL2KagnA6mbFxapVAayye65Mg2JBwy7x5KeDfX3eWtZYw0ERxyMHBEcPRgG6nT6gU73jiCWbZjI987BMMxgNevPISP+kcWTZ5sx/WG4o1cXQnaDLpJDx030Okk5Snv/A0ZtbEEzgW6hrpJNpqigZrEOBUo6LSCls33Rzld0bhBHVZo6yiE3aIVexHL1mGQBBGIbX1XLKVlRX6yz7JOmknXp5rDYEMCBqssYUf9wQqQCofh+CT3t3CObiuatI05WD3gP2v7XOpwZoiKnjvO97Low88ilKK3/7wb/Orv/WrvHztZSazydd5h8xl4qENCasQCnCh4/DokGdffJb/9Vf+V67fuM4ffuoPOTg8oJQlWZrRbreZZ2dlaUaap8yKGceHx1550zgnuwZr5pyOeWJ0Pam90gzvzDwcD/ndj/0uyik++pmPMh6PmYeQJp2ERy49woObD/L0zae9Mq2UrJ5bZeOeDVDeW2its8a73/tuXnjmBT78oQ/zYx/4MS5euOgdmm3NdDxl7fQaWuuvK2SRLMwSv7/e3GWsWXQpjw+OGYwH9Nt9pJI88cQTpHnKH/3hHzEcD3np1ZewzvqO22tcr7W4ccDvCyEc8C+dc/8K2HTO7QI453aFEBvN954BPnfXz95q/u5PXUJIgjBCBV6C7JSgtbFK/8H7GOzfYvrSDrIWBEICngMSCoE2ETaoCCNLv6sItcbYktI6rBMEWHRYI2c1xgrKDPJWjY4cOtQUsykmNSStkKTTI05aqH4P3YoQWoP1idssTJy83NG5GiElZZaBqwhi35JWQuMQGFNTZiknR8d88coOH76ak8YPkVXHrJ9a5vK9D3lJ9XTEM1+5yR/8we+wPTxmYuumqPEcHYUkFgkt0aOtV2hHy3TCCCOPiaIjgpbkQ7/xQTq9PrWrabUCytJx8Z77WN/cBARlWVBWGUU6ZjY4Yn93n/vXI4IG3P0s3yCcwxmDoyLLp+we1kxqSyAdj3cCHliTXLcBIlLce/F+9N41lpd7xJFG4IjakmuHI9Q+yK5GKcFTGy0CobBIIimxoSYIAt73F9/PxrObVFnuQb6GqioZD0ecDQPWV/scHU4wzYXXApaF4OjfA7Lfv+tljCEvc4qiYu9gn9u3t7lw/n5PeDaenOlrYes3BldzfXvnjXwIbyrWSCGJw5gg8LwPFKxurHL/g/dza/8WOy/tIGrfFZm7+wohiExEpStsZFFdb1pX2tLHJzhPQq7DmnpWew+WDKrEq6l0pJk2WBMmIf1On1bSotfvESV+DOWsJyAjG++nBmtq5031siyjchVRgzVaeOPB2tZkacbR8RE7V3bIrmQ8HD/McXXM0qklHr73YXr9HqPpiFtfvcVv/8Fvczw4prb+BDx335JIEpHQEz1W9ArL0TJRFHEsjzkMD1Edxb/59X9Dv9enshVBK8CWlvsu3sfW5tZC+ZJVGePZmOPhMXu394jWo0Uh6ZzzWU7N14qKST6hPqyxtQ8NDdshct0XkzKUPHDhAa7uXqW33COIAywW1VEMj4awD7rrX7PWZusO/0hKdIM1P/KXfoStZ7fIZt7wkNoHRo6HY3Sg6a/2GR+Ov+4a+fNk2PdWXtZYT2YvKvYO99je2eb+8/f7jCtbLjp51nisMdZw7eZrt514rcXNe51ztxtQ+YgQ4sVv8b3fjCLxJ64UIcQvAL8AsL66tpAt13XV8Fw04coy/QceIBtNsLtTjPEEYyX8qEY6h6xDVJTRbiukc2SFN/8TpcUqSSuxpJOKygqfMF4bjKk9b2cwQSHob65SC8WN/UO2zqyTmAhXlJ7sKmt0qJFKIbR3Dq7SCls6hFIgHFWeIpzDSE2VV8ymI165eZuPvnLMZ48My+tPgUh59/vex/lLDzGZDCirlN1bV/nclz7H1ZMDSndXTpJw4ASagEh00LRxTjLJBswKSyvqcmrpYWwdMJ3OaPVadDsx3XaL06cv8pN/+a/R7fTIshnFbEY1y3BFwdH2LUYnIy4/cBFhjU8/x6FUoyyTirJMmQxTrgwMy23BX71vmXZsMNKRuzV6G31OFyvsH7zKbHDM7mhKWVR81b5EXykiqViuBe8RsBIlhFIxsRalFForHwAYhFy8914qU2OqCltbqqpmPBiBs/SXeigF09oRARpBCNyxJvv+erPWpYvnqF3F4eGYSZ2yd3ufs2cuIhuvJiEsSgpMXVM1CdR//IXPv5EP4U3FmrXVtYVsuao98VVrzdLKEg888ACT0YTp7ekiTHEuD3fWEZqQLMpQbR/EKAq/CdrS5zTZxFJOSqRtvHOMDxQUCCYnE4QVrG6soqTicP+Q9TPrRDainJXeE6rBGqUUaMgbrHGll5s7HGme+vFUgzXj2Zid7R2OXznGHBnesf4OZmLGe9/7Xh6+/DCDyYCsyri+c53PfumzHBwffN3G7YQvzjSajujQpo10kkE2wBaWbtTlkaVHCKqAWYM1cScmaSdcOHWBv/ZX/hq9bm/hppzNMoqi4NbNW4xPxlx44ALGmkV4JQpkgzVpmZINM8yJQbQEy/ctYxLf4Vl36yxtLTGtprxy8AonwxMm4wlVXvGSfQmlGqVYLSCAVtTyjtEN1iitFlyf++69j8pUVA3W1HXNcDDEOkt3uQvKq4T8BfVtZkl9f33H6+yFs9TUjA/HZHXG/u19Lp656L2aHFjpM79qcyft/vPfBta8puLGOXe7+XoghPh1fOt3XwhxqjlJnQIOmm+/BZy7+zkAt7/Jbf4r4F8B3H/pspPKtwvLIqPIU9JsQoWldXqTzcffhqu/ijuYIRxoAVI4JOAqzcGJJlA5K22N1ALpHFQ+eDJqK+JWRT0NKStF7Ay1s5g0wxUVq+fWqQLJV5/b5epuwQ+/q2JzbRPlHKBAOYSw/gSnFHGSYHJvrxsnbYQUzEYp1WxMXTsODo/44+0Bv38zZbeSrK8+Qqsd8oGf/itcfujtjIZHjKdHfOoPfpPnb17hxDaePiwUnIBACU1Ih0Sv4ayldo5AtojDFlJKjvYyWkuGcxcu0l9aYu2hJ7h8+UF+4L3v5czZ81RVSZbOyNMpdTbFlDnPPv1llgPBxeWuV73gpb+4phvlLBiLszVnYsWjl7vce3GN0limec5KuMKzn/gQL24fsX2UkrRDuv0e91ze5OT4hMNr+5jaca8JUMsxUZTghKIqMsIwwkWRNxYUAhkohLFUJschKWcjmKXUaUG300IrxbAyxDi6Pp2CDoLJ91vGb9oKtOCeC0vEnRV2dw8piprb+4dUVeGJqsKnKi/1+zgcdVUwmQ354pe+9IY9hjcbay5fuuyk9IGRWelHKNNsisWyeXqTtz3+Nr5af5XZweyOfYPw3BpdafSJJlc5uq0RWjR0QT++Um1F3a4JJyGqUj512noH2KqoWD+/jgwlu8/vUtwuqBqscc57zTjt/Wuc8MVMEnusEU7QbrAmHaWMZ2Nc7Tg6OmJwY0B6M0VUgkdWHyFshfyVn/orvOORd3A0POJkdsJvfvQ3eXX7Vd+5+IaPj0CghaZLlzW9trDQT2RCO2z7rtFehlkyXLhwgeWlZR5/8HEeuPwA73vv+7hw7oKPikhnTNMp03xKXuY8/eWnQUP3LqwRynekjDMLonTlKlSs6F7usnpxFWcceYM1H/qjD3G8fczsaEbYCukuddm6tMXJ8Qn71/ZxtSMwAfFSTBIlKKHIioww9NLiuaRcBhJpJLnJkUhG0xFZmlGkBe12exG74Gg4VE337PvjqTdvCS1YvrDMSneFw91D6qLmYO+AosEaIQVhENJvsKaoCkbZiC99G1jzZxY3Qog2IJ1zk+bPfxH474DfBP428D82X3+j+ZHfBP53IcQ/x5P87gP++M+4Ey+3Lg3pbMpsNiGdTqjrgrDbIbr3PpQD8fmnyQZlMw/3KinrFLO0w8FoQiu2KMA4hZQVtQEdWOKOY5YaqgpMDqInCRz0T2/gEs31m4d8/qrh4oZDKDgaHiKMIS8rhpOM43HFcOpwVvLAhRYP33eeJG5RlRlFlnKyv8fx8RHHo4qP3Kz48qTCKMnmxmP0ekv83M//n/gP/uO/xq2rR3zhk9f48G/8/3hh9wZTZxeRAoviRkg0AS369PQpOvF5HJZAR/SSJbqdNoFW5PmYejxj6fw6l89d4kd++ge598HLBGFIkWdMJxPGJ4cU4zE2zxkc7PLlLz3LT9y7Qb8do4TGmNqTlZzB2RpjSp/yiuHJi5rz55dxSlJUNYPZkGp/D7NvyHNHpxuxdXaVME6Q2qevL/USWlVNpTRWCwpTIV1FoDUqaVNJ5aXx1jQBhhasw9oaO5uwXJXkwxGdTgsZauq8ZoggAOIQAiGg4PsFzpuwQh1y6Z4NDg53eHBtjfNn17l2fY/RaMyLLzxPbSqW+yt+gxLQShJWV5Z5/qVnuH5j+w15DN8NrJnb6Nelz8SZzCZMZhOKqqDT7XDfvfeBg6c//zRlgzVzhY9yik7aYTKaYGPfZ5VOYqSPQXCBw7QNaqY8oTgH1VU461g/vU6QBBzeOsRcNbg138U4HB5ijKEuPaG+mlS4qUMaSetCi/P3nacVt8jKjCzL2N3f5ej4iGpUUd2qqMYVUkke23iM5e4y/+nf/U/5mf/kZzi6esT1T13nf/uN/43rt697bs03fGykkAQE9OhxWp/mfHzeK7x0zFK8RLvrCbfjfMxsPGP93DqXzl3iB3/qB7n80GXCMCTLMyaTCUcnR4zHY4qsYO9wj6996Wus37tO3I7RQvsOlvWk4cpWlA3WGGfQFzTL55dRSnmn5tmQvQZrXO4IuyGrZ1dpxS2c9unrSTehrmtvGqg936dyFVpr2knbW/XbxnG5MfFz1udMTWYTyqpkNBzR6rTQkceahelE2Fwnxff5N2/GClTAxj0b7BzusLa+xsbZDXav7TIZTXj+hed9kGaDNU44kiRheWWZZ196lhvXb7zm+3ktnZtN4NcbUNDA/+6c+z0hxBeADwohfh7YBv4jAOfcc0KIDwLP413y/2/fWilFM1czFHnKbDYka8BG4lBa095cIQpa2KJk5/NfweVevGycoHCKmRFMhzG9Vsr6kmyY+CClJS8FMnAEUU1dKmZjTWdJ0D29hhKWm7dv8vy1nFEtWV0S7B8P2dnLOJg4dlPLpLRoNKuh5vKKJNKKWZpiaktR5pwc7DMajRjMKj6843gmNUitWF95nG5/kx/7Dz7AT/7MXyeOI4rhDv/2l/4Fz92+zgRvi3/3R8eDTUybFTpqnXa8RRjEBEFIolrEcYyWCVGcsLyyQRAp6qHkK5885ODG7/D3/9nfoL/c4+jokOP9faYnx+SjAXWa8pk/+iRLruKHHzxHnLSRgLACV1c4J1AypDYGHQQsrayRnIqpKalq71JpnOB0p0OQdBiYkGk2I0xazcx/BsLR3vJp4jt5wVoMhTN0VIiMAqwOsVWNambvOLdwcbamJB8MWRWQnJwgL52l2404GOd+XBeBDgQYWFIgnWBkPTNJNRfZ99d3vgSCJx99jIcfu8hnP/NHvPj8s/R7HZa7AVqH7B/sIaXk9NYFhID1tRXuOXcv6XTEJz75SYr8DfOK/q5gjTGGLM8YzAZMZ1OKssDhOS8rmyu0ghZlUfKVz38FchbybuUUwgjiYUzaSpFL0vuDWN9Cd6XDBY46qr0/zlgjlgRrS2tYYbm5e5P8ao6sJGJJMDweku1luInDphbbYI0ONWLZRwakaepz9Mqc/YN9RuMR1bTC3XaYmUFqyWPLj7HZ3+RHf+pH+Zmf/RniOGZ3vMu/+KV/wbWda3eM/e5aUkhiYlZYYU2tcSo+RRzEhEFIq8GaWMYkccLGygYqVMiR5OiTR/zO9d/hb/w3f4Peco+j4yP29vc4OjliMBqQZimf/KNPUpqSBx56gHbS9teY9eIG4QShDDHGJ0yvrawRn4opKTG1WUi2O50OnaRDaEJm2YxW0vK+PekMJxztU20fr5MVEPuYiVCFBGFAFETUVb3g+TjnFWBaaUpTMhwMQcDJyQnnLp0j6kTkI+91QwiiwRoUX5879v31updA8Nijj3Hp8Ut8/LMf59nnn6XT7xD0AkIdsnewhxSS85vnQcLK2gr3nr2X0WzEJz75CcpvA2v+zOLGOXcVePyb/P0x8IE/5Wf+e+C/f82PQnhCaZpNSWdjb8nsbJNVotBRjFzVrNz/EPVkxuC5K1AZHIraSXJnSUvNzUFIv1dTI1BSEFgIQ0ltLFFicUZSV4oiNYhAcnR8xMHxlFfHmtQaPn+9Zlg4DguDAM4lmsdWIy6tJ5zf7LO20iduJ4xnYw72bjCbpezvZwwywadH8ExmUErQ691Hu73JfQ+e531/6acpC8vOC1/hf/iv/wu+vP0SY/f1E12vilJNYbNMS64QhasIAgSKSCUkSZtWu0sUR4RRjAoUdVWwv/sqBwdf5corOe/+qQc5d+ksk8GAbDSiGI8w+YyXnvsaf/zZL/F/ffs5lpMYV9fUzvN6hFJgHXWRLZw7rQSngma854NCB+OSVmeJtNOCaUUQRUipkM6C1uDgaDhhOJyCs5hAcjHZ5533xbSXVqmFwDmDkL7rZk2NsA6FBu1QxYyHzwq0OOZ2cB+nVrp0wzUOTg5pV1NkY+6Fg66ErAkcDRsfpPw1X2zfX9+4Ou0W73zXEwSxoL+0xt7uDs4VBKEi0CGucboVwnsg5UXGaDqkrlJevXLlDXsc3y2sKauSSTZhPBuTF7kfuUmJ0oooilhZXeGhBx5iNplx5bkrmMqgaHKjnEWXmnAQUvcaUq7ywY8y9Dwbm1jPK6mUL0ACyfHJMdPjKXriiZH1jRpXOEzpSZM60YSrIa31Fv2NPv3VPkmDNdt7257Psp8hcgFDMJnPgLqvex+nOqc4+8BZ/vJP/GVc4fjai1/jP/+v/nNevPHiNyXGSu4UNityhbVgjYAAhSJRCe2kTbfVJUo8GVgFiqIuuLJ3ha8efJX05ZQHf/pBzl4+y2AwYDQaMR6PmWUznnnhGb74mS9y9smzxEnspd/O83qU8l2sbI411sfWzPOlfCixpJyULLWXaHVaVNOKKIp8J8Z5p2Mcnhs1mPr3LpDsJXvE98Ws9le96Z8zC9O+2nhHaI3GacesmCHOCI444r7wPrqrXVbDVY5OjphW04WRYAPMi8DRuQ/S99d3vpJWwhPvfgIVK9b6a+zs7lCMClTo+VHWWh9CK63HmjJnNBuR1RmvXnn127qvt4ZDsXOURUE6GZNmM+/B4iwiSBBSUtsKKyytU5ucfvKdiLJg8uI1CqvIrKO0FuMc+5OYldGMIIakhv9/e+cSG9dVxvHfd2fu2OPO2MmMY+fhKk1CNm2F2iqkSEVVhRCUgmjUVRdIXSCxBREJpaqEyhIW0DUCpEo8uoGWqhIREQ/BAlGSNCGx8mgeTmJix4mf43ndeXwszrU7RM6riXPmjr6fdHXvHN9Iv2Pf+efMmfMgVNqipNIZMn3xLrptKC+1OHfpLLVqnakbwqmoyly7SXrezcLalk7z7OY0T+0sMLxhiNxAjkxfiBBQb1SZn51iYXaOahkmFgL+uNjkRqtFGAiaGmJo406i9jU+88QrLC2Wmaqd56dv7ucfp4+y0HaLu3/y7nFTvfslTz4YZSAskg0L9PcN0p/O0p/Jkg5T5HJDDORybtG9QKlUSszOXGHy2mHKtQlGhjcwfuIoMzcuEyqkWi2CdoNrkxO8995Bnt88wBObcmizQSsQ13gM0hCkqNUqtJoRYaaPqBG5mRNhhuVaRCOKqNWrTDeyVHJbmS2XWJov05fLou0I0ZbrgQnTbCjkmJ1fplpp01DlnxNzbBlO06zW2dZsQT+kU25vLSHeniLVJAhSPBLUyY/kqbXKLLQiRjcVWJyfJmg1aTRBUi5nUilotCAbCOW2G4TdFy/7XkvYIMB0mKLZ8DvBPRBh9/YxisUCpfIig7lBrqevU10uEYYZcrmcG1/TbLhnT5VKtcyJ8XGe/dweRkaKXJmc9lqHe2Flk8alkvvPuNl2C+Vlw+zqNOG2tBndPMrep/dSj+pcPH3RLd8fr8uiqmRLWZYXl6Eft5N26MbKZNIZoo6saZVanL10lqgaIdfdflPNdhPmWd1NO705TWFXgcENg3HWZAgIqDVrTM9OMzs7C2UIFgKai24rBwmEwWCQXYVdTLem2ffkPspLZS6cv8D+N/dz5NQR5xpPc145p0iRlzwjwQjFsEgxLDLYN0g2nSWbcXs5DeYGyefyblp0oJQqJSZnJjl87TAXaxcZGh7i6ImjXL5xebUnrNFucOm/lzj47kEGRgfIj+RdT038lVA6cCsqV2oVomZEX0fWZMIMUS0iiiKq9SrZKMvW0a2UyiUq8xX6c/2rs2eCICAdpslvzLM8t0y74v4e8xPzhMOh2wS54bImSAW0cJuQBkFAM9UkFaSoB3Xyo3nKrTJRM6I4XGRqbopmy82mIl7ezI1xcGOqVnpvVr7WTFojJxW6cUU+ERHGto9RKBRYqiytZk1puUSmI2tWdhlXVcqVMuMnx9mzdw/FkSLTV+4+a6Qb/kgich0oAzfudG+XMoy5+8Dc/bCW+3ZV3eRD5l4QkRJwxrfHp6TXnpmkYO5+uJX7XWVNVzRuAETksKru8e3xaTB3P5i7H8zdD+buB3P3w/26Bw9SxjAMwzAMwzfWuDEMwzAMo6fopsbNz3wL3Afm7gdz94O5+8Hc/WDufrgv964Zc2MYhmEYhvEg6KaeG8MwDMMwjPvGe+NGRF4UkTMick5EDvj2uRkR+aWIzIjIyY6ygogcEpGP4/PGjp+9HtfljIh8xY/1qsujIvJXETklIuMi8p24vOv9RaRfRD4UkeOx+w+T4h67pETkIxH5IH6dCO/YZ0JETojIMRE5HJclxv9WWNasD5Yzfklq1qx7zqwsT+3jwC2TdB7YCWSA48DjPp3WcHweeAY42VH2Y+BAfH0A+FF8/Xhchz5gR1y3lEf3LcAz8XUeOBs7dr0/bpXDXHwdAv8CPp8E99jne8BvgA+S9MzEThPA8E1lifG/RZ0sa9bP23LG73OTyKxZ75zx3XOzFzinqhdUNQLeAV727PR/qOrfgbmbil8G3o6v3wb2dZS/o6p1Vb0InMPV0QuqOqWqR+PrEnAK2EYC/NWxHL8M40NJgLuIjAFfA37eUdz13ncg6f6WNeuE5Yy/570Hs+aBuftu3GwDrnS8nozLup1RVZ0C98YGRuLyrq2PiDwGPI37ZJII/7i79RgwAxxS1aS4vwV8H2h3lCXBewUF/iQiR0Tk23FZkvzXIimeN5Oo37vlzEPnLZKbNeuaM773lpI1ypI8fasr6yMiOeB3wHdVdUlkLU136xpl3vzV7fD8lIhswO0W/eRtbu8KdxH5OjCjqkdE5IW7+SdrlPl+Zp5T1asiMgIcEpHTt7m3G/3XIimed0vX1cdy5uHSA1mzrjnju+dmEni04/UYcNWTy71wTUS2AMTnmbi86+ojIiEucH6tqr+PixPjD6CqC8DfgBfpfvfngG+IyATuq48visiv6H7vVVT1anyeAd7Fdf8mxv8WJMXzZhLxe7ec8UKis2a9c8Z34+bfwG4R2SEiGeBV4H3PTnfD+8Br8fVrwB86yl8VkT4R2QHsBj704AeAuI9OvwBOqepPOn7U9f4isin+JIWIZIEvAafpcndVfV1Vx1T1Mdzz/BdV/SZd7r2CiDwiIvmVa+DLwEkS4n8bLGvWCcsZP+5JzpqHkjMPa2T0rQ7gJdzo+vPAG7591vD7LTAFNHCtx28BReDPwMfxudBx/xtxXc4AX/Xs/gVc191/gGPx8VIS/IHPAh/F7ieBH8TlXe/e4fMCn8xgSIQ3bjbR8fgYX3lPJsX/DnWzrFkfb8sZ/89OorLmYeSMrVBsGIZhGEZP4ftrKcMwDMMwjAeKNW4MwzAMw+gprHFjGIZhGEZPYY0bwzAMwzB6CmvcGIZhGIbRU1jjxjAMwzCMnsIaN4ZhGIZh9BTWuDEMwzAMo6f4H/buTfzyQyPUAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "from skimage import data\n", - "from skimage.color import rgb2gray\n", - "\n", - "original = data.astronaut()\n", - "\n", - "Idata_m = Idata\n", - "Idata_m[:,:,0], Idata_m[:,:,2] = Idata_m[:,:,2], Idata_m[:,:,0]\n", - "\n", - "fig, axes = plt.subplots(1, 2, figsize=(8, 4))\n", - "ax = axes.ravel()\n", - "\n", - "ax[0].imshow(original)\n", - "ax[0].set_title(\"Original\")\n", - "ax[1].imshow(Idata_m)\n", - "ax[1].set_title(\"Modificada\")\n", - "\n", - "fig.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Suma una constante a la imagen" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAEgCAYAAABIE1IQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebBl2ZrYhf3WWnvvM985x6rKqnr16g3d7/WgFj1psC2kkGQjK2wDBgwIApswhAHbMmEJG4yMBYaQBQ6wbINDyEIGCYkhQgSgACR1q4Va3erX/fpNNWdWVmbem3mnM++zh7U+//Gtfc65OWdW1ntZrfu9l5U3zz3DPmuv9VvfvIyIcC7nci7nci7nci7n8htF7A/6As7lXM7lXM7lXM7lXF6knCs353Iu53Iu53Iu5/IbSs6Vm3M5l3M5l3M5l3P5DSXnys25nMu5nMu5nMu5/IaSc+XmXM7lXM7lXM7lXH5Dyblycy7nci7nci7nci6/oeRcuTmXTy3GmH/OGPP/edHPfYr3EmPMF1/Ee53LuZzLyynGmDfiWk/iv/8LY8wfWPv9/8UYc2SMOTDGXDPGTI0x7gVfw79ojPkzL/I9z+WzleQHfQHn8vKJMeYfAf4g8BYwBv4T4A+LyPBhzxeRf/lp3/tZnnsu53Iunz8xxtwArgJXReRo7fFfA34UeFNEbjzv+4vI7117z9dQVr0uIvfiw/3nfe9z+Y0j556bczkjxpg/CPyrwD8LbAI/DbwO/FfGmOwhzz9XkM/lXM7lfrkO/P3NP4wxXwc6n8HnvA4cryk253IuwLlycy5rYozZAP4I8E+JyH8pIlW0sP5eFCL/YHTP/gVjzJ8xxoyBf+R+l60x5h82xnxsjDk2xvzzxpgbxpjfGX+3fO6au/kPGGNuRtfy/2HtfX7SGPM3jDFDY8y+MebfepiCdS7nci4vnfx7wD+89u8/APzp5h/GmE1jzJ82xhxGVvwfjTE2/s4ZY/5Y5MFHwP9g/Y2NMX/VGPM/j0z5r4CrMRT1px4Swtoxxvy7xpg7xphTY8x/Gh/fNsb8Z/HzT+PPr659xpvGmJ8zxkyMMf8VsHffNfz5GAYbGWN+3hjzwy9y8M7l08u5cnMu6/KzQBv4j9cfFJEp8F8Avys+9PuBvwBsAf+/9ecaY34I+BPA/wy4gnp/XnnC5/5W4MvA3wn8C8aYr8bHPfC/QcHyM/H3/+Szf61zOZdz+T7LLwIbxpivxvyX/ymwnrPyb6Js+ALw30EVoX80/u5/AfxdwI8Dvxn4ux/2ASLyXwO/F7gjIn0R+Uce8rR/D+gCPwxcBP71+LgF/l3UaLsG5MC/tfa6fx/4FZQ9/xKqnK3LfwG8Hd/zG9zHwXP5wcu5cnMu67IHHIlI/ZDf7bOyXv6GiPynIhJEJL/veX838BdF5BdEpAT+BeBJB5j9ERHJReSbwDfRuDwi8isi8osiUkcP0v8bBeG5nMu5vPzSeG9+F/AOcDs+3ig7f1hEJnFt/9+Afyj+/u8F/g0R+UREToB/5Xk+3BhzBVV+/pcicho90T8HICLHIvIfichcRCbAHyWyxRhzDfg7gH9eRAoR+XngL66/t4j8yXjtBfAvAj9qjNl8nus8l89GzvMlzmVdjoA9Y0zyEAXnSvw9wCePeY+r678Xkbkx5vgJn3uw9vOcmBBojPkS8MdR662LztdfedKXOJdzOZeXQv494OeBN1kLSaFGUgZ8vPbYx6w8vGcYct/znkVeA05E5PT+XxhjuqgX5/cA2/HhQfQyXQVORWR23zW8Fl/rUGXo7wEuAGHte42e81rP5QXLuefmXNblbwAF8D9ef9AY00MtoP8mPvQ4T8w+sB677gC7z3k9/0/U4ntbRDaAfw4wz/le53Iu5/J9FBH5GE0s/u9zNtR9BFRoSKiRa6w8O/tERWLtd88jnwA7xpith/zuD6Kh8J+KbPnt8XETP387cu9h1/APoKH534mG1t5Ye+25vCRyrtycy1JEZIQmFP+bxpjfY4xJjTFvAH8euIVaYk+SvwD8PmPMz8bk3z/C8y/6AVqKPjXGfAX4J57zfc7lXM7lByP/GPA77vOCeOA/BP6oMWZgjHkd+N+yysn5D4F/2hjzqjFmG/hDz/PBIrKP5sb8iZhAnBpjGiVmgObZDI0xO8D/ae11HwN/C/gjxpjMGPNbgd+39tYD1Ag8Rj3K5+0tXkI5V27O5YyIyL+Gekj+GKpY/E3UAvo7Y3z5Sa//DvBPAX8WtYAmwD0UBs8q/zvUSpoA/w7w557jPc7lXM7lByQi8qGI/K2H/OqfAmbAR8AvoAm8fzL+7t8B/hKaf/cN7itweEb5h1Av0Tsoh/7X8fF/Ay1NP0KTn//L+173DwA/BZygis96WO1Po2Gq28B34+vP5SUTI/KkXM9zOZfnF2NMHxiioaXrP+DLOZdzOZdzOZe/DeTcc3MuL1yMMb/PGNONMes/BnwLuPGDvapzOZdzOZdz+dtFPjPlJuZsvGuM+cAY81wx03P53MrvB+7EP28Df5+cuwjP5TOQc86cy7mcy8PkMwlLxVK599D+BreAXwb+fhH57gv/sHM5l3P521LOOXMu53Iuj5LPynPzk8AHIvJRbOT2Z1Fr/lzO5VzO5UXJOWfO5VzO5aHyWSk3r3C2CdMtntyC/1zO5VzO5VnknDPnci7n8lD5rDoUP6yvyZn4lzHmHwf+cYAsy35iMNgmSy1ZlhB8YDqdM57M8aEEwJJgTIJZvpHgnKPVcgiBRV5hnWNj0KXbaWGdA2PihZizV9RcyfpjxtA8Wz9EwJjVP8/8vXre2S/aPEPi/wURiY/Kfc9cfw/TjAnGmNUzzPqlmuV7NJe3Gom172VW7/PgdZ4dBDnz4gdFQ5brTzBnP2/9u5i1v5fj1nxwMx7r77J29RLHbXm/7vtm91/CQ695/fvEV8vZl6zGNj66fv+az14OmTn74ji4zZjoX8J6WPfM79a/8PpVSohvJ3jvqco5VTVFQr18PASh9uA9uLRFr7dJK2thrT1zC9fv+2p+rY3n2sgYMcsxba65mZ/Lf5+53kfPjzNzOX72wd3DIxG58OCzP1N5ImfgLGtaWesnNjZ2yLLnYU2C4JU11rKx0buPNWtz5rFX/Vmz5uxQ/MZkDTqO3y/WnBnYzwtrRK9UwPv6kazxHurHsmY1H1Yf1dwvc3Ycvg+subN/96lY81kpN7c422HyVTS5dCki8m8D/zbAD331K/J//+N/nFZmCaHk13/1e/y5/+Dn+fZ33mcu+wRKMrNJN72IMxlBaoyxDDbb/Jbfeo1ez/BLv/wxB/tzfvZnvsJv+ZkfZ3dvB5cmYC3GuviZOjgWC8aynOQmKMysOrKMtVgBIWAMGGOXQDK2gYPFWosFjFktTIMhBEGkIviKEGqCD2Akrj3BWIvBYg1Y50hcijGWJGnhnNHPI+i76QUAgqG5ZiAYAh7va0KIEzmAc4YkTUkSR5Kk+l2Mxbo1J12c7CKCeCGEGqwFMfqdMQgekUDw+q1kidw4kMaBsRhjsNZhrMM5h3UWZ3VsDII1liABkQBBF73EsQ2hXjYu10Wo90OvtYGbvjaOvi4OKyAOJMTfx/cNNSKWECpVHoLHGIdIwFm9v5YEMQFj3BLOzX2wFpy1ccz0ezWoD+KRIHgf8L7G+0DwnlBVy0XrQ0WoaySYeG2CGIMRi9QeLxV1XSEBFkXOvf33ufnBX2Ey/C6IIQRH7T157plOAqcTIS8NX/n6j/ATP/HbuXDlig47Nt4PvSc63wQRvWeIXi8GxBswAQk6TiL6cwieqq7xwVPVgbquCSEQJL6z6EYgEgjSPL4ClwQhiM5RxPMv/bF/8+PnZMWnkSdyBs6y5ms//EPy//p//AnaLWXNt37te/zZ/+Dn+c6332dWP5o1/c0Wv+W3vk6/Z/jlv/Ux+3fm/Mxv+TK/9Wd+02NYE7C47wNraoIvXx7WrG+Mz8ya1bdbDuRzsqbR2JasWeqCnz1rsBb3IlgTanz9HKwJFbVfZ80H3PzwrzA5/S5IfZY108DpWMjLFl/5+k++9Kz5w//nf/WpWPNZKTe/DLxtjHkTbXT096FNkR4qaZrypbe+wHw+5fr1D3nn3dsc3JlhcViTEaTEUy01UYMFgdp7XJZy8Wqft79Ucnx0ncOjIfM8Z88anHNgE6w1OmACqhEHrDNRw44LB4O1Jk5uEBNVVJtErdvGxS/RUgFDwFiHBK//NoaAgJGV1ozgXIKIX9Pm43sYMNYouEyCMRAkROUrWkTG6fNprtcieIzTjRoMxoL3Jc4lGBNw1ulm3vzP6NU6axEg+Eonbah1IYkQfIU1usAUrjqpjQ1IsA2bEWPAuPjOcXFaGxesLtT7bTYDS1A35omIwYjRhSGGQMAgGGMJPpy1LIMsDa4Q7482OQUJQa9VfHzvEL8HMeiq14s1ESRxs4kmqVn7ORpIumjR+6rvpZuUx8d7ZjFB77NJLPiAiOBIMIlBgujr8QgWI5Zg9ZIF8N5TLmYMTz5hNr2OSBWVm5IQdH47C4kDQslHH32bS5ev0d/YpNNvg40bg7H6JU2ts8MapDbYNTMxWNHnWLPcq8Qo0J3T++MMBOd0nKRGIlR83BCMWAgeglUAxdnYWPhyxkr9vsozcQYgS1O+/MXImhuRNbfnmCewxvuAyxIuXh3w9pdKjg5vcHg4Yj5/HGvcM7HGPAdrjFHwv1SsMY9hDU9iTXMNL4Y1ss6a8ATWGF4Ya2xkjRgb9cWGNfJsrDFWFVrDw1njVfl7KGuMwfuaspgzOr3JbHIdkfJB1hhIHeSh5KOPvnWGNeZJrFlb+y8baz4T5UZEamPM/wrtMumAPxk71z5UDGAdFOWCO3fu8e47JwSf6XvpckDw+FDgXLrUqn0dqH1gY2OTN98y3DsaY5KK2ucYA85YvR/WYLE6uQGJqUbGOLW2GreqeKyxSBxIY1xUWKNFY/Q1Ei0dnaBhCZKlRRA1UWus3lwJaqlFrb8BDmJALCEATq/NmgZwCr+lQmb0NmPcEk4Yi7UOCYK1unisSXE2LqLlevUk2DiBoityXbFpLtnKEroia45pI1gMEq9r9dkpxgjW2QhP4ueaZriWFgtYHTeJ1lTwiKjFJQZd2FFzNxG4jRWFGCT4eJ2C1B5jDQa1iBQYzf1ZWWXGJiD6yRI3leVFRbgRrykAxgMmYEkIRsBE8Nk4Blafr7fX6B+nEDfBIcYv77PO25QlxXzcfEio64rp9Ijx6QeEOsdilhaneB11m0CSQOZgMjzigw++zYWLV7nafQ1jg84tEawBZ138GI9xZs1L5rDidYuO803EIkbnr5OAkOr6qi218bq5BB0TZ5yuM/RzAgExFkvQe0HjMv/BKDfPyplGVqw55J13Tgk+bd7x8ayphY2NTd74guHu4RjjSqowx/BiWNN4BZ6FNbJkjdP7+ljWmAdZw9OzxllHeGbWoF6GhjVhnTX24ayRF88anoY18uJZYx7KGnkO1vBw1rjHscZR1yWz6RHjkw8J9fyRrHFL1hxH1lzhavca0rAmSPQ2KWuCeNxLzprP7FRwEfnPgf/8aZ4bRKiqEi81LnF0+xk2cTibYn0SteWaECdAE6+rQ0nlA1nW5pVXO/ykFcbjEUmmK8glDqwsPRfWJoQQ3VvGEqJNZIzDRC3cRK9LwETXcTOBl1dLYlWLDSEenL0ylHXyIPG/gjUJgZq4tNYGiDjhicCzcXGxpik3r9E/akmJWizRIhAAa7Euo1lK6sZWGIpR7dwH9Q4InuAD4kN093mCiLrPRQjRghC9ifFaA6KrSCezVTeqtcS/1aoydt3SbFyLoNPMK7SX7ynNINAsTx0D1AqKbkh10RLB6FfWrlis9RisWiAmRAAZ9dJgMDTWULSMUXeq8mnlEm3mh7EKdjG6QK2x4Jqxbr5botCz+r2CrOZkCESvTfy3eIL30SoFg8MCdbVgPLpNPr2NdobXCSEBgugcswacAesEI4GbNz/g9Te/zN6FC/T6PbXSjOCsjdeAKsrRC+CMVSCKwl6tZr+cVzrzUgg1TV2B8WCNwRtP8Go/B+vVSyWoV8LHubCc46sN9wchz8IZWLFG4Wzp9lJljUsxPj3DGtZYU/mSynvSrMUrr16KrBmSZHEj+T6wZmlnxd+eZU14CtaYB1lj4gb/lKxx1mKcjtOnZ039qVkDT8caoRnXJhz2tw9rRqPbzKe3gXp5fxvWmMey5uKKNfYsa6xYQvRwfXrWCEJCsPVDWBOf/xys+cyUm2eVxKV02h2uXbvMz/zMa5wcnTCZOGydxPniCaHCOAc2kLUTLlzd5vLlbXr9Du1OizQxHJ84Qu0pipx+f4BLXHSNWV1YVjVEMU7dkjEJr3FTQqM1LzUHnSymiV/rhMIYEqcWQGNLAQSpafBjYmyyuR3Nxg8OvW0BdVPHyWwtzhi1ALEgPr4uav0xfiuoh8XERSFLeDXafsyQidYgNNaZx/sYzw36tzSxzLgAnUn0MdFrk+AJgQhiMNH12MTkjVVXtW3yBBo3asRf8931c6KVpKo+RnSzUcvSxxFRt6zGdWMsOfj4ncLyOjE6goJfforEuI9BkKXbugkRBESsQlVi/L2BndHNRoLFmIzQ3Gvb3Pt470S9NZq/46MjWMdBgmCdesX0vlm8j9cSRGPjVn+ezUeMhx8T/CzCMyzhtxx6DM4KzkJqYTIZc+P6+7xx7cv0BwOc07HSDUitdkuGlRofbMwViO7cEGKuglp3vq71uxkDXsdeOW0w9crlTojT2hgChhCC3mtxqKveLrfDz5MkLqXdbj/ImuipbVhjnUNsIG05Llzdiqzp0nkiawxBeCbWqE6zzppmVj+eNctnPZI1ltD89wHWEDfnVcz0aVjjnoo14QfMGvMQ1jS2VEPfl5g1GMTYF8CaMePTjwl+Gq/vLGvCGmuSJWtG3Lj+3lOyxrxA1rgXypqXQrkxGKrSUy0CvV6PL3/pNY5++oST42Nmtw9hmdwW6G5lXH2tz2uvb3Pt9T3eeP0yg40+gtBqtZBguHt4SJZusb2zR2qz6J20WDEEH7V6gOjWF2MxEuIido1yq+7A9QsV4o2SJkqsMDA6S9TFaZEQ3cPRnaeLRCenNK7MGPl1OgC6cI3BuOjJkIrGvWpAARDsMm5O1M51ABtPz8o60E/QBWiJLmkJS4AQ4qYq0e2IRKtVLTARnWBLl3F0W0swWCfL+7YaK0Wofr2GchKB2gAmWodCDNlV8Vao21dj2qgbGY2Rh2hiSISyxHHVOxhWkIvu7cYC1uRLBYyIQECrYUShZxBCXIgIeFNjTYI4jw3rXqgmlMDStY5IhGxjyZkYErCYCEL9mgIm0URKahyGRZ4zHt5lNroJoSA6XJBK1jYuE+/j0jjESOCTW9c5uHeLC5f2aPc7ev8jVBpXuRiLQ++1caI5BVZDo7L0JOiYi7M0I6kuI92InIBYg5caIzGMEvMFDEa9GkATNpSohH8exGCoqkBVKGu+8uXXODp8NGuuvNqwZpc337jMxiNYs/VUrImKTng8awR03K359KwBCIFgHsaauFlKBRJZEzfnT88a/0JY457EmsiTB1ljz7LGVvG7vZys0etaY014AaxZ5ExGB8zGT8calqwRPrl146lYY6Mi+zKy5qVQbrz3fO+dj7j1ySFZVuJszaULA956a4/Do0PK+QgvBVnL8sYbG/zoj73KK6/tsbO3Sb/fxyYO72tsYrCJZTIdcXxyzOvFa7Q77ehiterCdWvuyubGxgQxVSIkWikGEdWepXEVm8aLWS+9QZqjEi2xgGaBB6/hHYgLOX7PpSfGxM9xqiw5F5Pl4odgokUSvR00k1eWrCSI5mQ1IGvQ2MSEm3/GH5tramLrIs37Nx+p1+QJ0d2JWl0SCLUQ6prZZMytmx8ynRzR63S5eGmXCxev0NvcxQfIWj1c2tVxsnExuBjCiAu9yd8J6hPFSEyIFLV6mhyrJrZqcYip4z3Ux41pNn4Xx9azfPul1zJaYUG00iAEAupaRpb+N4WbWbNYEcRKVCrjAtVpEa0dv7JQrY0+OE32RAQjjZs92iQmVhNEV3dZzJiMblMtTnSjQo2v5m6sXO1qEJnoMk4tTMenfHLrQ15/8wu0+12NbUfr0kgDWg2PNPNXmSsguqmuqg7U3hU8xqoL21hLcAFvDFKrNR2sbjLGap6AmPVST4XQcjl9DsR7zzuRNWlWktiKSxc2eOuLD2fNj/zoq7x6bY+d3U36g0ew5viY1197jc4TWYOyJm54CA9ljXkG1sjTsMbczxrzeNbI07GmmQvrrAGip8bHROeYl/EUrAkS8LUQfM18MuHWzY+YTg7ptjtcvLS3xhoha/VxWWfJgYY18ijWRC/Lk1njo8IW4v15HGuWvqJPzRprHsaasDQUtdJTx/HpWTNnPLpDlR8raww0jqQnsmb0eNbIGmvkDGvCo1ljvr+seSmUm6qu+Sv/zTf5lV/ZJ8sKtrcdnbYwm9Y4k2JMiqGkritG4xn37k3AGBZ5xd6Fmu3dTVqtFNPpsr21zdbWCVW1IJ/P2d7eRgzLWKGLrlXd8IlAWW1kzploEYG6yEL8jTpHQ9QgbXRvNpn+IhKBolNHlYoIjmgNRDeRvt4lWGtJXIKzTt101qwMvSULolZvzApUVrA2jYpx45qNek2Td0H0EAksY8zWgg8RMJqljwnL54iAxLhtCMJsPOZw/yaT8RGnwwPGk2Oy1NLtZNjegDIfc++T62yMdun0dhkHyzwv6XT26G1dpD/Yo5W09LtJMzHV1a8ReYf4pv5TzipmJg6lNdHciImALoYGjSa4sbTG1MpUf1iCNSbG+EMsiYwWp42lmRA3mZjQ2YxB8JowGeP+ei/0gtarUqwGtqP1a9dmc7TzwloIwqm1XBQVi7kqN3WY4aKlql9x5alpFFKJlpRLBFcZxNfcuv0xw9MTdi9cJM00ETYsq2NW12iazAtNiFC3PCbebllaWNY63RytIzghIYW6Vg+xTfG+KfMEUgNeqxQNJlbOqFX5eZGqrvkrf/mb/MrfukOaFexsJXQ6gXlkjTUpYY01h4cTjLPKmos12zsr1uxsb7O9dUJZ58yfmTUW53gEa2I+zVOwRp6LNfYhrDHPxBpdgg+yJkTWiLUY30BMWLIGVgbWGmvmkwn39m8yGR0xHB4wHB+SpZZeJ6PXGVDOR9z75EM2R3u0e7tMgmWWV3S6u/Q2L9HfaFjTcFA/88msMfexxjwla5p8p8+SNaoANayxThXnpf32ONaUFYvZjOmSNQER80ys+eTWDU6fmTXmLGtkjTXGEcw6axKo/Yo1da3r4QWx5qVQboqi5Dvfus3wqKL0c258OEOkYLGYUFcBZ1p4yVlUc258eMjhfkmn49ja6fCVr1/hp3/mq1y+sgMYrEnY29pmllcsipxQV7g0VavHOLwGddXqMVqxA2CsUzef6BR0VhO4Gq24CZ8sJ1vcgJubi4nWMrVq1iG6ZgWMSaILUV2h2tfAaq+GWG1gbVNdFcCHuPbUwtGqgqY8NFpbQGMNSTDRjdrEtaP7MMbS9XfVctGKQSeRaCZ6WSwYnw4py5x2t82iWLB/+xNuffwdppNDNvoD3vriW3z1q6/Q6bQZ9LfI2hlVUVIWBUVRcnR8j/ksp6w9+fx7LEqhv3GRt7/yk1x57S3SNIOYoa+xbTRhLIJ9GSePMVmWek7jYo+TPOYB6L1aLVCkAb2l6TchIeDrCu9rCEHLV0n0/llAYullDA80QNe9R6LCp+Mo8V6KxN4l6OZglhZ1iJCTCJEAzul8AFycZ7PZCfn0Lk6094iIbwKPUW1ilesSGWwAa8F4OD68y8HdA1699gatdqZMDkm0cJoxMrEww2GjBRXQhECP4MREt3GKGI912lDQuZjf5ohrxGBcwHivcf86aCEGmuAaQkz8C58f5aYsKr7967c4PYys+SCyplDWWNOCyJrrD2PNT3+Vy1d34jin7G7vMJuXFItHsKbZBJ6JNY1X5UWxxjwFa4jKbvJw1ki0/B/BmqUX8ClYMzkZUVQ57U6LoijYv/MJn9z4DtPxPQaDPm998Yt85atX6XTa9PtbtNoZdVFS3M8a78ln32NRBfqDi7z9lZ/i6mtfIHkYa8LjWGOeiTWrPKOzrAkvjDXhkaxxj2ENaNJ5w5r57IT55AmsER7JmpOje9w9OOC1T8Ma8yTWmDXWJC+UNS+FcpPnBbf3hyRmgDVqLZb5gjr4Zf07CEFKKl+wmJcs5jA8ycEmvP32ZS7sbTI+mXD9wwMmkylZaqjrBcF72q0WwRq8BJxlaX0TVNsNRjVCa128aYCJcGA9ETAu5ugWXDV80oWtNf8JQUowWp5JCKrtEnszECf70t1pltARfNTcNZnNSkxQFKKl1ZQYKviauDU0btawVMV1yDS5uVnMFnWCNG6huqq4e/sm9w73mYyGFPkps9mQqpySpI7NjQ5feP0tLl96hd0LF8myjDRrxVizwZmEVqdPu65JWzOCPaYaT7TJXV1wdPddju5+yKXLb3H56hfZ3LnIzoWrGJOshcnQ3AQkunujddtYj9E6sLaBvFm6J40IxiQ0OQdAVHLq+GNzDw1+mbjXjHe0gmk2E1mOqyZZxs1HXMwLUEt1aYnpEKzu33Khq4s6WIMVgzEJ4rQTbqhr5rNTqup0SRETtITSIyxLS1mBppmqzmqtcz6bcXDnJvP519nY2olztY7zwS1fI8bH91LXrrM2JjM242shNLU2DiuCeDAuw5mAkaDAEY8xzZ9ax2y5QQSttmms+c+BzPPFkjXOpBSPYU19H2vEJLz9xctcuLDJ+GTK9Q/3mYyfgjXhaVhjorfm6VljSKiljKGtddZYrE3WWANNBc7jWePWWGPOssY8G2sMrFUiRdbc+YR79/aZjE4p8lPmsxFlOSFJLZsbXb5w7S0uXb7K3oVLZFlGlrV0p8VQmoSs06Nde9LWlGBPImsqfHU/a95mc+eCssZG1niN/foXwBp7H2vUttLvaTG6lh/LGp7AGrmPNcqmp2GNjayRumY+O6GqTvTjrIWHsUYez5r9/Y+Zzz6frHk5lJt5Re5mdHvtmDFul1aDtQkmNpEDCFKpiy5qzPm8JF+ULPIFB/un/MIvvM9sUvLKKx02B7tcu1Jg+11114nGvSUIPlowXkycuDHcoP5XLUnDYsSz3n+uKWMUCcuKhqU7Ny56taoEEY9W+EVXp42gsAbXuIitatWNVdDEKTVxDJal1c0CRC2HgMcuOzfGi0Oz2Q1GS0clAii6wdUVCnVdMzk55oN3f41PPv4O1qVMJhOCX2CTmn63w2uvXuXChT0GgwGdTpeqyAm+pqwKev1N0lZGkqbUlSexhmxjA6RGvGcxm8WmZl1OT465ef2bfHzjW1y48CavXPsSF6+8SX9jB2MdIVSxWCJWgywtxgBNAlsTGzawbIIV4SNNgy1R89M2VSai88iaoC5y4ng7S1PaqjtNggI7xnqJ9yPmJTQxebEGE3RzWrntTTNNo0Wtm4hE63nZBgNDLUJdF8ymB4RqvuYJbKZ2U/TYMEZigl205iOAfOW5s3+L8XjMpcsBl1qCqCWtiaZNAFXLLAms3NBxLIMQ4WMI1sYE1wxPqfkVRhMynXGrZFAsvtn4RD0PxgjOJPioTH4eJJ9X5FNlDeusMU/BmnyNNQen/PVfeJ/peMWa165+GtaYh7DGrljTMOI+1riHsqbJqdEEz+djzSr/5nlY01TAeO+ZnJzwwbu/ys0b38ElKePxhOBzjKvod7tce+UaFy7uMhhs0Ol0qddY0+1vkLXayprak7qKlt2MnpnwSNZcvPAFXnn9S1y4/AaDjR2wDv9crOEB1tB4TB7FGpto5+RHsoZPzRp5AmuqumQ2vaussaqOxEvlLGuaPJqHs2Z//xbj8YhLV175VKxxxuAja5zNqJ+GNe7TsealUG7KssZ77T1hbew5YRr3WxJtGnXxB6kIUqPdix2LvCaflQyPJ9y4cY9PPppQFjWjYc7u3j2+9MU522ZL3bPoHMMZbNDSsiQYfNNSehmEjlU9RjBorxppkrmQM5quieWVxKx2Qlwk0SoP4rUdN5rdDka/n9WGVNq/IWrjlmhB6furBhxd040JFi26ZpI1fWmaCwqxlTk0TgBZdgutqorh8Snf+/Y32L/1Dv2eI01qkDmvv7ZNmu3Q7fTotHu4JCHUwnQ8p8hr+oMevUEXm2p3yyKvCWVBVVfUtce6hDKfMJ8OISa21UVgc2OLol0yn004vPc+49E+d26/z8XLX+CVa1+i091Au636BpnLknvtExIbCxI7i8aOxo3JGCQsPUk6Nk2MO46ba1qfp9iYTNmU4RJjwZjY88LIEiIN4K2LSYGNX5rG8oogICacLx90YJrvoha1DwEvNUUxYzE7jZtPhiEFC4EZVhIkMVhfY3yTRyFxA9ZrsuglnB4fMRydUlc1Lm0BVitxHEsvgV5S3LSj1R607nMF9XWgi4ZZMJW+RkzsY6FegEAde7MYDKVej9H7ovP78yFl6R/OmvBk1hTzinxeMDye8HFkTbFYY81bc3Z2N7HGrbHGYoOcYU1YziUew5rowZFmWzKosRUt5KdijX0Ia+L73MeaZchqyRpo1OznY03N6OSEd77za9y++T36PUuaVCBTrr26Q5Zt0+12I2tSQg2zcb5kzUZkjYSKIvePYM1pvL6GNdsU7YL5bMK9e+8xGt1h8/ZVLl56S1nTG7wQ1shjWSNgUtxzscaA2LW96FOwZjEjnz+GNc5gXcMaeYA1MTKtrBkPz7DGGNEnPANrZI01ssYa8zjW8OlY8/JQSbsAYU2CTVPNqraqzTXQ0d6heoaKSdoYk1AVgcO7E5w3vPfOEWWursXZZMHHNw85OT3hypULtNK2unxF8FJrMyix+Dj3JA6eQOyHE8NRsSW2WV6oh2XmvACrkr061BH+enOs03NjrI3t/4mVCtFabBpSLftPiEEs6vAzBrd83Woz0g6fBu0LE5s64Qmhab0ucazUkvJ1DYmlXCy4d+c2v/7NX+Tj69+h04Is3eTy5YsMNjZpt9v4UmPl5SJnVk0RtDnZ9tYWhIwin5BJhyxNSNIEcW1s7QjTGfl8Asaxd+Eqi0XOyfExk2LMooJ5PiNJWmAsk+kx0/mIg/13uf7+r/L2V3+SC5eu0e5t4NIMbSVe6RgvG5upxasbQuzaKkDsKaLdRdUNDM080rE0Rs+f0db3snS5A1phZDi72SwTJONfITIkLmC1JNR6xkgst1ULDamjhRd/j8GL13nrPbP5iMV8GK28jCTZxssCU1VYYxlsvs58fsrw6La6ZuMe0yjSoLCY53NOTo8pq5K2aZOYTL1y4jUp1chy0wKdf1a0OiFI0K6mweEjGI1VV7MVi5hM8xNYbaISN2ft2upjR9UmtBKW3Xg/N/JQ1iQQisezpgwc3p2ShHu8+84Rxfwsa46HJ1y5eoFWmqyxpnqANfapWKNsWWeNZjF8P1kTnos11WLBvf07/Po3f5Eb179DJxPSyJqNNdYYMRRFzmw6R0RwiWF7axsko8wnpA9jzWxGnk/A2Iewplqxxq6x5s67XH//G8qay6/T7g4+Q9Zkn4I15gxreCJr7CNZM5+PWMxPaTpJK2sKTFVhjGVz83Xm8xNGR7fRvkrxklhdkrIm5+T0iKIsafc+G9bwGbHmpVBu1H0blYSYG2GTBKrGVWZ1hxFBpMJLqe60UFEVCe+/c8QnrSE3b5xq4lpUOI7vjTg+GVHXFW3T1v4fRuOZIisNXsvq1wBj/crtZoj9I2x05imWpKmM0kuOrjf099EVqR0r185BsbErqVEtu0k2a/qpIKLuuXhmi1oVUdvVt1bLUlbWlIkuU4O69PQQOQuhSe4LVGXJ6ekhf/kv/0Xu3HoHZ2qkTtnspdT5FLodqPVz5rMpxSJnMptQlwu2t3YZilDkOf2NDdr9LoPBAJnnzKcTAoJ1Wh4bfEGStjBSa/O51EDsqTCb6/sV5Zx2q48YmE33ee+7f4XbN3fp9S/zhS//GJs7FxW0xiwTqtWyJY55swqbfhmgbb6bA1GXjggFj5oYEDvOmggkHdOmzXzje9bXqNUWkFDqBuibYEDs1BpDYNgmD8GDTeI9VBj6uPkE0f4PVVUxn48oqwkGQ9raoT/4AkVxih8v2Nx7kx/+zX8Xw/E9vvHX/33GxTGxSCLed/3mFqGsaoajU4pqAWaLZQJqcDqfQqChlW26ehvdbC3gJRBzF/V9Ra3ROnjd+Iza5Voaq40vjZflvTDBLAHdcPhzIyJrrFGPhbJmZR2bJ7Dm1o0hN6+fZc3RvREnJyOqqqLdedGsUa9xeAhreOlYU3FyesRf/st/kduffI/EemgnbPZSQj7DRNYYY5jNJxR5zmQaWbO9y1BYsabXoT/YAHLm07Eqgs7hvV9jjX88a9r3s2aP/uAyb37px9jcufASsUbP27J+1Qfo07Bmlms+k8GQZjv0N75AUQzx4wVbe6/zwz/x+xhNDs+wxi7ve8MaKKuK4fCU8lOyxvwAWPNSKDfqVgsEqdfKHxO1Qowe9KaHicXTaaUkSBWTjwO3bg4B8KW6Yk08sG48Lrl3b8hsNqfb60aVWN+7KaU0mh+vTYRMEvsErDRXaX4G1I3faNCN7eUbxRuJWjzWxeQnVFFz0cXWhBdsjMViwLJ0RTcT2piEJgEZAWwDFhu1W82dMaKvDUFdi014LMTwlwjYxDEejTnY3+e999/n9PSIrUFKlm2xf++Q09MjNge3MQ6KAvr9Ptvb2+zuXiBxajX1Om02trfpb2yys3eJJHG4NENCzWh4wnQ8YnR6gnOWfDpjPp+RJI5up40dtMhajsPDQ2oLrXYbX5fUQQjVKfnsgPn0EofpEWVd8PUf+630BhvxOIm40mLYoGnnvT5zlBNh+b1tQxwDhhSQ2MbC6L2jeR+FToiVCfpPEy0H3dhMMFgf9OBAs2q2ZWPFilYzNBZZwKELt8llaMKdIQSqakGRT/HVAmNTLr/+4/zs7/5HufHBr/Krf/XPcOnVr/Cjv+m/x8n4kA/f/Tkmx8fN11h+ZWv0D3VgOjqhLCqNUceD6iTOUfRbx7FoKl8UzHpkSJNbsTbELrq1PeBE4SUaD7cx5GpdggtBD8iLfSgkqBfg8yQr1mh/K8saa2yCCVqh8njWaOLukjWjkrv3TpnN5/T6yhpd8y+CNSGu7QdZY2Lo+vlYIy+YNQmT8Zi7B/u89977nETWJGlkzckRmxsDrINFAYN+n63tbXb3no414+EJk4Y1iWWxxppOp01/kJG1Ew7v3aO2kLXb+Lqg9uusGXF4dMiiWvAjP/7b6PUHT8kavYOqUKxYI01oqWENRMXmCayxkTVmnTX+6VhDwMnjWFNQ5JMla7Yu/xA3jn4zX337kPq9KZeufoUv/sTvYHofa4D7WCNQw2R0QlmUn4o1EvW6p2ONeShreEbWvBTKTUNwnRI6IZI0o1gQR7GZPNFVJVXsJREXWBWT6gxx8qkCs8gr7tw5Zjgcs7u7pzFNfRPVgqPHyBgXW6WzuslLX6HQVNPogo61/aK9JvT5Abss82w2DherIuJkNaj725jlwjHxfBkazd+6pWa89Fxag/aIkOiOBG88zoCY2GnTxE4DsnLbiQh1XTKdjLl5431+5Zd/gXuHd5kMc6QOvHrB8dqrV3FJgkXI2g5rDdtbO/R6m1Gz1jhwkmXMplO8r8lnYzr9Pq1WDwk11iX0B1ukrQ6T0ZggMwJCPstptzvUpVDmC/qDLknqmM/ntLsJ1ibkhSO1IKHg0k6fujzio/f/Jm+88cMMtq/ikrZav3E8ZS1ZUeIKa5L8GkVAlcMmIV0BYWKp53KySWMJ6DyQ0NzjpoV80GNQiLkKJlULmNi63Gqyp4FonccZY6LbuZlBItGj5amrmqrMEV/hXIsf+enfzY/9zO/g2pe+ykff+wV6gz12965i0oRWewOXZdi6glyiorb6fiBMplOKokDERKtHz4gJNhBqH+dctBzFREtUEw9NdNsEo8l5zjpEHInRJPng1Y0sMaYebNByZSt4m2BtUJiGKo5j4HMjzfpaZ02WURQsl/zTsSZWcUTWFHnF/p1jRsMRe5E1ApjPnDXqiXksa2TlyfksWTObjrl544Mla8ZrrHn11SskSbpijYGt7V163c2o/FnckjWTh7DGY52jN9gkzZQ13s/oRNZ0Ox2qUijznH6/g0sd+XxO2rBmkZC6yJrdPr484qP3fvGhrCGGB8+ypllD5gxr7P2s4X7W6N8PsEYia2KJ/DOxJp5c/mjWVFTFijUnixZ/4k/9Uf7AP/Q/5IevvEFv4wL/+u4VfixLaHU2lTX+0ayZTqcUZbnGGu22/dmxRvsT3c8aXSVPz5qXQ7mJlkYIeqKserksLslwPqMOC1Zn+wRCzJhulrb+bNXCauKkGMQbDu6dcjocU9UFLddCJOCl0vsgZgmTqE4TI9Lqj4luWP2hKYP0BB/L4UyTaBo102jBa0WCoWndbVCrykTfnBA9PKamiambeELv0iJrNH6xrHbP2G8B0HhxzPGQJhRm8MFTFHPKYsFsMmb/9sdcv/EeH9+8zmRcsFjAwb0CX96mlQbeePMLbGxua28CA73OBr3OgLTtSFsZziVk7baWllpD7YU7d+4yPH2fVpbSztrs7u3i65rJZMRsMmU8OqauAvP5jLIqGWxt0W332NjoUVYdpuM5WdYma2WMhyeMhkMm4xFbOxdJXeCd75ywc+EtXn3z67S7Ax0LZ1YVKCbe7+gOp/Gjx9FWA9QuXZ7N6bLN/ZYQXaVil69prOjGtGoWUQhqvQRba4M7tAKgOSRxZRmrC9agFllAYkt3hU5dl3pgI+DIWIxniAdfVYQq4GyrsXEAh0u6JOkMTfDVy9SUCYMxQpHPKReLptWR9pdokiLjBqZ5HzYevAch+od1vhntdyMWbFPZY3CiIRmCxZtKK/sk0QM0TbPmXLT6LcF4xDcJqJ8PuZ815qGs0X4nT82aYNi/e8rpcPL9Z419Amvs87AmhgXgqVgzn064c/tjrl9/jxs3P2IyXpxhTZYG3lxjjTVCv7NBrzsgaTuyLMMlCVmrjY09eWrPGmsy2lmL3b09gq+ZTkbMJhNGwwdZ02n32diEsuoyGc9orbPmdJ01wrvfOWX7wlu89ubXaXX7+t1Um3sMa2hG+ilZI0/JGqCunsAanYePY42/jzXXrrzCpS9vkDiHVIKzGQNj+arAL2GVNcmjWbNY5BSLfI01/qlYs34w9LOyhhfAmpdEuYkl1tF6UYrK0u21PIMFdCBZUIcFiY3JTXHSmah2Ws3uwoeao8MJh8enLBYLslYGESliVCPWjosulmjGyYRqnKp0qztMojuSmCioDavS2HxLtAQwxqMxoo2jXFwQpoFiWPMi6GYs4mEJF6PJac3nQOwhABgb10JEjkGzrhAwgbouqBYFi2JOXZUc7N/m9OiAqiro9TrM5zl11bhFDYWHO4dzNjYPsUZod3rgHMenQwKGC/2LWAzz0Yh8MiHrdEnaLTCOwdYG3UEPZy3FfMZHH3yXb/36txhOCna3d2i3HYkT+oNNep02BnVzaidNz6vXXuW9775Pni/Y2dlha/sC88WUbq/PyemQ6eQmN65/zP6dfX7qt/1eWp1evCkmTvQ0dvd00boFPVxN4v01MUEwWlcREo1bVyzLxWnQYPPqYD9oenNI07jMGEww+HhUgYQKJ25l/RpZ6lchWvXNWTnB19qOvQ7Udam9faj58Fu/yubmX+Zg/3vMhkeU5Zw8nzGbaN5GkrSxtsBQ6fgpF4g9r6irkqoqEAkkrRQrCYv5PBZkGEIg/vExLq5zxjQucZGYb0B0KlugxgdRl3jwcWyj98BoQqptDvgL8X4Etxyvz4ucZc36eW/rrJHnYM2Ue0efDWusSfHPw5omkeKZWSNPYE3Jophp/5qD25wc7VOWC3q9NvNZTnUfa/bvzdncvPdI1jhrycdjcjsha3dI2m3A0d8c0O13cNZR5DOuf/hdvvXNX2c4KdjZ3qHdTkhcoD/YpBtZ45asqXnt2qu8/70PmM/zJWtmiyndXi+y5mNuXL/B/p07L5g1ei/EmujhCmusCY9hDfexpsRJEzY1yzYjj2WND9R1tWRNmJ7yT/4z/yBvLDb58Fv/GVWZ8z/JZ+ycYU35aNaUDWs8SasTWZM/FWvsM7FmFcp7Eax5aZQb7eWgsW7Q+L51Kep0ddFNqt9UkBgLD7hla/CmSiUqRyJYkzGblBzcO2Y6nbGxMdD3j1aOPlU3PBvdzFpuF4+qb7Tqhn2hipaR7pDaMEsneRMO03o7TYomqKdJpNbnx4PqlhafNOUTjeUm0bpGk6qaSWLMmkEVrbcQm1GJp1hocm+Rz8nzKdPpiKoq2NjsU/s2p6cntDJHp+1wTggCvW6LNOmxKFO8186XG1sD2r0B5aLi4M4B1oKzht5gA1OXZGQYAk481SJnnk+ZTCYcHd4jaffokjGezzk8mdHtpiRpRr/XZT4dMRsD1tBqpdwefsjx8JT9/RO6G9tsb3SxLqEuS+q6ptfrUZSew8OPuPXxu7zx9tdI0ixyW7X9YMCSEIwH8RhSmiM0QnT3LhuREZtfhQbWalXoHrZyNzcKdAgxx2GpuOj9kVAv48bBCLY5yVwkxt8DEsyy2si4lKosCVWND3V8vcez4OTwOn/r5/5j5vMj6nJKPh2zf+sGh8e3KGZzLd+MG5gRsE5wGJIA1hlqX1NVFTaxbG7uUnvPPJ8RvMclLm5iWlERmnUR4oYoTb8Tq+fxiMbrrU2jp6EJBTa+BR0j7eGm8XKtYmhCYSv3+OdB1nMqDC+INWTMpy+QNVItFVHEaliq8U4+hjVB6litElkTNGT5JNac6XXzCNYgXisppxOKRU4+nyxZM9jo4SNr2vexpttpkaY9FkWG95bEGQaPZU1FRgtrtdw8LxbM8ynT6YTDe3dx7R7tR7JmzGwsD7Dmzp3jB1jj68WSNffufcgnH7/Lmy+UNXEKPMAaC/Hsr2dhDY9ijdzHGu9BVqw5PbzBrs+4O/+Yqpwyn47ZvH2Dg+Pba6xZ+RQeZE1FXVXYxLG5ufcZssYv18SLYM1Lotxo/olaNqoNu6RFkrRxdo63pbqn0NI9wS8TAp3EzHEaYKAaczykzJdw5/YJ4/GMS5c8SeIA7TWgLufYpltNF4VMczji0oJq3i8eZCZNnFqiJmlWXsZo5dJMUiFmxIP1qriJFRqCiBGMjxaBxAqKmI1vjIvJgpr812TRN9dVVyVFPmc8OWVyesLh3U8Q8fQGA1qtFGcT0pCQtzK2NgeMtoYsipLdrQFp6vjpn/4at27d4d7xEdOpo64KrrzWJnGQpRne1ySJJU1T0iSjLEpclpK127RaGSEUmHEgy7r82G/6ElJrLshpTPybzUs2NrYIVjA2xdmU0WwIwTHY6LJ/75hf/MVf50e//hYXL+2AFYpiRjU9ZbaoMCbjW9/8BfYuvML2xatL17xxZpn0aYK6LkWWo6PjGjcPTelvkiVDtKysQh6Q5vwb1JpqFl9jsC6Vnsb9Ggo0zS8QSPQcJmsRq94AbTMvpGkb51osipJZMaauK1WsRBBqymLIdHSHohpT1zNOjz7hg3d+lcPjm+TTQ4ztwLJ9vUb/Eyekzmjn2+AJoabV7tDvD1iUBSJQ1iXdpLusPBAxSK1nFq32RsG4RJuEibDMMTAhJlRrgqL3EaBNQqw1GCdIM18bIMvTA+cHLWppu5hHcx9r3Bwf7mdN0+/mcazRjFtfwp07x4xHDWss4NZYI3qe0qdijR4J8CjWSKyqWrLGrbxSn5o1i5zx+ITp8JR7dz9BQq2syVKcSwihZtHK2NoaMIys2dkakKaWn/qpr3H79oo1F8uSq0vWtPC+WmNNSlGUJFlK2taQUggFNKz58bcRD5NJZM1kyGxeRNZMlDVuxZr+oAvu6AHWLCJr5osKTMa3f+2vsXfhFXaeiTXm+84arIv7jYaikrRN4losSmVNVZfL+SFSURZDJqM7lJE1w6NP+OB7v8rR8SfMJ2usiZfwIGsCPtS0WsqaoiwRoKwLuknvIaxRzj2JNcTmlZ8Va14S5UY3e72nTTMtVSWtS8Gb2NRHJ5nW2dcEqRFSGk146dqLsUxLAuK5d3fE0fEp115/BeuSCK4Y126qY4I2btLzSAJ6RGl0l8WJEnzTfdgvoaPt0v1y0hskuiFVmzU4xBqccbrBGEFCU3YZKyL0mzcjAWi8H+Njc60m+VH/Dr4iBKFc5Jye3OPo7i3uHtzE+4LBxhaJs7SzNs4l5PmcyXBIXeVsbHaQsbC12efHfuQrXLp4gauvXGX/zi1m0zGHx4ecDE9pd3pkrQ69Xg+LgBcGWxu0ez2cdUxHJ1RlTVF4Wp0+b35xjyRx1GVNK+3TTg27O9s458jnC7a3LuN9zb2jexBaLIo5RTnlyqVthr2C4XTM7t4u7VaLPE+p8gngWRQF773zK7x67av8xO5FsqwVLR1tQh+WY9a4QVUT0E0BbWpHiLkJjTuU6D5Wa1iMWkkhiHZaDbpBWKuVLivYeJAmH0znWIglxdY4mtON1aCzpGmXJGuRzMYU5YLFItf5Jupt835BUY6pqxkhFIxPb3P9vW8wHt+hLEakScJyz0PdxMYZbEx0DnrYCp3uBlmrReX1yI+q9ngvOGf1yAkJMeyi1T+WWJoce70Yo1u5F/Be8F6ia3u13yLEsYthlSTEUk+n8/9z5LmRx7HGakO/s6yJuS9Py5qDMUcnp1wrG9ZEXiAajgAkNOt4nTUhvq9e5adljaDKjPgXxJqiYc0nypq6YLCxqaxpt3E2YZHnjEcjqjKyZiRsbfT48R/9Kpcu7fHKq1fZv32L2WzE4dE9TobHtDp9Wq02vV5fWRNgY1NZY52ypq48RRFodXq8+dYeSbrGmsywu7utlZp5cZY10mKxmFOUkxVrJg+yRvCUZcF7736DV1//oU/BGlHP2XOxxj07awQQS9awZj6hKAsWi8VSAZYQHmTN8A7X3/8G4/F+ZE2TQP8Y1hhLpztYssbwJNaEJ7KmjkpNiKc3PMAa++lY81IoN5qopZMlydSSCJXDuiRqkm4JocYlrOVnq9p/reyJCUqY5QTzWE5P5hzcOyafL2i3Ogg1y6zrxssbJ4K2Gw8sTwMRwYdarRvxrLpSsixbV9OqcVMGLM1laHa7xFbazqk7WcSjZ0bp4WOrJkh6U5fx2Tjb9KwNaDool1Wpis3pXW5df4fhyQGgDffqqmQ0HDLPc9I0papqKl+Rpgnbmxt0soStjRbXXnud0eiY1669wqXLVwhhj7L2TIdDrIM0zdja2SZJO8xnE/bf/YCklbK5uUs+nxF8RafTIXWGKq+pREvffQgYaqx4qqpksNljZ2ebo3uHdOczTk5PmM9HhOh2391oEwROT4Z84QuvYYD5bI5UI4xonsov/bd/idff+iGuvvYWLrG6uG3Aiha1NlZuE+pblSM2MdzmADydPTaeXtvkGoTgEKl0Uw9Nl1ezdNUS54JZO9UYE9vSk5wJAwt6topLU5IkIUky6lCTL+a6mVnAB/UGhAWBQq2rcsx4eMBicarvYjItS47GoEnUpEpqcE6T8pKsTafTxaUpxqUkLqGqa2pfkyRthQ2NVRUrOyKQxQgGp7HyWNLtJSy9NsGszqiWGLKwNiVIoUl/iaBd6Xy0xj4fsmINJKl2ll1njVmyxp5hjYkW+oOsYfn8h7Omokk6XmdNkPtZE56bNeq4OcsaXMy5eU7WqJIDVVVSFDnDk3vcuvEOp8f7YATnHHVVK2sWOWkSWVOvs8axtRlZMzzm2uuvcunKFYLfpfSe6XCEdUKatNjc2SZdsuZ9kixlc3uPxWyK9xXdbpfUGerFlGqhXjMfc/iUNYHBoMvO7g5Hh0d05lNOT06Zz8cEKTBilDXcz5ocqYcQlDV/869/Gtb4Z2CNKjgNazRUrjfzqVhjQMTgnMWlyRprKvLFPEYuBZq2B2dYM2J8esBicYKyJlXWmEewBiHJWnS6XVySYp166qraPxNrJEC1xhpkjTXhEayxz8+al0K5Aci6GVffGPDq5Q1GQ+H2LaFoqgcidGhchVjSpEVv0MVXEGqz1PhCY102Lj4si3nFwb6GpjY3BsvkLETQrPbonYmfZ+OkFV/TtI1uToIlhruigaXJfaqsxox4LSGUEGJpZiytFL2p0SMd36cpFzUENIFtpb1DUxEB0PSWqL0nn08YHd9l//YHjE4OWOQzah9od3uILFgsCmQM3d4mm5t9uu2Ua6+8CniqqqDTTrl7cIc0Tbhz8zavvfkGJkmpq8Dmxg5pluCMxTnLosjJ2l2uvLbJYj6lzBf4uiTPC65/9B757JTNjW063S0GmzukWUqSJQwGA3q9HmnWYng8oihqdi9cRBDm06HmBUQltN1tk6aG8XDE+PQe08mUyXRCq9thsLHByekdfu2Xf47LV1/XeLjThR28JqyFZVJknCNILJeMzdGaBjFBV6/eG7VwtfLAY7wq18sMf+wqAVnvjt6LEBeqmsYEG2PeBF14Akna1lOYncMl2g4/Xywoy1LniOhm40OF9zkiJeKhLMZUVQ5BCFRrc18nm3MJ1mnTMuMMnW6fVrurZcBYkiQlBLVC0yzRpDyc5nVgotUORhwBj/iKJkSx/Cvun1qyHAskfKDJ7FPoBJyIbpjG0hy583mRtJtx5fUBr17eZDxqWBPDO9GYWmdNElkTKvNE1hR5xf7TsCZ6U5asCc/PmtCwhhVrmmzlh7PGPpk1RqjryJqTe+zfep/h8QFFPqPyQrvbRSSnKBaEMXR7G2xuDui2E6698gpEb0i3k3H34A5ZlnDn5q0zrNnY2CXL9OTsxFkWxTyyZoPFfE45z6nvZ81gm07vPtb0+/T6PdJWm+HxkGJRsXfhEgbDfDbESrI8sLTdiawZjRifHjKdTM6w5nT4ZNaINE387HOwJmB9jYczrHGfgjWaM+b0jC0s+SKPrHFRsVpnTYV4oSwmVHUeq62q6NF8OGusNeq1aXeX1aFJ+ulZI09kTRbDwc/HmpdCuUkyx2//XV/k7bd2MTV877tD9m8XsbNmgok9HIyPIMHQ73e59sYWVWW4dWOE1GuZ/0ZU+xSDqUG8Yf/uCcPhkCtX9kiapDmDTqToEbLRsgoS8KL5ExKPcadx6EbfmZGocYemHwKI9THHr46dGANiakwwiLMx695Gd6eLXFmPI0arbNkKvGmvHSd8qJnnM+7duc7tG99jOjlhvsgpywWJ05yPeT0lL2d0exvs7V2i12mRXr6IDRVVXdDvDhhsbnDz4xtkWYvJZMb7777HxYsXSbMW3gfm4zF1ndPp9Njeu8B2p6MJZa7G2h5JchHvPReuXmSR50xOR6RZRqvVJdQBqWp8vmBclGD1pNrNrW2Go2PqqgTgdHhEK2tRLgzMWpQL9fgYm/LatTfJ64qyWpBgKMucX/+1n+PH/47/Ltfe/DKCujPV0jDQnJ4eYrhAVqOpFq7HBhstr9hyvvGBouWw1saqh7B6PIjExSare22ildzcH19jbKL30WhVRZK2cC5Ry80lJGlK5SvKslLgScAjcdE6JNZPer/A+zyemF5qUiGxLNMZrINEGUi73WZza48kSWOej8c6dQPnxYJOp0eSWnDEhl+rEQlh1ZtHPYkhzrUQXd8WbCCIVidY4zRkG8dEgaSHv656BH0+JEkdv+13vsWX3trDevjed0eRNXbJGmMdpgnnRNa8/sa2sub6CPHrVUaCSVesCd5wcPAE1shDWBOejjWxXdqnZE30JD0Faw73P+bW9e8wnZyQLxYUZR5ZE8jrGfNySre3we79rKkK+r0BG5sbfPzx9QdZ02oTas/okazxGNMhTS9Se8+FqxdY5IuHs8YWjMsSYxOMS9ja3mY4PKGqCgBOh4fKGmtg1qYsvLKGlNdeX7EmxVKWOd9cZ42ol2GdNeZ5WWNkVbr/wliTkUTWuMia2teRNTpPV6xJkBgh8T7H13nM3SvhMaxpRdakLou5Qjq3hPtYY4mNTFcjsmJN/A4PsMbEefww1oRPxZqXQrnZ3enx+3/fz0JY8K1vfsidOzNCZWMM3NF0Am3+Bu1FcPXqgG6nRVnU3L09Ay+4LGF7r8PWZofJqOL02FKVwvHhjNPhiKIoSNKM5eKOVlDTARHQv4NfwWDpcWmSENRqMjG23fSvEIidt62ejhpDXVolIUu3dJPzo3Za4/5mGa9cxdhrXQSCJustcj65/g53bn2P2eSEoihJ0xQJFcHAYjEnL+a0W112tnfptFMSZ8l6G7z+uqOuPZWvqcuSbqfLdDolSxxlVXLzk49JnKMoCpzLaHX0BNts2qIqFlR1CQa6GxuID6Spo7W5je8P2N7aRnygyCsWiwVVXUNV6YGoIjHHTqh9YGf3ClXpmU4XlL6mZVN8XTIcTun0+gw2WrRbba5cfYMbH71DUczI2j3m8zHf+eZ/y6vXvohLk6jQxGQ+WVUoSQOFpuHWWj8IdSkbJEbRtX08LA8jjHdRq/YkVokAjZXLygWtFvJaj5Do3rfWqSs1mibOWFpZlzRtYWwSF7jHmYRO/wJVOaGqTsAYWp0BYgNFOcHXBcHXOAO1gyQBY4UkgTQzXH3tNXb2LiIEqlpzOpzTgz6LRUFVB9JMAbTszxE1GhvzPJqSeIPVcvdowetBjPp5eHW3Y5zmDxj1dNnoThcb+Byl3LC72+N/9Pt+FkPBt775IftrrLGRNXbJG2WNtXDl6oDe/axJE7YvdNjcbDMd1SvWHClrFouC/uAhrLFrrBEB/5SsEeLBl581azyLxZxbN97h9iePYk1OXsyWrOmus+aao/Y1tQ9UZUGv03sIaxKKYoFLWrTaut6yaYu6WFBG1vQb1mSOdrqD79cr1iwqFnmhrCnLZ2BNwfB0Qqc3YLDRotVqcfXqG1z/6B2KYkrW7pLPx3z719ZYwwtijbDc6F8ca9Ila6y1tLMuSZZFz45DpMaahHb/AnU5oaqOEcMDrPHrrHH3s+ZVdvcuISayRoTEOZy1kfeRNU3F2ENZYx/BGocJ4Qms0XX4rKx5KZSbfr/Ltdeu8P577/Pue4cc3SsR1O1mY3m4elYSmpyVsihptTNef3MPrOGXywPKKvDG2wPefnMPfODd751wejwjBM/wNOf2/j2+PJ7T6XS1TXnjlo26pkZSa134jbLTVDU0wXJjNMQUKy3OdqhchUaaw9fU3ReW1nlsDqAZ5iGWvVl1zS1dyVIjxrHqN2Eoy4pPbnzA/q138eWcVquDNQllMWWxGCPBsFjUpC3H5sYWIZTMp2N8NccaQ5YmFLMcHzzjyYjhyT1Oju5x4fIlNvpbYC1lVZC1W7TbmYY4SBgNT8hSQ6czwCUp09GYOtS0U3UZig9UhacKJWVRUBaV5gSVBf2NgT5WLXDWkWZtxuMTxqMZeV4wm+eMhrXmj6QJw/GC2aLDV77cZzQ9IEm7HB8csrGZUZYF777zq/zET/9OLl+9FmPdFivaTKzprtp0T202A7WWPZpwqb7PYARjA2uGlyo5pqkQiR6VWPpJUyFjgBDveWydjg1o+5Dm0EMDxml+TdANo5W1aHf6JM0hjS6lt3GFr37t95AXJ3znm8eIh9fe/E3M8hEfvXdMmc8QX2EMNI21E2NIUkOvn/Clt7/GxQuXcUmscsDiXEaSOGZ1SVmV9Exv2V+Ipv+JseoOtolOfaOJilL7CJwmt6R5vtr5TVWHuhxMNDrAL63Nz4f0e12uXbvKB+9/wLvvHXJ4r1DWwCrEhCYVN6wpypJWO+X1N1asKUrPG1/c4O239jA+8O47yhpZZ80XZ3S7T2ANz8Aa+yJYEzfJx7Cmqkpuffwh+588njXJGdaM8NUcZy1pklDMCkKoGU1HnJ4ccnJ096GsabUy0vQZWFMGKl9QFgXFoqKqS1WgNgaUZUFVLbDGkmYdxuMTJuMZi7xkNp8zXGPNaNKwZsB4ekDasGYroyw0ufg3H34WrJEXzBobWaMh0qzVot3uk6ZpPI4joze4zA997XeTF6d895vHeC+89sZvYrYY8tF7Jw+yxqyxpqesuXBxxRpBT5t3iaOuq+8Da1JNmX9G1rwUyo21lrKouXnjkPffG+N9e9VO3MZEYuOwpFHz08PBiiqwvbtFf7NP1skw1vL6a7v0OinXP7zLyWmOKsRCsfDs3zllNJ6ys7ezugHNIMcEY0t0i0UtPDSnmZIQpFbvYjzt1TkX8/CMts2O/Q4aMDmr5ZWqyDZlls0NFZZnjQSNo5p443SxiCYVGnUx79+6zkfv/yqhnrOxuUmZL5iVExb5lGIxpyxrWq0eO1uXyGwCtadczCnziuA9vq4oFgVNx8nxaJ/57JTTo0BV5OzsXMGRMp3MKfKCdpbQykqsNVSJxZAy2GrTaXcoFgvqqtLTeg1IVZOlbQYbm9TeYxPHaDihLAuSFpyeHFNWBbPpnKKuKEuhCgkHd/Vna02MbVe0+jMWRUmWphhjmcwqFuUIJNA6uMNH732Xi5euriweJOYbqGYvwailEM/hMcbiQlOxEmECxFWn99TE+RV7EunGEzBB71loQCJqaQXrl3NgmXQaNB/FuRZZK1OLLwSMTXBJiyzN1OoWwUiH1PZpJ5tYLM62SFtttrdfJWsPSFoD6mqCcwExnhAgwWATixNhq7fDW29/je2dXdqdLr6uluslTVvUvqIoFvgQSFJd4kECGO166pzVKhgbNDdAiM3pdHwkupabRFgbYaqVEc1GSFTe1hpsfg7Eusia64e8/+4aa4xdeqOUNdkaa2rKMrC9t0l/q0/a0R5Eb1zbpdfJuPHhXU4jawShyNdZs/tw1sgzsqYp/31a1mBjs8b7WROWmys8ijU3+Oi9b+DrGYPNLaqGNYuzrNndurjGmpwynxB8jfc1Rb7ARA+Psubkoawp84JWltJqVVhjqFLzAGuqsiLNHMFYpKzIWi36Gxv42mOShPForKwROD0+pqoKZrM5i3jfquDYv1tRVbFbc6GsyXrTyBrdO1askbOssfEg1SexBqudeJ+aNT6SRvNr7POwJmvhUjWMjXX6WJrFEJpgpE1m+7STLZxJcU5L67d3XiHLB6StPnUlj2ZNdzuyZmfFmnjCfMOaxeLTsQY+G9a8FMqNiDAvptw9HjKdVhjR7p5L75x1WJvgTCzFRL9jLRVp1uLS5T0uXNwmiNBOU+7cusv1G0OOD+e6cE1CqA239485PD3lSnGRlm2RGMcqih2dxya6bJ0BH7Pd0QG2kqIaM4B2b8WsNymyMW6ojwlh6erVzHWvC8Koa5OmP4IYAjUYYhlnTCw0gATyxZyPP/ou3s/Z3NkD78kXMxb5SCsmnMU6yFoJLg3kixG9bgcxnrpcMJ2OSawh1AHnLEhFu9Ui9LvUVc7d/Sk+wO6uhrKqasGirCnKOYaaLOthXIKxKWURE8iaBWkhsavs/ktXLtPf2sElGXcPDhidnJC1e3zy8QeEmbam1zwcYXO7zcFBznBUs7ll2N5OuHBhm9FoiDWBuprT7TimsxrvAwd39vnud3+FH/3NP0O73Ylt5Vm5ck1cHCKxUkTvlVgbLYLoqxeh6WOhB7LW0bIQbBIXk2j+g8QmaU1HUYkxdSOGYIlB6jiPjWhvjjQlTTM9rbcscdaQZi3NjzE1MGcyucl3v/dfUtdz8tkJZdJh/857zPNTyvmcJNmkTlOQY50XVpvNJWK4+MoXefW1L9LptnBWT5/WSjqjiXkSyBczqloVTYl5aBrqiJa/URgbE+I8NRrpltUmbEzsN4G237dIBLb2pAox5LV0qX8ORETIiyl3j0+ZPJY1mgjeSLVkzQYXLmwTJNDOMvZv3+X6x0OO1lnjDbfvHHN4OuRKcenhrGms1KdljdHcvqdmjXkUa+wTWXPjw+9QR9YYL+SLOYt8rInLZ1gj5IsR3SVr8sga8LWQOAtS0m5lT8Ga2Yo1dp01KdYECA7XhGcNWAx7V6/S39rGJS3uHtxhdHK6ZI2fTajqBbizrBmPara2G9bsMBoNcSZQlfez5oDvfudvPTtr5FlYYxBxS9aEZ2ENgSRNSbOUNG2tWOMsWdYiSbLImpzJ9BO++72/hPdz5tMTXNJi/877zBfDJ7Lmwitf5NVrX6Lbba9YE8ObLrJmUTyZNTYaCg9jjTyRNeG5WPNSKDfGQLvd4s03L/DW24fc/FA1OxN00jgc3jiMSTAmoZUYXn9ziyuXN0hblk43Y3OzTx0Cw5Mx+7fHfPjeMb4QjUcbhzMZx/cm3D04ZPbmNbIsJbgmsclGjVotKs1T0EMjFQw6p8QEQrCqUESQNIfPCRqPXYWqpPEe06Q8SNTGJbbjbtzQ6+/nQ41xbumyFITx8Jijw5u0Wg6pPYvFBO9LXNJCqgWtrE2nMyBLMwiWQX+bbrdPmmQgNb3+gEG/R10UEAJl3aLb6VBv7DKbjjk4+JjDg9vU1YxBf4c0Seh0enT7PbJWQlXO49kvBl9XpFlG1ulSlSX5dEa+mGKdYTtrc3jvWFuYB8err72OSxJmkxlZq4e1Ka1WwnQyZDSc4EvP9o6h29eKiVYC5XzIaGTZ6Pew1jDY6FHUc5yvSVuGw3s3qcoFrVYLkXiGTpz4OpcMWvYKrLWYD8HiY78GPXkh2sFmdRhc0x5dgUWsLGkqFByCj546liW1TcdQjMHYlCTtLF22oQraedU50jTDJRmYBBGo6gnDk+sEXyGiTf3ufPxrlHVJqAtcq78KkVgt83fGQmK58spX2Nm9RJa1FTAuxRk9E8lah8UyzxeUZUG70yKY2P07lkCDboo+NO3WU3xdxY61Tqstvcc4p8mqgXjUBAQxelpw00mh0Qo+J2IMtNot3jjDGvdY1lx7o2GNO8Oa0emY/TsTPnz3GL+4jzWHEw4ODnnrjdcezRqekjVmxRrzqVlTP5Y1k9E6awL5Yor3BS7JkCo8lDW9+1jT7/eoFwuMBMo6o9PpsPVI1qR0Ol16kTXlGdaUkTUD6rJkNllnTYvDe0dL1rz22pu4JGU2nZO172PN6D7W8BSsyQz37t2kKvOXkzUuI8nayhrn4h4Czuqh0y69nzUfRdZUlMWCOzd/jbIq8XVBeh9r7Bprrr7yZXZ3L66xJsPZQueidVgc8zynLAs6nRZ1wxpeNGvcM7PmpVBuRKDfG/Clt99kNlrw1/0+H9/Q7ozOZXhX4IKGKQyWjUGLt17fYXcnw9dz8kVGlmpcrixLToZz5uPYGSjE2vvgyOcF+wcnTCdTBhs9mjC4tTrZBIuEGiuGOlTqpjYKH4lNlGhK/owev+DijVAg6ffR/hN2+d2aBDDBaNhDwIjT03CNau0m6JuYWD6IkeiCthzcvkFdLUiTtvYVsClJ2iatF8ynUz0tt9PD1yW+zun1LlIVpS4Gm9DpZGxubCG+AtEOprPZhKqo6HQ2qOuS8XhE6hKkzplMc4q8w2SYMtjaZGd3j7TVZjycsLm1RSvtk7RS6romaSW0TZdykTOfzdjc2eX6B+9z6cqrzPMp1DX9zQ7b821GoxGHn1xnNp9TLioQIc0SHRdvCF5AKuoqpygtzli63S7b4hienNLrtNnY6JIkmuxs1iaQiYmWzb0As3RhGoN6rIgx4aYLJk2FiNG8BJcsQwYStPNsk9gZW0fGGROtjhC0O3F8zFqHc0ks/wYbrRE9eiYePCkxRKDRApqGbCF46nqO9+Uy1InR61pWDFg9/mKwsUW73cFZw5munRIb8CGU5YK61tCGNWuuX1mreIqjEERLheMDxEzUVV4GMaRK07dCXeUWhbiWoH5O5JlZk/HWG9vs7rQeZE1RcnI6Y/YQ1sznBfsHehTDYLOPEP1AkTWg1S9PxRq7Yo1awZ8laz6+jzXJGdYY5+jF8MTDWNPuZGxtbCG9B1nTjawZnWHNyYOsydqMTydsbm/RyvokWXKGNcUiZzadsbW3x/UP3uNyZI3xnv5Gm+2dbUbDFWuK/PGsKUuHs45uJ2Vn23F6ckqv22Zzs0uSpLy8rEmVNUbTU+waaywNa/yKNTE3KARPXT3IGiJrLGus2dym3equsUavUSLHAoGyLKgrnWtL1sgPnjUvhXJTlRUHt48Q8bx+bYf8xwuK4ohbn1QYF9vpRbeqMUbLledzJpMxg1mPdrdFv9sjSVK6nZRXX9vk9be3eP+795BaEK/x5LoWLQkfjbl0+SLWBK3BN0nEjY39luKhZTQadwxCxVi2bWLdSGxGp5YeoXHJqQvONJ61KE1pW1jGvTWJT93KXt2b2Bii13N9EOHw6Aa1L3B2gMFT+4JOp01VZmzvXCKEQLfTYzw6pNPtQl0ymU1ZFDmddo/dvT2qPCdJDK1Wl7oOJLbEZRrD3L3wqmr7SYt+f5P+IDCfjmh3MjrtPqEWtq/ssbVzgf2bH7KYz+kOtuj0BnS6PcR6xqcj0rRFXiwIJuXD995h9+JF5jONw2/v7HBydMLNYJhNS1ziWCw8LR/opIbTmdDrdQgiHB0dMRkNEZOQtPrU5YK6BoxwfHSbyfiEbm+gJbtE6zdaVMuDTIktAWiqF9YVAV2Yzur4C3puj7MJIl7j3jGfCuMQG8sSl027DGI8YhOapl12uVqXUyPmMjSxZLNkoPaKWHUktaaFp4pr3iLUIEHds/E1JrrErU1isqDBxwP46jpQ1dXy36CJjyHmUdjGnSvSpGhE2GlX3eY1jcegyR/AsMztaNrFG9OcbQMBVUB9qD9zRrwoKcuKg9vHwBprFkfcunWWNXbJGiGfa7hlOuueYU2nk/Hqqw9nja+Fg7unZ1hT47EPYY29jzViJB78+Ays4QWx5vBRrEnZ3r5EEE+301fWdLrgSybTWWRN90HW+EDq1lnzmrLGtegPImsmQ9qdjHZkzc6VPbb3LnDn4zXW9Ad0un3E1ivWLHKCSfngvXfYu3iR2UNZU0XW1E/Fmqoq1lhz57lZo7ft8awJMefmxbBGQ48Na6Thhm3OStN5YU2Gp1xjTbVkTaNzqH4iWOdIkhTjuI81tf47Nt7z3msi9YtiDTEd4FOy5qVQbk5Pp/wn/9HfZGs7YXPDIrVne5Bx4PIYh2uSsLQ8czSZ853v3SJr9en1ttje1rYAwXs6vQ5vvHmBfL4gzwtufTjCe+0qaiTl+HDM8emIRZnTT7s40jj4opuK0TwS9eKolhkaPTomN3nxWEmQmKlubWxqFqsZVJu3Z5IFWR7OqLNOY+gxpBXjso0CraL+aV9XTCdjBIOXmrpcIKLNonZ29hARfF1hEDY2NjFiyPMxxyenGKnwxZRu5tjILFI58mlOVZfUVa0x1NqTkDLY3KXMS0zQxlBb2y2qMifUgZDAwSc36fR6XHzlDebTGZPRhMlwSqvbYrA5oNVqMR6dgoGyMswXFYtbd2i3WkzGx3S6PTY2Ntje6TMeT6mqwOZOi7qEXqfNl750iYsX9jg4+IR7d/epfE2SJtS+Zp4v2Nnt099oMTy9x/X3v8WVq18AVOkkei7NKmFkrROsltkSJDbgYmkVeYkWsgBo7BsTD2vztVrHpimejXeruUFxPjbWWNQ+dL7EXB0vJkLLAG6p1ASxNGdGGRzWdjA2p6mUMEbj7GZ5rhDxGr2WLFv1XElUoDRZNCo2Quzb4zDGxeZaEIyjOTMoBIl9KnSOqbdhBWgdUv1mRFc7JlZsRGKpxzMmrJr0xUPhM5LT4ZT/9D9W1mwMDOID25sZB/v5KnHTxLGLrPnuQ1kT6PTavP7mBeaPYM3RvZGypngya1hjje6Pz8gaeQbWRPfPg6ypmU4b1lT4qlDWGMP2zgWQgK9rDMJgsInFsJhPODk5AanwxWSNNQn5VJvwVVWNs5ZQ1yQkD7Jm5xJVmeu5RAnsf3KTbq/HpVfeYHYfaza2NpasMcZQVKyxps1kfEy312VjY4OdncEaa3rUJXQ7bd7+0iUuXdjj4OAm9+4eUNY1aZbogZDznJ2d+1jzyheUMebpWaPr8vGsscYgz8ma5lkPY40yRcNGItHb80jWaLjH3s8ao6zRDsrcx5rmbBb11Fj3glnDI1gTArinZ81LodxMpyW/8Nc+IUmg0xMG/Yx8lmjpl6qfEToWQ0IIgbtHI379259w+eoVrr5Sc3oyoigqCEKSGl59dZevfX3GbFxyci8nhBpjLONRztHhKcWipN8ZaBk2LCeFI2iMUyDY2H5bZLlxNJuK1x6T8fcBY+OxC0Y70+rkFLTXQHwuzZmpscOlRO2f9R4GsdIharwheG3eJFAtJtw5+phub4urr36BXqersfmqIviKNIXFdMrx6RHz+QIJgdZmn8RYUmOZzyZMZuM4iZx2uiUheKGVdSFzenp1IbRaLXxdMp8OcTalu9Ejz+fUXmL+iKUocqaHI6bDU7YvbZHnM6qqJkk7+AqKasEiX3B49w7InE53E/ElaeqYzjy9fsbWZp+93Yv0uynFoqTb7jHY6DIc5rTaLXyAvb0tev0+lppqkfO9b/8yP/abfwfd/kCtoUBMdkNj19GKCYGYx6BJfyF2h22snaUrNPg1pIR4rxqXsCZyLk/zxURLWx9v5k6joBqiBWU04VMf18oVa5KVEoTF2kzvuImdbk2CdUBMPsU27cglQsDHjiVpbDjXfJd49TF81W51CMHEyg6JpNRkRRNCTEZVOGsFX+zlRpyvhObQ4jjnmx4pHjEuAjjQHJbH8kDAl1+mk5K/9vM3SVLodiNr5g1r9L7cz5qDoyG//q1PuHT1MldfuczwdMyiiJtz0rBm/gBrJuOco0PtEdPv9l8S1qCJx49gTairyJopt49uPpo1CSxmU05Oj5itscY1rJmPmUwnWjQUnp018yeyZk5dVbi0e4Y1R/duI5LT7W4SQrHGmhZbmz32di8y6GaUi4puZ8BgY7zGmvAAa777rV96AmvkuVkjD7BG0OT2+1kT++g0io1IPF4oqKbtzrKGhjU0FpTF2Ew/v2ENCdaZyBqImer3sUYNF4uL3ttmFTWGuKXdai8Toc0aa6zVkOcLZY19Nta8FMpNCEJdeapamOU1J0c1zrXwsXTOWoe1Kaltk5gWFVpWNx7NOT3JmU8LTu9N+Na3b1MVcOFil0E/w3pLr9/i9HiBEYcNCeWi4N7RiPlswc62rOXMRGuX5alS4A3B1EsNkqgdi2hbdHVJ6rH3FsBoSaYR4gFfa7Hw+BlCiFhrlJqofRNj59HSsuIijCxp0uZocp05BQKkWTeq0qr4tDotnG2T5nB09zbT2ZSDgymtluOVy5cYbAywxpBmGdVJjoghSTpUoaTT26SV6AGRC6+xaZM6ykWBdV3SNAUD+TTHtRwn947xda3VEgmEumCyCLhWSpp0GR7v0x04irJmNi0QyckXCw7v3qPXPqAIYETPcLpzZ0Svu2A2mbC1ucV0MqQOniQRksyQOEun1yNJ2xiTMDw9ZjRZcPvOLcbjU7JORytCIFpCxAUJxDi2waGHHnqaRIXGCvJSqzXQdOk1fum+DUFLPb0AIR5WaFlaTbpBoPeQuFUINB1AmxsvQFVXzGcFk3lBWTmsOJrTnZskxSAF1vQb24ymNcHSmIoeBeVk/D40uQBNAzCLcwn9wUYMMyaxR4osNzCFYuPx0vYDYg0mNPNRQx2YWt3TYsEHTR5cM+0a9/x6KOTzIGdYM6s5PsMaHsma0XjO8Diy5nDFmosXevT7KTaYh7PmcMx8umBnW5M9z7DGNKEKnpI1PMAanpk12ujAPIQ1BkOadO5jTUeVdTxSN6xpkS7g+PA+1ly6yEZkTZZmVMU8sqZLFQra66wJFXHvfARrEo7vHRPqmvSRrLlzhjVIzjxfcHT3Lt32vrKGgATPnTtDet2c+WTC5jOw5s6d299H1kgs1b+fNU2C7hprgrDMlWE1P+q6Jp8XTOYlZb1iDeusCQU27bOcWo2SHdfIijVGv48JNJV7RurleznnGKyxJgJDw6FPZE0zzR/FGmiu7nlZ81IoN0AskWvcqLBKXPLLkE0TMtAYolBWFZPRguHJhMO7Y371l28xGWrDrf5GSitLGZ0ukLqxbC3iHYeHQxZ5ifeBJEnQKpOoedp4i71q0hKTNImnhq93WAxxtAW1sA1RW7Um3hBiNUKTQ2F0skUttolNOOwy1CTEpCwDat0HOt0OdTHHJVrumWWOxfyUYm5oZW26vQH9QZ9QlczmM2aTOScnC668skFiW+zuXgRfMNjcIvia0+NDnA1MpiPSpEPWdiRZQpkLi7Ik1AuMS5BSsNKFdhsRYTFZ4KsFs8mIhUsQEaq6oCpnzKcTrlz7EiFWkQRgeHqIhJLpeMR0WuJci/liwXhSQ4BB32GcYzYvGU0O8HXNYJCws7tHXS8wzpGmCVVVUVZzJrMZdQ3T2ZRFvkBCVAxF+1co16P7UoTgNTlPokvZisG6RE9SNk3lSZxzMbFSe30Ita+X1StBvM47UcjoXIkLN+a1sMxLiVUNopAoy4o7t/f5pV/5Bu9859uUpyfs9Ty7FtJEK2iKsqAsAj4tIhOzZhEQDcPoCo6n0DQ5O8TGbcRS5tgxNctaeB8teGngqCENiWCxNAcBWmx0Wlgbm/Kh5+EQ1IOUJOqh0Y69IYZQdA36Zn1+jmTJGhqldI01TbntfaypqorxqGB4MuHo3phf+6VbjIfaSHSwkZJlCaPhw1mTL0pqH0gSfb8la5rcjKdmjXmANfY5WWMfwhpjA937WJNmCYv5kGI+opW16Pb6kTUVs9mMacOaqwOci6yplTV+yRr/cNZUJaHO72NN5wHWWJfoPfAFVaGsufp6ZM1wTMBE1hRMJyMm0xIbWTOZ6Onbg74D55jOC4YPY4112ui0qqjWWDOZTVjMH8ea6Lnx0uigD7BmmSD7CNZ4rzks66yxosrFo1kjD7CmqurIml/lnW9/m+IB1siKNWGNNZgYtj/LGj1EtlGOzrKm6c6cZi3qT8EaE1ljgsO/YNa8NMqNAsYQgsda7fuimd6rJNAmHt48v64rTk8n3Ds45c6dIdNxga8D80lgNsnjjYnVCUbfw5mUk+MpRydDXnv9FVJRmBiaOnsbtevYPTSIZrMjOpGJyc1Ge73oDVUrKeBxaGM722yeYYmemLtgUV1W3X/GNIDVluFa1henkAjWJHT7W3S6A0QWtFsphIrJ6Jh2q0vaSsEECDAZjTg5nlBUMNhIaLcyagn0+n0G3YuEuqbb6pBYw3Qyp9PqUNc5SW1pddtc2N4jLxdUxQJsQqDGiGd8fBA1eUur02Jre4u6KJjPp4yO7+CDMBkOMcayWEwpg8UHyOdD5tMJxaJgPC4RMja2B5iTY+pa6ABbmynHxznzeUnqILEJVblgOpvR7wU6rR5VWTIaKeQ0UhkYHt/l8iuvR++HY1UxBN7XauXWtVpZNsLFhLjp61JV80iWiW0KnhoJQvBB/8RD8QLqjrYOvGn6i8TuwNKALSxd/wDeew6Pjvm5X/gr/Pm/8B9ycnJC1wXeuGD5kpngkm2qcsrpyTFVXdDuJBgr1GFBq5UQfGiMlxivt9EztL4hxz8xp8h7T13p2TJZFmgSRdVdvlxtCufYQVSiEdlUNkhzXtp6RrwhHlOhPzeudcPKf/R5kceyRmt311hjImtKhpE1+/sjJkvWLJhN5o9hzYTj41Ouvf4KQWJjxzXWaD+UZ2SNKGvso1hjmsTW52HN5hnWmFAxGR/TzrqkmVYOEQzT8Yjj4ylFJfQHCe12i1rkCayZ42pLrxNZU+RUZQFWD1ckeMbH+49mzdH9rJlRBUMdDPn8lPl0SrFYMBmXiKRs7AygYY00rKlXrDEusmZOvxeQdo+6LBmNxmdYc3pyl8uvPoo1eiBk8DXNYcn3s0ZL8R/NGt+wJnrVnsyauN+s9XwJ3nN4eMzP//W/yp/7C3+Wk+NTus4vWZMk25TllOHJMeWSNShrYrjQ3McaVXAkXn+TR3Q/a3xkjX8Ca2KI/T7W+Mga+QxY81IoN02nTVm6X0Msj2tKIptYeNQkG3eelBwdD/noox6HhyMWxRxn2jQutKYfRLOyDRYvntmk4uDuEbPpjHaWaswSCzia81nUheej6zie2Bt7RejdaiwvswptmcYaIk70BEwT5LLRKSSIWIhZ3ybGHTFN3k3jitNmRsYIG4NNut0eSEo+O9WuwUbb+lsc88mYfDLm7r1PmM6mpO0WW1sdRCq63QHtdodub4N2u63J2rsXuH37Y6bDLapavVfWOjpZi720jbXaVrsOJbPJEGxGWZcxjhsoigVJpvbEJEuZz2Y46zg5uInNWuRFyXQ+RyTl5GiGD4Hp1FOWE22t7izOxpCgGF579RJ5UYDxvHLlNfJ8xHyeY0yCF2FRLBgO5wrQKnByOOT2zQ/48td+HJrW3jRxZ924fF1oeWVccAaHcUv7ScfbCmZZkh2Wiy4Er8AJChAJAeu0mZgPQQ/Dc02yoF2GBUy0sm3MESuKihs3PuLn/9rPsb9/j+BhYbREvNfJseaYujhiPs2xqcW6EhDqUAEFRjzeExtLKnRcY2kvKyM0kc8YWeZszPMp8/mcTnsQr4/o1TFonLsx0aIvwFqMD9GFvJqHBnDWxRySqBACEo8KWSY4siTZSy/r58A9G2sqjo5P+eh6j6PDMYtyjiOyxjyONYGDu8dMp9MXxxrbfA+WyugZ1ohd5jU8K2sGkTUiKYvZKc4aqsrSSltY48inY/LphLt3bzGdTUjbLba3lTW9Tn/Jmla7DQ1rbt2IrPG4NMVZSydrs5defghrUoq6xJLSnCyeZHrS1yRLmU9nOHeWNbP5nCAZJ0dTfAhMpp6inNLparjJWe12+1jWoKwpigXD4WzJmtOjEbdvvs9X7mcNn5Y15tOxhhjeXLKm5sbN6/zcX/ur7N9ZYw1CrzPHmROq8oj5ZJ01UIcSZU2IrJEzrJFHsIaofCtrZnTafV421rwUyo2WXzaJdAE8BLuCNUZPDw1GJ6g1GYacIDUnRyPqHOaLHB8SnG08JbA894OAMxliBCcZ5SLn5HhMnucI2xArS9QVncbqKLWGmtBTE7cGtItkvHK7TJKKZZs2gDjda5cgcTFGqpq/CYJ1qWqrIbrgms9pSgm1+A3jhO3dTQabWxBKymLCIp+ztX0Z6zKKxQyDpywWnJwcI0E31+k0p9NpMej1SJOUJElot7ukaYa1F9ncucDo5FhPFE8z6qqizucMNnbJegPqakFZzqkXBQEo64q6rLDOUVUl8+mE2XhI21nu3tunlbUZ5zlVqJB6QV3ocQtlUVNUhqqGqqw5PZmp5ekNiUspKw/TWTzFHQ7u3KGsFsxnJcZmmCTHUJOkKcPTGRihqks+vPEOP7so6PVa0IQto5ofRBtgaaWJJthJMy+iSbGM38ZE4MZCV8ho4qD42BcEG63dGkeMRVvicQogRo9a1L0oNmUMluF4zPsfvsdkOqXb6zCb5ASBSS7cOZ7q2EtBywqdnlDXsQW9DyRVrdZRrZ4VAgSqaOXr0l/+ESHEDTqIup4XZY7gsUbLSjGrc4hENHEwhviXYdnGW9DE+pu0UxtdzUvXdGiqs9SV7T9HCcWNV0R4GtZYrNEjX4LUnByPqBeGfJHjvbJG31Qt6Yeypsg5PhmRzxfIjnkoa3gK1ggrxfapWYMmZD4ta+x9rKmKCfl8zubOfawpC45Pjs6ypt2i3+uTRNZ02l2SNGNrnTVFTpJl1FVNFVnT6vVXrMlLglHWVJE1dWTNdDQkc4a7d/dptTpM5jmVKGuqx7AmsM6a+gxr7u7foSjXWJMu4CGs+ej6O/yWh7GGT8caiazheVjDGmvEMpyM+eCDdxlPJnS6bebThbJmIdw5nlGVt3CyWGNNiTWWygtJVcfPBPHmsawhsqbhZFkuXlrWvBTKTZNro1qvlgwap/FiaxO1qmzABh+bC8WTwY1nUc2oR6rIJLa98gA1ml4g9qxR+BhxBO8YjXJm80XMdo+WXAgEGzcLCcvj2ledI6MJrReNtcnKtR8EsSgkTBJ7TzT1lgK2mZSChsJjAprVQ8RqfLzWpoGR13qcUJFlCf1el6PDIWmrR+JrQhAW+RgJLcSXHJ/eo649i1xwqSPPPTvbPba3t0hTPQjTGkcr65IkLbK0S5b2CCFooyprmY9PaLW69AZbtHqb1PWcxWxCUcypKj0MzjpD8BB8RTmfMp2ccnh4QD6bU2O4e+828/mUWwd3WMwPSZzjZKyNpEIQTo8LOj3HdOpZLODKlQG5n5MvSsrS0+5YNrd6JKmLjcK0N8jWVh8hMBouAGE6ndP0RFge0Na4VBtrIUjDoLh9mLgRATShF0PwXuPNsfw6xMZbarU0sfJoWSFAohuFUQvZxLNjgAgtofQlo9EJwQd++id/Owf3bvPJzRvcOdinnC8Yzjyzac0gE65sG8THfAtj488+lpLGP6KJ66HWe687mj5Pk1JlFYsP2urdOc3vYFmhJTRxfp2bFttUbIQYJ/cKYHViLO2ruDxD9I7pZqoxer9G75dfnok1LsV4B9KwZk49MmusiferUUYewZrxaMH8MazxD2ENmOgJ0rd2kTU0rDGCJXmANRKt4yVreBxrmtCYsoYla3or1iQaOlmyJlQcn9x9kDVbXXZ2zrKmHVnTehRrsi7pxhb/SW+T317PeWU6pihyqnqdNULwNcVsymx6yr17B+TzOV7g4N5t8nwWWXPv4azp38eakJPnJVVZ02pbNrZ7uFS9R77W0+7XWSMIkxfIGvGx87Do75vy8WdnjVmxpi4ZjY6pa89P/eRv4+7d29y8eYP9gwPKPOf0YazxAlYQT/wsVryJrPF1pU4bzENYw5I12gDzRbNGPjVrXgrlBow2MvIhDqiHUGMTbYG+Sv7UL2aNXXYcD1RxcjRnPelEENS1q4dtaUdY6wzWJgQPo1MtVfR1haSJasBGlQqJsBFp5qzDLRM44yFpMQappZlEoKjGqoULcRFEDb6Z8EvtvLHMjIJVD1yrl14s7XWiANPJ4qiqKp6u3SFITVnMcE4Pp6tKYTyaYxPDdDrX9w5Cv9fHGosjIXEZIoayqqlLTeTr9jqkSQcMdLsDLI6s3cV1umRs0O5tUy1mVGVBkrRIWm2NL3stG13kIy6+8iaT8RCXtJjOpwxPjnj16ICbH7/Pex/eAnNMUZbM54FFKSDarTcvSm58ckKnY9V97PQwUoMhcS2gYDYfId7S628z6Pdw1lAUgYODO8ymE7q9vs6JGBIITT+J6LJtrN7GPbw8cBBZ3muRelmi2TSLVEU1Dn1orAq9F0FEvW+xsyvWR6dRWIECoZW1+PJXvsbbX/ohrIHZfMpHH77LN7/1DT768B2O7xxCLmx2hXbLkIQATZlvZOWyh0YQfC1UUmkuDo2D1tLk/BCNShP/07Qxb5JORZrvYQjB6H2II9TkY2AB35QHN0petBrFEHzAh6aPSpMP9/nx3DwTa0Sb7TXO8CCVWqEmHnYYQ0pPYs3wZMRkOn4Ea1SpfWbWNG0F7mONHogZWRPDXo9mTePdbliTEj/gkawpFgvqUpiM5pjEMJ3mOqyirHHGYp+aNZa/0e7yT3R6/AQb/DO9bX7XYsagLDhKWvxiq83Xfc2bD2GNTVp8YcmafW7e+ID3PnoIayaPZo11DgvYJWuGBG/p93ceYM10Ol6yxi2Psngya3Q+rVgTpF56e56ONQHjrR60iVuxRtZYI0KWtfjyV36Yt7/0QxgD8/mUDz98l19/FGuioWKRpb7wIGvqVWGCfsu179ewxkRvTPKCWcOnZs1LodwYDM6liI+x4QgMCaI3EyBaGdYm2HjiqMRJ03xhT4nEsz5MTKaD2NEzxq0Rj7NC8J660o6LoJPSN5nvUY0NISwTnpbalFm5BJtrcLJy3TWT3Da9JJbet0a9idZVzBFRy4n4JHUjN5MomECohdksUFaae5JmbTKXIFVFHTQno6xqZvOSfKEx4LLy9LrqJu73NvC+JhC0kureAZPRKRI8g80LbO5coNMJtDvdeCaLxaZ6IjIuwRrIOppc5lpt0lYPX8wJtkJCTbs9IM26tLubBBEG2xcZbG6zd+U13njzh3j7q7f56IP3+ODDd/noo9ssRp7KQ68HMofa6+JKMkeaQqut3XfLUhP0Wt0UkySU5ZS6qtjb3WY8XZAkDuvifYllkRICJiazGV1pUdOPuRVC9Io1VVSaTC6xDlJiN9fEapWQWIsPHmOJDQCjldZYMjHmboIWdofQhBO0z0N/sM3lizXWCbt7uyTO8YU3vsDOzjaJtXxj/EvkpzPmhWGjFupaSFLNsWnA1VDCh6BnwdAkFuqyEBOWgGHNqrKONWuK5TiwDEWo1aQbaog5YzqcNibIIw7vWVpQJlZ4EC0pvQZDU4b8eZBnZ41Wk+jIaoI6QHga1nCWNVUdaHMfawD8Z8Qae5Y1MX4VB+IhrPGB2cxTVaxYkyRIucaaumI2L5kvNMeorGplTae3ZI0QmM3nzA/vMh6uWLO1c4FON9Du9EhbyhqfZrSw3HAJ/5qB9zuWf1YM81abf6nV488Xc9wjWLOxFVlz+TXeePOHefurt/jow/f44MP3+LBhTQ29Lkj+IGvanRRjLWVVIz7Q6ma4xFGWE+qqYnd3m8lsQWLVC9qwJkSviZ4J9WTWADpXGtbQKDZPwxoN0zRev4exxllLv7/N5Us11p5lze7ONolzfGP8N8lPZ8wWhkFXSB7GGu5nzVp7ASJreBhrzFOxRtZYEw8t/0xZ81IoN0vLx+iJqFL7ZRzZ2WyZPLc8NZeVdRJX8/IOBLQnCbKe4BfdeaHGmkB3s8MXvniVzc2+xjKRlScoem1Aj1vX7opRWzQWGyyrrrgSOzQm0eCJmimwbCmNhqrU5acnwpqotqonUieLCdqoqOk3Ya1WUgSpKRYLbt36iMlwTJKOqfKMJNE/i7JmUSw4HQ2xmcVIoNNNyNKE3Z1drLWUZc3d259QVjWtTo+N3YsMtvYoi5LT43vcmXyArwta7Q6XX3mT3Uuv0ur2MXWhx/Bat7R2Q1Vp8lxsSmVsghGDy6AucsRAq7OBF6h8YGfnAtU1T6vT4eLFixyenFJUBcHn/Pr3jplMhWkRGJQVuzttrLEMT6Y6KwwkqaXTa+Gcoddr0xvs4GVIp7NN1mqRWEctHqSOXhgf4RItEjHq8g1x1lhAAl5qluWGcZOypukvITiJ993EUGS00JaKEUS3rI9uaoOxgSZvp6oDi0XOaHJKq5WxZy7Sylpsbm6yu7PHYGOTrNVmIjNmBRSVoVVD0FYPOh+NLmyNNQt10MZay1wJYzBiCdK4djVcSzMvjR7aqYqbzsVatJdR030bIkgIUbGxamk167I5IDbE87CWYxIBHN/j8yKfjjXQnPAMT8majQ5f+OIrbGwOcI3rXexjWaN6zcNYY7AufW7WNBqsCfXDWeNrirzgk0/uZ42eaN+w5qRhTQh0ulpCvbOzt2LNnU8oy5pWp8tgZ4+DrT0OipJXj+4SJu/jfWTNq2/y1sVX+Xu6fagLfi1JmFpHcI5N7/l7qoqhrLHG3ccaa2h3NvBAHQI7exep6kCr0+XixQvKmrIghAXfeirW1HR62RprtgkyotXeepA14dlZI8/DGjnLGoyGjdZZU9eBxWLBaHw/a7bY3bnAYLBizbzUDvLth7EmPMgaH5rKwYezRpp5iTyRNTqvo/fliaw5u7c/D2ueqNwYY/4k8HcB90Tka/GxHeDPAW8AN4C/V0RO4+/+MPCPoZ3F/mkR+UtP/AwMzqZ4V0XlUWPEjTUdar9MkrPW4kyGJcVHt21jnTRuv8S0mu1HB060EgEp2dhK+eEff52vf/0L7O7uAU6LCRzx9doyOkihCb2m6TMQLTyjE85Y7fxpovWkh9qpSxfbOLJN9DSqK86EqNlaG51NK2Bam0Y4afIiMbaqfTesepk8IDWT0tPuCBIKjJtT1wGXpLSTjLnPcVlCXdbsXdij6bo62L7AYGuHweYenU6fdneAcQm+bHJnTjg8uMn+zXcZD+9y4fKbtDsd0laKyzrxvtT4Kqcq54iFui6pS8/J3dtMxkPm+QyMo6wKprMxZS2cnBxzcnrMoshJ0g5XLnWp6pzZbEivN+ZkVFBUwvDUk1cLvHf0ugYTG+i5GGZzxtLtB8ryhPFwxltf/HHarTZgsELsEKr9c6LPd2nJEmJuTaxIMI1PtVlkrM75CYa4YPUg1eZeWgFpILRMDFQrR3+uEaPnrJRlxXwxY7HISZy2Wp+MRyzmhpPjI0ajEXleRhga8lJYVIZ2FUiiV6gSjw9CPOuUYNXKqn2gqoq4MTXbVoxlS6OoR8U5eIWJqBWk8e+4HmwEKbKElU3sMmynnjCAOlq8UcVfVvaYVdj1BeXcvJysSR/JGv8E1gy2Un74x17nR77+Jrt7u2AcoTb3sYaXijXGGOrKr1hTedptQWSBsXN8LbgkoZ20VqwpavYurrFm6wL9rR02Nvdod/r8YnfAf+BS/r9lyU7Dmv2P2b/xLr3Tu/wrl9+k0+mQtNLYNFA97H93nfNGOacy4OuSuvIc373DZDTUQ3mtoywja6rImuExRZGTpF2uXO5TVfMla46fljU2suZ4yHg05cd+4sdoZ5E1EPPz6hhJeRhrWLFmuSG/ONYIelzDijVzFou5lvaHwHjJmmPGoxGLNdbM11iTRgWqEq+hqAdYI9RVQWg8lGjyOTR1YNFQaDxZT8saVqxpcnQeZM1KmdHS+mdnzdN4bv4U8G8Bf3rtsT8E/Dci8n81xvyh+O//vTHmh4C/D/hh4CrwXxtjviSybLD8SLHWYXx0kUrAikLIWKsJf6GGOMTOpFjTIkiB4PGS40wHEY+XEmMGcRI1IYQaYwLbFzN+9Mff4ms/8kWuXLlAmiX44KlrryV3aEpTYxMt8/nMmpeIqLUavcUYcOhZQMtJHtBGTo2N39zY/z93/x1sWZLn92GfzDznXPv8K2+6q31PT/fM9Nh1gyV2Z7BYDwJYcilBEEEFQImyoT9kgiIlhchQhIKMYJBUMBhShCCCAgSAYCxBLneXASzWYM3s7M6O6WlTPW3L1/PXn3MyU3/8fnnufa98dc1ste5ET1e/uu+aczI/+bPfn7hPao1HqaxvXtOoBR21rVOjoFg6vWXanT7D4QG7u1rctjsjzyDPLS4XIT9rDLNRhcukbXN1dZ1oRM+i3V0ib7UgespqRrlfUZczZtMJvhrjbM7y+ibLa2uU0xl7+zfoVUssLa9ibKZCWlDORpTlBB8i0+mY6f6A8XQE1tFf3aSztEze6kiLoXFMpzNuXLvE229+i4tvfYfpbMbS0iqd9hKrqz0uX5uRRTAextPAZGLodzOiDfgqsLcjkM8Lw2BUMpns02m3OH36STLn8HUpBcG+xvtadiXzLgZjzELLrXoBRjyIEHTjkUKsqubbbGUW7iGNOGNIaqQa0YshiF6wdhHEGGm3e5w90+fs2bP4uqSqKybjkdxXa1WjQoyumY9MZxC68r6YiHXSxupL39RjhBCJPlCVpdQ96f8kvVQjIdxA7SvAqEAlYHRuVkxDFAU287Su1HjJqAYR0Qp46iCiFDYVURpJbVgrh7K1UTzYRxe8+X/xZ8gaay3xAVgTYokxfURv5jBrVo8VfPrVp/jky89w6vRxmV10W9bEP2PWpM6WxJqVW1kTZ+SZIc8NLm/T6S6ROcNsVJIpa9bXDrOmUNZU1Yy/sl/xi9WMcjphu5pgbcby5jGWN9YpJzMG+zcIypqorDkeLWvTEbNF1hwM1Kix9FY36faXydsdal8SjWU2m3Hj2mVhzZvfYVoeZs2lazPyCNM7sGZ/Vw5VYU3FZLxPp11w+tSTZFmGryuCrwm+pn5o1qBRmkfHmlary9kzXc6ePSNdr75iMpJuL6zRYZPymcp6zpp4hDX1LazxlEdYg0kGsQ7SDBXArazR1X1b1liLjcIaq6zxd2MNYOODs+aexk2M8beNMU8e+fEvAD+uf/7bwD8D/jf6878XY5wB7xpj3ga+APz+Xd/EoDlGrZeIskiCCWQuk9wscmMh4mwLa/K5EZfympK9JMRKu5YcojFds3limVe/8DQvv/I0J09tYjNH8BFf15TWUDindjmkWR5J5yISpNvJiDaFVkBhyTXSK/NAmm6GVJQYY2OdWhXiSiqTqahVAKRV9bohmtC3Aesyllc3KIqM8XDEeOK1BROqTMKTnV7N0kqH8XCIKywhRvpLfZaWljAWnDPUdcVsMmH7xg2uX73B9Rs32R8OxHMIFeurq6wuLbG+tkZ/ZQnrHLPpiFa3Q+YLjI3EAFU9ZTIbM5mMmY3GDHf2qLWI0YUIdgjGkhUtrLNk/QJ78hTWgssK3nv3DWJ0OFfQ73XIZMAxbQckbXlryRwMhqISXBTSrDqdBqazQL/f4uSpM8Qg7dPe16oXUUm3k95FjKi0Sjvi4lFi5L7Zhdy5lVRFCBKBmbtiih4nqqMRQzMxPszXXAxykITgyV1Gp9clc9rWGGVq96Tbw9mMg4N9Thw/TlYUZJmhmsK0lvCDywwBQ5Zpt9PUs3hcR+OZzWT68VzAT79xKtoz8v2teuLGWkwtwnEYwBvt8JNrPXc+rYprRT3wZVqxDYFopasmxijy6LrtEngexePPmjXW5VgbH5A1NZaoIn7Cmo3jy3z2C08Ja04fa1gTHoY1SCutuydreEDWpMthD7NmbYNCtatuZQ10ejX9lTaT0RhXOOoY6fd7LPWXJZDUsGbKzs2bC6w5kE/gKzZWV1lZ6rO+tk5/pX8La6JqwhxizXjCaHuXWseDZCEycUOMdWRFC+MMRd7CnhTFW5cVvPfOG0SUNf17sGZQE+IiazzTqbLmdGJNeXfW4IhBWWMiqcP2FtbonnwUrMm0UDtzXwNyiK/OWeMyBoN9Thw/QVYUuAdmTWBWDvC1X2CNb9b/oW11lDXGgDOkSRT3Yk1U1nCUNcY15UwPypqHrbk5EWO8ChBjvGqMOa4/PwP8wcLzLunP7vowWFpFQQxTZugmjZFoDCHI0C7nCmIMOApsPSNNCJeOAt9c7KaYy6YhcjUbmz1e/dxTfPqVZzh15jhZq0XwgZoKohRyRe/AhnkxobEqTS42dbKuncuBQCpCFd0dQ7TiUVkSpDSEHcVPk8MVrMkISOGr/H6qQNdDSV8X5p5Au9UjxIKDgxofpUCrrsWbs5mAcDQcMNg/oN3t0W63OLF5km6rRavVASLlbMKNqx/y+7/3e1zaPqCzcoxL770l0YQ68OILL/KJ556lHE/oD5Y5cfIEIcvxVQVEXN6lmoyo64rxZMTezhZ7N3eYTKdMRiOGgyFFu8doUgKWLC9oddusrCyxtr5KDLCyvM6p00+zvXWdqi7pd7qkAXC5k/xvXUGrVZDZGevruWSZAmAs/b5Iqp85d4HTp85TllPpHIqB4MX6T/UQRqXzo0m57HRNZZUk0KNtikTptpsfOvocowdAAlBM1RdgtOVXWoKlfiKoeud0WjGrBmTW0u10wMgslrzI6feXWFpaot0qyIuCwXTCeBapazuPxKBGi76Z5LGlNXY6GVGWJU0hOvL9YtTUlEZ0Uy5c5hNFOXyCJRgJM2MlJG+M1v7pP3JoG5GQNx6PdOE4l+najyJgGqTIclEp9fvweOSsKb6frDnW49XPXeBTrzzLqbPHyb9vrOEIa8J9sCZ1vegCCbeyplX0CDG/PWucsGY8HHKwf0BnkTXtFq2ig1HW3Lx2id//57/Hh9v7tJc3ufLBRUbDEcYHXnzhBT7x3HMLrDlJyDy+qpgQ+Y/yLv9LZc1kOmJ3d5v9m9tMJlPG4xHDA2HNeKoRyrxFq9tmeaXP2voqhCisOXOfrHEz1jduz5rTZy9w5tR5qnImnUPapeT9R2ANaYL7w7DG654LTeRmNqs5KF/CWUO3I5Ej5xxFkdPvLStrWvfPGi9Gc/CR6XhEVS2yRppLUmdVwo81fGTWBFPrdYi69pNRtcCaewdmm8ejLii+XdDotqaWMeZvAn8ToNNe5tOfO8a1K4E3X9/Fe6uJTfVoDIBvQnjW5bi6wJLhtX06aQnI0DLd0NQsrRZ86tUnefmVpzl+8phYqdaqUaELJICPgdxkJBGDlCY0aoBYI+GzVECV8oBWQ40WA2mYYloIUSvBmYMkxqAetFrsmn4SoOkq0UgCBIwTz8Tla+Asq72CqiypZl4XWKQqAwf7O7Tb0kljbOT0ydPkWUZRZGRZzmw4ZOv6NYajIa986vO8/IU/z3/2n/xbnD//LG9cfIuzz77MyeeeZefNP8aZkt3MssoGvZVVvI6499WUqiqZDEbsXrvJ9vZNxrOpzJxZXuXt773H62+9yY2tXU6cPMHqxnFMqDl9fJ0LFy5Q1zMym9Fu96hGpR7uhlkJeQZtZ4jWEExGt9cir0smZY21Auq8yOgvd/mxL3+FbrcrBo2Gh4NXaXBUK8EGsfItDURSQaXVolvxrEg3QK+/XFNnM1KbJxrtCfpcGzUNkZQ6XdYUFldlyd7BkK3dA95+5yIry+s899STbKwviaS6tWRZTrvdodNdob9UMh5fYVoFprNIPxisgeDBObSbS04wrzCdTadUleiPpO+UDsRGuRajZRnSEh50rZu0tqPMF2ry5dZB8A3gY6ww1uCiXDsTRE7eaneRX8iXP2ih3yN6PBRrup0VPv3ZY1y/EnjzjXuzxiXWmEyGHy6wJjSsAajpr+S88pknePlTz3Di1CZ5pnPAjrImBHK3yJr4QKyRe/sgrNFuLmOUi3dmTV60yIp1orWs9pU1pbIGZc3BDu2WssYIa7Iso2jNWXPz2lUORgNefuWzvPLFn+Q/+0/+bc6ff47vvvUmZ595mRPPPcduYo0zrLJJb2UVFz1fioFYTamrislgxN61G2xt32Q8nVLkypp33hfW3NzlxMnjrG4cw3jP6RMbXLjw5C2saRW3YY1R1nRb5MWcNcYIN/vLXX7sx36Sbq8n858eC9bkyhpDVVbsHYzY3r3K2+9eZHlpjeeefpLNtSXZ29aqeGubbneZpaXZ/bEGtNAdyumUqqoa1qStnpwns2B0f3TWiATCXVlz221/+8fDGjfXjTGn1JM6BdzQn18Czi087yxw5XYvEGP8T4H/FOCJ8xfij/7wBf70Tzxvv3WVUI9EVVNDq1Zlr43mmyW0p7LlqUsB+doheqKpMDGnt5zzysvn+dTLz3L69EmKlsNaXX5WZovUmGaGUFDtEvlr8eIwciARI04HiAkQVIZarc803CwVgcXU6m2kK8KqxYve7PlnTvnX1EoIJKiZnBjlJn/6s1/ig/e+jY1j3FLGYH/EdBwp68ju3phWYSkrw2rRggjrq6vkRYuiaDVe4IlTp/jh3jLWtMnHe1w4d4F33nmDM+sZJ44d5/wTTzO5/DZFZlhe75NnjlB7QlVRTYf4asZ0uM9gd5eDwYDBcMrm8WPkxrFy/kXeu7bDqade4v0bv8fyxjpf/smf5a2Lr/H6N/+Qa9cu89zzz0MMtNoFg2GkKBztTsZwJKJi0UbqWU05C7Q21yjimPFkgM0yrDGMhzPW1td48vxTmIC2fosWRIiVGGEY9WrVw0W846jzfkzqaNCccIhgm8p8uYeWlBZMYXw5NNJmkw1uaTRpDEQrA+Ym4xnvX/uAP/nOa7z99rscP/4kN7d3+cSzZzm+sQkIQPM8p8hzWnlBljnKWWBaCWiME5AZqx6S11y8GtxlNWEyOaCuK1yWFGf1OgTVi9BooEAlJo1B3SWS8pDvIukXg5cajCiHXtOtYOUQi0mbZQFuEgB4NCmpuzweKWsuPPl0/NEfvsC3vuH53sV7swbtrDIaUVlkjRSFCmu6S3PWnDl1gqKVSXoEKdA8xJp4lDXZfbJG1sFco1ajaPdkTdDPfG/WBGP41Ge/yPvvfgsbx2TLGQe3Y009Z83G6hpFUVAUBUYNwhOnTvEjvWWsaVGM97lw7km+987rnFnLOH7sOE888QzTxJqNJXJnCbXHVBWfnw6hmjEZ7nGwu8v+wYDBYMLmsePk1rFy7oWGNe9d++csr6/y5Z/8Od566zVe/9Yfcu3ahzz3/AuHWNMqMjpHWVPeyhqXyX2bDGesrq/y5BNPH2FNvAtreHjWKKkelDUfXBfWXLz4DsePPcnW9i4vPnuO4xsbCGsMRVEob+7Bmnh71ozHg4Y1iYsxhIVI+feDNWjK7uFZ87DGzX8F/HXg/6r//pWFn/9/jDH/PlLk9yzwtXu9WK/XZnllha2dGVUlnkbUC55yy9blBC+TajPXwfkC6wsM0+Z1JCnkgJpOL/LSy+d49dVnOXfuFO1OW4DgIta5VPKOi2qFa5eI1bqEQJh7TYuLTKhGigfPi/T077V1MfX1xyTBrSFA7Q+Ue2ltk5eNRrscmgIs+bM1jsxYzpx7lqef+wyvfet36LQdlbdMypqylEU1mQa6XUdVlnQ6LfIsI89FBh3jaOVL9Jc3OH5SvneMli//6F/gi1/6caajA1aWuow+eJPNtRWKbk5vdZWmc8NHvK8o/YzJZMJwNKAKkVNnz0JVcfqJF1g7+wQnTh3n4sVf44lzq5w5+xSr7YInTxynOnuO4fiA2WREr9+nt7TKdDqkrmuWewXb2zPxBABnLXU5Jc9bhOAZj3eoDmb4Wjp/Nja6LK+sqesQNDet3kOwDTRE6Ex1ElB0NFEOKXgLUVVqNSXlQO6PSYV+C/fVileNSWmgCDipDzAGr+2L06pkf7BLxpQL59YouhnvX7rKzu4uzz55irMn14lB5nlFPFWYgYEywLSK1F4OMmvBR4VZs6nF2KlLGSRY1bWsZSTGG9VDlAhmrTL9+tkxkmjXGg9Mho8CTJrUBtIpFNUL0y6baI38XFVSQ/TSaYPXturva+TmkbNmdXWFrZ2S8n5Yk7VxvnVH1piGNWd59bPPce78KdrdzveJNWqkyAJvJBkeNWvO3g9rrLCm3WmR544sz2m3e5ijrFENqi//6F/gC1/6cWajA1aWeow+fIPNtWWKbnGENYHC10x8KawZDoU1Z85BLaxZP/skJ08d5+Jbv8YT51c4fe5pYc3J41S75xiO9m9hjfd7LPdbbB1lzewwaw4OZtReatfW1rssr64fYU24B2v8w7HGpJjE/bNmVpXsHezi4pgL51bJOxnvXbrK9gJrUl1OJBxizeR2rGFxDQlrqqpkPB4Ia7I0GmHOGoMlUGvK8lGyxn1k1txPK/jfBX4c2DTGXAL+bQQ0f98Y868BHwB/FSDG+Jox5u8D3wVq4N+4n+4FYywffrjPe+8MRZwogg8lmW1BDFiTE2wte7VGvBSpBgPm7ZOOAgu0i4znXzzJpz/1NOfOn6LTaeGsXMQ03gCdg2EtGO+bokwx0yUNAtq6p6HC1KoneVH5HCkUKdOgPUSn1roU/YUooblUJKwBYknNNt6VRjERi7jplgIpqDKBfm+Jz//QT3Dpw3e5evkdyolnPI04a6gr6HYEjWU5YWNjlVarRZbnYKDIC1ynJV8vgssL8rzgxLmcuq4Z7N6gGh3gy4oiWycrMvKsoPaVFhLLIqyqkqoqmU3HZEXB8soaG8c2yW1GtXeVz738aU6urrG9dZ1W1iUMdmnXJf12TrezTu4y+ks92t0Wo0GP8WDM2nKfy8WQUEeKwoCJVFVNXZf0ez1MhIP9iqqMuMywcewErVYHY5DZK1H0RqyVuohGsAia+2aIYnQaiwlaX9EcGlJ0mTwF4clCLtww99o1Kiqvm7obBGLOWoKxLC8v8cqxk3z+M5+k9jWD4Yhvv36Rb373PcrZmH4no91yEsYvClxu6fY7lLOaSRmZTQNZV8PCQaXkffoO4nGG6JlMhpTlTOpHNBIQA/hatluS6xcpAXkdY4xoMhlpI0WLZjEC0xhrUv2RNaKcGpLkuXFNd5RNHmaUtvDmgn/Exw+MNZf2effdwSHWONOCELDZEdaEQOplSayhYU2kXWQ898JJPv3ppzl//hTdTluiw99v1kQPPAhr5A/3w5ped86aa5ffYXaENZ1F1qyvUhRt8izHmPhgrFnZuA1r5LNW1YyqLplNR2RFzvLqnDXl3lU++/KnObGyxtb2ddquM2dNK6fb3iA7ypqhsKYoBrewpqpKlvrCmn1ljc0M65snaLfa92aNGpZGd8YPijX95SVe2TzJ2lKbkydPUnnfsGZ2C2vy+2NNbTDZImtqplNhTWuBNTKeQeQRnPn+sIZUUP+QrLmfbqlfvsNf/cQdnv/vAP/OfX8CoK48F9+4zmjotTVRPJ4YAr6qca6FcRkhTpjbt67xrtFCUIejyODCU5u88soFnnzyDP3+knatAAvgsFrIK3M70oTWWjpB1IOTxRdTFpXUTBka21OfE3WMvTES60NseEPU+qt5KDIt1vT0qC/SSFsvdjeYSEQWQVYUnD//HL/wV/41/qt/9J/x7ttvYN2MGAOtQnKnzkArz+m1u1L9jiNzGa1Whzxvk+Vt8RQrjw8VdXVAXVXY6MmLNlnRBuPICwNxhtMAuHGWOtTUZS2dQO0+s8GQqpphjSEv2jhnaYXAhXMnOXNyg4Clrjy4kuPlKarg6Xc6bBzfoApT+kur7O4esNzv0MoNkzriHDgb8T4wmUwFnHmONTN8gLXlFb74hS9r6F6iGphI5nKZxWTS3VFgLAAnCinE4wgh3T3xqJt8rqys5JuI42z0/jQWkx5YKWInwDEYrGmxvLbJseOb9Je71JXnYP+A6XTMxXcv4XSzxxjodfs8+8wznDpxiq2t63z7239KORgxraDjxZBLNWQpixmImGAIAS0qnhFjX79blDAx0iLqXDocwZoCb7wWMWpLp641ESKT50qePWhhclBVVKnTsECwBhNUmRmDaRRLH2S33/nxg2CNr5U1g8QaJLoSA76uRUbBZVR3YE1E0j6JNU9e2ORTn3qSC0+eod/v6/gQeeajZ038CKxJ6YaPzhp3iDUdXGYwxuFc3rDG5WIUJNb46oCqqrCxPsSarDAYZY2BhjW+rMntHVhjLa0YePL8Sc6cOsyaY+Up6uDpKWvqMKW/tMbu7gFLt2NNEAG8zY1VimLOmtWlZb70xS/LGnmErLGPkDVLqxv88Y0/5n/8N/4mL33yZf7N//A/5tkLZ5U1bs6aXo9nn3mGkydOsr114+6s0WBf0PUaE2tmM0Kv37DCe+FGDAHj0np/tKwhaLfxQ7LmsVAoDjFwc3skISqsWsNRQmSp0t9Yrf6XDehMjjOFhO8UA84Yjm8s8fInn+LJJ8/SX+pruBddKPJcaxzBGESTwuJMpjohafKuHgwKnhADxkgfYYKHScXLSHohRI+JrvlOIsluxWtDlINJhYPpe2pNh5b3NZ8vuVeplscayZFnWc6Fp57ny3/+p8nynO+98W3Gkyl5bigsFM7Qygs6rVw8dwt53iZ3uUiIW4PLWkQX8VWNNRmttqW/vCmfGYihphzvMzoYNZZ3CJHgK0KosS7D5Q5LIFaePMspikwP1IxOr0cRUTnxgG1lFL0uk+mUIsvp9XtMZxku2yPPMjrtnFZhqcpI5gx5Yckyg/clZTWj1YKqlHDsZz//eS48/QmMzRotEtPcH/V5TK7GQFSGGF1X+twQGs81xKDeBjI0MW3GiNzbYBa8ZW3ZJYlwSXdBWl/WOmzRpt1uk2U50nXjaBUFJzY3efn5J8isodvtUlcTOu02T5x7irIcs7K8xHsffI+beyPKCnwwujHN/P9ThFqXp/ee2WyqHRzoXkFgGgMxpqhBCoUbBUwk6rqX0ISmNJKXpKq5onURtHBSPckQVS7daktoAneTZH/sHz4EbmwJa6T9Oh5hjXqOt7CmdQtrjq33efmTF3jyiXP0l5ak6wnUVrgDa2xG8LUa1Y+KNSmy9INjTe4Mrayg3c7JTIa1keIOrKmrispkFHdkzVjmPBnTsMYrazJlTahqjUAoa8ik0Pcoa7rKmjyj1+8znWVk2T55ltG9E2vqGWU1o10cZs1Tz7zUFL/enjWZ3KMHYI15CNZIJOgoa1p0Oh1+9eC/YXd3h3e+9w5ZnnNsc4OXnz8vQoTKmvYCa26urPD+B+9wY29EWd6dNek71XVgVibWqDGszAhRopKPI2seC+Mmc45PvHySDz/cZjzJZOCcivqAHCQWp2MOLLFORVcy7E5mvtQUWclTp1Z44swGy8tdieyaoKFAndaLQ+YPSQ2BsSJiRDQy78VYsdaTpkCUFrxIjUhOB7WypYI7ag4V1VIROS1dKCZidJim3HDRxok2rZ7YhK7ltkoXhhhzKW+rl8HqwnYZL3/q83S6fTJn2bp6iTi7jp8F2rml28npLa0SSZFtsZVlUzmcdZjMkRlHKy8kX2plVpcxhtlol/FUxLuczah9hQsV1XRMqGWQWqhrWkVBVU7xZUnW62NzeY2cDK+1BbNZRafdxW04ZrMp1WwqLZWVism5nFbRIrPILCRj6eSW2gfK0jOZjHRSNpw/f5af/4Vfpr+0IrCwYDRSIU6VtOqmjRasdo6ocSaql0HbZJ2E7xfu1bzWQQ8asuROy7bSw0pWhZ//rgLJGEu71SHLcsaTkmmpxiCRleVlXn7xWWbTKVmWcbA/FZ/PGbK8wOUZLsuk7qaM1N5QwHxAZqARAEuOvK8rZtMxZTUVgCbA6vc1Nsp9CF7Wb9TODk3pJoBKWUCYe1ZxIXVh5KBsIow2qnJtVMPOEUz9yCI3P4jHYda4BdYIbCSdYw6xRjxldxvWrPLEmU2WV27DGnMH1lgDwUjn2wOzRjt0lDWpbRyUNeZhWLMQwbkNaz55G9bUs0AnM3Q6Ob3+KtFIt8xR1nzNOq5kjtPG8WzeYp2a923ONQxrxnBhvEc9HUvap2FNTTUdNazxypq6nBLKiqzvhDXRkJvDrGm3u2xs3soaiMqaomGNZYE1VWAyGUv0wMC5c6f5+V9cZE11B9a4Q6yJeih/v1hjFllTdMmyjP/jJ/4W/71f77O29jd4+vhxBoMBL7/wHLOZsuZgSowRdzvWVMqaeAfWIFzxvlxgjd5nZU0MkWDTZPvEkceDNY+FcZPnjs9/4WmuXdvid3/zgMlY5pyIwFTQqIuGj9FQnXoayTPJ8ayaIetuTNdG8V5Aq7vnljWkgK8hKRal4YNN8R4CnjlYNB/ZAEitSQMSC1ZhrdSZsDB3I8YaF3OSdHqy1uUz6SI2AROMVI5rLh2ivp5pjB2ZPQPd3jIvvPhphvu7vHfx21x7t8bFmhgruu0lNjdPYE0mkK2DePNVIJgSXBtnC7yLxHKmLXmB6KXeoCrH+GoqoMxy8eS8JzPavleXVOWMaKDTFuhU5Yw8y0QWnkie5WCT1kLBdDom1hXROW2plG4DmY+jHi5QVZ7MWaogufDpZMBsMmN9Y4l/5a/9dc6ce1IgHo20oFhDNB68/DmEBABJBQRjFLRyzUM0iIKmbGCrm6zZUeopp0K5Bla6AFMnSqr8d9bJ5tbbbm3GtIqMRgeMJjNambTTZlnG6vIK4zxjOp2J8GBd40Ot6qHorB+YVVCVCplM4wRzZ0m8nBjwMTCbTahmU4pWi0avBdkvwXvqWieIq7MTFNBNgbLRULh+Zzk859eB9OcYSNOrWejsCARxDMz9e1N/1o+HYU3TobTAmhUzZMON6drwfWINt2FNPMSamLRPvo+s6TWs2ePdi9/i+rs1LlbEWNPr9NncPInl9qy57lr8S7bgX3eR/6iaEXxgmRln68B+nlPNRvh6Kgd8JgrR+Pq2rGm3WtRqtDwK1tS3sOaA6WTG2nqfX/7v/3XOnrvwwKwRDaJwD9agrfr3wxp3iDUhRN2OEesyZhVM6nOsnfxf0cosw/GELHOsrq4wHifW1PKPsibGiHH2MGu6cwTeyppkPB5mTTK0IxJFFtZ4sMKNxBoeBWvMw7HmsTBuInD61DG++MWnufLhTb75J9v4mUjK1yA6Ey7TvG5GncJiUWZ32GhZNoG1MIMblxnfvIQ/fozYaoEtxBJu4m0BQ0Y0YhETA5nN8FTzFk2NLYuV7JhPkdYUgIYmD8EsLoT1tEpcwpNZkze0GHBhoRKe+c9tVCs2tRQm2ESJtmi+VWppLJ1Oj5c//UVWV9Z4PY5Y7rTY3b1JCIGlpWVcURB9TQyeejbF5kjesvCkosUQA6EupZI/yuYNdU1WtIjGaZTG43NZd845nHFkRYYvPc4Y/GyKr6a0XA8TokYQZF5NZjIwNUWWUxQ5s+mEuizxdYUva0wQL8vXsmnrGkofcRYm4ykHrqb2GV/9qZ/l1c//mHjPNhVhWm3PtM0acmautiraC3J1IxKid2iHiU3eAjhyZJsmL9k09zKFv1LdoMU291pmC6EHhRyOta+J9YyyrAhVjTeZdt0IIOqqZjoZM5lOKKuS4HUoYBTP1SPqobNaaukaUbGIdEog3wkkjFvOplR1jctyIpIGs8bhYy0tp1HSMDKsT65TkoonrbGY8uEpty1vmmw9i7xG0IM/dQc2OXWtA/m4PB6ONWaejlhgTbxxmfHNy/gTxxdYY+7KmvwQa4JGbm7DGurHgjUGo6z5Amurq3y3Yc0NQogs38KaibCGwDeKHn+TwBKGrRBYrWcsaW3FqvdM6xqXFbL2vcfXXjllbmFNZm/HmnBb1rSKQllTyciEUqIss9lszhp/mDUDV1PVjq/8hZ/mc1/88gOxhoY1mka5F2tsYg13ZU1M7f9HWOOw1PVR1rg5awINa6aTCdUCawyGzOb3YI0a+BKmugdrvNgzMY2DuBNrZP0/FGvCw7HmsTBuRqMp775zjVhHjm92aRUZs1EKpyLD7HK5MEQ5uKLeCRMNHQJrdsoShtn2mMF7HzI7eY5Wp03m8nlAMNLk2a0V6zW9i7M5VV3iQyTX9xX2C6BSZ0MkanuajKo3quKZ4ABW86yRFHPTEjDSihYQac5cn5baPJ0tNCCk04ZNEuYTcS+LzNpy1rG+eZIsz8nGW1CPeeqZZ7n6wXu0rKScwIlXmkuRnwwr89iiC0XyHiy2rqjrCfXUawdFi9p7QlWLdlSQYXmZLYAxnVaf0eCGDNXLu4SqJrYq9fgkzF/XFTjZ4M5mkpePkbosKaczCBDqmuHgQDySiHpUkuKuag/R8pkv/Dm+8lN/hVa7rVcxiYdZPPIca+W6pvlJKTQf9AAmGhmu2Xgtmh5IdQcY5tOd032fHwhGPQqMHENoSF/kwfX+WocxuXhOvQzfLcido8jldW3pMU5Sd9ZmZK7AYEkZEenEEG9qVkNdR2yePHj5mKlXQJ4fqeqScjYlz9vy+zHV26DrLtWv6fpKqQ0NDUT9/vPiUk0FW4eJ0kIfQtDvrF0fMXn2AnI82iL68XiMR1Pee/ca+MjxY7djTb3AGqOskZx/Ys2qnbIMlDtjBu9/yOzUOVqdlrLG3pU1sMgaPhpr4g+aNQV2tIWpRzz1zLNc+eA9Cq0rux1r/lz0/AdFj79dwClj+KtYNuuKWE+ppzOt02vhfSTUM0y4lTXdQ6zp3IU1jhg8zmY447BRJBPKaSnR1aOsicqaoKwJlk9/7kf56l/8JVrtzq2sSZ1OR1gTTdobD8Mac1fWyJ29lTVieGXKGofvFOTZ7VljrIyfMEZYI5GYe7FGkmER5kKx9WyBNaaRNIghgtU2/o/KmvhoWfNYGDc72yP+/t/7Gq1W5PKlfcqy1guAWoQyzyPLMj24tIgpRtoYNo3nuLF0TEZZGra/9z6bp0/TWVomy9uYrGgWksUggvIiJY8Ra7kRBQwwr15XyzH16zO35EHbA5NgE5DaA42dl+0Z0LyqwGOufyALPZrQ9GumIiyRc5cWOaML3moxmknPQzZNf3mVs898AlfukhWO1aVVsDIILdSVhPdAQrVGNTeMwXaXMFlGqG8wOdhiNNimmk7IO30MmUyDDZ7cZtLCGiJUFYXJaFFQTUsm9RgCtFsFrVZBq9/DYHWeUw1aOFeXFb6S+hxf1pRlSe0r6uApZxMKCxWQOUlNTWeRU6c3+dyXvsgv/KW/ztr6Jk1LLEYBI/UNsllSPYJpNplBihNjk3KyorluDEYjfo1xpzoUMcwdqXTmoDoM85/ppmwkZeVeO1vQaklBsTESxcmyjMyJx+KDpD98XTOdTWm12vhYU/tSP598uypCqbNfiOgsFaMHrXhVqBcTvKeqSnyoMU0oVz3I6AlUusblwwuMvO4hJZFGrNAar0jQNWIlNRDm7ZeS73bzaELQz6aptY/DY3t7xN//u1+j1YbLH96ONX6BNRxiTQvLxhHW7Lz9Hsca1nR+IKwBZY39QbNmhXPPfAJb7pIXjpWlVYw1OsD2VtYUIfAbxhC6S/y7ec7r/gb/zsE2frB1iDVVPSP4o6ypKUxGQUF9iDWt27PGOKK11GVFqGb4ckaoaspytsCa8Zw12Zw1J09v8LkvfIFf+Mv/Q9Y3jt2eNXZuYDwK1mhNLfo28rhP1lhXULQ6dFptjE2seYfM9SCewIf+Ida0W218ENZI8G+BNZVo3JgILkbqI6wRWycQfKCqZsIaQlMTax8la/yjZc1jYdxUled7b+4Sg2c8G4tfke7xQhhWwO1kg4YZGZG+KdmwNaumo0+JjLdLdt98i+7aOnmvS2y15YZhNP8qF0l9Nax1ZBFqY/ChIkSHszplrfkcBtCZMM1DivQal4wUXhPYpAmnkZROiI0X1dywCNiIxdHMHUnen1FvzMjnNLYQ8Fh5zYhMY10+fh4zsBgT6J7rMBkPGI0meKxKjAdKP6GwbalwH+8TZiOq0YDBzQ/Zu3mV4f4u3aV1jPW0WhnOiUKqszkm6uTXoiCvxKY31tFqZ9RVxdb1G+QtR97ukFsp0ixafXBOpLTllJCZLMFTzqaUZcmsmhF9RajnkQtfR3q9Lj/+E1/lJ/7CL7KxcUI2iolNVAUFi9FiyATfuYKrAN24nEa4LP1uhJgUYfVzyV8FcFa93YX5LrpRsXP4A2pIGPXiZN6QdRaXyZwZgYC8rwy5rCXU7rSYLswn68ZG1h+qIB0bobaEIEaOjylETOPhQEp1VdRVJYdjiJrrFk0S55x6Penw1Jx9DFKgp4WBUj8T5YCzlmBkoCxGak+CprYEXlr4Z7X2IwQ+TjU3VeV5+xBrzBHW6BMXWRNLMiI9M2PT1qwdYk3FzgJrQqstyqt3Yw1Q+4dnTXMm/gBYoxbTbVnTOddmOhoyGk8IZMqa2LBmN0S+Oj6gPRvzb4wPeOnmhwxvXmOwt0NnkTXWQTzKmpy8qiXBYR3FXViTt3oYlzWsSTUbtVfWVCWzckao61tY0+12+XP/wlf4yb/4l9jcOHkX1qTI1qNhjXVOUzjuvlgj6fKgpREBZy0uLzEm4EOB4Rkilwh+ggwmdrjMQpTuusSaEHxTc1cFqKpI8FZmbSGscQusiWpghRipbmFNICCpPefsY8eax8K4IUbpthNtafUiZKNK9wvgA8YZXVgey4xVpmzYkg2TS+U8gSrWeG/ZeecGnfU36Cyv0mp1KdwyJpcFIqLoVjZ61HCqMTgjCy6ESGZRa10Ku6TrJE1KDlpgFhuFUNRqt8Y0XyuYoGFqDcUplpowZNIv0BC0MWr5RhXXQlsJjVVPTIbX0Vwd3WytHrFcI48HtIqOtKVu7zEabDObTcizDJPlOJtTTofU9RhfVkyHI/a3r3Pz6lVM4Vjt9XDa7ZHlDqzHGkdv/RRZ0WIy3MHkbez4ACI6CyRy7eYVovNkrQ6rK6vkhcXXNZnrYV1G9DU+1vgQqOoZlfd49XQ6nQ5L3RmmCgyngbWlHn/pl/4lvvpz/zLtVrfxlsCQ6jCNUa0Vk7rVxCDBSCpAwJC6SVAvQ1IMQQuIDWqg6GskTzWoEZw8MLnS2krb1EWINxECkldvDPDkRWujZ/TI9FvT3LMI4pSr9xa1YC+BzyOh4rKKtD2kjgJNQxMs+ChGYghBPNNqBiaNoQhN1MxaI7XtKe8Vo1QMxkaNQ9chTSRMyCxzYWLQNB9grG3qCHyqN4jy89CE1T8Gj1tYY46wxtzKmjhnzfpR1gTLbmLNkrDG3Ys1CGvCo2QND84aaRVfZE1UzhxmTdpfEZQ168KavMPS0jJ2Z4/RwVHWZHxlNuSryppyNGJ/6zpb165CZlntdYU1HGbNr66d4kKrxaeOsCY7ypp2h9VlYU2oa0kJuozovbLGK2sC3gtrup02S90JpooMp4HVfo+/9Fd/ia/+/C/Tad+LNfY+WVNDtPfBGgjabXV/rDELkeUUxamAikiu2/u8dibNaEQ/g1ER1jlr4j1YE46yJtaEEKjKcs4aotbU1JjHlDWPh3GDIXgR1bI4aU02SYdBvWMvM45iVWPDhL6Zsm7GbJqCzMg8mOTFeGA2s2y98R7dtU3a/WVsnpG5DsZZ0YgwQe5e1C4nzTNXIUqHSWaIXqvbjVia1qZwrnpD6HHVhCNNcxONcYduqEBHAboQKnbalSCbZR5STt0KRjeaVZ2f9N6HFr8F+seYbI/IDfSXlun3Pft7N6lmFVVeidWLIYszIlBOx4yHA7auX2U0mXH29DPkmcNPJpQRXLtNXdd4KvLpiGo2pZxVTCclezt7aG01s+mIuvbs7O5h3/0e7skL9PpLovTKmBANdVlBMJTTkroKjWx8q+hw5vR5Ou0O717e4RMvPMGnXv4kP/HTv0S3vUQzOTdtCIAE2uZnZu7Nar5aYJ2RGSuFwvMJBdLZEIMWqYnh2Fx3BXhjbOiU30YTJAEPp9H9qF6tajBE5LkxeXRW73f67CL1r34NAMEHvA/N1wtA5aGqBTaElLZgHsCUNgYgUtcVVVlis0L/DvGCjSOzjsLm+BhEsl0FAUNK/6NiWk2txkJ3j14LZ0VpVTxEKRCyRoZ4plVsuX9v6s/+8aCsmdIzEzbuwJoaYc326+/RW9ugvXT/rPFBUotkBdEHjZ4oa4wRj/V+WdP8x0dhjb1P1mwy2R7MWdML7O8k1tTKGks2K4U1szlrBuMJ555+hjzLDrHGK2s+PxtxopxSzmqm05Ld3f1bWLO9u4t95yhrJoQIdVlCPMoaaBUdTp8+T1tZ8+Lz54U1P/NL9DpHWZMiKXPWxHuwxqUU+cOyhqAt+FqborftzqyJGL4GcR3Ly7oi56wRp6pR09EIctDCYlkqiTWlssbcjjU+aqNfpFLWuKyQfRKAaHHGPgLWmEfOmsfEuIGAl8IvuZVSiV2XEm60jlDV1PUYqgNWGXLcjFmzORmOmbZZ6kxRCTlGmOxUbL32HborK2TtAptluFaLEOV1MWiXkFzszDnqUDcFzMSUGzRYrVxvamq00NBaiZ6kJgkJwQXQlnAjtBFPzOWNJ5bUSkUQSqYAy2yOTKxu1cgx1sjzLRo2Tn8PSW0+RjAux66dY/vm++ztvM9wdEBZVsyykmwyIeSOuq4wlcB7PBqydfUDDsYznnr5Myz1elgCPoOD0S7vff1NYoSNU6eZHJtirGEyGnP92mWuXbnMeDyi0+vJ57KWaCyjyZhrVz7g1Onz5K0OJquoaqmxqaalhInLmUwarmvarRbLndPkecFzz3+a48dP8dzn/jzLq8dUspvG6g96rzDipSaHp/FgjSHVK4gMvZG2RsAinQ8mSGEnARmDG5sjA5oNp/asdis0XSqNJ6zbLMjBEUwgxFraPV3qpkivqR+weVG5byGEhfyy1bCzfs8os1+qGtFd0pdoWjQDiHy57huN4uCrZpJvTCdYlM+X1jHIhGETtWUci3Wp8M8nbMoFskbfxzcHp5QNWHyQAZMBr/ofH6/HImtEuO52rJlANWCVwT1YE4U1u4k1q7dhjaSBDrMmU9YEZQ2aYk3HnsaTvk+sEbl8YUmjrvtArDnP1o332Nt5n9HogLKqmJUl2WR8mDUhMBkOuHn1Q/ZHE2FNvz9nzXhPWRPZOHWatWNTdhNrrl/m6uXEmr5UAVsLHGVN+zBrJhW191QNa6o5a7KCZ5/7FCeUNStrx2/DmngLa+TL35k1YgzowNO7sUYNU1k9H4E11gGbQHu+/+IR1oAOhE5TSUTs8ChramVN4ukia1gQi4zRi3SFNwusEYYJa+JDscakLjGNasEia+qHZs1jYdxICD/oBqSxnoOvZUP7SKgqDCV9v89pu8dJC5aCkcpbhwi5kfp2qboWr2l4acjN736bYnmJrN3BZhkmz3WTz8WIAPWaDHWs8F7rWxqBq/lz03/b6JqLbVJI04i3K5oVcmONyUgFVNFoEVbKpyt0HBIOTgdgjDQ5b2PUu9TiLIFRwt9c6dS1uhRnnqecHJDt3YSrrxNcZFpNqGuDswbKwGQw5PqV96gNPPupz7G6toKLBl9VmCKn4wznP/k8REddBW5eu8psMuFgcMB4OiEYi20XzEJFZjNaRUGr06G3tMS0mrG3s8PK8WMQKkIwlOWMwXCf8WRI5cvmO/Z7XZa7yxzbPIVxjpNPv8SJc0+rAam7VIsUbSryayCh3pUBcBqOTTU4KlqvxqjYF0Ia2widqWe24PLqOYBGkBvPwphktKR8vsc68bxNFMEqt7hW9Nnp9WNaM8mFQg6yEIIWsGr7o/5eGQ2VhxSgCQuvSJQxCyF60bvRQjxZq0aiBBpTb4qkUe2I1IWhUuaN+CRBlVgXVEJRbzJdhaTgi4yrkMNWCyk/Vq3gh1kTbTzCGghVBaak7/c4bfc5acHdgTVRveO7s0YjiIdYE27DGnNX1sjnv1/WRGWNfkdYYI09xBoicv9vw5omncWcNdEYilaX4uwLlJMD3N4WXP3ubVkzHYy4dvU9qhh49lOfY2199TaseY4YHb703Lgja0oyKzOSWt3ubVhT38Ka0pe6H25lzYmnPsGJ84+eNTFZCD8Q1vw2kS9yd9aI4RoSM0KgmW12G9YcMh6ijAnxWrcjrAlYG5p1Kam2xJqUjr8Xa6zU7Chr5FPeiTX2oVnzWBg38tBccZCOHpm74oh1LQd3HLPk9zludjlpYcU5ZtEwXjCs08ato6dWC9TXjr23r9Bd+y5Fd0kGufUl0iC/FKXz0nhdWHoYRlQu26iRIbnVmDQmTI5IC0lRGEbaR00qNDOZGiEumecKEa1412FjKdQosueac8SIl2Iiol4pbY/G2ma6L1EOJJc2jYY7wdFZWif4mvHNXGTNLU3I1dvA/mCb1uoKzz77Et1eV0Yq2ELC5THDVjNWe12MLajrmiK3HNzcpvIltm2pY2A2zQkxiiR63qbV6pJlLVq9HrO6ZLC3S6e/RMAxmUwYjYdMy5koWUZRzcUbKl+RFV0uvPQFzj3zirT6xQBRvJlgvYRuFQJgJISqfpbUyWiRc5O3lkeIlaQPUgJdQ5pps9m0BAxIiN7ijMM1gl/zmgPZvLIBrebAnQ34aLBR6iPMAmSsmQtcWL3nRochJgVT2dK+KX5Mn7uOkbI21HWzHOf/tuhBhubHA3VdigigDr+DKCmP6BvYNPCLSdcmfTMpghSqSItmI6KFXAeDCHI5l6lBJumMENN3/bjFbuQa2ODAK2tsYk3AxTHL9T7HzQ6nXGDFZXdkTXWINRl7F5U1vSVcUZDbB2GNvStrPNIWHo12N92VNamTSlNch1jjHjFrvLDGOqwDlDW1DewNtiiWl3jm2U/S63clomWOsKbbxbicuvYUhWtYY9pWu5xyfIwirVDciTXLBKywZjJgVh1hTa2syTs8+YnPc/7ZTx1hDX+GrHF6PR+ANSYCfx1jptjk0ChrbIrCkdJSQT+jFy2iUN/CmqqWJaD4SCWEuuAjUXVsEmti8A1XxDm7F2s4whpzD9bkjeP3sKx5LIyb9MXlKoQmvCYaKxNazrEaBxwzu6xbT986ChOoo0sZSqKJzXEUkbSUZkmpRo7t1y6SL6+Sdbt0c0duMxXnNI3IVjJk6sqraJfVNeqb/Hc6qMAjsuMZqTVQJKIXIwVRF1nyymiCkVIxrh4BgRjVc9IjkiBWuLVouNiKlopNfoXTgsJURKhaAABa+Fb7Emv7uMySu1zalIFqVtHu96irisl4RqsNIddqduvIbIdWe4lWf5ngPb32MivHTnB8OqacTpjMpgyG+5RlpcqUNcSKyWzItITlbo/JcIjJJcw+nh4wmQ6Zzca64DP6Kys88/JnybOcE2efZXn1hJY+eNJ8FqnqT/LlNJ6kwUqhnAJavMkAqeAuovch1R4YhYFRA1NWnSUdKpEYJSWhcWOiBRszMULiPEzd7H7Vu5ADQMP+ekAJpGqSz0akufe2OdQ0wujloEyHJvoWpY/4YJLgZ7NRvFGxrIB2wMgQuyZ3rzn+qJ0VUcdXNLLo6kmmdKszduF3U0LNN8Z40s1JCsgG07xWyokHs/jpH+/HImui6smg2Jmz5oBjZoe1Bdb4KOswxsOsgTlrAKpxYs0KWadLN7sf1niMKeasMVq8e4Q1TlnDHViTajY+KmuilbEQc9akWpEF1sT07eVgqn2JdbeyplbW+PpurOnzh70VrgbPjy+wZjadMJ1NOVDW+Nuypn8rayYjptOx7v+M3vIyz7z8WbI858TZ51i5LWvEWLszazQd+X1hTXwI1hiM+TeB7xL5OxhONKyRz62siSmS4qV2Ro1iFu7ezEfCEdYYpHtYHCajBb8R7+t5UXKYsyYZThhzB9ZELaK/A2vQ13uErHksjBvxQgUaMa0I74lxShbGrFNxzg7p20hGjjUGRy19CEa7SaT6rZnfWyOzdaKxmAjT7Zqd775Oa3kF1y5wWYG1bYnARtPUpoqsdyUHhwGnxXpppPuhYqgIKd2UFCVFxVZNX2P152nWhvzYNuCR17Umpbfmob7gVZWxEQYUifEkO55WfzJw0osnz8pqnjeGGpf1KVpt8nZB7gqOnTmHdRnlZMaHF99icDDi2KmTLK+s0ektUWQtgrPE0tLqLlOs9wlVxWx8wHg8xO7vYaJlbCeMJjKuoa4rwmSGJ9DutOh3Olhr8UTKckZZe1ye4+uaEGvWN0/xiU9/GecywaeGH71W7GPBBMN8pIVcaxu1zdqkg1mE/CDVR0k8xCTLVleYarPKdTaIxDsCIvHK5KBLnnNzO4J8HmNEiVMmiSmAolUjxjaenljkcohApj+PzWumboeo3p94Piksk/aChIqrCgrXODrykdIZhbZ9q2Ed0hgNkneZ4ayIjiVmmSbllIpJrV4bLWAMqcbDifq00U4GNe5lyQds+qrINTjcsvx4PxrWkFhjICTWTFinvC1rFo72O7IGZc1ku2bnu2/QWl7F3hdrOMyalHb4M2KNvR/WkGorLDaTNMOtrMmVNY5yUnHp4pscDBJr1ul0lyjyAu8clyvLf9xd4ffX+/zf6or++IDJaMjBwX7DmvF0zKyaisL5pMTjaXcK+t0F1lQzyro+xJrNzZO8+Jk/R/aRWOMIsUZqUB4la+bNCiYko+DurCGxhp+B+CRwTFbnEdawkAedsyYkl6thTX0b1jSGkjypqQuMGOLtWGPmreBwO9akWWl3YE189Kx5LIwb0CK/GHFkuGipqcljybI54JSZcdwawFFHSKJG1jS+CKn5UfKNMpiuiulmGWJwDD7Yo1j9Lu3lFbJ2m8KCK1qYaPCqbmmNw0RDXVfE2CbEQOYyUezUXGHyhOUGqK5EFPu8kcxWIHikoLWZE5OgY6VgT7eHfvaUo5U5GhEt+lNJ9DQ5uPmeaeCarihZMwFrIMtaauVbjLO6qTJarS6d9jJVNaPd6rGytsE/+9VfZ+XYSZ594inWT56kZQo6nRXarTaFSqvjMqbjKdN6xnA0YDDYZW9/l/FwwPbuDd58532Or6/wEz/3VU6fO8t0b0B/dZ3h6IC81ZF2Vi/qo2FasbJxnCzL9e4LWMWqF3CKo5DytWa+YVmokwqK/wRdUi3S/M8gELGRuQiaiWqootcIOZj04qZ6BjDY6MEafFAYgWx2tL184XfSr0mKQN8rpRbS54yomql07SQVzxS9SYdZ5Q2l1oPOw7riUSZvSaI/UPuSPOQatk2fX0v2TLqCcgBqwwLRWoW1fu9UO2JFYKDWN41NZ0cKHTP/t9HJvR8f2wZQ1hBxRlkThTVL5oBTZnoP1qSW60XWBKroVI/MQMOa12gvr5DfgTXunqyZH7SJKd9f1riHYo1zbeXLImscrVaPTntFWRNYXt/kN3/111g+dornnniK9RMnadkWnc4yP95q8+PKmgOXMVPWDEZDBoNd9vd3GA0HbO/d5K133uPY6jI/8fN/gdPnzh1mTXEra5Y3TsgMKuCjscZ+H1hD8342BnAG7+/AmrjIGoMxFZFnhTWxhvhN4NPMIx4aBWlYI//dnJX3YA2kFLro5AhrKvJQaORxzhpdKI8Vax4L40arUDAx4oIhixaMp2sGnDRDNp2lZR1lsrRTRxURZ1JbpjwcKRceqGNsQsbWgC8d+xcv0V1/i3xpGZu3sS6XGxAkTG2tzHcJXoZJGmflgtpIDKp9YfVnRhZKjK7pOIhJAVgXb2xMWamsF3ikYO98Ixk731gmDbMzUhWfBI9SLYdJCxyjIUG1qoNspkgkL7pkrT7GWHJXSFhVo/BZu4XNcsrRiHPPPMtP/4u/yKXdAU+89Gk2Tqwwu7ZDsbbO4N3LUBSMr2+Lt9Qq2N/ZIVpLVc4oeo6rV7f41htv0O8t8aUf+yLnn7lAnue0TyzR7vUYT0YCEpthTK0ic7C+eVLzqGnja+EbCdOS706gNvIkCZWnQj8TyUxOREKnaDW+UZcpheYF8uLlJpbI+y4W+cl9M8ampjh5D2cwQfLYkv+NUpAJhCZfjtZAoOWFBrSuIUa7EC0wDTl8LW2Zvq6lUA6jBX3yGesIsypSqNGTDqrkUaXhcyHU+NpRZzK4LqiXn/aJMfLZRGcjNr+bvnLjNSKpDoGZ/tnq5F4fSXNh5FBrfH/5tM0if/wfh1jjE2sCHTPglBmy6cwh1sQHYE1AfJ+GNW9dVtYsPRBrYsMa+wNmTTaPUN+FNeLJK2tiJG/djjXmVtY8/Qw//S/+i3y4u88TL32mYc3NtXV49zK7ecHK7jajqsK3C/Z3tpU1E/Ke4+DaNt9+/XW63T5f/LEvcu6ZCxR5TutEn26vr6xBHMLEmvhRWQMQfrCssXdnjTNGWfNF4DVQccEYXyU1D+hiB8DXXllTzSO998MajdpotkxVj5U1YTEVHkmG4OPEmsfCuAEw0WBDJIuB5S4sd3L6ezP6paVjLBlQNt9LQnypykSWTipx0xsky1AXMGL5mkh5ANuvvUWxukbe6+GKHFO0SDk+KdATddEYI9ak2hajbYgGo0CUAwxMOmzx8wVs0o3VV1WLmOAbyz3qwpddkN5Hvb+IQMY6qbcRKuq+cBKSjinEmE6z0AiRuayg3V2mLLfwvk2e50RtJYwxYF1G1mpRlyXnX3iBpctXGWzfoD6+xOZLz5N3llk9eYal88+z+/a3iVVNa3Oda2+/iev22d+6zo0bH5Jdv8KP/8iP8twLz9DfXAJrydodllbWmQ73CSEynczkPbMcP55RtLqsbZ4m6XPI5bMEnVobwtyrSvCd19XrdQlox5nBxozo9FkxqGMVFN6pkk+S5M64ptU1eQXNcWWMFPARMVq4ZhVe1jo8RjUcFE6ai2+AaOavZZq0Tzok7K1yAprgN6Aber53fZDhfnXQTdo8D+og4m9hYUid9/KzqB1PBtGfaK6Zgstag/de/yzrN3VqaP4tLVSIurec1j8l0JgA0SmgvWjFfIwei6xZ6sByO6O/P2OpNLewxnwU1gwWWdM/xJqE69uxJnm+fxasMXdiDalGIswdTNXRyVxOu7tCWd4U1mS3Y02bupwpa64cYk3ZWeZP1zb5t/7d/5D/6c//Nfae7/PasQ3+LxffoOgtsb91nZs3L+OuX+HLP/wjPP/CM/SPLWNuw5rZZEqIAZflTMcz8lbnI7LGYII7wppU0P9nxZp01P8K8DllTQC+gTWfbXiUam+lddwuvHk8xJp6gTU5NFID8ncLrFFD2Xsv+jeprTy6u7IG/mxY8/gYN0EOhJUNx3MvPsGx9ilm71TsffMtbAniQyVbUzcmYBb+f+64yN+Hxu8Sbwqk+n90bczOG2/QXpWiv8LpwkcURY0xxNrjq4pYtOeV41HkotN0aGNzGqloDIRANLaZu5HULqN+emPcXEoaGTaHhuJI38JqIZiN84WcCrhIqrY1lQ/UVUVZVdSVp5qVoBvC2ohzjtq0oU55VtRiD3hfqZ2mtR/W0dtcxVzdZvrme4ynjuXzfWyRE0YDuusb2KzAmpze+nGwhuvDA9je55WnP0HRbRNbYFstea3+OgZHWZaUsxne1xhn8eWMqqpYOXGWbn9Fo00aNo3SheN9OOQR2FRjgNHuD7nPMeUJ1Gtquj8yo0qujrluRISYqViZVvArwNLsnqSYGaPXbhLTtNwHkiqDAslIymBxqF1QFdBkvKSiVSm+1M+oUJEBiOjaSG3asYFNRLypqoIyA+vS+k1rXLUrTHrvQO1rvK+bgyek4zadf8YQY60HX4CYNdaSFA3r+kzDGK32LkS5toaoRpPRT5C0MxRSH6OHsMazsu549sUnON65N2vU1Gj+/4FY8/qtrJHf0MhKXd3KGqym2+/MGoxVsbPvE2si4OesqaqauvaUsxJziDUWb9vEWveBbs3DrNFIgbW3sOa3zy/h+l2u/q3/EZf6p3jrbJevmZyrmyd43lpuvH+RuLV7iDWmmLPGGmVNWVIHj3ESWa6qiuXjZ+gtPQhr0vDQe7EmPhLWGE1NPjBr2IH4BsbsEPmkrgG7wJqFvZ++R2JNCIdY4+/CmhQdTqyJypo6pbmI98UaGTAaPiJrmu14X4/HxrjJIqxvFrz6Q+f5xEvn6LmS66sR9ncZfe8GPugwQXFf1JOyOLWAa70ozliZ7RLFm5Ki4hTSkgsfasfe967Q3rhIsbyKyTNiXigQNPWkKoniHRuwUkmPsbLYURFADFEPMI05iw6I7ockYpQm7gpTxKI3mo9FvTUREVOrXL39EAKh9IwHM4YHQw4GB+zv7TEcTphNJkwmE52fUlOXM7WwgehZ7jk+/ewKS0ttMXayiqqKZC5HxuZ4QqjAGFyrIF9fptoaMnj9e7A7o7W2Sp3vUE5G2CKnGo4Z7u1S1SXxxhbZzDBzJZNZSb+zgnE5RauHNY7ZcMjoYMhwNKYK8pnq2lNWkVPnn9fQaz1P10SVmdBQqBgHgZgmFSuUkscZgVQgCc2EHNk8NpKEquRnEW9qPdANJniMdcSmLiGKR2wMMUjBn3BeQWONDPNLmNKUEOgRZeYdKvJItUDq3emhkrocsKZRLiVaDZkrGGWJEIIO0AyRYI1OGpa/lI4ReXo0ontjvNWUQeo48E3EyKhnn3Lx3qSIkdwDPZIhRkKsSD5oWtKk2i2jtUEqOyo6FQ/Em8fi4SKsbbT4zA+d56WXztLNKm4cYY2YynPWmI/CmnfuxhqUNfUDsyYeZQ13Zg33y5rKMx7OGDWs2Wc4HDMdT5hMJ5TTqRg5VUkIdeMULncdn352maWlKS5z1L6mqqYLrAl3YM3b/PTuFNZW+e/ynP7euwzGOQwnHN/bYbeuCMqa0pVMZjP6nVVsNmfNdKCsGY6otAD4MGvcA7LGPmLW2LuyhoY1ZoE13IM1G8C/QuQ/JKVaY/wsMO/GM6qov8iaGKN25d0na9KgyltYk+ZVSVTntqyxogkUde2G9KK3sEYcwnBb1qjzEFNELXXp3fvxWBg3Buj1Ml569QyvfuETnDyxxmS8zWzyFOWre1wb/R7jK/vpyBD/yXjS3CmHDP1KXz3TZx06LhYczABUI8vOdy/SWV8n73bJNzYwWU5KD6RhX6m7JZVKiTBTpnUw6QvU2Ch580DduHVGvRWsgMhqwV7TZqkFePJch3WGNNelriOT0YztrV12bu4wOBgwHg0oyymz2YSy8gRfUVcls5mocNZ1TfBVk1Pe3zUcW4osL4vQXl2VZDbiQ9WEJa0TMa9YG7JOm865FdzMsnzsLK3NE5RbNwl+xvTqFuVwjMsyZuOaWV0zjlOq4OkUfbIiI8sKWq0OoawZ748YjYaMRkMikboOTMuSdm+V00++iF8YiyvppJgI3YRTo4bRg97jRgcEIEY9AKJO2E1lchrSVE92PoMqpvp+fa4G2U1sUg3p9wRsrnmfRpxKvbZDQlIxqJcfSfoeabE1HwNNLWgpX6pjELZ67WhJmrdNopE6RLw3eCcHckIeer3m18wseHQpJiQ1BSlELF7kwr9jJKraaUjTe9X7C7GRJpPPbwXIRg8EZ3NZQzG9z4Jn9Zg/DNDvZbz06mk++4UXOXlynel4h3LyFNWr+1wd/3PGl/dpDFTmrLHcgTXmbqwxwprX37oDa8yjY028B2saUdDDrPE+MhqU7GztsL21y2D/QFhTTZlNJ1SVxyfWlBWVRpqCr3VPGfad4dhSmLPGWtx9suaPjp3jf3/sBL908yb/Mz9jenWbcjgiZI5yXFEusibvk+UZLrGmqpk0rBkRY6T2nmlZ0uqtcObCJx6ONTxK1vAArNHPaOKdWRMjMoPqAPhfgLlBjMdvZU2q/TGp7k9SmSZ1lyYGchfWRG7LmtiwRqJ/SYfmEGuSkN89WROa31lkTYzgbHGYNfH+WfPYGDfnLizzyc88x5lzJ7HOM51a2qsrrD/7AuX+LuP9P4JB0KI+idpYE8i05Mro64hhom3CyZsiknLY6lcRo2W6NWX7u6+TL62w2uriinY6fnRmiFZnZwobm4NNi9403lLTtmkjeEcwInoly0eH51kjcNHfF49K9SPU648hUvuawf6Ymzf22Llxk4PBPtPJWMLCvmQ8GjMaHbB3sM/e3jb7+7sMxiOm5YxqVmoIEXJr6BQ5q8s/xLnTHZb7fWzmqGpLVs6wLVVERqx66wyxdmRFB1cYpuUuw3evEcZTjOtQm4gvHDEz+DpAPyfOCpyBXm+JLMuxmcNHz2i8z3C0z2B4QFnXxGiYzaZUZeCFz36ebm9Z6z6s5py1OM84DcGahWtnSTY7oOHKpDEiz3I2LngFzDcgyfsRL0x+V73dlNNFxe6Tl6aDbJLIXtP2GBdeU8cSBC+59ag59qi549i8fjJgFGgpBqvDFBOII2ZhdIM8BDiGuoLgIBgp+aqR7xGStkQKG8eoole1hFxS6isaNcoixmSNFHuq6wixVjmFhahU8BJxTAcADmIlE83DYv1Gqvn6+MRuDHD2ySVe/szznDl/SlljaK2usPbs88z2dxjv3coaZwLuTqyJso7rhjVJsl6iPsKaGduvv06+vHyENShr7BHWZKBznz46a6xEg+xh1nhfc7A/YevGHts3bzI42GcyHVNXJVVdMhlPGtbs722zt7/HYCRinGU5E10TIpk1dIqC1aUvHmJNXVuq2QzbvjtrPlfu8nffuUZ7PKN0HWoTlDWOug7EXk4sCxzQ7QtrXCZRgdFon8HogMHogLKuhDVTYc3zrx5lTeoiux1r/GHWmDlrkrtw/6yx2hEZ780aaETsbs8aLeReZA0GuA7xdaL5cWJc09UxIcZizhrU9Vdjok71L26udp3+fUfWEJuam0XWyOBeHfqV7K/7YE2T+rwjazKI5Z1Z8wAp8MfCuHGZ4aVXznH+/Ck63Q7lbAgmkrVa9I4fY/2Flxhdv079zfeQztyIMZ4QpW0yMxYTJQdoolnIj2uhX2qhg2YxYwLRZwzfv87eukDHdQoy0xfv1AgsfIjkRjygQwzXjoVU3AWAzcAEHf5l9FOoUaUnsrNOZs3ogSZtghZfB0aDihvXt9m6cYPB4IDpZMp0OmIymXBz6zofXP6AS1c+YHtvh/FkrGmzeOhaJm/TGegUlqqSDoLhaCLaFRjqvCCPEXyFszkxq2XMva+oqiHBOkxw1NRU2QwTKko3xvQyal/iW+BCgQs5RSsnywwuy8AaqqpiNNxj5+Amo8mY2ntm1YTZtGRp/SRPPvdp+ZQp0JFCw+qhSOGZ/nkxDGzmOevGK2i+u9yDpHkjYWYFiJEia3U6sDajqYfR+7KgaUUqJYwajg0x5YkNjaDdISxEDcnG5vMshqjlxf2Ch21UnC0V5KXPpW6k5hMikTqI3o33ELLEEaFAqhsI3ivotVYi0uikaIxHuhE0p5/m4AQ/T+0maIgAoHaPaCg5FbBmVlBRRd98b7mGsSka/Dg8EmvOPXGYNXmrRe/EMTYWWBMWWOPvgzVidBqSiNrtWfMG+fLKfbDGzBfSI2WNwdeR0aDi5vVtbt68yfBgn+l0ymQyZjqZcHN7zpqt3W3G07HWpxzuwz3EmtxSVuMHZk20GSZY1qgpsxnjUN6eNTEnb+XkmcHlwpqyqhgN99kZ3GA0FtaUypr+2gku3MIacxfWSKv87ViT0i/pW9/CGm7HGtPMAiPOO6VuYU28F2vmzz7Mmn2gwvB3gP+zsuafAp+DuK6ffYE1cV5n80CsiaJlc3vWxKYIHTVWrL03a+IdWSMp/EfFmsfCuGm3M5598QJrGytkmaGeiRqntQ7bKuidOsXGyy8xvnmT4YcjaKxb+X2n9nU6dFKuVAwb1dDUc0Yjv6RFWk0su2++Q7GyRtbt0DlhsEWbxfHqybNaVJJt8ppEEQo0QPSqNCk6GjbJaqumhLULQoBWLesIVVVzsFfx4QeX2N66QagDs9mUwWCft995nW9991tcuXGVaTlb2GS3f6RrEJiH/tY21hjuD+m0W8I+K/LWsohqXJZhMWTtjKqcyVBR2XXkrTbVdIzJwM8meA/VZEQ1G9NtF7S6Ba28kE1QeQ52txjs7zKcjKm9HMCzSUl0OZ/8/E/S6fQbrYIYtKMoooWTUgDZhC2j1AU5I8tU1EQ15GqthpQPGzmRgJfefX0T9XpTJCWg0bKo+mfzDZw82rRYUs1NDDJoQ7rT7IInliIxch+Th9cYMs1dEc8jaWJofJfUYotGAFKgWI5FWb+1N3ivi1d/1fuUlpKCSBeTsZeundZeoM2jMRVl68cNQTQjjoa99UvI72X4WGNTpw6AMbgoBYnWgNf+oBR1+jg82u2M5z7xFOsbK2SZVdbo6ICioHf6I7AGqQt8vFnjGexXfPj+Zba3ruMPseZNvv3db3L5xhUmswdjTYrA3soalDU5t2NNGioZj7KmnBA8VFNhTadd0D7Kmr0tBnt7DMfCmhgi02lJtDkvf/4n6XSXHh/WaIv/razhMGuimdfOYZv9eStrloF/AvFzwBhDG/g8cAxM6qKMzed6aNYk8b47sCZ9TjEIwXwk1kSa/OsR1oSHYM1jYdx0um3OnD9Fq10QQ6WeZBo0Z8j7PVYvPMv0U9uUu39IHEPUboPkkRuk2A8Ni1ldBKJ6nB666JhbxC5CtTtj+7tv4FZWcJ0uxZrDuYIQauq6JCIdASJYpJO6Fx4pOx/Qor0oGy0t5mY+lbUYk0lI2Yp5XNeW4V7J229cZDgc4KNnOplw8eIb/P4f/w7vX/6AOjy4ZxyjjIoPwdPpdgHDwXDEku1incVOBhRZm8xlOOfI8hbBVxjbRgS/ZMCZn5U4p0PLcgnPF92CfKmFcRZjA6GOlOWUOtaMNZTtg2c6mzAajxiNxzzxiR/m1Jmn1LuF1PWR6k/kukWFTmzunYkOHwMOLfRO3SNGtlBI9zimuhh9jnoWUSFkouiUNLoJVsTXbHSkAmITpS03zZsJJoVLDSY6zRcnD0hfR71pWWfaCbCQJpivEfUY0+9qR5XRAYqpHmK+SuU/qihtmj6mzWqQsQrJY5zX39S+kty2OviNZomV4sVIhGCpEa2hkL6bAYLUfzgtApQ9JDUDxPkecnqbZK0rMOuPT+Sm021z5pyyJibW+IY1We/+WGMeljU7yprl27Fm9n1mjWG0V3JxkTXTCW+//Sa/9/Xf4f1L7z80a0Lg0bImEzG3olOQ9VsSeTKBEOasmYwnDI+wZjwac+7FL3Hq7NOSRmlYo/vh+8UaHhFrMBjuwRoikXVi/D9h7K9gKIm0gLH+foSGNUEsN0LDGuvuwJpwK2vQKKXmm25hjSJIykS+j6zhIVjzWBg3rXbB0tJS4/mmke4JnsZYOqubrD/7IqPLVxh+53ug7cGiPTFvX5OKBrMgdDT3pFCvS26S5p6NgeAYX9ll/+JbtFfXMa0OxmbEAL6WkGGj2qmbYT6ILlnVpukEFO8rufK66I0U8EWtuzAYYrSM96a88d03GA6GVHXJYLDH7/7hP+NPvvXHTGbTBVje+5G+nYTPDbm11GVFDIH1zU2ufniFwWBMqji35ORZR1J9TlJAzkRs1iZvd/B1RZkPqGeWcuaIOBlgV06l7diICN2kHFH5mtl0yng4ovYziIbZdMZoOCGYjBOnnxKPUq+lD0kmPs5n6NiIIRN9DKK0SKbL6AREzqSwf9pvJtkK87Brc6hoIZx6YKJ5FtXjgDTVNylWpQx7TEWyQSA0L/F12vqZDCd5PdtogaTUgRhuzfwd9e5tqtcyySOT93LWkbls7qkbaLetFH9PI3UQ3Rs7rzuUjxNM4y3Kz+efVK27Bj7SRSEKt9LZajBWXje9plFj0xqJ3HkjtQlB58qEJlyunqC+/Fyc7PF/tNoFS8vKmigH3cOwRu7cEdboxb8zayzEjPGVXfbefov22hHWVFqj8JFYwxHWqDEUDJP9kjdef5PBwYCqLhkO9vnnX/stvv6tP2Iy/WisyZylruqHZk1d11T5AXVpKae3Z02oawYTYU05nTK6hTVTvHGcOPO0fm9J+Qlr7EdgjWkivHdkTbw7a+yjZI0xEB3GbAO/CKzre19ojBZjZQTPfDaTVI85NTAfjDVRhAtvwxp12+Zr8DFizWNh3GSZEw+jeagBYAQnETAtS3vzGGsvvkS1tUV9ZdAsRmeSvZosXLVIjRRf+mRgpAVHOm+SzWoIZcb+xQ8o1tfJesu4IidEKM2MuizJ80KteMltp8GDDVB0cRtdtNZl2vEWm3odUQCVz1LXno5r8dZb32QwOMB7z/b2DX71N/5LLn7wDjAvtL3fR9oW6XdsiJRVifcVhsCpc6f43sW3mc2mrK2s4ExBkXWwwRILDU+WpeSNXQtrHY6MOogSa1DVUWedeLPGMhlNKauSaVVzMBzgQ421lvFoyGAwpPSeVr/Pyvqmbry02ZNgViqQi6RJ4HJLYrqJAsgAWAnAG1RUKiZL36uFr1chFffq6yYjCqRjIc33sS6ZAek5Ehr2KceuGxto2nSb69sYDkHXlic2OWKz4Bkt3j/tKIixgWOqk7ApdUAkc5aNzTWM8exf36esIyHlwmOq7Uit2PJ+YeEzywA7mWtlMdo1JZ0GkWTUyXeT/L2EldOQTVmsCqBocE49Sa9RJjP//DGd6B+Tx2HWNCeBePWLrDl2L9bory6yhnuxRlZoKDMOLn5Aa33toVmjIUXuhzXv1+/zQXaJ/lsrHAz28T6ws3OTX/2N/5K33v8ej4Q1PlKWi6w5zfcuXjzCmi42eDjCGu9a/LG1fIaM2svMrltYYxdYU3sOBgcNayajkbKmptVfZnX92P2zxnALa+Ih1iCFsHdlTXPk35E1PCxrFpyU2LAmKGsyoLvAmg+QOVOqOp0+YoMkiTK5BdY4Z1nfXMPegTVeo18pXnSYNUbkAGiJofvQrDHfF9Y8FsZNCqUmIAgwNPxkgkSrvMG12/TPn6d6+ZNsDf6IsC/Tbl1MvtUcO+L3RPxCo2paXnOTBmI0GvWJzPYj+29epLtxnGy5SyzaEDyhrjBEjC6oaCTdY3BaNJYKRrUbwcoSttaBdXMsadSmrmasLa/z9d/7JgcH+4QY2Nnd4ld+7R/wzgfvk+z6+72NxsyH7sUYyJyh5Syt3OGsIVSVeFhFmyeffJL3P/iAG1vbhFrep9fqk1UFuc1wWQubtzBZjjERlxXkeQdn2vjg8ZOxhDatYzIdMRwPGM9m7B/sM5lOKYoWk3LC/sEus7Im77Rod5YoWl2ZqAsCGQtEJ10FRrsVTDZfzDGKkxOiQlsEqlKoNg0NNICNEhmzyNwe0INf62ca41Nz394EMpuzWJtiVYeCGOT1osM32hg0r5nCJkYlz5PnIh6HdD5YlcyfS6GnvLV0OaXDEFAdiKBFwPN12uuvkOeWg50B9cRTechkeBAxQl1XGhpuE4O8rygUs+AdyppzJqqIqu4QIwPpPGjEQfPhMRUKgrEZxqmgpU+7RdMh2KYY0DqrIYuPx+NurIkmyrr0BtdKrHmZrcHXvj+seeNtuusnGtbEBdZwD9bEVIejrGnavjnMmlk5ZbAyZOX319nZ3yaEwO7eFr/ya/+Q773/7oOzBnCqYpxYUyTWOPCJNXnrLqzJyW2Oy1r4rOC1LOdVE7F3Zc2Y0XjAZDZjb3DAZDKhKFpMqyl7+zsNa1rtJYqic/+s0dD+/bAGhDXBiAHmg1dHK2htT9o/j5A1cc4as8gaIIQfw9pv6HoIxLgEalwl1iTDVaIhXs/TOWsA+v1l8tzdljUEqOvyrqxJkpf3Zk28N2tCWmUfnTWPhXGD0V55JI9prMGpzLJ8TdnUwUB7dYP1Zz9Bub3Nzp9exFQSFrYNRMT/sin1QBIAmntQ6RERSXzXTNK1TK/tc/DOm+Sr62THN7HdDlUlxXXWZcSoIw60YE/e0TUFhEk7whqLzXLmyga6bEOg3+1x9YObbG3v4H1kMpnwT3/r13jnw/eZL+9bHxLmE2hZawQsWUa7ncm3jh7vPU6FovLM4TIZmoaBzDlWVtd4qsi4/MElrt3cEmn09RatypN3C4p2H5u3sC7HzyYE7zFZrvOcHHlhMH5KORsyndRMpxX7B0MGoxGRSF169g72KENNUeQYY1leO05RtCQnK2aizteJ6llJGNdqL5BU2RtpE0RVLCWuD40CZ+O36n/IJg7BNLoWUdulkzBUgodFDnRJMahibPISSIJfgVTvJ2Fozadj5j/UtSWjMIzmlZMyqcGmz47V4lv5HKk9N6WpMufIXN7U0kmrqqXXXyZv58wmXoqIdWF41YoABY3xDVTlx0lf1yocU3qCBoypRs0bg4lBjZz0ncAmbRAN6xPtIe9SogNWCjWTHsjH4XELa+wCa6QwNyTWrCXWbDWsyfS+yvMfnDV2kTXX99l/503ytVtZ4+7FmojUdqmOibsDa667jOrDTUZbH+B9ZDqd8pu/9Wt874N3H4A1kDl7Z9YQyZ2T9l3vwUSy7A6sWWvRqgJ511K0e/zjvM3/weX8/GzCv3UX1swmFZNpxd5gyGA4XGDNPqWvKFqJNccoWu3vG2vkd3RPBUP9sKyxkRg+Kmu+hdTapBEvKxjAUyvPDmscWStpqczlpC0bgnCifxfWxDuyRhy3ZIDdmzX23qzxWqDdsMbMWRMfjDWPhXFjkAuVeJCKMY1urmjquemSWzonjrP+4ieZ3txh+P4OBqvaNnM/KenVpK0edJEknyt5XRJqlveuI8TSMnr3Q7KN4yy1W7SKXFp2fdTQot68BDS7aFMnC8dqq6Yca2he0RiYTae0XJuLb75NNSuJHr71nT/i229++45hYWctmbWsbSzz9NNPkmUZ16/dYHd7i+AD9UwLI3VxlV7UlXsd8FUpxXtAkbXAWdq+4swTZ7liL3Hp2jWskfboyCqx48hDpGZCXU4JZUU0hhAqqnJGdBm+hvF4ys7uDXb2dtgbDCmrimpWMppMcEVGp9PBOkeMhvXN0xRZoVNdtStAN2yMEu2y0TVpnagaEZnJxCiIabYJWD1kU0lCCjSn/3fOauuioEW3pYSW1QMLIeBSa7/CJkbxvKNGMkJSJE4RGO22CIiOBerZpUfT4aCTE8XQUliRoj0SppVCX9OAx9e1eHH6WsmrW15aYWm5z3R/2syacm7umSUASKhcvDSvXg4LEQlJ74ZGfl6uR9KoCTJ80+sATwWVR4YfptSuaOiE5s8mjRAOBmcfC4zc1+NW1tCwxiTW6F+azNI5cYyNF19mtrXD4L0diaAYGtaY+2SNkoPMSHIksWb83ofsby6yxt8fa8ycNeYOrBkODth943vEqVtgzdf55hv3x5qnnnqSPH8A1tSaloqGIivAuduzxsxZ85UAV5jwE+WUuqyldXiRNR4m4ynbuzfZ2dthfzBgVlVUZcl4PMHewpozR1gTm8P5UbPGOpEFeCjWxDlr4kOwRlqpPwt2cnvWoFFKZY09wpp0UiLvzNLS6m1ZE5KRcUfWWEQ48gfAmnoe9Lifx2NDJbFSQ/OFIYVXZTuHGPCxxkQoum06Z86w8uLzTHa/Ttitm1Dx0VCwyiI1lmgyhhcf6d2SJzbbmbL3zkXc+gb5cp+6nhJCRQxWO2Gk/S3NZ0orV1iTrPOo8EzFo4FQe6DiyofX2ds/oK5qdndv8s//6HepbtO/n1l5jxCkdvTll1/k5ImTDAYDrnx4GV95qrqWia9qTRNFbRKg05orasYQMM6RFy2SgunxE8epvefdS+9zMDjg2MqApd4KrU5H60KkkMxYKXqrfcVsuM94PGJre4ubO7ts720xnkwoq4oyetrtLkXusNbgrKX2kWiL5uKnDg9rk9DVPEUQgoUocuWEoFdZfi8i+WuQarekftls0gg+SiunhHFr3YgSDo6HjAuTfkX1LJLyp2o6xCRapaJoKgEeg9euT6utifJdfPRYfa905qS2x7nzIZ5gVOEreW2RAdg/2GMyGTT3PcaI94Fet8/G5jF2rm9T13Iv5dIEnSMVmtB1DFHDxR6vmhTRC7x9EzJX9Glni/dzCfUYkdeIkRBLUrGtabxGbWWPKSKk39/Kvvw4PcTrPsIao6kEjFzfBda0z5xh+YUXGO/8Ef4Ia/hIrKFhjV3fIF/qU9WzB2BN6qq6PWt2d29S2A7X9m9SVzV7e9v886/9DpW/9X4dZc0nX36BUydOMRgMuXIpscbr+lLPPUJ1hDWpgNXY7BBrTpw4jveBdy69x+ZgfYE1XX5J1+DotqwZs7UjUe6tvZv3ZA22xa2sMf9/xxoa1nSRrr/bsSa1lwuLqqrm4GCXyWRIE92Loh3T6/bYOHa8YY0/xBp/hDUssMYTau1we2DW8GCscQEfqvve54+JcWNIcylsapHVhRiDFp/pdFKnm7i1tsLKM88z3dlm8kdvYkPywuQCSSmyaBmkwsuYLG79c5SVLp6XDVg9cKKHwaVtilMf0j12nLh5guhTOyECRC3ym8/x0Mp00OJQ1HpHABUM+7vbrK2t88G7r1PVAR8C73zwXYaj/cNXwxg6eYYPoTF6Lpw/w6nTJ7h58wb7+wNGwzFlVVPW8wVDnBeAiRUM+8MZGKO1HZEsb5NaCvvLq5yMBmuuc/nyZS5fusxqp8fmsQ1arbYqgbawxlDVFVVZMR4P2dq6ydbuNjv7O0xmY8royVsdOq0lWnmOdU49JxGGeu07lxhNWrzyyvP0+l0s0pra5MWjFJhZa6h93UDEJmAbaZs0SJGewwMCHaN6FVEL2KpYNblmAdw8ZTDXUNCtHa0oWKthKL6FRAuT8lfqsCB1PiHeS0qHSe2B3uukc5GcIiMH0PxzGm3RlRSDsw5DxJcVJgSyzFFWch2MgV63y9mzF7h5/Sqja3vUtXjvAhLJTwdQqfJ5NMc2xbHpMEyzcjJqBal4RpL2CMFrWFxSmBEk8uADmJpU2IrRVIUTTzFGr87Z3Kt8/B9pzy6wxmiNVGJNPMqaZVaefZ7pzhaTr3//WNM7dhyq+2NNWst3Ys3B7jZ/+o1vcmr9Wao64kPg3Q9eYzDaO3w1GtbExuh54txpTp8+wc2bN9nfP2A8eAjW2MOs6S2vciLKZ7986TKXL19htd0V1rTbZFlB5gqMMVR1TVWVjEcjYc3eFrv7O4ynE8pYkxcdOp3bsSby2msfMpo+7qxJwxkWWKOCgLdljZmzJhxizR9izFPAWmPsNp9TFjhJ0dppCrOuKvCBLBfWJD2lbrfL2TNPcvPaFUbX9vA1WBu1DkmNERJrwmHWpO96hDX+nqypH4w1oBbc/T0eE+MG0ChNCuBK+yNNeM5H8VSNy8BaXKugf/ok1UufZP/yNUbv72OjoEuOpcMhxKD/SB25vl+yxPUocIqlgKEawv6779E/dYalk6dUrCkQgpEwcKTpTEg3xDrXvGrTsqbeYVWVvPWt1/jij/15dveH+KqkrKe8+97FQ1chzzJWel0mkxG1l4K9s+eO8a//rX+Vt956k+l0zP7BLpPpRAadxSQHjlrC8jpOz7UPrm4xmMw4hiHWNb6uyIoWRRQPotvrcuzkCbJWwXvvvstbVy/x2nsXKbIWuXMUeS6D3AzUPjAYHDCcjCh9iehQdOl1umS5wMnaSJZJjrWclkxKRyxr3vneJW5e3+LVz77E2bNnMC6od6R3yxoIMpHbRgmlSjhTuqIcEh+2pK4F/c5pvo41EFLBGulk0BDsvAAytdVK9kg7ASJErBzsaeOSPAk9wHQDz48t5p/HqfesgwhT3t1EGYYonzPM0yEIXLM8o93KWV9bo9V9gdNPPMnBYICzBefPneW5Z57DB89wtMe3h1+jnNbgEc/K143Hh8kUEtqgbNBOEIGNFKhGaq2TaP4JAuqm/dLPC5/l0JeaAAltB0xU3RVjdE1IjryqP16RmzlrIBk7h1gTEmvcnDWnTghrrlxj9N6cNfBRWCOH3GHWnBT9k/tijSa+jrCmrkre/NZrvPDcy7z3vZv4akblZ7zz3sX52gWyLGP1CGvOnN3kf/K3/gZvXXyT6WzMwcEu4/tlzZWjrCkPsabX63LsxHGyIue9d9/lzStz1hTOkRcFRg3lOihrxiMqXxIa1izdgzV+zprPvcTZM48ja9ytrLGxObjvxhrbsAaghvghxhQY0znMmuZ3I2aRNatrtDoFp84/wcHg4BBrQggMR/t8e/iHwpoaKp9YEw6xxihbhDXhPlgTHp41GpIS1nzsIjdRLpDm3VJRpJgpXlJSXv7eGodz4rlkvYyls0+w/slPMNj5I/xADpDFQjB5pXnOO+WK5V0BjBb6GTKjA+cjhGAYX91n+OH7lBeeIVQVMfSwWcKY0bAZjSGWRrmnAjApLpb6jfffucLW1j6jgxmz6RSvm/edDz5kMpP5PlnmOH3iOLs721Q+0O9YzjxxnP/BX/sb9LtLXL12g8l0SD2bMZvVKomeNk3aguh7S9HWB1e2+f0//i7nz54j1B5fzsiyjHZnSdIWLSBEXJ7jnKXXvcb23i5b2zvs39xlNDygLkvpDLCQ2Yy8VdDrLbPcX6bVbTXWu3Q2SO1T0FDv62+8yfs33+Rf+NGfIoQT/NY/+zrPv7jNp155gVYrV2M0tVCrtqUBE4xqQzTmxXy1xPRTuasW2+St5dJLaaUYFI40IVeEsURtNBhPiEJlyX3rddQghFkIRVuLtIKa2AAkiVCJ5LoYFWkchjhwchgsKhxELEQRV3M2J8syukt9+v0+GxvHWV5dldfw0Ov1OHnqLHlR0O602d2+weW3vkddR2ofqENNo6vikxiYrG8JITslaSCqJHzwEHzE1+Dr1EqOFJxrjCHVAGiCRrxFPC5aTKZy9XpQeF8TfWhg/PF4LLJG7dGjrAlRWZPdnjXbc9aER8WaK/sMPnyP9QtP46uaGOzDs+bdq/zBH/wxr3wmZzatlDUD3nn/Q8Yz8Y6zzHHmxHF2d4U1vY7hzPnj/LW/9q+y1F8W1kwGVLMZs5m/K2tA9s+HV7f5/a+/xvmz5/ANa/JDrIkLrOl2r7GzK6y5qqypylLrLA6zZqW/TKvTmhfHKmuskfRLIPLGm2/y3o3EmpP81m8qaz71Iq0iO8Qa87FnTSDEl7DmG0TCXVjj5qzp9+n3+qxvHGN5ZY0QpXi41+1x6vQ5ZU2L3e3rwhof8XViTTzEmibaHVOzQVRj7TBrQsOa8PCsiQ/HmsfCuFEGz/O10UDQ0HpEps9qFf5c+0Es0s7KOutPv8Dw2jW2v/kewUvO1JkFR1oXYWralMecSAaLM5HMBKoYQQfkhalhcvkas719ZPyHQUbZ02wGjOgwiBhRikZK21rKUx4MS779tT+ms1Kws7NHVVVEEznY32Eym2EMtHLH+bPn2Nm5wXRW0us6XnjpKX7hF/8KT59/lv/87/0dpuMJ9axiOq2pvCc059mtsMmshMCnpecf/te/w3g845f/8s9y5kwHV1XkxtHqdqnqGUXewbhIvlnQKtqsD09w/tyUweCA3b199vb32Lpxjcl0xPLSGr1+n06nQztva9W/eAtOJeBNkDBjXddcubnHN167xKUrV/nJP/cXePH5l/n2ty6ydWOHH/6RV1lZWZKQrLZwi0ZC0kBIx0TU6xt0kwlM5FJLERpGDF9p35SDW2aVaKoo0ng/wcg9Fm7J+8mQvHkBXQwaIpa9pR6JjAWRtJQKYQWoYxDBMR9oK8RIUcTU2pIgqV6etZYsa9FqyQDFjc1jnDhxCgx478myjI2NTYpOj+de+CSf+cyPMDjYY/fSFmUZCB5i8Hhf6zVbXOcJpEGuU5ScuPc1dV1T157gdfCdRgNigNh4UxqBiLVEDNCwdF3rxXC6ZwN18Pjw8YncHGWNwHOucRN8LbVxd2LNUy8wvPpRWQOZ8YdZMzNML11jtndAfCjWyJsPhiXf/qM/ZtKtuHjwDsf8SWXNNuPZFAO0F1kzLel1HM+99CS/+At/lWcvvMB//nf/DtPJhLqsmE09la/vyprcLbDmv/ldxtOKX/7LP8vZ0x3qqqK4C2s2Nk9w/vyUg8EBu3t77O/tcfPGNabTEUvL6/T7PTqdLu28JZIgt2FNnVhzY59vvPYhH165yld//Kd44blP/hmxJv6AWLMDvAbxxzCEI6yRzysGkzvEms3NY5w4cXqBNY6NjU1anR7PvfDyIdbMqkCoZa97X0tN1FHWKF+ifgYZyuofPWui8O5+H4+FcSOPiPg9WpxlvXbUWHwtFysScJkTgSUtWrNFRu/UcY5/8hWmN7bY/3AkSzTO+xR0DTVeTmOfG0gqDxbRoJCnqDcWDbPtHSZb15lNhvTW1jQkaKXES70oSQeIRyYela7SGKnryAfv3+Tim2/ypT//BaqZKGISgg6k87TzjOPHNsid4WA4Znml4NXPv8xXv/rTvPqpL/Bf/Bf/gMvXrhPCjN3dXQ72Zwtqj7eBjTVkmW2es3cw4b/6jd/n4rtX+Ku/+BVeeuE5NtbWWVpZo9XpA2NiVZHnBS7P6C1Jzns2m3JiNqWclexs32R7extMRl5kZFauo/eRUMvCk2ippY4lnsBoPOXyzX1CjFzf2eIf/eo/5EvXL/MjX/oyl68E/ttf/01++Ic+y9kzp1X7IUroF0Oq50spvnluOxV+RvFO8I3GR3PtAResejnJoxIyRmh0E9I6kA6F9Oe5txZDwFnTKL2iaYQkVxWjFN5N6wi5PE9eNap9E0laPOp/aypJuzGMwdoMHyoqLx51NFG6K5A0oKlKnHM8++yLbO/c4GuD32JclczKGd5r10RMnVoCzqjpA2McqTNDACMR0KBGUQKUPF9+HjDERWNFNSuC1nLI3tAJwfreH6fBmYBCc4E1RlkT74c1J4Q1N7fY/2Ck5+L9syat2kXWSJbDMNveZbJ1nelHYc0HW1x8/U3O/gufYenk0/hvvQMhMEmsKTKObW5QZMqa5YLPfP4lvvrVn+azn/4S/+gf/UMuXbsmrNnZZf8erMlux5pf/z0uvnOZf+kvfZVPLLCmfUfWzNiYzTi5wJqt7W2MceRFLqyJUVJjdaCONSZKtKWuhDXjyZw1N3a2+C/+m3/AD12/xA9/UVnza7/Jj/zw5zhz5tQjZI3cexd/sKyJOXSNwbBG5BkwV4kcP8KaqAXLEmE8xJr6KGsMtffKGnuYNeWMWVnOWRMk6XqUNemaeuVBCF5ST/fLmnQP7saa8GCseSyMmxSiSjLmqSSPGDV0VjcTSdVyoclxWkPe7dI/dZrV559mvPMt6hEYE+evY5LpRAMheaS2PIsxNc5GzaWHxpPzw8jk5nVm47F6T1I+aKxsCmMMxmVoNozU/Lm7tYVzkdq3ONi7TNaGIkshZPk83nusMaytLHP+7Fm+89rrdLsZn//iZ/jKV/4iL7/0aYYHA3b3RmQ2Z2+ww2xWM52lKbJHUQO5s7SyeaNfjJFp5WnVgdfeeo+L//7/k7XlPmtrK5w9fYozp46zubHK8tIyS8t9VpaX6fW7tDsdWp0+nXpGCIHVtVXW1jdl+m5VqsckIxfKumruSR08s6pmd/eAP/7OO1zbGjafbTKb8Tt/+Nvc3LrOT/3kz2HsOv/sn/4hn/38Szz/3DMSkk09CyG5pil9ot1HRp4j+h+QBgVK4ZwTr85KMaDUI+TyesZJyadHw/dS15CKSIUnukoaFqlnESLe1NrybCCKDm2MhmkdqMno95ZotzpNh4a6Kfp9Esxk9UlqQWex6HPqWlokszynjhWZycmzDOdy8qLNyvoGL33iVfYP9nnv3Tc4GA6YTCd0e31sFDiG4FURVTyfui4hreMYCGrYpAK/1FGROh1S62Xq9rDGEo0IlIm3KZ/bqLhZglf8GBUUy0oKEi+JzRF2hDU1LnOafTvKmg7906dZff4ZxtvfpB4BD8CaEC0cYU1zj0aByc3rlHdkDbdlzd72NtYE6thif/cyrh15OmtxwvT45m1Y88S5M3znu2/S7WR87ouf4itf+Wle+eRnGA2G7OwNhTXDh2RN6WkVgdfeep//y7/3/2Btpc/62gpnT5/m7OkTbK6vsry8RH9pidWVJbq9Lu1Oj1Z3iU41I/jAirJmOB7jqxkE8IdYAxiog6esanb3DviT77zL1a15x+FkNuO3/+C3ubF1nb/4Ez+PsWv803/6+3zu8y/z/HNPPzBrsGBuxxqHasUoayJiAH2/WBMz+t3Emtcg/jDQUcPmKGsWtYpUfiJYan+YNY5cmkduYc0e773zBvv3YI33nuo2rPGpc/NOrInzDlOLJdpHy5rHwriRQIZvBHqMhvRNRFJUEfFOcbIQnJERAantzhrcUp+VC88yuXmT3dcu42vb2L0LKXEW9W3STwKqf4Ahs4HKz9vJo4fxtevMDvbwdY0rcpLYmy4ftGJMA9GRqir5vd/8dT77xc9z9uxpttcqeiuGwcEup05YMpvjY4k1kRMbK6yu9sidAVPxuS98mq985ad57pkXyLOMf/b1r1N7R1XPGA4G+MpQltVtYZM5QyszWGfIrdOFBmVdU1aWHEvtDcMbW1zZ2uH1t98HxHp3uSEz0nnQLlqsry2ztr7KsWMbnDl1itOnj9EpnEz4ddJd4kcj6tozLUvKcsbBcMz2zi5vvn2JN969yd6oVFGm+aP2gdfeeoODwQE/91N/mc31TX73d/+YyXjEy698gszJ7JSok2Ql3Cl32mqoN2oLp7PSFZCGVlpj1ROJZNaqpywPawwhSs49asGvDxWRSuQz01oidUQEkpntkcier2uwSSrNMPM1ZcjorWyytrRK0Soa48VQy9GWXkejHPP2UM1lqKdYllMRRXOuKVS01tHv9dhcP8Z0NqWqKj77mR+CaBkORwwGB/T7S1jTbmqsUjGseEXSZSg6GOmz0HwvyXR78bbqihgMPtZkOpMGAI96aIY61vLdTZQDJ9ZNiPlj8zjKGr0ORqMvMGeNWWBNIMgBYi1Zv8/KhWeY3LihrHEPxBpzR9YYxteuMdtfZE0gkutz3G1YU/F7v/nrfPrzn2Xj3BlObghr3j64yejUUw1rjIET68usrPYoMgdxxme/8Cm+8pWfUdbk/NbXf5u6XmBN/WCsCRFmR1lzfYsrN3f47sXbs6bTSqxZ4/ixTU6fOsmZ08dpF5Y8y8kzS/QwHY2ovWdWlsyqksFwzM7OLm987xKvf+8G+3dizZtvcHBwwM/91F9R1nydyXjEK6+8iHvUrFGja5E1IRrcXViT6rzujzWO3soGq8trtFoFhg2MeRPDGQwbt2FNcrBS3lRYM5vNDrHGMWfNRmJNWfHqZ35YWDMaMRjs34E1kTSK4UFYQxCe3BdrIvJeD8iax8K4SZ6T+rWkcFxQL0ssvJSb88QgB5BmOGVRZY7eqVNsvvQKk5u7zK6MEfvaLb6RLL4EE73sIaKy+clcaXCDiZZyZ4/Z7g5+NoV2W17IaO998OAcyWo1iHx3q52R5VKQ+PWvf41pOWZ/uE/RyijLGYbAUq/DM0+dp2hnbN/Y43Off5mf+Zmf49lnnmN9dZOqqri5tcNwdMDgYI/hsMLqQLn0MCDV8Fa8KNQwTIuNIAPLylrCqKL5IFc4mIDFUPsSFzJmakkfmCk3dw/wF9+XjhoPLnP0Om2OH1vn7KlNTh5fx1nDYDhhZ2+fdz64xqVrOwwnFaUPmjvWyNaRcHYk8sHVy/yDX/nP+emf/BnOnr3A1/7w20zGU77whU9TFC0C2gWiOe/0nVBjVv7TaAmLPNca16QySV0LCSKyI3HGEYIKdSFFo8YGCAFvJBdvgaDeeogBGzUSFKWIMFhL5T1VzOgurbG+ukKv08FHFaFKnl+U+oA0rb4xdmIA/KHieeeyJuWQQt7GOvKsYH1tg4CB4PG11M188MG77OzusrS8Qp7njYKn6EF5YsrvB4+1TpRZrSE1Nlhrm46FEBb0NgiEkPp8vO7N1B2jvxzNXGTL142n+3F4HGWNrCmrnJHQ9x1ZE1VAMXP0Tp7i2EuvMLm5x+zK6Ahr4kdjzd4O9WxK0W7Ly92VNYaicHgT+dXvfIfZN77GZDYmDC/Rbz3PfjXDxEC/2+aZp58gb2Xsbu3x6uc+yc/87M/z7DPPsbF2jLquuJFYM9hjOKiw5jasMTIk83asiRF8iA/GmtGUGzsH+LcOs6afWHP6GCdPrJMZw8Fowu7uPt/74BqXrm0zGFdUXtR9782av7PAmm8xHU/4/Bc+Q1EUShd1NBrW6D35iKwxt2VNxJtKXl8/911ZEzxVyOgurbOyukTs1FJHF88SOI3UpdSHWWOSgRHUGJuzJsvcLayRGsCCjbUNOYODx/sKX9e8/8G77OzusbS8Sp7nYugtskaNpqOssVK3f4Q14YFYY6KZd+o9IGvuadwYY84B/2/gJBJt/U9jjP+BMWYd+P8CTwLvAb8UY9zV3/nfAf8aYqf+z2OMv37XN1Hrz5j5n+cdOBBjjWgLOP35PIcZmgViKfp9Vp+4wPCFSwx3vo0dSZtiatVsAKPWsdUP6LUCXZ4bUjyGNFMkDCaMt64xGw1pLy3LwvBgbMA5i8wGFtwY68jzFmeffJZL71/k+tX3+eD9S0wnniK/hnWGEEUlcmVlk2PHjtFqFdy4cYVPfebLHN/cpNvuYGzgYLBHXhTs729x7do2eVawPxjJjbOWIhdJdLHuZDHEGAkeZlRiAasS5Kz0OGuwTTGbPt8YTHTUCtzUmhjNXOAqEpmVFZNpyfWtA/709XebTVyreJxfyCM3txUJVadKlKOP3b0d/utf/xV+6id/lifOPsWffvMt6qrmR7/8JfI8I0QncvXRYcK8aDKFWaWlOiPNS0lnihwcVjcw8/A+EakMF9VLGw0xWIIN2jEhYAh4XXe6amLywOVQqX1k6g3t/jKrq+v0uz2sdeI5RjA4QFS107pAr6u186F2Rj1ZaYOcC2UZ5tNxjTEUec7G2jrB19RaO2OMZXvrOjs7O+RZTqfTlmI+9aKkC0FaK2XcQK0RAwFODBXJ/9fQqH5PMVwEWF5+N8wbmxvlZkQTx/ugMgkf/fFnwhoOsyY8AGtWnrjA+guXGe586whrUv3NA7KGSBhMGW1dpRwN6SwtHWaNTazR65VY89RzbF15n6ed479990OmE08rL3jKnePD8IGyZoNjx47TauXcvHGZT7/6Yxw/doxep4u1gf2DffK84OBgm2tXE2vGgLAmzy2tu7CGaESwM/JIWfONxBpr8F70eh6WNf/413+Fv/iVn+WJM0/xjW++RVV7fvTHvjhnjX0ErEnplLuyhruyJgJOxQLmrFlidWWNVrfgur1EzweIKxh+DeJfbMICDWuisiYmBs1Z44PWzhxijXwmt8Aa37DGsL114/asAdXAkY7fRdYkw01Yk4yYcAfWiAF2iDV6DxZZEx6ANffTV1UD/+sY44vAl4B/wxjzCeB/C/yTGOOzwD/R/0b/7l8GXgJ+Cvi/myQDetdHs2Wx6s+IAJMFRNtmXpU9l8giSo7PWENWtOisr7H61PMsnVsjtxGZhKKwMWkTNJdZkxCWoAVqIlMdyTS8SDSEmWd45RKjnW18reqQycJv2v9EewINUbbynLoObKwf54knT7Oxsc71q9cZDvdot7oQDUXRI8sK2q0W5584y9kzJylaGXmRc3Cwx40b25w+eZqrl68wmUjlubOWtZUe6ytdukWOdaklUrBqbUaeOUxMqs6yWeqQin+jQkK8qqqWbgj5R8KGta+p60BQWCXRJYyRgzFC6QPTysvzYrp/5pa7CuotH3lYA7224WA04L/97/5rPrzyHtZZvv2dt/nd3/kDDZtmEsZOQwGtlQFrNgmYZQqfrGkRdVbvuE0elRTMpToSmoK9qPnzqH+02KhjPKzTHLXVAsFMUjYEQrRMK8jbfVZXN1jqLUm7cPL+Fle0Se+v8SAzN3Ccy3E2l++VvCghkUAlJs9LlGqLvGBz/ThnTj/B6dNnOHPuPJvHTjAeT9je2WY8mVBVtX5n1ckIyciZh4ajQliUVfV72xznMvHu9FoFH2SdeES1NkTqIB163nvKakZVl+ptP7LIzQ+YNWJ2iNGXSW0F7i6sMbey5unnWT7/8Kxxi6zhKGvCAmsAO281XmRNO8+oa8+J46d54gllzbXr/MZg5whrcjrtFueeOMu5sydpFU5Zs8/NG1ucOXWGK5cvM55UyhrTsKZ3W9a4hjX+I7CmOsQa07DGL7Km9PK8+2DN0b9JrBmOBvzqb/zjOWu+ffHRs8bcmzX2HqwhGDy+YU3W6rG6sslS//fouX+PC+a/A35Vv913ZEUbdwtrZG8ra1yOTIo3ajCEhjVeNXsOsWYjseYsZ849cWfWaJ1PCkjfyhptbCDegzXhVtZ4SasvsiY8AGvuadzEGK/GGP9E/zwAXgfOAL8A/G192t8GflH//AvA34sxzmKM7wJvA1+4+5totDv9zwSdlJz+Ur3L5pDUJRxRgZ/Gl4TM0jm+yeaLn6C3kZEZmQODPl/2xnz5J4UVr59Bmz8xRmxNQwRvGH54hcHNq1TTMelZVvOFaRNIeE8W69mnX2R3e5dv/OnXWOovc/zYCUbDCa995xusra5ITt1Y+r0lev0en3z5kxzbPMZTF55lqb/CtatXef+9d9jf32N3b8Dyco+15T6bq0v02jnWgc0cuXPSCorAOARPHTzOGfWu5HuGKMJYPgbqGKiDdFeEKOAlSugweP1ZkOfXIVJpIVjymCQsq3jRS6mOyC0H/J0eIcL+OFDWgb3BAb/xT/4xN25cxmaOb3/7Lf7gD75ODLXMb3ER5yxOZzaZFHq1yHVQ6DdqmcY2hkJaXypzKUV96nWEkKIOGo2waQ0KLGzqjDARmzkwjpkPZJ0eq2ubrPSXybNMAx9Jzj95LHIALNYrSGg6koYgWv0+zmYyT6jZt1E8lRAIQcPXBooiY3PjGCdPnuPkyTOcOHmK5ZU1hsMRuzs70hFTV0DQw0Y6NpJXBkibfkhpszRjJhnsNHl68e4itS9lTejMo9pXIsPvZUSEr/0jEyj+wbNGQvYgrBEA3401YeEnwpr2sU02LPwsQwABAABJREFUXvwEvc2HY425DWtGHxxmDVisy4Q1dpE1YiCdeepF9rb3+ZM/+UOW+sucOH6C0WjC0re/wdrqasOapd4y3Z6yZuM4T114Tllzhfffe4eD/T12dwcsL/VYXWCNuyNrwiNhjdSGJdb4j8yao65UYs2sDuwPBrdnTfSPjjXxbqzRp9wva9o91taPcWXpHfayf5dL8Wli2CTGH1fW/DLGfMDtWGOIWKft4JqWcjZrVIeb9a1GwyJrWvkCa06d4cTJ03dkTdDv90hYE46wpnp41jyQ+pYx5kngM8AfAidijFflg8erwHF92hngw4Vfu6Q/u/trq1GRqrLScEGrgk3Svu/V+hUzMeVDLeCyJG5laC0ts37hadafeYIiSzND/n/U/VeQZUl654n93I+6+t7QERmRWlVmye6u1mhMoxtAQ8xgdoAdYMZmhrsc446Rxhe+85lmfOIThXG5S2DGCHJtd3Z3BiABDAaiVXVXl64umVpEhr5xtTrC3fngfm5EpKqs6mpM9TGLqszIEPee4/7zT/4/fRCwNPnvdMkKI9BGukJT+wUCY7u3hBVDGu106Ny5zaTXs5vNiXtJZ/FL6eN5ofXGpA0x77aGnD9/iU6ni/Sg3+/y8o9fYma2YcOPGiQRxUKJQlSn0Vhmpj5HpVynVptha3ODmzev8Oxzl/i173yT85fOEvg+mZsnZReAIknsgZNlijR1s1+ExM/bR8F5TgaVF2jrvJ8D6yloQ2aYToTVGrLMFjxmylhAKVDKRWvzHPThRSQOwPPwZ3z0yveXNob9Tpe/+e6fMRp18byAN17/gDff/CkYV4SYT7V1c2SsJ+Jhpchdd5I7lGyHw8HfcR5lLhluXMGufRF5msK2Swo3TVi6MQlCCjzPQ0iPVIPwC9TrczRqDZuvd5X/hwFniwvNoTC5u8/Tgy7P33vTzymlyFQ2DfUqZYcHKp2rmFrDKQojluaXObZynJXV48wtLFEolun1+3Q7LcajIVlqBa9whX3OdLN/zj064Vnl91zPReTGur1f0g2rE8YVArphd1a/IrGt5Uo7I+zJVUOf9Pp5sSb3Kg+zhkOsEZ+ENafOMXf21BOxRj8Ra7p07txm7Fgj5SHWeJ7zxkMraOoMnb32gHMXLtPudJDSDs38yY9fYna2bqNHGgQhhUKRQqFOfWaJmcYc1XKdam2Wzc0Nbty8wjPPPsWvf+ebXDjEGuUGByutSJLsU2ONPsSaNNOWM4416u+ENT3Hmvd5840nZ434KNaYx7FGI4R+CGvEEdZkOWsaczSqVZ4P/5KG+d/jm9MYvgjimFvN3wUTPsCa3ChzLV92vzvWZFnenn0fa9QBazjMmuXjrKyuPcia8YgszQ6pDX8KrDGfHmue2LgRQlSA/xH43xljeo/70od87oG8hBDiXwkhXhNCvNbutJ1SqL0xGGUDXk6nwxb52Q2q87Y9AVpl04NLmoMcuQh8SrOLzJ25SGmuaBVJra/lvAdz6EVZ300hsYMJvan3ffBFEjNStG9cpbu3hUoyF2KT00NKTA8sgRAer/zwu7zz1lsEhSqlQpFCoUAhjLh65UMmky6FYgmlMmqlWXw/IIwifM+jPxiRpgmNxjz9UYYfVFhbW0UKyfETazTmauTaAnGakqa2ijzTxg7PxHo6vvSmVnt+aZOHDy1gcms407a4D21/rlZ2bozRxrX6WY2F3OvMlXEFOPja3+nJ/BB/+MIwQOB5+J7/wOe1gb1mk+99/8/ROkV6AT/+0VtcuXLNbgAE/hQ8YiobYL9bTL0lq57pitNcNYN2OhHGGQrW81TT+hRgCiDhhhBOSepSS4kyGBFQbcxTrzWIwojpEDgHM+08kAPV2Pxn50XErjdnWsthD0Gl7aBA7TQx8lx7miaoLG+fFFOPJwh85ueXWFk5ycqxVeYWFomiIt1en16/x3g8JsmsF+SsuqmAMUa4TW/c4D8LWOG55+icCdsc5LzxnNs615846GoQeC6d8+ldP2/WiCOs0UdZY46yxhqgj2ONR2lugdmzF56INYYnYM3YsqaXs0bezxr3Z+lY89L3+Ombb3G1UEEUS0SFAoUg5MrVDxlPuhSKRceaOQI/tHPjHGuSNGVmZp7BOMPzyxw/voaUnmXNfM3Gt5RlTZJk1sP+pKxRR1mj7mPNlD3aRnh+/qz5M8eakB//6E2uXLn6RKwxn4A1fCRrxBHW6ClrqkTRX2DMP0Gar7JgfIxpONYAYg/DygOsMc5px0WY8kJc256duvSOY02mSdLEaWA9nDXHHGvmD7Om12U8HpNmieXelDX5BntS1oifC2ue6CuFEAEWNn9sjPmf3Kd3hBAr7t9XgF33+XvA8UPfvgZs3v8zjTH/tTHmRWPMizMzMy68h612FCA9f5ojNLnqonYLRAtnqdoNZkO1TFtrEQK/FFFdWaF2agXPzyW3LWwUZlrFn9vcdiO5QWJOuEk6bxlsQdjw3g7drXvE45H9eS6nKdzuE3kOUmve+sn38fWEvc3b1nCTVglyPOrz9tuvMD83a1+DCNHKjqLv9ro0m022d3aYjCcsLSxwb/0Orf0Og0Gf/WabxZV5/ECSZTZPmWSKOLOFX/k9kULa0Kp3tPxAGdywO7vpjIDMxkWdv5nfi1x5E7QWLsx8UOClja0pcC7C9B4dFGo+ei1J6bGysEAYHB1dr4wh0YZ7m5u8+tZL+L6H0oLvffcVtjZ3pxvD1il4Bz6Ke27and4HculMozIgp7UnGuMUdZ2nM42gSPvEzcGgQunqVzINCkGp2qBRb1AsFN37Ve5+5DNTYNpGnnfWuHUiXDiYQ2su17bRRpMpRZqlrmDXdivEkzFpmkxTXtp1KQmgGEUszM6xunaKY6snmJ1fIoyK9AYjBoMRSRyjVOrEtlxo2B0sB8/XdiIKgTusPaa1VcYJLRiN1tlUeCtvpc+LSqwG8mMe+Me8ft6smZ2ZRTyMNZ5jjVs3OWvsOXaUNTjW5GF1vxhRWz5G7dSxj80a+SjWrG/T3TzMGufhkxvPchpJeOvl7+PpCUubt6k41ni+x2Q04K23fsL83JxjTTBlTe8Qa8bjMUvziw+wZml5Ht9/NGvgY7JG85GsUZ86axYfy5pX3jzEmr99la2NT4815hBr+MSs+QC4gzEnwdxCm4toXTvEmt8As3WUNV7OmoNOPMsa23aeZcrO63L6PMZokvjxrJmfnWNt7RQra/exZjginkzIssOsMVPnUT8Ra/TPhTUfadwIu5r+W+ADY8z/6dA//QnwX7g//xfAvz/0+X8ihIiEEKeB88Arj/0deaDPGKsWaoQVq5IH0RAEbkCXAemmEQvPFgLmBVnYlJAU4AU+Yb1G7eRpKoslpPtejZkWvuW3SRjQRtoNpW3Y0XYzSLewbcoi7Yzp3L3NuN+bVpsDVrRJCBAaqVNM8w66uUFnb4P33r5OqVqj3+9RKpeQnsf3f/BdqrWCnVSrNGQBYVCk3enQarfY29un1x+ytrrG17/2Dc6dvYBJJe12B5UJyrUCwsu1Bg5mBOVejK2htcWkh1L+9mA7BA7jQoImN7qxlj5GMJ0T5dtOgDzk6XSmMAZXFJavEw4Oh8dcSZrS7Xc4trho61UO/5vSxGnK1WsfcPP2e4RRwGAQ89d/8yN6w950tYpc696ZK7ZNFxf5gPwNHUKMBWqeazZ5b4EzJIRASN8ayZ50hrWHlAEaQaoNUaFKrdagVLCCWdpkR9bQwf9zvQvro2OU04Owkv55txSudTJNU9tAoG3nSR490FqTpjFZpqbRIYw9OPOIUbFQYHF+mWMrayyvrDA3t0AQRPRHVnQrS9VBHZZK7L0w7ucdrH67fj3pQse2hTyvBzAO6MbkRc6QH01CMG0B/TSuvwvW8ABrsKzJUx/uIH0ca6RjjTzEmqBetaxZ+nis4ZGsmdC5e+sQa9xrF3nUyLJGN++im/foOtaUq3UG/T6lSgnP8/j+D75HrR4dsCZ1rGnnrGnS6w9ZXV3l61/7BmfPnEenkla7Q5YJyrXiI1njbstnnDXtx7Pm+gfcvOVYM4z567996SNZY56QNfpnZs33Qcyizf/GuWUSKB+wxgiMqYBQPJw1eRNDzprENSsZO1LBGR1Ka5InYM3Cw1gz7DOZTKYRZlvzmbjvzSeAfwRrxM+HNU8Sufk68C+Abwkh3nIfvwX8H4FfE0JcA37N/R1jzHvAfw+8D/wF8L8103nlD7/sYnDqqZltU8uFroTMuz/c4jEaOxTQvnEhDFJixd9csV3gR0jPwy9EVJaXmT1/Dr/gvFFzuFP+oFbCYCv1BXk7p/WQckUJgUGmgt7duwzaTfsaZe5FOHtSG8Lbr6P/+g/5ghwwarX403/377h9a4srH1wnCD2E1mzeW+fq1XeZm58DQGiJTu0BlyYpcZLg+ZKVlWXOnD7Lb/7GP+S3f+f3CMIScZJSq81SbRSwDonVuJECPCHxfIHvJglnrjjvgbst3DufhhCncXq7gaWcfk4KY2XBDUdC6MYceKL5n3OKPxY6AoajCb1elxMrK0ehY2CcKOLJhDffeoXxpEdQiNjabvLDl14my2zBm51Oe+iXmcO/3MVnjEsRuXCw/ayrn8g7C1yVoDVO83C/LeYT0sMIKyvvhQUq1RrlUtluMqfpoZVx+WA1hcZB+Nr1xxiN0ZmTKHc1EjL33ty9czdPuynd+XC4OJ6QJJMDhVNwRYPS6UVAIYpYWFhmdfUESyurzC8s43shk7HtMLAy6JkL8zqI6INIkxXJzMc4mOmfnQWAQWG1hlyrqTOO8gcuXRfRp3T93FkDD7JGfiqsKVBZXmL23PmPZI1NWT2eNV7mWNNqotUh1nCINXfeQP/VH/IFkbPmf+bWrU0+/OAaYeiB1mxurHPlyrvML8wDjjUJGM0BazxhWXPqDL/1m/8Zf/93fo8wyFkz8wBrxC8Ya7qPYU0ymfDm268wmbJmnx/+8PGsEdNf/mjWmE/KmuAwa76B1qsYYyNuWj1tWXAomggngGMcYY3KWeO5CIlbZUdYo6esETw5axbnVx5gzXgycWlwy0KTp7d4Qta4h/xps+ZJuqV+aIwRxpjnjDEvuI8/M8bsG2O+bYw57/7fOvQ9/wdjzFljzEVjzJ9/9MswLqylUCa1Vr6QCN9DimCqDonB9cEbjrTP4lr0PB/pSfshPTw/IKrWqa2doLRQQaOtVJA52BK5XW1zvC7cKcFqiRq3ke3y8IB4p82ouYuKs2kLnxUuAq+3h7z6EnevfEg06PBCrcCgs89br7/BsZVVokKBhfkF5uZm+Kv/+Oc06hV830Mrxbg3IUsSsiwhSxMwhqWlJRYXF4jCgM9/7ov87j/6faQM8byImZklqjMFiiWJ5wnXVgi+7wrH8tqBB56n85TyHC15ntV5QwbyYjjtcuY2IuwKH+XBktHue6ZV+uIjYMMBpLqDIaNRn1Nrq4S+N3092sBokjIYjHj1tZcII4Hn+bz3zk2uXL3untTB4SMQ09dr4WfI557YdJENsUI+7E44KQobvrUtnratVno+QvpIYds+NZAZQaFYoVyq4Ltwr9aa8SRmv9Wh3e4yHgyJRyM7zXmqdJtryOQF6zbXnWVWQdimGfJnlbfKptOoj8Gqz8aT8bTQzz4bMQ2NW9BLKpUai4trHD9xhmPH1liYX0ZIWwyapYltr1QH32uNK+s9G2Erf/JHaIQN5/vSw3P7SEg5bXE+0P048FV54FD7ZNd/KtaIR7ImH7B4lDXioazxiap16mvHKS0+njUG8ZGskUC822HU3EUnD2FNv4m88hLrVz8gHLT5XK3AoNPirdfe4NjKGmFkWTM/N8N//Ms/o14rW9Zoxbg/IUsPWGMMljVLC4Q5a373Dx7JGu8hrHmYofHkrBE/V9b0ctYcfzRrXjnEmnfffRhrzMdijfikrCnlrMkwJkVraVnTdqzpP8gawas8lDUqX9+54e5Yow2pSo6wJksT4snoI1lTrlSPsmbBsSZNSVPX7fSErOFxrDE/O2s+3UrAT3ppjXbziYwWaG2L6HwZOK9KOhGk3NOVhyxk4/KVYKZKkJ6rPA/wo5CoMUPlxDJ+QbvNYxf34cCmFbxz1u100eQ+hf2bh0D3xgy3N0nHY9C2hAyj8bOY2tZPKagMCdxe73Np1uf02hL37twmHk/odwccW1tCZYpet83rr/6ExYV5jDYk45i97SbtTgtjDL1+3xYGFiLSzIY6f/Xbv8Gvfvs7GBPYQ600y/LyIgsrDYrFAN/38KWPMYYkSw+s4sO32piDkGkePSBvzXP3QtsscF57IQ7BIAdOHr6fYsscBfmjL/s1hShiGMd4QrO6soznPFMBxKmyIl7bu9y7e4tCwdYlvfSD1+l3hzZMr3KgKLcZBbj6IGM8W18yTUPl6pgH3jPCbUByaIIR0nlSgd2wSoMQFKIiYRCCOSiC7Pb6XL1+nasfvM/2nTu0tzYZ9bqoLJl6KnlUL3/f08iJwU7FdYenVToVNheeJe7LBePxiG53n163R68/ZDgaEScxkzjhwOFRYDSVcpXF+WVW106yvLJKY2aeTGnS1BaNK52Rz4PBKOcM5dB24mjqaMoqF/nzcJ0c7mDN6yDBpiM+jrDWf/Lro1gjvEOsEfexRiPxnOjaw1kTNmaoHF/5CNbwENaIB1ijemMGOxuk49F9rEmobf6UgrZCkbfv3seaiWXNqmNNv9fhtVdfZnFhAaOxrNlq0m63MBj6U9YU7BRnA7/67e98LNY8bA08OWtsPlD9nFgT5azh4awZ5ay5c5NCIcQoyQ9/8Np9rMl+jqwJHGs4xJoEpUYHrLl245GsMeaLPJQ15sAAO8Ia8TDWjOl0W/S6Pfr9IcPR+MlYs7zKzMy8lQ15ItYwZY1+HGu8n501nwnjxmgNbk6F1tlB0ZEU1rORblJoDggXm5TONrdf78TQBAhP4Psh0guspR8FVNdOUV2bxZcKlyYG8iVuDxeNPFL8d/gDbNhUJorR7jbJsIcw9mGE6YjKrZeJdq/iSVhanEGGHo3LL/DP/lf/gueePcv6rWvcvX2bdrdDuRShtObNt19BCEEhKmEySHsp3U6LOBkSTybs7e1SLpUYDIcMhyOElPyT3/8XfPUrXydNQAif+YVlzp49z6mzJwmD0OW1tSvQc/fq6N2ehhyNcvfQHM6pW+/d5OFL4z7n7oIyNow/zc1i8+HTQ/sjoWPveJKmNBpVdpp7LC/MMTtTJwrt7/CkoD8aMp6Mef+Dt/B9O6F5r9nmjdffclLv+Qtl+loUufdkpgZ+Pm9FYBBCT70X613lyqLuz+QLwwIh0wYhfXzf1n/ZjWV/ngREEpO0O4z2dhnu7xKPhugsQ+uMTCWkaWw3u8rQCqsurDJXA2ML8ATCzdDxLTy1LUZWKmUw6HF3/SYbG7fZ2tpgZ3uD5t4OrdYe4/HQgdaQtxVXqjVmZxeZnVugUZ/D82yL6DRtpl3Hj3vAxnncWmur4WIAYztDbDeOwZM2QuFJe4hLV9iq864Mkbeg/mJc97MGOBBRc862nurfcB9rbFThMGvIWeMHds1FAdW1k1SPfxRrvAPWiDyqc5Q1XqIY72yTDPqHWDOmcvtlot0reNKwvDCDjDzql57nn/9X/wuee+4s6zevsn7nNq3DrHnrFYS0h6fJIO2ndLst4vh+1gwYjRxr/sCyJokta+YWljhz5ufHGvNzYo3tPn2QNQbLmoFjzXsfvD1lTbPZ+bmxhgdYY4X0hAzwvZw1ZWCBA9ZMSNodhruONcMhasqazHVW5m3UTghU2eLczKWlH8YacYg16441m1sb7Gzfs6xpP5w11SOsmcc/xBqRs0Y/yBqj1SdkjfrYrPlMzJbSaQJxDF6AcMqJ9s0GVs/B8/ClJM0OBnVZzQj3A6S2oT5tF40npFV/FakNJQKFuTlmL15ksv8aadsuSilwkZ+8IsOG9YTULhKEy4Pn29TgacN4e4dJp41IJpRa1yhsvovX28WYDFTCzGyDUqmA393n1nf/kt1b67T7McV6mdmZCmura7z52vu0W7u89fYbfPHFL7O5PkJliridks6klIsF2u02pVKZcsGn221RqVRYXFzif/kv/xVJlvLuu2/TqNcIAjsXpNfu0u8OnLVuWzanb8RdBuE8F3sJFzY2efjdWcq2st0Zj2hrV5sjP8p9nUORZfaDfLvvMuDa/q0y5drxZdbv3eOZS5d4/8N36XStt+J7kt5wQLETcfvuDU4efwqVKd54+0MuXb7I3Oxc/gbIc7g2WGJzz3beCu6Q8jhisorpq2eaPhLSFZMbcnVPY7TTuvCscWAXG2CoFCNOnzzBeKaH0MoWB7qcvjGGJE4ZjoYEfkAYhQ4mGVlmw7fkh6jQeDIg8CPyqblC2AM3VSnDXptSsU5NC/d8BiijwEjCKLLCX647yxM+pVKFUrmCH0QIz7OFz8Z3MXovDyhNH1ReL2CMnQCulS2gNdqlhj0b3SD3Ap2HKPDsGjESbbLHP/TP0KXT1LLGt6yxxakWrJ4MkZ7vWKM/AWs4YM2Fi0yaj2MNU9bkCcyPZs0NClvv4HV3LGuyhJk5x5pei1vf/Uv2bq3T6scUa2Vm6uUpazrtXd5683W+9KWvsHH3MGuS+1gTHGHNv/yX/4okTXn33bdoNOoEgbRjGp6INXxGWAM606wdX7GsuXyJ9z94h053fJQ13Yjbd25w8oRjzVufNms8bO3Wg6zROWu8j2YNUiKD+1gzHhJ4B6zRjjVZGtv3L46yZiqU+CSsWRQPsEYKn/IR1vhT1picNfmjP8Qa/QBrhKt7+yjWgDDmY7HmM2HcqDgmbjYRSzbMKTwPSQDC6ckIW10Omc1kC6Z5cdzmMkJPe+Cna17YbgWtNEGxQOPUaeL9Jnuv34As95XsprMS4oYMCHGaCu5XCGM9KbvqJMluk9HeFmI9oNB8CzkZIXzPDjvDUCqVOX+ySiltM+m0Me0exivwnd/6NXwhkGGZ7Y0O7c4+r73+EmFU5MLpU+ztbRL3Yno7XQrHi4DP/v4+pWKRXn9MMSoT+AGlUoXf+93fpxAVubd+h26vZetBVK78qexAOf2Q8K2xw+3ykK+xFtw0z5mfe7aOx0Nlmkzb+z213t2dy4siTX7Pp2JWj77sXreQ63b7PH35Avt7bTqtFufPnuXajRt0OiOksEP2xuMJVz78kPPnLiE9j8kw4eVXXuM3v/PrNqo3fT22vfLg9HaHhHv/wuW1rTNl4YKQCKPsWtLOoLXJBnsAGTCZIU0yEi91MLKLwvMDqjMzlKp1cOqc0vfwQx9joN1usb5xl0ZjjmPLyxSKIVIY4nhMIYooFgpEYUQS2zobpVIyFVgBvgik56YiByFhWKBSqaLy+55Z5Wal8sPSHhQaCMMipVINzw/I8vEJymCE09AxriAa7CRwBCBdHcpBfYG9ba6myYWDtTbuz3kY3pB3dv2iXCqeWNZ4j2aNvI81PAlr8ijnJ2CNeBxr9vYZ7W0i7oWWNePhEdYUD7Em7rTR7R7Gi/jOb/+aHesQVtjeaFvWvPEjwkLpPtb0KBwv8VDWBCGlYpXf+70/IIoKbNy7a1njB4dYox/DGvFY1uRGzP2s4efAmk6vz9NPX2B/r0Vnf5/zZ889nDVXPuD8eceaUcKPX3mN3/qErLH2zSdhTYZweknweNZgoN1uc2/jLvXG7AOsiaKIYiF6gDUqC2zdTgRezho/JAgiypUquVSByrLp3DyJPMKaICxSKtX/jljjjKOPkZb6TBg36WhI8/qHLAQRslZD+oGL3Nlqc89NGjVGg3YdKa5OAbdAcAVMxmiE7x3JJymjKQQBhXKFxrmzjHd2Gd4Zoo3An7oC9vYqbUkjMXgoe8tdOMzg4YkM0x+im3cJKz2SfpOoECLD0G4kHSB9n9XlZVSvz/kVybObI37QjGnt7vO1X/oqu9t7XHr6DHdv1Llx+32+//0/p177A6qVGr1um872PkExojbTYBJPEFLS2t+ludfipR+klMpFvvL1L/Or3/pN1jfu8q//6P+GEIJ4MnGiWPlcnAe3f76gpLBV6ZgcNgBiqhY5dXuE7ZDI9EEFvdvC7r95m+OThIkPLikESmk6nR6nz57i+pWbfOmLX+bYyoRiocve3j6RHzIejej3u9y5c52VlXNkScrVq3f4wud2WFpcnHpJU5VgPDegz7WmOm/DGI0U/sFrFR5TsSuw3he5+iggBOPhgN29FjsbW5QqRQI/wA9CAt8qxXqeh++H+J5PEAQUiiUKUcRoNGS3ucMH77/F8vIxGvUqFdea60+GBIFPoVCkWCwxGsdkaWpDy0lMkqQUMjvwslQs4vsB1WqVmZlZ/CB0990gnBK2xmlJaNsqKYVHoVBB+j5xkpIkKUEQYowrzNO29dNgppo62nW6GMP034DpfDLbLmoH1yFscXKaZUynQX/EIfNZuu5njchZIzRC+k7x9yhrzBOxxq4jZTRRzprzZxnv7DC8M3oEayRIc4Q1TEPvljW6P0Q17xJu9En6ew9lzdrKMmmnz7llybMbI36wl9DabfK1X/oau9t7XH76LHdvNCxrvvdn1Gv/ZMqads6aWcsa6Viz32zzox++RrFU4Ctf/zK/9qu/xb2Ndf71H/5fEUIeYs0BEz4ua4S0+/QIa4QkcwfYp8karTTtTo8zZ09x7cObfOnLB6zZ3dunMGVN7whrrl29w+7PwBrDk7JmyF7zLjubW5TLJfzAJwgsW3zfd1pCEYHv4fsBhWKKjv4/ZONvsrff54MP3mJpaeUIa4LJyLKmWKRYKDEa2QJym8ZyrFHWqC8Vi/heQK1WY2ZmhmDKGhxrvEewpoz0A+IkeQhrzMdmjfko1nyM5/6ZMG7UJGb91ZfwCiVmz14kDCMXjrIKiVZy3KlyGkDkPf8WPIoMnxCMtuJa0nPTWj2X77YHsxeGVI8dJ7ncJm2/TtrNf44hF8ZS7udKoaxehSsmlIAQCiQsrVX4/HzCbDjC1CoYbTtgTGa7nNCGhaUF2nFKuVTiW6fbmMBDJHUq5Qbj6piV5YydzT3CsEAcj/ne3/4Fv/0Pfo9Coch42GP39j0QhqBYwPd8iuUSb752hffeu8aFCyc5f/E0SZohhUepVGJj6y6FasRgNCBTyuprPGIh2GI9gYdV4Mw1BQzGeicChJFTgbn851jvMpcgz3/WgXf1pIecmMacDXfu3OPr3/gqN6/f4vbt25y7cJYkuYFRmkF/BJ5mPBlx6+YNTp+5iOcFjEZjPnj/KvPzs1ZZFmx3AlYoalrBYKSDinGHj0IbgdWB8Bx8Dl69zCXkjRX6miQpd+5cZ2+/6c4vgecJfD8gCAICLySMChRLZU6dPMelS5eploqMxyN2djbQWcZkPGDQ77M0v4jv+/ieb9MUUiA9G3bNVIKHR5op+oMeqbKh5PF4hM4M7VaTanWOYgmssJV9XyOwqqKuEDj3ePrdPqPBEOVr1w5emD6ZHL62RkI4xdKj0DCuGEKjXKRPozIbxlY6l1u3RnBu8P6iXEdYc+4QawwEvjVYpfcJWCOkS4HYg9kLQ6orx0kuX3oMa6wn693HGlunY9ODi6vlI6zRU9akuFOG+aVFWpOUSsWxxresqZZnGFfHLC9nbG/tEUxZ8+f89j/4z4kKRSaONUIYAnfA5ax5//1rnDvvWJNlCOFRKpe5t3HnKGseFrVx18dmDT8/1ty9c49f+sZXuXH9Frdu3uL8xXMkyQ0W7mfNjftY897DWGOejDVaWaPnYazJ16QxxEnC7dvX2Ws2Xar0gDVhENqoShhRKlU4efIcly6d5v9Z+oBvjT/P9vYmKk2ZjA6xxp2b2hmX0pNg1AOsyfWvxmNbDtDJWVPOC5StoT8y1kBRyjHBRVQGvQHj4RDlqU+JNeZTY81nwrgxWrP95pv41RqFSoWgVERLF3CX0hUHC4SRUy8qr7DPK8S1tuqLEn9qHefeASLfPIqwXmfu/FOMd3dpvXUHoQSujn0a/lTatWYCztcAYUfTL55o8Mu/8QXmKkWk1ohSAQIfPR6jRhNQNodaKBQYT8ZEEmqRx3P1Me+0+rz58hs89bkLtDstLlw+ztb2DkZltLvb/PD7f8Mv/71vkU6GTMYjmrc3KS01EHjMzMwzv1hDvT1mOOyzvbVFkiSUyiWiqMixY6vMNmq89P2XGE8Gh7yeB688XGuMrTXAFYdqY++V0drmWslVQCXk3gmQq4Qy9WDyDr2PDhXnjppFvWAwHLKxvsfZc2e58sFVLpw/R7VaoVKqspFuoN1U2F6/z6DfRvoe0gu4evUOn3/xWUqlMtabchsRgxDWgxICuzmEdMWPxq0X9z6nYWRwqlKA7ZASQlCp1rl0+XkuZopUKeJ4QjwZM4lHTCZjWu0WabeD5/vUqg2SVDGcTLi3eYfW/i61Wg3pSYaDDpMkpuwXp/7/9EkYQ5JkSC8jyzJarT32W00GwyFJHJNlGaVSheNr56jWGuC8V2PMwTwqlWGQU6+o3++yu7fBuVPHOXP8mPO29PQ9G20NPD3t+HDPUJtp4f70e8gl8RWZ0k7bS9rceF5K8Itj2xywpuZYU3wIa+TPnzVwwBrxCNYsnKhb1lRLD2HN+IA1UcQkHmNSQT3yeK4x5p3WgDdefv2ANZdOsLWVs2aHH3zvb/jmN79FNhkxGQ/Zu71JeakByClrsrdHDAc9dra3ieOYUrlMGBZYObbK7EyNHz0Ba4BHsMbet0exRsqD9u9PkzX3DrHm4oXz97FGk6QTeoOjrLly7Q6f/+InYY17ffooa8xh1mBZU67WuXTpOS5ktgA4jidMpqyZ0Grvk7Zb+L5PpVIjSRb5ryb/a25uTGjt7zjWCAaHWCPztZvfLWPTXpljTbvdZL/VZDgcEj+SNfZGZlPWpA+wZmd3g3OnVj9F1ljF9p+VNZ8J4wZjiNtjNl79MdX5BaJKhWh+BePblJTv+wRe4KxPyIeB2eiOXcEaa0VjbO88xmBc8ZHA5RlVRhQV8ecXmbnwFPHuHuN7Vt58emhgrUPfA+ny6wYolgNOXV7h+a9dplEroF2IWcQTZOrZfGShhBoOQCkEhiDwQSkKgcdsOWGm9x5721/l+NYmp86c5+69WywsVOm0u0g/YOPeNV5/rcyzz1wmSUZMBkOXrlBUK3UWF2b5ytc+x+bmJp1Ok7mFFS4+dYnL157mzt3rFIshswuzNFu9R95qQV4spqdTaPOou3BeunZUkMIDqZ3oWF4UifNUch/V/VzxZKHiqfdiwJe2hHJjq8kvf+ML3Lh+gxs3r3Pu3Hlu3LrJ6TOnuH3rNkjFZDJir7nD/PwJ4gnsNvfZ2d7j9OmSzWfbbWKfo8vzmrzIBidadcjfM+Rab8J54TlwXNGtlJRKZRr1WcrFkg3LGtvCqHRGEsd0+z2yNCMIbB1UFIXst9rcvXuHLE2pVWoEYYg2rptBRc7zs7oTUtgCujQZ4/keWnjsNfd47c1X6Hf7CF/i6ut59/13WFpcpVabwfdtyDvLUsKwYIftOYPNanEopPBRWUaS2DZdAWgnJmgOjYbAvZ6p5orKCz2th5175rbjAtd6ittfIKZlsL8gV86aV35Mde5RrAk/AWsUefLK1k/lrFli5uKDrMljD0dZYz9XKPmcurzCC1+7TKNedPogBhGPkalvTaAjrIHADyDLiBxrZnvvsbv9VY5vWtas37vF4mJtyprNjWu8+mqZ5569TJIMp6yJk+wQaz7PxsYG7fYec/PLXHjqEk9ff4bbd65RLIbMfSRrXHfTQ1kjHssayKM3PztrzCHW3Nts8s1ffpEb129w/eZ1Lpw/z/Ubh1ljmExG7Da3WZw/STKBvb2fhTXiAdaIj2BNXrirlEKplCRJ6Pa7ZKkiCAKKpQpRYZ5he8jd9R8eYY0xNuWkdGTXjDgQp9RGkRxmzd4er775Cr1uz057dzWX77z3NosLq9Tqs/i+D2jSNCUMi/heriLtur+0QghJlmYkcXKINfmYjk/CmvRTYc1nw7gBtJEMt7psvvoy5doMs1LiNeZsFbbQ02nb+c2RRlgYaGGLr4zV7vTyinwD2k0hRQjXJmeQno+JJJXVVRaef57d0askrQRXAmZDicI+IE8IjFDMr1T58nee58SFk0htPSshA1ScoicjhFOulUJCuUzW7mKMZm5pib17WywuHqc1nrBsdmjtrLO5EXHihXmCcom33niXyahHqdpg+cQKtbky2/sdlmYa9Dr7xMMRoyTGCzxWVlY4ffo4xVJEmqTMNOrU6jXC0KcQRfT6fdJ0woHc99HLvifX/+/a84y2YeHMhZZtON4uRuUWrhDge3lI2Q3RNLm3efgXuHqdj7hyAykIJeVakXgyIQjqnDi5xu7mLlEUIYTh1MlTtNttRuMhSmn2m3usLp+jLyRCSz54/yonT55AivxgEId+uivU065LQdpaCeFEq+zrzP+e3x33/doghXG5bgDlJjH7FAgRUqLKikKxgJQ+UViwnpsx7LeaNPd3HQQMnjsk0zS1kQ9tuxMCP3Tno0Ap61/KwCfwI04eP8PCc/OUqiWbt1aKQlTk5IkLrJ44RxQVyLKEJIkJwxJhFCIwaGOVSLXO6HbbdJrrTlTLrm2bulKAj3GhYKENuX8rjcDkhZPGaUoYFzpWhwTMjIs9GHvoy8+GosQTXwes+THl6sNYIz42awz6CGu0MgjPh0hSObbK4vPPs/NRrCFjbqXCV37jhYeyRk1GBCXfdR3dz5pF9tYta9qONfs762xuhpz43DxhuexY06VUnWHp+DL1+Yezxg/8o6yJExozDRr1OmFkWdMf9EnT+CNYI6as0UYjtT2gMuXmbX0Ea/SnzJpStUAyGeMHNU6cPM7u5jZhGCGk4dTJ01PWZEqxv9dkbeU8RkiEkbz/3pWfP2skgHJlGD5ShAhRRukHWWOMobnfpNnMWaMPsSYjy+zgSSkloR+BcHUuh1jj+yEn104x/9wC5WrRKq5rRRSWOHnyAmsnzhFGEVmWkiQxUVgkCEPy5KlBYA6zxnxc1ghErgt0mDVakA/i/FlY85kwbgyQGR+hNKNb62y/8TLG95g5dwlZrSOUdvM3hJurIqegFYBRBlzOO1d+zavxpfSRUpKl6bRuwgBhrc7c+Uuofofmq+9iJgB2QrCRAhEKih4cf/o4z//S0zQaVYTIwPPQSYrIJnh+AVOqkg16eFFoOy8yYy3aJKNYLhOEAcILOHnsNJ3Jdeb3r3BvfYW712/w1Oe/wHf+wW9z8+ZdhIy4/Mxlur0+t+9eIc3OcHxxgV57DxWn7N1Zx/MEcwsLHDu2QLs1IEsTXn/tZW7cukO5ENFq3WR3tzPd83kKxEYLXM0eeeGjwcfCO9N2M+As/bz4z3pQzrsSBx6VMfkwQDHND3+cQi+A+kyF2fkSx1dPc+f2LkkiuHDhPPs7u3TaXRYXl1BGc+mpy7zzztv4gU88jvF9EEYjvYCdnSYqzZCBd+TZGuNCnq6IDWls7jv3Gow1WhE+eYpKuFQUCLRQWNVru9kn8ZgkiUGA77QY0KCyDDyDbbX2GQ7HbG6uM+h3qNfqpGlCGAbToZhpllpvVdsxG8JYmI8nMfFkRL1WJwoClhaXOH3yNHNzc2iVkWYKIT1OHD/DiZNnKVWqpGnKeDIm8EPCMEQrZQcOZsamK4sFfBIiGU9z51a2HbDjHF1UIhertPVp2s1Ms3NizLRrIX/uueIpxqlMiV+sbqmjrLnH9ps/xgQeM+cvISuHWCOenDW4w9eTttMqTdJp1EJjWTN7/hLZo1gTCIpFWLu8xgu/9DSNmRqCB1kjH8uaCkEUIjyfE8dO055cZ37/Q9bXVzh27TpPvfgi3/mdv8/Nm3cxIuTpZ5+m1+tzZ/0qaXqa40uPYc3+AJXGvP7Gy9y4cZtSMWK/dZOd+1gz/e9njTWNMnMLJdZWT3Pn9h5JLLh44Rz7Ozu02x3HGsXlpy7z9jtv4/sBySTG9/7TsUYIt548D7R5CGsmbG7es6yp1l1kJbuPNTZ1lCQJAhspnkxiJodYs7i0zJmTp5mbnUVrdYg1p+9jzYjAjx5kTZpSLhY/BmvE9FkanaEfxhrz6bDmM2HcaCA1koLUiCSle+UqKgwhLFA9cQqccJb0bJut1pntaHI3Cymd52Tlmj0vsItB2KLNPJ9iF6EmzWJk6FFdOYZ55gXSTpve+/dA2bCX1lBbrPDMLz3F2qlVfAlZmkJiEJnCEz4yCDFpjIyKiGoV1e0gggAZBHjFAlkywTOG2cV5tm/eZunkcS6miub+De7dfY/9mw3uFN5hOOnz/AuX6fdTxoMR2xvrdHpder0OxcI3WJpdZr+5RTxO2bp+B5XFHFs7Sa1eoNdp8uG1a9y4foXxcMBw1CFNEqJQECcH91c4zEhhpdOFsGFa24ppnMYC2CJHK+xkLX0xhcuB6ubhy27oaT4Zph7V4/Bz9uwp/uk//X3eevtNQBKEbUbjmNOn5mnMNuh225w6c5r+oM9zl57n3vo6Wthp24Wi74x/RavZZtjv0phbcJvHeUg4wTAhbT7fRauUg85UswRbWCynMu8uT+7aNq3yt/16reysmczECCmdJo2eHm7SC9jd3WJj45YdUmg0SRITBAGTyZg4Tqbgti2NBxNye/0ed+/d5tTxk1TKZZIkJk0mBJ6HkgeJjDgZoZRV18Vo4smEsR7h4TOJx4wmI0aDAf1Bh0G/RymE0lwDjFNXMZn1Mo3VldCYqTCWEBbEEokSeqpqmq8PAw7UAoxA5cqj2vAZ0QJ9ouuANcax5hoqLBywRjrW+B+fNSIfCAjTOoLHs8Z2NVYda46fXnsIa7yHs8b3kWGIXywwSSZ4RjO7OHeUNU3HmlsN7pbeZTDu8dwLl+n3UibDMdub67S7HbrdNsXiY1jTKNDr7HPl+nWuX7/CeDRgOOySJvEDrOEzxprTp0/wz/7ZP+HNt99ECo8wbDOaHLCm1+lw6uxp+v0+z11+gfUpa9QR1rT3H8Ia4UTosIbwAWvEx2SNfihr0sewZmdvi82NW7aLmEOsGd/HGg5YI4Sg1+9z594tTh0/SbVcIc1Z4wd2JAg5a8aONdhU7iRmosdI4TOJJ4zGI0bDPoNBl0G/RzEwlObqj2SNOsIanDK3jTj9vFjzmTBucDdV4uGj0f0RzbfeQhar4AeE8wsIrNestUIphYf1kpTRR6KT0nPzTlzkL5dI11jZ9TRN0UrjeyFBqUj9+Cmy519EdXqM7nUoVwOefvEcT71whlIhwjfKtoMqG0L1ozJohWvOQY1GyEIBWaqgRgOEF6DHMZ7nY3RGVCxRKRVIxiNOnjhBnCnu/Pgm77yxyMbdK3z5N3+dZ556mu//1XcZC4/haIAwhkq1xPXr71B5/qssHzvBzuY641HMzvVtBD5Lx1YwJmZ+dpavf/UbSN/j//un/zPF8oBiMaDTmjCZZGhjdTOEOLCYpbRhwukAN4xrtxegMnfo2cnDuaH8MGcpH26Xb4g81Po42NTrNX7/P/89ilGRWrXBXrNNpTJLv9fDk8c4tnaM3Y0WxbDIenudeq3GibUT7LV28H2PcqVEri4bD4Z0Xv4bql/9FfzZZVuo59owrW+o8KTvJjO7dn5jY53CFYHmsvB2vdhuFmG03VhSOk/dphiMzuwBl0v4C4HJNLHWTBLN+t2bdDv7FAsF275IRpxMGE/GzMwuUqvP2DSgFyCl7yJqAqUSut0Ww5kFSoUSo9GYTrfL3NzIGmgqJQh84vGAfqeFylLanRbXrl2l3+uRZhPG4xH9fodev8NwOEAIzYvPf4Hl+Rn75pxHldfm2EMib27NC5StoqlVWdbTvHeuJKqxBqZdC8bWhnKg9PsLcU1ZI62kWn9E8603kcXKlDWS+1hjrAf9AGvyeT3u4LAHiI9Go9QBa7xDrFHPfxHV6TO616ZUsay59LmzjjXapmk0CG3wwzKYh7CmXEUN+wg/RD2GNcl9rPnSb/46z15+lu/95d8w8nwGwwHC4FjzUyrPf+2hrFl2rJmbneFrX/0lPN93rOlTLPp0WvFjWMN/OtbUqvzBP/7HlAol6tUGe80OlbJljXSs2dloUYqKrK+vU69VOXn8BLv7O3i+f4Q1k8GI9st/Q/Vrv4I/c5Q1cD9r9MNZw6NYw8diTZxo7t29Sae7TzGKHmBN4zBrpGUNBoSUZNqyZtA4YE2722Fubv4RrMnodFpcvX6VfrdLpmJG46FjTZfhoG9Z89wXWHooa7yDejUewpq8S+7nwJrPhnEDBNZnRGsFmcdkv8/6q68iikUWLj+LrJTJc5xKWREgEeaGpZMHknIqjY5xM6fI/46dpxFPrKcgNMKThNUyjVNniPd3MONXeP6LZ3n2CxfxjUJqBUoBISZJkKUiohhi4gSTpgg8yFLUYIBXKoP2SHodgqiMmRiyyRjPF5RnZmjf22Cy12Jtts6vPL3Cv/3pO+z6L/DuK2+hVcrtO9cpNHeYmVvBa0RWelx63Lz1Ll/8wi9x/sIlblz/kMFoxL0rt4gnE1ZPnqRcjqhWz7J28jSeFPzJn/53VKoVwqDN1kabLMtn3OAMRDdoU8o8nIEnhZuXo11kwXDQWXQQGj58iUN/kIdwk/edqYcQKooi/rN/+PcRUvPTd3/K0sIS7c6YxYV5tja3QKxx6tQp9rb2EUKSZglplnLm7BkGwx5hGOF7npvLBFopBrfeJzFduPQVvFOXEUFkf5nbBDbvKw/eE644WvrT0LAVasvTC3qaJ7cMct6h1gf3xORhaft1WapoNVtsbt5Fq8yGgxODUgntTgfpeSwvrbGwcAwhDRwOrQr7PpI4odtr4/s+G5sbDIY9kiRBSsnCwjwnjq1SKYYkkxaT8T5Xb1znJ6/8hF6ng/FsYbHQMIlj0iwlCgJ7n4RhOoUXG70UzuM0wua4tTP8lLJ1JcrlvjOtbA5deOST0K33bL1BG0DKOx1+ca6cNUYr1JQ1ryCKBRYuP4eolB2MD7FG3scaIQ8NPsWG/fHyMwt1iDUIq2Ad1srUT59m0noaM/4Jz794hudefArfaKTWoKys35Q1pcewxjyGNesbxN5h1vyUHf9zvPeTNzGoo6yZseMZpqx58dGsqZQiqqfOWdZ4gj/59/8dldrPnzXT62OxJuQf/sO/j+cb3n7nbZYWHWsW59ja2EKINU6fPsXu1j4gSdOExLGmP+gRheER1hilGN58n0R34PJXH8GaDOHGajzAGmsBPyFrzCNZozIbsd7cvIvOUlTgW9bolE67jXCsWVx0rHHdoS7uZVmTJPT6bcIwYNOxJk1SPE8yPz/PiWPHqBRCYseaazdv8PIrL9Ntd0Cmtk7JCMuaNCUKfZeK049gTV6zZmwdrDnEGm1TvT8P1nwmjBspwBdW2CpTNpyZaclkq83uW68TFAsUjp/AhBIjPdtyJxW+8RE5TbBWr5xOIXUWs+em6QoPlSXE8ZggsEPyhADp+0SzM8xdvMR8MeOpMw3kaEg6ifFLEUG5iE5tIVPa7oER+KUSZAlG2S4JHSeAxKsUSHcHZHKC9Hy8KERNxoSFEtKT+EGAHI147vgiysAf37zBdv0LPHV2jrVjq9xev8tw2Gd2fonFlRNM0pg4HfHaWy/xlS98neee/RLvvPcqrW6H9Ss3GQ1GrJw6TuBn7O/u8NWvfYu9vU1efe1lqrUaaZLS3O2jrSQHnhT4vucUQ43tqPE0VrXBCS3ZtDGp66qxIm4PwiMfcGf/4h4BlmH66Kem19qxJQQZr7/+Op4fsb3dxPcrVqlJ20VcqdcolgsEkYfnCeJ4wslTJ7l95zq+J0li5XLJtu0ySVJMa5vkJ3+GWf+QwrO/jJiZw0jfFb1p9xKdSBSeLewzgOcMHJcHt8le4bzwXDvGuNdmW1gxeQjVedkIxqMhG5u36Pb2CYIApVK0MiTJhDRV6CSl2dxlba1PVCyi3CyY8XhElmVM4oTmfptut0+peIvmfgcQvP/+h/iBx2/8yje5ePI01XIZIyCNU3Rq62oKwSJ+6BEGPqlSjEYjkjixB6o0Fs72gZEPe8zBaeshFNO5OVgROqWNFW00uUy+TaDnB49WObh1vhh+VgT8nV2PZk2HnbdeJygUKZw4gf4o1kjjpjzb0L8UEuO6UqTwyI6wxh7J0vOJZmaZu3iJuULKpdMN5HhEOp5Y1pSK6Ow+1pQfwZpyccoa4fl4UYSajAgLZaQv8YIA4VijDfy/bl5nu/YiT52bZe3YGrfX70xZs7RygnHOmjcta55/9kv89BGsae7u8NWvfou93QdZo3Su7v4w1tgdaVmjp+nij2KN/ISskULz+muvIf2InZ0m0isj3EwlbRSVWo1SzhpfEE/GnDx1ilu3r+NJSZqzxljWxGmKae/cx5p5jPQwbrRCnhi3rMmL0gH/U2LNcMjG1i063eZ9rImJU4WJj7JGK0WaxpY1KiOOE/Zz1hRu02y1wRyw5ju/8k0unjxFtVLCCIjjDJXGlAoFooUFgtAnCHyyw6xBOSfNHGKNNXQfYI3+u2PNZ8K4yS+DwQoE2xp8qQ3jO+vs135KWWjClUX8cgWj7Vh3Q4hAIz3pZJ5ttMaGQJ3HhO20QojpaALtSXcDFUJKokCyuBixXF8lVCnZaIz2ba2OzoyDR0DaHxPvtxEGvFIRkaVIYzBJhpqMEZ7EL5dIhgMCP0BPEqfCCY3VNYZ7+3iBRzbs8fzxBXbjTf564wr95S/xj37/9/mj//a/odfvMRn0WL/1IcVqnUKlxnDY46VXvsvzlz7HV77y93jjjR+zsb3Jxs07DPt9Vk+fIE5SokKJ3/yt32V3d4ubt69Rnalh0PTaE1SmCXxJGEhAWt0SY8OdQmoac3WKhQppGiONz/5+h0534J7Lw6+8qDIPFtt1Jx4aVxZAp9Pk1ddeIYqKCBFRq82ysnyaO3c2qTYqeNLO6qlUyoRBhO+HqCxjcWGZ+dk5kixlNBq59kurZLmVKM6nCYEWsH6Fwc4d5OpFCk99CTm7gHCTi6fFaQLAIx9eZ9zQxNxzFNj0I2C9EW0F3qRxZpLzKCR2ppLWilZ7j+3deyiVEQQ+4/GEyXhMGBZZPXaOTqfFrds3iKIitdosve4+3W4L5QZZap0yHqe0xkOE6E5vX38wIYoChsPRQeoDiSckhWKBxcUFlNL4vq3fSOKEIAiJJzFKZwjpjLu8Fsnlw/N7IYwLe7uWXKX1tKAPYdtzM6OmdQ25UZnTSZDX6Ch+0a77WSO0YXJnnf3q25TlUdYoowg/gjXmPtaYKWvyuhDbDRQFgsWFiOXaQ1ijPjlr1CSeKv7ez5rnji/wa4dZ8we/zx/9N/+PKWvuPo41r/+YjR3Hml6ftTOWNYUpa7a5eesq1Zn6EdaEwWNYM1unWLSsEdqjtd+h0xu65/Lw61GsEY9kzT6vvvYTwrCIlBHV6gzHV89y+84GtZkKUtpI/2HWZFnG4sISC7PzxGnMaDyeGhfKaLZixYWcNXfvZ80iZioLcNClC3KagjLS+xlZo2m199h6BGvWHGtuO9bUa7N0e/t0O5Y1ttM1ZTRKGT+MNaHvWGNFKQW2Q7lQKD4Ba5ypOWWNeELWiJ8baz4jxo1AGZE3l9mHLFyzXZzR+/AqE88w43+OSlREYYv5MMZZiXYJgMEGa3zyanXb+eCse2P774UJ7E1VGt9kLPZvUI+beEmMkQF+sQgqwKQKjcKLPEQUEVTLxPtNkpak4IcIXyALESiDGU/QcYJXKBDv7kIUUKg3iFttjK8IKxV0pug3W8iwhJkM+daFVbpv3+R7P/wep88ucPHpy/zw+9/HaBjHMew0WTl5klJ9hk63xXd//NfsNbf51W/+Ou+/8wbvfvA2e+tbtHabrJ49jkCyeuI8v/Vbv88f/dH/heG4R32mQWMG4qGi0+qQa6EACN9QrhWZn19kdnYBz+krRFFEY3eHWzdv0myOHiCODctbwHiIQ3NU7L/bdX40XGyAbm+MkE2Or54Az/DsM59jZ3tArVrB9+0DiuMxlUoJ3xP4nocyGeVSiWq1ymA0YjSMrbGiNVmack+W2Y9jlksglEGMenDtDUab1xGnn6P07C9hooLrenGhWXKJe7feTP6+xKFQcf6ZA+8DbTBKoY3TsTZWE2Nnd5tet4vnB8TjEbt7O/T6XU6fvEyxUGFzvMErr/2AV1/7CYVCmcGoz8LcAi88+wUKhTKFqGTHXvCgXWiMa680Vro8h7rn+YRhAa0y25ygNb7nEXgehCFJ5qCJVUMzU6/Y+rrWK1JoG/l2+W/luhdchAcbRdBC2+/L898ueGENBDWF9S/GZVkj72ONBEys6F25xsTnPtaIh7NG5qyRH8kaozSeyVjs36QR7+ElMTwJa/Y/gjV7uxD6FOozh1hTnbLGi0ro8YBvX1yl99ZN/vaH3+X0uQWeeuZpfvC971nWJDFmp8mxh7Dm177567yXs+beFq29w6y5wG//9u/zh3/4fz5gTQMmI0V3v/MAa0rVIgsLC8zMLuJLD2MUUVSgubfDzRufjDVCgnwUa0ST48dPYozhuWc/z872kFq1guc6LpPJUdZonVIulqhUKzAUDAfxdO9nScI97xBrtGPN1SdlDT8za+LJiJ29bXqdjmXNZMzu3ja93iHWTDZ55dXv88rrr1AslBkM+8zPzfPCs1+gWKhQjIrTYaaPZI3mgDUGPM+2oKv7WeMfsMZmZ+U0hf9ZYM1nwrjRBjIMfr4QDBin2SGQqOGE9gdXEJUqQaWMrFQgiKZvXLhcpjByKqA0radwoXjrtFvJb60VWiWIzGch3mAu7eAZgdbSRntqZbxMWeBMYuLBAJ0keGGIF0So0ZC07xPWayAEshAg0xiVpYg0JKo1GLf2CMKIoFYhGfQRZBRn6wz6A9595x7PP38cmWX8xlOr3PrRNdavXWFlZZk4E+z3+hQ9ge/B9vodjkmJV4yQMuTm3Zv82z/9t/zmt3+T2dk5Xnr5Jfb2mlx54wO6zR5ZGjO/eIxvf/vX+ZM/+Z8QeCwsLLH09BJXrnzA7vYu0hfUymWq1TqVSgPfD8hSDzy78AbDfcbxxE5j9wWog43gB4JCFFhDSFvlzzRLSdwUZVsyaHeFS4hMeWWl2CNkEPK1r3wTTxYol2Ew7LIwX7Ut/KQIz2o1DAcDW2cThEhfEgQFet2h9d2MRGUTOqOUtg/zgcDzfYw2+IFAjHuo915iNOxS+PJvQVR2a0I678LVTthXhtZu1otN7k5zuwKbL7apG6uUmc/DMUCv22OnuY3WNjDd7XfZ2L7LZDzh1Imn6fa63Lx1nVs3b9Ju91DaqnM+ffkSz17+PFFUJIxsLdFDL2OcF5ORt1Nq116pVIIBvLwSQeThXuW8ND2VO7dqHAf6Icboacg3F1MzxkLGGlLaep7SILXAGFvlIJBok2K0A6T4xSoozllTgClr+KSsMcqxBvL6AIF8KGtk5rOYbDKftqesMShk/SNYMx6S9nzCxsNZU6g2GLXsaIUD1qQUZ+sM+wPeyVmTZvzGU2vc+tFV7l75kOVHscaTyEKEJwNu3r3J//Cn/wO/+e3fPmBN8zBrEuYXV/jVX/0O//7f/Y8I37FmaYmrVz5kZ3tnyppKtUa1MoPvB6jUQ3g2DTP8CNZEkW8NyJw1aUqiXBpjauU8hDUapGenVX/9q4dZ02F5vuIK+hOEB1mqLGuiCD+M7FDKoGinngNCS1QW0xklR1iDNnhHWNNxrKk8lDX245OxBqDb67Ld3DlgTa/L5tY64/GIkyeeptvvceshrLl86Smeufx5alGBMLKinw+7coNc56nqKWsUmX4Ia8yDrMlnSH181tjb9WjWCNcK/gtYUAwWHLZlUGDtdAFkSCRZW7H/3geEtQbVM2fxwwJa2xk9uCgPErIsQat8wq8gN/WFEBhl860CjTAZC6NNGvG2/T3SR4QBBkPWH9lD0g+RhQi/UkFnCdlghAydcdPtIf0Qv1KxDyUMbOV3PKFYLtPd3CbNMiI/QscZMvARRtNYmGeucBc1HEFUINCC//ILp/jppEVSXmOmXqVWnaXfalI2KeM0Y/POLcqNBpVag2q9zmg44N/88R/xpRe/ym/86j/glZ/8kPeufcDND6+zs7nDxWefYvXUcX7nt3+HzZ1tkiRmPBlTm2lQrpYJw4iV5eMUogpxnDEaT2juNxlOEtJ0wmQyYDTuEU9SlDZWBt1AGApqjSK1WoNy2RZ4a6PIEs14MsFoRRgUwUCz1aLbG6KV3Zm+53Ppqaf4lW/9OmdOnSSeeOxs7+MHGegRtdocgS+JCiVq1SFxnDKOJ1SKZacpYyhGJdp7o2lrpBAZ9VoNTzVRqU0/IQwmy9BZhh8EeNtX4eoC8qmvoqMiCDvnxrka9rQT2nnjbu0ZhyJjrPdp3TCE9NFKTddTOh6z09yh2+sjPY/+qMd+a4/hYECpWKdQqDEcDtjfb5GpXB3Yif3tN9ne3kJlCZPxiEf1fRhjC+Hzg5T8AMV5eRrXxWPF/rTLWecTm9FWLC7P8Wtt3LBLl8c21ss0Kp+4K22I3L1/WwgJnhegjSZTqd2PQjmxLRzQfrEu4eo9LGTzbpaPy5r0KGvydSKEnfd1iDXzo03q8dbDWWMMvvcY1vR6yCBnjUCG4ZQ1hXKFTs6a4Chr6ovzzEV3yYYj/EIBX8N/+YXTvB23SEsnmKlXqVZnGRxizcbtW1QaDaq1GSr1OqPRkH/zx3/Ilz+KNX//d9jc3iJJE8eaOsVqiSgMWVo6TjGqMIkz4jhmr2lZk6UTxh/JmjqlcsX69jlrxmO01kRBAcDWq/WG03Xoex5PXbzEt771a5w5fWrKmiBQGDWiXlsj8D2iQpFadWRZM5lQKVYwytZ5FAslOodZQ0qjVsfL9qasMQ+w5hpcfQ156avo8EHWiJ+BNTZKs0u325uyptXaZTAYUCrUKBZqjIYDmvv7lgOHWdPaZ2d7C6Msax6V/DNAmilrsBxhjRXVezxrjNO2eQLW6Fyv5jBrmBpNnxZrPhPGjUvxIzHu5giM8VxqygpmSXyGG0P23nsLWSniFwqIwE5LlXjTh6CzlCyZWDCbHFp6mkM0xj6EmbTPHE1C38MLI/AESX8CSFSa2ZChFmQqJSgLfOGRRQFKJwjhIVJDst9Bej4yCJBhhIwnqCTFJJLa3By9vSYzix5RvY7JUtJeB79U4uwXLjPqtHjv2j02OvDtr5zgogx4Lx5RLRSYWblI7VmP7puvMhj12ZOCYa9Lr9NCSo+wWKQ6s8if/dWf8O6xU3znm7/J0tIaP/zx37LX3OMn32+xdP0YF599movnn6FSrpCpCa+/9RMmccyv/9rv8I1f+lXCqMxo3OeNN17jB9/7a65cvUaWGrrdIZ1ujzROyYeWCQFBEBAGZQqFCqVijSCQpCpBKUOpkiKlpBiViaKQaqPE9es36fUSMFZ1NPRDhIb9vTapCun1uyiVcO7cCXxP4vkexUKRaqXO3TvrZElCuVSj17fzm+KhJkkSVGZI45h03MPLSlQCz80FCtDCphpUliE9QSAM4tbrEA/gmW9hynWbUwaXExduhdhNI6StqRAyr8tyFf8EKJFOc+laK3r9Lju7O66FUzHodhiNhoRhiePHz1CvNrhx+zqDYR+j1VTzwpOC5v4+f/v9v2Jhfo5799YZjWK8Q4MFj+wPo51S6zQajzA23aS0bbM1yky7CZQ5mNdiIwfKRljyVJXBwc+gTep2nnD7w+3IvC7AhYTBjt/wPB8lNDIzblbg49txP2vXo1gzvQNC/GysMZY13iHWNNIB8zSJHsUaozHq47AmRMbjA9bMz9Hd22N20SOq1zAqs6wplzj7omXN+1fvca+TsybkvcSxZtmypvPGqwzHfXYfwZr/31/9Ce8cO8V3vvlbLC2v8YMf/Q3Nw6x57mkuXnyWSsmx5s2fMI4n/Pqv/QN++Ru/RhhVGI37vP7Gq/zge3/D1StXSTPodYe0p6w5eEB2YGSZKKpSfoA1ZaQUjjUR1Zky168dZo0kCkIE8ihrdML5I6wpUa3UWb97jyyNKZdq9AddpOcdZU0Sk0x6yKxE+VGskYJA6IewRn4qrLEznLbRyiCFYtDtMhwNba3N8dOWNXeuMxz00To7yprmPt/9/l+xsDDPvXt3GT6GNTiR0Zw1NgopHskaPWWNenLWmL8b1nwmjBvIg4sC7RRKDLYQVyKQxnY4SOXTu9kknL1CVG7gBSHaC6xihVBgJApI0hhP+C6UbxeMFJIMA0ZRJWZ1sEcYCqQf2Zx4kuH5gRXH8gResYRRGf7Y5UY9H68QoJME4xlIMkyWkLQDorlZm38vVjF6gDGaQr3G7vptymmVYqmMniiEFCTtLoWZWbrtLjfWNaPM0N5rsrxyjNtvv8SFlQYvX7vOC89/jdO/8ut03/wxtb0drmoNno/KFPFwSJZuMLe0Rru/zx//u3/DF57/Mr/8K7/Ju++9yY3rV1m/dYe97R1OnrvAuUuXOH3uHP/4H/1zSpUKTz/9PGGhzGSSkirD8y98hdOnL3LjxhV+8L2/4Uc/+i6z9XkuX36G8WTMvXvrDIcDSqWCnS/il9AmIE40iNB2YcmCbfv0fIzxmGkssjA/pN+/hzGGNM3odjtsbWygl32G4w7N3R1mZ0tUq7Ok6YQ0sZNls1SxtbFFwY/wPZ/1e+t0WkPSWJCpDJVmDAYtVDpAJzHSP2hBlAiUsoMHfTfd2dMpYu8m8dspXP5lZGMRIQObshS4tWbXnPWshKvI0FMY2VCttOFiQKUZO3ubtDstpBB0B2063Q5oQaVUY35+gXKliBEZURQRhBFSxhQLEYvzy3QHHa7fvM31G7dRWlMuRZw8vkaz1WJntz3dFwY7JdcoG67Vwt6DLEtdd4WtO/ACn0xZ4SyJ7dpJVUaWuTZKB5B8lo8lrlU/tZBT9v1ryBtuM5cPB4kyKQgP6Xao7/kopW1qRTwipfYZvWzU6z7WYLVvPhFrpGONPsoaYxQVYtYGe4QhSL9gWZPmrAkewhoDnsQrhE/OmlqN3bu3SdLaUda0LGt6HcuaQWpo7e6xcmyVW2/9kAsrDX587Rqfe+HrnPnWr9N948fUmpY1wvPJDrNmeY1Wf58//nf/mi88/xX+3q/8Fu++9ybXr1+ZsubU+YucvfQUp8+e4x//7j+nVK7w9DNHWfPCC1/lzOmnuH7jQ37w3b/hxz/aZ6Y2x+Wnn2E8dqwZDSgXiwRRkcAvTlkjctZ4BTwpkZ5nWVNfZPE+1nS6bcuapROMJh32dnaYmS1RrR1mTUqWarY2toi8AoEfsH7v3gOsGfbbZKlNFx5hjTjEGt92QR2wJoOnfxlZX/gYrBFHWJPPRlTZAWs8IegNOnS67UOsWbSsQRFGEUFgWVOIIpYca67dvM01x5pSMeLU8VWa7fZR1hjjhuPKKWvSTJFl2ZQ1SIN/iDViyhr1c2dNLoT4pNdnxrixoStD3s/PNHdtZ5REQhALyWQsaX9wm0JjHr9cIogKaCExZHieD5mHFhnCsyqJRhjbCu4JZAYBhmOjXYzqIoqzaJVh0gQjQEqPbDhCBh6ozAoCloqoyQj6MQhJUCxjaoq42UIKn6zXQwQ+QbWEkBKvWEAlKQJDqV6nu7tH8WQZv1pGNWPQGdlwwN5GGx0HHKvFVMslTK/FL51ZpNYfc3NH8+7bL/PiV75N+flvMHn7h6zsbbGeKethShu+bO1sUK7WWVhc5q13XiXJNM8+8xWef3GJG1ffprm/y5V332Lzzh12nrnMN771TVbXVhn0OojRGCF9N4E1IwhDnn7mCywurHLu7Hm63QGlYonhcMDnXvgys/PzeL5h495dNja3iOOEdrfDaDAkjscIoQn8CITED0IKUWiNH6xooMCqXt7buMfs3CrDYZeZWZ+FxZJ7+nZTj4Yj2q0e9zbWOXfaznbZ22mSTiDNMtfamNDdX2d2PqIiMkLpCjp9H6NijFZI4xRltW3TlYDcvIrq7OJf/Crm1HOYMGIqFJW3GObdQibXm1DTv2MyuzGNodfrsL1jJ7NjNO12k/F4TLFQYXZugVMnz7KyfAwReNTri2xs3uH69fdRmebE6lm6gzZvvv0KbTd4cPXYMl/5wpe5fvsmzf1X3Ga2vzZNU5TObNtnZn93f9RHaTtPpliqWhVQbUhiq41jjKA/GNDptgkLEYEfWq9H2K4dq/8jrGVE5tIzzi8yeSjeOFjZHHw+JHA6qdl1RotfMOPGANPRhh/JmlufgDUSmUGI4dhoD5N1EPOz1qtNB/exRj7Imt4E5MdkTaNBZ3eP4okyQc4alaGGA/Y2OijHmlqlhO61+MaZJer9ETd3DO+89TJf/Mq3qXzuG8Rv/pCV5lHWoA2t7Zw1K7z17iskqeG5Z77MCy8uceOKZc2H77zJxu3b7D77NN/4lQPWyNEY7mPNM8+8yPLiGufPXaDT7VMulhkOB3z+c19hZn4OzzPcc6xJk5R2p8NoeJg1IQjPsqYQEqeONa74OEkm3Lu3zuzsMQaDLo0Zj8WF+1kzpNPucW/jLmdOnsMIye7O3n2sSensrzMzF1ImJXLdTkdZAzzAmiuo7g7+hSdhDQ9lDa57qN/rsr2zRZwkgKHVOcSa2XlOnTzDykrOmgXubdzm+vUP0Jni+OpZesPOEdYcO7bEl7/wFW7cPcoacKxR2bTFvNfrMBgesKZUqt3HGg/uZ03wabLG3VvXP/SLa9zgHYiu2cYvPGGLmCS2CsfHI95P2LvyAdHcPMVKFVkUKJPZglTPkKkEI3wXDtNWClzan9lQA/z2BqZcRCcxJvVseDlL8P2ANI7xfIkfRvjFIjLw8YoliBQmM6AFXqEEXpcsjvHDgLTTxQsDvEJoRzAARgtKtQqbW1skaUygAgC8YhGVpASRx8nlhGqoKIYRhox+c5un55b5p+dr/Ncv3eS1H/4FJy98Ebl4hqoXMrO9wX4yQXge9XKZLMvo7O/SaTcJohLa83j5lf9AvbHE2rFzzMytsL11i96gxRuvvMSNq+/x+Re/zBe//jWWV1YxQuL5EX5UoVCMGPZH7GxtIGXA4uIig8EQpRXziwucPXeeY2trSM9Dq4xOu8WNG9e4euV9bt68hkozMpXR6w/AKJJ4QpomlEsFIl8yGk+YjIcM+j2kTJhtGKIwcp08IKTA9wXxKOPDD99nPB5z+uR5er0B7daASZzYmSZpwv7+BuNhk9mLz3M80BSCECFAxRNrBGQZhdAqPNo6CZvlDnwP1d3F+/D76ME+5vI3MFHFLkCRGy82tWCVSTXCWI9KTMOwmjSZsLO3RbO1j9GG/qBPt9cFPIrFIhcvXOLUqbPUG7OUKg3mZo9x7uxFzpw8y8bmOuVShcagRqezg44/QHoel86f5/jxE+x320gprHak2xnKaBfVhNFkxH67RbfbtYV2VssepW00xx4gVll3d79JqVSkVK7QqDdcjaBnZ90oph6oDRObaT5b56qpWmKMOlQYaD8ONq2xoBO/SN1SD7LGCeY/gjXpJ2CNwCCpqwFB+55lTRpjMg+tHGu8gDRJ8DzxWNb4hRKx1yWNY8LHsaZaprO5SZLFBDoAY1vIVZLih5ITS441QYQRin5za8qa/7tjzakLX0QsnaHqhzS2N2g51jQqZZRStHPWFEpo6fHjV/4DjcYSq6vnmZlfYXvzFr3BPq//5IfcuPIun//iV/ji17/GUs4aLyQoVCgWI4YDxxrPzlLLWTO3sMC5c+c5tnoc6VvWtFstbty4yrUr73PjEGv6OWsmE9LkUaxJHWsKzoA4zBrFhx++z3A05szJ8/T7Q9qtvmONJksTWq0NxsM9zl58nhPhUdZonZE51gjt9HimrPFRnU+DNTE7e1vs7VvWDAZ9ut0OGI9CociFC5c4feos9Zk5ylPWXODsqXNsbN6lXKowGtTpdHZR8ftT1pw4cYJWv3OUNcayRgvHmvGI/U6LTrczZY3gQdZkn1HWfCaMm1w/URlItNWeMBik0E7Ayfb9G2FbxDIl2L/dpLJyjdrcnC2yC0KbIzSAOJCQtwecnUsVeoblwT4ii4n8MjrTCIkt4OtNyMwAlaaYVOMVfKJ6g6AU4ZVKyEIIZoIajVGjmLBcJRUjVDJBmpS0P0DIOjIQTuxLE1VqeFGB4V6HxuISUaPOZL+FMSmnz69y/Nwx2js7DAdd5hYXGQ76TFq7fGVpGfn8Av/vtzeYtN6juvAUYukyZ5dWSd9+ndZwQDPeRwZ2GJtWmrjfp1CvMxqPiJM73Lt7k3pjkWOLqzQai7Tb2ww7Hb7/V3/JG6+8zKlzZ7nw9LOcOH2WWq1GEBVotbrs7W0ghEeWWgg3ZmZYXTvF/PwCxWLJbgA/ZG4holSqUKvWOXvmKWZmZpmZmyfLEm7fus763du0WhfZ3dni9q2rKLVLGPjMzpYYjrbxPR9BAT8QSM8QRUWyNOG9997lxq3rzFZmKJdq3L69Tr83sDp/KmEw6NDcvE61UWS5UWWVNgKNUpkFvVIIY3O2UtpC2bwjSkqsNzvu4997m0QI5NPfRPiRq8KXbpibdhUoTizQHHQ2CGMYDUfs7O4SxzFpmtHq7KFURqM6w7kz5zl/9gK1ahWjFZ5nqFRCfL9Bmi4xiXuMhmMCX1Kv16k2qvieZGV5lUq5ih8EB54dgMtZa9diORqN6fQ7jCcj6wGJiMl4bEUBJ1YUUCmrITEcjtjd3WNlcZVKpY7vO0Vd7bvpxspOAddWXdXkESty0azcu3JAMjZ0LQDjtDC0carivyDX/azxhO20CYTGdsg6jREH0Y/FGo6yZmXYepA1aXqINRkmU3jRk7EmewxrClPWtGksLhPNONZoy5q1s8fo7O4wHHaZW1x6gDV//NYG49Z7VBcuIZYuc25plQ9/+jqtwYOsmfT6FOuNKWvW12/SaCyysrhKY2aRdmubfqfD9/7jf+D1n/yYU+fPcfHpZzlx+gzVao2gUKTd6rK7u4lAkmUZWZZQb8ywdvwUc/OLFEsHrJlfjCiXKzRqM5w9e4nGzAwzc/OoNOGWY83+/gX2dre4c/saSu0S+B4zM0WGo62jrJEHrHn//be5fvMaM+UG5XKd27fW6fUGaA06ixkMuuxtXKNaL7DcqLJ2H2u00ges8Wyh7AFrjGXN6GdjzXg4ZGd3hziOyTI1ZU29OsO5M+e4cPYCtVoVYw6zZmbKmvFwjO971Ot1ao0qnpQcW16lUq7hB8ERMVaD1VPN29FHozHd3lHWjB9gjcJoGA5H7HzGWPOZMG5cExzG+k9Ti836UHk7WjC1+gyCZAydazeZXVnBLxcpRKHL/bucprEzOQQSzw/xvZhFMaE27hJUa1aVV2snDmV/czwa40tBFseko8xWzscFgjQj0BVkFCCCGL9UsNXsWULSj/GlT9zcBekRVKwasRDgeR6FUoVxb0hlPiYUtr1TeIK416E4v0h44iTN9XWa27tUKhX293cY7e/ytfMnWZ2p8Fo74f3hDYLKGcZmkWjuGNn4JipOKAJ4TuQJGHe7zK2uEicxg6TPnbvX2Ll7k6W5RZbXzjC/uMqgu8Ng2OeDd97i2ofvM7+0xKmzT3H89BmEJxAixmhDmmSgMwpRmSjw8aStM1Ha5mB73Q731tfpdzusnjjJ8vIqUbGENnDs2HGSLyUkk4T33nmNP/+zf8vJ4ys0ZucoFct2HovxbIRBp0CA53m8+dq7vPHGG2SxZu3iOZr7fTKlrGx3ljEeDti99T7+oMP8xWco97YxfoKSFYRxrYgqQXh2sKnnO9VQbaYiWYHnYbIMoRT62mvEfonCxS9bETWdurCodjlxG+I2U3EpjVGafr9Hp9dFK0Wv12QyHlGMKpw+dZqnLz7D4vwiUtp1WiwU8XwfpTI8N2V4Mh4i8SgXS5w+fZZatcr84ix+4FlxsaO2jQ0bO8XTvFvB83wmcYxAoKRHmqZkqc17q7wDAUl/MKLTbTE7O4P0CkjjYzBTqIL1OI3wEDKzHlo+QNMpihqTWdEtt1cNtgtL6fRAt+sX5noy1mhzUBthWXODmcOscV8v3EGkMzvlPWfNgoypjToE1apjjXKs0VPWeFKgJjHpMMMo0HH0AGu8UoSUAVo9njXS8yiWK4x7I8saeZQ1pflFoilrdqhUKjTvY82r7YQPhtcIqmcZ60Wi2WNko0expnPAml6f23eusX3Hseb4GRaWVul3dhiM+nzw0ze59sF7ljXnnuLEqTM2CiAmR1hTjMpEoY9/mDUqo9/psH5vnX6nw+qJEywtr1HIWbN6giRNSOOUd3/6qmXN2gqNOcsacYQ1CYgA3/d56/U3eeON18hizfELD7JmMhqye/M9vH6b+QvPUOntHGJNrpKeIKT3aNb4HkZlCO1Y45WInvr4rGl3LWu63Sbj8dCy5uQpnr74LIsLi9aJu481vo81jsYjJJJyscjpU2epVissLM4ShBJPHvWjwLZq22iSZY1+ItbYHTQYDD8F1qhph9XPyprPiHHj8qAIMhPgofGEzfmCQBuPzOSFV3l9jsdoJ2b/+jWK80uUK3ULLZEPLAO0toVnGCSGucEOfhgQCB+VaKSJwZdoUoJyCRUn+J6PyRSZzkiHfUyW2p8nBQFlvEIFxRg1SJBC4gvfWpaJItnbQYhFvKiA9OxgtagY0trbQw1jVEnil4tkiUdYh6zdwZ+bY3Z5mZ3bdxj2R9QqNbq9LoEfcHp5hbnaiLnrt/mL927RjBZZPfYMleIcd+99wGjQJTAGpG37NQLaW1to4dEbJqRKU5GafnOTQXubmdkFFlbPsLy4yHjcYTjssn1vnZ2NTV770Q+ozS6wduoMC8vLhFGBQslHq5iNux/S2d+gVK4SRkUMgt3tHVqtfeqNWcrFIlEUAinpZESaxIzHA3q9NsIMeeH55+l0Ogh8fN/mTLVK8T2BB6STlNdfeY3XXn+TwCvw+Re+yPzsIpPJ2HoySjMe9tm7d4WsucmJ5Vka7RaTjS3uzAQEZy5SkD5BECCkN53MLHBKmfmsEuPEIQ3EwzFpHNN7+c8QURX/xAVy8Sirbm3bH/NBb8J+O1pZTYzJeEIcT+gPRkgTcGL1OE9fuMzK8gqB76G1xvNseiIdx7RbTba37rKxcYfN7U1Cv0i5VOQrn/syx08cZ6YxQxJn+J6HFEcn32rnHUnpUS5XOXbsDPEkodncYdDvksQTJvGELEtJVUo+tTgILFzSNCPLjBXRMnl7qRsma/KiRpgOJzS2sBHXvaCVCxO7GgGNHfgnjHA/8++GEp/O9RjWGIHmUaxJaF2/SmluiXK5bufaCR7Jmvm+Y40MHGuSB1kjfQjsAZ4Oe5gsejRr8O5jzTaIJfzDrClE7O/uoobzqJId0cCUNW38ufkjrKk/gjX/4d3bB6wpzXF33bEGYyNV97NmlJBmj2DN0iLj0X2seemH1OYWWDt5hoXlpQPW6JiNOx/SaTrWFIoYI9nb3ma/tU+tMUu5WKKQsyYekSaJZU3XseaF5+m0D7PGoFWG79ny13SS8sarr/Pqa2/gy4jPP/8i83NLh1hjGI967K1ftaxZmqXR6TDZ3DzKmjCwnWxSPJo1WNYkwzHpxLKmXvi4rBkymUysETkYIo3P8WNrPH3xaY6tLBP4/kNYs8/W5jobm7enrCkVi3z5c1/mxMnjNOozpGlmp7VLeWRr2CikOWDNymniOH0sa0TOGsMTsQYexxr9qbHmM2Lc5N1StqjYkwZPGHxpe/zzMehmihv79WkiaF3foLZ6h0pjFs8PbKslEo1CCIEvLaSCtE+UTSiVSqg4dXlT+3BUHCMDje8HtvPB9zE6QqUx2WhsdSw8HylDhB/gRQWywRAReERzM6hJTJJlmMEQGXRhVkAUYJSh2mgQFYp4aFQ2RoQV28rp2UIsM0kIy2VmVpbZu3sXzy9QCgoMWvt4vk9jbpFvXL7AbHSHP7m6zY3bXZZWLnHpwtfYa99m8951BpOxlTwSAj+NGWaGobHh9R6CJV9SkVDrt/CudEhLFUxjiWplicQkDAddet0ezb0O169eYXZukdpMg5W1U6yuHmd2boY0y+j12mTpLhpNmqRIGdNu3+X9d/ep1RuEYQHfk7bV0vOR2lAslikWa6SJQbghjlkak+mEsFBhNBrz1ps/Zntnn9PHn2JlcY0wjNAaJ9SX0O+36dz9ENPaYygM0UyN8F6TkdEkdWG1jQJBomMCz7Pfi0F4tuJVqxSRGozKQNuOgP120+bVgdF7L1FbPoHxrTFgpcMz8om2eQGi0YZMpYyGA/qDPsPhGJVmLC0s8OzFZzm5doJiMbLVMQZ0Mma/0+LG7VvcvXeHrc0Nrt94n3sb60xiw9nTp/ni5z7HybVTRIWQ3b0d23EhfSAB7GbOha+klJSLVcqlGZLUDsDrtJuMxkMG/T5xkhAnMb4fUK3UWF5cpFwsMTMza8PmrngWQOvMHuDaxjGsxDsokSuTCoTwp7DWeRum64RQrvjxQGH1F+d6JGukcCKgj2LNJrVjd6jMzOIFD7ImV34N0gFRNj7EGvEAazw/wPN8dOZjwpw1E4TwHsEaeYg1CjMYIYMu4hBrKo06YSHCA1Q2xg+rljV+zpqYqFxmZmWFvbt3HsKaJX758gXmojv8+6vb3Jyy5uvstW9NWWOwXD7MGsVR1lSPsGb5PtZ0ae61uX7lQ8eaGY6tnWR17QQzsw2yTFnW7B9lTcexpl5vEDjWeJ7Ed6wpFcsUCzXS0gFrVJpMWTMZT3j5Rz9mc7vJ6bWnWFl6kDWDQYf23Q8x+7uWNbOHWFM7xBr1EazRjjXasSZzrHn3YaxRIGRefHGENcNRn0G/z2gwIkszFucXePapZzm1eoJisXCENa1Omxt3bnF3/Tabm5tcv/EB9+7ddaw5xZdeeOEQa3bhftaQ69i40RTFKqXSDKljTdexpp+zJo3xvZBqpcrywgKlUpmZmZmPZI1AIv4OWPMZMW5y29fNlELhS4MnZB6YmlqB+bg0BUwM0Fa0P7xKfW6RqOjCtFPdAHsgCK2pxT2qtTJBECEyK7BlABlESAJUmuAFEVJCQAGvEKEmAVkSo+KEtDdwITGNXyriV8pMmh08hO1Q831k4JN0mojQB1OxC08YW/dRKqAnE7I4JohKGGPwCyU7J0ZDeWaWZDyiu7dHtVTB1xnDdguBoDS/yAsXz7MyW+d7V+7w57deQ5SXmVs4R+2pY+y2bnD93h2GaYoEUiC/WxNt2NeGWEoCIVgoeNTMmMH+OrqzgSqUKJQXqCzMMErGdHv7tPf3ae7vcvf2bWqlWar1OrXZKovHjjEzM0OpXMILPAqFirXEhcdolJGlCVEUIAoSz5cID4KgQFQoECUxaTIhjVOG4wEq0exur9Pt9Aj9GpcvnCBwxXq4+pI4Tuk0N0i2rhOO+txVmmMLNYrdPpN+goyEzRGrDBmESAyZypBSkmUKqW0+3CjbengwtiGh223hCY/UaLLrbxOe+zzFM5fdanOg0tk0iWErEe3/0zSm095nNB5TKhZ55sIlzp48TaVcdEF7+12TyZCtzVvcvXWNXq9PPB6ispQsSen3Eu6ub7C3v8NkcoYg8NCZbYf0fQ8pBPkQwTSzgzazNLEQICGNY4aDLoPhhFanzfb2XdrtFuNxiu8FPPfMC1w+d5mFpSXKpSKe7znvx+a7Tb7tEORqodq1vuP5kKT2HuRhcwS25E04QS5xUCT4C1VQ/CSsyYCAo6wxmLam9eEV6vMHrOEQazwpQWtqcfehrBFBRICPSlOrui0FQSGyrBkHZOkTssbzjrIGm5a1rDGHWDMhKJQw6QFr0FCemSEZD+nu7lEt38+aJceaGt+9cpe/uPUaorLM3Lxlzc7+DW5sPBlrFqesuYvqSFSxRKF0wJpOr0m7uc/e/i53b9+iVp6lVmtQm6uyeGyFmcYspXIJeR9rhqOM0LGmUPDA9xCewQ+LRIUChSS2Q2vjlNG4T5Zodrfv0e10CTzLmvAIa2znT3t/k2TzGtFowF2lWJ6vUewdYo22rBGHWSOegDWdQ6y58Rbhuc9ROPu0PR+mrNGHWAMIq3CdJgmddovhZESxUOSZi5c4d+I0lcph1kA8GbC1dZO7N6/R7Q2IxwNr2DnW3Lm7yW5rh7OToWWNcs6/dz9rFGlywBpIyOKY4aBHfzih1emws32HVrvNeGybcJ57+gUun7vkWFM6yhpctOURrBGej0pSIO+Wfjhr8rqcj8Oaz4RxI7DCRJmTQbfdCsYWgCIO5lYAuemWuqmjgfbo39mnNf8uUbVONVhFFmxlvBACaQzVbMRqMaLkLeIJSViog2vZNFphBYWUtSZVhlEZOotBadRkhIoTjBQYGaBTjc4MXqGEX5yQtgb4xQgZ+mS+h+4p0k4b6VuxLSF9pO8hAg8pQtLeEM/3kU7QThbtNF+vXKY6O08cjxl0h1QKBZJ0TDzoE0QFovosx0+c4B81GpxfvMuffrDNzZt7FGZOs7RwgUKhwb3tG7QGfUyaWUVmDL6AJFG0U0VPZmwqxaIvWRSKeS1ZkAkq7jAQId2wzvzCcXSxwige0R90SOKYvf0dmvt73L5xGz8ICQsRpUKBSr1OuVKhWCoShhFRoUAYBQS+h/QERmsGwyGDwZA0TkjimEmcEI9TtAJBRK2yiMAn8H1sJb5mkkyYjLqMtm9R6e5iJilXE4UXBSzUq6iNNqnRlDxDpVxAYEiSEZIKnrSRI2EMQmUI3wPpudROZiMx7iNLUmTok3TbjN7+W4qrp5BhkbxNcXrc6XyarR1sJ4yg29vHGHjh8hc5f+Y81ao9YLLUhnWzLKXf6zMe2oGAYRhSKZWZn5tDqYyZmZhisUQcT2i1mmQqo9sbMIkn+MJNEHaHZqffY2dvl1K5gh/4YKDVabLfamKUBO0x6A/Y3ekwmtjXPje7zovPf45ioQBSWv0KndrdNvV+NCYXF5vKMIDWKdpoq4Krna6HAxI6LwLM21Z/sfJSH82afHwIPIw1gzst9uffIarWqAZryEIBdD4c0FA7zBr5MVhTzVkTY6R0rFGHWBOTtvoHrJn46F6PtNN6CGv8j8eaYoEkuZ81J/ndxgwX7mPN8sIFisUG97Zu0Br0rEH+GNYsOdbMaUlDJqhJzpoG8wsnjrAmjmN297fZ29/l1vVbjjUFSsWISq1OpVKhUCoSRRFRVCAoWNZ40t5Ty5oRSRyTTO5jjQkeYI2esqbHcPsm1cOsCQMWG4dYI4+yxnOs8YKPYI02gCaLc9Z0GL79txTXTiOegDUS6PT20drw/AsvcuH0eaq1qq0xTDM7VduxZjSwo2nCMDjEmnTKmuQQa3q9PvHE1nAdZk2312OnuUupUrHNDRha7Sat1p5jjaTfH7C70z5gzcxdXnzucxQLxYewRjin0E5WBw6GhRo7NNhghRAfyhrxyVnzmTBucklziTNIBDZ/LVze26l+5lONVZ6LA6SQmInVvgnrDYJiRHF+weam0dTjMcd7GxSSMUhQbsEICcazb19rBVk2hQ9S4gkPLSReVEUWJSL08cIQGUTW4lcav1hGRWO0UW7ItIGwgI7HpJ0OQb2BLBaRAtJRTFiMIFNkwyFBSSA8gYeP9jLUeEBQrlKfm2NnMKY/jKnViqhMkQ77eGGEFxYpV6q8+MxTnFqe4+Urd/gP165xr32XyswpLpz8Mv3JDjt7d2n3OiSZcnlNazhnytAbp/SlYF0Kap5kKZEseZL5cEIYjxkNdlGNGcLSDHOLS0S1GbTwaLdatDst4mTCsJ8w7PVpNps2ZSd9q+0hrPInwj4XIYT9N+mDAE/aHLUnfBvZwbOHqtBOVyFDpzGqtUm9u8nMaMj1seJOqkmE4OJinfFeh41JwolQslDVeCg8Nw1ZKTtl2w7u1Bb00npbWmWg7DoyGfjCMEkHFAszRKUipWETvXGN4MxzqPygx0Un3BrFhWvD0CPwJWuLJzh34gylQoHBsIfKMpIsJUsz4jRmOJ4wHI0ohAGB9Ig8j2Ih4tjCKlJKgjCkWinT63UZTUa02m2G/RGeF+JJ3xZAAs29Ju9/8D5JmlFvzBFFRYbDGLRHsVAgScuUSmXCSDKJFZmGrZ09bty5QVQoUiwXAYFSmixLUEq7rgMxzX0jLGCF8KfqxgiN0sZBxcmf4+YpueSOMAeKq78Q10ewBqMQwn84a5CYWNL+8DZRY4agWKA4v4A+wppNio412u27j8ea+lHWSEAZx5rRIdZoCCPLmnaHoHGYNRPCUgGy3sNZMzrEmuGE/uBJWXP1gDWnnpw1dx/Kmi1Ggx10zpqlZcsapGVNe9/uoX7CsGf3wM/EGvEI1rQ3qXW2mBkNuDFW3H4Ia46HkvmattIk0jrMH80au75MZmcmHmZNebSPuneV8OxzqDzd8hDWCCkJQ5/AF6wunOD8ybOUikWGwx5ZlpFktiU7TmJGkwmj8cNYcwwpPYIwoFKuHGHNYDDEv481e829h7LGaI9iVCAplSmXKoRR8xBrmty4e4OoeMAarTVpalvqVT47Szq1ZqzYqpD+tOU9j17lNWy55s3RIcd5uuvJrs+EcSNcQM5Knytb4CdcIZKxbWF5/zswHQtkv9d+/7htaL53lWJjFj8q4JXLeEZTa2/B/hYqjMD3MCq1YUzhYURqw8ppAlleuY6d3ZLZEfEmU4gogixDxzHGG1nPNY4hlPi1MuOtPTysjoNXLZLoDDXsIXyPIJDIwEOlChkE+OUIPY7J0jFhsYLKNF5YIJsMUcMhhWqN2uwMm9fvUHGdGSZNUMMRJk6xkVnJfL3Btz9fpupf5W/v9nirc4Nu5y7LK09x7vQXGY632Nu7R6fbY5zajSiAzIBQhkQZxpmmk0luSmikHotSUtYphaSJFnts3brKQAaUG7OsnjzDictPUa7UybShudek3W0TxwlJkpJmic0xx1YyXkmFlLYi31gRCPANUltBRZUqEDG+EEg0XjKm1G9S7u8SxCPWR4p3xoqWMiQCLq/NM+N7qH7Cmh8wH2hQgigqYbRCaSgEFhQqjRm0m0gMUa0EQqLS1HqZngQNflBEZS3ScZ8g0ERyDrPxIfr4U4jAJ29TzEPXWmsLMQmzjRk+9+znKYdFhCfY2ttkEsckaUqSpahMkemUTGkm45gsTpgkse1iEB5+uYLvBfihhxQevUEfY6DVbjEaj6zg5KFCv9E4ZnNrm0q1ATqiWg/xRIFGfYEsTZFCsLJ0gjRNKRa7xElKGHps7WxTrdeZqc8ShD5KGSbxiMk4ZjAc0u/br/WEZ0XsJHh4TnJB2LVmfBdStsQRUjg9F7dzc0G/X5DrAdZwlDUqZw0HrAG7rnIp+klb0HzvCsXGDH5YwKs41nS2EM3NI6zx7mdNlkD6M7Bmew/PONbUiiSdDDXqIYL7WOP7R1lTqqAfypohm9fuUH4caxoNfvXzFWrBFf7mTo+3OtcPseZLDMeb7O3do93tMfkYrKnolOhhrDl1lpPPXKZUrk1Z0+q0ieOYJMnI1JOzRngCUoURMUHOmnRCqb9HubdHEA+551izrwwJcGltjpnQR20fsEZ8UtaYnDX7U9aEcg42r6BPXLqPNTZic5g1M/UGLzzzOcphybKmucUknpCkqe1acqxRSjN+KGuqU9Z40rIGoNVqMxqNEPIoa8ajZMoaoyNq97PGkywvHSdJE4qFDnGaEQTyQdZow2QyIp4k9AcD+v0uSZJNDVEhwROSPBFlL9/tUeP2m6sHFPnelR8LNZ8J48ZeNoTlCeyH9C0UdEJmQBlvatXoPJEncjsQjJEMNgbsv/cOhWqd6tpxqtmIYnsL0hTjBWiDVR8WPiZNwPMxKkEoazkKYdsqTZZZY0dZPQI9HNoq9iicqkpqT+AVivhRQNioMtnvUSiEAMhSEQA9HqGiAFmuouIhWhWRxRJoiHsjpPDtHJqwgPA8kuEAoQzV2XlKtSa9Xp+VtWPgpN3VZGh1NKIQESeUCxFfuHiKRN4m6nr8+O4eN+68RilqML94jpNrz3PsWI+9vXX2W22GcWonFbubpgzERpMKGKaGbQ8CISikigVPUhAGk2R0m1v0O9uu0CxkYXmZs+ef4vwLz+GHIXGcEScJBmPrQzJbMT8Zj1FKoZSV7xZ2QAjGZMh4hBi08UddwnGHMBmSZprtRHN9rNlMNbFNKbNcKXC6WiS72aQqQwIEYw0n5kvMVKvE/RaFYsWGdYXAx8eolHQ4JIgCZGTrJ7RReAas7Lm2G5sQ3/MIfY9kfwPVbSLnlsnnkNm15tIVQoAUzM7OcfH0RXr9Hs12k0mc2Km4yqYDtdYYDUmasN/aZ7/VYjjqk2bWW7czuiKKxRK1So1CoYTwJPE4JU1SPGH1OPLC19D3KIQRaM0k7uENNYVCyUYcQo9KtcTa6nFmZ2eZjGPidIAnA8qlKkZBHMdOJ8e46I2i1x9x9do17m1u2TkwthvVgmdquDhjQNj5btMQj3BOhXCRn/u6uz771yHWyKOsscZNPpPObXdz2MjJWTNk/713LWuCE1SzMaXW9sNZkyTg2zX5yViDTU3lrGk61ohPgTUzB6ypPIo1k5hSocDnL5wiEfezps784nlOHT/Emv02w+RnY80Hh1lz4SnOf/45giBiEqckSWoLjVPLmlQZ4vGITNnZRg9lzbCDP+oQjDpEyZDsEGs2DrFmqRJxpl4iu3HAmomGk3MlZqtV4n6bQrH8IGsGg4ezxtV2CSkta6Qk8j3Sh7LGPMiauTmeOvMUvX6fZrtJHCdkj2JNe5/WfotBzhohCfyQMAgpFUtUD7FmMklI04ewJvCsAKrSxHGP0VBTKJRtxCr0qVSKljUzs7aLKx3iyYBSyQ4dvZ81aZpZ1ly/xsbGFiqzqRMb0Zz2Th2wRlqRhWlrPAessYKsT86az5Bx47oYXJhRCh+DJpdqzt+kcUV/GuPGr8uDQqzMp3djl/L8+5TKZWppFzkeIwMb/sKTmDTDkFnrXmXOgzIIbb0UpL3B2oD07KRvNZmAEKhsZO925CPCIl5gvTK/VMAbjRkPR4SFCKREFIsQT1CDMV6xaoXxJhP8KCSJE+LRkKBoAeQJCTrBCwPUeIznecwsLbBza53JOKE2UyevPfOKBZAClWRkSUwUFDg/U0L5I1R5lTdu7NIbtbmz/iqFoEyjscKxxYusLKfstzdp7u8zGI6IlXbD0yBzaRiVQYxhJKCvDb4nCKQgQBAh8Q0UPI9s1GPzzgfEakyqFDeu3cAbDKiXSnjVKn6xxP+fvf8OtjS9Dzu/7xPecPLNodP0THfP9EQQADGIIsBM7jKJXlHcrbVk70py2Wu7vLV2SapyrbdqvWv9J3stbUlybZUVLVJL2eJKzAEgAGLAABLAYAaY2PnevvmkNz7BfzzvuaH79kwPCJIDcl7UYLp7bnefe857Pud5fs8v9PpzxFGCMzXah14trq4opiPM7jb9fEpMjXGeDQvbxnO3sgyNo3QeQ5jxM5doHp1v0729R2EFE+8wyvPIesyFs/PY6ZCqyGh3+qF/jvDEUSvkLZgaW5TIWIOUWOOQnsMBb4II4QxJEpG0UpTwTPfuIBfXocmNmCXswaxrpmt24p6dvR2GB/soqcMOXYWwefhqKPOSnb0dbtx8k8lkSlVVGGsRKLTW9Ht9Lj5ymTPrZ4ljhdYqICI8kYSy+UTtdULFU7/TQwlPXRVY27QtkOERDvo9+r0+zjusqxFeIKUKORdC4h2h4ZYVSBTSC6qqZDrJqepvp4Tgb811aA3ihDWu8WVmTciYcChUE/VpPJpZs/gS7U6Xnhki8+ytrSGE3Y+sASHVW1jjIYkaa8LRim6lqFZBPsmIWwleSuRxa9qnWTM5xZoYm2dvbU2aghK4mTVxyuX5NuaENQdH1sy/lTXgvXhoa5SHVCpMNuTOtZepTE5lXWPNmEGnjer1idI2vf6AOErxtgrvbxP6DhXTIfXONr18SkJN7Tx3LWw9wJpBrHlsoXPSGul5ZC0K1mRDqmJKu9O73xprDq0Rx6zxzoUkZCKENSRpj6SVoIVnsnsbubgeFjfY5r5s7ryZNSi89OzsbR9ZE+km4hIaK3o8ZV6yu7vD9ZtvMp1MKesqJDo31vR6fS4+cokza2eJ4+SB1nTbbebnF+l3v7XW1GXF5E/YmnfN4qZZ3zKbzouQeGubMlhFkxFw7Os9x9OMZ8scM4Xdr73Kytwcra4KJclq1o+gOc8DqGwQzNbIOEIoHZpUxQl4mqm+YVaITyymChO/hZSIGmRqkNICEVJqdCsh2x8RxZoojkP5YpLg8gpfVigdUU+m6DTF1GFcvJAyhIBbBiU1Uiqciikne3QHcxSrBQf7B3Tm5ki6Hby3mCoPTmoV5rWUFQuDBZ5RmtZwj3HX8ZpLyI2h8hl3dl4j3n6DXmuB3vwKK5fWyesRewe7DIdjplkRktJ8iJjNlsvWeWrrqZRAS0/pLK0kpd3q05mbJ211GO1n7I+G4AVxHOPzgmw8ofSOcdyi12uj4hjvBUWRkze9YbCWu0IwMYJhbSiso7IO60PlhQNSIZmPNeeXu8R7ORuFDcmf2vG+MxFPnkuRxZhsOg7zdlSEd+bojF2m2GKKq0qwAfXKGDChfb6pCqRw9AdLdNodBKC8R4z3Qz6EDOHTcARswauwEK49k/GYOxt3eOO1l9jf3UAJTZr20EmHKE7QUYpUgrIoqQsT3uBC4KynzHOqKkzeLcuc1dU1BBYlJVGkkMoB5uheF5CkMf1+l16vEz4QxWzBH8IKzgukU2GGl9QIRJMQHGbsWGvJiow8LxiNx+wPd9na2mJ3dxdrv43yZb5FV5CjsUbIe6yZjWM4FhU+/B3h145bs/PSq6zMz9Pu6hABUs3rcMKaWSVTjYojhFLvwBrTWDPrgKyJWjHZ/pAo0cRJQl1WyCTF5QW+qFA6PrLGNLN71L3WyIezJicc499nzS7jrg/W1I01268Rb71Bv7VAb2GF1UtnmNZD9g92GR6Mmeb3W+PfwppOe9BY02a0n7E3Goa0xijGTwuy0YTSOUbJcWtkY03+DqwRzMcR55e7JPs5G3ljjXI8dzbiyfMtZDkmy8ag1dtaI+WRNc4b6pk1czNrQt7OCWuY1e+Z+6zZuLPBG6+9zMHuBlIo0laPKO6g4xQdJ0gpKMvq0BohBM6ctKYoc1ZX1kCEfkyR1s09ddKatPUOrWmiR8GacByWlxlZXjIejdgb7rK9vcXOzp+8Ne+axU0I1YaeE0qG3HGEwHmB9Yd75yZyE7iRh+GssDma0eNGNYMqJ3Zt4iQK+61Y44sCV5aHXUWF0ggRbiKpBbrVmT0URByBqZscgxhRFWEUhJQIpdFpFHi0FvBIqUm6bbJJTq/XCTsIQo6CK0pkJyXPchJrQ7k6Al9bdBRhywqXSrwJ1RNx0qGuSxZWltnISvbubrK4ugoCiqpmPJyQTUrKukBG0Oq0iJOUq8urzMX7/Mbr+/zeniD3mko4SufYrXbYu7NLvJmyNL/ChdXHiB9NmRYjdra32N7bZ5rl1MYd5pqEXDmPcR7hBK4u2J3cwWQHIaTZ6yPjiHJSIyNN2umERYlUaBFeTypDVdbslwU3p2PKOvRssSaEj2t/uFFEAKmAdpLQFoq5rkYeTDGFQwtYbgvefzbi/FJC4irqPKesDYNOPySENjuJWaKf1yG0L3zoFu0J5eVSKqxx2KIkG+6ghUX4JXSicaO7SOdwmGMzTmhC3JaqKtk/2OX2zevcvv4N9rc3cJamP1IEuk2cdEjSDlqn1KYmUfPobp8kGiPFLt5OqKzBVIbxwYiDg33adc1oOCKfTqmrkL8zm6prjME25a2zfhimNtTOhRkvVmBtfdg9uqrCzJuiKsnznCzLmOYZ02nGNMsoyupwgu+f1+tUa3iwNQJxaMxxa/wwWBO5NnF6jzVViWxmTs2ssbVH6jBLqvmLjlnDMWt4gDUgDq3J6PW6jTVhAXO/NU36dPV21qywkRX3WGOYjMZkk5KiKlAxpJ02cZJwdXmNuXifX399n9+/x5qdaofd27vEG8GaR9YuET2aMM1HbO9ssdNYU5km0fRB1oxvY7J96rpC9QaoOKKY1kgdkfa6wRoxs8ZBFWba7Vc5NycPaU0c05aauV6wpm6sWWoJ3n8u4sI91vRbvcPKpgdaI0PeWlnUSKWwxjfWbN9jzRbSWhziLazZ4/at69y58Q32tu7gbVjgOh1D1CKOu+GIWqfUxpCohQdbMxwyPNjHmJrhcEyeZfdbU9fBmrqxxjtsbQ+tMTZU+VkX5nvVJ6wpmGbT4E0WvMn/FK151yxujvZFARLvZ6eA4b/Npk+Iw68PX3mY+Nj8DzzzS/OsD9pEWobyPOtwWYYrSnwdpuh6qRGmAuGQRuIjh4yT0MEW2SRP6lC2qRWy3Yba4OqQGCi0BhHGvXsp8c6hpAJnySfTMEHYebSO8HWFpI23DldVSC1xJhyNqFaMkmG6r6trpFCIWOER1PmElXNrHNy9S55NSQdz3PzaaxzcHZHlESObUAlPFE/p9z2LSzHz/S4/8dQalzb2+dU3x2yY0OSqcpZaeQpfcHP3Gpu7t+knHRYWl7mwvM6VK1eYliVb21vs7B1wsH+AMeYw2U0BSzLsdkxZ4IQkm04gc7jSUpeWSkBfSlpConQ4U/c+tIja9oaJ8eS1b7qHhFdw1rNSS+hrhVYRGMuctDwy9aROEKWax5Ydl1ZjurEC56jzitoaoiSh1e6FjyIRBh4664lSHaojrMNXFaKVoKViUo/CADZTELc7dDr9pp1+6HUxHr5JO/sDovYzCB8188l8M3TP4W1NWWRk2ZBsMsFUIb9IUlNRULoczwFxnJK0+rSSPjJKQkTAS7RQRFJSecimNdeuvcnewTZpmlBVhq2tfYaTksLMWpDD3v6QF7/+Irc2bmGdpbY1dWWo6qN/rDXUxmKtw1p/bICma4Y6+j/Xi5nj1/EUxhPW+BALPs0a8QBr5pbmWRu0iQ+t8UfWNN3N39Ya3ok14pg1/qQ1qrFGHLNGhUXRW1ojBHU2YeXcOvubx6x56TUONoM1Y5tQ3mdNj7/41BqXNvb4tTcnb2vN4uIyF1fWefzKFSZlwfb2Ntu7+wwPhiet8bCkvjlrah7Oml4TgcFYBlRcmHhaTqAbay6fYo1OYtqdPl7MTDzFmrJCtBO0aKwxM2vadDoDkjhqrKkZH7xBO//D+61peuR4W1OWGdPpAdPx+BRrsmPW9II1OsXxAGuuX2N/uEOSptRlzd3tU6w5GDXW3MY5S2VD4nJVhwnpZW2xxhwOzLQmFFvU1jaVUe8ea94Vi5tZfrAUlkjYw2xqnAz17icOpI5KLGc7K3E4qCF0HL3wyCLtOJwpCuewRY6va1yR4YVGOA/SYG2FkjLkQcQReInqtFHSE6a2qnBchUe1EkQU4UuJbCtkg8JswJ51lrqsUFFMmWcknQ5Kd6FZUPm6JkpinA0ThYUAa2u0S0GA0lEoE9UaX1uccURxh6qa0l+YAxlhPSS9BD3SYBRLC5LBcot2v4XDImNNUReYbMzVhS5Lqef3bmW8NBIcyJhpXaOlxyiJE5adasj2rQPim+EcdWFljUfPrHP18mWmecb+wT57+yOyyZjEWgbeU9Q1GQ7d7rC/P6IylrY6JJquCA28VLOjKSzcxLJTeXI3K6ltom5S0I4V7WZ3Oaosqih5X6x4phcR6Yh+Dy4uCAaJQoqwq/DGY5zFIuh3F0jSFlESoWRErJtJyUikivCEHar0MVGkKU2JRFCVOYluN+faMrwuOqJdOXp7O1SDW1TTVQRxKI32oTQx0pqV+WWeuHQVX+W8/urX2N7axXlPJCReKaRs0Wr36HZXaLXnUHGLqq6YTEBSIpsS66IyjMcZk3HW3EOe3EB9Dw6T3PCNN+4gxJ3wfvGzhlccHX28dz3UNbNGfausubBAJ5aNNR5bZPja4Irpg62JTrFGHrMmPWZNSz7QGh1HFNkp1lQ1URLy3U61Jjqyhtri6iNrBktzIBprugm6FaxZmG+sGbTwJ6wZ8eRij5UUfvdWxtdGguHbWDPX77OwsspjZ85w9fIVpvmUvf29YM10QmoNfQelqcjw6Hab/f1xsEafbo2SkM+sqT25PbImJKpCJ1a0VehsNK4MdVHyXKx4thuho4h+Fy4uwFyqj6yxHttY0+sukCQpOonRp1jjsHhX32dNXWbQWCOFCoM3dRys2d1+a2vmlh5gjTi0Jm116fZWaR9aU55uzShjMjqypjBQPcgaudEstAjJzs2b59vJmnfF4gZCmDiSIfdANR1a66YRUjiCotlRzcLDoXzj6Bw8/CxJJGtLHZS34cY0NiwWGnQ8ARKajpDOhr9DGLB1BVMBSdQ09aoRaSt0bPUefI3upKh20wVZqVB540J+hqlDx0bXhPCkCeWUSgp8VaJUhC8NMk4BR12WRK1WaIEtmwVO5bC2wlUFKk1J4g6mLnHK423BmUfOs7S6RlU7lLaoKELqmLquqZ0jKzUZYJwFq7iSRqzKkg0Xc9O0ePMgpzKeOBbUsaAGKuPZmoy5fTAkev1V+p0OK8uLLC8tcfbyYzilsEjquqTMC+aMw9iawaqhLAtsVaGdQNUV3nsq4almnV2FoKgrWuMpkfN0kji8ai4kGNZ1yX5hKGxNB/hYT/M95xMurvZoJS28rairKb6uMGWNcAJkOEZI4ohOq40WIcye9nuhI7UxYGuE1CFB3Nlwf8Ux3jpqE4axJUlMkqQh/6AsEQ7m4jbcmFIt3CavJWm8HG5QP/tAE8zN93nmyWeZ6w6oDdzZ+gLZtCRSFqFDjkwURXS6XQaDJZTWVFWJFBV16khijQf0tKCuq8Mp3hCmVFsvDmOWIduDEK7n8KG8d/0RrhPWqLe2Rr2dNStdlPchZ+fQmuk91jT9gLzB4xD2uDUxUgVb7rOmnaI6x6wJQ1ZOWOMfaI3GV/ZtrTGNNfotrClrh1YWFWuETjCnWOPvseaGaXFtP6dy91uzORlx6+CA6PVXGXQ6rCwvsby8xPnHV7BS4lBUdUGRFcw1c/4Gq4aiyHF1jXYCWZehSkg4KjxWeAokuSlJxxnaejpphEQ2a0JBVVfsFzWFrWkDH+9qvudCwsWVHu30FGuaBnReCJJY003baKnAGNJeN+RyHrNGShDW3WeNv8caP7Mm6cCNjGrpDnklSOOVcIM2C+p7rTEWNhprtHYIVZOkcWgQep815gHW2NlUA6TwyAdZ42a/+u17vTsWNz4cPEUinFdKEUK03oXjqGOHUBx/uo/vsGZh5OW1Lv12DFVJXRZgXahUsKFxFkoFqkSDhWjin4Qse6jwpkTGETKOoCwROgo5OmmMTEC1wtS8WUMh71yYFSVCJY73lmwyodfphcUTEmzoczPLLZJR0269qELmexw3ohqkVvg4wXuLzSt0nCISDSrCeYuOI+K6oi5KvLHoSJD0OpSlIdKSWAuycoqZD91pe1PFeSG5iuYPtODlUcXepMCLgPcgkthEYFNFaRzjfML42oRX37wemtZFoaFYmrbpL6yTtntIJenOR/REaFgllWimzIajuLzIsdYhjWOxLIkORkxHI4qyIK8qirrCOkvkwXpPV8IPLkf8yOUBy4MOUgmqfEwxzbClacIVIeJjJSitWRgskSZxWGNKRRJFGE/zuspwmCklNB0ulZIorSnGezhbgXe42mCkwFuLiMOwOru7SbU9QgzOMJMgLD483lu0jun15knb+2TGc2dYU+QeLTxaOXQ2Ylx68lowyUvipE1d1xTlECkrnDNI4ZDShEIaEUpljZ+Fz9+7/tiue62RR9Yc5/wo84ZjP+fwKwSwtNph0I6hKo5ZY0+xRoZN0GnW2BIZHbMmeoA1s0fnfZgVJWfWuGBNtxf65ZywxiHk21vj4iRUvuTl21jjiCJBesyaSAvy49ZMFOeE5KporBlW7E1DBdihNWmYyF4axyifMLo24ZU3rx1ao6KENO3QX1gn6XSDNQsRfQzehYiwkgIhHJGOG2ss0ngWy4r4YMR0NCQvS/KqJG+s0Y01HQk/sBTxo5f7LM910EpSFmPKSYa515ooWDM/WCZJYpQGgSKOY+zbWRNFFONdnK3vtyZqrNnbpN4aIQZrb2lNq3NAbuDOsCa/x5pJ5SmMYFocs6YYIWSJc/bIGgnWCaz3fy6sedvFjRAiBX4LSJqv/x+99/8XIcQC8DPAReAa8FPe+/3m9/xt4D8lvJX/9977X367vyeWlliL8EGFAuGx3mG9bKI1Rz+ehdFmWTmO0PEQ6Vlb76Gdw+YZmLLpbOyb5jjhQzDMbRGhlb4MR+m+qrBIhG6Fe7sMXSyFjhC1xQmPkjG6E+OtDyFiHyqLhBBIrYmShHw0Io5TxqMD+v05cKHttGjaaSMkIooQQuJMga1LIpk0OR0ehEcJhUwSyukIrzxIMNMM3emilEYnCXHawbRKalMjVTjzVVKgopQoSmjHbZIoR8sDqlQw12rxZG+ZS6Mxv39nhxe2BNdHliKvMcY1I048sYRES1AC4xzGe2xdUFUFWTZkc2cTh0SoGBW1UFFCpGJ0lKCb3CPnmk69pqauK2pTUJs8NKbynhToImiJ5lxdS37kQocffXwhtIIvp2TDEWWWU5VhG6OUQGqBimI6rRQdRQz6czjpkUISRQlKSZz11A60FjhnDyeEYy1ah66dY1s2u+lQpqmiBNVuhzuqzsmHY+zNlDK5RayXw10267IJgCcvpty8c4MXX3mNUWY5LARwIGrHbj7k9t4YHV0jUk0Fg7PhucVgjMNaR2U8tunS7uCwUeVpO6Zv513Uw1x/2taYt7AGTrOmf4o13G+NCJFK0WSyuuPWuAdYI06xhiahWTXWDEckccJw2Fhj77VGhT9TqG+JNVVdo5oF23FrOqdYMzi0ZvubsmaaDdnY2cAikfdYE0VJSNr1NuSF1NV91njnUN6TcNKaWovGmkV6rZSqzJgO997aGq2Zm1mDDBWRSuKtp3b+wdYkcWONO90aU5APx5iZNdFKs7A6aU3RWPPVV15j+ABrbu2OiaJr6MYa7yzxPdbUxmOOWeP9UbTm3uvPgjUPE7kpge/x3k+EEBHwOSHELwI/Cfy69/7vCCH+FvC3gL8phHgK+GngaeAM8GtCiMd9aBpy+iUg0T6UbQuJJ0xUnb0IodzbNYm+h7+FWcBYiVBIN78Uc/bcIr4o8CaAIYVAERo6zbrNhglnpil7DiFjmqQ97x1eSbyx4GTYjdUlItJ4amwpmyGZKnQAc0EtoQMExhm00sRJCy/C31mbjEjGCGtDR0pCjwKBwtZVM97dc5jyJsDWBl+H/hKkApXEof9OWSCTFqqVhu9bp0SdDr4qcdkUkNiqpNXpkKQpkVYc6BGTbEpaTTm/usSZlUUev3mb37hVMtEd/O6E8iCjcJ4DZ8hKQ4lD4ombPEovwCLwkcAK8KLCuhJfNYPbcshtg2aDuxSCxHs6QKQEHSlZk4LEKzaMZcNZ5lLFX35ymU9cmMObnMneNpPhlKoOb2LvIE4EUSsiUhFp3GZuMI+pS8DSTtvIuIWrDVJrJCZUwDU7KOkBHYX+Ih6SqAU+zPlJ0g5xkqDQ+KpGtdPQ1XUywtyVyEsbeP/MYcLprEOmt56DgwO+/tor3Lq9dfgBGHJgjs6njbOhQdt718Nef6LWiLezpvkNxw+lDq1ZjII15TuxhrAZ+lZYEycYb9FokrezRqkja+wxa5reJvdbE51qTaITok73VGvSt7PmZskkCtYUBxllY830m7CmyMG9jTXtY9ZsNtYMEsVPPbnMdz0yByZnsr/NZJiFip/j1qQh3y+NW8wNFqjvs6Y+Zk2Y4i0fZA3BmjQNVWbyuDXtGDceHlnj6gdYM+Qbr7/CzVt339Ka4j1rTlxvu7jx4exl0vw0av7xwI8Dn2p+/R8Dnwb+ZvPr/9J7XwJvCiFeA54HvvCgv0MKiHXo/xASPI/aoHsUIWULZjndxwPHx1v8KSmp8wlFNSX2YapqqDN0qMYWIcMqG2sQUjY3YjPMLkpxtcFb0XQuViBqUAqVaCBMeRXeo6wL6CBAhdCz1JooSsjzEuqSfDSm01vAlFUotJiVoEuJSlLIppimVbeMQ88A4RxeK7w3qDhCCkUxPCDqdELVTSgcDN91bcP5uVQ4pVE6QkUxUkokjtIYWmkLDxRRwqiYoPKY+blFnrv6BL30Fi9e3yN/+iy1SLG3t8jv7lLVhtyH8WXWw75xGBc6jG7VNZWGlZV5WoM+ZTXh2p09jBMoJVnvxKy02si8wE1yhPD0lWA9FfSkJCtgM5fsScd3LnX4qWfXeGQQMxnuMNodMRp5slzR7QmiWNCeU0SJpp106Xb6ZNmIKErwtiBWivZgjuFwSCQlQklEM2PNGhMqSrwMPY6cA6HCubdSuLyiqisKPEpLZBKFXa+SxO0W1c6UpMwwrQwl2yHXQSq8C6WPd7c3efnVV5hmVfOZddRo8r3rm7v+pK3hmDW+sWYmjm2yJ4+/qsetkVJhiglFlRF798dvTaxoygGPrNFxsMaUZKMx3d4C9WnWxClMp82sHxsivUIgrMPHD7ImPdUaKRX+0JronVlz7Zg1t+6S3d0L1nDMmtphfLBmu7FmeXmusWbK9Y0ja9baMSutFrIocZMchGfQWNOXgqwQ3M0V+9LxgcU2P/XsGo/OJUxGu4x2hozGnmyq6PY1OhJ0BpIojWgnHTqdAfn0yJpIBmtGw2E4EjtmjTMGcao1rWCNCVGvgkmwJj6yJmm32NuZkpT5oTUgTlqzs8lLr7xnzTu9HirnRoQEld8HLgN/33v/RSHEqvd+A8B7vyGEaLKhOAu8cOy332p+7YGXihOECA20hCeUVguLhWYlSyjB9GFNC2GI3eHja3ZVkQ6JdjJtoYQIxyBRhPAmjKK3IaHPCw/NTA+EalrI6zCB1PlwZk4AQrjmXNpUCFp463F1EWbH+CR0iySEMHWakLY6TIdDtBSgNaodE9mUuijQSoWdm3dh5gke5wymKIiiOBzZNqFNFcdUWY5OWqRzC5QHu0gB0WA+NNhqRhsILzBlESoYpEZHEd46dHNEg1BkLqfb6iKE4GAyxiGYHyzw+JXzLAzavPLqqxy4FH/lMezV87Qmm3THe0RK4J3nYFJxa6diPxO0co9Y6PFDP/0XGayc59bN1/nVz3wO3emyvLyKsDWXVtZYTtrc+nf/E2I6QXjI84gbleB2XVLqiu9+convf2IdX47YuHGDYlxQ5ZKyjllfbzG/2qYop7TSNnO9BSbTMa20QzadMB3v0YlTuv15TG2ZDndZWFg7DNlLLfB1c6c0IwJw4WxcxxFxmpJNCowV5L5GFyWmqBFJOKNM2x3qnT2iocD2DohUH9EcUQghqcqKu1tb3N7YDju+w/vwz0Y490/z+uO3Jj7VGkOwJtwzp1sTPlDC18Q69AQRaYhqYF1oBupCdZ5v8mG88KHhZvjbw4ffvdb4h7EmRkXRSWvawZpICoRSqHZMYltURX6/NcLjnX04a/YfbI09bk2c4K1/x9bsuxb+8cdwT16gNd6gM94nUmGBOZxU3NyuOcgEbxYe5rv80F/+CQZrF7h98w1+5dOfRbe7LK+sIJzh8sr6W1pTqJJPXl3iB6+uQzlm48YNynFBWUjKKmZtPWVhrXPSmsmYdtolP27NYA5TO6ajPebmVh7emiRlOr7HmrIOx6FekLQ71Du7RAcCc4o1dVWztbXFrfesecfXQy1umjDvdwgh5oD/rxDimbf48tMWlPe9DkKIvwH8DYDlXo9kfo5i7wChEhAS66omYTf0bZSEN8+MnFmC3VENA/R6imK4R7S+SNrpgbPIRINq4Y3FlWHwF1oie12wNiTZKUm+vQuVI+60kTpBJSGRz9U13oTzaSEl3jUjGyx4Z3G2qd5SGpWkxK2wwMkPdvH9ZoicEBTTEXG8hDQWIRRSxwgV4UyFqQqiug1JgtRRiGbHMSKKsKYiStrIuSWKvS28c8SLK6HTqQRb1pQHe2ESrfeYsQpRrzjB+tDES0tNK0nJy5xup0NVZ2xsTRh0B8z1+1y8eJ79/V2i7A6VTtnqLuAeu0rflKy4HG8rzm9vcXtzi6VdT3LpCu/70PfRWVpl9eJVRGee8WTI6tpZqrJg+/ZdLn7wE8jNV9n9vRcwpaQwDiUUZ+YjvvuZCzy10mXr9h12tw4wNSilaXUTzq926Qw6FHVGHEWkcUqn1ScvckbTA4SvqQ4MK5fWkK2U6d4uxhh0FBNSAB040ezEQ2M/ZAjpe2fRSpOkLWAPQR2OA5zDljXCWGSSoKOIXhozur1L//we3p6DWadOD1mWs7G5wXCcNze3/5ZAczhG5M/x9cdtzUq/TzI3R7H/9taIE9b4Ez3Suz1NMdwlWlsk7T6kNXmF0JJ8ew+q8sHWcJo1LkRd7rGm1eqQHeySNtZwqjUJQr6VNclJa+bfoTVJinUGpSRaatoPsGZ+EKwZ7O8SZbcpdcp2fwF/6UkGpmDFFThbcX5ni9sbwZr40ct8x/PfT2d5jbWLT0J7nsl0yNraWaqq5O7NjfusKRtr1uc1n3r6PM+s9di+fYeduweY2qOkotVOOP9Y735r2jNr9o9Zs4pqtRjv7VFXNVGccGiNP8UaO7NGhVlO/sgaf4o1/VbC8M4u/Qu7p1pzZ3ODUVPC/Z41D3+9o2op7/2BEOLTwA8Bd4UQ681Oah3Yar7sFnD+2G87B9w55c/6R8A/AnjikYt+7un3s/t7X4TaYp09DL+BQ4swhVj4o1Z/s87Es4MqKaCdWDrdkOQmlEAmKboTh52LlPiqxjfHSVIonBBEXY0pcsxwzGBpHlMNkVEb3Wo1CYIKUxicrxFahCZcMlRGhUZLDicEgtDNWHdbDFYWcWUFzobVvJQoIcmzKe1eN8y0Uc1uzhP+DGNCFYNUUFeIKEa32lTDfYybEnW6tJbXybZuUxcF8cISqt3BJzr8GSWh62hV452jyIvQURJD5T2x0cRKhyS3iQGtGU+nWGPRWtPt9nG149zSMvPDA3au7TBZf5Ri8Sxz3rDaGZB0W6yuHDBZjFleWWOwfpbWYI7xZMQLX/wsX//6S3gH/cE8Km2xcPEK9vUXQq+NTJPECR+/skbXFnz9y29QVp7ltQUGgx46Aq3DjJVpNqTfmUd3U0bjfYytiLRkPBlTjmqoFVGnhfWeaTZE6bCrDRniAofFmir005HNgEIBwluUiojTNjKOsKWhFhbb7jZ9Q2JkEu61XrfN9miCtROcqBFehbvReUajfW5vbFCU9beUhz/r2LyT64/LmqceveTnnvkOdn/vd05aI+63hhPWiFOsSYjjY9a0Y4QWIAW+Mvdb09OYMqcejph7WGtEqIw61ZpOi/7KIrYsEYfWiPut0U2U+zRrqpk1Harh3glrpset6dxvDVWNewtr2knMcGLQJ6yJTlizMDxg+zRr2imrK0MmCwmLq2vcXT/H+WPWvHxozVxjzeOY118IFXCZJopiPv74On0XrCkKz/LaPHNzfbQGHYVO39P8gH77mDXmpDW+kuhOG0uwRuoIpY9Z491Ja2giYofWtJCJbqxxuHbnPmu6nTZbw+PWaDw+WDPc4/bGHfL3rHnH19uO2BRCLDe7KIQQLeD7gK8DPw/81ebL/irwb5of/zzw00KIRAjxKHAF+J23fBBxzPrzH2XhySdBWIwtsS60pfaEhltyFqkRHCbuycPJoQKpoNPvML96ht7ZC3TPXKa7fol0+VGi/hwqTbj+2gbfePF1bFmhpCLSGqUE5mBCe36OuN8NM1hqA4IwcFFD1FW0FgeoJEa3E3QrDZGXJikQZ5uauibZr53SX13EGUc1zcJANR3jjMWaplzUE8YwCIlzoSwQQRio18zCUq0UFaehZLAqiTod2itn8LZmunmD8d2b1JMp3glkmiI7bVS3jUxTonabuNNDJymxlIzH+5T5lCrPUUIxaPewdY0SYFyF0oKsGLG3v8eg22W9l/CUrrlUD5kO9/mGjxmfvUpy/go9ClQ5QgK9bofV9bO0222EVMhI45xhmjXlmLKDe/Rxzj57ie9/5gziYJvNG9ssr8zx3AcfobcwT+0M/UG/Gfgq6aYDWnGLNI7x3jAa7+GMpd3qMpxAe26Aarcoi5yqqoh0EjqEOh9eAw/WhC6ssx35LBNPKEkStdA6BuGoTUmeTTBFjtIhl0AqRTvtUG/fZff6dazNsa4OE+rrgv39fe5ub2Nc0+TqId9s711vff1JWCPiiLUPfYz5J58E4Y6s8W9vDTNrJHT6beZWztI9e/7ImpWZNSk3Xt98gDVTOnMD4n7ok3KqNQvHrGk/jDVLOOOpspPWuJk17jRr/Nta0zluzWZjjW+sabeR3XazqGusiY9bk1EWOVooBp1+sAaP8SVKS7JyfKo1k+E+3/AJ43NPkpy/TI8CXY45Q2PNmXutsUyzEdl4SCnauItXWH/2Ej/w7DnUcIeN61ssLQ1433c+wmBpgdrW9Ocaa7ygmwxoxemp1owm0JmbQ7dalHlOWVVEUQK8hTXipDVx1ELrpLGmIM+m1IfW6ENrzM5xa6ojaw72ubu9854138T1MJGbdeAfN2fhEvhZ7/2/FUJ8AfhZIcR/CtwA/hKA9/5rQoifBV4CDPCfvWX1AiFJbeHxZ7CjCdndu0xu32aWPizwYeigl/e8sL6ZxxG+Zm4Q8cSzH2Spv4jyElzTnZgSMFSjMXdvbhOlhKF0A4WQkvLuNt7UtJcWAY/UOiQYmhrZaSOTGBE1jbSkwJtwYwvpQ/8CmiFnPlQySJXgY4h7Ifu+mAzpDBZRdY0tc8ppRrI03wwdU833FMKYvukaKlTTqyJOUJ1uWBRVNSoyRN0eHemZbt6hGO1TFVPi7hJxt4duJSHHSCnwnsiBqiVaJohywkE54iAb0Y4TailJkhTrINIptS2xwMbdbXqdLjpOKYuchf6Ax9uSu7u3yfI2d1Ubt3yFa2+8zIKI6C0u0+3PM98fMByNcC60/N/ceJPd4Rh3/hnmijGXu4ZiZ4tIJVx4dJG98Yg3rm+xsLDIuUcvEEcKawzCSWimhUsEUZQgpSZN2wwnOdOpYOXsIs4LJuMx1rowskGGsLB34XkPLcGLULLpmlvdh51tHMVEkcTb6nCejRcaGevQb0RKojgmtZ7t6zdZPleSRC2885iqYDQacjCe4Pyfjx3Qn+D1J2LN4hPP4MYT8gdY4/29ez5/OHtH4BkMNE8890GW+0snrHGH1kzYvLFNlDhsVZ2wxlUV7eXFsLjQIS/Gm+pbY81oSGf+yJpimhHPrJEaT8WRNQ50jNA2WJP8EaxxHuVBaYlWx6zZG9I6bo0XRKpFbQqs94fWRHFKWWQsDAY80ZHc3b4VrNEd3Ooa1994mUUZIxaX6fUW7rdm8012D0b4R55lUI15vGvJd7fQMubCY+fZH49449oW8wuLnH/sAnGkgzVKILAYx2E7CSkVadphNMmZTAXLZxdxQjCdjLHWolXUzBtsrPH+AdbwltaISDfRsyNr7l6/ddKaumQ0GnEwGr9nzTdxPUy11FeA95/y67vA9z7g9/w3wH/z0I9CCFpLiyw8+SzTjZvUoyHZwbCppHTN6aZv2vaHmR4i1K+EhnhK8OSzjzHfXkBagZ817UsjPBlmmjO9s8VolPPY4iAkCGrBdGsbU+Z0HzkDgCsqZBTh65rD43wlobmhD58x54A6jL2fraabxGQvQDiJjBTJoIMxJeVkilSKtNOjLCZ4S+iJIEOPDec8zoaw8yzJOTQb86gkxiUJNptiyimR7hF1B3RWJOxuMs2GFHaDuhqT9uaJWt0GHREy86UIZ7gupdOqObAVVniUkLSVpqxz6joksCVJSpoqxuWEbquDdRWjnduknT79NGat02J+/4A7b17jzVe/xDcGF+g+8TQ27mGzKd1Om9pYBILta6+ib7wMm/vsoXhzTjPXjtCxwUwmdHod1taWGcwtQqSop1PG+7vM9RdBCopijBY1850BMkrYnw554819+v2U9qBHmY+ZTvcQ3hFHSeiCp0VQXszQ8Yd3ilehKZbwmriVBmzzKXVtiI0PieEqlG2KplR2odNjczrC2gwX9fF4amOY5BPyvHjo2/u96+Gud4s1hqPW/fdZIwVPPvsoCzNrnAETrHFkmGnB9M5dxuOMi4uDMKU5kmR3t6nLjN7Fk9a4quYwgH6KNWHR9A6sGd9rTRjeK6Q8tMYeWuOOrPH3WFM8yJpN6npMWh+zRoejsNOscQ9jTbuDdTWj7duk3T79Vsx6p8X8/j53tt/kzVe+xDfmHqH7xNO4uIfNs8Yag0Cy9earRDe/jt3YYxfF6401UWyoR2NavTarq4sM5pYOrZkc7DLoLSIk5I01c50BKkrYz4a8cW2fXi+lM9ejyoI1eEtyrzVN8q+z7h5rQq+h+61xaK2Q+n5rNib3WFMbJtl71nyz17uiQ7EQAp22aK+fYfHZDzLeuEXxB7+HqCsUotlNhbCxhMOW6DK0qWFuvsPjT15FONt0g/S4OkfEEa7OKYcjdjd2GU9rYgTWWPLdfcrxmIWrlxFIbJ7jnUV1WlAoRKQxRYGoQsmeipJQ/qdCc3ahNUIF3IQPbdCbbyZMAFYOX1dolTA92CeK28RKhRBlo5SQzS6NcBaOdaFctClThRDaVEmMLYtm2GaFijXx/AARa8S2JhsfYP2Ywjq8FcTdLkornA5HfkpCJKEjoTI1WZ7TcoZWkiJVG1eV5LbGmFB6epBN6aRtalOjpKLMc4yr8aYCYTg3NyAd3uXaa1/gYOc6xZUPYZxn9ezZpkMw2Dsl461dVnqGs8sLLPT7LMwvoJMIUxuK2iCMQeIwxpNNRpjaYH2oalMyQcVtVBwzHo+5cW2Pu5uOj394EaQimxaUZUma9NBxGHkhvT1MvMQ5nKtDLoVSYXnsbXjOhQjhd2Moy5pOu0aoJm3Ui/B1QtBSCm0rqmpCnIa9vXWOvCwpK3vYBOu969vnOrLm7H3WyGPWwElrmpZYDObbPP7Uk2HR0STW3m/NHqNJTQKY2pLt7lGMxyxcvYRAnbRGyWPWKIQq3rk1urFGJ0z3D4jiVmNN3HzXPuT0NNbwIGvkMWvskTXR3IDucWumYwrzrbJm0lhToWSLMgvWuHutefW3Odh6k+Lx5zHOs3b2LHXYxWA3KsZ3d1juGs6tLLDQO2aNmVlTN9ZAPhlRVw+wZjLm5rU9NjYcn3h+EZRimpUURUkad9FRfMIabw14i/NvbY0zhqqsabdMWE9y0ppUa7SrqKoxcbpKsMaSVyVF/Z4138z1rljcHCbdtlt0zp9n6f3fyXjrFtnr10M30FnfiHv+AYEUnouPrdGNwtwmYyvwHu8N0hnq0QHZ1ja3bxywuJCSthJ0mjC6vUnaSbCjAtVrodIWUuswvE4WmLykHI5xzhClKSpNiTotdNJGaBkKt5xrHkiTamibiTQihJWl0EitmI4yinLC+tkVtAqPzUvVTJBUYMPIBt8kMYbmYuHsVkqNjxJkkmLLLIS5ZYRMIqJuj67S6DhlPNzGFhmVGOJcSdzqo5MUHxNKUT3EUtI2hsoYLGF4mrNh7pKpM+o6Dwl5SjMcjxjMz5NNpiwutBlPJrTilFbSoqpqunGHM8sFwzLjG3c3KBB849prYcjceMz83oT+FPRAkKQxpsiJdThiMt6Gc+qqIB+NQlUXnsXl1TDFmATrDAeTEUU2YePmmGsbKUtzksXleao8ZzwdYipL1EuRKoKmbN1bi3OzGTyzlqFNnxEbdlvhvN1SVzVl5qjaFXlWofSUKE2ahomKJE3puRThQzQKEapDjLVY5w5rad67vo2u49ZcuPBAa+B+b6TwXHx0jV4UP9ia7W3u3NhnYSENje3ShNGtTdJ2gh2Vp1ijsXlJccwanabod2KNOG7NlKIcB2tkY41QocHPCWuaIaHHrVFvZ030R7dGekydn2rNdDJl6TRrkpk1Od/Y2qDwgleuvRaG506CNb0pRDNrypw4SpBKY2p3nzXiVGvGFPmYzZtj3ryTsjgnWVyZp8pyxpMDTGWIei2kPmmNdaF3kRCyaSJ93Brb5BFaqqomzxydVhmsie61JqFngzUSiRcSN7PGvmfNN3O9KxY3s94SXniiuTkWn3iObHuLYvcAM542HyThzYwQDTTh32kacfH8KvVoD0vIWMfUqLk2ptqnHE0Z7Y7Zn1ZcOtNDRwl4yMcTqAqUionLPrrTRiiJsw6TV1STKWU2pcqGICWtbp+0GOC6FjU7bxaEnhU+NHHy2IANAGHgmlCS9lyfG1++Tq+bsLC60uR+hD4GInwzoeGXt+H7VDKEPj14YRFJhDJJqHSwBleXATylkGlCa2UNoTXT/W3qfALOIJxqctsiVJqgogRHSaffRyiJqUxYZGBxSJytcXWFUIpWt0tdZ4z2aiIZMdzbxvmaoXek7Q65rXBK47zFZBMG0S7LjzxBEcfEnT4bX/wtoqpEKkFdhTblYYpwjrQBv27aRXb7SKXR1oJ3WOcoq4K8mpJNDijGUw62S7Z2W4Dm0mM9knaLg4NdptkYFUXEKmrC6+HfzjqMNTjv0OiQP+HDwgQRdqvhA8lSG0NVePIsZ39nA2dKWq02cZMkmSQpndIfHgf4ZkfmnGsaTL6HzbfbdcKaweCYNfuYcfYW1gjSRPPohVXq0T4Wf9Kaep9yPGW8O2J/WvHozBoxsyZH6ePWqMaa+h5rBGl3QOudWtMcPbXnBtz48jV63ZiF1dVj1jQ9WA6tcd+ENfEp1th3Zo2XOFvh6hqhLK1ul6qeMtyricXMGnPSGvk21pQlSgZrXNNv6MgaTyftorp9pFLo5jjuhDXTIeVoyv52wd37rNkjy8bhtbvXGudClIlgDfdZQ7DGBWvqwpPlBfu7d3B28R5rWnSK8DqEtoku/M/ZWRvFP503zLfx9a5Y3ADhRbUeEUW01tdZfOb9HNx8k50vfQljamjK445jIxDML/Voa0sx2SSOFTptIyKoiwx8RT4ZMdrdo9OVdNspWmlcWeKdJNIR+e4urrbI4TTcrGVBXeQYG8YiqChFWIsrCypCwpi2oafFrPlggLCJCDS5NFJqnAw9dNrdDgvLfXZ2x8RpRDo3OPyegaZ7aTPHxvnDsLNQoa8P3oWEv9rgKh86GhuLUGE3J6WkNb+IjhKyvbtUVYbxDmyFNh0gNPlCRahI0G61MaLE1QYnfAipYsMb0YYoRdru4K0jjZLwVqsdpiwpyoLaGFxVUU9zzKSmO32VYn4RazSPXb5MtXeXThxx/trLPH/lHL1OCx2pZuMpDktWwy+E9vPeWqpszDAbUU5GmCwjH1ZMxgpjFZfPCB557AxVbZgUE/CWKG6jozjsaWyFVwpjw+FlQIGww2oSRQ+BFxJvBFJIdOwp64qqyKirDpFUCGNDkmS/Q0/MU9jZImm2g5o99veub8vLC5x18I6sgbmlPu3IUUw2gjXJMWuoKMZjRjt7tLuSXjvMJHJF1VgTn7TGO0wRrLE2lFTPrPHfjDViZk27sWZClMakc/3j3/iRNa55b/xRrSmnGG8f2hp/aI0L+UAI2u0u3rqQz4IPAyZLf2RNXVFPgjWd6StU80sYI7l6aE3M+Te/xvOPn6fbbhHF78SaMSabkg0rpo01l9bh4mNnqIxhUk7wb2WNl+HYiQdYIxWY0ApEx56qrqiKnLoq77OmL+bIj1kTPh+Od1d673on17tmceMJ2eVSK1AprTNnWXj2/Yw2blFfv40QYcAg0BSIN1VU5ZhifJ3OoEfUiZGJQDQr3nJYMN3Zw9WGM+fnSNMUlcaU04Kk1SJqtXCjPWxRUBcFVZljbIGpK7yX6ChCCw1SYE3RZAGrJjmvBb5uOo7K0BbdSWQkcXXZJAZLEBIVxSytz/Hq124wN58HlGaNetANOO5wsYMHoXRIShPisFU3cQSmDhOMm6ZfQimQEhlp4vk5hIpQ+3epsyneT7HNh7lMUmTsm/yhNLxJlYRKUJk6PA4lcU4cJrolKrSBVzpG+VBSar0J5Y5SEuuIOCrQ3qGHu8zreT737/4d4/Eeixgux465+QFxq4W3BmeaXg1CIiXN8yOa+aOOvCyYHmxBbakzS1EIrFGsz3uefm4dHSl2DrbJsymCkL+kZ7kJXmBqi7U2lMt6B0KHHiE+ODebXOib3KyisnTmEqQUoT8JFhHGLWPyHNFKaIuIKm+iNSF2g1QKebhrfu/6drs8IclW3WPN+C2tkUfW9O+xxgdrJru72Npw5lxjTRJRZjlJ2iJutShGe9gi/+OzRp5mjTgW4TlmTbN4w/u3sYZ3Zo2UyPjB1tTGcJ81zhMrjcAhdYzyyUlrxElrooMdFqJ5PvcLx6yJ7FtbQ1OB1lhTlOUJa8pCYIxibW5mjQ7WTCcIFJGOUfdaYyxNh0VC9vc91ogwAdzairy2dAanWeOPrCGizN2hNbaxZjYD7L3rnV3vmsUNDTgQ7hXZSWlfuMDS+z+EmU6ZbA0Bj8QdVk0JYGUxYm7QIx100K1wtOStw2Ul5XhENZoStRMWlxYxmSHqtJhsbBHFoXeFEgIvBM5UOBcabymtUSI6bIjlvcWZkDhohcJEMUIrhFLNmbdvuuI6rK+RWiF1FIbpSYl1DmstW+OIeCvj/BMWkYTfj2iSxUTT6dI4fHTUztsTOhwLpVEqzHXxwuJFqKaahT1Dlpoh6rRBrCLlLmU2wecTQOAECJUiZIwQIZFQ6TBYz5oapXToh9EkT0pJaFblfZi4WxXh2bc5tjLURUVeFLTSLr63gJhb4DkpaYkOX9m/i0wSRhFcmzrOqwJtTNg1CUIekVagmp4QSgCaui4xRYWooSgtdS2YHzguXVmgtzRPnudk2RTrLJGOSOIkLIZFeH5nAzHBN4sa2+DdNPIjVCZ457HGY2qHimpavR5JqxsqHZwBHWHrDFV2SBMNk/0wBHP2eiiFem9t8218nWbNIyy+/0OhkuZea8TMGs1cv0s6d9waj8urYM0wWLOwtIjNDVG3HaxJQmKpahYPfyzWuCNrnLNsjyPiuxnnnzCNNfoea2is4QHWyCNreJA1rWPWjI+s4UHWyGCN1mFK+swaBfqYNaYqw1SrU62ZR8zP85xUtESHL+9tIpKEURRxfeo4r0qUrfG1xYswA+zQGndkTVUXmKJCNtZUtWCu77h0ZZ7+0gJ5kZNlk0Nr4jhFqcYaZ5tuw02108wa7rHGh2Nwazymcihd0+o/yJo2SRLdY01TUPKeNd/U9a5Y3PjZ//tmh+RDn5J4YYGV596PyzOyT/8melrjiRBIJIJ2DI8/ukC73ybqtMM4g2YhUU9zpvt7OAz9pUW6vQEHk11UnFCVBZ25TvjLdYyzLpQNC42Sh4vuMLnbE7LivQJnsFURZoooiRAKkcZhpeWaO9CFH3vZAColXjjyoubNsUa3BE4IlNRIGbqX4n04U296GfimekESumh61xyGRBEyCmHVEJZuHqgIOSTegYwg7nWQWuMPNPXkgHo6QjeoOcLOS0YROI+OEqK4IokTikhia4e1HufAGIN1Nbaq8aZuem846klOaT3zy2t0Fpd4eSejM7+KVHDh7AC3fBarNHfGQzbGlkcmGU/HjrVENWf+BmNCvw6hJDpJQKpmWFzYFXnnmetqllf6zK8uYaxlnE0o8jHCS6IoDc37hMZajy1NuIu8bT6WBMI3ECMPozYQFpGOZpflHNUkR3uN7sREtUHJUJHiipIoTXB71+HicyAjhIiIdIrS+r1T8G/D68HWzDfW5GSf/o2T1nhBK4HHH12kNbjHGldTT7MjaxYX6PUHHEyPWTO41xre0hpQePvw1qD80XGrcGS54c2xRqbghGyske/QmhgZOby1oHiANeKYNYp6Mnwba2KiOCKJTrPG4lyFqWrcfdY45pcaa3YzOvNrKCU4f6aHWzqD1RF3RkM2xoZHJtN7rPFvaU3VWDPoaJZX+yysLmOcZXKPNbFOEPJ+a1yzBBbe0DxRJ6zBzUYznGZNfY816ZE1KkIeWhPhyf+k3iJ/Zq53xeJmVgQQunCCczXW1qgkZv7CZVxWsXf9dfZffgNjw9FALAXrSylrK6FbrUzTsCspDK6ylJMMU2RErYhOf9CkaIUzZlsZdJTi6hpjQtjQ2BKJQmkRdkq+Oc+QEik0zoZx9LbKkTJAEAakdZFEofmWD3++q0qkjwJIIlToWOupHAxLmj48s4SzcL4qGnjC8ZQIyEkZtjWz0k9kKP+um/Nd38zBkSLEQk3ooouMUElKe3GFQmiK8R71dIizlsh5fKsVmgUKQEl00qJV1UyTCVWxT5VP0EIg4gZ3IRBKYCsD1tMeDJgfLBCnKbS63PjaFvP260S9Nssf/iTnI8WL126Tzs0jBdx1hurgLh8xIxYGc4jmqcXOWspLZBqjlQYnMMahtaA/aLGwvopud5kWGePxPtbWREmfKGqhpAxJjzZUfwhAuJAsGo7bo6PdptVNeLeJFnnQEqRz2KImq4coJ9G9LlIIIqFwpkZ7UPuvU03fRHcfR0pBnGgi/a5467x3vcPrVGvckTU+r9m78Rr7L71+wpq1xZT1lQG61T5pTdlYk2foNKI9mAOaBqMza+IwAdwai3kYa8oaHmiNRkTxMWsK8KHiZmaNs47Sw7ASeFuDS/7I1rgHWaNm1qxSiOhtrYmSFq3KHLNm3Fhj3tKaKE2RrS43XjpmzUc+xflYB2vmj6wph3f56PTtrInASYyp0VowGLRYXF9Fd4I1o8lBsCbuNdaIt7DGB2u43xrvwz8PtkY21pj7rBFSEMcRUfSeNd/M9S551pqGVEIhmmQz5z1KRUStPt0LF1l87oNMd3YpNzM8Hi0Fj10c0O20QCqccdi6wpY1VRbGDHghSLs94nYLaxxxt4utK5yrkVKFbHTvQog1SkPCmFaEEsnZ+bbEVSXCS+p8ivCeupggrUF6gVQ6JMcLFSpxhMDLEBoWSiJ0BDIKyYXSU1jXvEF8+H6lAt9UTWkVPnetBaVCqNO65mtE0xdHQBSBMyGsKRUQek54RxjgJ5pQupSkC4vIOCHb38TkY5ytid08qjtAxAqPQIiYKE5JO32yyQgUqFjgtArlmiIGF6NSj1StcGasY1SrTeEtt3fGpN0WkYTNz/8ma4sLdBzkZYEQEq0kB3GX1zevIaxlfn6eKA7xcNGgAQEEj6e20E4Vg8UBaW+e2lYhalPkCKmJo4SoiZzUVYlrekUoqUHIgKTSSMRhvwkUYJqojffEWtFOY+q6pjIOLT1VMaXUkOgkPKcu9LDQpWdn4xeZe+w8HoGSCv3e4ubb9LrXmtDYbmZN5/wjLD77Qabbu1SNNUoKLl3s0+mmoGbW1NiyosqyQ2tavS5JK8UYR9TrYs1Ja6y3p1hDUzV5zBonqe1Ja8ShNWlTNTWzxgdrxJE1KtI40VhjmmjMMWv4ZqyxD7DGgoxn1iy8rTWImChO3t6axCF1+9Aa3WpT4k5a87nfuMcahVaCYdTl9bvXkdYy9wBrZJN7c2jNwoC0N0dt6yZqk4HUxFHaWCMbaxxCcKo1zt1vjffuLa2JD62pG2s4tAbxnjV/lOtd8qw1wWLh8Q6sC71XVBQjI0Xc7zN/5QmmO3eZHLwAU0gjwfraAJe0IWlj6hpbOkxeUk0nlPkUrzwqTlCdNtW0Ju5FVNMMlbZRrZRkMCCZG+BMHd7UhDQ7oZpVtwsZ/T5JsHGB0ooyG2PqEqzBFOMmb0aiWgqpFV44MKE7pZYpQkUIJUnTiHYkqK3D2WbWC4TSTiGbM3Ga5EBCGXmzwPIu7A7QAmElQgUoXHPEEmLbLoRhvQwRqjxH6gjZTkmiAVJK8oMdynxMsV/Rkgqt+/gmwTBKYlq2R9odoGpLrzUXujV7Do9wpA/VFjKOIEqQrYS9W1vsDDPWiopO2iLxHlOWnOsv8VpeI5VDqgiRtLhWSuLNm6RpglIdvLHoOAoltU5gqpq6cpSVYGmxQ29hBa8Uk9GY0XiE9ZBGbaRSOO+obB2Q8QJJ2I06aCCLw4eXCAnCYbceXh9nampncc4SSY0VltI4dFkStzsYb5FAJARCKJRPOPjGLRj8W6L291EWJXlVnriD3+tC8e1y3WuNCdboB1vTigTr6wN80jlmjcHOrMkaa6IE1W1TTQ1JN6KaZKikjUrvsWaW2C5m1rjGGk5akx9ZY4sx9UNa00riI2vccWvCJkCesMZ/i63Rb2ONP2lN1VijoyYjrkmN8aGHj0wiiGJkK2Hj9vaDrSlqpDxmTSGJs5skJ6wJCdUhIfjImsWFDr3FFbzSTEYHDCfjI2v0zJqqsYZDa0LC8sya4Pgs8vWw1lhvMUAkwtGj9nGwZu7fErW+j7IsKMqTHYrfs+bhrnfJ4iac/zrXJLz5ZrCkFEihEJGivbzCwtWn2b31JpOvbdDpptyetLj9UsbSekpcDlkeJLR0ROUddZGhtCZNO+hOl3Jni858i3x/n9agG97wUqLbbRC+aWYVyvKYJRuaEIJ0tUJGMTIOw+XKcTi6MbYK4WchiaXE+yiEI1UI27pIN9n6Ch0ppLJY77F1gfedpq+ND9n8sokYaR2S96wFFeGarHohmvJAHXZWHokQGvDQTDYGmg9zg3MOTAW5RUYxcbeNTs+gRyOK0TZmMkRHETJNEd6jtaYVpwzmV5kOdzDe046TJiTtmr4YoYOrjGOc1lSm5vrrt5CVIJsUmMU5kv4808kBvbl5VhYHWGB3tMf+9i77exm58qzmBbGOkd4TpQlSSWpvyKZD8sIhlWZpbYWo06aoaybllLoukDpC6IhZrYf1FpwK4zRkeB0EHM5h8YSQelNjH3IGvGDWVD/SGmpBqgWFrTF16O1hTQlRHHp4ANp78ltgF3O6jw7ZH+2SZeU9d7Bo0HmPnXf75eHIGmZDbHmgNe1uwp1Jmztfm7J8JiWuhiw11tTeHlnTmlmzTWe+RTHcpzXoHFnTaoN8B9Yk79AaGaxRkUSp0GBuZo1vemhJqY6sUToc0z20NeF47LCh3NtaMzzFGne6Nclp1oCKY6yOqI3h+us3j6xZmCPpzwVrBvOszPeDNeN9Dnb22NubkuvGmihBOhea5imJcYbpZEReOIQ8ac20yqirvGmy+E6saXoHheSaQ2u8UAjk21tjgzXKe/JbHruQ0X1syP5oj+l71nxT17ticeMJq1ElFcaF5F5PWP02/c9RSUyyuszC1WcZb+6RDJZJLzxFnLbY3trgxu+/Tmu+y1NXLzKIB9CboKQjXphDJjFVldGTKVVRMlhZQkYJs/ObsJMKXW0dJtxoPuTGhKNwiUjDYxHCgZxDCEmVj3HWUGUHIATad9BRDOEoG2EqVBRjXZhJ00kU42mNqUz4Au9DOWBT+xWiR7Nb1iFc3SQkw/G+Bx7XhD8V2Dr0RRAgZNg1eBe+L+s8ojIIGYVFU6xIBvMopSlGu9TTMZHUyCRCekEca1If47pzFFVFqzLoSOOEwFuBQYQJxVrjhWPj5nWGu0PWdUS3LqkQJM4ivcdVFRefeoyrz3+Urc1NfuHf/CwvvfgSm8aR3t7he88aemmfpNkplnnOZDimrAUXzs0zWF7FesloOmRaFDjnieLwkimpwuwsoRHeNy+jbmZJ2cOQ82FjxNABrTkKDLvH2WLHKQ91eH2K0lFmOXWUkuo4HDdqidaa+fk1Bk/8CHtZzs7eNnlVn3ovv7erendfwRp/ZI1tPpqECg3thEAlSbDmycaa3pE1W9ub3Pi910nnujz91KPBmv4EJRzx/DwySQ6tKfOS/vISMr7HGu8Q4hRreBtrzGnWiJDzMbPGh2O0TqIYHrPG32uNCHPtHs4aASpqrIHQZ2dWbXbcmvoeaxZQKqIY7VBPx+hvwhoOrbnBQWNNpyqphCBxDunB1RXnn75E+/mP0tnY5Bd+/mf52ldLNo0jSXf4Pk5aU+RFYw1cODvP3MoK1kvG0xGTPG+sCSXkh9YQNp2nWeOa58jPFjX3WWNPt2Z6ZA06WBPpiLn5Neau/ij7WcHO7nvWfLPXu2JxEy5x+Gr55miGpsuEkjEoiWoldM6eY+HJS6yfvcLcmTOY/V2WtCe6cA4dKW6/fgd1po+S86heitFtqAxVUUPtMMYQJSnhhotClKiJgByuh509aqrnZz8Pb3XRaiOiJLzx9gV1meHrCpOPkThcu3f47UilmE6HvP6NV+l3Y/qpZDwhnIND0369KYfUqgkNh/K/0P9FcdgeHQgfyPJYK/bwqFERUjah7abawXuNMCYccblQvujqGoEn7vVwpsLa0IpceBHeyCKi5YDUUwpHWeVo2UVJEbo/C4Vvel3k0wM27twhjiwXFjy9hS5TqSh290giRXYwgvEBWgre950fYfXMBc6ceZSbr7zEzds3eHGY87TzxEmMThOGuztMRjlz8x3OXTwPUcRkmjGeTqjKCq1ipE5Qqk0cxU05tkSFFwmPwgsLTiOlQ4h2aDXvfFj8oYEaR+if4ZqEbutDua9wAlt7yqzGpCW+3UbqVgjLe8Hg7BV0p0e2s8vOzj6mPmJlNufs8PV4yDkw4tg9H3bCNDvl98j6472OW0P4QCK8z5Rqhs62EjpnzjF/9RLrZy4xd+YM9f4uS8oRnT+HjhW3X7uDPNNFi3lkN8FEbagsZVGDcZj6AdaIPyZrshFvfP1Vet2YfksyGs+sCRFhZNNxWctm7tHDWtMsZBCgNFL6t7DGYp04xRoTvqdvwppiOgzW6Jk1nSNrtCLbH5GODhjfkEw+8BE+dO4Ca+uPcOuVl7l55+YDrMmYm+tw7tFziChhPJ0yysaNNRFSp0jVIo6St7UmOmFNKDWfWePcW1iT15hWsEbpNHSt9jDXWDPd2WVndx9j3rPmm7neNYubwzd3uCXCh7+USBES25SMECiSuQGrT72fs2sXwVR0EkWy2KeHYXJnAyfh0tIC1vRpnbtA0osZX7tOf2FAXZTErTS8uWejD5BA3URcAywQoiJCOLwxeEJeSqhIABVFSDrgPHIkqIsptsqomgCl0ilCghWSW9c3uH1jQu+pOWJlcM5TVhZsSDab4XrYIl1FzWMKv37iBvaE3YFqznzDgXoITztCgpucnQU3nUIhdNCsw98pm/J03ergxgd460L0AwFCgQbv2ygk1hpKZ4hQWCRWOMDijWdr8xZVUdHpeXTkWLh8nsnSE9x99RVku09d1ywsrTIa7nHxytNcfOwy//Ff/1+Tj4d8+h//PV76nc/D9ohnVYzKNJu3NqC7yuM/9VfpuCnZ3Zvs7eyTVQYvNTIKJZFKq9BUUEqkEqFhnwtll9JLnAhvVilEKA5pet2Ed7NEoABF5RxJJJECTOWwNVgjsBacaUqFIxWeY1Pj6xxnLKPhkP2dfQ7X3+GpDmiJEKa2nPxvs9DkrNPojJPDxqnN/7nm63yT3/Bnl50/3eukNfakNUIgj1vz9Hdwbu1RsBXdRJEs9ekJw+T2JlZ6Li0t4MyA9Nx50l7C+Pp1+vMDTF4St5M/ojUCFcmHtub2jU1uXR9z9el5Immw3lM2VUehnQVNRGi2ifpmrXEPYU1IK0A9pDXmra0pi/LQmvnL55iuPMHdV15BtPvUpuLc8iq/q3b4r3iKR/PL/Orf+M8oxwf89j/++7zSWPOcilF5Y01nhcd/6q+gXUZ59yZ7O3tk5UlrtNbvyBrXpFMct8YLTeUccSSJ3tIaHZ5jW+OrMCR5NBoFa9z91jQv1enWAEK8Z827ZnEjaN5cyOYoSB3+WMgADkIio4jF9bN0ux3KYUEXg/Og65raOx49t0zaTrHGomyFjFOE9MyvLbL75g16S/MA+LoKlQMqNLI7fFPLkNgVdlAuNLxyLvQrsBUzDISAqB92Ts45bJlhqhovcqIknH1bbzg4MKgoItEtUjXCeR8m0hqDtRYpo9DxVsWIJCasUoBZV9EmL2f2y4d3NU1772a3J5BNNUAz6bdJbPNS4NGh4sGAMyC1Q2iFSgOarqpARwjhiZRqykwVzhmsd3gvmu68CoUkmw7Z391FCk8njRGxprWwSPfK4+zcvkmyvES1eZd+d461c4/g8OgkpYOn3WrzF378p7n+pS/wSiaR29u0p1Pyg4Ir3/NJen/h3+dgPKEbay7Zkund61Q7d/CTKe5gE5lPkXWFsKHCwHmLlw7VNEcT4R3b4KjwQmBNhfatUI0VSkQIlVYelxnqzJPVUDuFNwAGqTUqSg+ff5ONqIqCneEu+6PxERrNkkXJcIJqPQg/42aWUtGEsyXhsYUNYGgdIpvq2uY5xs+GNouQY+HfCz1/qy/RJPOeZo08bk0csbR+jk63QzWzxoGuDbW3PHpuiVa7hTUWbWtU3EIIWFhfZO/NG/QWF4CHsMYfs8b/EazZr5FxTBK1SPUI5zx1abCmPmmNfgtrRPOJ2TxTJ6xxIR/y4azxOCP+yNbk2Yi9vZ17rFmif+Vxtm/dpLW6THlnk3Z3jitPXWT5f/B84yuv8V///Ys8sdLmzR//ac4es6aTZWR7OZe/5xP0PvljfGY84ROxZmJy8s3rbNy9yZN7O5Tbb4BVdJVE2lA56bzBS39kTbOpnFmjhMDca40LjUtN5XG5wWSerDqyxmOQWqGiJDz/PlhTFwW7B7vsHbNGNAeLqjHDNdYcbt0ewhrRRGz+PFjzrlncSAm26SHgPc0uCkIzAY8ntOIWStGNWiSRIOomJFVEXVVMqpp2v8vy0qCZ2Oqw4xEmdeTbG0TzLWxt6PR7zQ7b4Y0P3b2blrxChqcjNMkLGPlZC/DZy+4dWIvzHpEkxN1OeHx7ltqWuFpiyMOOrblZa69AehJliZqhakKE5FyvQqWUmO2opGxarotDW8SsdbhvogN1jT/s0TxrEBWaBgqpZnc9Xqmj/BIX9qmC0AdD6gipLdZZfB2ebxXHYWfnHcILtNDUtsY4g2sekveW4d4OVW1II00aJ7hIoNM2648/wYu/+ksMtzZpD+a4e+d1RD9maeVMswuNcaJm5crTrJ19kluf+yxf6UecPch49NwKstUmy3P+wX/3syidsHZ2kZW1Jc5eeI6FS3O0OzHdNEbVGRQTfF3AdIwop9j9XaqDHchHuGyCySbYssKZIoSFm3NvaD4grMFUBlsIai+Y1hHeSqyrQSpUkiCTGOcs1taYYp/iYJfd7btMs6J55sMOWAtIVAi3O+9xHmIdkSQJ7U5Cv9dndXWd+bl5alOQZRl5kVNXFVVdUZQFWV5QViWmdpRVRVnV1EZgw0sXbr2w1f8zBdCfxnXCGk5a449bIxXdVkoaCeJuemRNWdHud1hZnDthTZ068u07RPMt6srQGTyMNWEQ5qE13GONsyG/42GswVP70MU4lZZIhrya+63hwdb4xhqak4u6bvo0f6uticLzoN7amoPdHapqZk2MiwRR2ubM41f56q/8Egebd2gN5ti98zrb/Zjvee4M//i/fZx/9FHJ83/VcOPCM/xvlp9k9Duf5SuDiLP7Uy6eXUa1O+R5zhf/Hz/L70Ux8+eWWF1dYnflKX5Ob9JJPY88/n185/oy/7+Xv8pPtyIWkwiKjJ2DXXYPdljOhiT5FLIJpqxwtsBbG6xh9pxarGmsyQW1E0yOWSOkRCUpMklwvrGm2gvW7GySTfNDa2RjTawE6pg1kYpIkph2O6HX6xEvLqOyjEo4eoMBFDmmqilNRVnmZHl5aE1V139mrXnXLG6aefFh50JIuAvze5rwrQ/j62IdM9/uIrIJ3SQlXV/HOU97ZQmRDemkGltXJGmC1JBt3QCT421CHOumXb9CxGnYYcDRkYEPMT9xuMSVoeQSgfMls3WOa2qjfVYiIknc7eJNjTvYwtoq3CBNE780haq21MZibIgkpJ1us2sLKEkhQjty0fSgmB2jeI/wrumrYZtuno7QBygkqwmlEM2UaqH8UQK0lCghkEqBACdV2KBZ2yQ3hu/LVGGQXXTY0yLAp7UG5zDHyvOVkFRlwfBgH+Gh3YpJkhZWCaI4YnF9nf7yCmJujoVzl3GM2bt7s2nZLkK1U/OYrnz3D/KVX/lVdJRxs93lfLvF6O4delWG8wlbmyU3b1zD2ddJWh2iNEJGnm4nZXGhxfMffwYVaaoipiwFc4N1lq7MM99r0UoUytUoU8D+DmzdwG++gT/YAsKHjZtNQrZQ1JJprdFIjDdI5dGRRmiBNwIDmNEu7utfYLq9EYYJNmFeBSRKsrw4z9n1M1y+/ARXHr/MI49c5Mz58yysLNMfLDC/sEjSSnHOYqqSqsipypJiOmGSTZlOpmTZhHySc+vOTX7/S1/ihS++wO3NuxRFgXVgrDjcXYWTlW9nev4Ur+PW+HDEMrOGE9ZEzLd7jTUJ6doazkNrZQk5PaDTioI1SYKMIN++iTcZuIQ4eQtrxHFr1FtbY7nfGlvj9k+xJoG6dsEaF6xJOp1TrBEnrBHN0cShNaaxppmg7Qgl4t9ya7x/sDVI6rJkeLB3zJo2Tgl8HKHX1hprBiyeu4ITEwabN/jFv2Bh5QX83/wkL7yUwH+pKB/7EMmnZ9Z0uNBpM7p7h36Z4X3MxkbJzetv4uxrJGmbqBWTRRHZ732RjYUWH/jIk9y2EdcPKqpS8eb8GXYen+dD/Ta/8we/h3ytj/qRhIsanvr6dVbzN5gfbzeRkVAggw+3WllLslojCVVbUnKPNQIz2sF9/QWmW5uNNeE1mlmztDDH2bUzpJcfZzU9wyPf+SgjKfnCv/45+l5yLUl583f/EN/r8olPPcFCmVNZx9Lf+ps8WrR59mBK5ifkMmdv4yY7X/oSL7zwAnc2tyjKPzvWvEsWN6KJs82y+puGVVLinWxOlx1KKipXo5vBhX46oYoUndUl2m1FXIayZqEFwntsNaTc3aE7P8DVhrTbJSRT+dBfounOGTqQW7yw4UhBhrUy+CMACWGT0MabcMRjK7wJ03x1u0OUp/gyx9qSUGWg6KQSZz3WWqyTxBrSVgLMdk5NOEaLE9UUWNeUcoaSTmzYbbra4onxdHFOYpzCOYfAImWNEjVSW4Q2GEApjZL+MMoQWq4TKiNmh+vY0FjQhf3WrBeGUBaMDG8uLzCuYjIcUuQVaRLRarWIkghBiFREacr6E1d58XOfZn9jk/bZAU+f+RjOmnB0pnTTJAyufPgjDNYWSdkiSmNe2ZsgJzfp7O6SpgnOV5R1ifcC6X3Y+WSG8UHORz7xLJ3BgM2NA9rtFp/5tT9gd2uMkJ40kbQ7Ce12wtLKHOvnF3nssas89/5PcfAv/y5JnWOtwziQFgqjyGtFbiJaKnQejeIE1VS4eO8wpsKUE3r7N3jETEikIOp2uHjhAu9/7n184pOf5LkPfAfnLl6k3WmHhY8KpaQ0+Q3MnmoikiSl3e1iqwKWFpE6OrZZD9G+/yjP2dnZ5usvv8RnP/9pXnjhC7z66pvs7I8wNryGhyMk/mTepH9GrvutUcescSesMSilwsynE9boU60pdrbpzc1hK0Prraxx3wprWvgiO2aNpNM6Zo0N1rTaKQ+2RoWjEOvC8URtHmBNB+cUxsnGGoeUFUqYU6zhW2ONr5jsDymKxpo0WGOASkfcSVvHrLlL++yACx/8KHNzhrs/eg7x924gfnse3+7xGf8433doTcI3dieo8S26uzsk91oD2MpgMsPoIOfDH3+GlaVFNm7v0263+fSvff7Qmq1EkrQi2q2UpV+b49b5JV5VT/L4D3033/tzf5dO2VhjG2tqRVZLMhPRkiGRRsdxOJJqrLGmxFRTevvXuWAmxFKw0Oly/tw5Iil5+tnneOH3fw/dG/DlSYe7v64Rb3we/7Vfxe4fIA4hAYqCz/yrn8MP+lz+6b9E/NnP8gv/9EXq8grMfxl/5nkWzj7Fh/6jj9D66f+Cv1JeY+dzv8ntF77AK6+9ye7++NvamnfJ4sYfnfw0QQvR7J6cs01XSRGaVjlPVeT0bI2tDZPtHcr9XZZXBviyCB8YziKcgbZESomOFNU0I44UQmhk01fAaxAmfPB6IUM5pggN5Zi9+cKjCz8WIRve0ySOGoOrK3AC1WkTd+dDaakp8Bi8rWm1NZGEsqwRwtNraeI49IcAmpCtbEK8YRdprcdWBlvXoRuoUpgsJcv7jLM+B3nKsJCMcsPU1CGMaw3tSLDQ0XR1ycLA0GntEMVjoqQ5q1UKITzNQB2ibgeVpNiyCM9zbZBp3JRXh8iQFBIvHd5Akecc7O3h8KRxC60jtEqIFMQyQkjF4x/7OEJpRpM9HvmOD9Bqp1gTuikLFTdHfLB45jxnrz7FrS9tIaOKT5xf541hxb/9mX/OjY2K8biDkG0cEmObo0AcwltUEvHKN+6wfmaR669v8OR3XOLTv/yHmMJRVTA8mAIT3nx9Hz7/BgsLHf4Pf/MvcvfuNo+mMrx+TmAKSVEp8lpT+oiUGqk9UkVIFebhmMqS5zl5WdB3jg8+dpm1D/8w3/n9P8zTH/gAg8UlZlOX/Wx7xqysH+5Z2YSAnAuVbSppcZjQ2bwHwp/haUcxF3o9zj/yKN/z/T/IeDji5Zdf5NO/+ev82m/8Jl996WUm0xzrGnT+jCYFfusvP7sFG2vEPdaEIwUvQjVQVeT0Z9bs3GNNXYSuvq6GTtPLJlZUwz8Oa2yYAO5AdTrEnblQCXVojSFtRSetSTVx3CTCQtMn6u2skZi8RZ71GGcDDopgzTA7skbOrOlqOqqxpr1DFH1rrOG4Nb6xJjqyZl9G3JSS7/vYx0FqRtNd5Ps+wLlOi5+oa/7O2QWE+mvwtb8N//oy3/hkm099pkux3VhzIVjz8//yn3HjrmE86iBk6z5r8Badxnz9pVucObfEtVc3eOr9l/jNXzqyZnSQAxk3rx3A599kfr7Nx9/3k1zb3OGxNLyWp1ojapRqmkfqKESuKktW5ORFQb/n+OCjl9i88mHccMLXXn2dr776Kr/94ldDfszXXwb/64BE7IQWIiGJ+HhWcThC9PJjvPYvfgYxmTALwAjv8fw8236OX/jvPaxe5QtP/+dc+PAPsfKff4rnu23O/Nan+cpv/CYvvvR1Jtm3nzXvksVN6BUQJquGK5wFh2GVYdKzCw2UHEgHSoSZHREOOxlT+jE+0oiqBlOj0giXO6Q3SB1hrSFqxU1TNwtaIp1EaI0zJvy6AuowOoEm78Y5EUKz1oRuxS5k/DObOI0Pg97KHJRGJynWVRjn8dYSxTGttiKbFCgp6bcUOo5msb5wQ4owxA2grgvqIgcnsZXDuD6T8hLXNxTXho49rxi7GFop3YU+W1sTBBpEhStLZFZDkbMYK84k81xZXGVpaYdOZx+tm1wfJXG1RcYRKlZ4K3FF02LdRYcVXKErhqJ2DuNq8mxMnmVIpdBSoHRMpGKUksRSoZSmO1jkqU9+itHeNmcvP8XBzkYIq9saoqasVIJwnie/67u49ju/ybQoUUryxNI8Vz7ySfRLd/iVf/dZSjPl3PkrQAtrQWiPszCe5Fy8vM76+jJ1VbA/HOPwGOfDmb0xRFpiKkuStJnmlo2NPYq6xiiFsYaq8JSTiMIKplZjmg8SKSRR2galcR5KaylaC7SvPEF8+X0sXH6Ki2tnQCu+9uJXEUIQxwlxEtNqt0mSFr3egE6vh07iw0oGoEkydOFjTEXHKqnE4aIeZpGe5thRerRSzC8t8dGPf5IPfegj/C//k/8VX/zdL/Cvf+7n+M1P/xa7+wfUtvkz+PaA50/vEsEad5o19oQ14l5r/AOsSYI1amaNMUTp21vj6+ZxHLeGB1njGmsMlMX91hhLlCSH1shDa+LZJ1JTJfUAa2qHsT2m1SWu39FcG1r2vGbkInya0F0YsL01DdbQWDNtrEkaa5ZWWVrcptM9QKtv3pra1eTZ5D5rtIrRjTWysebpT32Kvd0t/tWVp/ngzgZdD8/8xYqX/uv3gf0yfHGR7R+9QvmT/wH+v/87J6y5/JFP8msvbfDL/+63KE3G2XOXOLRGhSOy8Tjn0StrrK+vUFcFB8PJW1qT5Y6NO3sUpqKuFbU1VOVp1oiw8U5awRpEsCadp33lcZIr38HC5af4nk6X0Te+wXPf+Z2H1ny2zPnqP/vnJFLT7Q2YZhl/+JUvM+uvE4ZAz6wB9n/p0JpZEUqTZIYQI8Djt74Id/8yN35dcyM+z+9+9xM89r/4u5z/9/8G/+31L/Dpf/1zfOYzn2Vvf/htY827ZnFzWC3lPVKqZjflD8/H8U1invDE7TYic0iRo5REItGEqfYi0ogkAiWxZoxU4UPCViZ8qDiLMzKcCTczO2TUnC96BQpEUymF9fi6Cj2thMS7unlT+ub3aayrcLbEFxbdbqNbXUyV42wRVv9KMjfQDA/GzLc0HZ0Sulg0s2CcRxCS8UwVJnA7IzGlJC8vcm1rmdcyxabtULYTls/O8eTT67Q6LVbOzfOL/+ollC74xA9eZfPmmOW1Li/8ysvs74z58t5dXrm1x9XRGs+srTPoXyNp54jaoKUk1j5UMiTtEHFy4Q2NlOBB6hhvc7BgTEUxHWG9J5YapZPwiklQOgo9LGTALE3aML+IFIKk1QHvmioQw2xKtxCS8+/7ALLXoSwrpE7wdY0sMx57/CpzX9xGSM9//Nd+HB232d0+oDtIMJVgaXVAv99FyvBBtbA4IE41eV7hcWHWlBVoGaPiFmU5ZmtryKDVwdqcsjLkU0VtJKUTFC7C+tAMzUjYLHJubG+yIXtsRgPMwnlsnOC2tzF3fwNH+IAyrg4fRIhQERfFpGlKt92n0+6wsrTO2tpZzpw9z+LyKp1elziJj0pqw43f/Fuc+OnhIseHvhrCOxAWnSasnTnDj/7IT/CpT34vX/nKH/IzP/P/4Rd/+Ve4s7mDdf5wd/beddrlj1nT5IwcWhP++3FrknusaQZ9HFpDEvriWDNphlzyjqyZVWXiPL4qwzrmhDUhqvO21oRVGPMDzcHBmPm2pq0STlrjTrXGloKsepTrWyu8NpVs2C5lK2Hp7BwfenqN253bXD1/id/5V1tImfEXfvhJNm6MWFnv8cIvB2v+cH+TV27ucXW4zjNrZxj03yRpFw9nDadYk42w3hHLpLHGhf44h9bIQ2sWFpZYF4K9Voccy1d6ffSV/wr+sISxwe2m/P5vf4JP9LqH1lDXyCLjsSeePLLmr/84Udxi5+4BvfmEqoDl9Xn6/S5KhSO5+YV+Y00ZDjAba9ShNZNDa5zJqSpDPjmypnRRs7hxGAFbZcGtmTW6T71wHhcn2J1t7NZvYH04wjM+LKS8gGUd8cM/+LFgTWeAM5Yf/v7vYm3tLNdv3OKlr7+C9Z5Pf+bToTq3bpoAPpQ1EmGAX36CN37pn/LGI54bf73F1f/z/43/3V+7zrWf/Rf80i/9Kht33/3WvCsWN82GFRHmzgKimUNim4ZrzRntbCaLMcyy96WMQkmwtVhTo5MYvESlEf4gtAb3xuOqGoyl2N7Ce1DtDlG3i4h0k+gKoEOnSKcwZRkiMkKG8kgJXvsAWj0rz/YI63BmjCsqAKJODx13sMZhbAV1xaDfZuP2mPmWYa7jm+S8gJ+UCk+TW2M8pjTUZZftnUd5cSvmmk2Yxn0uPLXKeFLxoe9/gtXzc9y+MWY0LtCpoNXtsLeXM7/cpjvf4nt/+v2MdnOy4ZSv/e4NvvrGHTav7fH86jMsDd6k17tLoj0q8igRzvnDzJWwc/VNQrdSEVrW1MJgmgnq3oNSEqVcmAnVhEOlDD0zRINVp9NHCEEUxZT5lLjdaV7kJr8Ax+Ijl0iW11Abt8LiwtX48QGLl68SRRG19bzx5hY/9GMf54MffgpjDWma8NWvvMze7pDtrV3Wz6wTJZL/8K/8IDdv3KXIS174/It0uy2uXLnEiy9+g8kwY/PuPqur5zE3X6Yqa7AhWli5UMkRpSVDWfK53DHa3MHmjmRxgSiKcMNdrLMYW1OZAu+bihfAC0sUpUQ6pk46GAtZViHFLhtbm7x2/Rv0B3N0Wh363TmWFpdZWTnDyuo6g8UFoigO3V5nH6zHoso03U4DQioMYiXs6JXS9AeCj3304zz77Pv4yZ/8D/gn/+yf8Au/9CsMRxMOp068d524TloTwmVH1tj7rHHG0GT+hl5btsYfs0Z4iUoifDEMyf61u88a3e6g386a2oAI3XgfaI07xZrkyBpfV/QHbe7cHrPYNrQ7PNAaZ0KZeF122Nl9lBfvJrxpEyZRnwtPrTAeVzz/A1dZuzDP/I0l5ASi9jZpu8v+fs7CaofeQpvv/Q+DNdODKS/97g2+8uZtNq/t8/zqsw9nTfPz49ZYYzC1wXsRmufJZmwEPrwlZHRY7QWeTqdPLAQuivmJPOP/TpfcCBBfg4334R+x9C/nROM1xJ0ja9zkgMUrTx1a8+Ybd/mhH/8EH/zw04fWvPjVYM3W1g7rZ4M1P/1XfoCb1+9SFiVf+NyLdDotHn/8El/72itMhlM27u6zunIec+NlyqoKBWSNNUJb0rRkJEs+XzhGGzuYxpo4irGjXZyz1MZQmSJYIFWI2j3AGiEgTmIOpttceGyFJ595jFbS4ad+8kcoS8dnfuuzfPa3f5vd/T3KsnwbaxxwE6H+HoIV/M0h1/7LnDc+99288J98nL/3f30fP/qTf4l/+U/+3/ziL/8qw/H0XWvNu2JxAyL0N3Cmycr2CO+bJCZ5GLzBhTCulBBpBXGKcBbhYpBVGMKoJCrSkEhUNkRJgXDhDWSKElfm2KrAjA8w0wFRv4dqtVFxGhqVeDBlSXlwcBS9m7Uvb6oAwlwREebRxA5vWxg7wZZTpNKoJIF81FRWOdJ26LA8zStaraYbqTEIJM57TFFgyhANKKsBNzev8OKow2YyTzzX5aMffozRMOc7vmuZW9dGfPqXX2N3ex9roWyge/HL1+n2UtI0Ymm1x3Pf+QiXnj5LZ67DjZdX+Nrvv8Zn94d8qHyCpUIwv3QHlzlarRjdVJEZN5uQrJsjOnOY2FhXZXg9hAwVFz4izKgJ03xRimZsZbPYUThTI7WiKqZhkdhML5695nHaYfHKVaZ7NyjrHOqK6u4t5p+fI00jyknJFz//Fc6cX+E7P/IUSmpGozFJknB3f5eFpQVqZ7nx6i0uX7nIhz/2Pvb3D/j3fuxTxHFEVeVs/T832Lk75NbNAz700bNkr/0BVVVihcPGAtkuwBTcwbOTeoaRxNWSeTrURU01uU1VFeRZRlkWGF8TRS2QnnYrpd9fJlaaxd4KFx+5zPnzF1haWmUwt0Cn1yFtpagoTGA2tqYqC156+Sv80q//G7pph8uPPcnVp55jeX2NKD55jHV0A3L0qYwIrd7xSGKktPT7Az7+sU9w9epVvv/7vo9/8A//EX/4lRcpSvOuDhv/6VyNNd40Ih+3RsyeYnDheDpYIyFKcS2LSmbW6GCNjiCVqHyIUuLww/vQmjJYo97WmpBnc8IadY81kcObk9boOKHMgjXeOdJWsGaSVSylnGqNLUMz0arqc3Pzcb46arOZLBANOnzsI5cYHmS8/7tWuH19zGd+5XV2tvYeYE3M0lqX5z74CJefPUt3/gHWLB9ZE91rTXSPNTjqsgin9kIipUBw3BodJrP7mTWhz8+Vuua1WvFMPaWzIMk+ZhFfuw6Lq7C9wq/+b5/mqb/zFAs791jz4cGhNS/89ldZv7DC8x99GimCNXGSsLe7y+LKAsY5brx6i0tXLvKRj30H+wcH/PCPfYokjqjqgu3/bjNYc2Of5z9+LlhTlliOrBG2YMN7tmfWmMaasqae3KaqSvIso6gKjK+I9ElrIqmIdIul/ipp0ua3Pvd5BoMFur0uSatiMxrjvMfamrIs+MAHn+P5jz3Ds89dYjIq+OVbm1z7zGfIhwcUxbGBnKdas900ahTIz/+fONj9Uf76nQ/xt//nPf6PV/8OP/ADP8A/+If/kD/4ytco34XWvEsWN4RocFO9INAhDcG50DfA+mbh03xNFJP2+qTdAeXBTpjKiyZ+8iqq08a9+Qp2fyskbKrQ7jztdUjn+njXwxcV9WRKOdrHlyXR3AK+7VCtFAAzzTB50bQoDw39rA1n314SEk5l6B0hEIhWJ2TZZxOq8Yh4MEeSdrDjA5w1CKlJ04jb247BPLgy9LbwQmKaqgTnoMxTbm4+xpeHCZutZR5/fp2r738ktJLYEPzyz7/Mxu3tZpcHQkmcC8d4vrLs708AuLuxz403dnjsiRVW1+fxiSDudiiiiBdGezzPE1ifs7iwhZCClpBoHWGNQzgPrkaIOBSWNNpba7C2btoO1XgRSkVFBKBCZ0+hw4KuSTg7uHOD3uoZ8vEIW9chSVeFW05IhdIJTz52kRe/JCjrCuoaRjvEEjrdhPG0Yjqt+fl/9Vtsbe7yzHc8wdJSlyiS9Pttdre3SdIWg7kB3nvGkwlCSTq9DmBpd+cQOiVp9djdz/Hds0xqwzifUqaOcS3YymAz8WwoR1GCtJpO0uXu1j6T6QaTSU6VVyFxVIMTgkhAqxPz6MXH+LHv+8s8/9FPcOHSI6SddihrFeLo2OnemxzBaDLiV3/jF5iOh3zpq79D+5c7PHHpKT7wgY/w+JPP0J+fD1Exf8qW6DCkLMJzqRRSVEQkLC0u82M/+hN84P0f5J/+s3/CP/8XP8Odrd1vyzLOP9bLh4gGp1jj7rFGRtGhNdXBDkVjzW9efYKs2+Enr72K3bt7aI0QnuRbZk2oJJpZI8W91gyJB/P3WdNKI25vWwbz4lRrrIMyT7h19xJfPojZaK1w5UNrPPmBizgvkKnkV/6nl7lzaxtnLODfwpo9bry+w6Wrq6yszUEqibrtxprd+6wRb2eNFxgboqQPsoZTrFm7dYPfPTjL82sjfnyn5v/1VzT8D/8z+BWH+Jee6r+Y5/HHLjL5fYI1xsDo/8/ef4dJdpyHvf+3qk7qOHFnNu9igUXOAEmAAAmQIEWRIiFKFEVFy5augywqONu/5/o6XFsO1+k6XiXLtkSZohJFiVEAQYIkiEjEBbDA5jh5Op9U4fdHnZmdXewCoARQMOXzPMBs6Omd6en+dNVbb1gm3GDNaFjwB7/1FZbmV7n6+kuZmmoSBpKx8TrLC4vEccLY+BhYR38wREhJq9kEDI3mBCr01qysprjmDgalZpANyWuWfiFYHMFcDKcCs25NM26ysLjK4Mgc/f5o3RoZgKmsSRohu3ft4ervvJt9X/kaz+57jgOHPw1CMBgMLvwkR3Dl1Vdycu4Iw16XIAi5ZXONj/zUTzAaaT7z+T/i6X3Pkhf5K1uTPgKPP8Go/D7+yZb38P+941r+vw98kF+44UZ+/df+B7/+Pz/B6TeYNW+QxY2vMvGVARrH2iJHVEnGfkezNkUb4SgHPaQpELbEOcdwmFJbXSJeMbjuIs6WiMj3jpDSETbryCTEDDWmyJH1mERNkfe7FL0VoqoZlYwTpPJ9L5zWiND3bvBjVhzOaIq8WD+6CaOYqNZAxnWcsdhsgE5HhPUGYZ5TFiUqUjTbNfYdFVxifeUDymHws1uccxgTsNq7nH2DOqfiWW5858Uk9YTVlQGPfv0Ixw/Nk+W5H0WhJA5V7W7ASYcQIdaW1c5TkpUFU1NN4kSx69IZ3vKuS8h6Bc89cpTjzxylWbyF+cUvsHk2RzhHrVnzTfyKvMpzcuuhX2OrZG/rsNWcgbV+RAjhh4RGCVQlqcr6N/fBwmkCFeDkWqKm3yWzlj+rJBM79iBCySgfEVqJ6S2DyWiPJczN9xECOis9Pv37D/DYIwd57wduZsfuTfT7fYJAIaWg0+nRbMbMncqY3DTNcDCgKAoOHjrF3OkeFuh0Biz1DP1uyokTXZa6ghUcJwLDfGbJrGBYQhhoVlbmSDNNWeWcCs5sLq2z2EDSaIS89c3v5EMf+QityYlqRs/arS90reWPORbmTwF+GvtwNGBxZZ5HnnqAbTPbefONb+dNt9zGpq1bzyxy1l8q5+JRDTOVvmxYSsnuXbv42Z/+OW684Ub+5b/5dzzx1D5/ZPK/L17RGuHAemv885t1a9hgzVs7y0SdRVxnwVsTe2uEOp81yR/TmpKiyP3RzTdjzViNZ44KLn4Zazr9K3imX+NkvJkbKms6q0Me/fphjh30/U6EkKhAvKw1TkiyImdsIuFkcIg3t9q86Wcu59SxDvOHdnLsmaM0y1drjaqs0RusoYrSnLGG81ijl0+zpR7Q04bwpIYbQNzm4BC4/wJ0Je6yixChYpSPiNas0Rlj69YIOis9/vCTX+PRhw/wvrtvZvuuTfR7lTWB3GDNKW/NcEBRlBw5fJpTa9Z0hyx3Db1uysnjPRa7sAqcCDRzuSUzglEJQaBZWZknzcqXWJNqcM5iA0GjEXHjm+7kv71rC8f/xadhOX/11oC3xnlrGPV5ZnWBOI5511038+YbruP+Bx7khYOHKMriFawpkc/8BsWP/QEn3lPy4//0vfzNnbv5iz/z17jxxpv4l//63/LEU8+uR9X+tK83yOKmwsXa6ijQ+WMMzHrvB7eelOoQRuPSEWEtIGo1CBoJHVuQLS0Q1vwsFFFNE0cpnNAYaxFxQhBE6DTDDPrEm2ZACPLeEoUVhEIQKoWKElSUUg5T32Jchv7opTp4kcr4Lrc690myzhBENVS9CQJ0NiSwdaJ6g9KsYFxJsxmwJFKMqnm0jMG5AOEkxhiGo108t5RwWLcZuZT6eAxOcu/n99EddHCxpdFwfOBDN1OvO1ZWRrzw7CkajRbdTsnpUylJ3GB6ts2evTNs3j3JpW/aiXCKfd84yZH9c0w0InZfs4XR9nGO37uP7Z3rWV69n2iTQhWGOAkJCDHGoy6sx8SxYSicAaxvKSVQSKF8qX5UdVytFp8SQT7oMDhlkDNT5MM+Ua3BWqkz1a3bm3cgw4jclAgXoPMV9KDLtp0z7HvuBM4JtLFYa5lfWOI3/+eXuPt7bmXTTJ08M0xtalLmmiLPME6wevAkX3/geQ6/eIJeN8NZhcAi8g5Pf/yX6R08TDeHvrMcE5YTPctQO4bVcLuatMQCcodPnq5yXoSAWELuBFES897v+G5++C/8RWq12plq75fF5sxVlppOZ4UoikiSmk8adI6syOgPexw+foh77v9D3vaWd/P2d76bqdnZKr+J84BT/V5WTRIB5zRjY2Pcdde72b59J//kn/089953v8+Z+uO9QL+NrlewploAnN+aOkEzoWNL3OICUcMn53prhG9WJ32e38tbwxlr4pdaEyiFXrPGeWt0+U1Y0whZEh2MTM62BonRhuFoJ88tJhwxYwxdSnM8wTnJvZ97ls5gFRdb6nXH+7/3Bup1y3Orh+k9a6nXW/S7JadPZcRxg6QhievLbNm1iXThS2z+83vp/fcXOdnssLTY4/pr3kW6Y5Lj9z7D9s4NLK98mWjmHGv0Rmtc9XNggzXyJdaI81hTDLuc/kPDxXdPkU8PQDVh0eG6DmYhH3f8QbCTd1fWSBdQ5ivofodtu2Z45rmT1dGxxVTWfPw3vsTd3/NWNs3UyTLD9EyLMjtjTefwKR584HkOvXCcbjfD2WCDNb9C9+Bhurlj4BxHpeFkzzLQjpGxvhnky1iTrFkTx3zHXR/gR3/8L/Objz4EHb3+PH41ly41ndULWxMHCXe843pufdMNPPjE0zy3tIw+fdp/8oWs0T3kH/4Uiy/+Fr9w79vYPjbG++56N9u37+D//mc/zxfv+8obwpo3yOLG+R2x1dUO0yGrcKPDd+W11r/BBghEmuJMhikkYVTDZhlu0MchcDJExAl2NMRSeHhkSDnsoGspQauGTGKKzirOaMJWC1uUlOUIPeoiowBZr6PqCVZrdJYCpc/qlwopHCqqY22JkgqrDeVogCstYb3aVWlfRRMkDcJsiNGaWijJREFpDcNyiFOBb5JVFJS6ydHlKfZnIT3nMM7xxXsfYfaygE3XZGyLIQxjrNFc97YdBFYSJhGXXbOJ1liLzmqfuZMF7c1bCCcSRKQoujn3f/4AQeLYOlFDz3U42M1Ymh9RZIa8n5OIbYz3dlNPjvpkxSKgMdYCoX21CBUwzla/9wscK6oupqHGGA1YVFz3z31f24m1mnI0YH7fY+z6wA+gy8zvQN3aJGF/u8bkJsJGi2IwRDmHxLF65AA7du2hXlOMjbfpdIdkmSNOYrJRzu9/4n4uuWIL11x3GdPGHxUePTrPiy/O8+yzpykzS6/TIYwTGo0aU3HK7PITnHjxMH1n6SvLi4VlIXeUForqRRz5pyJDB6GEphJEgcBZh3FQWF9rc/MN1/O9P/ijtCfGKUuNyEuQvmJqbcr7+fHxEcjuygpHDh6mNdZmcnKaMAqw+NYCUkoyNWKYDvnNT/13vvbQvdx15/t469veyfj09JlSzvV73FjlY0HYqiLHkEQBV111Jf/85/8p/+xf/kt+/1OfIc+LP3V0/nQvh2XNGi/MujVizRpdWSNfak2e4wY9XEPg1AZrRI4IzmdNcn5rhq+lNSVBrXnGmkiQi5zSWUblELtuTUmp6xxbnmZ/GtLFYaTjnnseZktlzdYEwsBbk925i5sNPF97gruvfRvt8Rad1QGnT+S0t2xhJAsOH/8GV+25liPPXUW4D8bfXWP5yROI7hT3fuppysyS9XMSsZXx3kXUakeYsBZbKBpj7fNbY81Z1tiN1giLrKzxvVq8NcVwwJs2PcqW6R9Ez2S4zOKWHeImcD/l4MuC5BsvtWblyAF27LqEeiIYmxjz1qTemnSY88lPfJm9V2zh2usu81EwKTh2bIEXX5xj377TlLmlt1pZUxdM1lM2Lz/B8Q3WHCgs8+exRrwKa268/jo+/MN/junJCf7K3e/js0feR3bPMo8dOoSdn3vFCE539Rxr4gBXLXA2WhOokDvvvJE7N+3mq7/1ezy5r4r2XsgauxX2vZ0X/5bghV8seVsUsOeqq/gXP//zbxhr3iCLGzDWZ8lj/aA1hMDptYiNh985SyxKIgnowj/Z8hIRKppbZkj0gHKwioxiRFLH5IV/E3UChMKORtg4QIa+I6kpcoJ6m6g9juuWmLJEpwVRHCODgKCWYMocU5a+B4Yr/bFQ6DNRpAoRiGoeyBAhLEGtiYgbvmldEBImDWyeEwlHGAgMAoMiihKCJMAUCVlnLwdWHd2gDQqmLzaEm5Y4frIk79QphsaHhp2hf+xzvOs7L6c/6qELzc7du7CmoD1WMlqc49jDI2a3TzG7o4UdpJieI2rXuPTS7QxHGU+NTvDC0dMYXfB0KHlb7SqWlw/TrEMgJEJVE29LP/BNSKpqDI21Phnalhod5QgbIk0J2uGiiLU+Ra5qumiyEZ19T7Dr7e9DzG7HlIWvdKjybnCOpDVB0ppksLpMJCOKvMQcfZFt33ULY606V19zMafnloiiGlt3ztJb7fH880c4uP8k8yeXmdk2w9HDS+RFSpH7qAguIC9GTIxPcNlFCex/gKWjh1nNDMvC8oK2DC3EUlBWE+iDKvySOUcoBImswvAIoppikBoK59i75yLe+4HvJa7XSdOcMIzI8hJrNfV6jSiJMEC/32N1dYXBoMdwMGA0GvpxC2nKA1+9n9WFHkVmGfZGBFFIvdkgqUUI6UP0YZCiZMyBfD8nfvM4X33gXu58+3u5/c53UW81WR/Mh2CtDwpUJczmTFg4UAG7d+3hH/39f8D01BS/+t8/Rppmf6YXOMb4slqseRXWiFdnTeGtEU6eY40625qxcVynxOjSTw7fYI0tc/Qf1xp1xppQOMJQYACNIowSkiTAFIa8ewkHVi2dNWv2GMLZZY6dLsg7NYqBZW0y+WXHPsuO917BZaOLOZ4fYQe7MbqgNVYynD/N0UNDtu64nLiswaiH6Vuido3LLt3BcJjx1Og4+4/OYTdYs7J0iFYDAqH+2NYkUcTmavitsxqcwOQjOvseh7e/l4/MbMNtK/jYf1zE/YoDuxN+zhHfN07y9Y3WFJijL5Je+1barUZlzTJRGLN152Z6nTPWzJ1YZvOOGY4cWiLPU/LCR0XWrBkfH+fyPXXECw+xfPQwK5lhRVhe0I6BdS+xRuCtCV7Gmosv2s377v4+4nqDPM35y2GLv/LR/0b6k5p/d/oUv/bvf5Vtz+wniXt0VlcZlDnX/fAP8SYhKIqcbJSysrhwHmuaJLVwfZBmGGQEKuLo8SHJwgneceeN3HH7rfz6I4+z9Nij1ethozXfAxjspY7Jv2ap6gmZVwGbN1jzX//br5Nm+Z/a6/wNsbhxeHCc1SCdT5wTPuQokOsPrjOWhjMo8P0frKZMR7goIpmZJsw0Rc8nBprRAJ0PKEcjgjhEJgqCatBhq0XYbnlwGhZZDwl0GzccQpnjyjoiVsgoIqg1fLiyGOIM1RMi8B+l8gPwogRTDCnTnk+YS2o440vIw1oLKyLkaEgzEIgoJgwSpJY4ISkyxdH5BivNrZTGMnlpCu0uq4cmSZhk144xNm9vs2X3NPOnhpw4coS5+dOcOnWM62+4iSAMaU1OUWQZszu28LYo4djzp9m/b4nD+xe49baLsA5aUwmjouDaW3YCkn1PHWNFW04UMVP5LGm+ShiG6NISBNIjXWpwFm3PTCYX1amSxS9ItS4xxiKTGkJUoePqRmWeYooc1+tUpbe+2s1VRyzOWaJmk6A1xqDICSIQztIcLtNu1piabFJv1tiydYZavUajnVCrhxSm5OihBfZcMstjjx2m1Uy47Ird6NIyGuUcO7ZCe6zNlVc04cTjnNr/PN3CsCIt+3JLbh2NUJIaP3hOCd8Fv7B+YVOXoA0MLCSBJbSOVDuSOOKaG67HCMnc3Cm0LukP2wjgxMnjLMyf4vDhFzl2/AidXpfhaEBR5mhdYg1oXTLoD+h1OsgwQpeavvY9KDrLHaJaTLNdI64HVffnHFWGZEXKk/v7HDj+Ag89fD8f/OAPccW11xGEviTWycC/ipxBGOnL3E2VK2VyokCyefNm/sbP/Q3iOOIXfulXGaXZWVFn4euj31AJga/H5a0x2PNZ485njTtjTTbCheexZjhAl2vWRMhYemtYs6aNyVOCRtNbU65ZU+BKs26NqjWwlTUYcN+UNdZbQ4hMRzSVQITeGqUFTkjKTHJ0rllZA5OXjqDdYeXgJKEeY8dsm/HGKZRapHb11Rw/7pibO8XJk0e54cabCaOQ9tQqRTZLbzznvke+yEV738upAwUHn1vgrbefsSYtSq69ZRcCxTNPHWXFOE6UEVPZZtJshTB4OWuoIjOVNe5sa/4wqfHhNWuq+L5es6bbYauQzGLhhlncDSGcdrgJw+eaTW4ux0k3WNMYLnOgWWNqslFZs4laLaExllBvhJRWc+TAPHv2zvLYNw7TrCdcfuVuytwySjOOHVul1W5x5ZVt5MknOLX/WTq5YVVanrmANUpAbv3C5uWsue7GG7BSMjd/Cm00g2ELISQnTx3n2vlTfNdMQv+iMYx1NFtQlDmr932Kz1XWDPsDupU1ZakpN1gT12IaZ1mToQJvzWDUp1Fv8ME7bmJpdpoHHn6UxaUlv/iXAfA1cJch8oIr2pJ3GcW4tQxNzh8Gkg+vWRNV1mRnWwPVeI7X2Zo3xOJGAMaU/qxaBCCUTypDrUfdnDMIZ4h1gYwj6Lm1Sk7McABpDRFFvqun0chWjF3p+ZkxhSYIQ1SSIELfWl/WGujREJOOCFptVD3BWYPVBSYbEUQtf9swQoban7270u/4TIoMAggMUgS+kiFqUoy6ZMMOsVIEcR1kiKoJpBMUqyuMBQHtes3vVqzBmJy8uIS5IsFNTnLxbsPMdU0majfSfts2pnaPI5XiwKOneOHwKlOTdW64dTczszAxOUZR5PT6fZ7d/wzTk7PsvnwP49PjjG1qs3XvZi65cpru8ogiN/T6BUGgaE80uOTyWXrdnNMnlzhlQ6bCvSyu3Euj0SBLM2qNuApbBlhKrC19zo3wYwuwvk9EIGpIIdHOoeI6zuGrKazB2hKTFZRlgemsABYpguqcHNZ+eEpF1Ca2MOgbwsTQTiBfOs2hxx7ku7/nzQTJGNpItBGMRhmLC6s0aw0m2k3Gxlts3tym1x2htUYo2DTbJs9LwnDAiecegf3fYFCWzDvHCxU2SggybSmd33EE1cKmFiomE4XVmn7hUBI0kBb+DS9Pcx585DHaYxOsdlbIspS5uVMcP36IufkTGGcJAj+g1T+HfR6H1tr3FSkL0lG6ntNUalMN8fSPx2hU0u8MiGoB7bEWSTMhCp0vR45KdFHy0FMPcODofu687T287/0fYnbbtvW26w6BDGq4SOBGGb6Bm8JYg1CKyckJfvqnfgbr4Bd/+b8xGqXrr0EVBD53QRff2hf/t/jy1hRnrOFC1ljiMj/bGrvBmnijNQn2VN/n7pTazwtKEkQUIFWErNX9lPpvwhrrSt/Pa90aixTKL8aiJuW51ghvjUJQdFdpB4qxeh3ppG8CZ4bkxSWczmPM5BR7dmlmrq8xUbuesdu3szQ6xfZuh1Ppdbx48BC7xma5cUeNmRnnrcm9Nc+/cIjJCXjh+GH+wy/8e37zdz7O3e//XnbeeTGh2k5RKnr9AhUqJsbqXHz5LN3KmpNmzZp7LmCNrqypEr7XrHFnW+PiOpeeZY1GZwV6gzW/JgKiBUf2KeBDDjLojULC9hYWN1hTLM9x1WMPMvGhWwjiMbQRlBrSNGNhvoNKaoy164yNt5idbdHvjPxRtIJNs2PkuSaKhpx8/hHY/xiDomTBOfZvtMZYSnthawbnWsMZa8bGJuh0V8jynPm5Uxw/dohT88cw1hEEEVEcVFV2PnVA6/KMNekZa/SaNRaw3preBa3R6KJklD7O1OQUH/0rf54Hvv44n7/3Xvz2YBXHY8gTb+Hx//EXsH/9r4KQzKL4zo3WfPRnMA5+6Vd+ldHoTNl58C2y5g2xuHHgp9Faiwp89ryzYj1ELMCv0MsUlY1QzRZm4RTWGIR1CCymt4odmwARUPaHiLDEDPpI5bBpSdiqIaMQoRRI5ysTpEKnKapRR0bK96dx4LTBZDkqSXwFhMQfpRgfPtUuR5YlUkc45arbSMK4QTHska7OEbUmoN5Cy4A0HzHodZkMYlqxQCiFHg3A1VjpxKjdm7nrg1dBI2ZoDe3pOkWv4Cu/+xSFyZjZPIHuZuw7uEw26vKB79/Djt17EAgWl5f4xMd+jQ//4E8QRCHGGGQgmdk+yaYt4wz7KUeeOcKX73mBMq9zyWWGmW0NbnjTDrqrBSvDPnkwxeKyYnZzii40uAa1eg3jrG9q5iTC2jOTiqsKE2kVGINyzu9YxYbW9s43QLPGYFcW/bwWZxB6rSFXNV5ACFozW9G5ZGgLphoJDZsx/5lf5fkUstoU8aZNtDbNMLNlKxft2MVVe3cQ3nk5Ya3BW26+jOWlPmmes7DUobPaZ9fuOvd87itsSxeoiZSehEO5Ze2lVLozbcMt/nw7UoJmCGmhGWnnEXVg9JnnKA6OHDvGF774R+hSM+ivIqUmDP0E5jAMESL1OxxctYgFZ0u0dRjtG6hFUYIuNXnhpzoLcWaX6oA0Kxj0lmk0I1rjTeIkQIUBYSiJdExZ5nzqC7/JM88+wQ98+Me54c1vIYx8FAepUEmdCEE6HLfy6NQAAMS9SURBVGEdlEYQVrulifFxfuavfhTrDL/0y/+DNPXo6GpX9+1+OcCaDdYI52cqnc+aPCVvtogXTuHM2t9bTG8FOzZ5tjX9PlI6bKYJm0llTfDqrEkzVK32KqwJNljTpBh2N1jTRhvFKBsx6PaYVAmtxFtTjgbgEla63pp3f89VuGbCyBram+oU3YL5xw0nTMjsloDa2Hb2PbpKNjxyljVLK8t8/Nd+j+/4rg/x23/4O0xMTJAWKb/4q/+Z5LmE2+94G//nrX+ffY8fp8zr7L184ixrVod9inDygta4dWvceayRYAzSWa5JIo4JwSXr1nCWNcIY3u8ME1dZ/p/PVdZMONz3CoJ8K/pLa9bEZ1mT16aIN83QntnEzJZtXLxjF8Xlu/nAO64kqDV4y5suY2mhR1rkLCx26HYG7L6owR997itsGy1Scyl9CQcLS7GWe+vcWkP7M9bINWvMha1hzZp70Foz6K0gXmLNCHq2qviTWOOP6Yy16D+uNbUQlauzrOkNO+zctY0Pvve9fOmBB1hdXUWIEuRRin/98/zNRcf/+Cs/yY7tULcCi6CsrPnZj/40bs2a7FtrzRticYNzvuLGWT9RufrpimqgmnMCnCU0Ocr5Rlq2mqJqbeGnBRQFZjQgaLeREVhXoEcj4laMMZYgThBSeRxE1UlXyGr3lBPU6sjI7yKssQhjfO+FKMKvuR0IhVS+mqgwJcqVhKKG1b57rAxjwnoLPegwWF5iNBqgwhpFUZBlOc0wQskIUxQoEWJljW7eYGHY4vBnv8zETotc3YEIYma2Ndm2Y5r5o/PEmSawlvljq2RlxsNfO01ZRHR6I+aX5tm8453c//kuL+z7bbbtaHH19bvYtnsTtWad1nidxlRMrTGknkzz+U/t4+4PXcuuyyZpPTLPfL/HUNQI8mk6g3kmNjUYZRlJLcFUE7Gt8afFVRU3ggoi4XBVtYNKatWLUrA2QNKUpR9dMej4cldrq51xdR/OV6w0Z7ZhkIyGGjMVkUQBm9yQIl1FnzzB8FnBfC7YrwQqUSBColqD+sQ48dgYrU0zTG7fyrZtu8EG3PfVb2CHS0xFQ45YywuFZYSvSDhfINQBhXEsjkz15nbhSxvL4UNHCZUgCARBICkKn+yuVFE9b0EK4ScsA4EUaOPQ1YTgLE+xzvmFTwWbE9UITeEnCJcllHnOcFBSb0Q0x2vESUhRlJSJT6584ciz/Idf+Oe8Z/938/7v+RDjk5O+8sQJgqRGTQoGnR6mBNBEUYQSlomJCT76V36aQXfAxz7+W+TFn42FDeCt0Re2hnVrMpQ1HIpjrqyscWbNmvJsayjRo2FljSFIzrZGvqI19o9nTaOF7p+xJghr5EVBnuU0ovAca+p0swaLYZtDn/0ykzstcnU7MkjYtLXJjp2bmDsyRzjSKG2YP7pKVuY8/NXTlG+J6faGzC0tsGXXO/jGA47rdn0v733bjzE5HfD0/m8QjUV87guf5uTewyQNRaM2zWc/uY/v/r5r2X35FO1H55nr9+hTI9xgzbCyxjpLqXOcKas5g+daA077+Vpvimss+5/aWdZYC8P+Ks8JyR3W8lkFbvMZa3rAHxzaxuXns2a0yvKJ4/T3CeZywXMbrDlca1CfHCduj9OemWFi+1Z2bNuNJOBLX30cM1hiKhpw1Fn2F5aRewVr7Ku35tChIxe0Zq2ySqxbIwgkL7HGOVcNvfwmrKmdbY3WhvGJKT5893fx/MEjfOWBB/yiqih48pd/nj+3DP/1P/5FdiEZqpKFKGZMWKbHx/npn/xpBv0hH/ufn/iWWvOGWNw45/wTe22ooKjO/7FYYXzCnJXU8iGxLclPPI8oe/5Jb0tkFU92hU9eEkrgCoMpC4Kg7ifZSn/Y6TuB+qx0a3yEwemqJXgskMRQlP7Am+pLCSQ29z0wnBAIESCFw9qCUucIESFL41uMByFxvYnurVKO+hRKY4TAOkc9hkg6lPL9LLKRop8ndAODEV2e2n+Edq/FoDPgtjsvoXd4ibhY4KK24Yo3X8WhgyH9+R5PPrzEvidWMcZSm3REEwVpX7D/mVUOPdehzCLmD/R4/oVFjCzYNKuYbE8gbUCRGaSSvPD0PN1OH2TAitHsjGdI+8cZq9d9eNOUfkip9AMkjbEYK/xAOQdIhS1zX8qZ1FBJHf9SraqhrMNojZIKmaW4Iquy7zUqrLqRVruu+tgEQiryQjPKMqwrqccRE2MKh6ZIHWO5/9lJZTBFie6NyJaXGDjoOsGhIOHF8S2shjGu6HDNZMnKSsYLmaNv3Xqzrws+B8/5eKFrbRiCsWBKR16a9QomJU01j84PAjTVmbKSAusEpjp3XztrXts9rZ3S2fV/w19WQpla0jxjOMxptmMarQSjq/uyEiFW+cN7f5tTcyf4/o/8KLsuuZi1vi1BVKM1DsNunzzLEViSeg0QTE9N8XM/83McP3WKe++9/w3Tm+L1vl7JGuvOWBO5kstPPI+7oDXCT2koX84aeZY1trSIxkZrCvy8hTPWuA3WcK418pWtMc5Sj85nTUxn3ZrDjPVb9Dsneesdl9A7ukyUzbOnbbjqlqs4dKiy5pEl9j250ZqSdKgY9DQrcwNuefvFvOO6D/LcC4t88M2X0Z0PmWy3UYQUuUYqyf6n5+iunrFmVzL7EmvcujUCY8+1RmLLKqk7ThjVGhzGchNnKi9tqQmkolGkXJlnHLSWn3Ka3ws1qRBcbC0XC0d80UZr8sqa+Cxrxl/BmoNBwoHxLaxEMS7vcu1kyepqxv7c0XevrzWyKiQ4yxrB+kbq9bWmg65pbr/1JkZFyaPPPQv9PlDy5Kf/GT8aPsff+pv/hO/aUkOR8d56jX+L4LbKmhOnTnLPPd86a94wixujtR+YKc4kN8q1+T3O4dDU8y6h7sDcCGt9t01kgqCGFDWs0T45tBFDf5HGxBgqDAiSCKNL35VSBIhE+hJKXfqdm/ANooQDmfj25U5b0BonVJUMFSADP+nbCoFyDu0sxgmkLXwVQ1kQ1lsEcULSGKPIU3JTYvG9VhpNicRn2PvvuU6hErRzxHVQaZ1hv0CXsKlu2OKOVChGENXItUMh0WXmEweVoswszUSQSofTjlI7FuYHXHfNTurtce753D70UHLxHZt5bt8qhbYYYzl0sMuw74fu9RslomyQjjKcsZTOUmYlgQpxQmCswejqDdwK/AxMgxEF1miicBxVb1Dl9iFF1ep9mNKsN3BlgR0OqkibwZgSKQKM8QuDuD2GkpJUC9KRnysTRzGhEtRr0Kz5MtGi8HDY0gdijXMYDdoqFmYv4cALp2gEGWGec2A+46SzdI3fKb1WqWt+WB6steqvDlGRAqxhfQCdv62/cueHH67NMhLr9+X/58RaJcLZn2dtdVsLI+Moiow81bQmLaUpcMbnKqggYd/Bp/nlX/mPfOiDP8S1N92IChQCgYoSGm2HdP7N2VpDGIQAbN++k7/7t/4Oi4tLPPXUPuy3eTIxvApr7Jo1PUK9usEaCzJ+qTWtBL2wRH2ifUFr7KuxxqxZI3AbrPG33WCNfhXWCEvzXGtMbYM1ApXWGfQKyhw21Qxb3SFszfpJ3WGN4nzWpJbmFtat0dqxMLdmzQT3fO4ZTh2SXHznFvY/26HUDmMshw90GWywRpYNRsMMpy2Gs63R1mDKjdY4n7IgcqzRhM0xGvUGE9VTVQp/9FuOUhr1JhQl7WGfnc4ireHPm5LfEwEfNppeINj85jH4xVewRkNRXtiaxdmLOfDiHHWVvtQa8/paY85jzcYI0LfCmpNLx7n1zjdzwzvfycf/43+gP+hDUbDvE7/Dv3nxCmZ/5//g0tDwl6zhp4KQ/wTctm0Hf/dv/V0WF5Z48ltkjXzlm3wLrqqeXqnQ73TwyX7SKYTzZYlBnlMvhgTOIosRUhfIYoTpzpHOH6LonAQ9QgYSEUpsaQlqfgKtQPj+Er0BZa+DLUtMYfy0VCX9gDrhQFXD2QJfvSBVBFb4UnAHQsa+/0QQI4IIpSKqPR8WP802Hw7QeU4QBqgwwWpDMRoihKPZjJEy8P0ZrMHJGB3UcEjiMCGJApy1BHHMXM+xPHMt3ckr0M2diLjBts2TbNk8SbvdIFLKTyE2gV+VG59LIFAsnOwxGJaMjSXc+Y4reNvbr6Ber5OOHEVhWZwbkqYFBgORw9RLrA7JMv/5AkGptZ+SXRY+Sa10SOVfSMIKnPOD7Yy2JPVxVBh7iKwBW70w84yxZgNX5r5fiBM4Y6v5Ug4hJNZY4nobpQK0geHIklVTbOOgTqIUrSimVa8x1gpptSLGxiSzkxFbN9XYvCkk2L6F5zPJTAy1UcrSMOW5wpLFNUblGWzEeZ983/zlc0sr/KrqGmNZ/087h7Z+N6WryblrIWHWPlZ3tNY7wrm1vk5n/lu7rcPff1FCt6dZmuszWM0YDTP6/QF5mlMWmvnVeT7+W/+dL33h8+RpClhfsRPXaExOEtYbgPIlp2FCHEZce/WN/PWf/TlmNk29Zo/PG/patyZ4GWsK6sWAcKM15fBlrHGEtcYFrbGFXbdGRi9jjROYsvjjW2Mqa3A0W9GFrQlikjgAawmTmPm+Y2XmOnpTV6BbOxFJgy2bJ9k8O0Gr1SBU/mjNmgCHWLcGFPMnewxGZ6x5+x1XUq/XGY0seWFZnBuQZqXv4xQ6TL3AmpA8Mwjhy/DXrDFl4Y/B9UZr5FnWZPVxvh5GbFuLhm2wZrxRx5UFX0pTLnaC0liOCEEdRy4k/85Y/mJ9DBW8gjWNGu11a8Q51mzm+VyxKYL6G8Sa8jW1hle2ptRk3SUmdZcf+zt/m0vf8Q68NZqnn/l53vfTH+W3FhUTKJoIfiRM+HthxCVX3cBf/7m/9i2z5g0RucE5AqkIggCBq5pr+ZcyzuGsJspWUWUKoQAZ4Iz201CjEBIQNsVmy9ioxA0Ug8U56u0G0lk/L6Uw2DTH5AUoSVCPCZM6UkqCOEHFCU5rLD4BzVeg+1wgYwwWgTOlbxOOQgYRDkGAxBo/KbrUJTobYnVOmDQRQUgUx2htCQNJoEKE8AMlBSHWBRTaorHkA8n0TIu5k4p0UHL/fUcIYoEKJGMTNd6ZZGy7aIIf/+h1HP30FzguL+P+h4+T6mOYMkNI50PZOFZ7Qz77h0/w5rdewnizAdKyuJpy+vQyk9MJ45N10lzjLIR1P2StKAsUPilPSIdxGmccZVmSpbn/mRiBNQIZeMSd1SgFSXsMh1uf8gt+11n2VpHWP6IiT3FVOefa1GUfybFEtRoq8n08hpkjzTPajSZxmCBqvvGfc5ZYRWjnp5EHMgAspwYF+90McrgK/VUam9o0RwNcd8RKP6OsnktREKCUJM1f2wx9d86vzmxIzv2bM78WnEkyPPfvX3rfbn3bJZyPmmWpY1kPKQqNdY4ojAnDgEApBmrA5+/7NEvLi7z3A99Na6ztD6lUSBgnmML/3K3QBKEiIeSd7/xOfvAHH+c//udf8H2Cvp0v5wikn28kqFr7u3Osyb01bqM1nGNNuoSNShgqhkunqbUaSOewViDLs61R9ZggriGlIojjC1tTXNgaLmCN0TnRmjVRjC4vYI09x5pNbeZOnN+au5KMbbvH+fGPXsuxT99TWXOCtDyKKdKzrOn0h3z2D57gzW/dy3irDsqy1Mm8NVMJ41MN0tznw0R1XxWbF7nvvGwMQp2xpig1WZZjzYWtGW+PcTWwxVr0mjVWU3ZXkc6hgFvyEcpqLtUlf9E6flE4rncWZy1RLUGFlTWpI83Ts62xDscZa4SoEyjfefj0oOAFN4sYdqC/Qn26TTMbYDsjVjdYEwYBwf/S1vDK1gSKQTCkIeb4uQ/ezW/kOV/92gNQ5Lg//Az/9pJfYvM/+hm2WTgsNP9lSXJXonjHO9/DD/zgY/yn//SLlPr1teYNsbhx1hAgfN8C67DaIANRZYAbnLYE/SWfoKoipFA4U4BQEIBUwqMhFa5IsS70O7IowKaZb6Rl8UcieYlbgGhinLGL9+DKAhn6SIKrAllCqvVyxDIvqkoJH9Kz2lZnnRKHQFuLFX4qtogd2BStDWbYR0YxMqyhYoPMc4SzgESqGEQVaXE+LD1cCrnsyk2sHM1JRxYphyDraBOQZQV5YUnzgjGV4R79HM1bfpg73zVD2EjIc8e9S0s4oxDCAIbRcMhjDzzJzt2zdLspS4slo0HGXd9xNS/uX2Z+rotwAhmVkEukdH7J7s9ZMIXGKE2aDymLDGeEfwwFlccK4QS1uEV9YgKE8OW11VRjXeQUvR6iGRLVa1BkrE08tsb66erWVgsdBSrBAXkuSdOSUhfUa3XiKAbnsLbEB1xDEI4iGOdER/Lk8gmGjZTe4mm2X76Hxmyb1YefoiYkhTHrz7E4jhmlKW+E648bkLU4hPPB5rKE7mqOKbvVD6X6wVTTn7/+2AP0ul0+9P0fYWJ6EwAqjP0binC+mbGQxHHAmAj5sR/9C3zlq1/hsW88vX5O/+14eWtkZY09xxqL046gt4QtS3gV1jgX+qq/MMBmGTJas8b6JqKVNeOXXIwrCmR0fmtAnNcaKcAJiRXnt8ZoQ3YeazjXGutgozVXn7FGyCEIb02a5uSF46n0BFvlgPajn6F1649wx12bOJYcY9JcyoOLA5xRIHxL0uFgyKNfe4LtO6boDXIWlgryQcld776KA/tXmDvtrRFhiSgUSgJVwQZ2ozWDs62Bs62JWoxPTDApBNaaDdYUFL2ut6ZRY7LIfZTYOQbG8ucV3GarAgahIKjh6JAXkjTVr2CNpQzGOdFVPLF8gkEzo7dwiu2X7aa5ZYLOw09RF5L5DdYkf1ascRKL44XDz/Nd3/EedH4NDz7yX4CM+f/8f3P17Zfx7He+j9yBPvwcP/kbv8p//Pm/SftHp7j2K1fyjcdfX2veEIsbUxS4UQqhr9DxL32Js8Y3biozoqyPKUpkI0FIj8zambRzEp0XWCF9JrgS5KMBLTmJNY6gXsNZi4oSbFGi8wy3uopQUwTNun8/NwZnsvU4nbUGqw06zzAVPs74iAPOlyDmOic3KVgfLhQoZBjjdIEZlti0REY5QRzQGpsiqNX97lBInAMpSxpxQGgjsk5Jbz5j15WKpxdO8bY7dzMxOc3TT5xgOHBEkWXXnknKwQArQ4IabN2ZsOeKq0hqTcr0i3SWQmY3N5mcrrN991bSwQqTmyfoL/dRtQaf/sTn+MqDH6e7sAvhxrGiJB4riY4qjBlSC6tBmWUBYYxxlmE2JC901efDH/wqHIEKqEV1GvU2zfEZ//PSa+FQQZkOMWlJPD2BCkPscOCbLzofTvZn5X7shhMSFyT+7NzBMDMMsyH1Wp0gTFASyjKkNBoVhPTENPccb5Kfeo75TodRNOLSt95EY7LF4197GLOakkeSjdNNBqPRt8Wb9vrZOX4tOhgUGLPiS2gJMMZhrKFWK3niuW9QfKzkB37wh5nc5Bc4YVSjzFMfyjcWFSrC0LHnoj38Hz/+E+zf//cYDEavWd7AG+16OWvMBmv0WdZInCkvaE026tOcmaisSXw1SxRji+LC1mjfJdpPtvb5gzp7qTV23ZpigzUgkP7fKC9gTXK2NUoWNKKQyEWknZLu6ZRdVwY8tXCKt9+xi4nJaZ7aYM1mF9D7wgGaIkTGsHl3jU/qS/jA1TfztvRxVhdCNm9pkUzBltkZMj3gG48+yBXXbEeaU8RPN/jaw5+gO7/TW0NJMl4QHlVoOyQJzljjAm/NKB+S52escZU1SilqUYNGzVvzDSQ3aoeqrNHnWHN8OOBZ4N3O8eEN1pi1iHEQv2pr+nKKe463yU6uWTNk7y030trU5vGvPYJeGVH8GbGm3z+fNZZaraQsDvPe79yCtTfz8GOP4rKcr/6Df4zdu5dyzyXYmy9l7tdG/ErH8JHdP8Fbf2Ka/X/n7zF8Ha151Tk3QgglhHhcCPGH1e8nhRB/JIR4sfo4seG2f08IcUAIsV8I8Z5Xum+djRicPolNU4R1SCeqHU1VtpkPsIMVdJGvH30IpfAdb+36Obo1BlBQWqwGKapdVSCQUhDUElRc86WZxmLyEp1mlFnpdzZhiAsklhKMw+Z+RpS1znc0dQJrNM75JCtjS3Sek46GjAY9hoNV+umQQkhsElJay6g3IBvkRHFIvdbC4CjLFGMNSg4ZV44ocNx8y8VcuedaJqZi9ly/k+NH6wSqyQ/82B38+EfvIE1f5PDBr/H88QXUez/C+O7NRFHEqJ/iSs1tb7+WH/nLb+N9H34zd7z/Zq6+5WKuufUaWmNttu7ZyuadY2zaJvnq1z7JUud5VKSob/IzotouYJQuUqtFrIkrpGSYDRiN+tjC+Z2U8RUMQRgSRwmN5hjNWoO4NY6tvq+1x6cYjXClptZuggRbZPg5MD6UbK2uzo89C1HDd4K2VpBljqLISUd9nHOEMmKt48XQNvijEy0OH3gY1ztNLgSX3XYTk7u28fQTz7J0fJHcOfqFYaMv3w7YrF0+cM46PGmqmT+9xOlTJ1hcnGdleZVer88oHfHk89/gf/7Gr7G6tORHmyAIwngdFGd8dCAMFB/4rvdzxx238dplDHzz1+vpDLy8NUaXuHyAHSyji9zPOHLWT3w/nzVOIbT1OSLr1shXZ00Uwpo1es0acwFrSowpNljTZThYpTd6GWvqZ1sjxZCJwBEGjptu2cNVF1/H5FTCxdfv5PjRBmHQ4kM/dCvtdy1yoP8gLj3EzOwOgvf9AOO7Z0nCkJ/ecR1x/0m2Xr+NE5OnWbh0H7+S/r/8yL/6MP91dD8XvelSHl7t014Imdmm+MrXfo+F1WfPWGMqa0aL1OpnrJGqsmbYx5YOKmtkZU0SJTSabRp1b80LOLJzrLGlptby1uRFxqCy5iSOuXOsievNb8KaMQ6++BCuf4ocwaVvvYnpPdt5+onnWDy2QO4cvT8j1iDOsWZpnpXlFW9NNuLk0jHe+53v4pY3/Sy42ymeWqH4/r/NXzh+nCAIcP/mX/ClL5/kF5diXnznXbz9dbbmm4nc/CzwHNCufv93gXudc/9cCPF3q9//HSHElcAPAFcBW4F7hBCXurXBQ+e59Chl5eDzRK0WyfQsRBHOWIwtyfMUMRxS9Dokzqwvx/yRhu9J4XAIFyClQgYhTmtqzTpCOmQ10NBJg7MhUbuO1WGVlmfQIz8+XiqJCIIqSTBBSI200g9DzNMqVGwRQiCVQuHQtvRNAYsUU2qf6a81ZRgThSGEDl1asl4fpRQirCOUIpYBCEugRjTlgFY4Rb2VQB4x93zA5K6cVXK+8NljvPD8Em+/azd3vOftgOORrzxIWox4zw23Y7WhNdGm1qwzsXmaqBaTDjPKQlOsDhh2+8zsmOHZp5/ins99lns/ew/Tk7cw0b6OsN2nuaXLyrMNmhiycok4ifxjYgy6LOinA7Jh4ZucaT/rJZBQTyKa7QmatbbPZWk0/Wwwo/2gUuvI+x0khihSvkdFPsRWtzHaIgKBMQZTTfwOw6iaJyMYpZJRWlIPMhpJTlRvkZuIshjxzHCWpw48zeWyxwkjufT2m5jcu5PH7n+QE88fJnSgHevDEL9dL+f8gD2EQElBlmmWFjrVY2p8Z2gzRlKL+Ma+x1AfD/jIRz7C+OQUAp9z4t8cBML5fKSpqWn+wp/7Mb72wEOsrvb+tL61180ZAD0aXcAa7a0ZeWti64/vwFtjz2dNGGJLQ63ReHlr3Ctbo6xEhQHk9gLWSG9NucEaoymDjda4l7EmXbem0a7hspDT+yVTuyzLlTW7nlvg+rfdygvXd7h8eRNPHl+k3Vvmusu28ezRZ9j3+Enu+fK93HnbLXy++fvcuXgx3zN7EfI/fT+39qb5yz/3D/iuD/wgRTrkd+/9DFPjb2Fy7AaC1oDW1g7LzzZoYStrYs62Zkg6LLwzG62JQxqtCZr1MaIg4NlGk/dZTWA0bs2aQddbE69ZM1j3aEpbZCDQlTXGWMIoPGPN6MLWPDua5ckXn+EK2eN4Ltl7241MXbqLb3zlIY4/d+iMNfwZsybdYI0+25rjC8d433vfAu5n+fqBzyEW/wlf/qVf5+6////j95Imo92P8bV/9u8Zv/5O/toP/TBf/9pDrHZeH2teVeRGCLEd+C7glzf88XcD/7369X8HPrjhzz/unMudc4eBA8CbX+7+rS459cRDLB3aT9HvgPENjkxpKMuMMh9i8hFCSqSo1mO2MqxqkiUA4SxSCUxREIZRdRtbxdc8DiKOEVENoWJ0qdHpCFuUmHLNxGruERDUE5oz44zPTNMYaxMEAeAbJjnnqq/FV/2oQBIq4VuCa0ua5aRZgXEObQyLSx1Oz83jhECFMf48PKMRLDFR5qwuDWm2Ei7efikHHxKEzQ6XvFkwtzzgyKEFVhdXmJzdxHu+7wO85ba3MTm7iea4nysyGoxYPLXA4okFeiurDDpdBsMuiytzfOLXfp1//n/9PJ/+nSeohW9n90V3MntxSX3zAr3jbVq6Qd0NgFXiSPlW5kWONpZud4UiM77zpQMVQJIoGnGTelIniWOkCiCKfGm40f44zxhGKx0atRphGPtQfJ5RDb7GOg+PNbaaF6MJlKpOBAVFKSgyX4JZTxrESY1AKlZ0na8dOskWtcBi7th+49XMXnsZJ158kWPPHiRwzu9Wfb7jG+PM9XW8HFShYX9UURSGzkqflaUVlleWWVpeYDgckuYpDz7+NT72sV+js7yMM77/kFtD2VmkECgpueNtd/DOO9/+pxK7eb2dAd/J9nzWWK0py3zdGqkkUobVJ73UGpxFKrBlQRhF4F7GmmDNmvSC1qgN1tTXrWGDNSH+1bHBGnHGmiwrfNNNY1ha6jB3HmvqwRKTZc7K4pBWu8bF2y/jwEOCqNnhkjdL5pdHpCcyPpBfzomVfSzpZ7n0qqv5B4f/MfItEZf+6Dv5yV/5Z/zgh/8cf+vDv8SH7vzX3HnVR+n8zjILS3XufMu7efjzX+Lzn3qaRN3O7ovewcyeksbWebrHWzR1g4YbglshOZ81+XmsSVo0kkZljeLyKKJ5HmuaSbJuzVSW86a1+3GlH2dxljXBGWu0IM98o9haXCeprFnVNb566BSb1TwLuWPb9Vex+brLOXngAEf3HTjbGvtnzBrOsWZ1maXlRUaVNQdPfI33vOd3uPXvfw/ua/dx6IkMcSRlDwJu/xBy7/N0222ezN7JO15Ha17tz+TfAX8baG34s1nn3GkA59xpIcRM9efbgAc33O5E9WcXviysPP8C4fgYjfFpolqjGio5wtiSKIgBsV466HtRCA+K9H1ohHTIyPdjkEoRNeq+wVHgE1DBVV2yhH9iG4FwChX7Hdj6Tqpa7olqbglIwnqdMImJaxFllpNnOUVmqk7HCqkCnF6b5mxwRvgIBRqcpABGA0eZDpnarAnJkdaPnFfqFJuLizm0qsHBzEyTOps5/OAc0aY5prZbWpunmdwyTVJL0KVv3rRwcs6fv1tHvV0HCfMr8xw58AJPPfEkTz7xBISW1thmtu25kUuvbxIniqzocOrIKqPjM9APuTi2jFYO0Ugy6vUJhBCUtmSY9xgOhlgNVgtEAFHN0Wq2aI5NUq83UCqgLHNsEPiqNFNiAOWgOz/P1ETLTzWWgU8MrwZwGlMgnO/m6sExBNKihG9PXmqBMbKqmI0QUmKF5HjaJh8cYMwa3Pad7Lr5WpbnTnHgkacpMt93ZGT9/JaaE+QCet9GIeILXdau1UVAmhqs7fvH1ZY+72IcbK3GQ088RBTG/NAP/gi1ekKgQsoyRwS+W66QinZ7jB/9kR/m3vu+TKfT/1Z/K/+O19MZuIA1ijxLMbYgqkqyX8kaFYVIFSCUImrUfD+aV7RGIoPIl3+/gjXJujUZReYbj17IGms05bnWjIZMbtaEIkcaf/Sj1Ek2FxdzsOMr5mZmGtTZzKEHTxNvOs30dkd7yzSPbZnmvhvnaRRH2Xrsz/ELl/0X9j/zPGWzS1ZkHN5znMXVVR48mDD25OMcfeQwDz14H+3xzey54q002i2Smrfm9NEVhgdmoR+xJ7aMVg9SX7NGemtGeY/hYIAtN1iTWFrNMZrtCeqNM9bIIMCx0RpBd26Oycl2ZY2iYQ2T1pDiK0GFk5hqcWONRp1jjTW+x4sKYpB+oPHxdJKsf5C2NbhtO9j95mtZXjj9v625kDWmBGcZH/fWHDzxEHfPJoQzP8J9v/9X+czB/8b/s/h9/IPJF+g0xhH/6B9y39+5iL91zdV88UuvjzWvuLgRQrwfWHDOPSaEuPNV3Of5FmIv+akLIf4S8JcAxqSkGFkWnnyW9ux2kvYY8eQMukgJVExcHyeQMUEQ+Ex7KfzZN1QJdlWHYeGT0NaaxTlr8dsr4Zv2FeV6tZNvuFU1RwqFR0f4PB5TapzR1awTv1tyzpeFhkmACmLCIK0WOSFa+IorV4KylsL4AXBK+qRDISxWSHppQI4jFDmx9AM3a8kS02WHI4tjjAazjEaW9nid/nCccrHOycUeX1vcjxnlXHHVNbQnx9m8cyuj4ZDRcESRFTzwwH189nOfYmGuQ9ZPCOUu6o2bCGoWrSSdsiQdlQx6PaabY3zHW+7g0ftPsNCdY0qnrHT3cckORRQIrDEMez00GXmm0do/RnHoqNdjWmMTtBpjBFGMHwppcUGE1RqjNaGMwRmGp0+ze2q8Kvl22CzHFJkfsGxslVdgcZaqk7EhlJAb/GPtBGEU4fAdXgsbcrgnmaTLctDkpttvZJgPePGRJ1ha7PveyG79aBgLDP8MYOOovm8LgQIhhd9VraZnkuOdZYJpbKS57+t/xOT4BO+/++6qxFWidUkcqfXX0W233s5b3nwzn//Cfd+y7+P1cqa673VrJpTy1jxxjjX5qLJmgkBF3hrBBazxrwn/2PtjVWcsQipfEfhy1gQCGcav3prwla0x57Mm89YE5CRr1tSWmSo7HK6sSTNHa7xOfzBBudjg+GKXcmE/bxnm/NOrf4BjJ0/w7z7//3LNVVcxNjZOP+/TSiPu+R+fZXGuQ9qLK2ve5K0JFL1Sk6Ulw36PyXqbd7/pDh79irdm2mSsdPZx8XZJGAisrqwRZ1sThY56I/HWNMc3WGMYBBFHteGyDdYMTp9m9+R4ZQ3r1rjKGmd9bo6zfoCkknrdGusEOElQjb5wlsoaxSQdllSDm2+/kVEx4sDDj7O40NtgTdXXiD/r1ozOa81TD32BH5kc5+T1d7N/70/yeet4/8OH+Fj4Ltztq3QePM7DWzS3vOVNfO7zX3zNv95XE7m5DbhbCPE+IAHaQohfB+aFEFuq3dQWYKG6/Qlgx4bP3w6cOvdOnXO/CPwiwLYgcMYFFKtDlp56jNbULOMVBLW4RmiNr1oQtmrhb32bcusThVXgd1FS+gZ0TohqQKb0OSASD4sSKKWqicC+pE0GAYS+M6guMt9rosyx2lctiLXKN3xSIQiEFIS1hCAOWF1dIc9GhEGEk+CEYDTSFKUgii1RJIkShcodnb6kN9BMz7SJwwSsIUoE/XQfe8xmTh7oc/M7d7L3qik++7svcnquQ2AUabfByhJY52hONPjSF75As95k50UX0x4f57GHv8HBfSWTrVtpNDetV1MEZQz9OnmnpHAQhZq3vvMqLr58M8deHBDOzVF2XyAJl5iZmSFQAYNRj9JmjEYluhBYK4hCR60mGGuOM96cIo4ChABTarJiBHFCkWe+k6gsMUWOzAe0phr+OW8tpiiIcUilqum0Zr0s3BhNEFji0DHS/nxXKFBB5N9IcGQmQg9TuoVj7ztvQtYijjz+JKcOLzBy4IP20FK+fPG17BT6v8LlEyZ9+asQoLVl0M9wrFYJpYpWu0Ucx/z+Fz7J1NQ0t9x2K0oGaF2gTYCUAhEEtFtjfPfdd/Pl+x8gy/Jv1bfwujgDZ1uzI4q8NZ0hS08+epY1SVwjrBYvUtiqB8451qgQGQRIGawvr7w1CqGq8uYLWaMCiM6xRhe+0/qFrBHnsSbcYE2qKQpBFPv8tjVruuvWtIjDGlhDnAj6I2/NqQM9br5rJ5deNcVnfmc/p+e63ppek84yLMwv8On+Mhdt3creiy5m+0UX82L7MF//V7/LwWdyJlq3MtXc5HO2EN6aQZ2sU5IDoSqZuSNBximz2yYI5ubQvRdJgkVmZ2YIX8aaek3Qbo4z3pw8x5qUzXGNy/MUs2ZNmSOzAa3Jxvpic80aoYKzrbEWY0oC5V5iTbBujSWzEeVoRK9w7H3HTah6wqEnnuTkmjUOnICW8t97+WfeGhj0zrGm1SJOYr7y+U9ydzbNdTtv5ZdlwIdvuoZv3HoJ+27pIj78s9z7o+/ix+/+AMmXv/aaW/OKOTfOub/nnNvunNuNT+D7onPuR4BPAT9W3ezHgN+vfv0p4AeEELEQ4iJgL/Dwy/8bfpKoco78xDwLTz/GytED2DxHSVlN11UA1Rwf/4YpnECpCBUnBElMUK8jogpp6UvFVRgiAlBxSFCLkYEiiCJ/FBWGGGcphhmj5VWGSysMVpYYrPiPo84qw06HtNsn6/fIRilFnlGWGmMETkUMR7C0kJGlKWWhyYuSQV8x6gdVYqzDVscsy3nJ4UWflW/y3E+yLQ1jrRUaxUHMwROcPNph1C+57a6LqNd8iDwbBjx6f8onP/Y4pw6dore6yjVvuon6+Dj3fv5+ThycZuv0u5GM+8hIIRA6wmko84wyzQiV4a73XM7l1+3m2KEBp184yS4GdFefZNvmiFargZOSfn9IllvKzDckC0NHrQatVoPx8THq9QYyirDWUpaGtMiRzRZFlmK0xuqStN+hQUlQTUM22lCMUl+NUm15jdFVgl+J1iWBdESxIxAe+TAUKOWbRQkUmWxQpnNM7t3D9O7tLJ88zbFnD9MtDcL53o4N/96Bw9Ffy/L/NrnEKxxM+5kzflfl5/RIitLS62QMuiM63VVGoxG61PRHfT7+27/BoRePoI1GCEmepV5s5/vf3HH77ezatf1b883xrXHG/zsbrDm5wOLTj7Fy9CA2zwmkP0J9WWuSM9bIKERIWVmjq+NtUHFQWSMJQm+NDEMMlmKYM1pZZbi0ymB1mcHyCsPVZW9Nt7Jm0CMfpRR5vm4NKmKUCm/NqLKm1Ax63po0Vd4ac8aaQwt9nKOyxmBKw/iaNYdOcupol2E357a79pxlzSP3j3jgj05yFzU2b9pE+qYbGZ+cpP9HXY69uJ2t0+9BrVsDQkdgoMwqa6Thnd9xBW+54Vp6y5JTz5/gIjGks/IEW7dEtNqVNYOXWpPUoNWsMzE2Rr3eREbxBmsyDjabDNMz1mS9Lg1XEESVNaXdYA0brPHVcFprv7iprJECgsoaVVmTijplOsf4JRexac8Olk6d5ui+Q3QL34MolGdb0/vf1lDoc6xJK2vSPsOvf4z2gSP8c6N5XET8RNYi2LUdbtnJcN9NxLe9jd2vgzV/kjyofw58QgjxE8Ax4MMAzrl9QohPAM8CGvipV6pgcNUXEgoBmWF53zPoOGA2imhv2+lnEAURslqwoCQOsA50XvgVexyhXI6wEUG9QTZaRUqBtSWSEB9jtgjl8wPLPKcYZeTDPml/QDboU4x8Az4/JM/ih6f5CeIyFMR130k3jCKSpEkYJcggYLUfk8QlUWTJ0hJnA4R0FKkCZwiUxdmA3BkWl0YUZU4Q10D7oaBRoIiDp9iZT/H8l17gzd93LTsvnuLqa2d5+snTjEY5WsNwIMh1zp5L9rK8sswnP/ZH7HskwxbjlEWBs2J9B2GtxmmJkI4oUrz9nZey96ptHHpunq/8wbNsH3VYPPEgjWSO2U3TKCEYZQM6nQFFoTFGopSj1nC06g3G21M0a01U6EO3zjnSYkRaFsi4RtntEoaxT2ztrDLVqEZpaEuZZmRRQNs4RKjWSyWt8QmQa2CECgIhCKRASV+2LJBoo+mmfpbVxTdczaDb4/jzB1nspGigUWHjnCA3MDSO0bdZmPhVfTuuGrYIGGuryeSWfneIVH4woRCKOA45tXyS3/jNX+ejH/0ZxsbGMNZgnUMZiwgU27fu4LZb38KLLx5a7xj+p3S9Zs7AmjVi3Zqlfc9QJmFlTYSxF7LGvYw1K34Uii1BhNVohcoaC2WW+9fAsE/aG5ANBhTpCFMaH1UwvvRYSQlr1jRqqDAkiiLipEkY17w1vfNbk6cKt8GazBkWlytropqfXWUd4XmtmXiJNYMeTG6aRJuMiRde4NfueZKnHxphi4mXWmM0DkkgHWEoeds79nLZ1R3mnm/w/INzbBt1WDjxII3kFLObNqGEIM0GdFbPtiZpONr1BuNj0xus8QnVaTliVBR8Panznm6X6TVruqtMNs+xJpTnsUajjUE4RygdwUZrhK2k8bmSvVSgybn4xlsqaw6w1EnRDur/25r1G71aa04vn+Kxj/8af+mjP8dPjbcx1vAPk0/S/+GPsPVn/zHHg1/llrfewguvsTXf1OLGOfcl4EvVr5eBuy5wu38K/NNv5r6VtATSD5TLVkYsPvkUYWuCsFYnTCICFSGEptvvEScRkZNgDDL2YWKsxVkHUYCLQkpjcIXFDUeEVRKUNRaT5xTDAYPukGFnmaw7oBjoM1VBFpAOqyVSCISyIA0qkIziIQhHWFPUmjXCeo04ga07W3SXVplQlkBJxsYtgVTkuSXXDmMcgYTUOgJd+h4acQPhNFiDkpKJiQHF/GNc1L+VRz/zPOW7LuPm23cSBCHfeOgw/VFOHDmefexxamNjfOy/fonuwgRFGmFsWXWeDQilrwQQUqECwVgr4ju+6wq2XTTDsF/wlc88xexggF56nLR4isv3tGi3m5Q6ZThKycocrSUqdNQSQbuRMDY2Qbs1TpzU/E7W+eS8LBtSAEiJLnIkCi0LGHZoNWpVw7OSPC/IRbFeoQAObWxVBSJRIiCQgih2xMoQBI4oCoiCGIFkmI04cnSOTZddjAsEy0ePc+LwaTLriATUFUjnsS2dI8fx7TREIFAKY+061IIqqoDfOa4lGgkhfUfbak5MoASldWS5Qa6mJFGNftgnUGMQWB5/7lHu+fwXuPt7PohUijxPqdXqCOdIkhrvvutdfOK3PslgOPqWfr+vpzMASpizrXniScLmOGGtRliLz1gz6BMnEbH1C53zWUMUeWtKixucscZZi85yiuGQQW9QWTOk6JdnWSMkGC3Ob410hMlGawRbd7XoLK0y+XLWKMisIygra5ImQm+wZnJAMfcoF/XfyiOffp7y3WvWRHzjwUP005w4tpw8dIj62Di/+Yv30JmfpExj9PmsEQqlBO1WxHe8/wq2XzTDaLTKVz79NDP9IXb5CUbZk1x2RYuxdpNSZy+xJqmsabd9nk1cO8eadEgJ3CAlqsgxlTVu0KG9Zk1Rkuc5efW2drY1fsimlAGh2GCNcsTr1qgN1lwCgWL50GFOHD5Nap2PDm+wRjtH8WfEGv+7b94apcYIQsvjzz7KL33uc/zV7/0e6krxf+Xv5e+8VXPy5l18ms387Ftvo/6J33tNrXmDVLAJFKCEQuAbIhWLPv9G1WuM79hFVHUR/cZj+xh0UvZePs2WTZtI8jpiMESEClWLyeZOMxzmuFHJ5PQk5coyYV6AgNGgSzboMVgdUPQLitSirQUFQUMRhQqlFCqoJoFb3xtBGIfJLRiHKS1ZrimHQ1Q4gkQy1kqI4yaD5R61UNKqByS1mCI3LC4PcU4ysgLrYHPNQF5gmgLpXNXfxZGEgrH2YfRyyNa5m3n8cxb9zj1ceeM0M1tbfP73n2FsIuPJx55hdXGCtDeJNVUybhACErFW1CEM01Mtrrp+Kzv3TDM5nXD4wBJf/8JzzPZ61IbP0km/zo2XN7l0z3aCQNIZLrO83EFri5SOKHI06hHNRoux5gRJVEOItem4JVmeUZY5hrjqgupwwvoz8FGfQCqcsRRZxigboVVQ9UQoEaE/qjLWR8nyIkMCSSCJAotSEAYhYRgClrmlZTqFo33xNnqrqxx/4Qjd1A+8awUCiUPjB8iVDt4Yjc9fu0tJ35PDga8ArEZdSClwVGffrO2i3HrYuDRuPY9jmJWIpRWs1ISBpFFvgDT8wed/j72XXsqVV1+FqWZ/Ked3yzfe+CY2b5nhwIEjf4rf/Wt9CZSorBE+0JNvtGbnLsI1ax55hn4n5dKzrBkhQllZM8dolGOGOdPTUxTnWjPsM1jpU/QLytRSGl8zHNQVYagIAunzcHxJlY9Qm/CMNZkly755a1IjMA621A3kOcZSWRNiLSSBYKx9BL0cse0sa6aY2drkC7//DOOTGU899gwrC+OkvSmsAX0ea8S6NVvYtWcTk5tqHDm4xANfeJ6Zbo/68HlWhg9w0xUN9u7ZQbhmzUr3LGuatYhWo8V4a4Ik9tZYh1/YVNZoQt4iFAtr1ugcmfYJxJo1OWk2opQKvcEaqw26sqYocgTibGvC4Iw1y8us5paxi7fR66xy4oWjdEf+iKutzram+DNkjfoTWwP7v/B7HLvsMq68+io+bCM+HrZ4+sd+gis3K5ZaB19za94gixuQ1SGE/5I0zipWDi9TJo/glKRmIQwljVqT+YNdjr4wh0oiJtoSoQ0oQbHcoXNqiVGnw7Ydm+kvgxkMUdmQvCgYrQ7IhyXOOMJ6zPhURK3VIEkaqDBESYGwVaMuFaKLDPA7AF2k5KOcUXdAkZaUuaboW0g1IitQrYj2VJNBJ8WMCl++rGEwCulkiudHjrqCmbEAk2WYLEVFQVXd5VAC2o0Qa/Yjew61fANPfqrPqet2ENWbNJsBF+3aS6JmkfkKnXJAUTqskmhjaI8l1JKI5liNonR814euQ4YBo37OA188zonnDnIpjrg8wMLSPVy9t8b2bZuQFvI0o99NSUcpgQQVOeJY0Wy0aDZb1GoJIlBo58D4qqhSF+SlxqiEtWe11RYrHCL12fPpcMDc/CmWlhcZ27HH72a1Jo4CylJXbdH9ziwQkiBcK3GFOApRQUhZFhyb71G7/BpyXbJ0+hQnT62g8cnDniS/Qytctbj5NgoTC6DUBiEESvlXicMRBGdC7lIKP5HaF5v4RY9zaONQSqzl05OlhmyY048GhGFMGAesDlf45O//Njt37aLeqJFlObXEH8du3jTLjTdcf15w1r6O/xWvdWtcgJ84rVg5vEQZe2sSB6GUNOvemiMvzKHikImxNWugWLZ0Ty8xWO2wfcdmeiuismZEXhSkq32yYYnTjrAeUZuKqTcbJEkdFUUvYw3oIlu3Jh+V6OLVWCMYjEK6lTU1BZvGFCbLN1gjcM6e15onfr/PzPU7iJst6o2Ai3ZeQqxmIVuhU/QpNZjKmlY7oVYLaY3VyAvH+7/velQUMuxlfP2+Yxx/9iB7sdT0QeaWvsDVe2vs2LYJ5bw1g17GaDhCSQjWrGmesUauW1NusMZgZHS2NdIh0iHgrZmfO8Xi8iJj2y86y5qi9Hll1lp06a0J16xRG6zRZWXN1RS6ZOnUKU6cXD5jjfDWiA3WfDsdSf1JrQmUfweXVNYMzramM1zl9z75W+zctYvJRo2/lmn++q238rCSDO/6G+z53UPnt0aIP1bX5zfE4kbgCKVACb/jcEhKp0hzQfb8aert5xmfaUEs2LN7G6dPLNHrWeZPD1g+PuTkwJ//lcOSiVBz1SVTBHGM0Tmry10SqdGFQxIwtWUTzYkxkmbT96qQyk+dNg6sD+MWeQbO+dC1VAihiMKARnOM9uQkeZ6SdgaMukPKrMSUFjssUU3J2FST/sqQhbkM6yTLwzYvpobj5ZBLaxFJHGKMJnQaJwI/sVVKlBOIOGBiTCHEfvLFJa6yd3LwoZw51WTTRVNMzowzs2WSN7/tErorGVI6isLwyFeOcNfdl7E0P6IsLZ/5hO8m2l0q6S2v0spKbqKkO/8Qq72vc9UlEds3TxAKKHTOIBuyurpIUvNtypUStBtNWs2q7FsFWOMbcTscpbHoUvvIUXVaLYVaL5WVecpo0OHoocMcObBArS6Y3ibBCZ/T5ARGlyBDD3eWI40/txXCESlJKP05em/QY5CMITdNMVpd5OSB42TaEAloCEFXO0IliISgdI7Rt1GYWAj/mhBSEEiFED55T1dD+vzuyt82CAOM0RsKpAVBILDW96+x1mAdDHopQRBSrzV9ngiWx5/9Bg8+8AB33vUOwIKIkCIkCCPeesut/O7v/QFan53O8r/qwuZlrdlfWTPbhggu2rWdU8eX6HUt8/NDlk+OODVwWAR6VDKuNFfunULFMaYsWF3ukcgSXTgEAZObN9GaHCNpNlBRdMYa6zcJ3pp0gzUBQkiiMDzHmj6j7ug81rTorwzOsuZAajhWDtlbi6nF0QWtkWvWyP3kC0tcY+/kwEM5L6ommy6aZHJ2gpmtU7zlbZfQXUmR0jdu+9r9L/Dm796Km6+hteMPf/Npb82ypre0SisruAlNd+EhVroPcNXFITvWrCm9NSsrCy+1pjH+stY44yt0BOKMNcYi84zRoMuxw4c4/OICtTpMbxXnWKN9VWChyStrxJo1gSSQEUJI+oMu/aiNnNlEr7PAyYPnWGMcoRDE8n9bY4zx3Qv9Z69bE1TW4ByDfkoQBmdZ88Rzj69bcwOWmohwT/4Ke5vv4l233MoXf/dTL7Xmj7mAfEMsbhD4B1b40fbWQekkhXMEmaS3/xC9aDdlLWZ6cozrrtvNwecWWDkyYnUIB0YWIRzXblVcc/lmIgvZch+rLUlUZ2KqQZDUSBp1gnriG2FZ66eBGf8yAusnigQBLnPoMkcqhyicb9AlBUIFKBnQqNVp1JqUUzlpr8dgecAgG1Eu56imptlOGLqQI8cDnk9LjpR9QhSBAINDYzHFiCCs+UiH9TOxhPP9A8aaEULMcXL+E+wQN7I5upST+4d8tTNgatc0taZicrZJox1jnWDvFdOENcXBffMMhiVOl+x/8AiztYDLZU6UHeH4sS/Sri1y7WXjzE6PEyiLNiVpWdLvDajXEpTUFLokCQLGx6Zo1ttEUQ1wfidkNAbIiiGlLnCmQIWuKg30GBldYFaWOPnsQQ68uEwoYMeOBvV6HYejyEtMwx9/WOlD3brIwVjf7AxHGOPHAzjDfKdPueMyclPQmZ9jYamPcb4Ms2sFg7BFYjNwJUpA/m2ykxJVq/MgUCglkUISKN8hN9Bqvc+KMT6TSRuDUoHPDVGiGmvhMMYiJajAJ4KXJQyHGVF3FSEdYajQlPzBZ3+f62+8gYmpcV8yWyVZ3nzjTbTbLVZWOn/Kj8hrdAmqRfT5rem+cJBefFFlTdtb8+w8K4eHrA4FB0YWhOParZJrrthCZCFf7mO1IQ4TJqanCeKEpNnYYI3zU7Ct8wsMZ7H4xO2zrclA+OZ+QoUoqV6VNSMXcvh4wP5Uc7jsEaAIhXtZa1izphEhZuY4Of+b7BA3sznay4n9Q77aGTK9e5qkGTA126TRjnBOcPGVU7i64eCzCwwra55/8AizNcXlsiTKj3D86L20kkWuuWyczdPjBMptsGZYWWModEESKMbHJmk2xs5vTemtsbZERb6n9rnWnHruAC++sEwgYMf2JvV6HdatMWhdYKXbYI3B2cqaCMIgWLdG77iU3OR05+dZWOytW9Oz0FNtEvdtbI1SqEAikQSB77Z/tjV+MaO1QSpV9bV8JWvyl1jzqc98kutvvIGxqXHeby2Pbr0TGcS86TW25g2xuFnrlYVzWOcwBJTVbKBQOPRKxvLR4+QTO2i2GuzetZ1t01N0O32OHTuNPNBH47hyZ8JYUvNnqFOTBHGAcAKqyhuERBhTZeBTYeP84bFzSBVglSOIE5wbgLUYa31jLeOwukQ43+RASosKYlpTE9TG2jT7Q0b9EVme44xgz96tHB0scbDXwTlLJBQBEq0LXFIjH/WptzahhULbAiX8rlICURgw2W6TRDlzS19npfMMs/JyxurX031qyKlRxn5dYrCIKCCuBzz/RUXeH9FUNW6bCBlTJVn3ReZOP4Q0R7hka8j2bZtpJhESjTWG3BhGo4w4DjHWkud9pICx1hitxhhxFCLwzbNKYygNlKag1L58G3xOpRDKT/cViqzX4amHnuf0gT7jdcWll21idmaapD2FEJIsG+Bsq2qmJSmryclkfuKxdII4FIRhRJ6lLDtF0W4z6q6weHyOYWGIBRgHQ9FkfGoz5eoJ8rygEJC9xt74hDr/K3/4tVZN8PrFLvzRnCSJQsIwIArj6m8cCLCBq8LBvkJBl6X/ehzEMqA0Pp6mpFz/NP+pAoSg38+JIkUYBbTGWuAcR04d5Ev33ccHP/S9+ACQB2z7th3s2LH122ZxI6gKJy9oTf7y1hzso53jyh0JY/HLWCMra5zzRQpV1Y9zvjpQqADWrelX86sMAnWWNcIJxPms6Z2x5qK9Wzk6WOZAbwHnLKFQKKTfgKxbM40W4ctbs/gAK92n2SKvYKx+PZ2nhpwaems0FhkFxPWQI/dJst6Ilqpx+0TIWKDJugeYO/UQ0hzmki0B27fP0kxiJAZrNMW6NQpj4w3WjNNqjJ9jjaU0jtIWlGWJNv75Halzreny9IPPcepAn/Gat2bzrLeGc61RlTVFBlkGxlsTRX6QbJGnLFlJPjZGusGaqLKmL1pMTG+hXD3+7WeNkiRxSBAGxOezRvh8m43WWAfBH9Oao6cP8aUv3scHv+97+Qsajk9M8lX1OH9728WvqTVvmMWN98bhkBjn4Q6EIxHgrGTx1Ij+3gETEy0kEiUVURRQqwmaocY6P901adWIAz9Ooez3cdaPNXDGIEOFDBMQPkrihMPJKjOuOon3oxtaqMiHmgGPjfPzSZzRaGvRtsDlGbL0q/haI6LeqmGFH54X1Vrs3NQhOga5AyUksXRY4xdHZWmwZkTSnGKQGrTOfJ8N5xDOoYKQRhyyY/MY0xMliysPs3DyQVI9w87JKwjicayTWBRq5HttqMiw3D1Kb+kEK+k8SdDlok0JM5umaCYhcSgQVuOEJDeOTmcFISXjY5P0+/4JW4/rjLem/CwXKdDGURhLrg15maFNTpYNKQuL0QWB9FnzZTZCqZB0OOSZowN2tgQ3X72N6ckJlApRcYiTvhuuNiXDYZ96vYG1BpOOPOYCZABJpBDC0R10GUxdRGYNo8UlVpeGWByREPQIaUxsYphmKF2SV+fgr1gL/E1cUghqoSIMJEr5Y4zSGHRp0caXB7/W6AggDCT1JCKJEuKk7uduOT8hOQhD8jQlTmrkRU6aZtRrdQbDIUpICl34km4l0FpXbft90p911j/VHYwGGWEUEEUJYawodMo9932G22+/nU2zs4AhkgmNepPLLr2MJ5989jX+Tv90rleyhgtaE1KvCZpBZU2Zk7RrxCpAhCFlv+dHKLjquOQVrVEbrIkwRenfTIzDVdZYozHWYl+NNTNnW5NI/3XgZGVNel5rcI5wzZotY0xPliyuPMj8ia+Tmhl2Tl1JmIxjrMQJhUw3WNN7orJmjiTosns6YWbTJK1aRBzKdWsK4+h0V3BCMDk+Ra83qKypMdaaJIni6gjEW1NoTVZmaFOQZwPKwqLLgqC5Zk2KUgHZaMgzxwZsbwpuvmYr05NTlTXR+a1xa9YU69bUIoUUjm6/x2ByF5kzjJaWWF0aYHHEQtAjoDkxzSjNkFq/PtYgSCJvTaAE2vkIidZvJGvSP4E1iihMCBNvzR996dPc/rbb2Ts7yy9S5yflThZrbS679PLXzJo3zOJG4leH1tmqvNCh8CtZ4ySDDJa7I7ZvNojAJzoJZ4mCgIkxQ5wYlJMcO3SATZu30hgbJ56ZRgURtsjQoxSTZb6jphA+60n6hnFCRYgg8sPupAQk0iUEeemfVMasf3TOEWhNng0ZZUNwVWKgLggFKKUwpiBNRzTUiGvHAh7rlIRV5KbMc5//YDX5KKU+HVC3Eak1WCxSWN+zwfmjtriqqqjVQmZmDKNhn6Xl+1jtFGSlIC8BLFZbIuWIQ8u2qYSxrQnt9iyNWp1QKqQwWGc9GE7Q7faoJwmt8XFKUyKEJpABUxPTNBptQFJoTVoUjLIho1GXIi8osty3Si8lReZo4JvxlUUBgaAcpbRCw3V7x2mP1emPVhkOh1jj2OX8FFlroSgK4ijxkax8iNY5hQGEQwSOdNRluYDB9kkG3VUG83N0spJACArAxW3CWNEbdpDWUDgYvoYvfyUE7Xqd7//gR9C25MUXD7CwOkdWjNBFyXCUMspyitK+pugIKQiUJAgCgtA3MazVGuuNKYMgIlCKWq1JmOVIIQlDP3vNaE1pSqIo9MBUYwPWJq8Hyi/epYC8MORZTpalSJUgpOPIqUN8/YEH+K6778ZI30k6ThIu3XspSsn1sPT/ytcf3xpDuMGaYIM1zfFxoplNZ6wZppg8wzpfbfJSa0KECl6VNXajNQiEsaALgvNYc91YwKOdkkgolFuzRm+wJqRuDanVWNyrsmZx+YusrhRk2lsjnMUaSygdyZo1W2Ja7Rma9TqhDM6xRtLtdUnihPZZ1iimJjZ5a8QZa9I1a4qSPM3Ic40pJHnuaDjNU8ZCntMMoRilNJThur1jtMea9EcrjIYjtDZsdxajta+8XbOmPGNNeY41S+vWdBjMzbGabrAmGiOMA3rDLspq8tfBmlatxnff/f2kruTUgYMsrs6RlyllUTL6U7MmJJAXsqZ8WWvUS6wpyPIUFSQgHUdPHeaBBx7g/XffTVMqbrMX8dvqeS67dO9rZs0bYnEDvhjc+IMWXFXNoITDOkHpJJmxLKyOMLr0uQWAkJJ6o8GWmTGc8z0TRv0hh3svUKtFTMzOMDG7lfrYGFGUYMsCp40vv5Q+bOYAlPQDfZ3FOQvW+kGP0oEFGQY+ohIGOBzORfQHXXr9LkIohPBnwFIohBUYW1DogizLuWHKMT8KybTEOUmWObQ2BEqRj7oU/RXi9hQCSToc4GSA1RolpL9vJX0jQBmiBNSjBuPtBG39qr4sCoSS6MISRiFSGOIoJA6jM30IbIbGdzorjGPQHTE2Nkaj2cA4C2ikCmk3W9SSBto5RmmfXm+Z3uqQQbckHTmGeUCqQ0Y6YVTNZRkTittKgylLX/1kLDunAtpjDRZW5uks91heKKjJvWy1flCmf5z9GThCQZ5S6pSy9J0+LYZuPqBT20XfWvrLi4yWhmQOImDkFPV6k4mpGqsrJZk1lPhd62txKSFIQsnb3vJ2/s9/+A9ojzdZWeqw7+lnefDrD/HoNx7m8PGDLK/M0+0P0a9h+/VIKeq1GrV6nUa9ST1pUKs3ETiiOPbPP+Oo1+uM0iFSOKKoRhgEdLurqGrgo7G+fb+tGmz5c1+BNpZQShCSPDdkWYZSgjgOSfWIL91/D2+/8x2MjbcJTUAYRlyyZw9BEGLMt2wUw+t6nc8a+U1Zk6G1YtgfMqismZydYXyjNUVR5T+9kjXOW6N8KGDNGkLfJfnC1gQIB9aU5DonzXKun3LMVdbAS63J+8v+ePiVrFEvtabUFl0UoCSmMJU19hxrhLdGgHbemn63T7s9RrO1Zo3x1jTa1JI6xsEgHdCtrBn2CkZDxygPGOmQtLLGOEHbBTxVGG7RJTXprdk1HTA23mRhZY7Oco+VxYLlyy/iGau5Rmu/gD2PNUXpMIh1a7q1nfSdo7+8yPBcaxpNJqbrrK7MkVlLwWtsTSC47U23s+Wn7uJXPvsE3zkZ07r8DrY/vMrBQ/s5MX+clZWF18+aWo1Go0U9aZDUG0ggjGIQPvqyZo3oVNaEAd3Oy1sjXoU1X77/Hu648x20x9sczwXHfudxbt2zmTB8bax5YyxuhN8dWefPN+16yYfAIimcRTtYXCkZjYbVwD9LGIa06nViuYl00CdqJCQqYtAfMOj2WTp2mlGvz/ZLL6UxMUMQRDhKEL7zpdXVmXihsdZVYWVDNYEOqZSf3CuqGVVVVZUpfb6JznNEBYMpCvK8oCyMbzwlHFhBrARvGlc8tqLQVpDnklJrKAXKWNJel6g1QdJKkAqG/S4uUFgHzpYIq7DGIKVFCgkOpIRIRdjAIGoRrPcfqMrKVZUE7RzGFhgcpTYgAoSTbNu1DWMcpckwxpCmA1+arSSd4YDR/DJLSyO6XU1vFDLSNQorKZ0Pl4IlUpbJmuGSTYI4kL69u9DoosCZlKNHj9Bb0vQHio4OuWbzLFmeoW0VvkShjSUKQwLnM+1zDQgonSUfWnqz0/QHPYqVVXqDAu18tUIhY0JTsLSyiDUFBb6h1mtxSQG1QDI1NsH3f/gH2bJzC0JJmpNj7LxkF+/+wLtZmlvk619+kN/55G/z2Xv+gO6wGhz3J7yUFCRxRL3WJI5jkrhOs92mUW8ShgGBimg0avT6fcLQv2nW600fgUlTWu0JcJYsL9bLN/PSt/CXUlTJrA5XdevOMk00yghC5WchCckLh5/jxedf5IY33+D7moQR27dtp16PyfNvg8XNBawR51iz8LLW9CprYgb9Af1un8Vjpxn2+my79FKa57NmLaH45awR4IQ/An3V1mAxONwGax5dUZTntaZDvGZNAMPeGWtwJe6bssbneJ1tTe6tKasCCQTbd23fYI0lzQaUZYkMJN3hkOHCCstLI7qdM9bk51gTSstEzXDJNBwMJK6yxhQF1qQcPXaU3lJBvx/Q0SFXzm5mT5HRMeXaNvm81gjhfNPPoaU3u4lB31vTP9caXbC0vIA1hW8Q+hpakwSSqbFx9ly0l1/+8M8yf2qB/yZAtRs0tOLm629m+3d+iGuOHODe+z//mloTr1mTxMRxjWarTb3eIIpCAhXSaNTp9Xu+B1BlTZHlLL7EmuBPYM0L3PDmG/kRofk/t25CxDVqteQ1mTP1hljcVPl9gMPiB8sJ/HiFwvlVsnGOTtfRHQyoxw2UEARxQKAaJGFIEsZkJsUJycSmGaamp0mHQ4wEU/hdhxBAFTbThQbth+M5WyJV6Gv7gxAhHCIMq3LBtS/Qz48xeYHOS4SQ1BotcAZnDU763hUZBUWhEaXzs1cCx2ytZGeckBtJXijSQY4NweSSKOlRHx8gmm2UksRBRGF8WNc45ys6tCEIJDh/3u1bSflyRimFz/wXEiGcn6NiJYZq6raDMjfESczY9BQ6zxlmQ9IypygyhoMBo17GKNMMU8UgC+hnklJHGBdTMYYSjkRaYmWYqGtmp0I2zzQZmxkjkr5/hi5zTJbTXdDkzpFphUocV100zjU3XEo3y8H6yeMeTt800WmN1n4AmwrAlpDJFoOwRraygO6MGBq/eMscEEhKbSh6JaMy9/0zXoPnoRQQSkESB1x+2XXcftcdviOt8M9NJIRRyJadW/ngD36QS6/ZyxNPPUT/yFHMnxA8ASRRSL1Rp16vUas3aLUmaDVbvg1Bo0ZR+sTIqckJpJLUanXSdERZFtQaddI0pdkax7keo3yANmX15uxfS0r43VQUhKRZBsKhsxIdF5TSoZKYUTHkK/ffx7U3Xk0hFGHkmJqeptVqsbraew0e5T/d69Va0/0mrRkNh1jpsPk51jiLyTXuNbUmREqBrKwxpU9aXrNmV5yQG3Uea/o01qyRG62prHJ+knkY+CjzBa2R/mDPaI1xEmPPtiaKI8Y2TWPynGE2Ii0ziiJnOOiT9jOG6RlrBpmkeBlrxmua2emQzZuajG8a57has6bAZDm9BU3hHJkOULHjyt1jXH/TpXTTApyP7nhr5Lo1xpxjjWjSD2ukKwvozpDBudYYS9EvXjdrLtt7DUHjKRZOLiGE9MnunRF94L6v3od65Ov8+X/1Q2zdP0v/8JHXxJo48ouXWj2hXm/Sak3QbDaJwoBmo05R6sqaSW9NUifNRuiyoFavk2ZnW2Nezpo8Axxl+lJr7v/yfVx74zVcJCQ3bduDLUa02y1WV7t/4sf4DbG4AUD6mU/GWfwJOFicD29af1yR5oLF1R6TjXHfWM4CwoEMCEMFQQ2dl+iypNFqErUaGCRCSMrBwO/YtMWUBVYbJAEqDJFxSBjHCAVShX6+i5T+TFb4KePOWpzWlHmOLkukFNQbLT9XRRdomfpkNqUI0pIyzH3SrfHJhFuTgoODiLQMGfQ0tQlJgGLYS2l2VwjiBKEUcbtJAhR5ST4a+nBqICh0BkKg8C9YJwQqSLBAWaZIJf2MGp+9WP2nCcKE6c1TyDBgOOrTWVlipbtKOtD0e47uSDDIQzITo+1auzeHEv5YUApNTVpaSclUyzE1HjIxOU693vL4Va1KhfRzvvRgFVFCKhxjE/b/z95/B3ua3fd95/uc88Rfvrlzmp6MiQAROAQICiAJglxKJiVawTK9S5kSy9a6LGllWdJ6bVdZq1pvya41q3bFMlVrrdcrUmImEQiAyHkGmICJPZ1uh5vvLz/5nLN/nOeG7unu6ZlpgAMSD2owoft233v7d1/3hO/38+XkySWOHTlG+8ABVtMMa93xjPKVG6yJSzwudMFOon1eWNKFeSZak40HVJOCrJ45kiOYmemwPRzjGUVsLVq4L6i38uzUYoSepNVp8YEnfowDRw5ckxuz+8/WIj3JYLCFkXvnjG/p9xc7O6kGjVabXqdHs9Wm2WjSjJsEkYevfOzud2eD2inmLguwlrIs0KYkiANKHVB5Gt/3mSYGrEZKj9j30UaDdABluUEkCVa6AnJh4cmnv8r25t9kbmGOqizpdWfo9XosL1+5Ax/p2+CprTGvZ832a60R6sbW9N6ANV4Yuvk7b8kaga8UWVpS+DnVLayJdqwZprSGW69jjSR/I9aU+60JmT+wtGdNf5P+YEA6KRmNLcPp61mjiaWmHZXM1tbMznZpNDrOGimwZseanHLXGujOaE6eWOTY0eO0lw6ymqYY41JolK/wPI8da/KqwLBnTTa/wFRr8texJrIWcwetCTxJu93kHe97lN/+w9+6qTW6LHjh1SZG6nrsylt9BwRh4BPHDZrNDt1uj1arRaPRolVb4yl/306gtkZCWZZYaymrfdaYgKq6kTWBW/jiTorywjBJEqxwBeTCWp585mtsb/yHzC3O8ZMnTvLt0YBer8fFi5ff2sfI22Rx47qybX1MXA+qo763tZYSt/o2WrI1LBjO9FHeHIHy0NnUzQ2RykWMe8r1evoSqxS2NJRpSlVmlGWGFALPD/CDCC9w0KjQR0iB9DxX6Fe3wbk7KXZX00iBF7ruBykaRDpAlxXWGMoqpqoydGkII0M+TclI0cagS8tMpGmmkJqArCxBwUy3jS5LksGAqN0jaHcAjTGWoBkStWLKoiSdJlSZR2U0RV2QbIV1gVRKujtzKevrHoHyPBrtDkEjxljNeDxi/dI6q2sjNvolk8QjrUIq446kZd0aqurCSiUqAqkJPUO3WTHTVszMxHTaDeKwgfI8jFRu55an6LzADwKy4Yh8MGaqNXFLc+ToHIcOHCJsNKHVIx9OkL7CmBLP91FSYut2+1LbujANskJR9BZJphOKUYou9O5uSfkhrXYIZU4+SQgl9KmbUN7CIxB4EoJQsTBziCc+8AH80L/JT3b3y+cunK0XeG/t94Y6e8W9I3gqIIobtJoNWq0WzWYDT3k0mk2KPKcqK6I4YGu7jzUSXwV0Oh55XiKFoiwKpHIpo9MkodIGKaDSJVlh8H03XsQKKLVBZhblle4Kwg9Y27zKS8+/wPs++ARFkRNHIfPzs2/9g3wbPPut0TexxlrcZO1hwXD2JtZwnTWegsKNG6mKlLLM64nT+60JUGHwWmvA3f9wY2vELawJbsMaIWGm16YqS6aDYW1NlxtaM0moMkVlzTXWuHoJVdfn1MXRSGdNq0PQjDFoxqMRG5fWWdmxJvVIy9e3JvAM3UbFbFsxMxPR7jRphA08z0PvWFNkmLzAD0Kq2ppEa6Km5vDROQ4dPOys6czU1sg9a1RtjXbdR3VpJVkhyXsLTKcT8nGGzp01gn3WVDn5+M5bE4aK+ZlDECnOX754k5/sitJ/xPf4WH1i9lafnUw5IVyeWFxb02y2aLVcx1Sj2bqJNT6dTmfPmrxA1oXJ0/R6a3JnDe7r7hprVELgB6xvXuXF51/ghxef4O4i50wYsDA/95Y/RnibLG5c5oRxixsrMLa+C7WWvD7u9Ooz29FYMxxtgdHM9uYJoqY7MgV0nlBhCbyA0lW0kU1HVHmCFQI/jAnDCL8R4ocNRB1UJOqQtN1vVFLubCrYXUILkJ6HH4UIVeFVProqdndnsvJQlUflGbzI4McBYdogGyeUWYEtK+aDko3Cx/MtfugTNmMajTnG29sk21t4QYQMfUQg3XW8J/CjCD8K3Aq+smhdui8u4Vb0wkqkqkMGpXLdD8KSFQXr6yusrGxyeSVjbQjTwkNbH4VECoPEoKRxgwQBX2kiX9MIDI0Iem2fbrdDo90k9EM8L0R6IVVVkiYj8jwlrzSLg23ido/R2jqlLsCvaLYV7e4MXuAjowZVo0m1PaARBWBdjk3gRRRFWre7Sldzk4MOQsqoQdbfopxmFJWp799F/Q0B0qKAIqUUkNyBnZQSEHiSOIq5566HuP+h+265aMnSlIvLF8imyV578Vt4H6J6J6WUtxfa57nrB18FNNsN17bthygJeZbRjBoII127a+KSh4OgIgpjRuMRRrsZXUK4Oo+ickXftk7JdZOooSoMZVahfYWWFamxPPfsc7z3/T9MQYHveSzML76Fj+5t9Oyzxt7EGlVvEoaTW1tTYglra0SpSSfXWRPU1kSxM0ZJhFK71iBcofJbtSa4qTUByrN4kU/YjJiJ5xj3t0i2t/GC+LatscJiigJBbY2orZHOmrwo2NhYZWVlk0srKWuDm1ljUWg8YV9jTbft0+22abRahEGI7wVIL6LSlbMmS8jLip8cbGPaPbbW1ih1jvErmh1Fp1NbE8Z71oSNXWt8L6IsUrQ1aCNcZ2YO2o+o4ibZ6iXKSbprjd1vTV5bA9yJsY77rbn71IM8+ZlvwuTmP//xxx7D9xXpdHrHrGm8xpoApQSeDGi147pw+DasiWNGkxFag698BC4qoSzLuhPv9awxPPfss7zvAz+MR8HP+R5fWLgz1rw9FjdC1IFaAo2Lti6sJTcGV4ctdr8BhU2PJCtI8zWsMBxYOIYfx1BpRDZFIKnKAt8L0EWOMJYwahI2mvhxjIqCXWQQAiEMUrqTm7ovFLD1IsF1Dwjk7nh3V+jrBrqVRUFVluRF6oazlRVVWboYfF0BEhEahLE0mh7HZIHeMjQbBk9CYStmez2CRov+6lWK6YgomENYQO7M7nG5GAiQoUQa6XIzrIHIxxqBFYaq1GRFwXg0ZHNzwOrahPVtTT/1yLQ7gVBCEAmNkiWBtPiyJPQsYWAIlKDZkjRjn1YUEjcjoriJpzz8IEAIzx3XF1PGwz6TyZB0kpPnkoPra8QHDyKEpdONOHkyRvkQhDHK85HtLlUQ4ynfHWnXaZVCGZfg6knyUuPKoARqvkfmQTodM5m4URgWN0YgrzRlqcmLnJaFsNVA5jnkpfsz165D4g2+/FASgsCj1ZrhXY+/k9nFmVu+zfbWJsuXz5Pmb70pVACerwjDmHarRxzHhFFIFIYEfkCjFROGAb7noWJVH7dbyqokL0s8zxWj5nlKnqdMplOiMHJXVVqTlwVKKkT9dYY2Lg5dGIwFYyxZpvH9yq3rheXc+TPkWUEYBeB5zMx03/SMl7fVs8+aCkHJa62R1NY0bm2N3GdNVeQIY5w1cRO/EaMi3xUK71iDQaraGsNtW6OrirJwgXZFkbrTh9Jdielqxxp1Q2taTYMvobCa2ZkeQfPOWJOXBeP+qLZmzPqWZvtm1giLp0pCZYlCZ02jKWjFPq04JG5ERI3rrBGQ5gnj4TbTyYh0mpNlgs76GhcPHqQtLJ1OzMmTMZ5nCaLamtY+azzpJqv7CqkM0qutqTR5CaUWqPkumQ/pZMxkmrnxGFiElHvWlLU17QYqLyAv8JW7cnmj1khRF2kHilZzhiOHjvKVZ752y7d54P772NpeI8uSO2KN8iVBENFq9YijxjXWNNsxYRjiKY/4OmuKG1kzubE13LY1irPnz5BnOWEU8qznEd0ha94Wixtr3X23tjvHw5AZQ4V74XhIfCHxPUvclJS2QhrYHG7Tbc/hBQFWl6RFQeD5SCnxw4AgDBDtlts1BTvZEhaMK12Tnqvod7jg8iiwCKHcF7vAFaUZja4MZZaSTRLS4YhkNKYo6pwbi/vCUu7YLvAC94VlBZoOYzHCyIx2aFBDiQ0azB1YQBcZZZ4RNTs0e3Pk0xFBo1XnYNQtozutdV4duoXbSSGl63TKJvT7I66ubLO6mTIaWSYplFqirWtj9YUhlBWxqoh9TeQbgsDSaCjiyCOOQ6IwJgoDwiBASXfcLD0PIRQGS2ksSTpiuLXOuD+hyAyVFghPUI2GtE/dg+f5tDs9bLdHZQxenXYpZhaZ1ldX9R84ngrqTjSNDJtUpSDVLrJ7aXaBNC9JJlP6qaZpwUOgUXjKR2uNrSqsgO1JQm4Modfgp97/83zhWx9ne7j5hl5/AkEgJWEQMtOd4/EfehcqULd8m6tXr7C6suLm3ti3tpMSwu0ule/h+QFx1CAKQ+I4JIxC92OeSxD1fJ88A89zGSXuiF/iKY9mq0mWp8RxVM/TUaxurDqMCnd8vHM4UOoKT0qXwC2gLC15UhIECuXD+tYK0/EYP5hBG0u303sLH+Hb57E7V1L1X4WB/CbWNFp71mxcb035Fq3x4PWsyScJyXBEOh6T51M39guB3DnR83yCMEAqh5emfWNrlhbQZUqZp0TN7puyxhhNmk/3rNlIGI4Nk0TsWmNw1gSyIlaahl9da03oETd2rPEJg/AG1uCsSUYMt9cZb++zRimC0ZB33XUPZz2fdreH7fWoKoPn1dbMLpLss8butwaNDK61ZnF2gTSrrUk0rX3WKOW7a7lyz5rMGEIv5iM/8vN88dufeEvW9HpzeIHP+Yvnb/k273rXO/n0Z/6ornd569YEXogX+Ph+QBw3iILrrFE+fuDheT55vmcNsM+a1jXWeEqxsv7mrNnYWmEynuAHPu8wlgN3yJq3xeIG3C5Fo1wKrK3bG12XIVK4nYDnGawsSY2mJT2yomB73KcRtaCeEIXysVYjfYFSIWBdxwsGy96YBekrpPRc94FypzZ15yGWusuhSCmznGw6IhmMGfcnmLJybbqtFr2lJZSvMJWmNJoynVJW7vTGVDnWSqQnibtNTNOnTFMW5wsmmUcQNgkabao8w8YtolaLPJ1QpAl+s4MwFVhXwIin6+Nrd8RnhCCZTlheXuXMxQGXNyvSTOBZgSfcQDgpIFQFodK0o4pmrIkCCH3wA0Wj0aQRt4iiGD9wuRZid3EXIP0AayEvMkpdkaZjJsNtpsMEXVrC2KMd+jTabcJsjPAUcbtLmUzQXkQzbhGEMQgPdfgkWZkhpESXuRtSKqT7QzcWEcQMc9gsrUtOXZxjsrXJOMkZlMZdmQkohNv2DPpDlNZ4QtBpNhlOp7zj+A/xX/3jf8p//n++yue/9pnbXvkL6joA5ZA9cvAk9zx47y3fRmvNpeVltja30dq85R2GUhKwBH7oOjqsxfd9hFAEYUQQBIRBSOD7BEGAqSp0JVwHiOcRhB5eLmk0mkwnCdPpBGsN0+kEKRVlWWGMwVqBUm6ukMDVDYm6QFJYV1wZFRapLFuDTQb9Ad3ZHlVZsrgwj6wX1N/vj66tqWprqhtaY7Gy2LUmz/NrrbE4a8yONe6b6WutUa9vDRadp5R5QTYZXmNNEAZErSbdxUWU7+1aU2VTirKe0WZKrJFITxF3W5hmUFuTM848gqhJ0OpQZilhbG9sDRYh91vDrjVpUltzYcCla6xR11gTSE0nrq3xIQx2rGkQRy3iuHF71mRjJoNtpqPamsijHfk0Wm2ibIRQtTXpBK0ims0mQbTPmmrHmuJaa6xFhDGjXWsEcnGeyfbWDaxxdYz9G1hz+PBpfuYfHGH0zx7hs19549ZIJVGez+EDx/nslz93y7c5cuQI1mi2NrbR2t4Za8R11gQ71oT4QUAYhgS+RxCEGF1hqnqmnaf2WdMgmTR3rZlM9qzRt2FNdo01Wwy2+/R2rVm4I9a8LRY3FqisQBt3JaWhPu4TSAQ+cjdBtLKWsqpoeB6BH7E1HtBrdmlEMZUpoJREfuDqUnx3p23r7hAhHQDS8xDI3UhrUbk5M6YqKdKUZDRivNUnneQEcUgjjvCEx8Hjh4m6XYSUFFnCaGubjXNbDDf7UJZIU8+BUQKUdS8kzx0960ojLLSFpBNpRpvrLB4+SlnkLrW3KlG+Tz4dIbw6FMuAoXAV8qHCVBVpknB5fcR3zo+5vKXRWiJRNKSm4WkiZQi9iji0dJrQ7gR4foiQCk+B73s0ghZxo1XnaYA2JUK642QhAyyCoihIy4yqLKh0wWS4TTZO3DC/GZ8wDOsj+BZyNKDMp8wcPMpWknLsQ7/IXe/7UWR/jdE3PwUHDmGSHK0NeTJxHRjWoCtXTFyguDiETWNoNRrYVot0+QK6NEyMpSUECteiqyuNrnI86l1II0YkCUePniBlwpWVZdqtFo04Ym3j9nZVYufX8mLuu+cBZpdufSWVZynnL7zKaNivB1e+uVvwHRRlPSDTGoNS0gWkSYmSHoHvg3VptC7ETZDlOcZYut0eeV5gcTkp4OpJ8iJDCUXUiJlkiZtPJAShH2Cs2dkG1NeyboCgMRZtIE1yhISxGLO+vs7RU8exuqLb6dTJod/fi5vbt8ZeZ03M1nhAt9mlGTVuYM1eN88bsSYdjxltbpNOcvwooNGI8YTi4LHDRL0uQknKLGG02Wfj3FUGm9u3tEbghtHut2a4uc7S4aPu2r+qXHDf61qjSZOEKxsjnjs/4vLmza2Jams67QAv2GeN59EImsTN9q2tKUvSIt1nTZ9sPEWJ/dY0COIWclhbc8hZs9F9kG8ur/KQavCz9y7BgcPodMeaMUYv7VmjDSWKi4Mda2JnzaULmNIw3m+Nea01YbO2Zu4kL6zkXFq5SLvZotGMWFt/o9ZENI+3Wd689ZXU4UMHqXTBcLS9G5b3lq1Ryi3Kd60RbsSIH7jRP0qB8BBSkBU5xph91rBnDXqfNY1da6QQBH6AvYU1Zp81EzFifX2DY3eduKPWvC0WN+C6pHQdolVY4wq6cFFQXl3EJwFhNHllGNuEeV+RlwWj6ZgwjGiEbUxVYKqSna2YxYCkLhwOQFCH91WuQE9XlGnCdDhiuD0kGecEUUR3rsv84cNErQZCqrq1s6LICsZbq6wvr7B6eQr4tNqSoKUIfd91UtSrY2z9bkiBReGHgYu09jykL8jKBKEESTHGZO4oL5um+FFGpQSmcknJhc4ZT8asbKac26y43PdItRtRHwpL2y+Zi3O6LUO3AaHv0+31iGIfYy3TyZhG5E5TwjDEk567A8WC8PC9pmthLV3aaVEUZPkEXRVURe46FdKKKAhp9joumdJqfOURBTFBnpAlU2QYc/C+d3HXX/hJhO8jhUAeOMB6MWI0XmcyGVOlY0xVYYQHQtYF3IqRtYyNJWq3qaSkzDPCylBimSJo1x2nnVaL0SjZBejK5iaVNnzrzFf4R//0Chcun3c1VUK8IQYMBs/3eccjD+MFt/6y6G9vc+HieaaTidtNvcnXvFISoy1+vVAXwmKtQUnljuuVW8y4F75buGRFDlbSakWUZYHvK8IwYtAfYY1r0Qz9kCSdMppMdwuTLdTzezRVpV23S52a6wY64tJPrUIARVmytrYGuNPCudk5hx7lm/xo3z7PjjWlNZQ3sUZYZ012nTXj6ZgojN+cNaaiTNzmabg1YDrOCcKI7lznBtZoyixnvLXG+vJVVi9Psfi02oKgqQjrBfDONxqou3alACvxox1rfKTPPmsmmCx/XWtWt1LObrzWmpZXMt/I6TYNnSZEvke3N3OdNSGNuE203xprQPmvtaYsyLI9a0xVodPSWdPtuPoNq/GVTxQ0nDXpFBnEpMEs//zrTzERU/5/LzwFf+3/zc8oj9Fkncn4xtZYqRjuWNNqUylJmeWE2p3g7VrDa625vOGsObf2AvbXMy4sX0AqiczeoDXW4PkBC2qRy0/euuVZClFbM8VUb8EaKTHG4ik3T86Ve+1Yo1DKq60R7obAGrI8ByNptRqU1Y41MYP+GGssRemsSbMpw/G11igp3Ry+fda41+iNrKlYW1tlx5rZ2dk7Ys3bYnFjrYvXrrBU9WrP1rUE/k7bYZ2CKTHEvs80K4m8Cb5qsDHepN1sYytN5EcOB2PQpcaikYARFmtLrNFURUGWTpmOpvS3hmz3U5QKOXR0jpPvOEHcjFzhK4BSGKOpspzpcMBwbZ3tKxsMJyWLBxc4ftdRwlZEMh6jyxxhXeGaCgK30PHcESSq7mQyxs2P0QajS3SeoU2JlgZp3LC0JJtipUSXGWmasD2YcGHdcK4fMq0CBA6aWFlmGzmLc4bZrjthkliiwKfT7ZHnKUWe0G13aMRt120qBPhuh2WkrI/ifSbjAYPhOpXVlGmGKSvAxcMrC0GzRaPVJggCynyKQBDHLeJmG2ELwiLj8voq7/ypv4nwPaYbW7QPLDAMfdYur7By5TJVlaPyjKqsMEoCLlBRK4+NyjIxcHJxntFkhClL/NJ1LSTW0kJgTEl/sIq2rvizIcCrQyeWr5zh0tVX3bGtdvNk3sjrTwpJu9nj9L2nX/fnX7lyidXVFfK0qL9I3xw5UgisdIscpTz3OkHg+W7XVFaFK+bEpaoWRYofeERxsNuSDIYsT5FKUFbaBWkpD2MMgRci5c7nQrhFX1Xsvr/G7GEjBXieJApDyjxHe5aVK1fZqZccT8a0W23SNHtTH+vb5dmxRmP3rr9vYI3EIq2h4ftM9lszurk1oBE4a7Clc6MoyNMp01HC9vaQ/naClCEHj85y8h3HiZvxDawpmI4GDNfW2L7srJk/sMCJ00cJWhHpeIwus9oaH+W7JgnpqTdlDbU1yX5rBiHTcs+aSFrmGjkL84a5bkgjipDCEgUene4MRZ5R5tNda1xz662t0VZTXGeNtLgr83bnNdY0mm0EBWGecXlthY95LyK6Hf7af/a3+bV/+F+RhR5rG6vOmnKfNZ6EeiaWUR4b2llzYnGe0WSMKQv8AkAw3bHGvtYav7bm0pVXuXz17JuyxrXDC1qNLu12G16nHvmjH/0Izz73FHma13EZb9Ia6TYynueskddbU+5ZY40lu94a4RbRN7JG6xtbw21bY66xZjIZ02m/dWveHosb10fgSjDA3Y2yt5NSgMSFPfnSJ5ACGcK4rGibktRmDCZ9Qi92VzBCUiQJsnL33kZbyjKhzDNGozFbmxPWtkvyUjA/3+P0vac4cGTe5VZIWe/jBEYbismYKpsy2d6mv7ZF2k8wocfdD93FgSOH8ZpNhOcRz8y4+hmr3aiGGpedjw+Lw6YuKvQ8sNSdW3mGQVAUKcMkIagKPN9jOpmyMcw5v+VzeRJTWPd5aCpLx6uYaZQcOqyYn5ul0ew6BKIGnXaX8WibYbKJ1QUIg2cbxFEbKSJQlqRwu84oiJANn6KYkgyHCOWKVD0hQKo6bC8kCEMCL8KTCmE0QRARN7tIX2HLEr+/TZZMybIpTc+jvbQAQuCpkCwt2VhfIQ4DSMYYa+vrQksQRnhhQGrd7KvWfI+trVWMkSht8XGJoAboABNrGNT/ntevk93X0Vv5wjcwNzPHwcOL1/yar3mtWsv5c+dYX18jLfK3FOglpERh8DwFwiKlcjOcjMYa6/KETL2LynIacYzyFGmaudxYY8nyCmstQRAQRyESgSkLOp0uo9Fot4jP913dSKXN7mlNXfZQf1xQVobxJMX3BT4VF5fPUxQ5YRRx/vyF3UCu7+dnxxp9O9Yon4Ada0pnjbmRNWltDRhtKMuUskgZjyZsbY5Z2yrJSpibm+H0PSc5eGRhd3zGja3pM1jfJN1OqAKPu99xylnTaiE8j8abssa/pTXJZMr6jayRlo5/nTUN182ya814m0F/E6ML7I41jTZKROBZ0qJAVyWRHyKbN7NG1gX1r2dNtWvN07/+FJeee4H/5389gK2Sp3//47z7L7yPjbXrrKlbkoOotsa4xpX2fI/tfdZ4XGvN1Br63FlrVD01e7Y3yx9/5uP1cduNxWm1moyGQ9bXV0nz4s5Yo5w1SrpgQ21c1pHy96xJb2SNtWR5+V2yRnPx4rl91px3Hcdv8XlbLG7cl7elrAv8DC7XxhfuONQTEAhQUmOlJCTCC2CiLZXWKOszSBMWuzGl0VgDSf3CzvOU6TSlP8hYGxlWxwKlFfM9j0ceWuTEqWOEUeD2b9a1GxtjKdOUbDxmsLFGtj0kH+eAZObgAgsnjtLutBG+AuW6IUTg43sCXblvTNa6pCgrBVYLjK1cgZ41SNyiQUiLkhKEK24URuO1Glxd7uP7ls2x5dIwYlT69bWcpaUMh9sZM62KXlvSaTUJfIVA46mQdqMNuByPTnueZtxA65TKVIyH20RhCyOhqgzNqOFaL6WLoa90jjKKsJ4M6ymfwPNR9V++9N1MkiBE+RI3fsbhwcYVlu59F37ccn+idWbQ7IGDDL88Ik2mSFOhtzaQRrtOH6XqGhBBhRsaGDUiVi66ln60oSlg20Al2MXHs27uy/QOvPYsrjtDac3iwkE6nda+H7kOHWtJk4Sz515le3ObPNe7tRRv5hHUOSfWul2lKbHG7TC1MW7yblmSpSmNZgtb34fHUcR0MqUoS3w/oNPuslVtYaxGmwqpPNIkYTwZo407maiqyrWcewpTmL1j4p3/F8LNE6pPiaRUDEZDN09KCt7x4IPEQYzvTah09X3bEn7b1oibWINPP0lY6l1nDZDnCdNJymDorFkZCaRWzHc9Hn3HgrMmroefWo2QIcZYqjQjnYwZrq+Rbg92rekemGfxxDHa3TdoDRqMQb/GGnVTa7Zqa4bXW9PKmGnvWNNw1ojamri2xgja7TlacZPqBtaUlaEVNfDC8M5Ys+6s8aKme/1evIAAZvKC0eQ6a/SNrRG+R9SIWVm+4jrWamu29lmTAcpagtqaW216bufZs8awuHCAzel2zcyNrTl27Dgzsz22NvrkRfXWrLG1Ney3xs08MzewxlhLsGtNQlEWu9ZsV1sYzG1YI2/fmvGIPC9ACh588B1EfoSvPMq3sMh5WyxuqFeGbldlAYtCEkiJLyyhcBXsAtBWY4QlUgFCSipZ4Sm3OMnrGSbaQNLvM9mecHELLkzhau6+0O/vejx+d8DRQws0WjE6c1NspSdBeZRJQtLvM9peY9ofkU9KAi+gszhL7+AS7d6MW32byh2jGgE+DhcrsNpgjHZV5toipEDXR8NoC5g6PNBDSoX1BZ4O8Ou3a3U72CDjzNWcq7lHaRQNaYmlIfI1s82CxTlLt9kkjiOCIMTzGijl04ha7i40zymrklazTavVQqpZF+yXjpkMBxTThF53nrjddsfoFpQXopRPlSeEcUgY9oj8CE96KE+hfBdoRb06B9cmKnAr86K/zmIY05iZpUimCCEJGjFVVXH54kWqImNruMb07BnSPKPZdLs/9M7eFYIwRHiu0EyOErS1tIVgG0OJ+8ajLbSFwANSoLwD32ONda3uhU45d/4sh48dpdFs4u3M/AF2PujtzU3Onj/L1nafsnprUezWgrfbPWMwlaXSlctNMi201hS5S9W2sUOoyAuSJHG7rTq5tapKqqIky9xwRd8LmOgJvu9jy4Isd3kcnlTATjqpqxIw1tRdHG5gY1ZqAisItOHKykU+94U/4erqGq+8cI6/84t/B4XHi2ee5zf+4N+Sv4Hj+LfPY+v/ib3r733WBML1AAhxY2uUCkDst0aQ9LeZbE9Y3oKLU7iSGwSK+zoej58OOHp4gWYrRuc5lRTXWjPoM9paZzoYkY9zAi+kvTDDzMEl2jOzKPXGrbHauC6hHWvEnjW+DtC3sCaWbq7TvKeZaRUszVk6zSaNKMIPQnyvgdyxxlqKNKesCtrNzp410pIlYyajAcU4odu51hrvNdZ0Cf0Y/w1YExQFgyznvT//81RJylMf/xiFrljesWa0zvTVV5w1rdqaqrZGQBCFSF+QJDneMKG6iTWdfdZUd9Ca0uQc+fl/j48q+PpwyOib3wTceIOd5+DSImfPn2W736cs36I11Bvp663JM4ypXmONvd4aVadEVyVlUZGl2Z415jprjDshEm/ImmU+/8U/4erqOq+88Cq/8h/9ChKPF8+8wG/8wW++KWveJosbQFi0dYscicAXrmvBF4JQunlE1loqXZIrhcLHlyGB9BHSxYLrKifNcvKyZHUj45VVeGlSkRhNS/o8Miv4wMMzHD1wiDAKMMag6isBhCKfZgw2rjLcWKXKKxqtDouH52nN9AiiALBQaXShUXGADFwbowGHTKXRVYmu8wiwuKTPsgDtirlU5OMHCiGMG3Djzu1ct4p1LclLh5tc3CqZJhKJoeFX9JoFcz1LM5I0Gw0CT+FFPp4K8KQgCpsoP0TriqIqUEoS+7ErMi0LQINRSBURNSRh1HBH10JicJNcgyikTFJsZQijkMCP8ZTnWueFBVNhXPISVigsClu3s4q8wFy5iPIkwqr6uB2CKMZUFaPBJsPLF9m8uOESXYV0d7zWoAWMgEYUkKYpRVYRpTmZhVa9q55aS6ueNjsCuu4jIn3Te5lrH20sn/n8H3P+l85x/wMPc899pzlx8gRHjx5l6cBBZmdnacYxZ189w4UL5xgNk7c8wM7Waam2jo9DQJZnxGVMkmUuQ8Xz8ILAtVdiydKcVrPNNJmQpSlVVTIajZhOE6qqIs9ziqrECzxsClobwHXTVJWuczJcsbupQzNE3S5T7WyShMIYwZW1q/y73/4dLly8xHg04bmXnuXIocMcmD1Ap91mY2vrrX7a/1Qey541qrZG4qyJbtuagjTLKKqS1c09a6baWfPwjOBHH+5x9ODhG1uTZAw2Vhiurzhrmh0WDh6jNdMjjGtrtEanFTIOkb7zxgDW6LqTZ8ca4QypLFVZgLFuU3IDa+x11hy4zprmzayJffxdaxoo3wVmFuWeNZh6zhkGYRRSOmuiOL7GGvEaayLCXWsUUnBDazCu8F8UBcubazwzO8Pi+QuYelr9x85f5OBcRDbYYnjlApsX1/dZY7E4a8YWojAgyRLKrEL9aVjzhU9x1+ULPPDAw/z1xx5n6SM/ydLiEh/7xCeowpDPPP00jz78MM88/ySjwfQtW2OsRRhTW+OeLM+Iqz1rPM/DC/wbWDMlT1MqXTIcj5lOp+jKBakWVYnne9jEXcmCRXn7rNmpuXkda67W1py/sMx47Kw5fOgIB2cO0G13WN96Y3lC8DZa3BgLpbUYLKGQ9VExBHV0t0FijEQYi5aWqipRsiL0m6gwwuqCZJowHCacWTWc7Qsu5wWVNSx6MQ+1BO84EbA4N0fc2Cniswjl0kHzacpge5VsOqTVnqVzcoHWTMdVbRuwlbsyQIDXbqDiEOH5GNyUa50XVFmBznPS8RAhLEHYqCfuGgLfx48UKpBudYzAWENZVmRFRlpmlMZghCJuRtx1PGJzWpJX0IkL5mYtnYZPs9kmjGKodxYqiPCCGOqiRGs1GksjaiOUIE9zhKncEbXnMzezgPAF2XRKkUzxvQAR+nheQOA3mZghxnqEUYvQjxHCImy9G9y9bvLcrlcqKuEyDDwUBBEIiRf47rizqvCCAN/z2dhYYdwfMs5zsmmCNhrJTlK0dDvkTpvBYEJZGppFhbYQSGgCI2uZWoG0rh5CUoN+x15/luF0yqtnzzIaT3nu+edot1s0m23arSadXpvFhQXWt1ZYXl4mL9/6nXClNR6SqjJ1Eq3eTZ7N0pzQDzFYiswV+5VFSaPRZDDsuxO6oqIsS7Qx+L5PkqQARGFEmk3IC9cVA6LO+9jBRuxdw1IX2VIf+yPqX9eCkKyvrjMajsjLipWVNa5cXeHIwYP1pN/vz8fNkrrWmuANWzNlOEp4ddXw6rbgSl5Q1ta8oyl46GTA4vz8Ta0Zbq+STpw17RPztGe7r7UGUO0mXhwiPA+LwugKnZfoLKfKC9LJAIEliJoYY+pC8h1r1DXWVJUmLXessXvWnHDWZBV0ooK5GUOn6dNodIii6AbWKCziNdZkabbPGo+5mXmEL6+xRtbWhIGzRlv1JqyRkOawusbqyy/RabWZ6fXInv426oHjbG5eZbQ9ZJwXpNMpndoaWRda69qa4Q2saQHDfdbI2hqBiw24I68/axlNp7x67lVG4ymNF5q0W7U17RatXpu/8eEPsz3cZHl5mewOWKO1S7/etUbvtyYj9N3tR1HX1ey3xhhLXpSURYnWmiAI2NjcBAtRGJPlzhpuZI24TWuQrK2s7lpz9eoal6+scOTgIZI8fVMf89ticSOEA0dTF/fVnQvuOsrd2VnjRvlKDZVXYYWHqNsMrdEU6ZTNrZSzK4JvjzSjuvhxXoU83Fbcf6hiaaaBNbnrn68j0REuPyZPEnzl0146RtTu4Ddi112ktYuglu4bsQoDZH13bLShLFKKJKNMUso0oSoShHb3iEU5wfM9okbDjQnwXMW6kQpTatJpTpKOSQtNVRXu6sALUV7E4mKLuwZ91jdzotjS6jaJWrMMjWCYQ24ssefRLQxdWRHZinZg8Sx4fkTUiMFKmp3YnaH4yg2P09rVDsgA6wFojNusEsQNBBLPCwl9H6tzTFW61bb0EEohpKICCq3daRUC4QcYIaA76+62q4r+uUvkVcns0UO0W7MkSUGrt8Rwc8R0OkJXlUtHldK1IiJoNWK2+iN85RHU97aldS9SDUzqXBKXlekm9N6hzRQARWUYTsZUVUkY+gRhVCd2ujviylRu2vFw+pYnA4OLItf18qyqMsoqIBQxWZYTxUV9bFwiZQoyBg9GowHGGNot1/0mhYseqLTG81xL52g8Ik1TPKUoK3dXv5NLsFcrY3fvws2+XeHurb6FTqvBsRPHSPOcwIswRjOajLl4+Qpl9f1ZXCzcmpjqOmuC11hjrrPG37Mmm7K1lXF2Bb491AxNhQXmVcBDbcUDB29ljSZPEjzlM790jLhVW6O4DWumzpo0pUxSqmKKMBYpFEU5fo01WIuRnrMmyUmSCWlZUZV71kgvYnGhxV2H+qxv5ESN2pr2HGMruFIKcmOIPJ9u6awJrb7GmrARI66xxsUY7LfG1NboHWuiJgKJr25tjUZQaO0KX/dbk5WIM69w6sRJ/vX/+Ku88PLL/N//X79Kqz3DdHoTa4Rb4CgE7WbMVn/8GmsUN7bmTqc7FZVhOB5TlXvWBH6I9AQSibYVk+mYwWjyXbAmp6zCfdaUVFrvWSN2rBmijabTblOWAikUSinXKbXPmiS5TWvsLaxpNjh24gRplhN4McZohpMxFy5fdtPq38TztljcWKjHL7grKW8fNhJ3v6wRYDwwAg837C4QFuF7FEXKYFJwdU3xysQwMm5HMSdDHm0p7jtacGB+hlbUodKGPM8IhXQ7A+PuAMM4otnp4MfRLgxWu+NcIS3CD1ysupQgFVWZU0xTF48+GaKzHF1kCF25KcBxA09KwlaLIA4RvgTpu0rxomAyHDIaj0BKrHVpsx4CKQXaSJQXcOxITFGlEAue3TZcvLyFac5z+K57WTp8FK8RsVFmXOpvkq0vM0+f0zNNltpNjBJEQYyQ7LZlWuOQ0GUJUhDFbdLJkDLNsNYSRS5no9lq4YUuCdf6fg2NxCAZTgZsjbawKFrtLtILyAoDzQXmD5yos1MEWZazvbHF3PGj9BYWSbOMoBVRKkWSFYidYZ+40CcrIIh8tvpTmp77hgMu/XT3NQLEQlDi5swV34Wi1spYJllGURaQJOyOHLPuxypt0HdCm/qx1rXkFnmJ52eIxGX0pElCFIRMpIenJGHgvtGV9eyWwWCbySQhSVLSJMPUmRLaaILAx/d8yqra3TG5nZRASvYNsnOf3Erf6OMRHDxwgH5/wNLCEXrtHg8/9BCtXpOrVy/zW7//u/T7gzv2efhePRb3TUxbt3P02Dm1sddZo66zxiA8j6JMGY4Lrq5KXhkbhtdY43HfkYIDC7eyRhBEN7DGuDHVu9b49ViEHWuSlGRQW5PnmDwDXeEHIV7cdNY0mwRxtGuNsVAWJZPhoLZGYK1L3vVra8x11ogYvtOHC1e2qBpz9E6dpuhYGkOwUUzLkzQ3llkQfe6eabLYbmKVILyJNaa2Jr7OmjCKnTXttrOmrLB+PSm9tmY0HbA53MYir7WmMc/gQBeEIE1TtvsDjh44zLQyPOtH7htkK6ZUijQv96ypT2GsAD/06Q8SGtdZs7Nf+tO2RhtL+TawxpOKQX/PmiRJ3emhvpU1oo6quF1rqK3ps7RwlG67W1vT4urVS/z27/8e/cHgDX+8b4vFDbhrqcru5U34QuAJU9+Puzk/bky9JEC6jgAZYI0kSzPWNiuuTmM29NhNBkdyLPBZigusBun7SM+j02xSVpo8SxFK1jg08HwPFbgdA1bvlJcjFQg/QnqhK2g2Gl1kbu5Lf0iWTNDF1LUtBw3CwCdsNN2E70CiGiHCD0AKtBUU04zRaMRkPML3PcIgQgiFlBJjSnRlKITGsy48qTGT8omLGUcefpT/w3/0Szz0w0/QWZjH9928FGsMVZ6R9Le58vJLvPCFP+Hqy09yupUw13KTWqk00vfAWLLxGKM1XhCSpyl5XlLkU1rNjjsFEJIgjMBKVBzXk38lujJs99d56fzLlFXJwcXDZFWFbs7SfOhHyBstvMVDWCEQnuLA/adZuu8uvMCn1e26bIUgpFAeSZa5WVzC7WiDKMQTinYYcSUv0GlC19q9YkL2FsAtAQ0Ew+/Cbmrn0caSGb17srH3Gr3zwFksVrjXVZalhFFEVZXoSpPmCc1mTF7kqFTWhaDulKDIS5IkdScDwuVOCIm7B88dmO5OvHKJ0LhvPLKe5Ow69+pO1Bs87UaTdrvJlauXeej+x/jQBz/M4RMHkVLx2OOPEoQ+//LXf72u6fn+enaupTwh8eVOp1R1nTXitdbYPWuuTGPWa2t8JEcDnwNxAWbPmnazSXUDa6IbWYNE+riFjRddZ01K2h+QXm+NX1sT7rfGd7OgrKCY5oxGI8bjEcHrWtOkMZvyiQsZ83c/xPLjDyNf/joXteXrr3wF8c0B3HWKu+/5ZY498c+Q736Fn/zSnzDz8pPc00qYbUGgfOx+ayaT+mp6nzXZlFar44qchcTfsaaxZ43Rhv72Bi+ef4myKjiwcISsqqgaM7Qe+hGKVod/nf4mGs3K2iq/8o//Txw8cJArly+y/MlP0IsVMggolMc0TfesYZ81UcRKvk6VXWuNqxr5M2wNN7YmyRKajeussW5u3n5rRG0NYp811VuzptVo0uk2uXzlMu+4/zE+9KMf4sjJw0gpefydjxLGAf/yf37j1rw9Fjf1MTHU4+CFwBcaiaXEHU1qKzFY8tLiSRcgJTyfsszYHuVsDUK2KpduLICuDOl5IKXFl4owbOxm2HieR1lVLvumKlCBjxdHbo6TxHXwKIWqBz/WlVBoXaGLEl1WmMKgPI9mu42UHZR1J0Cequ+64wgZRRhcBoXWmnyaMJ1MKYuCbrvrArzqHbW1Fl1JKlHiWQ+tJIEXcupIyE++4zQ//h//p9z12LsRQWN3J44FlJudFQQ+ndkZTj3yKFfOnuOZj/0W2xe+zaHAEHsBfhVQ5BmmKokbDYwVZOmEIIyIoxiJodIGz3O5L6YssEagGg2shdF0zJnlc1y5kjI/75EiCE4/Ttpb5DN/9AeMtvv8w8c/iClLjNb4UQSAMYY8zYjilktTlZJkMiXwA6TywFqajRbNKCCMAsqiQBcZQ1fehMTlVLreD7ej8oEQwVufkXvLl+T3pN3ZWihLgzUFCCjyHDeLRVPpEt8LEdJDKel2eFbsTpX2PI9Kl4i6oLQqKgQGrUvKsqKqHMlCuoJZrQ2V2WPa3GJX2Gw2GQ4H5Lnm8MGjnLz7OC+/9DwLC0t4/gKPPf44B/7wD7lydeW7/Sm6s0+9iYJrrVH7rDFWorHkhcVru2BMZ03O9rhgcxCwrfes6V1jjSSorZE71uiKMru1NdIL62+w11ujMaVGvsYa4RoUdqwJI4y4kTU53XaXxutaozl1OOAnHriLu/6D/5Sf/W9+lfxrX73WmjNnePGVf8qLz0HzV/5j3v3YY/zM2XM880e/xdbFb3MoNMQqwK/C2pqCuNHAWkGSTlxezXXWKHGtNVgYTcacueSsmZv3yIDgrsfI5w7w2U/8EYONbaZFTCO4i2NHTvHSmU9xZeUqjTjmwz/6Yzz/3Odvz5qypMr3rFE4X/5MW1MZrL2JNX6IULeypoJrrLF3zJrBYECWVRw+cIRT95xw1sw7ax5//J0cOPCHXLnyxqyRb+qzdIefnZWypA7TwuIJl0FhrERbVe/eBVkuqajcnCmtGYwHbGxIRmVAZl2pUoTisB8RS4MKJYuHD9Bu9QiiCGvd2akfBIReBFqTTkaUhZvRg7XujlwprHUV4MYaqqKgTBN03ZIWtGMaMx0a3Q5xs0XYaKJ8hYoCZBAiohgrXeKoKSt0UaErN1211+3Rm+sRNxt4YYD0PZRyE6H9ICCKQhpRk2bcZKHb5XBk2VpdoczqIk5RN0/v9DUKCZ6bROx5PgvHjvDE3/wlOj/+1zlfhUx0QVYkIATdhQX8VgvpeXTn5ml1O0TtFkZJKp3jxyG2yBBKYSsDVpBOEy5eWebMuSmbI8nKpIF650/y3PZV/t2v/SovffUpTGXwgwBTaqrUfY6she3VVUIZcdehB8lGE6qqJM0SotjlGEgpiFstOt02jWaTqnATeFPhvhhyoFBi98MugIw67+N79gr97j6mLlTHuoTPoshRSlGVBUkyZTIds7nVJ88LjKmoipJSV1gMWVaQFxnGatI0Jc0yRuNR3bXi2j+VFChP1Ufz1LNkbv7Zk0LQ67Y5dOAAH/nQh3n4kQcpqpynn/4W22t9jKloNVvcderk9+xzdKceiyuOvZU1bvcuyIraGumsGY77bK7DqAzJzJ41h7w9axYOHaBzvTX+zaxh1xq4mTWWoHUjazxUFCCCwFmjbmJNp8vMG7DmSGyJhiv8yGOH3GnCa6wpYPW/Z/KvrvAH0mf+2BGe+A+dNefKYJ817FojdqzpdV9jjSnTa6xJpgkXr17izLlJbU2M966P8PxwjX/7L/8nXvzyk9hK4/sBS/Mlh3728d0/2w+87328+7F3c+LAA7vWJDexptlsUubXWpPx58ua8jpr0te1Jq+tMaRZSpqljOrX835rvDdgjRCCXqeza80jjzxIqQueefrbbK9vY0xFs9ni9KlTb/hjfVssbsDN0VV1EXEoXYiUQaCRDh7qjINSUgjrZoLkKaORYZgE5MZFqksEHRkw5xlmGxUzc+4L/8LVKwwmY3JdAQpPePhhg9APqfKcdDwhGw3Ix1PKNKdMcsp8ii5zyiQlGwwpJim6qNygPAzSU/iNCK/VRLYaqLjpdlHNptt9lQZTVLv5AFhD3IiJ2w1U6CM812atpJseLj2F8n2Up5C+rDtdwBtvsfz8sww2Vt3d3O4q38EjBCAVwvPqt/dQfsCpH3ov8x/5azw3gUQXhI0Qi2uLDJsh0nPHlKYqKMuSIi9odecp8gRXVmfQRc7y1WWefnGN5W3B1dJj6cd+mufOPcPXP/9pivEUoy2D7S0un3sJLwqIem2sMQzWV/jYb/5rvvmtz/PDH/4x5pcOEcYNkmniOkOkRCAJ/JDO4iIoibAuMj419VFx6NFs+LunOCF7G8k/O4+lqgxJlpOmCVIoyrJ0BXrGdUtVVcl0WtfYZBlJkrK5uYWsp8UPBn2KIsdqg1IBnu/v/uouo8Klde/UON36Kl+Q5RkXl5fptlssHVwkSaYMh0PClofRFUIqDh48+Jrj9O+HR9fWBLdjDXvWDMeGQRJSGDcqRiJoy4B53zDXqOjNxQjPq62Z3Nqa8YB8PLm5NdNrrVE3sEbEEarxOtZ0mm/Qmm3WXniOv/WjP41Sh25sTbGO+Mf/Iy9+dZ0nd6x593tZ+Mhf57mJJdF5HVZ4vTUWUxVU11iTst+aSyuXePrFVS5u1dZ88Kd57vyzfO2zf0wx2rFmm04kubK2wuf/H/+CIAj40fe9h8dOH+XpZ79MY+7DzMwfJowbpNPpNdb4frDPGv0aaxpN93Xz58GaJHkz1sBg2KfIa2vka62p3oA1AjcN/uLyMr1Om6VDSyTJlMFwSNjynTVCvilr3hbXUrb+f4Gt78DdsC1t9seku8ktaemyEipjmE6njIaSogrqpBDX2tlVHi2/otW1xLFifXObCxen9Gb7PP7QPcRe7I5FpbvjDrBQVZhcYZW7IxRSoAuDLTW6dCmXCANGYko3xVtQIT3XyVBNE+JWC7+zgDECXeRY62LVTX1k58chXuAjA293kSKUjxTS/SEag1BytwvJ1gFyQZVz8cwLvPLMk3QXDxC2Z+u2OheXvfuHXndZeH6A9Aqk8jj2jkeYjH6OVz/3WzTjAmsVfui5u9H6CrPICqTwCKIm+BXZOKeqCpQK2ByN+dpza7ywbtjUmsd/+H2M1IizZ16gsj6xL8hERTEc89v/4r9h8+oyi0dPEnsxH/ut/5n20mHe8eg7eeG5b/HimZeYphlJnrnguVIDgiAImV86AKKi14kZbmaMjaEtBbOLi6TZFEY5OwO4IwQGGHF7reA7HTJv12fnfZPSXRlY4eowijJjkozd60RIBIqyrAiCgEpXdfv3lCRJqUqDkAIjLJ6nyAoI/JCyKqnqYj9jbV1EeusZNZ4nEcoyHReUpUCbitUrq1y9usaTT36TD8/+BGEk6Xa7SPn9NSl8vzXB61lTSIyoqKwhSaaMa2vcq9YSCkFXeTS9ilbH0ogV61t9zl+Y3NiaYMeaEpNdb43FltW11qjaGl1bozys1pTThKjVIt61ptg7ZX7L1mRsnXmBe07dxwd+6ef47K/9KgCeFxMGUOBqech/l2T6v+d/8hf4V16BLJ010/Ff5sxn/52zJq+tMTuhgoIiKxE3sWZrPOarz63y4pqz5tH3vpexN+HVV56nst6uNflozAkz5L//e/8J54+e4IN+g+9845PMHV7g0Kn7ePG5b/PKuRedNVn+GmsWlg4gREWvE11jzcziAmmeIIZ/TqxxVWZv3JpCX2tNfp01vBFrFFJZxuOcomDXmitXV3jym9/kx2trer3eG7bmbbG4EVKgEAQSImHxhRsfUFnhwqZciRKVtUxzKCuBlAVpVpFlEbgaeHw82kLQkYrQy2k0Aow1rK5PyXOJEDlJntCIm2jjwqx86RGETaoqA2swFegqB+sGNZqqQiBQQYSwhiqrKPIpVZpiihKrLQroHDpAuDCHQaHLzEWjW8BqhJRuYJnvu5Cq3WNeVzxHneIolEBUOze+7qxCeT7tSLBQjrjw9JMcvus0h+9+kLwo2FpfYWtjlbjR4tCRY7RbXaQFJRW+7+6Ulfa5+13v5qvLZ7m8/CRHmrgwP+kKC4s8p9IWJT20rBBG4gdNd6wtDaub2zy7mXGuqmjOzHDy8QdYvvgSB089hlIh5ZVLmKdeRAjL+svP86/+L/+IsNHk0Q9+iLTKWH/hOzz+/r/AzMISl6+u8aUvf4FkMiVLE4QMXO2Ukhw+sMD6xipLSwsMt4bkVmMEzB88wMql5foe3JLVVwkB4raPHd/O2ED9DbdukzTGEMY+rY7rPgl8CV6FUIYw8mg1Wy64b5xTVAXGaHzfRyk3C6nX7bKyskKn2SLNMqzRZJXeLVC81d33zuN5HlVVMDszy9KhJc6ceQkfnw/+6Pu5cP4iw7UBlbdNnmXfdyc3QuxZE76ONZMda0xJklakN7CmKxWRv8+atX3WZDexpryJNbpC2Nuw5uAS0cIcdtea6lprlEQFe9ZYAeK2rAmcNcWIlRee4u/9zBOsbBkeoeTB+z/IIw/nPGtbvPi5i/xRcD/90w/zjKzY9AO6tTWn3/VuvnrxLJeWv8nR660pEiptbmCN3rXmuc2Ms1VFo9fj1LseZPniixw4+SjKC6muXMY+9SJgGVx4lS+cu0DYaPLKBz+MMXD2+R1rDnBpZZUvfekLTK+3RkoOH1xkbWOFA0uLDLdG5FajBSwcPMDqpcuvsSb8s2xNY88a3xfXWdOkqiqGYze9fb813n5rWm/FGkWlS2ZnZjlw+ACvvvoSvg34Cz/6Ac6dv0h/bYDx+2Rp+v15cqPCkFAJvAp8USGEwViPql41q/rvlTUUhaXSIIqcIhPklZtuKoFQeITSo600fmTwA8loUjDsByANUQiVhizLCIIANK5OJvBQQRNdlZisIM8mVGWJoawHjIXY3GDLgjyZkE+nmLzCVx5hs0X36GEaBxcR0keXKVZXYCqk9BCeh1AS6fnuHlJKhK0LyKzFSrBauFMX4SOoECVUJiMrC0qjqUzFvJBsrb7Kp3/v39KY+xxZUZDlGXmWYQQcOniEx971Po6fOI3nBShP1t+kNEHU4L4nfowvP/91ZrwML2jiBRJdavKiwKuLGX0vBKmpqhKkR2Vhe5xyqdJkPjz0wGmidpvH3vfjdGZmEZ7k0lNPcuXbL9P0NHlpSdMCk5R89nd+i1wIOvOLTMcjOnMLPPTI43z5S3+CkhZtKhQSqzzAcvjQIba2NxAS5pbaFCsjZGVBSbLS7Zl28icyYFZAJMR3pUXzT+Mx1mBK98WbFSlBEdCImoRRXIdHWqI4oNEIieMZur0eSTIhSwvW1jfx/IBeGLPV36CsKsaTqeu2Ma6OAwRKydvqOIjjmCTJafiWyuR85jOfpL815oF772dzuM3qxhW+9ey3XTKpvZ397NvnUXFI6DtrgtezptyxJqPIBMUNrTHOmlAynhQM+gFISxRUlAbSLCN8s9akU2dNVuIpj7DRpHfsMI2DSwjpU5VpPZrh1tZwQ2sCBCWiBG1ysjKnNG422byUbK2eZeXbiv/s/UeQZUFZPcurz2dEAj7y6BH+6rt6/NMTCcsiYNNTzO1YE8bc9yM/xpf/5deY9TI8v4nXqK3JczwvutYaXYL0qSxsjTMulc6ad9TWPPreH6c7M4fwBJee/hZXv/0yDV9TlJY027Hm35FLQXtugel4SGdukYcfeSdf/uKf4N3Ems2tdZAwt9SiWBmjKldrmZfuZODPozVRnVq/Z01EHMd71mQFa2vOmpk7ZU3UYDrNiLw2lSn4k09/ku2tEQ/cez9bw23WN6/y1DPfwg/8N2zN22Jx4zebzCwuMr64ihIWbSWlFRT1ys/NeXGTWU0lyCuLqQxZLimMa/HzhKWtJE0JDa8gjEEowXBgyMom7eYUCRRFShb4hGFA2AhdKrmp8JSPFwSUWeGK8vLMhQp6gsoUlGmffDDFlAYpBWEY0j24SPvwYfxupx4+VmBKN0xPCOUKqpRC+mGd6VLHFgmJgHqYJuzU6tuqIM9KhuM+a/1NtsZTxmlJWoGSlrAR8tzZ81TtBWYXDtDu9Gh3ezSDBlvrWzz9ra9TliUnT96LkK5Tw/MqrPFYPHIMceh+Xl5+kkeWBDKJsAha3Y7DUEhMVZKmEzylkFJQGehPUlJjqRQcP3WS+x59mE7vAJ4XUJmCwZWrDI2iobWbfVPiBnOWlgLL+kafjZVVOrMLZHnKIw89zFyvh9Wu8F7gsicWFpcIAx9daVqtBkGUoSc5G9tb5HmGFHuzVSpg27pZMH9W7sSNdQGfSkqM1mRphicCxmbETG+eKIwRSKRQZFnBaDximkypCu26Y7KcfjZhe2uDvCgoypK9Kkj3D+Y2WynbzSb90YBWq4U2muEwZfnyGnefuoflK5f4/T/8Qz7wnveznQyRUn1ftYP7jSYzx27PGl0Jsspia2tyfa01DQkNVRBGzprBcJ81AsoiJQ98ohtZEwaUufPiptZUxuXihCG9Awu0jhwhuN4a/Sat0XvWrPc32ZrsWSOFJWws852z5yhra1qdHp1Ol0bYZLC+ifetr/N/LUsOn7qXE0Jg91mzdOQo8vADvHTxmzy6JJBphLWCVqfr8nt2rMkmePl+axJSYykVHD914hprtCkYrqwxMIpYa4RxFb9Ggt6xRvdZX1mjM7tIlmc88o6HmJ251hqx3xqtabWaBFGOnmR/Dq0Rr7Gm15u7zpqyDuqbUu6zZpBP2NrccA0QN7LG3KY1rQb90ZBms4U2FYNhwsVLe9b87h/8AR94z/vppyM3S+8NWPO2WNyoMGLp8ccxk89ht0dUVlJaSZ1J6drVcC2cZWUZTi0dCVmq6rI+SyTBE5KmzGgGBc2mO4bNM4W1Ek8apJUMkiFJPkVXJQcPHAGrydMc7RkkkA77YAxB3MJUOelgQJVXVBP3vsTNkLjdoHVoicbSHF6jBbi7a6vdqlUqAUq4mUxS1tjsHVlaW19ZCYmQLsCrKHLWNzZ5cXmFZy5tc65fsJXDuDLkRtNTgscWEjZnSoQOuOvud/Chn/qLnDh9P57ncfXSeS6cf5nl86/QaLZYXDhYJ3LK+hQn4oH3vI/f/dIfc3evQRDHhI0YKS3CaAyGqiywRiOVD9aS5hlb4wRjAKk4fPwYrW6HybRPEDQwtmLh+BH8gwtMr1zZHWufa9dpgIAqKzh75hUOnzzJqy+9xA+994eZ6bhBdqoeroYQtNttojAkzSuUcjkgucnY3t6qu0uufSpg+mdkJwXuukRKQRD6RFGTRqNB3GhQlRVpNkV5bn7ZxeWzhGGDwI/Q2jAYDJhOpgzHQ1bXVimKYvfOe+cM+g1/mqQgS3N63R5KKbqdWYy5zPKVy0ynKZNxypnz5/nLv/Dv8+3vPMfZc+e/C5+R785zu9Zoaykqy2hq6d7EmobMaYYFzdatrElubs2gjzWGIG5iqqK2RlNN9LXWHFykcWB+1xprzK41Qrm/3qg1G5tbtTVbnNsu2LyFNadOP4iMOvzeJ77M0Qee4EO/+BE6V86jz79Cs9lCLBx0re/7rXnv+/idL36Ce3oNAllbo25lTc7WKMF9WJLDx4/T6naYTvsEYQNtKhaOHyaorVGwa00OIEDnJWdfeZkjJ09x5sUX+aH3PkGv27nGGrHfmmzHGn/XmqIo//xYEwREUYNGo7lrTZYneL6b+3fx0jnCICbwI4wxDPpDJpMJo/GI1bUV8jtijSTdscZT9DqzWFtbk2RMxhmvnj/HX/mFv8q3n3uOs+fO3fYv/bZY3Agl6Nx1EjOdsPaVr1CMq93QHzeawVJZ93dtoT+EsAnauHkwAIHUxLIgUhVxaPGVoiw0ZRHiC/eBKiEo85SVrKSoKhbmD+IrhR8o8iShTEZkkwGzB48TNpok/W0KMQXh05yPaM+1CZoxXruF127ghRF4vutOkLjJtZ5ECpcCKpXnziWkC1DCuLtvWzebWm0p8oIrq2t8/cwaX7+wxZlBTmLcrGIhXAt8Qc6w0myWAqEilmaXmA4HSKvozS5w5oVnWbl8iXvve4gLF15i+cKrdDozBEFUT2BVYAXH7r6bITEbSUEvtlR5ju97oBRa51R5jrWupc9KxfZkg41xhZv0Imi3W3gqJvI9gjBCSoU3J2n0emyeu0JLQGAFYywxgtK6HdXqpct86QufxVZw6NhhTJnX96fGBXdZQxB4KKHodrvuKD+KqeyYdDIlK6obftF8P86kvtUjJRRlydbWFmmakSQJZVmQTFPSJCfNKozRhEFAo9kENHlWkuc5ZanvyK5SIMgzN4iw3WkhhCJJE8qqYjQeoLUmSXKurG/Q683y9//uP+BjH/8Ef/jHf3AHfvfv/nO71ujamu0BhK1rrfGlpiELIlVea03urFHst2ZEXhYszB/AV94+a8Zkkz6zB44RNlvXWRPSmu0QNiO8TtvNsgsjRG2NlfZNWVPmBVfW1vnGmVW+dmGLV/q3tobammQ0ZLF3iM3DI375Qz/G3MYap+5/mAsXXuTizaw5fTdDGqzfpjX9ySabtTUSuWtN4CvCIEIKhTeniHszbJy7Qvsm1qwsX+IrX/ocujQcOn5ra3rdLkmWEcUplR2Rjf88WSMoqpKtrW3S1HVOVWXJNEmcNemeNc1WE2sNeVY4a3bqSd/iIxDkeY4AOp0Wcr81o4ELF0wyLq9t0O3N8A/+7t/nDz72cf7d7/3mbf36b4vFDQgaCweQ90HW77P5zAvYzNVy16kDGEz9TRaGI8lcw6KUxSstvqyIVU6oKjzP4IcuyMJoicLiCYESAiUtvucxkRWFrii0xg8CPAKMqsi0oNldIIhjjNbkwyFxt03UbBI1mkghkYGHaIbIIIT6DhdLvZNyxbxSKhe3LiXC1gfEdfW9m44rqMqS9c1Nvvr8Kp99dcTZ8YTCVkRBxFEPyiLDeCXRomJ9TdKQERObIwcjthqXSbOCK6tXOTUe8vx3XmRtZZnKlLRne6yvrTAaDZmbC2CnFc9Ymp0uvYUDXBpucmrW4EsP4SmKvEBXJUL4KGmpipyizFjd2qafWjzqLB0JjVabucUmxrgVe7vb4b6HH+P3n/wOCMFirDjZi1nsxQSBh1WWrZWX+c72mA999CMEQURez9Ey1iCNBWEQWuPpkm63xfLysku7BJd7cwcjyN+uj2s9thSlIUlKtsQUpSRSusny+4vzkjQnSfPvyvvhOrYMcRjUu9sp/f424KpN4jjEGFjduMpXvvp1fvnv/C3e98QT3zeLm9dY8/QL2HzPGnehs2fNaCyZb+5Z48mKxo41yuAHFqTFaLVrjbfPmrGsKHetCfGEsybVlkZ3nqDRwGpNPhoSd1pErRZRo+HSwvdZI25gjZQKdZvWbGxtOWvODHl1xxo/5IgvqIoMo0rCRcX6mqChmtdak+YcuOtB3v+BXybP1nj5/EW0KenMzbC2euWG1jTaHXqLzpq7dqzxPYosv6E1K9tbbKcWH1cThBTXWWNomx73PfIYrzz5HKK25ng3ZqkXE4QeKMP2+hme2R7zoZ/+KcIgIq0KjNUYo5DiOmt6LS4+u0y+Y01ZfU/C9P60H2eNpij1n6o1Qgqs2bMmSRO2+333Y0ISxwHGGNY2V/jyV77G3/6VX+a9Tzzx/ba4AaEk0YEFFh57F7aouPrsKwjr8igE7pjYWIdQUSjSxMMzhkDl+JQEyhAGmiAweIEF3BGosr5b2CBQWHwV0ossWtYpoFXJpL/NaHOVVm+O5uwMWleMV9YBn5kDh9wk06pCU+Irz4EiJFhbt1+WYEF6HlKqupVTup2T2WHSYnG/52g04TvntvjcK4YXB2C8iLvvPsri7Bxh1CHbWseMLjEoBtz1IyHGzDJcmWP5/Etc2d5mcmWdn/4rP8X2dp/Pf/J3GA2neEHE5toKG9sbKCkZj8fMzM6jjaEqS7Qu0UbT6na4enHZpVJWmrKYIKQL/zPWgvCwIiPPEzb6KVnpprMLIdhYX2Zz4woHD9+FEIKqKjHacuq++yEIONU2fPChIyzMdjFWMx6POLvR58xmwS/+k3/A5vY2eVbSaPfQVeUSMeucMCUlsjQoCWmasDnIaFuLqMTede6fp8eCrsx3Lfb9Zo/nKVqtiHuOn+LggSX6gwG9bourKxsI67vXvnWt1JcuX+LqlTV6M93v8Xv51p6bWlO/0qobWWP3rPH3WxPWtTr7rbF71sxElkpKdKXRVcl00Ge4sUKrN0drdtZZs7oBxmPm4OE6PVjfljVqxxqut8Y1u2tdMR5Pef7cJp992VmTqYCTp09zcHaJKOqSbdfW5ANOfyDE6FmGq/NcPPeis+byGj/9Cx+h2WjxE23FVn8Dz4/YXF/ds2Y0uqE17W6Xq+eXMcdra0bja6wRwnfWFHvWeHVm4Ob6Mpsblzl4+HRtjcZow137rPnRhw6zONurrRlzbnOblzcKfvGf/H22+33yrKTZ7qErje+7Uy3BPmuEeI01b5vgt+/l86dkje8p2u2Iu4+f5NDBAwwGA2a6Ta6uCIT16lNA18F46dJlrl5eozd3+9bc1uJGCHEBGOOKyCtr7buEELPAbwAngAvAL1hr+/XP/y+BX6p//v/RWvvJW/361loqUxI0I5bufRDPKgabG1SXtvBEXWuD3Z0aLhFkmU9LZFA37illCAL3l/QN1pRYHSKFRaFxI6QFAk3DjyglWK0Zbm0yWrmK0QYxIyiSxLVX5hmzBw9jjEZ4IX6gkGGA0RXWujtvi8uMsNq4gCzP2z1pslD35BvX9mkkWZpw/tIqXz5reWYjYGWyzMEjB/h7//S/5djpkzz56S/z4kvP8fxgg5WkYGuY8eRvjPDkBqG1zLYimnGLjVHC1nBA0Opwz8n3MD8H5y6+zOrVM5w5e4bjp+/hxMl7scblXpRVSVUU6KrACwNGqXF5OJ6bT0W9VzWlO4o0xjBJpvQnmsIKd8yOYfvCKutXN2g0ZzHG1BN3Nd25Dg/ccy8zwzO0GyFFMmFjc51Lmwnfmgp+/IGjzDV9rq5Mef7pc7zn/e8jzxI8P3Ctr1KhtWWaTdxxaWFcdhCSyPLnc3Hzp/RoY+gPR2xvjThwaImgEbM0d4zV2SGqTm+1xnLi+DEwOaPRkLgR3LHf/7tuDTvWhDe0Rt/MGrL6rQ3ejawxO9a44ZvAPmusm6i+vcXw6lWM1rvWmCpHZwmzB4/sWeN7yOi11litb8saN28v5fzlVb7yquXpjYCrk0ssHVpg4Wd+DqpX+cDcj3P+1Rd5frjJSlqyNcx46t+MUHKT0L5UW9NmYzxlezQkGAw4dOhBknZCZyVi7corvHLuDMfvuofjJ+95rTV6xxp9a2usYTJNGIz3WWMN2xdWWL+ySaM1hzGWZHKtNb3hGTqNiCKZsrm5xqXNhKcmgg8/cJiFdsDKasJ3nj7He97/wze2Jh0jFK+x5gfP9+7RxrA9GLG16awJGw0W5o4yOztEqnoeu7GcOH4UbG1N6/ateSMnNz9mrd3c9+//CPiMtfafCyH+Uf3v/4UQ4gHgrwIPAoeATwsh7rHW3mJhaEFI4qhDI25SZClzDz9IMfkGZb+gtBZtd46OXXdNWYToqCTyDC3f0owtQWBQvhtEaAz4nsFTmrR0LeBlaQkiEMLSiNpoBJP+NjovaXbbRFGLcjoh7w9oznYQvqr/FCpkowHSoIIYqwVVkeKFAVjrivmUqOPKXbfLzmO0QVclg/6ILz9/lac2Fzk3nDIuz3DPfQ/w4x/9BeaWDiNCwcZ0g8996VOcvXiW7Twjqe/9JZaekhQmodMOsZXmS5/7DB/9S3+N0488QuArnv7GZ3jqG1/j4qVLWATmR+u4MmvccLM8x1QlWZK6lj1TuaAwJKZyd92m0hhjqaxhPJ2yORYkVpNaONCeoamaDC71+fLKp5hOR6TJ1BVCr62zeOIE2bcv0B9skaUTVjdKvjWFD957hB86Msva6jKduRm2N/p848tf5fH3vhvPDyG0WM9Hm4pknNCYaeJ5blJ6JCAAbis96wfPHXmUVPiez9awz8raGu9573s5evQ4aTVmbWWdwA/QxuArj3ajiSkNRVnd6Xfju2eNddZEUYdm3NqzZvwNykFBcQNrijxExyVhbU3rltZYtIayZJ81LQyC6fYWOi9odFvXWdO+LWvsddYIcW2o2Y41w8GYLz9/hSc3Fjk/TBgWr3D3PQ/wEz/9Cxy/+zT/5rMjnmps8eyXPsWrF19lO7vWmhklKWxCp6WxleaLn/0MP/WX/ipff+YM/+srX+eXTpzk6ae+zoXlZawVvP8DH6k/tYYiz2trCrL0Nqwxhsl0wuZkz5ql9gwtr8Xg8oCvrH+a6WRElkzJy5yN1XWWTp4g+9Z5+sMt8sRZ89QEPnDvYd5zZJ71lWU6sz22N7b4xpe/wuPvu94azXSS0pxp4nsKa10y/g+s+d4+11izusZ73/c+jh49QaanrF5Zw/f8PWuaLnutKG7fmrdyLfUXgQ/W//y/AJ8D/ov6v/8ba20OnBdCvAq8G/jqrX6xMIwJwhArJKoVMXv3/VTjhKvf/DblVCOERVi3k1JCoIxEGg/l56DcwYxU1iWBegpdGawySOWmlBoryIuKwCj8oIXvhZg8QScpEkEQBXVmhKU9N0ej18X6Eq8Rg3TDxYT0kcJHRYoqd0ewUvkIJbFC1K229ZG2dbuTNJmyfHWdTz63zivlKTbGG3hRweMPP8Fd97wDKSWf+fjv86k/+G2ev3iGtemEzJrd6bQuNFxRmpBp5eMXEAWW/uYm51/+Dn/wm/8LVy5e4Ctf/hwbmxsgC/I0o9lsAoKyKsmTjCxNqPIp25tbzHsSUaeZClnf0Rs3BNAK61bUo4pprpBIGsLSHPV59k8+jrCK3/7yZ9gYDxFImr5PqxVz/6kHWFi6h7OXnyaQhucLyYNH53nPiQWsBJNnhK153vXEezjznZf49B99kvf/hQ9z/MQJdL0gnIynLB6cw/c8DK7WJ0awKOGy/u5N5v3Bs/cYY9wE6ShgfX2TwbBPu9UlUIp3Pvoo03TKp/7kC/RHfV46+zI/ZS1pOv5uv1t32JqIIIxqa+LXtcazzhrPzxFvxhoVYYqEKq2tCfdZMztLY6aL9RSqGbvk19oaIXy8N2BNliRcWlnnk8+u8XJ5ivXxBirMefydT3D63odQSvHSs99i4ytf57Pn/z+sTcek+6wRtTW5CZiWAX6+Y80G51/6Dq3eu/mQifnMpz7OZm1NlqS71lS6JE9Ssqy2ZmOLGf9G1thda4yxbI8rJtmONYbmaMAzf/JxsIrf/spn2ByNAEHT82prHmRx6T7OXvr2rjUPHJ3jfScX3feCbMea9/LKcy/y6T/8JO//0Ic5fry2xlRMRhOWDs3j1db4P7Dme/5oo3et2VjfYjjq02p2CZTknY8+SpIlfOqzn6c/GvDSqy/zUWvekDW3u7ixwB8LISzwL621vwYsWWtXAKy1K0KIxfrnHga+tu9tL9f/7aaPEBI/CFG+awu0StBYnKN739301y4zefkKshL4QgKuBiQQAk+HGL8kCA3dtiLwPLQpKIzFWIGPwQsq5LRCG0GRQtao8EKLF3jk0wk60cSNgLjVIYobqG4HrxEiPA+Mm7hNXXNirWt3tLZCSEmRpmBL/CjECosS3u5dd5EmbG9u8eTZK3zyXEYS3U9abrFwcIa7Tt/vWqonQ557+hKf/vTHWB5sMTbV7tA+sCgkkYhpiA5Nb5ZmOEMrCNFyizDcxG9I/vD3fpNWp0tlKxoNn6KwnDh5NwtLS4CgKHKKMiVPRkz7m6ytrHHPQogfuu4Ga607JrfWHXvj8idWNirGlcGXlkdaPvfOSy4YHxEqTp+4B2/1PDMzHaLQQ2AJm5LzG0PUGsi2h1KCdy028IXCIAmlxAQevu/zIz/xQRa/s0SZZlSmwlZQlgWjwZAjgc/CXJfNjTG6fuE1gBkh2PxzUOz3p/1orcmKjDwvWV1f4+rVZY4fu8cVIeoCbXW9FjZ4noe1FReWr9zJd+F7YE3k5uFYi1XU1txzU2t8IVA6xHhv0Jq4dNaE+6yJAxqt7p41cYjw91kj66JmK1G3YY0xFUWSsr21yVNnr/DxsylJ9EBtTY9Tpx+gvWPNM5f5zKf/iIv9G1sTipjmfmvCECO3CIINgpZi+dzv0up00bvWGI6fuJvFpQNQd74UZUo+HZEMtli9usrp17Emyca71njS8nAz4L4FyQXjIQLJ6eP34q2cc9ZEPgJD2FKc3xwg1kC1PaSEH1pq4AuJQRJIia6tef9P/hhL3zlAMU33rCkKxoMRx3yvtmb0A2v+FB6jzZ41G6tcuVJbYyylcYXgO2NFPM9zURiXbj924nYXN09Ya6/WqHxKCPHSLX7ujUokXvNKEUL8MvDLAAtz87uthFVV1nfPHsHsDN177yUdjjErE7R2BcZKuONTaS2yClBhSrOpkNaS5i6QSxQGoySN2JCMS0oj3NTfSqN15e7S+2MUgu7SHJVQXFzb4MDhBWIdYvOiHrhd4QUeUimE55KDy6TEFBahFAhLmSUIa9HSo8xKppMhZy5d5TNntvjqpmZm4V0gEt77Iz/CsVP3Mx73KcqElcvn+NpTX+Pc9jqF3Te7RFiwAg+fULTwaGKtZJz2meaGRtjmYO8BTOUzmUxpdBq0WxHtZoNDh07wU/+7n6Pd6pDWCaflNMXmOZvLlxluD7nr3hMIo+tpxBal6s4yqSiKhPEg4WxfM9MU/MW7Z2hGGi0tmZ2ns9jlUD7L2vqrTPtbrAwnFHnJM+ZlukoRSsVMJXifgNkwJpCKsTEopfA85QYA+gEnTp+m1BW6LDGVoSwrRv0hWEO310EpmFSWEPAQBLjqgh+Q8919Tp04SmVLNjZGjKuE1atrHDl8AlnnpwhhUFKgq4qy1OhK841vfv1OvgvfVWuWFhZuYk1vz5qrE7TZs0ZhUcYi9Q2ssddbU1Aa6azRZs+a7THKCLqLc2i5zxoTYqe3aQ171hjpUWQl0+mIV5ev8JkzW3xlUzOz8E4QU97zxBMcv+sBxuM+ZZmycuUCX3vqq5zbWndhqLufnB1rPKKbWvMgtrzempiDB4/z0Z/9OdrtG1hz6TLD7RF33Xt8zxp7I2tSzm5reo3amlhjpCWzC3QO9DhcTlhbP0My2GZlNKbIXmvNe32YDRsE0rvWGqXwvYATp++m1OWeNVXFqD/AWkNvpo1SMN5njRuY+QNrvtvPyeNH0FS1NSkr+62xuKtZKah0RVVqzBu05rYWN9baq/Xf14UQv4M7+l0TQhysd1IHgfX6p18Gju578yPA1Rv8mr8G/BrAPafuslJJKlNR5Cl5lpCkY0oMjUNLLD3yDmz1DHZ9irDgCZeiKQFbeqxve/gqY7bpIT2BtBZKNwwubCqiRkk1CShKRWQ1lTXoJMXmJXNHFyh9yTPPr3BuJecD7ylZml9CWQsoUBYh3Jh4oRRRHKMzF3kZxU2EFEyHCeV0RFVZ1jc2+cZynz++lLBSShbmHqTRDPjQT/8sd93/OMPBJqPJJl/69O/zwqWzbJs6Z4PdDk5AoIRHQIvYm8caQ2UtvmwQBQ2klGyupjR6mqPHT9Dt9Zi//1Huuus+fuiJJzh85BhlPcI+SyZU6QRdZHzn299ixhecmGm7Lgxc6y+23iFaA9pgTcXhSPHQXW1On5in0IZJljEbzPKdL/whLy1vsryZEDcD2t0OJ+9aYntrm43za+jKclr7qJmIMIyxQlHmKUEQYsPQBQsKgfQVQhtKnWGRFNMhTBOqJKfdauApxaDURFjadXdoC8FY/4Cc79bje4KTx3tErVlWVjbI84qraxuUZe7a9oUk8AN63a4rzC1zxtMBTz711B17H77b1tx3+m4rpaQymqLYsWZC9XrWiJtZA8h91jQrqvGeNaXR6DTD5CXzxxaoAskzL6xw9uq11ggU1rMIYUG4xUwUOWusFcS1NckwoZiO0JVlfXOTb17s88lLCVdLwcLcg8SNgA999Gc5/eA7GQ42GU+3+dJnfp8Xll9l65bWtPdZY/BkTBQ0r7HmyPHj9HozzN33CEsHjrLer/inwQH+b1Iwt2NNNsEUGd/51rfpeXByvzVqxxq9Z40tORgpHr6rzekTcxTaMsky5oJZnv/8H/Li8hbLm1OiRkC71+bkqQOvtaZ3vTUBJgxd/o8USF8itKTUGSApJkNIUsokp9Vs4ivFdm1Np069+IE1393H9wSnjs8QtfdZs7pOWeZYW08BqK0BS1nmjNMh33wD1rzu4kYI0QSktXZc//NPAP8t8PvALwL/vP7779Vv8vvA/yaE+Be4Ir+7gW+8zm/i2q0LTTKdMJ2OSSZjqionaLcIT9+NsiC+/m3SfrHbHgYGYxXTpMX6cEwjMihAW4WUJZUGzzdELcs00ZQl6AxER+Jb6B5axMYeFy5t8PVzmhOLFqFgc7CB0JqsKBmMU7ZGJYOJxRrJvccbPHD3MeKo4eLV04TttVW2tjbZGpZ86lLJt8YlWkmWFh+m0+nxV3/pP+Bn/v2f4/K5Tb75xfN88vf+v7y4cpGJNbsx37vgCImHT4MuHe8gregYFoPvhXTiHu2WK4LLshHVaErv2AJ3HT3Fj/30D3P6vrvwg4A8S5mMx4y2N8hHI0yW0V9f4VtPfYePnF6k24xQwkPryhUQWI01FVoXKE8BmsdOeBw7NoNVkrys6E8HlGur6DVNllla7ZADR+YIohjpuenrvU5Mo6wolYfxBLkukbbE9zxU3KSUyrWrGu0KIjFgLMZUmOmYmbIgGwxptRrIwKPKKgYIfCAK3PUAOT9A57vwBF7AqZOLrG9c4b75eY4dWeD8hVWGwxEvvfgClS6Z6c66NFwBjThmbnaGF15+jgsXl+/I+/A9swbQRUUymZJMx0ynY6ryzVojkVLX1liipmY6VbvWyLbCN5buoQVs7HP+srPm2Py11uRFxWCcsDWurdGSe/ZZUxUpWZqyvbbCdm3Npy+XPDnas6bdnuHuv3gPn7/7T/jg3e+h/6UJn/y9/5UXr15gfEtrOnS8Q7U1Gt+L6EQ92u09a8rRlJmjC5w6eorRwg/zq3/pIM+8dJF/7/gx2uNthtubzpo0p7+xyreeepYfP71wE2tKzI41VvP48R1rFHlV0J8OyNdWqWprmu2AA0fmCKPGnjXtmEZVUSqFfR1r5D5r9D5r8sGQdquBCD10VjGsT4h3rLE5TH5gzR1/fOVz1441C/McO7LI+fMrjIbjXWt63VmX8i8scW3Niy9/h4sXLt7273M7JzdLwO/UEzk94H+z1n5CCPFN4DeFEL8ELAN/BcBa+7wQ4jeBF3DJ1f/JrTulAIsLzcsSptMB6XRMXuZILMrzaC7NEvoNTF5w5etPYzPXUKitILeKqRZMBhGdRsJCz109WQNSGrJCIH2LH1ZUhWI68mj1BO1D8yhhuHT1Ei+czxhWkrmeYG1rwJXVlPWxZSUxjAuDh8dc4HHXrCT0FNMkQVeGvMjYXl9jOBzSn5Z88orluUQjPcXC7CO0u0t8+Gc+xE/95Z8nikLywRV+49f/B56/eoExLqp6/5eOFBKfiCaztNQCzegAgR/h+wGxahBFEZ6MCaOYmdlF/FBRDSRPf3GD9Ysf41f+q79Bd6bD5uYGW2trTLa3yIZ9qiThK5//Ij1b8oH7jhLFTSQgjMBWJdYKlAyotMbzfXqz88QHIyoKykoTBAHaCg61Wvhxi74OmKRTgrhBZVzRNMLSPOAq2q9kOfMR5FbTUgEy9DFegCkrVH33jrW7yapGF2T9AXMC4u1t5KkjtNsh66PMXdeF4PkCNPQUSCsY1kWJqn6R/eB5849A8NhDD/PAwyf46lc+z0svfIdup8VM28fzAtbWV5FScujAcYSAhflZTh49TTIZ8oUvfpE8u2P5rd9Da1Km0z7JdEJe3J41xQ2tMfussa+xptkTtHu1NSuXeOFcxqCUPNYTrG8NuFxbs5oYRoVB4TEfeJyaEQRqz5qiyNhaX2M4GjKYlHzyquXZqUZ6kvmZh501H32cq3/rX9Ewl/iNV/o8/esTvnPl/G1YM08zOngDayLCKKY3u0gQKKqh5NkvbjJ79GP86Ef/Bk+8827+7tYGydoqk+1NZ02a8NXPf5G2Lvjg/ffeljXRwQi9Y40fYKzgcKtFGLcY6IDxjjV6nzUHmxhtuJLmzO23JvAxfniNNdZahJKo66yJtrdRp47SaYWsD501OtizZkaB+oE1d/TZseYdj5ziK1/9nLOm22Kms88aITm0dAwha2uOnGY6HfKFL36B7A1Y87qLG2vtOeCRG/z3LeBDN3mb/w747277vRCuoDRJJyTTEXmegzVIJZGewgsj5JzH7D33U42n9J8/C6XGoqisJLOGpPC41A/odioqBEoKfANBIKm0IYwNVkuqUpEnGuFLNrc2Wd+a8OrIIzGar1+oGOSWjVwjgKOxx8NzIacWYo4tdZmf7RI1Y0bTEeurF5lOE9bWUvqp4MtDeC7VKCXodO6m2Vzi7vuO8SM/+dMUueHKi0/zz/7xf863ll9mZK+9z3VdUarGZoaGnCUM5hD4CBShionjJo1mmzAKCcII5SuqMmdt5VXW15/h7JmM9370Po6eOsK43ycdDslHQ3Q25eXnn+UbX32Kv/34UWbiCFtVVNbdtQulwFiqPEVrTalLjASr/Pp6zx0R9kcFjVaPpNWASYkfhkipkNaA54GFzcGYwWAC1qB9yYl4jXffHdHszVEJ4Y6jpdsJG10hjEXhgWdR+ZQHjgg8scVV/24OzrZpB/Osb2/QLCfIOtwLC20JaT0EMKhzkLLbfrH94Ln+aTUbvPs9j+JHgm5vntWVK1ib4weuZsEaU7ceuwykLE8ZTgZUZcKrZ8/esffje2lNmo5razJnjdyxJkTOzTJ772utKfdZs7xrDSh1C2umtTXbW86asbPmmxedNeuFRlg4Ens8NBdwaqHBscUuC3P7rVkmmU6dNZngywN4tram3b6bVusgp+89wo985F7a5n1Mzz/BP/kvn+XbF8/cxJq9hU1DzhL686+1ptEmiEPCMMLzFVWVs756lvX1Z/BfSfiHP30fR+86wmDXmhE6nfLKi8/xta88yS8/duT1rTHOGq6xRtIfFzSazhp7vTWytmY4ZtB31lS+5GS86qzpXm8NzhptkXh4nkXmUx44LPDY5GpwNwfm2jSDOTa2N2ldZ03nB9bc0afZiHn3ex8liBS97jwrK1eww2utcUW1BmtcwfFwOqSqUs6cffUN/V5vj4RiaynynGQ8IkmnLhfBGoQfI6SkMiVGGBoHlzj02LsRRc74pfPkRpEaS2EM2lrWxhGzwyl+BHEF+BYjLMoLCMICXWowMB1pXr34Clmas7IpeLFI2TYVXt91YR32PN5zwOPRU7PM97q0Gi2C0EcgycuU/tYKg61t0ilcGEg+PqzY1BpfCqzq0p05RWHWOP3gzzEaTlnJzvI//Nd/ny++9C0GxkW773711O2XkWjTlks0/Dlif5Yo7BB5MVEQ4/mKVqtLo9VyQVjSkiRjttYvcXntSabZBRbnezz/3LdY31zGt6C0RpqStcsX+N3f/QQfONDgwYUWtirRUtSgeyAVWZagqwI/CCnKAokk9gMmWUFZFGR5ymoZk7QOsTUdM+pPCVsx1hQIq90JjO/Rm22x1Z/8/9u7m9i4qjOM4/9n7HFiPDbBdmzSGIUAWQARAgQpEm2FqqqltAKWLJBYIFXdFbFAQUgIlmWBUJcIkJD42rRREYuqUT/URavSUBKwm4QkYBQTG7txPsbfM/bbxT2GiTt2HJLxuWd4f9Jo7hyPpedY14+Or+/cy+zMEhUz/jE8ybbeVqqz82yvLsJmaG3J7ncjwiXjW6oUCi10FObp7OtkbnGas4sL9G/t5tyZMQqLVSpVUAsUyM5LrCxCe0FML2UnRm6SwGAusVMAW4stVCtxP3RakNi1Y4Cenm7K0+foKnUx0TrB7FSZYrGNUqmUnV9TrWT7nhkzs9N8PDTEd+++i76+Hk6OjEWdwyUJXTNdr2uUnfe3pCWuunbtrhkvt3Pq3NRFu2amvNw1C4xNiP/MZ13zSU3X7Lm2lTtu7KZ3S1fomrasa6pznDk9xtnTpy/omonlril0saX7RuYXx7hp98OUz99K8cTN/Oa5X3Lw8LE1u6ZU6KOj2MPmYg/tK7qmo9RFR6nzgq6ZHB9h5MsDTM19xtbeq+t3zRefs2/fH/h+/1Xs7uvMuibc1+lSumZ0oZ2Z/u8wOV3m/JkZNpU2/3/XXNPJ6cmvu+bvw2fY1lvMuqZS2zWL9bumP3RNdYH+3h7OTY7W7Zpqva4B5hL7NFVeuuamHQP0dndTnjlPZ+iamakyrcU2OkolwKhWKkjZxX1nZ6b5aHCIe/aErjm5/q5RHu6lIWkCmAb+e7H35lQvnj0Gzx5Hvew7zGxrjDCXQlIZOBo7xzfUbPtMKjx7HKtlX1fX5GJxAyDpgJndFTvHN+HZ4/DscXj2ODx7HJ49jsvN/q28T5hzzjnnmpcvbpxzzjnXVPK0uHk5doDL4Nnj8OxxePY4PHscnj2Oy8qem3NunHPOOeeuhDwduXHOOeecu2zRFzeS7pd0VNJxSXtj51lJ0muSxiUN1ox1S9ov6Vh4vqbma0+HuRyV9JM4qb/Kcp2kv0g6LGlI0q/CeO7zS9os6X1Jh0L251PJHrK0SPpQ0nvhdRK5Q55hSR9LOijpQBhLJv9qvGsaw3smrlS7puE9s3x56hgPsitanwBuANqAQ8AtMTPVyfgD4E5gsGbsBWBv2N4L/Dps3xLmsAnYGebWEjH7NuDOsN0JfBIy5j4/2ZXHSmG7CPwTuCeF7CHPk8BbwHsp7TMh0zDQu2IsmfyrzMm7pnG5vWfi7jdJdk2jeyb2kZs9wHEz+9TMFoB3gIciZ7qAmf0NmFwx/BDweth+HXi4ZvwdM5s3s8+A42RzjMLMRs3s32G7DBwGtpNAfstMhZfF8DASyC5pAPgZ8ErNcO5zX0Tq+b1rGsR7Jt7+3oRdc8Wyx17cbAdO1rweCWN5129mo5D9YgN9YTy385F0PXAH2V8mSeQPh1sPAuPAfjNLJftLwFPAUs1YCrmXGfBHSR9I+kUYSyl/PankXCmpn7v3zIZ7iXS7pqE9E/veUqozlvLHt3I5H0kl4LfAE2Z2XqoXM3trnbFo+S27w/PtkraQ3S169xpvz0V2ST8Hxs3sA0n3redb6ozF3mfuNbNTkvqA/ZKOrPHePOavJ5Wc65W7+XjPbKwm6JqG9kzsIzcjwHU1rweAU5GyXIovJW0DCM/jYTx385FUJCucN83sd2E4mfwAZnYW+CtwP/nPfi/woKRhsn99/FDSG+Q/91fM7FR4Hgf2kR3+TSb/KlLJuVISP3fvmSiS7ppG90zsxc2/gF2SdkpqAx4B3o2caT3eBR4L248Bv68Zf0TSJkk7gV3A+xHyAaDsT6dXgcNm9mLNl3KfX9LW8JcUktqBHwFHyHl2M3vazAbM7Hqy/fnPZvYoOc+9TFKHpM7lbeDHwCCJ5F+Dd02DeM/EyZ5y12xIz2zUmdGrPYAHyM6uPwE8EztPnXxvA6NAhWz1+DjQA/wJOBaeu2ve/0yYy1Hgp5Gzf4/s0N1HwMHweCCF/MBtwIch+yDwbBjPffaaPPfx9ScYkshN9mmiQ+ExtPw7mUr+i8zNu6Yxub1n4u87SXXNRvSMX6HYOeecc00l9r+lnHPOOeeuKF/cOOecc66p+OLGOeecc03FFzfOOeecayq+uHHOOedcU/HFjXPOOeeaii9unHPOOddUfHHjnHPOuabyPw0qhYS/xPQaAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, axes = plt.subplots(1, 2, figsize=(8, 4))\n", - "ax = axes.ravel()\n", - "\n", - "k = 10\n", - "ax[0].imshow(original)\n", - "ax[0].set_title(\"Original\")\n", - "ax[1].imshow(original + k)\n", - "ax[1].set_title(\"Modificada\")\n", - "\n", - "fig.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAEgCAYAAABIE1IQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebB2WZbehf3W3uecd7rjN+WcWVnVVd2NulE3EqJbyNhmMJKNgggHxoDNFLYJ22EctrEjDDYYBcYOO2QZBwQOgwMcIGOQxBCBgyEwiBYNCDWtVg81Dzl+83fHdzrT3st/rL3POTerWpVZVFGZzd1VX9573+EM++y91rOeNYmqcjtux+24HbfjdtyO2/E7Zbgf9wXcjttxO27H7bgdt+N2/DDHLbi5HbfjdtyO23E7bsfvqHELbm7H7bgdt+N23I7b8Ttq3IKb23E7bsftuB2343b8jhq34OZ23I7bcTtux+24Hb+jxi24uR2343bcjttxO27H76hxC25ux3/mISL/gIj8P3/Yn/0Yx1IR+YkfxrFux+24HZ/OISKfS3u9SH//myLyd07e/9+LyAsReSIib4rIRkT8D/ka/mER+eM/zGPejh/tKH7cF3A7Pn1DRP4u4O8DvgBcA/8q8Per6uX3+ryq/h8+7rE/yWdvx+24HZ+9ISLvAq8Cr6rqi8nrfwH43cDbqvruD3p8Vf1Dk2O+gcmqt1T1WXr54Ac99u34nTNumZvbcWOIyN8H/J+A/xVwDPwC8Bbw74hI9T0+fwuQb8ftuB0fHe8Af2v+Q0R+Flj8CM7zFnA2ATa343YAt+DmdkyGiBwBfwT4e1X131LVLllYfzMmRP67iZ79UyLyx0XkGvi7PkrZisjfISLviciZiPyDIvKuiPy16b3hsxO6+e8UkfcTtfy/mRzn94nIfywilyLyWET+ie8FsG7H7bgdn7rxzwN/x+TvvxP45/IfInIsIv+ciDxPsuJ/KyIuvedF5I8mefAd4L8xPbCI/Psi8t9PMuXfAV5Nrqj/1/dwYd0RkX9WRB6JyIWI/Gvp9VMR+f+m81+k31+fnONtEfklEVmLyL8D3PvINfzJ5Aa7EpE/IyK/64c5ebfjP/u4BTe3Yzp+PzAH/pXpi6q6Af5N4K9LL/2NwJ8CToD/9/SzIvKXAP8k8N8BXsHYn9e+z3n/APCTwF8D/EMi8tPp9QD8zzHB8ovp/f/xJ7+t23E7bsd/zuPPAkci8tMp/uW/DUxjVv5xTDZ8HvgvY0Do707v/Q+AvwH4eeD3An/T9zqBqv7/gD8EPFLVA1X9u77Hx/55YAn8LuAB8H9Nrzvgn8WMtjeBPfBPTL73LwC/ismefwQDZ9PxbwJfTMf883xEDt6OH/+4BTe3YzruAS9Utf8e7z1mtF7+Y1X911Q1qur+I5/7m4B/XVV/WVVb4B8Cvl8Dsz+iqntV/XXg1zG/PKr6q6r6Z1W1TwzS/wMThLfjdtyOT//I7M1fB3wNeJhez2Dn71fVddrb/xfgb0/v/83AP6aqH6jqOfB//EFOLiKvYODnf6iqF4mJ/iUAVT1T1X9ZVXequgb+UZJsEZE3gb8c+AdVtVHVPwP869Njq+o/k669Af5h4HeLyPEPcp2340czbuMlbsd0vADuiUjxPQDOK+l9gA/+Isd4dfq+qu5E5Oz7nPfJ5PcdKSBQRL4E/DHMelti6/VXv99N3I7bcTs+FeOfB/4M8DYTlxRmJFXAe5PX3mNkeG/IkI987pOMN4BzVb346BsissRYnD8InKaXDxPL9Cpwoarbj1zDG+m7HgND/y3gPhAn93X1A17r7fghj1vm5nZMx38MNMB/c/qiiKwwC+jfTS/9xZiYx8DUd70A7v6A1/N/xyy+L6rqEfAPAPIDHut23I7b8Z/jUNX3sMDi/zo3Xd0vgA5zCeXxJiOz85gEJCbv/SDjA+COiJx8j/f+PswV/lck2fJXpdclnf80yb3vdQ1/G+aa/2sx19rnJt+9HZ+ScQtubscwVPUKCyj+x0XkD4pIKSKfA/4k8CFmiX2/8aeAPywivz8F//4RfvBNf4ilom9E5KeA/9EPeJzbcTtux49n/PeAv/ojLEgA/gTwj4rIoYi8BfwvGGNy/gTwPxWR10XkFPhf/yAnVtXHWGzMP5kCiEsRySDmEIuzuRSRO8D/bvK994D/FPgjIlKJyB8A/vDk0IeYEXiGMcq35S0+heMW3NyOG0NV/88YQ/JHMWDxn2AW0F+T/Mvf7/tfBv5e4F/ELKA18AwTBp90/C8xK2kN/NPAv/QDHON23I7b8WMaqvptVf1Pv8dbfy+wBb4D/DIWwPvPpPf+aeDfxuLv/jwfSXD4hONvx1iir2Fy6H+WXv/HsNT0F1jw87/1ke/9bcBfAZxjwGfqVvvnMDfVQ+Ar6fu341M2RPX7xXrejtvxgw8ROQAuMdfSOz/my7kdt+N23I7b8V+Accvc3I4f+hCRPywiy+Sz/qPAbwLv/niv6nbcjttxO27Hf1HGjwzcpJiNr4vIt0TkB/KZ3o7P7PgbgUfp3xeBv0VvKcLb8SMYt3LmdtyO2/G9xo/ELZVS5b6B1Tf4EPgV4G9V1a/80E92O27H7fgv5LiVM7fjdtyO3278qJib3wd8S1W/kwq5/YuYNX87bsftuB0/rHErZ27H7bgd33P8qMDNa9wswvQh378E/+24HbfjdnyScStnbsftuB3fc/yoKhR/r7omN/xfIvL3AH8PQFVVv+fw8JSqdFRVQQyRzWbH9XpHiC0AjgKRAhkOpHjvmc08SqTedzjvOTpcslzMcN6DSLoQuXlF+Uqmr4mQP20nURAZ/7zxc/zczRvNn9D0f0VV06v6kU9OjyF5ThCR8RMyvVQZjpEvb5yJyX3JeJzvvs6bk6A3vvzdw1yW0w/IzfNN70UmP4d5yyfO8zE9yuTqNc3b8Lw+cmcfvYTvec3T+0nf1ptfGec2vTp9fvncw5TJzS+nyc1zYj+UqVv3xnvTG55epcZ0OCWEQNfu6LoNGvvh9RiVPkAI4MsZq9Uxs2qGc+7GI5w+93F9TeZzMjOiMsxpvua8Poe/b1zvb78+bqzldO4nT5+/UNX73/3pH+n4vnIGbsoa7/3vqao53gveOzQqbdvRtB2qIX3DIbgbS805+zwofR8QEWaziqLw9lx+28ubrHrJUmR68ePa/2Q3PD22DmvnL7JBuLnmP/L79x2THTm9pYns+uQj7anfZq987yFMt+Z03r5bun1ks8j0POP9/7ay5mON77V3pvPxkeu4cQvff85uzM1U1uT//nbXq3rjvmJUYugIoQVGGaQKUUEjiPdU5Qzvi5vP86ZQ5qNX8dv/+d1yYry87z/R+l2/2B+b7e5jyZofFbj5kJsVJl/HgkuHoar/FPBPAfwlP/1T+n/7Y3+MWeWIseU3fu2r/Ev/nz/Db335m+z0MZGWSo5Zlg/wUhG1R8RxeDznr/wDb7JaCX/uV97jyeMdv/8Xf4q/8hd/nrv37uDLApxDnE/ntAl2OBATVIggEg04JSElzuEUlIgIiLgB/IjLm9nhnMMBIiMIEIQYFdWOGDpi7IkhgmjS84o4E55OwHlP4UtEHEUxw3ux8xHtaHYBgCLkawaiEAmE0BOjLRaN4L1QlCVF4SmK0u5FHM5PBLBCCL19Jygx9uAcqNg9IygB1UgMdlc3hIUqiAdxiAjOecR5vPc47/DO5kZQnDiiRlQjRNv0muY2xn4oXG6b2J6HXWsGUvbdNPu2KZyCetCY3k/HjT2qjhg7Aw8xIOJRjXhnz9dRoBIR8QMQy8/BOfDOpTmz+8qwMmpAoxJCJISeECIxBGLXDQAhxI7Y92iUdG2KiiDq0D4QtKPvOzRC3ex59vibvP+tP8368iugQoyePgT2+8BmHblYK/tW+Kmf/Uv5Pb/nr+L+K6/YtOPS87BnYutNUbVnhtr1IqBBQCIabZ5U7fcYA13fE2Kg6yN93xNjJCahqGogSTUSNb8+giSNSlRbo2jgH/mj//gPWiL/P8v4vnIGbsqa+/fv6R/8r/31FIWgGnj65AW/9Zvv8fzZGa1uUHq8zCndCocZTiDM5gVvvHlMVQkPH16y2XS8/vo93nz9ZZbLJZL37UQpqGray3kYwDHFYftjBPRJfgz7HbJ1Mxork8+l9+25RzQGIKJxqgny8WWQYwbEBO/8cNy8t6fgfoQtiqokIBzSGhovzzsDd3nP3jTQbMQYyYo4r5m0qwajLe8h+/vmLdh8jLLQzuFwbnq+UT4OsmQir1Tj5JA6HFdu3PR4DUh+fun9rJyz0avR5kXj8L0MlUZ94dLfGc3k5yBJ7oxGoQz3OM5FVEXz3k57Nl+6xjDI1BvgDEnfCTbXEfrQsd2cc3n+Lu3+eZoSIarSd0rTRuoGugD3H7zEK6++xergMPl1PmIo6ThPJg80z/hgVOW51rRYTDaaHA9RB9kxxeIj2JqCMhmOM4Ih5c/8R3/uY8maHxW4+RXgiyLyNlbo6G/BiiJ9z1GWJV/6wufZ7Ta88863+drXH/Lk0RaHx0lF1JZAN04oDhT6EPBVyYNXD/jil1rOXrzD8xeX7PZ77jnBew+uwDl7kDY/tiCdl7S+k5JGcE6SIgXNKN8VaQG6tEh1EDRCRJxHY7C/RQwTy/jwQfG+QDXcQPOSNpY4MeEgBSK2+Q185Y3r7fPk63UoAfGmqEEQByG0CXFHvPOmzPP/0sbxzqFADJ0pyNib0lZD9U5MmeeNqSjiIhrdYFyqCIhPR05AwLkEDgwUfNSCEhhAYV7NqoKomBJWIRKRJBhiiDeFZNSBjIjp+ViRU9AY7Vo1pGPHdB+Mm1M8OEmgxZ63XUYWRAyWTgYAYM/VjhVxeAIhPTOHRHvOUjgIEVXFUyCFJAXjDSDiEHVEZ5esQAiBtt5yef4B2807qHYJ3LTEaOvbOyg8EFu+853f4qWX3+Tg6JjFwRxcUgzi7Calt9XhBO0T55Cnzql9xsmAi1WSgvP2fLxA9N7mSfukzCDE3r6jDmKA6AzspNU4KKYfyGr/oYxPJGfAlPHdO6f0XcvF5TlnL67ZXLcY2PADqCdb+knJR40471gdzLh794Dd7pLdrqbre8SRQIMbwIJ9Mym3NPcjE2x7VnWqVqeGDCPoSfZMVpqDkBduCPysIcS5wRiYshPj79l4YrjKEdh8bz5BXJ4DjyhEDbb3073l4w1KPMlLxJSwGR46zGsGjANo4cZEfPTk47VlUOASiPwucuEm8BuUbbooTcBK07OVCQaaYhwDMZmlnSj3geEc513yeSSDpzTPCbzo5CK/SzLq+PkBSOkwI7a7JsrfZL8mvePQKKjThIF1+G4UtctJcjU0HfX+mq65YJCbA2BIxp2AaOT88hmrg2Oq2Zyi+giDM5kLGX6d3NXwi0vXmyY4Ks5BjOAkEh049QOLrYK9KfneI8T87PKc3Hi6H2v8SMCNqvYi8j/Bqkx64J9JlWu/5xDAeWjamkePnvH1r50TQ2XHQlEiSiDEBu9LsgUf+kgfIkdHx7z9BeHZi2uk6OjD3qwKcSb7neBwhnwBJW9Gb8xOduFowIlDk9AW8aNQyihbRmvOlGEcFsCA7JPV68SZIlFbjCQr7MamUEeMgLdrc1KMDzmjW8TYhqSoMxBCHM55NCrOmfBzUuKdM8GcNm3UQIFLysrcHmEKbPIlOx0A3oigDdA5xPYwMjl3iYjivEtKn3ReGWWP5Ht2Nm9qgt4sDzdsYCfGxBh4MeE1CGkVNIZ0nYr2IQlcn4SpJgEz2VAiiCtA7cyaAOwoxbJVHZMQAAmARBwFURQkgSyX5sDZ5+3xiv3zaSNHj0oYnrOt25IBMYUEdCno+47N5gXXF98i9nscMrBbGmzWXQFFAZWH9eULvvWt3+L+g1d5dfkG4qKtLVWcmMK20wTEy4Ql8zgNZg6k9abqULH16zWilLa/ekcvAY3eBI0KXrztM+w8kYiKwxHtWWQBrT8ecPNJ5UweItCHnvV6x/MXe1Cfd3P6F4n0OKoRwAXbN7PZjJM7sNm1iAtE7eyYw75g+A4kYyDtex2s+anc+Agrmo42XOig+LNyHm5+8ntWfMYiSGKlb7ilFWPdJH0BhmsZIECWNWTZkY0sAIfPgErz/Wb24aMmuDG/gziMI8M6uOonMvO7XDo35s3AubHdeU4GDDWRMx+ZvzxVagyd3Xj67uTcUz4sE/Cm9A2IRQKZ/RrAYZ7dZACrjHOZn9t3AUTyCUBVQLPcy2ArImryTIdrFJwqccSBSX6awYWXwdMmw9yDywZIMkradkezP0djZ5/UpFPjcLk4B06Udr/n/PwZq4NDDspjA4HDHecJl8Rw6UACmJxOM+ryrSaYL/bZzBpqYvI0fcfm1g1zIursuMMxdXhG3wV+/yLjR9YVXFX/DeDf+Difjap0XUvQHl94lgcVrvB4V+JCgVnmPTEpm7wZ+tjShUhVzXnt9QW/zynX11cUlVHzvvDgdFworkgUqU1mTFtExCPJ4s+0YESSmyory+FqKZKVFmNqnC3j2w5jb+y/ipMiCcpR4NkEccPiERySFf9glefv2L+M3F2iZdP+B+dwviKjaKNsTYCqGBMQorEDSiCGiIaY6MFAVMXhE/AxtsIWUrZYIopPUxHBmcvGOdLPJHzclNXKtCXYMjMhMR5T8ySQN4HNAclatedk7iATODFRsQKoOpwzCzJGRSQmsGNmiP0vMy95Axpda1hodL8MlLAzEKlJaDtxJkDEIQNjV5hwcHZfUcc1GSOJtUl/ayCGYPfmQPA4oO9qrq8est88xCrD24LQaP5vY5/ACziviEbef/9bvPX2T3Lv/n1WBysUuybvXLoGDCgnYePFmRxUA5ZRA0oY1pWtvBJiT84rkGDCNkjAGHAhumAslVrcSQxpLQxrfAT3P47xSeQM2EqLMaBEnAhV6RP74NOsmOWYFXzeskEDIcmUo6MVr79uxpjzto7dxKBAk9slKwbJUEOS4ktrnVFwG+MDWVUZBkmsDzJatpNrko/cl0z31/RdJVke0yHTb05ezxb0CJBuAAAxkDNc4wB+RufWCMIMEJJY82ypZ/AnehNcTI8yRTwDIZQMjWG9DT8ZDJoxfo8Raw3HHQ99E9SMM58ZjSmQFNUkkxKbI1luyaD8R6A0Glej+yu59gZFPt6byS5G8DQ8YNu3OZzBOTcACrsHN7XpBsAy3GaamxB66mZN116D5Pd1BH9oFpk4BxIiV1fnHK/vsViuqKpqmOvh/pBB92SoqcNn0rUMoEjARZwm1jHNZYzpPqKSwwoicXjumcCwc6W5u6GHv//4kYGbTzoKX7KYL3jzzZf5xV98g/MX56zXHtcXaZEGYuwQ78FFqnnB/VdPefnlU1YHC+aLGWUhnJ17Yh9omj0HB4f4wica3pkSdz5NvjcXiA6k5WDxZISZkIMpJsmxMumRilB4Yxum2zNqz/DINSnTdI+j39wTURwRo12T4nQOL2JrGgcpwHFgGFKsiKKDv9ks+PyZzCwkESF+kBG2WAIhpNiRGEaqOG04BbwUiT62a9MYTK5KWoTJzTGl3MWR3FEjECCJ70GEarTrk0Q7iiSKOwvlkGbEXEBDLAGaWJ60edN1IjaDSpgIqjCCmMFFli3DiKpZB1H7yc40QOPEo9EhUhmtOwC2bKxIsnwlxe+E5HRKfv6oOJ+FeQAcIaRriWpxOM5+3+6uuL58jxi2SRjEUbDmqUfwTvEOSgfr9TXvvvNNPvfmT3JweIj3NlcGdr3dAxVOe4LxvoNVpDGmuChjkkLf272JQLC5l2RFSj+69xIRACJEhBijPWv1GL3tBuj9WRrOWZzb0fEBr79xzH63p2mc7aFscWocLEhfOFaHcw4O5pRlSVEWOBF2e9OUoe+pqlkyhpJlS9r/dsZB2Ul6fQi6H86ZFbgb/hjkBiS34kRbpz0zBo/rjQchk98GAymDBEZmdTRFMszJWisp6AHUJ1ChQHb7kuaKLK/Gkw/7VxmUmmYA8pFry+pM9eY9ZKA4sDWD4TT+PX52BFujTGOYFxmAvmZVbL9nxiB9bkiimAQf63Ad+UoZvyNZd4yqP+MHO2AGFFlGZaeuG0HRSPml4493GcUZ86wxhQSk60xycABmCjHmKxhdgl3X0NZXqLbpqxMgFzPQyzLOllnbNlxenHFyfI9ZNUu2T7737BrziCRdk+YAHUG2S6wvanF6MdoxnIugRgEQbX9FMbDl0r6JwxWazI3JgPqksuZTAW4EoWsDXR1ZrVb85Jfe4MUvnHN+dsb24XMGx7NElicVr75xwBtvnfLmW/f43Fsvc3h0gGKUsUbh6fPnVOUJp3fuUboqeUIcToUYwrjBEq2v4hCNCTD4UVaI3JxMJSkFHR6xxWxEiNmd4ox2U2NfNMVmaFKEOjh6jTr0NgGDRSLeFqhqR3bl2GayxZBjdEhMgE1gHIRiZiLsDKbsHWbRxBR4GCPGuiZXiBt8uW5ge1RNmQ3uqSyooiRrlVEQKsnVkayJAVFpAm8ZzIzWjLnsuvQozMVk8TOk4EghxhwUp8Om0TSv9gTjCKiSKy2zbRbo7UahGrHMuyQsBSUmpY9CkB4nBeoDLk5ZKDcIruzGM4va7sEsLwNIqLMNz+iaQgpzadDjEer9nuvLp2yv3ofY2P060C7bz7apsw8+CxzRyAcfvsOTZx9y/6V7zA8W9vyzNZhMOBWHx561eLX4JWeuUY1ToW8utTyTRhkZ6PUK6oSgPaKZcchWpBAlBwzGATR/lkYMkRgiVVVx7+4Ru9d37Pd72msZFA4SKeeeg6OKo5M5JydLTo4PmM1mgFIUJjo32y3ezZkvlimey9SnaF6ro0LJVq6xHTK8AkmBDurxI0p8+B7kDZf5n1HpTN1bScFNlPgAQNKaEmSIg5syLfn7+Sqya2qoGpLjkGT6PYZ9nQHJyIAw7MGByR3udRzDZ6cSV0ksLANgzG/YuuPGXWdaK4OwQQzJ9FmQkc5470PA9I0vDWBvqlazATxBTANTnK85xyXdvJWY9lo27sanbIfKHFnaxzEO6wZJ85CYDBXTJXEKFmM0difm9aH0oaepN7T1FaQEgwzgprM/YK8RR3K9vmSzvWa1WlIURQKG41oc5z0Hj8kI3DSvjbS+8vVHSWRU1hXJeFdBJQwybMSViQGagLKPaOS/6PhUgJsQAl/92nf48IPnVFWLdz0v3T/kC1+4x/MXz2l3VwRtqGaOz33uiN/9c6/z2hv3uHPvmIODA1zhCaHHFYIrHOvNFWfnZ7zVvMF8MTeQgTN3kR8X9qBEUjBqRuRDMJgKmoP40sM3j0k/sEEWo5IsgGiZATEGc++QkGy+z4GJkXQeb2DJ+xSYmwWeJPYjsR1kRanD4iOqxX9m0DRsBCXHtdi57Nd8TTesqcxNZuiuSphkXGhUgkZir8S+Z7u+5sP3v81m/YLVYsmDl+5y/8ErrI7vEiJUsxW+XNo8uaR4fXJhZAssxe9kWlI0R84n6ppMr9qNOjwqPUNMgdrcmOL3aW7DYOCNxlxifKJaVlOMRELajAP/ZkBKstBKvmCnaaNONmiaM2OR0rQ5lzg4Cyw3KyW79OybUVLmUnKrtc2W9dVDuvqcHISY5WDMayOd1SXZ5cXYm831BR98+G3eevvzzA+WQ7yDWXAZ1JkrNq9fw3cK6pEYJxlO2QoLiDN3mThH9JEggvbG3EVngFacYvJHJ2nlBnj048ubH/vQqDx/ccH6eodzASeRg9WM0ztLtrstsWtQerwXjk9nvPzSEYfHS5bLGVVVWUxTTG5G52jbht1+x3F/RFFagH8WweLkxv4fFsbwijLS/YzfG5iKpCTSs3RDEPJEeU9cKNNYlpj29njkCagagvsZzjMFNmR3wKCwk8YeDpjZUxgjXkdFm42mG+m+MgU26bqZxFPk/aXGbnZtw/XVBW2zpSxKVgdLlqtDqtkCVfBFhbgi7fu8n0ewlw0Yu9pRHiarY1izA6ulWWWP95ive5wjYSozb+JRHZjwMZlk+mSzSEuvDy4WU+BDPM54iUw31jROKLPFLkelA9E50wmixuiqEkJL26wJ/Y7JBIznSUBi+Jeu06G0dc319TknpycUswNGd9nw+GAClgdNN8F8+dpMXtjJDC6bka/OMs6ISlQ3oJqxksVkwQzB4R9/fCrATdf3/Ol/99f51V99TFU1nJ56FnNlu+nxUiJSIrT0fcfV9ZZnz9YgQr3vuHe/5/TuMbNZiSyWnJ6ccnJyTtfV7Hc7Tk9PsfmLSVG4gd21uMmcXZCCLL1g7AuQ/IA5edGRs3UswpwU/JpRv4EXU1MGKhJIScxDoons+77AOUfhC0unHPzJNidDsFfeDFkwiSJOca5MGyy7gdLayHEXeQcrSVGbm4UQ0yq2jKDshx0C/lKMSIzK9vqa54/fZ339govLJ1yvz6hKx3JR4VaHtPtrnn3wDkdXd1ms7nIdHbt9y2Jxj9XJAw4O7zErZnZvg2XmUWeZUQGPhmT1ZwGagVle4E4waiMFHfucQmsR+HmXCsZoGR9mboOY0iH70BkrJA5cSgOHQbFki9KC7IIFZ6cYI3sWdkFRszWVBIuA+OwOzCMplzhxd3pTdE3TUe8M3PRxi0+smN3iyNRkQKpJD/lC8Z2goefDh+9xeXHO3fsPKKvSzjVk4o3XOMR0JI1ozK+kx60Dm+OcNyDuPNErBSX0PepBXEkIOaUcKAWCZSma5W+1eNx3xXN8ekeMkXffecqjR2u8DyzmQllA15o7NPGcxBhpmpbtrgERQhdZriLz5dzc0SUs5nPm8xkh9HR9x5xFOosOMhkdGRQdpT6Qg3FHxTywHxOFn4fkvZHey+BlKu5HkJJPn1mPXLIhsZyDPGFynsm+G743MSJuuJNG0GBgVwfFnY8lk4MPrLBMrlnHa1dVuqZhu7mmrXfs6zVNs8N5oSqs9kroGnZXF4TZkqJc0CB0XaAol5SzFbPZEgp/47y2kRIgcTLs40nAyXjP+b4lgcR8D5Jk8HD/I6tmLLxLhFEyy9SMwyyrb6KgfIR8iXHMLh3mPsvAzJiPgHVk/PJ1JIUfc9KEAQannhAifdfRNNfmkhqeTZIxjCJ2ADqSAosd9DFyfX1Jvd+zXK6GVP/MzmSokXBd0nUjABnxSQLwKaDbEmMwAwyfXN2pZEiOK4sM2Z2ZAZKPPLaPMz4V4KZpWr78mw+5fNHRhh3vfnuLakNdr+m7iJcZQffU3Y53v/2c549bFgvPyZ0FP/Wzr/ALv/jTvPzKHUxgFNw7OWW776ibPbHv8GVpDIt4ggWQmMtFLGMHQFz2IZqY8c6CRbOcGpF7RswkeWAbF0nWMr1Z8TEFwyqIFMldYQ/Waqg4qwuTAhGdy9lVEUJMet4WuQWT5VT0vLVg8E5GIQdd5boLkjA4pFRM7QaAYOsspfUqtE3N9cUlbbtnvpxTNzWPH37Ah+99mc36OUcHh3zhJ77AT//0aywWcw4PTqjmFV3T0jYNTdPy4uwZu+2etg/sd1+lbpWDowd88ad+H6+88QXKsoKUDaRpQ8YQBxA50Jgp/mPY42R3XlKoKebIntUIBkgxORbzk9IMYyT0HSH0EKOlylPY83OQsw5cckUOAili8TEkywJLNc90qynBHLeQ2buYAJW59JxE8N7WA+DTOttuz9lvnuLVpTCKkB2Po6CJ4x/ZorJgPzh7/pQnT5/w+pufYzavDBzFIllHeY4kJYF5XGJrIhZ8HFC85oyFEpWA81ZQ0PsU3+ZJe0QQH5EQLMaoj5b0lYLpY0xBxvGzA276EHj29Jp6Fwix5/K8RekJvaXhOykI2hNCx+X5ju06UBaO+bLk3oMDXn/9HgeHS7K5s5wvaLtA39saM7c1MHVZkl0edg2jFU6Kv3EDphn0WJI1Q7D7AFoybLG1OxxLJ06UwfXNoBBdjrESTXskgymdKPjJtQzyblDFk1nMG3QSdJtfS2vafs1oPZ1DHSH0NPuaEDqKsqDvezbra66untM2W2ZVxZ07p9y7d0hZFlTVnKIoCCEQ+p6+D+z2W7q2I6jStS8IUalmK+7ce43Do1OcL74bKMbxFnKgambDP3qP+dZH3mW86/y5nDmahVWuRWMhCWqAkpsye5TLTL6XWZysUHIcUhYAw4K4cb4k8hgMaCTF9KX1FZSu3dM32wGMTFlWlRs3NMiafGmCsttt2Ww2HB2fMCtsTo0hzkjju9flAHuHOFFJHx0CORLD6BEJpv8Um4chBtbqasWYq0HFkZX8BNTNpwLc7PcNDx9fUsghTsxabPc1fQxDrQ1QorZ0oaHetdQ7uDzfgyv44hdf5v69Y67P17zz7Ses1xuqUuj7mhgC89mM6ISgEe8YF05MWFTM+nTOJwUBJISZfZvJLgZ0cEGMxeWM3nciWAZNC2JBVcSY6kKkOjAkxTpYRTIAHCUk68ICZ52mYGhlqCdxc4G7AcxoYh6y2W9TZsHNGTg4siFpQqnvOp4+fJ9nzx+zvrqk2V+w3V7StRuK0nN8tODzb32Bl196jbv3H1BVFeUkcNJLwWxxwLzvKWdbojuju15bkbu+4cXTr/Pi6bd56eUv8PKrP8HxnQfcuf8qIsXETYbFQWWBkZm0bKUkJiJvgiwsTR4oIgU5vglIIKdPv+ZnKIQhSDjPtxstj4ym8k8nSAI2oj7FIIGoG1mfIXZUhgB0AxXmuopOcCqIFKi3qtux79ltL+i6iwGxSLR07YAiE6WUQU1eqt5ZrvN+u+XJo/fZ7X6Wo5M7aa32aT34ifEXyCyBaKpxJDmFPM1XzHl9Hqdqbnlf4SUiGg3caEAk/+ttzgYwGs0Sk08gcX7Mo+8C63WNY2bCNEZC35swHZhX24tRA6GLhC5Q17aX7tw5YLmc09QtFxcb2qbFeRLYi5TeG9GoKZ4vbcZc6mZg1QRuKghJID/PZf6ZwctNA8t+leRBkhHgJzZ5LHg3PVKO6Rg4EzIgkeSCH7bBDaZmvKLB1TNY5Pnv7MKdaMh04QKEGNiur9lu1zTNntDVtG1NiC3OCfNZyenxKQcHhyyXB3jvDGxnFx2CL0qKGOnaDpU9oWnMOIiB7eYF280FBwenHBzeYb5YsVgeDkbcUGMnuYO+28Ex8hhDXSIyM5VvPl1LmnfNc8dEp6T/OvL8jyhC87wMwHM6TZr2rQ7nvnFpGeRmpmcAmLYf7fm75JlIrr1uT4j7dIyUiUocnmMcL3mUNfl0QN+1bNZXdN1LzOaLEcCm4411gOIIatTem6aQD8Hww02nJBhnstsyqXJAeSSK4GJ6QqmIIXmOP4Gs+XSAm13H3m9ZruYpO8UND9O5AoljJH7UzkBqss73u5Z93VLva548vuCXf/mbbNctr7224PjwLm++0uAOluYa0LQooxISWxIScs5VhnMBNIlpiWoYXdTCkDKtGofiVgOxnACGG6y1gGUT22axmBrbPD67o5xZ8BngDxU8RQZ/sq3tkZK0VPWAG6rEpovDMmcEIcae7K/PsTu5tkHf96zPz/jW1/8CH7z3ZZwvWa/XxFDjip6D5YI3Xn+V+/fvcXh4yGKxpGv2xNDTdg2rg2PKWUVRlvRdoHBCdXQE2qMhUG+3qYDikovzM95/59d5793f5P79t3ntzS/x4JW3OTi6gzhPjF1KzEqZZ4OlE5NgHCWAJOuS7OISYyvynKCJeockpB1OIuocQppv78hp9IZqCwYLypnicUICQSn4TwV1gsRcc0KYKg9bMtn/rGhi6jJWEYRelb5v2G6eELvdRFGNIjHzH4MSVBkETQY7oQs8evwh19fXvPRyxJeOmAVDHME2WEo3kdHlleYyKgnoCNE5JEacqwi0yW8viDq8+DHwHEfIIFuN5RRRvBSEBCY/C6PrAp3rKEsTfYPBkH5H3aD2ooaULWSuva4L9H1IbMOeD94/p2kCR0cF82rJ8UGPVKXpr6QARfUGhMlBwBmcAAOgGIvvQTZeDLPouM4GJTtVgjoaYLmC+vhhq7otblIRl3EfZRWUZVA+5HAl0xi4vO+yOyJJv4EWmSoeu74YI0295/zFE64un+Gco2laVDtEIlVZcnR0zGq5ZDabUZQlMXRo9IQQKGfWDsB5b0yvCH6WskJjpO9aSnFUZcm+3nF18YSry6csV6ccHd9jdXBCNZubQiUz6e4jT2K89htsTZ7C4Y5GxsQen0w+mvSVWEblEGIwGGmZzRiPPYAVycfKAf9Zl4xAc5ADE7kxvqo3QGmMkRB72naLhm74/HhiHVZk/Mhbw3kADcp6c03TNBwckEpljPI3yxRNWbooRJf1YbrYBAJH3ZXAYZLb070XNSIxkQXS35y/9OkbtZ6+z/hUgJu27QmhJar5/r0vyRHuToq0yY3ij9oRtceqF3vqfc9+23J5tubdd5/xwXfWtE3P1eWeu/ee8aWf2HEqJ+YKIhU+9IKLJsSKKFYSOiFggEwNGvo0qtpEVKqiO7GqJaVyoxZkSEziIlnlUQPeFYBl0oDY/Tkrfmc+zmT5pzTbXLvArO3kBstUQWKPskLLdWnyBcVcYZW8CXWoTNx1HZdnF3z1t/48jz/8GgcrT1n0oDveeuOUsrrDcrFiMV/hi4LYK5vrHc2+5+BwxepwiSutkm6z74ltQ9d39H3A+YJ2v2a3uYQURNs3keOjE5p5y2675vmzb3J99ZhHD7/Jg5c/z2tvfonF8gircRAyPBtS7nPZdgMZKSVwmv6qKQbKTecmx9OkefO5zUKJ856xoqqaryelvEsS2kyEjUgqKz/Ut8jbnokgmFSNRTAUne/F2LsQI0F7mmZLvb1IIKxCKK3mA1ucFmghuNAjYZJl4xgEoGWAwcXZCy6vLui7Hl/OAIcTTV42zbiQLChdSucdfNoZQE7BowoiJUhn31FJRUKd1YeiT3WgBKG16xF7Lra+PxsjhJjq3GgqY+Amc2FrJ4n9JICT0hNH30e6LlDvW66utlxdNPR9pKk7Fsstd+90LGQ+Apm8nmCwcuON9gj5cwA5WUDGczJ9PSsCHdgQU3725pSRmwKbLBvc0DZmqizyScZifKPCnIwU/zEwfsMt3AwIzvvGcHZPs6t5/vwx66sXVJXgXQBtOT5a4P2csqwoijK53aFtTJZUVcVsXlrGeYz0sTU2NARz9TlH6Fq6ts7QjhBgNlsQvKU/77ZnNPWa9fURq4NTDo/vUpRVAvdp/rJxgqR71LTvEmMziWsaQM0NQDPOwxCorSmmaWgNkerTDHVqJsfISoR0HU5S6nN6rprfzx/OGWJM3GJxQEFCjrmLhNDRt/u0NiyWDAGlNaPJCaIxGfH53sZ1lgHKfr+jrveEEFPpkwS+BlfjZDbEVnR2PY0vZ/lpLyTIbe5LEQYWSDMzlYF9AkEDOBRuxjf+xcenRyqlIConBa4sLYPD+RQLZgDHxE1LjD1SzBEp6JrI86drfBC+8bUXtHtzY2zXNe+9/5zzi3NeeeU+s3Jui1qVoL35oNURkp7TJKgVUj2c5I5K5ffHhRxgyNJRYEwP7mOfHo4pAuetR5Vzqfw/plxdYqZy8buh1o0K6jDnglj/lyHNMD1gc+kKVhcm5//bprc2D5rmylib0PdQONq65tmjh/zGr/9Z3nvnyyxmUJXHvPzyAw6PjpnP54TW4nLaes+226BY0bLTkxOIFc1+TaULqrKgKAvUz3G9J2627HdrEM+9+69S13vOz85YN9fUHez2W4piBuJYb87Y7K548vjrvPPNX+OLP/37uP/Sm8xXR/iyAvEonc3xUEQx+6UFcr+fTH8mNC/qxoJnmuKfEgtolqs34T0pAiZqG/5GSuUQjJ1+xIRXElgw1iJJAkmZDuQaKT3INDlVCBps3YbAdndFvbtMVnRFUZwStEa6DieOw+O32O0uuHzxEJEw1F0bZCAm9Hb7HecXZ7Rdy1zmFFKZMtZgAfCiA0AGW39OLRMqagSPWcYJhIkzt5ZTh0pl8WiZZ3BYFgikCtEhVW/Obtw4VP7+TI20t93QY8kBZjTFzHKmXl0mf4TYK7tNi9MtZy92hM4eihlTW3b7PYcHK1xRTE4zxkGp5kSlSXJxtugH7TI6THLwJuRnGYdrzwHFWbGakTtxg6RyCdPsu5tWMINCHFi9oQGoDOcZ3N3pPNlwygVF8zUbeLYikbHv2W7WPH36IZcXzyi94t2cg4MVs/mMIrlpwWoudbGzYzhhMZtD6Ql9g9MC7z2F96gTohO6tqPvzO2/Wh3S953VKeobYjQDzjlzZzXtnrZrWK9fcHH+mLv3XmN5cEJRVsYUf5QtySpdGeZ91N4pQH9iEEzZCwY5AJlZGwOSswxnjB25MRKQGVKhdbimGxAq/yojGBuMGEjAxtiyrqvpu5pcnsS5Bao9Em3/z2cndN2euFsjqZAgGX8wyre+69nXe0LsKRKhkGO1htigEY/jZKzfM8TY5GMOsUUZ0BWT1PXMCo2zroMLTcixlp9kfCrAjbmKEkhIsRGuKKAbyD7TMKqodgRtbepiR9cUfPNrL/hgdsn7715gvW/sWGfPrjg7v6LvO+Yyt/ofYkFRqiNbYC7CCZhxYaT4hVSrxtLJE6431JmUoAX/xlS5MwfsZcQ86bnkUgVkMYsqB7bmeiqomisg9YcyBiNtJDu0IVodmZtMU5tlEVPDSge5p4tGurbl4uI5/96/96/z6MOv4aVH+5LjVUm/38ByAb2dZ7fd0NR71ts1fVtzenKXS1Wa/Z6DoyPmB0sODw/R3Z7dZk1Ecd5S8WNoKMoZor0VnysFUv2W7c6O17Q75rMDVGC7ecw3vvKnefj+XVYHL/P5n/w5ju88MFCX6N28iUwwWOE4gDFADTQVW3OT1ERNppZLgZdIHARYlkqD8pgGYCbFIRrR2BrYDtnaSFWhk5WByzFPAVyRnqEBr5CAblSrNdN1HbvdFW23RhDK2R0ODj9P01wQrmuO773N7/q9fwOX18/48//hv8B1c5aqGufnbnfuUNqu5/LqgqarQU5GhRa9racYycjI5areKavFAUFjqj2RjqvWcqSPwUC2mGCxNHwrfClhFGgy1INPsuijsvrTPvKaAlsTzqWWOzL5B5aT1OMpUZQQHOdnW66vai4v9ontNSW92zbs9w0hBgpJLq/BaCKhZDuHZsCeFN7EzwGDa0rGa8zznv/8SFq1HXYCZiTLzHzY3LqAjyhW00puCmryB3UCkCeFAtOWJLsaMluQ91XUnn294513vs76+rmptsIxKz2xbyEWZD9811oGbNs2xNAzny+p1dzm1WxGUZVUVUXXCV3bkJmq3CjUeXMpG0FrDDxA29nxQugsZVygbdacPX+H66sl1eyAkzsvM1+ubszTEIQsE2Cpo3tuOkfjXE+Zq5z6Pxo3g6zRrNCzkh+JGZFIVBk9Avl0kuZZR1lo+icz1fncccRHGgkx0nUNITQAeL+gmp0SQk3b9MwWJzx45UvU7Y7H7/8mIezGR5+NOEze9CEk5qZHmA82oE7Ob4wLw/qYYKMR/AzLLa0Z1GRsXv+SKvQPzGC4wVKN0//xAc6nAtzYtUei9pNU68IYD7Gmkta4MHXC1paoXQo+jnz4/iUAoU3FgbB4nOvrlmfPLtludyxXS0aqthjStlPWvRUsk2IovjRupOFZmZVFttbzIg6DFaaJMcD5FGiJATWfGk1m90LygZu1xOD2yspTpCAHIKOAGwO1zJK22BlR+26MFv+Q3WMxub9UwRWe66trnjx+zDe++U0uLl5wclhSVSc8fvaci4sXHB8+RDw0DRwcHHB6esrdu/cpvDE0q8Wco9NTDo6OuXPvJYrC48sKjT1Xl+dsrq+4ujjHe8d+s2W321IUnuVijjucUc08z58/p3cwm88JfUsfldhdsN8+Ybd5ieflC9q+4Wd/7g+wOjxK7SQ0S5ExlfuGJk0BlckPEyUOgXy2WUtAhwJpJnrycUzoDN1ps3CK2SLqkCi4EK1JqbhUnVkSiLK4qwyookY8BhJy3FR2d2ZLqtlvCF2NuJKX3/p5fv9f/3fz7rd+jV/79/84L73+U/zuv+y/yvn1c7799V9ifXaWb2O45dzgjj6yuTqnbToT9DltMq1R7K7TXLhB4VnH9J4svKbWmvjkQguAVwNKarE3LrlcnS/wMVozzlTzRqOm2IvPzsid03P2ojDGYQ3Ud2Iscld0J1Yg7frKlKyGFEmTXNhNE9juarquo6zK9NxS/IDmgMusGTILkkF1BjnZhmXy6WTwAQzHYbCKB5YAWxxDS5f8n8zqZKU8MC4jKAJJQbSjsmYA8jHjmjQvagWYTOCN7hFM1rXNnu1mzdnZOfv9jvnM4/2czXbHvt4xX1eIE/oAVVmxWMxZLFf41IC3LApmiwXVbMZiuUrstsXjNc2etq6p69qO0bZ0rQUkF2VBJR7vHbudZfL5okBjoI9mCPfdlrJt2O529KHnpZffsgSJyZzpRwBmlhMDFkYnLpaJ3s7HSHaPTJ/RoEEstm9ELiZrQky6IqTQhlzeQ6dMW2ZBMoDK62XUPSgpC7Wn71o09iCOg+OXeeMnfp7L8yc8efc3ODi8y8uvvs2+2XFx9i7tfjeSRBOQYsSWWgB4GNfeZLEOUtWAG+NazktmCg51nE+Z3NFQy81Jivmz+XROiUE/Its+vqz5VICbvBOzr1vEUZQVTc1kUVlND2vl3qW6NUmZd4kGE+zpqgGYet/x6NEZl5fX3L17D+dH4TJEz8cw0NNT78SwbAYaMYOHVEdEra6Nfd4ivoExyDgxM8ba5MaSqZ5NFiiplxUJvWaKfFwoJFdLcqkkVBskWBM7SVV9JVU10dFFoKr0fctmfc37736TX/2VX+bZ86esL/doH3n9vueN11/FFwUOpZp7nBNOT+6wWh0nK97hvFBUFdvNhhB69ttrFgcHzGYrNPY4X3BweEI5W7C+uibqloiy3+6Zzxf0rdLuaw4OlxSlZ7fbMV8WOFewbzylA40NL905oG9f8J1v/id87nO/i8PTV/HF3Ji2NJ+aAqMtOj8v+lwYcZDljAHpadOpjJQuSYhDAjGTuhTkdhXRWi6R4qKkNLYt0aTqLItOIDGBacVIcnHlFaSaGK1A3/V07R4NHd7P+Et/4a/n537xr+bNL/003/nqL7M6vMfde68iZcFsfoSvKlzfwV5HS5G8PpX1ZkPTNKhKYlisH1V0kdiHtOaStaeSWC8LcpZE20SxQGDvPKqeQixIPgZzWWmK34kuWmkEpwRX4Fw04Ba7NI+fsADFj33cBMjiPfSj4ByaW5Ji2MgUO8QwrqtReVk8zvp6R103LJerYU+nA9kY6p9INpDJ8QgZJI1XpuP3SYkDWQ4NSywrjuTmzgAmgZ4B6JNB23jsMTYnz0f+bmZG831mQyAr9ayY0vUl6zzGQNu2XF1e8Pjh+2x3G5p9j6pytBKOjg6Tkad4b0p7Pl9QVbO0Z5Lh572xNKl1QFlW+MLKSIhzlLM5rihp6gbVllJLuq6nLApiILXCKBHn6LsOV5o86PtceqFntTgkhj0X5x9ycnKf2fwISc1nMygdWZzRAhgzwsa5nALMfIDvUr+56GW2oqavQcpaJBmoY/uasYjrTSQ1MBrTxaV2fdmYiqm2l5OCl974CV5+4/Oc3HvAxYv3qWaWSSbe4Yu5PZcYrM2dZE2c1gnQtq2VOlBSfax05mQcDq654c7HAPOBhcy12NJ+cWLtcFSTzJx6ISTFEKZ1RzZgp3vqY4xPB7jBFnuM1r06o1dfVPhQ0cfaWA8VVIwqTt8arQacsTk5JgNBg/Dk2QUXl9d0fcPMz4y208725YCMs+nukmdVjI+ZLm5yynUghpR6m62vbPQIycqD7McflFJiaxATBhbA15PjdyRR2Zn9GdiFXLkRyC0QbANagHWmPHPtihADTbOjbWq262seP3yPd979Bu+9/w7r64a6hifPGkL7kFkZ+dzbn+fo+NTqoAisFkesFoeUc085q/C+oJrPca7AOaEPyqNHT7m8+CazqmRezbl77y6h71mvr9iuN1xfndF3kd1uS9u1HJ6csJyvODpa0XYLNtc7qmpONau4vjzn6vKS9fUVJ3ceUPrI1758zp37X+D1t3+W+fLQ5sLLmO2WhHBMrrckOfJMm0jW3Fh07GSdn7fGmIxUN3xnKJeeBFBW2DEq9BBdbwXusGyj3JB1ZOHM3SMY+xOTwI8J4PR9S9e1KeS5or7eogFC1xG7iHeziZXn8cWSotxiAb52mRaeZdR2s9/R1vUQhhE1jgHYSQhYjJlLTT4hJtrX1ptYvRt1VuBMQaPg1dy/REeQzjL7tLAGmoPgM1Au4ogS0PDxg/x+/CPHv6TYEeeQIIgrUtq7I7ecyMzNDTeDHWFomDoI2wibbc2+biw+wfuk+8eK1qPlNOVxJIcb3ngvr8GhWSLC6NoyBZgVsHNZyd78aftEJ+6SDIWmeXljEboR7EyvI113tvwUW0OiaAj0wepIdU3Den3FxcWZuUybnj7AZhPQsMY7ODk9ZTZb2FlFqcoZZTHDF4IrzBj0hSWTiLN+ROvNlnp/RuE93hcsl0s0Rtq2pmtammZPDErbtYQQmM3nlEVJNauIsaCpO3xhsTtNvaepa9qmYb5Y4Z3y4tmexfIOR6cPzKU+BXtk4G5zP81WzcUeEyyz32/SNiMIzE/bPkROTslyawQpqTyDjK7CgdEfHoWk5ZYAdlYNmljiZOCGGNInPH3T2Xupr+BY2T1duyst3EomsXMy/gtdqhWW5GMcYh51EqI4RXbjPsmso2TX1eCmzSdQS14gFyJ1WFwrA9AZij/qeOyPMz4l4CalWGdrIPsy05Mb+j1BmtyaPtYULgVSpk2XN6ezSFJC7HnxfM3zswvquqaaVQyBYZJr2Bhzk5vZ5WSGocS8aMq1TykoaqyNdVguU6E/tXTjZNUgavSgD4OlBiDECYuQF2eAAcjktg/pPJDqlUCuDWBUZlpEuVCBRPq+oasb6mZH37U8efyQixdP6LqG1WrBbren77ILRmgCPHq+4+j4OU6U+WIF3nN2cUlEuH/wAIewu7piv15TLZYU8xmI5/DkiOWhUcnNbst3vvUVfvM3fpPLdcPd0zvM557CKweHx6wWc8Pqkqv2Bl5/83W+8ZVvst/X3Llzh5PT++zqDcvVAecXl2zW7/PuO+/x+NFj/or/0h9itlilhyJJqZapkrDR1fbIcmZLzlZw+Su4BEiyC0kdAxAQLO5pbCIKuQ7Q4MsWQaIQUqsCjR1ex2DUoW6IJk5Jxr5cMVj9k9hH+r5NmTo93/7NX+P4+N/jyeOvsr18Qdvu2O+3bNdXdF1HUcxxrkHobP4Mg+DTcuq7lq5rUI0UsxKnBfVul5K/TDHYv5BicJLSU3tfVVNsE5gDywJqQ1Rzv8WQ5jYxlWLB7y43E03FFyX6Yb4+K0M+IiCn+3FUSVnl9ATtKSUVMctiXMajuZTGuts1bHe1ZbHlLL2030UnMV4T1TK+l64hKQpJv0tyXYzlJTJ8h9yp3gwsg80y3F9yF4omUJ8U5aQ+id32wFeMxf+GwAqdXGueI021gQJ936ExsNlcs98as1tVBV3XEUO6VhH6COttx2y2RVCKoiQ6x76uUWBVrXAIXdPQty2+KHGp4XE1qygrqzjedx0X58959vQpdRtYzBcUhVWLr2YzfFkMwD3XTDk6PuL8xTld17FYLJgvlnR9S1lW7Pe1NYm8vGKzWfPam1/El2V6MiQdkRpAZnfeMD2ajKYMOATRmDKm4nSBkDtaT7Nx0xHGZZeYF5zFVJrqy9mc6YqyfsmrJenHmNZI1MxE54xAA2bnzx4zn7/LZv2Cbr8jHHb0XUfbNIQQrNyKC0hiwXEWduqSYR+jGfSK4gqPqKdPRWElgZWhgOzEzZrXouY5krz7UgfwtJ4t42tAaRMjKutNBmj+SYKKPzXgxtIMrfIrmH/f+RLzWntyDQrrBq0p7ibihzYEWexkC0NxUrFdtzx5dsZms+Xo6NCOnwPslIFNccmaMx95GIKhcmaOKhBN0UhK+bPifAlxa64F4Yx+dg6iMU2qvX3eG4gZ2KVcmj37sEWTdY0FcGaFJDKSN5kpiqnwnQaa2oJ7m/2O/X7DZnNF1zUcHR/QhzkXF+fMKs9i7vHeijetljPKYkXdloTg8E44OjlkvjqkrTuePHqCc+CdsDo8QvqWigoh4jXQ1Xt2+w3r9ZoXz59RzFcsqbje7Xh+vmW5LCnKioPVkt3miu014ITZrOTh5bc5u7zg8eNzlkennB4tcb6gT/TnarWiaQPPn3+HD9/7Op/74s9YhoMAqc6Q9WAriBJAA0JJbqFhmC8VAkxbzKXeK5qFhOSqsNllIwOAjjFZ6wNwSUon9kPQXxTF5U7mavBAJaJRhmwj8SVd2xK7nhD79P1AoOb8+Tv8p7/0r7DbvaBvN+w31zz+8F2en31Is91ZqniOl1BwXvEIRQTnhT70lhlSOI6P79IHq9waQ8AXPgFm87nHvC9iVmi5tpL1NctWn3NlYjWzKzDzmDZHVs7EYnMsYyq7wj6+wPk0jJvdqY3JceKJdGTaPBfmzHtMMxDOWi8vFslgxNO1ke12R9u2zOYzO1feuwKji0FHtj25xwUDxlkuZbkz4oyYrzalKY/rdQgon8T2WHkFHVRJrsQ+xNvolDGw72cwMsoaJkam/ez7jq5tCX1H17WpEF9gNquIWlDXewrvKAohJ4GVhce7khC8Nd51wmxeUZQzQghs1ptU30woqxmolbfIZTb7vqfprRr6brfFFSUFnqZr2e07itJx5B1VVdG2DW1rE1d4z7q5YFfvWa/3vDRbsJiVxjhGyzCtypI+KNvtBdeXLzi5+yDFemYz2OYoJ3xY+wA3PH9N8z4t1pdjNSeqfaKjxmKH9vekwaZk9S1muMrks4kVGmDpEMg8EgBRg1WAT8Auh1Dst5c8everdN2OEFr6tmW9vmS3uyZ0HUNh0nS2XFbCqT3DGCMhmMt6Nl8Qo9L1LRp10g/R5nziSU2vudFtNYkNnBagnRoV5v6YTklKEkl79pO4wD8l4EaGh5N9wb6YURRzvNsRXItVX7U0Yase2lsNGU1ZKmRwgk1CaogYWnj08Jzr6y0vvRQoitQ/RknurdQSIAktRcfmiANbk4+XmsFNosNT/4CEXu210aVkr8UU6+BCwt1Ox8UpiuRgLU3ZWinzR8QPRcQyDT1m5Ch919Lsd1yvL1hfnPP86QeoBlaHh8xmJd4VlLFgP6s4OT7k6uSSumm5e3JIWXp+4Rd+hg8/fMSzsxdsNp6+a3jljTmFt2C/EHqKwlGWJWVR0TYtviqp5nMTZrFBriNVteTn/rIvob3FglxcnrO+vmK7azk6OiE6RVyJdyVX20uInsOjJY+fnfFn/+xv8Lt/9gs8eOkOOKVptnSbC7Z1h0jFb/76L3Pv/mucPnh1sMjEJ8YASUWfkoJmiBgYgCopFdIwaEwsjjNACSkwFFsHGgdFny2PAfSIPZ8YGyykOBIprA+Tc6gz5tECUJWynOP9jLpp2TbXZuVioFvpaZtLNlePaLpr+n7LxYsP+NbXfo3nZ++z3zxH3AKGVhmmFguvlF6synYMxNgzmy84ODikbhtUoe1blsVyyHJSFbRPicPpPjQq4gsrSKhKKihi6zsBwBDVgghTGxGwVF3xiub1msHfJ/CDfxpGTr3Oq8W5AnVJ9gxF/TL4ye6hrMCSuzP1KTI7KhkcPazXe5qmY5U6zmc2WXMs3GB1J0U2iVuxYNXRZTZogmHkB5g+P42jGZTGNFx4UBFkUy1rnylYG7FeOv/ANKfjqlnvoe9omtpKRWyuUQJVNaPwfmCvCu+Zzyvm85K+DyzmFd4Lr7/+gOvrNdv9jrZzxBA4PC7NBV9aAog4q+3lnSf0AecdvrAgYd1bxW3vC1565Q5EiwXZ13u7pi4wmyUXvpjsrNsa1DGblWw2Oz788CkvP7jD8mAOMDCpXWf1Hp49fZ/l6pDF6nBQ1DKA0jwfGdhM+L8JATNkNsmYyflRIDI8dzJDMwGow3/VWjmkNWflPxIzNKwBO6b1KSzoQ6Drm8TaJKZDA6Gvaes1faxRbdnvrjh/8Zjd7pqu2WHtgca4REnyxjlwUQZWxheF9flKaznEkHocZr2UQflAM+ASwBmW7zhrSWYbo589CmPwfZr2PsfeZIz98WXNpwTc6GQxjHUlEMH5EoKkyrum0EzY9ETtUUqMOQmjGyEtHEcBGnj29IoXZxe8+dZrOF8kkJRosZwdE40qs95H0UotaqLmE2iJIVcfDgPAsYJQYVCwgqagXrOcBavR4MWbghFF41hoawwjHO0osF5K5N4bkgOt7WcMHTEqbb3n4vwZL55+yNMn7xNCw+HRCYV3zKs53hfs9zvWl5f03Z6j4wV6rZwcH/Bzf+lP8dKD+7z62qs8fvQh2801z8+ec355wXyxopotWK1WtjiDcnhyxHy1wjvP5uqcru1pmsBsccDbP3GPovD0bc+sPGBeCnfvnOK9Z7+rOT15mRB6nr14BnFG3exo2g2vvHTK5arhcnPN3Xt3mc9m7Pcl3X4NBOqm4Rtf+1Vef/On+T13H1jwYUrRT5VI0pwly2iomJoUhgcYs12yMrPN6whq3cQ19sSoVtU52ga1JoPFBNgEUDfu0yTwLUbKkzupm2HmKMslRTWj2F7TtDV1vScLNdVACDVNe03fbYmx4friIe98489zff2ItrmiLAoGfE3KnvWCS4HO0Ro7sVgeUc1mdMFqf3R9IATFe2ctJzQOsQCRYLmBKsYQJlesRwgKISgh5IDEEdubbDFfuIhHipjSyr2t/88YczPstYEtxtaPeCBnkyWDJf9PI5rc11lwj/RLOgDCZtOw2+85DodDPassl7LQH+IuNGsou6YbLQyypToB2kkVDOv4hrJMYGVsa5jfyu6QyWvDHGStPLqQQMgdq2392S4LfU+937LdXLPdXKFqwMYlhkScQzulqa1v1GxeQK3MZxUvv3yP1WrJ4dEh6/U1Xduw3W3Z13uKssT7krJMGWYLmMmMoqoQcXRNTQiR0EeKsuJ0sbQaZCFSeANOi8Uc5xx91zOfH6Aa2e62qBYWE9S3HBwsqNuefVuz0AVFUdD1HaFvQJQ+9Lx48YjD43u8ulzhpRhASfYKfNcqz24/RqhjKc5jQgiZARrWTRzWUzamxzif/Eh0+O7wfBNwsLINOn0T70urZSWOPvb0XT98B1VUe/pQE2NHjIGmXnN59pim2RBCjXPLBJ7G5WzAJp/b1mJZzqy4a5fBTcSrpp6IeT3ZerNMUuN9ya7ZvK80u9CY/BtPLgi5Sro4Kz0xlGHJAvhjjE8FuLHAPNtYRWWsRey81TEQ83tmwDMutNRQMdUZscyeFAyJDMos4Lg43/Hk2Rn7Xc18tkDpGegtGYW45jiJVMYrWzoh9sakaGCsgMtY30GMVAYLNHTky0j0cyrb731a0BqwPi5W4GssuJaCqbIASw/c+vowWFRt1xqwuXjKh+98jcvzJ4AV3Ou7lqvLS3b7PWVpmQRdsHLzp8dHLKqCk6MZb77xFldXZ7zx5mu89PIrxHiPtg9sLi9xHsqy4uTOKUW5YLdd8/jr36KYlRwf32W/2xKD+bBLL3T7ni5FzYcYEXqcBrqu5fB4xZ07p7x49pzlbsv5xTm73RVRO0Th7tGcqHBxfsnnP/8GAuy2O7S7QtTiVP7cf/Rv89YX/hJefeML+MJScnERpymZNzFq2dU3pj5rAoW52aatHkuxT8odiNGj2plSj7mitAmowaJFkSGwzfLwDSwUN0JOFCt378uSoigoioo+Wu2PGNQMvxAt4y/WRBpUO9r2muvLJ9T1hR1FquQLN8NHCjOnit5qeqhCUc1ZLJb4skR8SeELur6nDz1FMTdgQ2ZwSJWuk6AVc6XEaC42jWr1bxJrEyUmv7hZolbWpyRqYwHGhWIVMENifj57w+XC3tERM/0tkmL8JlQ5yYRXHYW0jDR6/l9Eqfcdm+3e2pIUZcqE0SkRxKAwdKqmMuAK43nTZ7MShLwes8Mpf0QmX8mMUuJxbvoJxjEEVd+MQMrxiPnjIVrDyrrecH1xRr1fG9h2klor1HR9N7RHsFABx3w2o3SO+dxzfHxCU+84Oj7i4OAA1SUhRtq6NkPDe+aLBc4XdF3L5sU5rvDM5gv6zuJ6yrLECYS+Jc9QbrIoRGIIVDNLLd9tdxRdy36/p++aFD4Ay5kZDPt9zZ3TYwQrUhdCbaA1Bh5+8G1OTh9weHw6mZkccoAFt+bnkmYsywcmTzNZW2MosBhYiDptwhuYlrcYA9dvHjs/16HvHpN0/pyR6y0GMGqkC11yKOggA5WAuVkDITTU+y19vx+OMSS/SCJaRJBMFGFhIrmatIhPrXMsicEVbkhsyODDJZkwhm2lpIUMgBLTPrqmGNadZrZM+iF20qUkDf342ObTAW4AqmXFq5875PWXj7i6VB5+qDSDAAHBD5aM4CiLGavDJaGD2MtgXcZsXWbTA0e963jy2FxTx0eHyaeahJUKucN09nm6pCA19OSKlBl5k9xdg9xxbqxtoJamDM7S8JxL5c9TQFnMQcL5OGk5q23RoaT1KDeH3lG5jk0fAvvdmquzpzx++C2uzp/YQg2R+XKFak1dN+g1LFfHHB8fsJyXvPna64ClVy7mJU+fPKIsCx69/5A33v4cUpT0XeT46A5lVeDF4b2jbvZU8yWvvHFMvdvQ7mtC37LfN7zznW+w315wfHTKYnnC4fEdyqqkqAoODw9ZrVaU1YzLsyuapufu/Qcoym5zaRVzEwidL+eUpXB9ecX1xTM26w3rzZrZcsHh0RHnF4/4C7/yS7z86lsWe+Mx9iEkIZsUxbBGUIuvkWTH5gIx0XauPRtj0wSrIiwhWa1DzQs3BiAnezhqTO01/ECjRpczWozaRqEo59bx3Xt8Ya039nVN27a2RtSAbYgdIexRbdEAbXNN1+0hKpFusvZtsVmPnYB3xuIslgfM5ksrOYCzQM0YaNuGsiosADiVOZdsRQGi3lKcQ5fWcVaskLG6lUdIMiukooASE8Axi40snD9DBYpFwJeew+MZRwcz6gbW111GDfYZpsDG9nBVFcRoGZiQA3mnn7Uffads1nvqpmU2q0ZLU9MHbgCTxA+JjN2k84cHBarjpUzdUIzgPCuHG9WIM4iCBHJl8pkswPK58lF0AO4G+pWub2h2W9brc+r9hr5riarWyoCenh5toSxnzOczisJxfHQEWJZgWXi26zXeO9ZX1xyfniCpJclsthzSwp04+r7DFyUHxzPL0Ol6Yuzpu8DlxRldWzObzSmrOdVskfaYWIZUWeKLgnpX0/eR5fIAgHXbmBEMIFZHx3to6pqm3tI0LW3b4MuSajaj3q958uhdDg6PzViGkTWAkW1JG0WHxzN5Bml6ZbBaLd8pupGRG9eZfcRJBk/pwSQAMEbtyAgMUjVkUDOAUqZsjn/pu44QEtNMir2JAdXO1p92hNBYzatsFE4BOKTWJDrcT5FaZeS/XWonEULAe7PAJBv0w2yNmXqjB2RcdpOTkbsADOovh2io4kSJzmKABob8Y4xPBbgpKs9f9df9BF/8wl2kh69+5ZLHD5tUxbcY0KkEPwiTg4Mlb37uhK4TPnz3Cu0nWUaiZumqID1oEB4/Pefy8pJXXrlHMQnyk4T9BRkC3aNGQvIzakwl6/PjSjy9qFn3xFyLANSFFE/cJ/owotIbreZdyvBxybXiR8w/PPXEAA1tBzJCT8o19uz2W549eoeH736VzfqcXb2nbWvr+4Gy6zfs2y3L1RH37r3EajGjfPkBLnZ0fcPB8pDD4yPef+9dqmrGer3lm1//Bg8ePKCsZoQQ2V1f0/d7FosVp/fuc7owC8r5HudWFMUDQgjcf/UB9X7P+uKKsqqYzZbEPqJdT9jXXDctuALnC45PTrm8OrPS6cDF5Qtm1Yy2FtjOaGtjfMSVvPHm2+z7jrarKRDads9v/IVf4uf/8v8Kb779kygWD2JWhkDunh6Ta/IGq2sxIy66xPKknJLsb8EyUVzuMxTH16NqUuw6PmtJVlR+PqFHnGXSqFgGV1Fasz/B/OFFWdKFjrbtDFypVU8xgODJwZ4h1ISwT8GOVoRLSKm+XnAeihTTOp/POT65R1GUWJyPxSioCvumZrFYUZQOPPihGaTNSIyTWik5xiOv10Qz4yJRLRPKgm2NgbAq3ibEvS8mNYI+G8M54c3P3+HunSUS4fnzms11z8C/SPo3AS1VVXJ8siBG4eqiNpA8MdQlJXpa0oew3u6p65rDgyXOTxgWAGSoXJwzocb4i5sMwJCZNQAjM8bsr/TJIXA+gXDNqeXpuaja3khDdXLhgwrKBfuw1xSCKl3Xsltfcn35nLbd0/U9oe9SmrLSNS1daCnLGcvFiqrwuNUKUesDVVVHzGYVV1eXeD+jbTvOX5yxXK2GVjFN0xNiR1mULJYrFqUB9EYipZQ4v0JjZHW4pO96mrrBe48vSlN0QYnS04aUdSqO+WJOXdcWHiDKfrelKAroWjrnCb1ylTLHjo5P6WMu72GB+k+fvMsrr32Oo5N7NleqjBsmof8J4wCQWybciHhK+mV4jqRO8Wn/JJOCzGoM52Ia72Ov22ezAZV0gmTGJhlkzlqiBI0GbkQmawrb42ktGVOdioCm8AsYmZscdyNAURTM58vEAGsCHHZxfd9TlpUBq7zeSInywtBe4SZAG/XeWIols4wfYRvFQGLOFpRP0MfuUwFu7t5Z8Tf+4d8PseY3f/3bPHq0JXYO58rEwrgEBuwnOMQLr756yHIxo216nj7cQlB8VXB6b8HJ8YL1VcfFmaNrlbPnWy4ur2iaJlkdCUgkxkVTyjdgP1NzPeu2nBmXbF0lpCmp8NMQ5U6q8u+sE7MyVtZNaTbmfreYH8PluRcHY52EIZ4n0XIKMfbU9Z4P3vkajz78Ktv1OU3TUpYlGjuiQF3v2Dc75rMld07vspiXFN5RrY546y1P3we60NO3LcvFks1mQ1V42q7l/Q/eo/CepmnwvmK2sNLm1WZG19R0fQsCy6MjNETK0jM7PiUcHHJ6coqGSLPvqOuaru+h66whqmqK51X6ELlz9xW6NrDZ1LShZ+ZKQt9yeblhsTrg8GjGfDbnlVc/x7vf+RpNs6War9jtrvnyr/9HvP7mT+DLIgGaFESuY4aSZgCS6H2Z1J4x95X5by2uJlGxGbCmpyhJW+Ug0DG2Im3YJOzMt54DDI0uds5bwTu1Z+nFMauWlOXMNmaipb0ULA7u07Vruu4cRJgtDlEXado1obcS8l6g91AUIE4pCigr4dU33uDOvQcoka63gF/vrdFnUzd0faSsrGLyUAsoCWiXYspySrx14TWlKwlNSbTzERTN/dTELMyglj4KgrrIZynkZrGs+KmffAPRwLOn52zWHRrNFWWBxrYnST5/MObv8LCiLAv6PrJdW/d05x3zZcF8XtDUkXpvJf/325a6rulDoPI5A3S07LOAHxganbA2g7U+CdpOWMRci5OsUB3ZmuF4ksETw5odGjYy0IDD9zW5auMAhoxb6vuO9eULrq9e0LV7+tBboK/aHur7ni60FL5isVhSFlYEdFbNKI5PBpdFiMGSEdrW4sBC4Pr6ylK7g1WFLwq7KN82hNATormRyllpSt4LhVsSq8B8vgDV1J3dguo1BGLIEtXkaIzKYnFADFY9OsSI95Ylta8tFbyaFRRFweHhCRcXL+iDpaF3Xcuzxx9wdHQH8VaDQTS7tjMITSn1kkHl8BDMYEis8eCWmSLcCWuW2Zub3a51eExTsGT1lwarnLExZ/6Oo/Al3vvR3ZXcWEW1JISWEHeAJewgSkhNSTWFU8RUckIkxd14ODw6YrFcQZrXvI5FhD4Ec00lH6989GYTc5WBTS7UZ+BtBOujm3RkRbOexVmPRpVxPj7O+FSAm4ODJW++8Qrf/MY3+fo3nvPiWYtiFL9L6eHGrBTkmJW2aZnNK956+x444VfaJ7Rd5HNfPOSLb9+DEPn6V8+5ONsSY+DyYs/Dx8/4yesdi8XSqjLmhTdgaCXSG8jIYCdnUGUBlC2ulFWRgwazKZddI2PqWlaqmZ42il9FrTO5htTg0Q/gSrVHxScr366hbTs+ePdbPP7w64R2x2y2wElB22yo62s0CnXdU848x0cnxNiy21wTuh1OhKosaLZ7Qgxcr6+4PH/G+Ytn3H/5JY4OTsA52q6hms+Yz42CjBRcXZ5TlcJicYgvSjZX1/SxZ15WKfUw0jWBLlqqZtt0FhPUNhwcHdprXY13nrKac319zvXVlv2+Ybvbc3XZW/xIWXB5XbOtF/zUTx5wtXlCUS45e/Kco2NL8fz6136N3/MLfy0vv/pmokcdTq1wYa7knCs1i/jBbRAJWHC3+VmiKOIiE5LHtuQQ9Z8YlZRmnm0YcyemZx4TPewiVqooN1g1Uz4GNebFOWbVjPnigCI3hPUlq6NX+Omf+YPsm3O+/OtnaIA33v7L2O6v+M43zmj3WzR05kZJ+78QoSiF1UHBl774Mzy4/zK+8GTI4n1FUXi2fUvbtaxkNdQXGqhwcWY5uiLJHQuK1j4kcDPGYtjnU/nKzL+7DL6NeQwDs/XZGFVZcnJ0yNn5OS/Oduy2YVAlY2VrGPPuIqHv8YXn+GQJAo+C0gfl5M6Mu6dLUOXFiz31vgNV6rrner3j7p2WsigYG1JObf0pS3NzaAoCz6717N0YaoUMXxvZpcm3B4Uxuk+SQfZdFXZ1YHaGVGcghsD68oL11VmqqG2NKGPf0YcG7YU+ZTPNqzmqIVUV7ozRS8G9GiNNa/Ed+92G5cEBs2puhk4MeF9QFKk6PJLSyIWiqMA72iaV+/Dp2lSJvVWGD31PCAZaQupFFUIghA4Rh/cFTVPTNFZeout66jqgKnjvaJqeqi+4d69Cmw3elWy2W2Yz65P34uwxr+4+z8HhMbb3M+jMHIQNScZuii0en52Oc6xM5cr4pIajaDZsxzpIYzRUPjAJ4CYXsSapJG7oco6INRotqqHlD+IpZ4fce/AT9P2e5093aFSOT16h62u6s+8Q+nbILs5b2WKhoKwcd+8+YLU6sKDxdCHO+eSFsOKJZVnZbpHp3aVEmNSgOC/cnHiTcM5Aouffh6VNkjXI0Hbok4xPBbhxztE2Pe+/+5xvfuOaEOZj6wKXAonF4yiTlWmNCJsucnr3hIPjA6pFhTjHW2/cZbUoeefbTzm/2GPGt9LUgcePLri63nDn3p1RiGWBniKirCtwrkwqxNw5mYKouQS1JFo+VyEVK9E/rVoq1tVbczS95pTuEaEOfY1iCozL0fmSMq9SgT+NgccfvsN3vvlrxH7H0fEx7b5m266p9xuaekfb9sxmK+6cvETlCugDbb2j3XfEkNI46wYRpa73XF89Zre94OJFpGv23LnzCp6SzXpHs2+YVwWzyvq2dIVDKDk8mbOYL2jqmr7rrDO4gHY9VTnn8OiYPgRc4bm6XNO2DcUMLs7PaLuG7WZH03e0rdLFgidP7XfnJLGtHbODLXXTUpVWj2K97ajbK9DI7MkjvvONr/DgpVdHdgULEHY41FnqMhk0Ypvfx5ThlgUMJI3h7JmmIFKXahIZyI2pW64lfUsynUW8Vet1o/siM0bOlXg/o5pVxi7FiLgCX8yoMnWriuiC0h0wL45xOLybUc7mnJ6+TjU/pJgd0ndrvI+oBGKEAsEVDq/KyeoOX/jiz3B65y7zxdJcBWm/lOWMPljKboiRorQtbuX7rcKy984y7lwcXCxWCDMrOJfEkIlYl4CbZWFl0E0Cb5MCm5+BYX2NIleXW87OGmLMXcHz87Q1kzMzwXr/hKAsFlYCwRf23snxkrJ0XF5sqet+cAGEPrLZ7GmaluVyOaw5k2NTQH3TNZGjMq0GUxxete9l42hkC6ewJrPD9p3MCEzdAB8NhLXfc1q8TrTL+vqS87PHaOyYzebWuTu0dH1j8Rwx4n3Jcr5K9aMiIXSEPg6u/L7rEYG+72iaDW27R3YQ+o7F4hCnjrbtCH2g8AZGRCA6ARxVMacoC0IfJnEdoKmpcDVLmZPOmMoQAg5lv98RQ7Bjx0AflKiO9TakMEelC4BGfNXR9yGtaaFpI31oQBW/WXN+9pzlwSHZSZnjKsWlWM2c8aRjbN/gXsqMTHp+9gx0wriMLiOLEcyGWGY0DDSNrRgYj5eNbCkmbilNcTdFconncxd4KSncHFc4RAp86ZkvjvD9DF/MiKFJGY+5WWWKg3IwL+ec3n3AYrGkKAoL05D8vgUw970ZSJLjT01JopAyScPgahrhvM1pnBIMCe0MwBExkURioHK82Mccnwpwo6rsmg1Pzy7ZbDpErZJwRnDivD00SWnf2Dz02lFWM156+R73H5wSVZmXJY8+fMo7715y9nyX/HoFsRcePj7j+cUFrzQPmLkZhXgiY0R7MswNRXuBkMtgmzB3WpIDn4y8NRQ9FkQz68il15Q4uJUsCCyY8hVzo2TK0NJ0exDwObMnMwUa2dc73vvOVwhhx/GdexAC+3pLvb+y7CzvcB6qWYEvI/v6itVygUqgb2s2m2sKJ8Q+W0Ed89mMeLCk7/Y8fbwhRLh711xZXVdTtz1Nu0PoqaoV4gvElbRNClbFgmudg8KNmUQvvfIyByd38EXF0ydPuDo/p5qv+OC9bxG3a7q+SXE4yvHpnCdP9lxe9RyfCKenBffvn3J1dYmTSN/tWC48m21PCJEnjx7zla/8Kr/79/4i8/ki+XmZWDZJEatZTrnukTqX2AfbJKgOwsUasvbJUFBckRS3WqyVpoKMmTbWFL8jKsRcDCIbYKIUlaW1lmVlncHbFu+sOFlRlKj0wI71+n2+8tV/i77fsd+e0xYLHj/6Brv9Be1uR1Ec05cl6JmtC5cyFlR48NpP8PobP8FiOcM763Sf030tbCiyr7d0vQFNTXFo5lZNYk+MnRCJaZ1atk8OLzABnGrbYK0+XLL0wWpSxSQEB/fdZ2Eo9KFlu6tpGwO8N1wK5Ngbe8b51agRV3hWiyXL1QJFKbxnc73h8rJmt22TYnCECNfrHbt9zcFRTyGJUZwovawsx4KCk8xLZQiCzQnpY9bClMHRATCZdhRuVDvORxjibFy6zQyiJsGx2PH6vuPy/LkBm8UyvdbSdbXdnzO3l/dWFqHvGqrC5GIIPV3X2KUNBd4MPMyqEg0d243VY1osl5Ti7DtB6EMLRLxPQdhitW68z00kNblFSWsXDg4PqeYLnPNsNmua/R5fWEsXFWuDkWuEzecFm01P00Tmc1jMPcvlgqapjV+IHVXpaFpT8Jv1hufPHvHyq6+nQNoJmUB6ZDmINs93epYxf2iypmzkhBMDMMMBM8RJzzcDTQOmyXwa0cqwipx3FlTt/GBYG+Ni2UxW8NYyMV+8+BYxdnTdHicFm/UZXV8TOut1Z56FvR3XpYBhIqujOxwf3aUorS9imN6VMznZhZYQFxRuCroHqmlYa2T5IpkNTs9yenMygnxb8yOjaF/8jBXxE4H5fMbbb9/nC198zvvfNitSoikojyeIx4oNFcwK4a23T3jl5SPKmWOxrDg+PqCPkcvzax4/vObb3zgjNGqxL+LxUnH2bM3TJ8/Zvv0mVVUSfQ6iTD72lOanSbg5n0FIFkaRGK1YVe7YndFkDuYbXVU6yJdsreUIcFMGY52D6fFC7BHvGWli5fryjBfP32c282gfqOs1IbT4YoZ2NbNqzmJxSFVWEB2HB6cslweURQXaszo45PBgRd80ECNtP2O5WNAf3WW7uebJk/d4/uQhfbfl8OAOZVGwWKxYHqyoZgVdu6OqKnwhhL6jrCqqxZKubdlvtuzrDc4Lp9Wc58/OrF1C9Lz+xlv4omC73lLNVjhXMpsVbNaXXF2uCW3g9I6wPChw4pgV0O4uubpyHB2scE44PFrR9Dt86ClnwvNn76esCduQYxPSpDREIKV+MmlnEaMjRAOjcdhZydohFUvEkfP4zTOZah9pypBKlo0y6JmhOjEiiCspygXel/jCE7toVZ69HxsASoEqdP2ay/N3rMGdWlG/R+/9Bdq+JfYNfnYwWN/OWZq/FweF45XXfoo7d1+iquZ4B9GXeKkHa8rh2KXS8vPFjCipnstAlRsADzG3digJfZeqY3sLkA0B8d4C4yOp1QREFZxVwLT5Hjnkz8wofMHJ6ZI7d7dcnacsspjjAHJarBk13sHxyZyDgxneO8rCM59VRFXqfcN63XB+trdGq6ngptOC/bZls91x2nZWhC67rqfKEMjKLXfrlqkC05zNyQ2rdvjcsO4nXyIBIoXBrT38nYM4k4GoYzIE6bhNvWe3u6LwFqcWUlE45zwx9smVVFkCgwpVNU8BpR4KBSqTrcGK7oXozcU9W9C1DZvNFdvt2sBEtcA7y/KrqirF5HTWZ8qZIWF91mbE0NO1HV3fGqPgDyzluyjBC0dHJ2ycp207fFEh1BSFo2lq6qYlhsh8YW4WweE9hK6mqWFWVQhCVZX0webFe9hurwiht4xHlQFUOhgFwOCCGlk5SUyZThibEULmIpAJjGYAI2PdriHVe4jpyXFU41FMPxm7bWn5SVqkoGLnc004CLGh3l2k0IpIiDXrqyeEVAjU+xyDaroqF7J0znNweI/FckXhrdCfuNwXUYZ90nXmIiwKi9McioGlVTU1gJxzqQigDCB1AP0pXmyUJze4SZPHn0DUfCrAjSocrA750hffZntV8x+Gx7z3bpMWYUXwDT6Ww2QeHc74wlt3uHunIvQ79nVFVZY4rGrl+eWO3bVtLmMXPBo9+13D4yfnbNYbDo9WIwJ2mhaUQ2OPU6GPnQVN5qCtTK3l9GKx9gs+Cf1siUGy8oZCW5CDTS2vv0/WsSeoVT2OGpGYrTKXFn7y1IrjycN36buasphbDRNXUpRzyr5mt9ngvGe1WFkNiH7PavWArrGUTecKFouK46MTNHSgkaiw3a7pmo7F4oi+b7m+vqL0BdrvWW/2NPsF68uSw5Nj7ty9Rzmbc3255vjkhFl5QDEr6fueYlYwlyVtvWe33XJ85y7vfOubvPTK6+z2G+h7Do4XnO5Oubq64vkH77Dd7Whri08oq8LmJUhqb9/Rd3ua1uHFsVwuOVXP5fkFq8Wco6PlsIlksoAs5kZHC2sq7MUsTUjxJ7niLqMPWcUym4Z2G9HSc3MQ+RjiObFAYrTqxOk156y5n6V/WxlzcZJCLlLjSU3uyCH70pMLAva9lUfPrk4k+fqTte6dtb84PDphPl/gnQwKK89DjJbX1Lb10MnXZWWWCscNGU9pFqIGJi8w9LPJMWBJ+Qq5Ro655RwuuSg+W3Vuqqri7p1Tujd63tcNl5e9ZWQ4R4wJ3CTqfTYruXOyYLn0xNjSB4f31i8thMB+39E1CellACJC10XWm9SKYVYlgGkfyoA8M4sxA468oBMgmcbaZPZtStvb0abMy6gAjTjI1zVJIx5YnGwIpNgxk2psri8tSNcViQ1wOF/gY0/Xt4g4qrKyCtnaUVVLa8iYlFhRVsxnC0gtK1Bo24YQImU5s0yopk7uLEs66PuStt4zm89ZLK3eTVM3zOdzK1BXeANYhaOUkr7raduW+XLJxfkZB4dHdL25gatZyXxp2VLb60u6riX01uIgywBzqSpCIMSePjicCGVZssCx3++pyoL5vLT+a4N8yc8YAzV53od5zDsKsvy5kT01kR8yZMRO3snPR/IaGFPNxyjxdBFD2EbOacprzyDNVDYOQbt5/6oxVRonrR9gKO1k4YzW/mI2n48p4OPZh7WkWMp/jFM2MN1aTjGfztEQYT25vuHqGNZRvlaGv42I+MwV8evajicPX6AaeOvNO+x/vqFpXvDhBx3iUzm95MIREUtX3u1Yr6853K6YL2ccLFcURclyUfL6G8e89cUTvvmVZ2ivaEoT7Hu1lPCra156+QFOotX7kCLZaS5RxalBInlykxNKTSG6SRSUFaMzVomY6X+LC0ps6jBye3jLUElARlN6ICFRyqlLbyKyUeX5i3fpQ4N3hwiBPjQsFnO6tuL0zkvEGFkuVlxfPWexXELfst5uqJs9i/mKu/fu0e33FIUwmy3p+0jhWnxl8RJ3779OUVb4YsbBwTEHh5Hd5or5omIxPyD2yukr9zi5c5/H73+berdjeXjCYnXIYrlCXeD64oqynLFvaqKUfPsbX+Pugwfstmti6Dm9c4fzF+e8H4XtpsUXnroOzEJkUQoXW2W1WhBVefHiBeurS1QKitkBfVvTJ8v47MVD1tfnLFeHiMvp9NmVIGMjU1JJAHKm1BQI6FBszDao9QjzrkA1WIxNiqdCPOrs8zIUCBRUAuoKcoHAsUfwsDRMIWmOW5EBb+VCWFnWOZkR6JJgcig91hemz+1YEg1uYLUsS8QJIVqMQ99Hq7aa/gYLso4pZstly0lHWhjF1myu7E2OK8gQLsU4JLo7t6YQyX20IGIANMT+Ry4jflgjhMB6vQNVjo8XvPKygcr1VS7BQNJ+o4DtUpPBdlZSlAVlGfHiKQvP0fGckztzzp5vE2C12YtR2Wz21HXDwWqF5QtkYJMDR0dhPsoaGfAlYGsNknIzJzrjW4nZySAU5KPKcaq90ndywdExMmdUSNudgRsnFbk+SlkUhOCZLw7MIClK6mZn7qgYaLqOvu8oi4rFckHoO7wj1V1KtViS0bBcHaVg1IKqmsFM6ZqaokwMT4DVwZL5Ysn66oK+6ylnc4qyoiwrVJRmX+O9p+8t8eL87AXL1QFd1xBjZLFYsJ/tjSFtjaXsYqRQpXBQ10pVFkSU/W5H62vA4YrKGkSmud/t1jTNjoPqhKnLcIQYI1AEcDl2afqJQRbl5z3GVck0Iy4zOTKmRNtbWa64YS1MXTz5PPZHHDMeh+ctI+DA9rxqk/+ytZBBxI27SSxkMt7zfeRCpzkl3LZLkjsi5PZAGdhmUDPWlI/D8fNk3nClTnRrvo8MD83r8RlzS11cbPhX/+X/hJPTguMjh/aB08OKJ36ffP454NNaMFytd3z5qx9SzQ5YrU44PbW1EUNgsVrwubfvs9/V7PcNH377ihCsgrFoydnza84urqjbPQflEk+Z5lRNqYjFkRiLYxZtzDZ7CqQMGnBaoOKIQXEuFTVLrRIy/TgNTGZozpgQ/dAULVtlmbnJs2IPPvQdm/U1ihC0p29rE2hOuHPnHqpK6DsE5ejoGFFhv7/m7PwC0Y7QbFhWnqPKoZ1nv9nT9a11LnZC7AMFJYfHd2n3LRKtCN3J6Yyu3RP7SCzgyQfvs1itePDa59httqyv1qwvN8yWMw6PD5nNZlxfXYBA2wm7uqP+8BHz2Yz19RmL5YqjoyNO7xxwfb2h6yLHd2b0LawWc770pZd4cP8eT558wLOnj+lCT1EW9KFnt6+5c/eAg6MZlxfPeOebv8krr34eMNCJJnE9BowM2bUxW5BxLPmd1XfQvEkB/LBBnXgTcoZAs+gfrGj7w9bjlFLNP3OsTtCcCiqAH0BNVDdaSXicWyBuT87KyvEeN8q4K4D1crE0bLsXzUxQFjBKqtvjsUqixiFG8eT+ZKZwEmslJGZzBIPZ4syCN6e+T7tGG+OZguOl/OELhR/RqOuWr331IYu5YzYTiMpi5tm6fixGmJkbFeqm4/mLNb6oKKs5i4UBD3WRsio4OVnSvdbT9T3X580Y+xA9u23Dfl/Th57SF0kGkUBuVnqkF7Kq1EEeKAkgJyCS4UoG8vmrwzNSHeN44GYs0VTjIfn/01eIagUgwdaw9SiyNxcp/iazyjPmCELfWyVgNBL7lsILM+8IUeja3npSRWtbQyo7MJtbzRoBnBT4xQEhdKnyOKyvriirkoPDE7q2pakbq29TFsxmM4qioGmsum4IQtdHrq/XFN7TNnuKqmQ2n7FYVDRNSwzKfG7AqSwL7t49YLVaJhfZxq7PW/2xtuuZLyxNvN5vuTh7xuHhqan+gSHl5uQlPR3yXGeQk0XDkHGbZY2M+0gYFPbY4T0/kykjMwKU6UOLyYU+SKjEcuCEwVswfN7hpCBKlxfOjRu5sUQSIJMhuYBB3oxrFYZg98TsGv5zDJsp3Weeuhu8Y16rMr4wLdKnaa4yG2Uq9jPG3Gw2Lb/8H3xAUcBipRweVOy3BX1IEf4DTewQCmKMPH1xxW/81ge8/OorvPpaz8X5FU3TQVSKUnj99bv8zM9u2V63nD/bE1Nw2fXVnhfPL2jqloPFIUOWmljgpCcOaX3RpVL/qoPiyEolpCLg9n5EXGq7ID6l4RlgsiJt6bPk/szWOgJNTENeINl6y+yNYgImWDfqrl7z6MV7LFcnvPr651ktlhYH1HXE0FGWUG82nF28YLer0RiZHR9QiKMUx267Zr29TovNW6VbCmJQZtUSKm/dqxtlNpsR+pbd5hLvSpZHK/b7HX3QFD/iaJo9m+dXbC4vOH3phP1+S9f1FOWC0EHT1dT7mudPH4HuWCyP0dBSlp7NNrA6qDg5PuDe3QccLEuaumU5X3F4tOTycs9sPiNEuHfvhNXBAY6ert7z1d/6FX7u9/7VLA8OzaKIpMBaEyQx+ZZjJMVMafLXRgaDQxndLlmIZ0uGTOym545Lz9DAh6Wu2ut57WSFlCuCptxFcoyDuFTKIIMgHM5V9sQlVdWWAueBFOiOE6vlk6SXEpInv0zFLfO9pKsXE5DzmRWcsyyyJDwkZTPEmALfDbCYCyaTFmm9YuntpJdMJDmEgIpP4jKSG3MSPr419eMebRt4/70rnIOyVKqqoO8ktVKZgtecSKBstjVPn15zcHDI4VGkrpvB1eE8HB0uePCgpW0i+003AJy26dnuavo+WDxcZuGAHMwNo80sCQwP8RZkkaPDGiO/mtjdXEzthlHEaGmTzofm2sgMssUAzkTZqCYAAjG0rHdXlNWcw6NTyrIE1PZKjHgn9G3Lrt7Stcb+LeYzHBbn1rUtbZcYghx8j5W78L6AIhkBveKLAo2WTi7iKWclfdcRFXP7OyH0Pe22od3XLA7mdJ1lgYovk2Hb00vHbrtG6SjLGaoB74W2jSxmBfN5ZcUGK0foA1VR0VclddNRFJ6osFrOKKsKkUjohefPHvLya29TVrNRbmTmc5ztUfFPPpCf5Q0GX6fOqTF2KrM8Gfjkp5JjsTICmL6emf3MKA2/5+eamL3MepDPmfdzBsbDyplyN0kXpVCQfL35ncz4FUWZDP+kNPNaJgWrZ1ZyQOJMjiXD2hxcUJOzj/XjkltwIrM/zvhUgJsYlb4LdL2y3fecv+jxfkZIabpGY5aUbk4hMzoshff6asfF+Z7dpuHi2Zrf/K2HdA3cf7Dk8KDCBcfqYMbFWY2ox8WCtm549uKK3bbmzqlOYmaStcvQVQqCEKWfLKAkfDSkJ2RLJRkcIJb+LUpKrZvE3aRzKDFBqAxq0iYnxemosTpOfQI+jrKY82L9DjsaFCirlF6qBnxmixnezSn38OLpQzbbDU+ebJjNPK+9/BKHR4fmU64quvM9qkJRLOhiy2J1zKywBpF1sDgYKT1t3eD80oSawH6zx88858/OUl2JAl9A7BvWdcTPSspiyeXZY5aHnqbtU2bEnn1d8/zpM1bzJzQRJFmFjx5dsVrWbNdrTo5P2Kwv6WOgKJSiEgrvWKxWFOUckYLLizOu1jUPH33I9fUF1WJh2WeANVzF5lWwANFUCdoarFqzU2BgXIL2qex9ZiBGH3SMllYeFIipMaoVlkh4O1sQMogEWxsTaygJsq7v2G0b1ruGtvM49UAuCmaAKWqDk4OJ4EvWXDqLSqJlYbyfQRjkYoOWUntweJTcjEWqYaKDQrOea5nxsvID6gSJeT2aW9X6ugDqIETzwU9opCwi9ePLmk/FULUGuCFC10V2Ox3WgyaXoxOPl4IghbFvROqmS/E1PfW25emza2IPy1XJrPKIClXlqV1vldBUCb2Bm67r0cVYYn8EUam0MQZ2Ijm+y17JwEazBuCG/hqAmMCQLYdOnuNEydjnxhpGOf4nRfYNQsq5gra5oMMYTx/KvLBBrTO09XiC3faatu1YbxsK7zg8OGA2m+Gw+Jaw70AF5wtiHyjLAilMxvUx2rp0jtD3iOTic9C3Pc479pudAanCjAONPW3f4mor8Frva8rKEUJMmW8dXd+z22wpy7Xt3QQw1tc1ZdXRtQ2z2Zy2rQeZ4ZzFNpZlYkXFUe93NG3Pen1N0+zxRTnqfUYzKP81xO4pTN2O2Wgd6qQNMTYZ/KRnnKc4fTcr96GasWYAO7JAOS5vfJKkLueBtguEYAB9qNmUxRLB1scEWI0eh3xLknTbGDcj6VrzqhMnVLPZUPOGpDsNa42VojJgG8+fZJumdZvCNUZ2cnS1Gi7KAE0TSP5441MBboCUjitJuTMsBmsuNuxmc02l2gxt17G+qrk8X/P86TW/9isfsr5smc1LDo5KZlXJ1UWN9tmydWjwPH9+Sb1vCSFSFBYFbtVqdewUFtIC0tSBOXUNn1ZzjYN1JanSpwUDi5v4s71HhhgKMcWWLObsm/C4wdWkpADQbJm5yGK5oG92+MJSy6vKU+8uaHbCrJqzXB1ycHhA7Fq2uy3b9Y7z85pXXjuicDPu3n0AoeHw+IQYei7OnuNdZL25oiwWVHNPURW0e6VuW2JfI75AW8XpEuZzVJV6XRO6mu36ijqVT+/6hq7dstuseeXNLxFj5OrimghcXjxHY8vm+orNpsX7Gbu65nrdQ4TDA494z3bXcrV+Quh7Dg8L7ty9R9/XiPeUZWExD92O9XZL38Nmu6He12hMwFAt7TRvjNynJwbbLqpWuM9lQZvcjZnuNz2fitGJsXV9DpJTo+udeEQtA8HWSgIJmsu+57iUlEGVNm7bdjx6+Jg/96t/nq99+bdoL865twrcdVAW5odu2oa2iYSySYqsypsg6xQD1GqZXUPMziBUU9mEVJ25qqygWRa2VmDQ3KeZAk/heSAOlzLEnUtF+bDeW0RjkIrCGBqr/RKxgiFJgef9+Rka2WUw2sOj8h6dkEnIpjmOIdA2PfW+ZbdtePLwmqYOFIWnmlkftqbuh3LzIGh07LbG3OSsuhwDwWDV5tNPrf9JrEym55JcHA3gKW+QXVQWszcweSQ2OMkrU5h+uLtRBSUYJEpZFpax5OyorhD6vib01vZgUR0yqyrqGGm7jq7t2O8Dh4eWkrxYLpEYqGZzNCr1fouI0rQ1Xgp8WeK8I/RWZTiGPpVaMEaSwlqZ9G1vYKZtkE7SPrQK0F3bcnh8B41KU5vBV9c7UAtWbjqLmez6nqY1g2U2s7XedoG62RBjZDZzzFdLq9ckYtcVrOdb23XEaE2K+66/wS4MwHN4BHrTnZJnWHIJCbmxrgYGLn0/u7GnYDZXix5agWSdKNM1S2KG7XAhRNbXGx49esyL58/o9zuWVYqTS0shxJ6+V5zP1Gyq5zQBWGjO2huL1OY7H383hs97PwQTo6RaPxlcp9cy9BuAmAyuuqGEAcZMesnzlz0ZOXxDp/joY41PDbjJLeAt7dDqvkQN9tCHAKMJvaaRvu+4uFjz7MkFjx5dsrluCH1kt45s1/tU3ThtYLFjeCk5P9vw4vySN956jVINuJgVkQOiUlaTrTzLnBkWsCba2YLkND9QLDjZY4XtXH5gcQzbM/+iBRRmATsyitaewHufmCBbaU4KlgcnLJaHqNbMZyXEjvXVGfPZknJWgkSI5qs+P1vTdHB4VDCfVfQaWR0ccLh8QOx7lrMFhRM26x2L2YK+31P0jtlyzv3Te+zbmq6pwRVEekQD12dPEmvgmC1mnJye0DcNu92Gq7NHhKisLy8RcdT1hjZarY/97pLdZk1TN1xftygVR6eHyPkZfa8sgJPjkrOzPbtdS+mhcAVdW7PZbjlYRRazFV3bcnV1hfMF5qmMXJ495eXX3kqWgh8FhkIIvW2LvjfrzKVMH0k9V0jiSZNgT0G0BnJMQcUQ7V9qwBkx15fzECTXMvKDQJK0JnOjU7Dg1ecvzvilX/7T/Mk/9Sc4Pz9n6SOfu+/4kqzxxSldu+Hi/Iyub5gvCsQpfayZzQpiiIMANF+3Y6g+O4D/9C/FFIUQUjZJR1VFBuo6C6w0SSZsUgB9IqxyFpXmfmlTPl1I1Vjt95ELsB322Rmje8fo8tFVPLiCEniY2p4xBvb7lu2mZr2paZueGKFretomM3CTTKW0Lvf7lt1uz9HxIerGeZLhHAnYAJk9GYJQrSR2Mqh0YP2HeB01o8pNKH/yr5Oy9plBHBdTgjM5/Xz4oqOs5pRFhdJTFN5KR9R7y1rymYWAtqnZ7xr6oMwqofCeqEpVzZiVJTFGyqLkWqBtO0pfWqByEIpijp8v6UNP6HtD1YkhqHfrdF1CURbM5zNiH+i6lnq3IarS1jVgtXFitMJ3fWelD0JvIBR1zBYV7Pepl5pjNnfs9z1dF4yxwRFD3itKEUtiiFb7xrnkATGAdnh4MpmzNLXJKJrqBgaGPitmO8bwfJJrfHjuajFwGRzlkiJkAzfpxcGdPV0DE9pUVdntdrz3wbt8+cu/xX6/pxDldCXcPWlxbkEMFh8VY8CX5paKsaMoxlYSAwvNJAtrIluHuCE1j0uMkRAi3mfdOAiHj2y7LLd0AIQk+iuzYJPdQYZQeVZuLu6PNz4V4GZMSSRtxJhScXP6tWD1ASyIM99r1JYXZ5d85zsrnj+/om52eJmTC+0NCyVbLziCBrbrjidPX7DdbJlXpVVIMzKV3AvKhFVI6Dt1Bx9SKiEHrkp2RWX6kFShPsZEcWbC0CUhpKg6SBkmkmIckBx3k2lLK5wmohwdHrNcrkBL9tsLqxosVtbf4dmtr9mvr3n67AM22w3lfMbJyQLVjuXykPl8wXJ1xHw+t2Dtu/d5+PA9NpcndL2xV855FtWMe+Uc5zx939HHlu36ElxldLAUgG3+ojLuYl2V7LZbvPOcP3kfV83YNy2b3Q7VkvMXW0KMbDaBtl1bGwfv8C65BFV44/WX2DcNSOC1V95gv79it9sjUhBUqZuay8sd8/mMvoucP7/k4fvf4id/5uchtxHIUfpJGIS+GQSPgQ+P+IGrsfl2igwp2XFQ8DEGQohjZkCMOF/iJFrqM2LhA+m5ZhekJAvZpRixpul4993v8Gf+g1/i8eNnxAC1WIr4arHHyRl984LdZo8rHc63gNLHDmgQDYSQC0uSLJuJ0CO5Up0VKsvxYbv9ht1ux2J+mK6PIRuD1CMHzfWbUixOSLEWjOtQsJgHi1cb7FU0tQqZRg98tkYW1iPIUY3DXeQihpNAFpTIbl9zcbljt63pQm/1kSDJ2/FYgzFDoG2UzXZP17YUfjE5ZGYr8qcNGk0bv9pzkiGwnYH5GS9NkkLJIQkGQmV0ZQ2oPWfD3aB/0olSAKhANZtTVhWop2v3OBFi7MxlhKNvG/q2YbO5tn5RRcF8UaJYqndRFBRVReELULWsp/UlbT23wN3k3ix8YYVB0z2HGOjamoX41FvKgFQfems+KtA0jti2iHPsN5e4oqDrA23XoXjqnZW/aFulDy1FWVlwPTIkphwdHdCHHlAOD47o+4au60kd1+hDT7236usxKPtdzfrynHv3XxlZ/ST/R29d6kMIY9uFicsw+4SzK2jIjZsYJgaQ0rN3kz0VddLyJDE4E9idnUl9iFxeXfLee++y3ljmXpcOVZYdwp4YdrStZSDTW2mKoBGw+dBoOjgnDozLJEHjzDoOLi3oupaus0w5JAcUp88PRQmZtHXI8YuMCxbIZQ5ya4bpvY3A/5ONTwW4GXyIKRCUANGNwhqxwkFRTBk6qexhac/5iyv6PezqPSEWeDfWHxh6DBHxYmmEXivaes/52TX7/R7lFFJmidFwZcqOss2QXU9xgi2tx4ZduRsCMlNwn4ugPhUDzaDFDwtYxCNRcb60RRQT3Z/PEzMQizg84pXTu8ccHp9AbGmbNfV+x8npyzhf0dRbhEDb1Jyfn1nBNXFsNnsWixmHqxVlUQ6dXa3g1gOO79zn6vzMOoqXFX3X0e93HB7dpVodJktoR183RKDtO/q2w3lv3YI3a7bXl8y94+mzx8yqOdf7PV3s0L6mb6zdQtv0NJ3Q9dC1PRfnW2M4glD4krYLsNmmLu7w5NEj2s4qvoqrkGKP0FOUJZcXWxCl61u+/e7X+P11w2o1g6nA1pQhpTmrzTIHNK+LnDab94pO6ypkQKOm+0OqQZQUUR96PNYHJzpSOwVQceakShZx1IiLjsvra7757W+w3mxYrhZs13uiwnqvPDrb2Nxrw8wpi5VVh3UidCFSdL0xMT0W3Bsh0oH25O0//FMlJmMgqlo/n3aPEnCSe7uMPc9ULUhZNWMec7WN1mcC6en4zuXYkCSWY87OUqJmV9ZnZ0wDc3OMxOD6GQyh/D8PdCiReldz1lsMlQ5zSvrepAZHBiJYn6JdirtZLLDXJQei51on9vpop2b5w4hBNDPXSejfiApO35RE9+c2LjkGAn+jwm3yPTA2LRzZ7cViRjWbgwZCaOi6jvl8hThP31sV4Rh69vudHU6gbY3lmZUVzjlLk0+/zxcr5osVdb2zHl3ewEvsOmazJb6siNHcTbG3wP4QowULiyTQ01q6uAibzZr/P3X/FbNdluX3Yb+99wlPevOXK1d3da6eniFnhqTJMUFKlEBQpmTItGTAIAwCsgEDvpV8Y18J0JWvfGHowpAtwJZpwIZ0IUiGbdEWTZoRnNihOlRX/sKbn3TO2cEXa+19zvtN6Gp6OKo+hfredJ4Tdljrv9J/VVVNNwyimKMneq+tHBI+QAgQfJReXwX8SW4OqS8cc5v1rbIqe4S80gPSM2u/k0bBIUYurp7zWvA0th3HuaygWEDpOC/5SwY86p1Io0+CCbAhZaCTDWTVe1r+jaYs6GRN4HC+h6HrOi4uztl3HXVdifcK6HzidjsQwg02SSPemkQyWgkcE1EtPK2NkXxFJ7o4y5hx86hdpPtf+nl5xCxK4/NlR1P2UuUPI1GNOLlgBoWiH6een9EIyeMz9Yz/rOMLAW5yro2gRUv0wtKbeT1SDNJ9OAYlMtPO4CawHzb4axnsys4oHqC8kyPKWSNAxyRHDI7r6x2b7V67N6twiFFzAZOWQooreGSpVRNaHlr4G7JrPyaSld5U1lTCc5MXJwmsHXPOHUi3au1TlMAT9FkzWVqQepw40DQVq+WCF8+vqNslVfDEmNjvbkixJYWe88tneB/Y7xKudux2gdOTJScnx9S1NMK0xtE2C6qqpakXNPWSGKOwfFrL9uaCtl2wPDimXR7h/Zb9RrgehkEaT1pniAFiGOi3a9a3lzx//hm7zRaP4emzj9lu13z02Sfst8+pnOPiJpCiALfL84750rFeB/Z7ePz4gF3Ystv39H1gNrccHS+pakfw0nvGmorj4xWJyPXVHkis11tyT7DSDDJlxaU7MKYiA7KqonAq5NCLIYYgG1vLr6OS/IlCyHk5uTQ2AZWAUmOl+j+7kdFNHxN96Lm+viCGyJ/5td/gs2cf8+EH7/PJZ5/Sb/dcbQKbteegSTw+MaSguV3G6vfyTFGfNCZJXI/ea2deya3InBNZKWeBaXHSJdzmNZg9mFZDpVK+aXN1WNScnKC5INl7MUlwzMZHUmUe1Wr957Gq/ps8cmK/vHcsFnmuyEQ9Y7lTuEmSoTTEgbgXIZxpEUclYxQXjtciGVI0dJ0o0BIOmyYP6NyllGVNmsj2UUlIQ169jyDqSblvfg4zApWUvQXZJySgx6YcLBmt49HrIO0O2qZms9njXCNrIkmbBWHqDex2GwlHDEIpMAye2WzGbD7T6ibx/DnX4KwTxm5XI7lx8h5Dt6NytXLYzAhxwA+dMGVrWLSkG6VA6Hv6fs9ms5ZKKmC9vlViwVu832CsYehixm7stoG6MXR9wnvPatXi08DgAyEk4f2a1wrsAzGId2o2a4DEfi9yoO8HHbFU5HkBKFn9l6WQCiDJc5znx+jcT2uCRl7isoRGsAzYlKuioOQwGFPOyTmh+/2OGCOvvvIG680t19eXrNdrgvfsh0jfB1oHq1kGUmNOTJaZJWKkqyNFHUtFKUn5a9JkHZZ3K16d7K0Z94ZJiIGZIhZpFyNjkROvk8pvdUqYVMY2Te7CzwFs4AsCbsAIaVqIBK/MidFjK2m3UBKOCvLLDbrEmpUBz72ezBhLTkYb+wkjrHVSDRADXF/ecLu+lfvVlVjbRkBFUmAjSFEEiysJnNqQUReIlIGjfCJiHYvkU4VbBE72BI1sxYB6jBIuGRJ+FHTGYlLCUiGLxDEMg3bXnhOTp+82OAf7/Y6hT9xcb7GVYb3eyrVjYrVcYY3FUVG5hpQM/eDx/Q7jKhbLOXU1BwOLxQEWRzNb4OYLGg6ZLU8Y9huGvqOqWqp2JhwwIRD9wH53zYNX3uL25gpXtay3a64uXvDqi8/44Kfv8YMffQTmnK7v2W4j+z5BEpforut5/8ML5nOrzfOMur8NlWuBjs32mhQsy9UJB6slzhq6LvLZZ5+wWd+yWK5kTagwj5m7BrHW8ubI7uHS3JRU5jolX8rBM1mkAFUd+uwttjIXMSXxvimLNDbohh65QSKJtmn56te+xTtf+QbWwGa75sc/+j6/+dv/lB//6Hucf/IcdomjRWLWGqoYIVMKZIsn8/XERPCJIQ2Si0Oxg5i6kA0Zy2SuG+WjwRThlenapU2FjFAxmCwQMhVBBnkqTJPRSqPM2ZTj/r9InhszKgft7yb50bmqRAXs9Hw9UgrqFclkeqZY2rK7s9wREJm7N3e7jq4Xgjlhyc1VNVmpZMUyURQTDwzZ/E8GzFhlmSe8WMqT5xVgoDkiqqCmsqj0SmPMxcqgJGGJUULyztWQpDGmNdAPEEKi6zxYSZjXy5Zmt1bJ30ji1QtROnVXdS1l4EBdtxgMrqqxVYMzLVUzJ/pek4wrLRGP5X/vO5aHJ3T7PdY6Toae/W7LZrvm6vqC84trYEcIgWFI+Aiml7U9hMDVzY661nxIQ+mTJQn3gcF3pAhNM6dpGowRb9B6fcvQ99R1M1kNueJwBB55moDco2FcO0Sd6+wRUTBc8kHLiboKsrEk8Mem7MmbrL8JQHHOcXbvAWdn9wU89j2Xly/47OlnXF2+YHu7AZ9oA1TZ7pveV9fONFQW1FAb38SUf3NDzwLtbfZG5pMn+yYbC+rpLbp8klBfIPbo5tF82zFikgHl5z2+EODGYATZB81DUXAipE4an1MrxdoKq92NkyqoLFwDPUn7CmUmUFD24EzdmALOSvWDH4TdFWSTB/XLxYSQvkXJsRiTKyG7HbMgSmRgoopDFWru1Jr/kLPe88RmJkcJeaAnCYdIFpLRRKJPbDaRfpDck7qZ0biKNAz4KDkZ/eDZbHt2e8k36YfActGyWq5YLQ+FHpsolVTPPuP2+pIUAwdH9zk6vc98HpnNFzTa5dfWjTyfk7LPZi6WoGtn1O2S0G2JdiBFz2x2QN0smC2OiClxcPKAg6MT7j1+jTff+gbvfP1jfvzDH/DDH32fH//4Y/bXgSHAcglpCz6IYK8aR11DOxP23b6XMu12UWOqir4Xi+3e2Qk36z1V5STBUcrWRHlH2UAlZ8LmyhG1kPLGSrmKSpLJS8M65fiorFQJJe2DYixKAJjIuS6od49kMFEKu2McM/uttawOTnj0wGNd4uzeGZVzvP3m25yenlBZyz+9+YfsLjdsO8OhT3ifqGrJsSkEaio8Q4z0Q0/IeR5ZAJjcMM+MlqQR/pXRc0MZB0rYU6x6ETax5HGYlMGQhFeDdlBOWRjqvipFQWJf/rHKg3/Rh7W2VIUVAZ0SmMjY4sBo0riVkuKyw7Owz168yZoy5Wr6ewXAqiRiGmUGoOuWcY2mSUJyFvJ3rOCsUATYTL1Eo52cPzwCr+ICKWek8tl85GcchkgMqXTLdtaKZzPKnIcYGIbIMMjYhZCoG0dd17RNW0gzh2Fg22/o9kLw18yWzOYLqloayEr/JzCu0sdVL2gtfY6Mq7CuJjLIOiVRVY30tqqFc6ZJiWY2Z3FwyNHJfc7u3XB5cc7F5TmXlzf4LhEi1DWkIStLi63kXlUlIesYxAPitE9TCD0xBBaLGV3vSw7duI8YZYgOdyHSU+9NqWKarp1kJuOdjQpT9mNOti1elcm8S9uTyTymiW/EGppmzsEygoXFXJoKn5ycMJ/P+ak19F2P3/UMHtqa4inMBl2+r0GrgEMgt4hG5ebY+yr/WmWNZfIek6fORlc+30yuojjmZVA+TZLO63g0BKYg/mcfXwhwU7wsWjqXfCg5K842ZSNOa+nHTT7dvBARThJBivnvyPfRY01kcTTn7S8/4ehopZ1rx4nO4Shw5P4dhTLaWGy0jKy4knNjXaWGmi5YMiJXwIPTEIOwcgpg1iCVKiajyXZRXXXWSmVMTJ5uv+ejj37M7dUNVX3DsGukeV3VsO89+27P5fUVtrGYFJkvKpq64uz0DGstfe95+vGH9IOnnS85PHvAwfE9+q7n8vwZn9z+kOA72tmcR6+8xdnDV2kXK4zvoKokJ0k9a3EY1JLShW4rTDK4Bny3Ixlo54eEBEOInJ7eZ3g90M7nPHjwgOcXl3RDRww7fuu759yuE+suctAPnJ3OsMZydbGWVWGgqi3zZYtzhuVyxvLglJCumM9PaNqWyjp8CpC8emEC2V0r8kOTK1WRSJpDJCRPKW1WQGxN5rJJOA1FFBdzVkwToSYWTiguVWMjOW9n8OIqvr69pG0b7pkHtE3L0dERZ6f3ODg8omln3KYNmw66wdAqRUqI2VAXhSJ5LQkfpTVEycsyBpMsMeUwkoRryevSiEUnwE3Wok/CZZTZtyFbYVGBjRWvTt6XuUFs1H5YZUxUGJufQ9p8YY5JPl0RpmMidXlH8p/VSwLcla5iPI2qaPTQiuGSqNua45MDmrYZ5ZVeU4wzitLLrTxK7kJJsBzvXcJm2ZNjAc3hKUzniSKzCq9aVgw5fkuuGhu9QFKBGri5uaTbd1ibCH4vBqW1+BDx3rPb7zHOYkKgqg3OWhbzBRhL9JFNd40PkapuaOcLmtlC+nBtNwzdBSlJk8XVwQnz1SFV1QBBCjsykEiRsWVIBu2yFq0zeC+hoqqWPJgqwXyxJMZEVdcsl0s2O/HipDTw9MWOfZ/oQ6QJsJhLCKrb9qAeWGsjlbY2aZqKupmT0h5XzXCVJEJnz7qAC61GYISdeXqzZyOhBlEJZ8n50sJEdU8GtHl5ZS/NZG1CUroKuZvJz5DEKPfBs+93VM5hFksq55i1MxbzBW07w1UVHT1DEPlSxQy5EjGYCVGo3NaHOL6rLj9zZ0/Yu+sSzUEcH1ffHe56qiagJ6/VyZbKfy+LV7+dQp7Pe/xMcGOM+d8Cfw14llL6lv7uFPg/AW8C7wN/I6V0qX/7nwN/C2EW+5+llP7Ln3kPDM7WBDeUjZljzClGSTTThFxJWGuw1AQNEWVPiJTieirTZvUDIN4cYyH1HB7XfPOX3+Ddd9/m7Owe4KRwyaGfl9K8mDpJ6C0MjepNMrKwjBWW4Vwa6KyAIYydZLsbFZVq1UUVTNaqs2m0vKytFQgJQSGax2GsXNMPER+A5LntA7N5IsUO47Z4H3FVzaxq2IYdrqnwvefe/Xu6ciwHJ/c5OD7l4Oge8/mK2eIA4ypCn3NnLnj+2Qd8+sH3ubl6yv1HbzGbz6nbGtfMdV48Ydgx9FuSBe97fB+4ePoxtzdXbHcbMI5+6Fhvbuh94kItqX23o6rnPH64YPA7NpsrlssbLq47uiFxdRnYDXtCcCwXBqMEek7DbM5YFqtI319wc7XhS1/+ZWbtDDCSRxAhRuHPISutvASi5tZo9dPoxpcdPu0pFtVSFg/cOJc2QcqAJ42Wb4g5zOVJxhBCoO8HtvsN+70Im5QitzfX7LeGi/MXXF9fs9v1CrwMuz6xHwyzIVKpVTakQIgJ7XVKtOLR8SFKDx1l1M2UfKKcMlBXZReFrAsNk0iuje4HrcBAFawxDlvZErYTTxiAV++aqstSRWjGsOsfU87Nn4ysAYPDWClcSOQy7gxW0x1LMefcUBTZqLRiilRURWGNAAMg0MwsDx4d8+DhCYvFQtcgd5RktpxzMqqqCSZasoBpM5EXkLmwintgomwm3xfwma+H5BBlKzvl9Tx+MoRUvNdd5xmbPQv3i7WWyjmGDoyzxBBZLBd6F0MzX7Jq57SzBVXVUDetrL8Q8ENP3+/Y3l5ze/WC/X7NcnVCVVdY57AathIALonGCSQMHhO79Q1dt2fw0kIgRGmiGWJit9uy2+20wqrmYFVLbuDQ0dQ9u73HB9j5yBASB4tIUwNJDFZroR8GDIa6cQQvHcUfPX4k1V0ZEGZgU2RMKmBE+IL0T3HCAZWBZPZGmEjuqZQ9fnkX5dlML4WNUkYCScpbUpSE3t4PeN+LzEpJxmeA/W7Hvuvwgy+POgTwAaowhrSC5lUpPRjGZDEq17+zv/MDT36Wd49lJU6/FrJaVNzEESTlTWPUeBRfatboOibm5bX7+Y2pz+O5+Y+A/zXwv5/87t8D/h8ppf/AGPPv6c//rjHmG8C/BXwTeAL8340xX0ml9usPP6x1mGCL0LBJAI+xVpKLo6eIJlNjTUtMHYlASDucmZNSIKQeYw5UYeUQgseYyMmDhl/65S/xrW9/mceP71M3FSEGccGqMMg536kMLCWkVJadVkkYnVmHLRMkyhQhjSvIXZWICiOTLRE7uqhzGXHSJGrUwIpY5stDZvMV6/UNl5eaSHvZUVdQ1xZXC5GfNYZuM+CqFmscx8enJCPcObPFAXXbQgr0Q0d/PeD7jm6/IwxbnK05PL3H4ckJ/b7j6voZy+GAg8NjjK1E6CTouw19vyPExH6/ZX99y3a/AetYHd9jfnBI3c7xsQfj2O87nn32ET/8/m/x3g9+h33XcXBwzHx2wPHxko8/66gSmADbfWS3M6wWFclGwhC5uhBAWTeG203PbnfNfNby5MmbVM4RvLiQY/CSta9eh1wxZYyZlPerx8GIZRVjKN3Es2VoGEt5M3jIFkgmZ4yZ+TinZsYofMFR/pZSYjZb8uorK1599VWC7xn8wG67kXm1ktOQE5q7kNh3EBfqITAJ64ShOfTyHjFJ3k0KkaGXvISk/0l4SSoWYor4IIJfCCoBo32z0qTFQJqGdUXBS6sGIeyLBLx2DbY5YdtIiNbapEpOrMmfQ978rOM/4k9A1uT3B4qiEnJQI3syjB4Nq20xUpJy2Zi8UCKkqBUnCo7JNriAoNnC8ejxCQ8enrJaLXFOwGU0CWy29ichqpetV/1muhblXmZyRrakJ5w1d/RQhjgip0YnzgQGFUUj6rVuWqq6oR86drtBHQ5eWHytwTpHVbdYA96E0hRzNpuDGp9VJezYkIjR0+2lwsoHTwqSf9MuFrTzGcEH9t2GOja07YzcqoQEwffymaSGVNcz+B6MpZnNqZoWV9WFlNP7wGZ9w8WLp1ycP2MIgbZpqaqG2azmZi2NaE2CwScGn2hqCzaRQmK/iyp/JbQ/DB1V5Tg4OFaPpibvxzgS16EAUcdw2kIhry+1NEZPhZqxOf+pzKeZEDAWL0nO0ZyCbgXiCo6rqubwoOHw4FDDhwHf9+U6Y4sfo14eGDuFi/xwBoaXKklTTIToxwql8mqCgkZeL1PC3wUATgB3WZITugVMoZgk+8AKUCLLZHPXMZz15uc8fia4SSn9v40xb770678O/EX9/n8H/B3g39Xf/ydJ2o7+xBjzQ+DXgL//R97EUBCxSYLOUoxEE6mcuERFeYjgcLbFmnoElDkOqrUGMQ1ateQgBTCeew8P+ZVf+xLvfvtLPHp8D1s5YhCK9N4aGuVxkOtIwmTm1ElEqXbKXUnVnWipNVfBkpQTB4NaRTk5S863SvqXGW3Hbq+mIPgM+acN1KyrODw+o2kqtusN213Qcm8YKgmFzJeeg6M52/Ua11hiSqwOVhwcHGAsOHXjdrsd58+e8fTTZzx99pzr9S2JhI0Dp8fHHB8ccHpywuroAOsc3X5Du5hThQZjk3An+D27bstut6XbbFlfXOHVBetiArsGY6maFuss1arBPnqMteCqhvd/8j1ScjjXsFrOqaSZOjMHpY+FtVQObtfCEtw0Uhi/30f2XWS1ann0+BVSlPLpELRBXxik2klnESOM0FL6HMlJa4YxoTAl7aRrxUqP0Rd38R2L2ElSX8KMHePjuOZSFNAaY6B2FfPlgsppCXWSrt27xRJnK25urnn44IHwgVSGYQ977dvoKkPEUFVa7bQPTNV1MoGuk07rY/KfvnFOEFZrR5iMjRgIPonSMEAw2QAEayeOLqtEfkmNC+mMbmMkWeGnSClJKwbddhGwf0yemz8RWTPe7aUvaSJYUeENloqcaDyGjLKCUkFvsos+ggnMVzOevHLCgwcnHBwsladEc7Qi5JDiWJ8NIAUESXN+LCOxmjyVJnm/BGymz5vfwpZETTXuJuGPiREsyjVN3ss62tkc5yy+7xl8LArHWvHuVLWhaSv8MGCdhEObtqFtW72VAHzvB3abDZv1hvVmw16VLSmwmM1om4b5bE4za6R31GAIVS3MuUnCT2J4DtLxfhjod/scbJM1ZwQoWe0/ZZsKszrQve24unoBSf7eNDXW7gQM5GE1gBWOoK6TfSxt1ww+SA5c01QcHBxCogCHvOdyZHCcjRFsjvOaf5/nYMSTY1hXJwX1oJmyhScnj6suJdlzMYmHuW5qYRJWmRViwFcNxli6bs9queKFc5JPpOXykURlxHOcgSt+bD+T7xd8X/QupBIyugMyzEhTcAelZ/1Wzn/JCpoAOTP5c5qAwzG/rECgz3388+bcPEwpfSrPlz41xjzQ378C/H8n532kv/sjD4OlbRpS3NMxQYbGEKNYVM41pBRxNFjflQ7hktgXyouXxFGbG1Z6zu4t+ZU//Tbf+faXefzKA6q2JYaIZ4AkSaMpOOGoyYnLmkxIdgHrMDtXA5GchCq8O4ZkxXtjcWWtiiUlPiFRrkhXVqJWVKBlpmlUSpMSwux1mLVLYmq4ufGEJFjYexG3thLQtVnfcnt9w2yxZDZreXjvEYu2pW3Fouq7Hc8+/ZC///f+Hh+d3zA/us9H7/9AvAk+8vWvfZ1vfOUd+u2O1e0hDx89JFY1YRCuCFcvGHYbvB/Y7jZcXbzg6vkFu/2e3WbD+nZNM1uy2fWAlXj7YsbR0QEnp8ekCEeHpzx+8iXOXzxl8D2r+UJ7HUVqJ7FgP0DbNlS24/S0VvcrYCyrlbRveOW1t3jy+HX6fi+VQ0l4MUImfQRyGW8yo8Ukv5dVkkEl5KoWqbYbAW623imWk0zsNNIs5cJilUVl7BShs98PdMMtlbUs5nOk75OTbserAw4ODpi1DXXTcLvfse0S3ufeLJJ2N8bY0ZwZQwzCmNr3/Z3wCUmEcmYIFSeEPnkKIoAskjNmJMcIK+E/YzTPWP8XA8FIuwoTCCpcpNJF85kspCjWp3ih/oUdf6yyBiMVeVL2L++aQURSJliTQZ2VfKa7VVRarG1GAT+G5gLzZcPjJ8c8fHjKweFSGcczAM1hjWypT4Q3aMXJCLNKUUKBVHcVyJRBOecGTdIPKZU4L4HPESOZCVaSD1ZOCPy6LuoYpdKrMBsAwyCduqu6oaocy8WKunIaukmEMLDZ3PDRBx9ys9tTtUturs8ZOsn3un/vHvfPTgnDQNu3LFcrUjPm2FhbE/0gfZL8wH63Zb/d4YdBWrH0Pc41DF48NtY6XC2NMWfzGSSYtXMODk7YbjfEGGiquhiUzqonNEhOmjOB+dxNYKuhaWoG7zk4POZgdSSs5xJr0uKCOMEvOUQ45mr9QeNt0gg0ZfrNnamR8wTk3jGs8k/GqN4Y834g4X0khB5jDI22EzJW1nnTtCJPnTR0HnxkCJS8uvy4sXiYsqEj4MsPQyluyIZhfqBpunDhp9FOAHmFlgrmyZq/C9B1LIwYBynLVy0Gyfk5Anh+/9j+Uccfd0LxH3T3P9CsM8b8O8C/AzCfHfKdP32fzz6JfP+7l9LwK4oQsJkoi1AEgXU1zjdYKoKWT2feEmmQqOABz8Fxwy/9ypu8++0v8eDRfbGI7chdETVRMqRIbSpywl1OSTAKQIR4SCoBSmsFMyZRWQzkZopZ6aSRT0NaVgtwEwt6IuCyYMKQqUYlXBIxzon7tT4BZzleNkpqFbRMODH0kZvrC2Yz2aDGJp48ekJdVTRNJaRX6zUvnn7GerPm27/0q7z7a3+J//h/87/g9dff4Xvv/YBX33mXR195h4vv/xOc6bmsLMecsTw6JiQZ0zDsGYae3e2Gy8+ec37+nG23p21aFofH/PBH7/PdH3yfZy8uefjoIcdnDzDR8+TBKW+99Rbed1S2YjZbMmx6Ve6Groe6gpkzJGuIpmKxbKl9z673WCugsG4qVocL/sJv/MssFgsBNBqKikFARWk8Z6NYd3aiBMTNhlWH6JjYNhEkynPkbDW6mBkDDpiETZWCpiTr1FUlsXjoe65u1ry4vOGHP36Po8NTvvL2m5ydHkj7BmupqprZbM58ccTqoGe7/YT9ENl3iVUUS1IEL1rNJQIgqCTs9tqMUROLs7knVqEp7yIpYCL8o651k9d2EmtNBKw0xiSGAiZTGkRAJhk7E6V1hdXwRyhJkvn+f+LHP5esqaqWR08WbG4jL17siYMqkwJixouLF2Tkuikl79m7moFOAog0M8fDR0c8fHjKarWQ8TVGuT0onraYEKbp8nx3X0uSTdPkSdS6nTzcVMncGQBVMGMY/Q+fm5LDY0fwZJ3DuDnJGGbalFIMCLl4DIlNt6OqRuV4sDqQZqNO+p6FfpC2K33Hg4dPePjK2/zmP/6vODo648WLFxyePmB1dsbu/FOsCey3hhkL6UelajRG8cb6vme/3rDdbRmUBLBuZ1xcXvHixTmb7Y7lSogCSYmD1ZyT42Np42MsddXQ9Ttc5cSDHSS3ptKlm7BUTYUNAR+C0lWJIdLMal5/423qppZIQq4qivkpJ/JDAeLUA3EnnSEV1TKuLzOR9enOB0vuS16J+ZSkVbbJiGdr1w3sdmsuri5omxlnJ8cs5g25gjLLm6qZ0TSBYfD4KMZxbPTqKQP0cTklBS8heIJWk+nCG9dgflz9fWaBFm2cC2vMuAxL2G26OoVXLHsyrRV5J0U9Cuy09cjoUf98xz8vuHlqjHmsltRj4Jn+/iPgtcl5rwKf/EEXSCn9h8B/CPDG62+lP//n3uKf/dPAD3/wKdFvhMFXwzhWKfaN5raI51ZbJExcuwbNtTADJtUsD2u+/e7r/NK77/DkySOaVlxzun6pjMNjSg+hqNwl8meNwesCISVcaTJGobwn5UWeKfrU65RLvY1UYNlMrJUtxPLM2a09xlvJAMrUpCSb9Dt/6s/wwfu/jU1b3EHF7fWG/TbR+8Tl1Za2sfSD4bhpIcHp8TF109I0LQbxOD18/Jg/tzzEmhn19oq3XnuLH//4e7xyWvHw/gNef+NL7D7+IU1lODwVayx6YRMd9mvC0LFfX3N7ecnN7S236z33HtynNo6j17/O+59d8Pjtb/LTZ3+Pw7NTfuNf+mv84L3f5bu/+Q/47LOP+cpXvwop0s4abteJpnHM5hXrjRAYJpvwnafvIu29E5q0Zbu7xVYV1hi2646T0xPefP1tTERdwxJTjmkQEIasD4t60xCllbJFkaunNLsqJrAxA02ZQ0sOC+aQocaVc16D0QWUOWkMJCudvnfbjp9+9gH/9Hd+lx/+8Cc8ePAmz88v+cY7r/Lg7B4gYK2ua5q6plXrt+8i+0FAjXECmqQTMqSQS3rlXv2wY7e7wfsBV7kiMKISDcqKFG+gAJjEqEsNuc2IvIu4nA1BSd4EYKc8JtapXlMeqFH+qsX1+YXNP+fxxyprjo9O0uuvHfP008TF+ZoUe/G+lTGbADb1xudk3yJXC17QPCYTqRvLwwdHPHp4xuHBSvlsRjFurdEkXci5A1kRmmSLrBkvP/m3hBz09sW7m5WmGWXHRIH+YUeWNUXn6O+SxlkePXmV66unGAZaE+n2A94nQoDdfsA5QwiG2UzW3nw2U/CguYjWslwd8NprLYYKN3ScHJ1wefGcg7lluVxydHzKcHuBs4Zm3opSi4kUg+bReYauo9vt2fc9XT+wWCxxxjA7usfVesfq5D5Xmw9p53PeePsrnF8858VnH7O5veHs3hkkZH/0UFlDVRn6ngI0YhCwVlUtuIFhG9WTLGzq8/mKk6NTkQFpDOGJXprMh8qOPF/ZA4RyFRWikDTu43zK6PW7G74xdxT5BAqYpN4Nix88m/U1nz57zsXFJcvFMdvtnvtnhywX4rE3Bpy1OE0Cz6GpoM4D3R9lPxc/gR4hDAxDRwoR48ZnzUAdRpCXsZgpTzy2ZRV7fxqhGF9r9PpkD/qkmkqfr4zzz3H884Kb/wz4m8B/oF//08nv/w/GmP8VkuT3DvAPf9bFlssZh0dHvLjoGAZDqexQNygG4TwI0hW7cnNcaLChwbAv15GgkAM882Xim+++xq/8yju89tpjZvOZDJhLWOfUM5RwGrvMVSJW8xIicfTQTBVahrpZsGSQkv+ufBGZ5TVbYDncMKVct6Ubrm4CQ0GwYgiI5VgZyyuvvcOXvvLL/O5v/dfMZ44hWHa9p+9FcO72kcXCMfQ983lLXVXUdcV8tgDjaOsDVodnPHgk752S5Tf+/L/Cr/+Zv8h+c8PRwYLNB9/n3skRzaJmeXxMqRIL4mruQ8dut2O9uWWIicevvgrDwJM3vsbJq2/w8PED3nvvv+CN14555dW3OZ41vPnwAcOrr7He3tDtNixXK5YHx+z3a7z3HC4bzs87CaMgG9H3e+q6JcbAdnvBcCMN8YxJnJ0tODw6kQG3UfNgRODbaAtAMVbDipN8/VGBSF5+TLL9ooakHMj8FMt3Mq9WlFDRSCkBTto6GEOI0g9tP/Rc315Sseet105oFhU//ehTLi4veefNx7z66JQUpZ9XIjDEDgz0EfZDwgcBzdZCUPkzteJTBN9L09LBe1nLJKScNQscS8JrSxB9dowk9Wg+GaYipFi4xrJck2ohcWtbrehLWfEoF0lMQar6CErh8Id7B/4Yjj9WWVPXFbN2xnYXCBruHA0NWR9GQ6XGGiwVNlXY5Aj4yZWypydQ1RX3Hx7w+MkZh0cHuEr7nRX+Dygy3aQivEvSaPEcTv/VvCju5vmMQt9MQNI0aVNAea5k+325RFnW5PtnkKPnG+c4PDzl9OwRz55+QF1JaM4HATfGgPeJupZKmlo94dlDYIyhsi1Nu2C5Gl0Bb7z+JV555Q380DFra/rrFyxmLVXtaGZt2W9CHaVJsV4qnWJMHBwcQQxS7Xl4zGq15Pz8hxwdzjg4PGFWVRwvl8SjQ7q+ww8DddMwq1u874kx0DYV220gT4kx0mRXcsuEu6frQkkWns8r2tms5NWUmc/hXjWdcr7JmO6qHhsd8jE/JVcrqiGVAWrxLE+B6+RrmqyLTJeSYPCBfbfHMHB8OMPVlqubW3b7HafHBxyuZpojl72tEj4OwBClOkoIo3Ol5eQ9DZpQLE1LQ4q4VI3AjRHcZBBlJgMrFawZcFsFNhmI59dRwDZ1aWGKl6YYBig7zp0ctZ99fJ5S8P8j8BeBe8aYj4D/JSJo/rYx5m8BHwD/PYCU0u8aY/428HtIN67/6eerXrB8+OE17/9YWtGTIMSeyraQovR7sl7kkIdMfqfZp0UJOxosMGsqvvr1R3znl77Ea68/Zj5vcVYEdm5vgPbcsRZMCCUpU1wCaJPIXAmhyi5z4mh1hGT2UhSk1JZqHxdNMJakL8hJwtm5LXLFFD2ZhcvYcDOvE4c1kdXygF/9s3+Zjz78CZ9+/GP6XWC7Tzhr8AMs5iLK+n7H2dkxbdtS1TUYaOoGN2/l9RK4uqGuGx6+VuO95/byGcPmhtAPNNUpVVNRVw0+DJpILApPmqT1dPstVdNweHTC2f171LZiuPqUP/3ud3h0fML5i6e01YJ4e8nM96xmNYv5KbWrWB0smS1aNrdLtrdbTg5XfNysiT7RNLLIh8Hjfc9qucQkuLkeGPqEqwxn9x/SttKA0OE0qTVIUiHC9pzX/yh+koBOYzFRc7kKQJUEbwlDZrfyJO/GqKU7MUmywsi1VRjh+ojGcnh4wLfvP+JXf/lb+OC5XW/47e++x2/+3vv03ZbVvGLWOqqqomkaXG1ZrOb0nWfXJ7p9pFqoYIjatiLkdxDvVkyB3W5N33c0TVPcuClC8LLdnLYGESqBoMUaRjiZjHQsJxbXhIRpky/WkzXC0hxzewXjSnWUvHekNFz8OS2qP1wO/EnIGsPNbcfVZVfyFmKSPSf+VluSeksJR7FFVeBquNwAlbOc3V/x6NEpR0cr6lr4UJgKe1VOpaA85ZWZVWF2q5n8kOWnMd+rvAEjK/Q0Pyw/a/42levcuTbTU1IJnUxBU1O3PHntba6vr1jfXhKGSD9oxDwK9RUIMFjMZ4XszxiEE6cae25Z57DWsdJk9W4nHuAUIlU7xzpbWuxM0lGkZ1EMmrjsaGczFkvJ0QvdmicPH7GazdhuNzhbk/odVQo0laOq5lhraduaqq7o+1qMvrbhxnWkpCFfKIzbTVNDkpYLUY3T+WIlrWnI8ntipOL0eUd1n7FIDsrcsYMKLJiEF1WmGDIwmhgK48XIid8FFxjRe03b8HBxwJNHD4gp0vcDz56f89nzK7wfaKozqsqW0n1jDXVTE0KH15LwxiTRV0ZDbZExeoT8wvueoKSOaKK9pB/JSTYn1L+UT1TCamkKhPKv8vpN5bwS4jW6V+54x8xL++BnH5+nWurf/kP+9Jf/kPP/feDf/3kewg+B9773lM06aO8R8a6kGAmDx7kW4ypi2pEn3OImyySSvTZNBW+9fY9vf/st3nzzFVarA61agbK0rMFqIq/0CDLKb+OlEkS9RbI400T05OyebOfqObnEzRiJKyD+AqlAYIwV5rBGvl4B5RkwJUrJcrHGReFUTcPrr3+Fv/5v/i3+s//Lf8xPfvg9rOtIKdI2kqfhDLR1zXK2kEobJMmvbefUtfRwwUAcgvZyuRHhkQJ1M6NqZmAcdWMgdTikH5ZxFh89vvdSCTRb0d2uGYYOawx1M5OeNDHy1muPeOXRGRGLHwK4ngf9Y4YYWM3nnD04Y4h7VgfHXF7ecLia09aGnU84B84mQojsdnvOTo9p6hprOkKEk8Mjfv3XfkPDhJRNWTkpB413qPFRC3WSpKnCSUIyMqOkhMuWsK4stUvUyjI6PwUx6UbOHjvZ1AaDNS2HJ/e4/+Aeq8MFfgjcXN+w32957ycf4RRYpBRZLla88+Uv8/jhY168eMpv//Y/o7/dsB9gHgTI5RyybLBEEiYKV4okFXektCJXF4QYyKXqzmUgDtY0BCOtJrJjHV1rQnoo50aNm0hisrreNanUAtEaTEyT0tI4EWL//x9/ErImxsj5izV9PyaPj4zoYsrKuGTqCZ1vsmWb1JSyWJM4Plnw8OExJ8eHNE2r3kI5c8z1yp8cQw8pxULgme/xBw3jHZd+VqZGZ7aUIOuV1Wqe3HS8ZlHEE290uat6e1SOGmc5Ojrja9/8Zb7/3d/i8vwF1kpJduUE5FgE2NVVpd5uSROoqkqAtRPvlbSxCcL6GwMmJSnKsPKs0pM1jE+q+yOGgDOWum4IXS9gHHQPGVxKHB8ecLBalDXPNrDwK2KKNHXNfCltatpmxt51kn/oDMOQ1EuPJs2OIM0YoV6YzVpeffUNch5N9m6Nxq7OjB3nu3hgJnN3J5cm8QeGm4rSnpz60g+T4dF5tY52tmCxXNC0NSkKv433A+dXN6U0O5Fo6obT01NWyxXb3YZnTz8l9AM+JGqXddgk9D195AR+kIpUUl0AzMjRlNdjXn65bD1LlREQFoBT1Gcq3+a8wiyzxNCclI6X3/O5jy8EQ3FMkefnmxJL1LclN9ASUGi10kiUvTM1zjSa6CdC2RnDg7MD3v3W27z55qusDlYaWkKVkpxrjSMag/DfWJyplCdEKLjzBOaQWEwRY6RmeWSV1ORlJLwQU8AkV94po2u0gaZJkoBa2GzFZ63fZ/GZQ1ZZ2Mh9rELpqqp56+2v8ht/6a9S1TU/+t5vs93tqWtDY6FxhrZumLe1CBgLdT2jdjWVdThrcFVLcokwCF9HO7OsDu/JMwMpevrtNZubTbHyY0zEMBCjx7oKVzsskTQE6qqmaSpVqBXz5ZImoa0LIrataJYLdvs9TVWzXC3ZdxWuuqKuKuazmraxDH2icoa6sVSVUKD3Q0fbwtDL5vhTv/qrvPWlb2BsVXiPTJkf9a+YWsFAKtZPymNs0KRaERIxRfVsUCz3bD0kgiSBF8+c0gOQCf+kkimvL2sdtpkxm82Ke945R9s0PLx3j3e/+gaVNSwWC/ywYz6b8cZrb9P3W44OD3j/gx/x/GojvXui0Y05UVDZCtTlGUKg6/ZKssXIMFo6dmdrKofdjCrtRNJ1Lw4PtUhLNY/mn6Vc+qowzwAxaWsGaTSYYf7LQv2LfKSU2GyFB+hOOK1UnyBK12TGGhk3iyNMxLUBlvOWBw9OOD4+1F5EU0CRrdJJkYFJGOMo1Puap1fAha7bu8nAOWw9XjMTODK5W5FZk19PQ1KmnHPnN+Xkuxk40uDy+OQeb7z1DtZaLl48Yxg8ziJyxApVQFW5kqfilLbD6PgZ65QTSYEPDbSLyZhHwtDRdxtyp/QEpJApB8TrYEgQI846ZYyXEuiqqXGqcGNKGOdwtVQ5VdZSNw3eDxjbYa2VEJoTkkJnhenYaJg1hCC0FEHG4/GTJ5yc3Ce38cl7cExRyKGnl8cOMQgMxUM3DrOOveZ4kWWNiZPP5MUyQpvi8zFjN3nrKqqqwjo1hq2M/2qx4MHZkRiddU2KnqqqODo6JnjPbNtydX3Bdj8Qwsi+8UcdMUWl20ijRwfIHpkxcTp7tyZrrfD0jG0XRsAey/mFUf6l8TKM90w/J7r5QoCbyjm+8e4jPvzwnO2ukuaWcay5l26iTtscWJLPCZ7SWDPhScnTVD1vPz7ijVfOODxcSBTJiJ/NGu0MjhOG4SQ5BMYKYRpJCI5Q3gQyf0mSct+E10WpTIxaLZI0XwPlUhG7Li/ihNFmmiIkhRsn2Yngyl3Axf4g5/XkbPeMiqVEXXhv3v2lXxWXqbO8+PQjUveU0EVmtWUxr1keHIsdUYSlWh3WSdfeylEZR1s3RDzWSq8uYwzd5pLtXogCna3wYcDFgWG/JXpPCIHoPW3TMPR7Qt9TLVfYWq5RUxE0j6nrBuazBe7MCWtmt2foO8KgZHJO+tFUVmK/zljmtdC89/3YfRgDr7/+Kv+dv/5vszo4EmBiwainwgAmCS2AUaUebeb4yNZjIhK1JN9JqHAyV6PQygpJ+5GR472qWEhyn/xZBT/GWGbtnKqq2e569r2CQRJHh4e8+/V36PZ7qqri5nov/iVnqOoGV0uTwD7Cvk/4YGhgbJAZ0eo5ikwMfqDbb+mHvYC1DOb0fY1NMg8xqELVKjIVNhmsSQpSHL04aazUkCqhOHoYbVKW7KTAzhGN/2Pz3PxJHNZa7j9YcXO9ZRiUYXxS1ps9M2LYWIhhYoBkIR1xJnByMOP4cEHb1iqTlRpAJqQAjqz7DEZatGTSV/X6laMYNdmrVARgsfhH/w+T7/ItRmUrEmc0toAJuJkqz6RKJHuZRu1ljeXBw1eo60YT+m9Jfk0KicpCXVmaZqayTS+V0FxJAThYCatjK3kvM4Z4Qy9MwwajZfcREyMxjC1eUhQS0hg8MQRs06gclt5pOcxHCFRVzXxuaJTQM4Qxf8ZYqYBSJxMGQ22N7JGQ8L4vnoXDwwO++rV3adqZyJI8TjaVytaxLCrPwDjXyWRikvy+UMBQntPs7TCGLPOTjn8mhE2Tc6f3MUYbjjrLMASCj6qnoG1bHt4/I3iPsZa+86oLDEl7zVkr/dK8RqYz6BDxZybWlBxR+YZC9HcgcXnlDFiy4MgfzcnHhZ1oXKdj5lnZHKMjQz879W/lT/08xxcC3NS141d/7Ut89tkL/u5/dcNua6QzLKPgEcUuizovklI9hTRjODZrTt2WhU3iKUEXvkmTBTJB2hqiz80HyXkYCMgZQYzmPhSwo5ZrtqaSkvgVfmnp8SMT7nGpJrdpGOOKcg+QBpkmGqlSSQEQZC/XMwXsiNUCi+UhX/v6d1hfX/L+e7/NZz/xuORJaWAxO+DevYdYUwmg89pVd4hE04Ob4WxDcInUd1r+G0khYquaod8Shr0IkErJoUKgMloq7HuGviMZmM8afC+Apa4qaUFBoq5qUGHSNA37/ZbkB5JzKnSkskl6cak3DRiGQOUsQ5S8m/3ulm7XcXp2wP/gf/g3eeW1NwUwJgPRyniZAEG+j9EUwWWTJRqjoE7GPCaDMPCKALaq0MuGnLhcjXpo0LYfmLHqTYCQWJLCOivTbm3FfkhsNjdsdh1tZTleNVRVxfHhEdu6Yr/vRFB4T4jyP6B9xaAbYOgV0AgpNLlwKaH8HCkSUqTrdgzdnqZtKdxQwiwojWG9dhBX+RoVDJYEZQO5cm/KeFo0Vf4+Rc3riUVgidCPYhiYn2X7fXEOaw2vvHLCer3hg/elgKF0Ps5mpIGS0Y3+bKzKIeGmnpmeuR2otUx1BBlJVoiup7viWD02d0ITdz+bZfwoh8b5yeM+dkrOf8/AB/EAFA3x0g2ySsnPlkFTmp6jxoICr9o13Lv3iG6/5+riKevLiNVmxXXdslisKL7nbH3HJPvSqgwykKInc0kRAWcJ6g0WkCfVqUZBuBRmKNUDUFUKcLwkAGdmcWccOPFuO1vhvaVXxmLhPFPFPxkIo4assQYi2kW8xw+B+bzh3W9/h8OjEwWISvNRlLR+nxjHufDXKOhJWT+5UaxMFTlQvBJlxMf1l0yWQXnj53ybETxYY/BBqCf6wVM5w6yRaqhZ2zJYi/dBqU6kjD3vb8kFBR9HcJOXQVmVmqSePxOULNU5YefWB5YvMU44xtL0T3fWubx7vPObqWdr9HaNgGsEPrnNzec/vhDgJgFPHt/n13/9S3zy4XN+85+eEzqhlPcgnDauwhiHcxU+I2Stj7fJcmgiJ7GDZx+zff4R4cF9UtuCbcTqLmg0YqhIRqxvUqSyFYGh9JWyWkIiFrnThSaxY7lvHGOIWbKl6fZRqxgjnqVMUY0BFydVN4y/t0kNt7yVxs3i7FiWLrk0lvl8ybvf+XWOj074btpwOG+5vHxOjJGDg0Nc05CCJ8WA7/bYGoyJmCYU6y+mSPS9uHSTAIXoPVXTkoxTL00gaKhVCK8cVVMR+oAzhtDtCcOe1i0xMakHQXpjVaYC42mqmqap6fY7fN/LRuk9JopHJ3jxmngPvbqMd9s9N87jQ8Vf+Vf/Gr/yq39BkjhtTvi2WgpuyxpyZmR1FXJFGd2EhAMd8pkc2jEGHDUCCbJHzpS5VJOnxNwttsx1SpGQUFAqQNwHT/IdfT8QB08wlVb4iSfLD579bstuv6MfeulGHOXizlYEhKm48yJ0CoFhQqqykHcCCRn13V64P6paRKkTVu6QvJS3J+l9JY1BZZxyWwryGks59ybn0UDOIVNvN2HK8VGEl+bvSEzrj08Y/AkcB6sFr75yyu3NlqefbMck3xjUaMmhFSdh8IQIV92VLYlZCrC5YdjcEJdLUuUguTHJPAMZBZNlDRn1/kxc+nJM82+meRijkptAmKLsRnX5kmcgK1o9coaNhQm41U9OlMYIbCjeY1tbHj56hflsxvPU01YVu/0GUqJtW2mqqyAihUGfyoFLk/Wi45uNthgh5hxLLcgIYrMYcrjXYJ2VMmRjSF7kmVHCVDFSpErRmiwrLa5yBC+enqTKHax6clLG69rnC7wP9F0iRsPbX36HJ6++wV1eITOZB1tGezoXMsGTqicmlWr6cw4LZ2s9E24W3TSi3Ax39N9Ufo+2FIoxYaJy0MRINLZQmaREYYn26m1PMQNkiqEdoiYVK2bLoHqE0XrEJGGpEOX6ulaNzlt57CIH7oK18Xdp8nXyjoqsyttO8m+yvh1R/11z4Y86vhDgZrPZ85Mff0byiQf3FrRNRbcZt230gVSriy+hC1sj4skwJ3Ji9xxg6M633L7/Id2j12jnMypXj8GHhLZUSOoGHYfb2ZrBSwO2uqDrLMQrchVVImkprJMEz5TdZVmYSNWAVLckReg5x4aySbJrNZ+WXXfONnJ3q53NTSbms8o4K722nHWc3ntEVddU2xfgt7z95Xf49IP3aa2EnECsHVNLQrE0RgzYZgFNtjYs1g94v8Pvg1ZrtfgQiIMXnrqYcFVFZRtgy7xdsbl9xu0QmNUL4uBJ7aDepaq4MXECJpytqEyFTQnf9/T7DiJE71nf3shGTSI2vHK9DF5o2H/51/7b/Mv/6r9JO5vpKGZryBKQc4TINZH7J+UwYFQFTNLSxJSk0V9KSr6YXf9ijwv5Y573UUmYLA1NVjFKGDmJNxvrMKamqhzHy4qwaKido6nlurYPGCehO2srKtdgsORipJTkqt0g4Mb7hK0LLYoAFX1aOT8x+J6+21PXM/l8VjCKTMb8NV1fJvNTCHJK+v7iibIYo6Fg6zBJSuhjHOm4ogqdTJmQsBCQ6phfkKMfPFdXG0iwXNS4yuGHoQhaAb93QUfxaCEZdjPjaYGwHeivbggHR9L40UxyaNQ4yuM1rqZUPL+FRFL+IJ9JtpC9ZUWYP1ugjMkSJxttKm8moRK5XM4bNJN1QFG6xuSOeqpwivfBjOtaldh8sZKKxGELYeDk9Izb60ucMVSuAjUcsDXW1kpMF2XNOwHlyRtSDNLixMs6tUYYnImafxETOCukkmagdg19v6GPQgAq/Z2sAn0ti84d7pPk4tgM5EMgDF7piMQYkJuoXokiE4KSFD568gZfeuebVFVFVu8J4X6KmWk3K9k7xHITQzePZsqgcdQBkKcigyUKwLwTYixCKP+FcX6UpkHSJyyzxhJr8dg4ZbQ2YZLrhVFONlN4m/I68FH+DxHh1mKKKXJ+qXwf1IvmtLFpymGzLGsKJce4Yu8kEE+OEmAyOel+vHceh5ivMhk7+fHze2++EODm4nzD3/5P/iFtm/j4o2v63quwBZIpbJVVVVFi0kmYRWcY7pnAA2OZm4q+N5z/6Kfce/KE+cEhVT3DVE3hD7AYhFBeqORlYtRjYqwK/ewezoOes/lHrwFoKfKEbjqXImemxixkSlKaGT0wWakmE0tteEb2RnkXcoldDkmZYk1pUp01rA6PefXL38D1l1SN4/jgGKw0XRQKcw3P+YFklN/HGOziAFNVRP+M3c0LNrfnDPsd9XyFocIPnfRJspWUy8cEw0BjKloahn3Pzm8hwqxtaNuGdrXEYLWfk9c4e8L3A2GQ/JzQSxdfHwZ8DPTdjsbCgFRiDENg3yUeP7nHn/4zv85f/zf+Jien9yjl9xgFM5JLNc3EV99GcRnHnAAu6FB3scFkRswM7pTzRjg2dFGOkmbMdzGgraQZ6atlrp2Vxn+zmTT/80ES+Son3sEQJdQavGff7WnbGSF5fOgpUgEYEvTaZ4qE9m1SoVaMQ80hUnd6iB5TwkYqPFIgMugal4efKoLR+RuLkM2su2juGTEUUkA9BXCj5zKziMYp/8sX+9htB37ndz6mconbm44Qxo7cwOhRsaO3V9UXFYaFiSyNocYSgmF3ecXi4IC6abGLarSWTIYMYvBMJbzJIOKO0FdZU7wtE3AtH9Lfll3AyMc09bzktfoHKYFpGGQKaLIC1udWzw1lXMTb0bQzjk7vY/wOW1lmbSuyxBpNZFfoFNVTqN5G6hZjLSFu8N2WodsR/ICrGiA3pFR5Z4w4J0LE6X9xCPg4QET3lKNqJHfHJDEeMsiIIYjHOgSSlnmHJJ7H4L14mxGS1BAiPiRWBzOevPIKX/36d5jPF6PyzarXlO/KKOccPTMZ2eJjM0bkZf5EER/6TRpn8e78m+lZ41pI0/mlRDAqbbUQY9RcGgFNqc7VjhHvRQ7FJGMxvW1Ik5wbKFVTed0XEYHsixDCXQ+uAht591yJOb5jNu5H/2L27AiXV87VyeOZw4fleYrsnlZavYSU/ojjCwFuhiHwo+9fkmJg222V5l7+lgEOoILbKQdbR0ViZXrOrOfYzPWUxPa85/L7P2Bxckq9XJDaGTkWLbkeIpAVv2Oto0rgjSHEgZgczmpHx/IcBtD+U+VQITgZb2PGGG3uppzI4YRUPDZFOSTAJizins2lzCJb0mgtEDG2EZBj5ZoJ2eyHD17H3FqMiSxem7Pb3rLZ7AhY4XQxkT7saOxMXJjba2K3Ydjccvv8Q66ef8r6+pLFwSnGBtq2Ek4DtDN7GgComoZ6kOaMUoooDfRePH1G3Trq2ZzaOqytaNoVOCe0/SrIYxTuir7b0/c93dCRwkD0FM9F8InlcsFf/Mt/hb/8r/zrnJ09FKVs0miYKogxJt0BermcMdddGFeX2HXGCLInqzsKRv4U0a55jNwiuvFSBDsCTUCBhAqTJL3NrBOXuDFWk+/kvtLkUqjjndPE3ZyDkCIp5RYiQq419InoLVE89YSkyeFqfEX1Wkqoa8APg2z+mDSvRviPnDKSJiiKRwzcWCxmEdCSNG2VFycaaSiLkTy3qKEtMpu2VpklAiYqMcYvyBFj5OLFDlJi8MO4LrIAvoMtlPAjBSzQEFgQmVOXU/ttZHd+Tj2fY+uaVFUaKjUTC3xSsm2U/lDnIZGZ1sdnNMYoidlEu4ACpqksHIHNHU4ddR0Ur83klfTs4lWYegzkOvk5XfHe5HtbC83yCNPJs9WHlXJfDST1qCYDIQ2QagHcvoMwEIeObnNNt13T73dUzRzpV4YycWvVlXperXO4qMDSSnFDjIHdeo1zBlvVODX0bNWAsUSi5Kd1FOUeNCzjQ9B9NwKOEIUp/I03v8SX3vkai8XqjpeOwgacB1zXQ84quINNHNmfZkglQjWCBXNnegpAmvz25Sycafn0BALI/GizyxGIoTI2ktnEi+cou37VazvmEMoYTD3Hd58PxhCqyO8Yx5YjOc9Pcu9NASP5+vJMY15XMvltUyH/TCrHpmG7xBTkjGOUPTmf9/hCgBtSkhI84bEv7t2E0eoXQOmfRYkFLB3H7DmzPWempjYVgciQPCFYLn78jPnp95gfHtO2Cxp3iKlF0EgVgVgWNmnoxhickWabMUo1gHRMlkotqTrJnZKjJrOmwkacXb92MvjRSAJqdkWXbVKSHlL5kpNU5cWVyA8tWzZWhU3COq02ICesJWy7JPUn1OmGtpmzOjjAnl+xuT2n63bUVYWpapyt6fdrvN8S+oH9esP1+VOef/oppnEcL5c4rSyragc2YI1jefqYqmnZrS8w9Qy7vYEELkkC8WfPPyG5QNXOOT46pm4swXsqt8S6ihQ8IXlCjAy+YwiBoF6V+XzOwaLDDJH1PnJysOTf+Bv/ff7Kv/ZvMWsXk7wEkz3PGKNcK8aUzZpd9EKuZmQss3s6BgG3yWhXdnV9xvEa2SsWc0KmentkpLVsv+RgRbWYEIu1AHAz2YgZ9AjD69SOJ8oaiPlrTiREwEznoR8SswC5eikL5WghJAGJMUb6vsMPHZjchiIWr5m1RnLbs/RKSbKT0x0bq6y5kb1LelClGItiNtaWnKWQcweS/H5KtvVFP/IwZI1wJ+eFDBBGBSNgNzDDMzeBuXGlDUdUcLK/3FDPX1C3M1xV45pWawWykM/hDFUIUK4xOUXGU9cjRTnpH83k3PycTGV9zu/RN8nYPaVyTlHSWbEWIJPL1vM+mwCmqUo2BusaUjXHpo7K1TRty263p++2WiwgpY+WSPQDKUrui+8H9rsN29s1OEPbNMVYsLk02hjq+QHWVfh+h3EDpt+rXJVnXG9upU1IVTNrZziHeIpc9rwn3QcC9EMac03qqqKpJUzVD4nZrOFr3/gmX/7qt6iqpozBHbyLfl5/UQCJGZW5lPjrzk8asiaTQ74k80veS54Rk1+9rMKyXnTeyfJhMv9TYCvPVGDPBHOZEsK+EyHS79VBRgjiNS/Xy+eaIslISXrLxeDJnpTssckeNx2WO8+azOSGUxRW1pU8+x3uuHKhXCo+jtnPI2q+GOAGcSda66Tk29aMbQrUOg7S4ygNHht3rMyeU7PlnmmojBBGZY9JALrO8uJ777M4ucdsdYitKyo3l02QHJgomiJplZPmtAwxSYVJZUhBK6KMxnJtRpeUTZDyykwUpQkwxrNRWaQbIPeR0Ql2WgElinkMX+XKqCyorPL85HvfUbQWWN1nd76hNrA6OGS1ClxfPWfoBoZ6EAsbQ5U6EtDvt2zXt7x4+imbXcerT75MXTnCbkefwM1mkozGQL3fMHR7+m5gv+u5urhCc6vp9hu8D1xcXmF/8iPcm2+xXB1gq5rIVqjb+wGiod/3+CGWMs+2mfPKk9eZz+b85OMLvvG1N/ild7/FX/6rf4PF7IBctlyULwCTSqZcNVIUhJkAw4pKrbkiOxNSRZXkGcQ6Gts05NBXARvaUby4pDO4wmkkUeZ+yuGQ+/aULlXJKtACyUsYhRBIubckBcoZERgCDF6ADXGsoCkOTCmZAhLeDwx9L9ZrHpIkQL2yjsbWhBSlPYQSAsbiYVfiPrXQp5ZjJjN0VlidjVG3dhLG7ZDGtNmc4/CLcBiQMS176KVnT5p3Y4ImrHsaPHPTs1BaS7mOCPOIdHPfvriini+oGgnBOFMrfYMtwGR8hqwIJZToKldAT/YwZ8WfinhRMkqTz7l7vbw4p7KFNCago6AnP8b0vDEnKF9XTLJRy2u4N2+0esGw67FI6bFvpFN98IHoIiZCcBKGBUPwA0PfsVuv6b3n8OAUZw3RD+DBVppLY1Kpyok+4H1gv++Kggt+IKTEbr/HXF5gj0+om0bpNBS7K9lf9IEYZJ+kBK6qODg4pqo2XN7suHd2xKOHD3j7nW9S163Mu3pZZDR1J5SxSb9PsWYPqOx6/UReT0aMv5Kbks/SApSxTxWU0I1h5G3LYCeZOwBhdMJME81lrjHjDs55PVNgkeXeFGsEzbmRQZucnmWNCET5c26ea934N12rVp0DseQe5cqyKSCJ5fwSajKj/M6enJwvmcF+IclN4wr9PMcXBNxARDK6cycgaxzB98J0aR1x8Hi/heGGY9Y8MFtObE2Fo9OSbllmwksQEuwuBl787u+wODqimjXYqsK1LTHJdcsiU+FeOYePviQwU1xnRhpqZrZaazSpWSY6qdAx5AS5SC4Jz0JQSN3q4vXJzMhCPicdx6UPUEVODjRoyWOmBDUGY/LfIbPNpwTG1diT1zh//lOuLn7KenND3w90VU+12xFrJ4RWgwDF7WbNi08/4Gbb8fa7v8zBcinu8gpuNpe8/4+/T0pw9vgJu/t7jDXsNluefvYxn33yMdvthvlyKc9lLclYNrstn33yAY+fvE7dzjHVwOAlx2bY9/gQ6PtOupp7z6xtOZw/oa4bvvLV7/DgwWO+8qf/EofH97U9QLZKxOGQ86YiObkXtep0s2hulLS8kE7MABapsjLRjs0LnSubfxTso9UmACpbbUXKU5qeRgGp0URi8uImdrlya+LaJo1KQgVbjFGFsECDqPkKBpEjfRRwE3JvljQpB48iALPAiOrFIQyll0sWOiR5vryOQbqZG3X9gsW6nGQcJkWaUavEJIRWrEojcx2iNLONBOUa+sU6xNU+CQFkagervDcxkuIAsWNGx9L0zIzDYfETzg5U8STA7yLbZ8+o2xnzymmOXKVrMif16kIwErKWPC/1kJEBB6MZP/0dE+BiJs+dFVj2shhZu9a60eMwIhpVDlpWW8JhozcCtcCThnwmqr1cyFiLnR2y217T7a/pe8ldCla6TkdnCDFI3klKDH3Pdn3NvvecPHxEW7eq5APdsOPqk3NIMD84YLaU9Tb0A5v1Lbe3NwxDT103RQYmDMMwcHt7xcHBMa6Sgg8JQwnvi+SYjFw3lauYLVdYazk7e8RyueLsyVu086XK63EcsoJ9eScXA0rPBYpnOYOBadhw1MN3a+hUk6tIMIwfKVbauFbzlCMGWM6hM/YlUG5e+lbXZfbcFHCbwZa+Vs67yd2Hyj1RsFe8zgLmJNw3CZeNL0TxBiZ559E7nPXjyF48Ip4xeT/mHJ007oeoRTU5X+cXznNTkolyfonC8Bi8bNKQiMOAoWcVrnlir3hkwdKwUSr9mKA2UkuT3cUmOdYfrXn+e79Nc3hANZtjqwpT1+RmXGacO8RDY/BpIATNbykut/Hc/LNNbpQb2WoyYu2Ka1njh6YiJ2smo0s95+4owHE4mUQzeggyhbYx6snKyDY3vtOxy6zKrl3QvPJV+t0N1dVz+PS7RJfYDzu8F1ZR+sjuds3TT97HG3jnl/40xydHuGQIw4BpaubO8Pq3vgrJ4YfI888+pdvtuLm9YbvfEY3Fzhq6OFDZirZpaOdzlgcH7IeOq4sLjh7chzgQo6HvO27X12x3a4bQl3dcLRccLg65f+8xxjkefembPHztSwogVTrorrM5oTgDkiLUAZyS0uUcHHVylrKTLJzV0jIT+2bi+lfMiUar7ig/WadGre2AdcqVoSXCbrpW9Ox8/ZTXTJY2gDECanIceypg+2QYlD00pjENL79/iMKInZMExeuZ12l++DQmSWvcPOaSSm2bUMgniVKdMmUkBgVA2YJNZeydycBek7Z/gUrBZQomyaDFQo1IooT46ROBJnUcmI6VAYNjmOQ/5I52ReUnQ3/Ts33+FNc22KqmslYqf/I9J/dTHKKl+W4Mh2QQnFVhDhFNlebksFbzycgKTPN9UrbfTTG88j1lTWfkn0YLGVmXU3BV5Nu4G+TnqqE5PCMMHWa/hdvnJCtdpCWqZiBIMcH69opI5PThK8znc3mzEDHOUtmaowdnpCSgcnt7i/cDXd8xeGUhrxw+BUkvdo6qrqibFh+FWmG2XAJCQBmC5vQNg4B+I2CwaRraqmWxOABjWZ3cY3l0KmOS7VZ945wrV+r3M8gp4zuORdktCZXLEwCacjgyyykoWUz6Tyo/TAAmjHOaFT7jPE0r2VIaDevi2Zt4QzLKyu1UCrDQxxRwMwa2UkZFkzBb4cjRr4UwNOtPlcclF2cyXhnPT1yQBaRP84mKPB+XfAGOaNrA1Av2eY4vBLiRQ/NSolT0SI8nR/IS43Npy0G45oG55JGFI+fokmEby7pRkGDxKeDV2g3ecfXDT1ic/B7N4kCaRq7E0yAfSlLlbQKmhMJ0LjKVuNWcCxPJ3VONqZECwYBUSUmpenY3WlPpYnd55cnE2ezGq4ogyXHLkt+AEaFjEsKUK+XDmY48c4sY63BZQZuM7B3zg1Ni8Gyf19q4TjelgWAj17fntMdHvPPON6UZnatwtpHQXKqwQ8fxcoGxDd57mtpy8/ycIfTYmcWnSLeviSlJA8h6RtsuqKqWdrmk8z23V5fMVwdEHLvdjs12zb7vtHJBWHMJhiEMVM2Ct775a7z25W9LWbEqmmQS0QYtFc2L3pDSKFYE3WuSc8mRkSOmQdzrxWqeclTE0hZGrivz54zDFXJBVRRkoCDK3hohDHQ2EpLBJsnFyqrOqGWeLeGc+JeJxzJbssAHATc+jB4QnxK9N3hfluP41aKgWV5J+Cx6IQHURpuQCFEoC4qllIFWUgCYmIizLNCkHLwQ9hU1LuR/zlUKyMSaiim/689hTn1hDs1dK9JXqsMwBstAEzuW7FjZxMxYPFLJlg+DeAwD0qpCiOoM+4tbqtlzXN1IUqypdS8zCvkJqC5y346e3BxeKPfSXKiR4XfMrMhh6vGp8nrOWsIokBvlXWF1BLI3OumYGAXz02RiheOY8tx5l1nqZg4p4TdaCWoh84pFE9l3W1zbcHr2gLqu9T0dmIBLBhMCrhYOsxglEb7bSl6ZqdQL68ULZa3FuQpXNcK2XjX46IX5u2kAw+AHet8TgidXvsncQm6Qenz/CUdnD9X7kZVu9vyOQHTia5mMxSRcMjmEJ2sEO9ljLwZWHMFpBgWMc0Pef4q0xjyTrNzla1TQK7JlNO7Kk9wJ8eRrTL7qeIRJDk5kJPObHiUMPnnNhIT98jNlPZmyMErjve6EVHMqabo7ouONYhmT8fOqz2RzlBDWdF/8rOMLAW5U5OuLxDJQwrGyo3WO43TLfXPJqQ2srKMxEZ/cyNRhUlFHCUWkeu1h4zj/3feoD4+pFgsWtaO2lRIBm0Lol4GMH4K6w6zKASGOEm9K3vSBZIzmwciSFjr66SQnVWi2eKXyopbqlGz3RVJyulB1+qKgequZ6FjhfjA2+zC0+3BJWDaUFp+aZOtDj7UrXGWpXS1lysDQDcxWS/wwsNt2tDOItVqz1lHZOe3sgHZ1SAyB5eyQo/sPebDf0u937Lo9t+tr+n5QFlwPaWDXrdn3cLhYsluvMbUlYdjub9jt13TdVpVrxeroiC+/+6eoq5qHr77D4fFDTbMK5F5QUm2SWyXomCo3Qoqj+9IZW0rqS9RIPQ2S52TE86BCRHCt2rg2lyVK+DMru2TBpkpASEqj+1jBA5owKmBTFZPNORyGhB+3qm5ykwWTrvWYojQlN3cjyREhMwxR+HmmGyUYo6yjaLVdLtHMwiZO+ktpt3sDmagvx7VzuNVpeEQ+my2jUPRX5s0plRGYci1SUm/XXUH/RT+ynao/THCHx2GYp54FO+Y20RiDM0kTzccryLoqlygCOwyG3fNz3GwmLUlWK5xp9AZ5AWl2oOKpNC4QpsCFfI9inbvy9FnSjep0zCMaFZ7a8ynJGpefyr/5jBJTybUKo4uaLO2mynyqhLKkE4OlEb4V46RqEEP0kaqthUzUy31dxlbGYitLVTW4Rli266phtlyx9APBD3gf6Pp9CS/JugsMIeKDoW2k47exIi8H3+F9j/eD4gXpnn328AnGOlaHZ8xmS52PWMYuy948Jhny5nnLXk4BLXeRQAnZpYlSvgM0xyubvA6yHCAPtRIhls8lksTi76y58fwMofKaSvy+XKzsLYZJKKhkaJV1q6lJ2EnJOUYBe8pe8FFm2Qxqiu7SqIR6RKdjWrBjQiuL74KTsbjmbsissEEXg2C6pj/f8YUAN3nwksnuLCuu4bSniltOGXjNrlnZREUtyUt4qXkyY0Y4xpRe4R5FqMZiEuzPPRe/913awyPcrFH0P5NoTzIlN1VaCAyiOAw449QAt6UPVNnciuATSstvkiQcFj+n1d/nvj7yazvdSCb3vYKM3DFGmG0VtKGJj07J+8atFwvAyRfPXhyb29NHj6tWNO2MetZQu4b7r7yGdRX9ruPD937A7c2G+48fcXh0wnx5QFO1RGdJvaVdHNKcrojDQLe9YbtdY6+vMMmytTs2O2nX4P1A3HUEIrN5y2o+lx4mJPq+o/cBV9fCHJo8p/ce843v/AbOVSQorRCCVgdhwUQBJiXObISNOsRc3aY9krT0dkzyjpnIs6yw3KQwG0iVJgKawrgpFln20pXpiNkCCUIEKNtYnitZBTF2tMCMSgoiUL1kRWc9kgGGCLiYKQHKXpCw1DBA43S28yMVTapl3wqsY26jQfZkVTgrBIdFkaWpYpx6AdSdHXM+mRM+EKNVUwrus9Cx+VWRMbhLj/CLcKTxf5MFt8emgTmRIzoaW9JqyfkS2Qot2ENXlKwJ3c8J/C6xe/Yc184wVYVdOIxV8jO5oeb5yTyMzLFZeU7kg3KX6A3JrUGyssulyqVnUwYvCTUERoMpc2SR10HWfS8pD4MZw5zj647K6uWzbZbBEWuFTd5Vwma+PDwEa4lD4PrinL7rWaxWtLM5dd1I3yhrcMFQ1XPcvJGKvKFjGHq6bg+IR2YYpG1JjJHkhX6hqh1NXZWHDCEId5Fzkg+WIvPFAfcevVkql/L6T5gSgx73xnQuch4ISq6YCxjyzGcLgDK+KaVJxax68TOcKL9OZf7uwIyCAqKqkHFeUgExujLuYAQxAstanhpLGTBn+XP3g0DOuRkrxSbDkBEOY4n8GPIcv9d1MIpNdPmVnTYmZhe8WPSnXGf0fMl4Tx7C3IGbn/v4QoAb0ITilHBUuGTxeOrUc2hueGw6HlgDOHyCnBludXNO21UadTGGlBimiy46bj+4ojn+PWaHR1SzGY1FyjaTJMA57YVikhHkn2bEJMloNoenFPRkbgrx2KCbXgCOIH2jbyUJraUnVQY41mBMhapiffacDyI9exIWYytlv1XBpHskJ4iOcWGFOyliDVRVqx4Fi3FWFXhF2y6Yzw4Zho5Zu+To5Iy/85//lxzdf8Q7b7zN6aNHtKZhPj9i1s5otI0DrmK/3bP3HevNLbe3l1xdX7Jd33J++Yzv//inPDg94i//a3+FJ6+9yv7qltXxKevNDXU7l9L5IEzHcT9wdPaAqqp19gXExYl1IWXSecGbUbszyZOKY+x5tGQZhb9+wlor1kZx5aZJhYVuylyqryAKBSE2BbCGEBX4gFgwhIkllxVH3rjZM5AymhmfM6HMyUo4lib5ZmRFlBiCodfc80mInEQqnhmxpMCHnjpKJ3Jbnl/Tg00eQQG9MctQa4nJQ+4erlaTsUIw4PWmuYljzr/JcyAvpV3Cf8GwTTFMsKV6zqRAS8cBgaWitziR9Dl0V8J4GTJkwJuBAgYidNcdbvaMqmlxVSU1AU6Qaq50yUowhzsF5dsCHkfZPirLMaSYFYHIu2nS6B00XNan5o3p33KYKpHIJVWjjDEToJUYodaolMbViFYM5XU3AghX1VR1Kz2hXGI2m/P+ez+kXaw4OzphvlrhjKOuZ1ROiOlSFA4lP3h89PRDT9ft2Hc7hr5nt9/w4uKa5azlra9+iYOjQ/yuo5nN6YceW1XyPkHzyIjM5kvtLp6fWLNCckjyTi7HBITwMrBTRSyC487f8ggVYDM9x5jpdI6GkH5fvDV5z6U816isyYrdlOvJj6Psz8rfjFcua03kabaepp+Rb0NSftPsUUvjWIxARmRzjEEM7Im8yjmUd8JGmmyfc1FLXl4RZKMcT0H2Q5zKmjyMZc9NPvs5jy8EuFFbAZMSLhqqZMEEFuaWR2bNPWdpraPPVn2uqCLhTHbyyuGQvJshRXxKJTxlDYTecf3eRyxOf0B9cIitZ1hXq0WWSCaWKoMYYkl6E+oCcRNaDRGJBRclKJScKjSrHh/1E5jpOpH4sQAVCSyVfBAQ60d/zu5nCZO5Qq6WczlMVqbkRDFN+IqiuBOJullQtSuMsdSuIaVcfQTVrMVWNf1mw2tffoe/+t/91/no8pY3vvkdzh4e0X12QXNyyu1PPoamYfv0XMow24briwuStQx9R7N0fPrpC37re99jtTzgz/yFX+f1L79FXdfMHh4wWy7Z7jYCWmyFMV5J5uD03iPN2ZgmXFqtB5CqJ+F40VymLCysVdZeAUSVqUkEceFq5Y+ZCIfRYyYeNd2D5EqQOwnAKtxzHjIkkjOYKG0vJNck4XTFRasWEygBGaMgMsqcmrRh6sRaJiEVHSGqJarel8lG9gm6QcIi+uqlMicLLcmN8QTv8NVADFrxlDEikohnNXm5JFfnRZkvpuNktY9azN9b7RIeEuR5gMJrk9X+y67mL/IxURHYJGEfZyK16TigZ2EMFba0uihKw6Synsq1VPbEpDlZZhKuiYb9xQ314hzXtjTOkZQYL2qxgVUDKQriLSSSmezM6D+j594wLk7DnTDEtKQ9L5gC0sfnLUGvooOnIGga0kJl0WiRJxIm5lBrTjQH52ps1RR5BXkPIj0BrYV+4PD0lHe+9jVu9h1HDx6xWM4I6x12Nqe/ugHnGPZbUojEytLtdiQjJeWutqxvdzx9/oK6bnjljVc4OjvGWUe1aqiahsEPOl1WVaXsxtliVca1bEA1OjKsyVWQkzMmY4B6ZOwIjHPu4wSkiFGbwahKeJP0eUa/kJnI/clUTCqjpsg2t+rNBgrFkL+LllK5fzZq8oVz+LoQ8I0QBKCQ+bmcBD15Fh2kEh3JRQypXEvXGhL6NAUQTY+xwnAcn/Gj2budxzmPXZ4f+XB+v89vSX0hwA2ASQYbE1WKHC7gcF6zuupY9Za5sVRAP644HcicZyOTJem0eWkkSfYjp0nIZ/obOP/dH9Acn1Avl7imxjQtOZ9AkoGFyVgWdM5tEVADRrgITFQFpohb7ziNi+bFb0jF+iY35iNX0SiPS7kP6oqWDWSs0xJVQ2ZyM0b5NjLbZNFm2pYCg6saZotD+v4FIcyo65qkZcspRayrqNoW3/e8/rWvcfDxp9yeP8M/OODeN79KPT/k+NErHLz+VS5/+NukwdPeO+WzH34ft1hx/eIpz559SPX0E/7if+vP85WvfZnVvQOwlmo25+DolP36mhgT+10n96xqwrajaRec3HuC0ZCfDJ+VnjMph2ny2OU8gzFPwlgrqVlWQW6qSE7PSlGdOOpuLomUEjN3xpWS0rx7p8LcmlxFJ3+zCpSsdQSM8sUoEIpSNVTA10QxmBL2yYDU/n46AU0mkr0dx7FgbGrno27Sch74KESTcdIQMzcFTFrxZLC4SSlv9gxZKxUl8r16EjIgu6MQNUyHITnNfyrhkwhJrTcThJfqF+wwKWFToq0Nbe1o9oEmGGqjoco0zmQJSzFRRGlUYpLqq4mgJZSTCB3snp3j2jmuriVU4rLMGLNlYsqQ2EwEv8oFlXV3j+m6nYDzjDaKUsqKdXoeCoR0HRblrIaVmT5DHGXVRDlP728ArKOqW4LfkmrxNCdTRkXWvquI0XN07x7N7S39dkNctMzv38PVDbPVAe3RPfYXT6V0ezFnfXGOrRu67ZrN5hazvuWN117j7N4ZzbKR61Y1zWyO7/ekBN57NYKkGMW5ivnyYAL+EqUqjhHoj2N0N3CTva3Z25LBcR7qMs7TnwsgziDmJSAzAZbTuxm9X1JPR1IuK5kqUewZ4EyP8Q4KRnkZvkwe4Q5qGR+/5N0wruEEhRCxdKJPMObhZWio6RoZ62UPzhSM5H0xAeqiE6c+MyN5aJnrJ1FAjZwZi5fw8xxfHHATRSEcnTm+8vU3uD97TPfjgavf/AG2B8atwnQpTpxjEyArf4+MTerF8ypoe/PZlovvfY/Z8RHVfEHjVMki7MXGGJIPhGEgNbMxazwJNX3uDm1sTaGlx0CMJGOVETc/xyQPxLiRth5pbIm64shvYTXp1KpXQzVeUiUk4RovCXXDQD8M+CEwdD2o8rU24ZzDmxn4jNgFG8cUCWFQnKZCyzqW944xn56z//77bPeOw9dX2KYmbm5ZnJ5hqwZrapanD8Aanq5v4Pyab3/pGzSLGakF27ZyrdUpBkff9/RdRwge4yyh7xiGgaOHr7JYHam3ScYupqgkUfFOgqvN+UwYrTSTeU45Jkl236p1UBlljc48Hxn8VUqMqNVCCpZyn7DMzptS0OaqppTcZwtQgIohGitzrcmhGZAJSBOlkRPkS15Etk5UUI0qMJdppwJsEuK5GQboK7CuRA6KcokKknNlkw9eK0TQJ1ZonwWpMaTkVaBESDlPIZH5K4xxSjoow2ExhCRjaxhp0uVT2qdmlPy/MIdRodouDGf3jljWK8JFYPf0HBN+//mj8M3/KtieeE5G42pyXjL064Hdi+dU8xZb17i2VR2RRiARovRCstUdWv8RQDFJxlSrNnuKUk50lf2dn654B5IaYRmg5OsV4HQX3GQ7qSQeqwc8BqEtCCGNRHkJjNJnRCotbsl7TpVfDLKAM3a2lmYxx9xu8edX+GBwRw2mcqShp5ovSqVsM1+CMWz6HnY7Hp7ep6orWbpOqkibRhrqBi+NHTPreNSO2e3ykLqZqa6M5Z2y53N0MqSJzP79Ht2M/804MmUtTL1rcoxyOwOYZKZaKs/SKPtRQJ09Q6ScdjFJtDU5t2kKL+UXSYHBnXXOdK7zKp2G4OSIiM0dcoHndOWrHL4D5HNYXM+RZ8vWe/bAx3K/HFvJ983G1Eh/MELmaUk4k+coP/4couYLA26qBKf3Gn7lz77ON775GkvX8/Q4wfUlmx89EyZFQM0eUUxYnFrbXgWwM1ayvpN4biSpWIY8L97oHVc/+oTZ2Xs0h8eYuiLVjYIPDT0pI6tYxwas0/4+VhQr1bjYVYFlYeKMKSGETJiWu3sLfnHK6yVhluL+dVUpF86NPGOMxD6wve1Y36y5ub3h+uqK9XpHt9ux2+2U18Hj+06rFoAUOFw6vvPOEQcHMwE71cAwJCpXIy26AjEOYAyubahPDxlerLn97o/gsqM9OcbXF/S7DbapGdZb1leXDL4nPXtB1Rk617PrelbzI4yradol1ji69ZrNzZr1ZssQ5Zm8D/RD4vHrX5Wu7OqpyXNTqo/zZk6RlLuiKwAqeQpATsaG0o1LBJdNFF4RZMME41WhG0wMal3mHKik8W5DigZjshdFQY012ggvjcJGpVnUNVc4moBiQek1MoCViioBsCNbqNXwXBYEsn9j1AaaMRFt7mouf5TqNDk9GeG9McEqq2e2qkLxGMlzjJVOQSWYQeZA4T+kREwD2d+VlzQ5d8tobpBSHMccmvjjFQX/wg+TYLZwPH71iPv3D2lcYD2D1O0ZLjYKNkFNZtmnOXEX7hhM5k54Y4RB2VObomV/uaZanOPaGY0TT6yEoHR8c75ZhiXF+2vIBKNlNRsy6inKc/xTXj/j58tnTLoDYIrHuJxmS9gh9l4IQLuO/X5P3w+EwTN4SegNSkKZ25aQEk1teHzW0rRiwAUTMVF4ysQJmAAJSVvncPOWsOvpnl+Sdp5qNic5aagphtBAv9+JIt1ssd4QjLAWN3WLFFjUsp77nqHv6fuhcDnFKHQIB0f3yDkf4xxNLYUcZpuMm45FBoAia8zEizMBKGkyhinfIWBzf7Fcdcu4v6dw+W5oZ7yWikGykZRPMWXv5oc24zyn0aAa5z3LK5hc6s6RkniKY3bIZmxhRI7kJxa7KZKsKfmRJfydd4eOQwbXqdSBm/HmWnmaWYjLPivf550g56Y7uUWf//hCgBsDLJcV3/yVV/iVX/sGjx6esNue0+3epv+VKz7b/D22n1xnlaFzFsh9pxwglCAilCuyQJioi4mBGYFhY7n4vfeYn55SLxbUZ2eYqiaHB3JjwVzdkgWMkMBVmgeTX8Bjk+ToRHyZCKOThJVJttaJVZJLujXZV851WGfIPaS8T+w2HecvLrl4fsHtzS3bzS19v6frdvRDIIYBP/R0Xc/gB7z3xDCQ81euLw33DxKHh0K054eeyiZCHLJslCRHk0jeUM1nzF87wnWWw/uv0t57SP/iOTF07D99Qb/e4qqKbuvpvGeb9gwxMG9WVE1FVTW07ZzYe7bXGzabNZvNmkTC+8i+75ktj3ny5tcJcSw7kXBSGq2jsgeUL0Pn2Bh7J6nXZsUQoSQE5x2sXrOxB1XKtUTkGHgC9cSpWtDPxTRxf6akLRN0LaSp1SI/Z7E5hhJGKysrDkwuAdZcILVaBISAKfzaJdCIj4kQDMGBK/tblWCajpkZvUfZWtP8pRyOEqt98jUlkjIrx9wpXJVeTGOvF2MQL2JK8goJnK1lDaV8nz/A3fEFPpracv/RAY9fuc9qNcMPO2ZHx8THj7kdPmC47VTZ5Z0vXFZZ9shhCgg05Lwu+UTxnCDTEwfD7vkF1XwuDR8XCyGpNPkOtqygPHsph4hUSRhVVOKhVMqCnDQ+/degQD1z1Uz7/uj9cpPDbCikxNB7dts92+2OvhMW8RC8VEFqCDSGINVIMbdQCcXw2FtYtom2tVTOaa6M8FRZm0GbVO/5GKQdTt1igqFdHFEtloTtVjwuW+l9Z60lDFL91CdPJFK7VvIQbYVzNTFEhv0gLOhDL6s2JnwIVPWMg5P7k/CJjm1OPlRxoeZkVhPFe5GTsCfQcuKB0RFPeXdRZo+iN6YeIMpYTTX1+LuMtUozF70+k5WRyjl5dd5x907ATF6feT1l+G3uPP/40ZwJkEahNTkhjWgrc86UZ8gjxIhtyjCM18pe5JE1Wz03xRuZRtlZ8F4+Z+TB+Xn62H1hwM1rbx3yrV/+Cq+89gjrAvu9ZXZ8xOk7X6O/vmR7/Y/gNmoCsXhtrIlUmt6ZrSoBJlomjHpukEmZLGNSsuxf7Dn/ve9SHxxx3C5wzSyrH+1PpJUglQIbW0s1g81cJrrwVbEamyA4opFMfUOOk0pcwVhbPi/eG1vI3kRuJXzw3F5vef7siotnz7m5vWa/2+KHgSH0bDdbNpsbrm6uubo65/r6ktvthn3fMXS9WOIGamuYNzXHh3+W157MOVytsJVj8Jaq77CtMiIjgso6Q/KOqpnjGsO+v2T9k8+I2z3GzfEmERpHqgzBR1jVpK7BGVguD6iqGls5QgpsttesN9fcrm/ovSclQ9ftGfrI1/7Ur7JYHmreh9X8Fk0ENk7DPWYydmM6HaChkbt0fM5qnk7ebNla0dnOXXLls+pZK7F27eFVBL2EFLNbNeUS6zS5prYliCGqZaFfVWimiYCR8/PmN7oOpXFrSknJ+6atG+QQci2DHyA6IaS0Fjw5gTUqu60kFZOSsh17tZJUhKVJdYeRHj555KR6yiudwsQrFYN4HDPYxEEapKN5nOaKjQmKvyiHAQ5PWh4+PuPwaIUxkeAN1WzG/OyMsN9xs/8Y0+dPjKvRGvWgTa4lMkdDDwXivqQ8EvitZ/f8Ba6ZMauEXLM8U+loT1GwNssUTXAfD+VlmijWnNtlMsDWkPMUSJM9D9PnDYmuG9huOnabDV0nlA4SGg4M/cAwdOy7jv1+S9ft6XppoyIh0MwzZaicZda8yuFBTdO00u4kGW1KXItiUlCeQZZ1NdYZfNgxXK2JvcfYWgKqzoiHMwKNhSClInWjzPFO3mEY9vTDXhrIBjGYfPCEmLj34Al13WqZc9b/EyCSB1znuaAdnfXsfjMpj+doGMhJ8scpvhgNmzQqe1BDQH+RwUz2yEwNlpcAU7l2Ydmb7re7IGkEWCNwLd+nzETMGOOefDYm9dwodYTJ7CJk4zNDLpV1KoPKOJTxkIc2TIHLRJ6rVS3XnLzDZC2LwTemYGcwNrIAfb7jCwFuXGX45rdf4/XXHzNfzOm7NZhE1bYsH9zn9GvfZPP0Kf4330cqcxPGBGKSEu3KWEwKshbTaE2BJhXroI9DZUQwh4r1T59ydfpd6sND3LyhMiuxTo1MRoiJ2oi35c7IanXUmBkPWOlxYuK4gfPTZI3srCYVqkKTkmRL8JHN7cCzp+e8ePaM29sb9rs9+/2G3W7H8xdP+eDjD/jokw84v7pgu9tq2Owuks1o3RmYN5Zh2BATrDc74cnB4OuGOiUIA87WpMrjDBAGhmFNtA4THR7PUHWYONC7LWZZ4UNPaMHFBhdrmramqoz0d7HS82WzvuLi5jmb3RYfpH9Mt+85OH3Em1/5jjxldnToDi7dkq0yFMPdkJMZ82NKuKe8u8xB5rwZBQTCMZQygAFrK0o+jM7LVHnktOUUPaDJnimDm7tdavPWl/BPKs9TRE/KzxHKEpGKEvXQxFi8OxIKzVaLiGAfhe8mBIiVCiEVFjlHKYaAq1zJ2RHjSnskIc9qTa7mU14oAzGMod0xni/WOJhioeZk+Up5WoYUynvLGAqJ4C/KYazh/sMjjo4OqOsa7ztZW5WjXi6Z33tAv1kTn15JdWQZxewxztayCu0SQxgt7BLOg9HVniz91Yb9/Dlu1mJqhzXS7LT41rRiqjTzNNO0UFM8b/I79TdmfXlHMauKK1w1Gg7NSiYl+i6w2ezYbjb0XYf34qXxw8Bmu+H69pqb22u2+x2DH7Q65g8+LFA5QwhSrTT0QyE7jTYp6ZuwsEcrOXTStbuX3a3e0mA9hkiwAzgNW1cJkxw2WWzlsJMebjFKr7pdt6X3gxoLA2EItLMlJ/celZG5c+R9qgrU3DnnrkIdscgYvroz11OApEZOFjaq58cwVgFYdxOJs+zLYGCUMaMXY7IKFFBNQE6WLfkak1iZyc+esqk3KVefHLliKkZRYyNYooS1cmg73bnPyy1nxsSfO9VTRvYAJPVwJo2z/35YmZtJTwFdAYK/aJ6b2azina+/xcnZEVVl8J3BmUrcj23D8vFjzt79Jtvnz1l/uKGwIup7Ol2eZdvrYGdq9Iii0DvAWYZz2Fkuv/9jmqMTqsWc+UODbWYYawtwEC9OdvPKUXIoSEIUaIAUlNVWaO+tJgyj/DXWTogAVdiQYBg8N1cDH37wEecvnhF9pOv23N5e88Mff5ff+r3f4pNnn7Lvu585uXkMImOY4eTshPX1mvlMkhmNlSaeorC88HBgqGYVQ99Jsl5KkCJ1O2PYbzEVhG5HCDDsNgzdlsWsoV00tHUDyRCHwM3lC26vL1nvtvggCrjb9SRX861f/ZeYz1eFFyVFjUcnNElbkq1LiCRJXpAzSoCWxP4DHcckbzoFOYlIkNp9vYl62LInJVLoywtRVjIlVykV/2yO00OKUlgq1WmW0euTPTEyj0UcToSNHOLlKN3FJ4oxAyxbcisEMBhdvz4YQkij0EwQQg5LSfK1Sxns5bHTPC+0UD3lpGx93Bi1J9FLIbaJsnRUhOSxuSoQwBhckoRCayBoLaJ1ll+Uo6osZ/eOmS9arM3j7mQ/O0d9sGL+4AHDZkt/M+inRpBRcrvKX+T/XOwwWXncsbATRG/Yv7jEzeaYuqJeHkgFlZn4E7IXZpI3MQ2HTYnfkoJPCTeMkinLl7vJw3KEGOn3kevrG3bbNSmAD56u67i8esHT50+5Xd8yBP+5x7QofQOzxZy+66i8yBZxGkkjz0KFoZWE4tXJ45mwppZO4RaS9qgKgzAVV7Wjqiqc02T/mOj2W7q99JGShP5E8IFkLA9eeVu5vvJDZgCfx2SiTtN0REuuQXmpKcQcj9EDkec5EyrCCGrNeJniCb0b1k6Ta6HyKo0/F1nBaIWlcWVNZ6GYVmWN5Cc1k3WTf56ITb1LFJFfFrfIvjSeUcZQBZHJozaCRZN/Pz13ahAUsK+DlIx6abJZmcFmzmXNe+zldf6zjy8EuJkvZrzy+mPaWUOKgwyWJnViDPVqyfFb77D/pXP6y39A2oJEJl0GyRiUFEvhstUBTOYORiYLqvw7l2C47Dj/ve/hjo5w8wXNicO5hhg93vckEs7l2LV26p4cOboZ0QRhLeNLwhyn1rrVku5KwlcKj723rK96fvi991ivbwkpsN/teO+97/H3/8l/zU8//gAff37LOCUIGqqYLxaA4Wa94cAusM5id7c01YzKVdqMriWGAWNnCLmgkGmFrsc5bZBYW5yJNIuG+qDFOIuxkegTfb/HJ892u2OzuSHEwL7bsdlu2Gy3vPGNP8fjV97WkAoUtk2jmyJXg0y4JCTR1xFSFPWjrSzIApPc12d06YpVoASLOdSCdMJ2ZsLRYg0hRWxy5ARik4QCIPe2itnlbAwmOc1NiXfcqaWKIJe+prshyXGNqHcqf9bkzSohM2PHBM9xi0s/Ix+kVLPKV0pBhY7eO6Vitabki0AtrNpWEqUTCaLFa2JnzO9mgCguY2e1CWmSSrVSRZb3i06TrHVVu/4Xx3NT147DowPxNKq3F5OTR8E1DbOTM8JuS9h/TBqy2siiF8bZ4c5PJe9qekzkjwHCPrB79gLTttiqwc1nGCt9lSRkmErYO4eWyofvfJN0XtOoM3hZkWWaCbWYo2HYBy6en9P3PZGE956Lixd8+MlPubq9/rks4+khdBuJqhZagK7vaYz2kvK9EqRa8bLbTGpajeNlhNRSInRJwvgkXO2YNa7QJhCTVEURGYaBvu+IuvaHoacfBo7uvcrq8HSCuhIpTWBLljGMyjh7e8cAOCMqLF6YVGY5ZYSRxvngzp43eVQoVUEvj1nOJUkjuEXlUCyVXfnad0HqFGwUHKbf3NVw+WnlqzEvX2f8eEwiZ5zOSoEuk/1fCim0SrjImgkgz2G8NDk/TV4gv23xGudnKyBRPmHN6JigTP8vGM9NO2s4ODgYBYc1mnSb48aW+fE9Tt/5OpuPP2H9Oz8CLQ8WnpsxjCgZDQZnjFr+xRBntLNksRuDKMPo2H5yyfV7P2B2fIpp5xhbieXgxYIp7J0qScamlyrc9H6k7OnJ8FoVrDEYI4l2hTsiWbZXe773e99jfbtm8D23t1f83X/wd/inv/VP2HX7CTD72UcRacZQGUNtLb4Xl/LpvXt8+uEn3N5ui3ViqamruYT6nISAnEnYakY9mxP8QF/f4jtL3zkSjpASdb+XmLsRErpdv2EI0sBuu97gQwfJ0O07Nusd0VQ8fPI2GA3SGSlZzy7L0q/LJgyVcPHkTZ+H0clGcIJCRrmiHo1JVKgkCOeNqTSOpXQ1x6BzB/GcyZ+KjaBJspGJ4EmA0zJzyoaXUljlHSou2iyYRsENSK6VVQ+V8kYkrBCRuWq0+gzMZlaSv/cJH8VlbMccZ5VGhpKrwfhMRZyMJikQ1ACglJgaK9fN18wWnTXiuQtG8qCi8A8QS2hOvU7Zqvo5rKn/pg9XVTRtc0cflFwIfY96Nmd+dp/+9pb+6SXFk0iBDOhHy//k6+Ujy5dyE52VZOnXO9z5OdVsTltJ1iCgzUqz3Uqxbu/S9KuinVAYTFVyCYlNFLP8wTLsAy+ev6Dr+hLS+eCj9/n06Sc/l6cmH+X9jchbyUGLzBcL1je39P1QwnamsriqIiVKeNmCFFhUtYRYfUewBhtk70QSLgQh/jQStutDT4gid4a+VyAOwQf63pOwrA5O1PIXDZGrurIhnKcb8j6EsnGKnshyZCywH996DM9kWTDNk7l7fsYgI4AaFbncJwOZDMbkGnYSBhqvlQ3p8SWmsGkEXAVsFK+g6ig1eKaHq0QuRJ9K7o1SuN3BSHfeTcXLBLpMniWpPtRydg2ZjKGliZGg+680HtU/JlAvUiqjTrn/5zu+EOCmqpx4M8qhAMCIwkiAaS2ze/c5+fo3GV68wH9yWwbJGe4sgnEhS/JlyAAjKzfynh8jq7GvuH7vA5rTU6rlIa6piQl60+H7nrpudH0YckgqJzxlhJoXIxisq7S6NpV8HWsrci8j7wNz1/KDH/wmt7c3hBA4P3/Gf/5/+7/y3gc/RlD2mPj6eY6CgXM4LSb6oSeEAUPk8WuP+dF7P6Tr9pwcHeFMQ1PNsdGSGg2F9L3kqGhVgqPCR2F9jlE2tLOOhHD67DZ7+qFnP3hu1reE6LHWst2sub1d04dAu1pxdHpvFBxpzKcZmYgSuRO4TEneTTLegk8k2GdQAruUvQpBvQk6CoU8aiKIssWhZb0pgnV5a+ZzJAwVlAdDB1M+p5QAZXwLcIi6tgKp5KMU6XlHMOU5Lcm6slLk3xymJFE5y9m9E4wJXD+9pveJmPNuUiqMuHHiFo+TZ04xgJG+VsLVKkBOuoRnUCfvJrlCEqbLTTZlsaogTUb6/8QAQb1M0yTKTDT2C3JI25OJGlIgIAzpomZwhmqxYH7vAXGzI667O6pteowgSdbGyMXFaHLCXR0ULPuLG9ziXNq/HIzM0CF4rWA0kzvcPdJLlxZPoa7jkpfmCqAKMdLYhvPzp3SdeDp2uy3v/ei7nF9dlOX6885innmbhAk+BGGuNSRWhwdcXJwTvJeGvcbhbIIU0QJN8dRg1GDIc0Apr7dJjUIrSrkfekIM+BDp+l6bG4MfpGw9xEjVtLTz5WTApypZf5c9HgUMlM14R3mO4GVS2ZkTa9N0SlNR3nK5qQwzk7kZz8nViJnTq1ywPOf4DJM/FLAyenr+MGWfS6nHj2fCtqkxYi0sFnMwkW69J8Ssy8qbvRTa4+79M7M2WQczjm0eVMpSFOM+60rNRUrlNH228vfJmkx5zX/+VfqFADc5bJPBh7yUurpNFM94MLjZjNXrrzO8+y1e3P4j4rV01nYp+3HG+Kg6YgmTQtW8UEZII6jS6irorhPX33+PxdkDqsMFqZlBDEQ/YEiYFICKZMSFbJBE41QSRrXySUsfrXUwETyo18YPHSeHp/zjv/eb3NxcE1Pk4vIF/+l/8X/mxx/8tIjHzzuNxowNPlOKVM7QOktbO5w1xGEQb04z48033+SnH3zAsxfnRC/3WbYrqqGhthWuarF1i6lqjEm4qqGu5zgzI8RA2G21z5Zjt9+w3t6y7Tqub67Z7fc0Tcuu33F9c0nXe+p5y2x+QNMupHs3CPCwQHIqoAzC7lyNijMlcahoLD13385hodyg1DAKQYv0CMtCI+fPFPBppJw5mEhla6a5KVY5b0hRrpccofDwUK6Z3SbCW5Q3Z1LvhljfVttzZII+GEnDChutCpiYgiQ9W1vkVAKWqyPq2nJzcYvfBYYAlTQqIyUk+TNI/7MU5b7CUAyjJ0rWnDNJCZt1hxhpfhlQJZNzbxR0SXSwGvNBQt4tGnrFlsRj62xJDPxFODJfyWgziKqRbzU8lQymqmiOjggPH7DtP4ZOc6HMKF9H1QkviXymu/duQEvOCV1i/+KCer7Ctg3JVZCGSZ+pRM64T/r9NDenKOISZzDl3bISMsYSgmfezvnkw6fsuz0pJfb7Ld/74e9yeX318qN+/jHUDxoDlTEStrcUWgFnHcfHx1xfXbPZbgXAAHXV4IKQ9BmnwEw9CdY6kqsxppJQ0zAU0OP9QD90DN6z1wRo55wULHR7fIi4SsLrVVVRWlWQDVpTsMydfllp0jJF94zskRH3TD0xJYHcGJh4fQqwyT8X42zc62OuilVP86QSqMiWlwyiAsQY/6bnFi6vNP5uBB8TkIUZH0wrlopXMUHTtFhr6Hc9cYiSVGwzRslVmIFEVTBY8R4z/cFgVX6XFZ/f/c4HYxn7lMej5C7qOKexs0D2rmWHxOc9vhDgBiOsvJFUkLpTSnfZtgIgooHZ8Rmn73yD/vyci3/2HmYQl+hIMi4VDtaMi7mQjb00OAmhxHela7dl/9k1Nz/+PvXxKdWDe9jFnGGQRF7rKnFxppzLkOuyXNkMmafGKjX4yKKiCzdGVosln37wnBfnF4SQ2O12/D//X/8FP/7wp4yq9PcfElIQgGStoXKGpqqYzSp56yQ8FE5J6erK4SqJZWOgco6j4xPebio+/uAjPnv+QtownLa0Q6BeNDSzFbZusa4mdDtiCJiq1n5OjroxmLCn79bsd579fuD6Zs3tZkMi4fvA1c0VffQ0jZBsHZ480A2UqdyN9vKSBW+NVepvETNS0WOkJJmxl1Ypcc4WKzBl+DTGEKMpHDpJy6UzCV0GKhZR6BLOdKP1bhIJp+SCkdysWwSR5u5kQaEaLiZlrE7aaDGzHxvpRyVuV6vJt/IcVikAcpiqco7K1YU3SawWy3J1SD2r6XbCDJvlU1AFAgpqTFDZlnNHsv9AkFApBSaHPnSfGEMwBpOigpz8TmBziERDiKVGdGLlCoiLv8/N/UU/BBRMQILJTFnoOpF16DQ8FbZbdp+dY6OUgk+te8Pd0u9RzI9/Hy3TYqdKftd6T3f5AjubYZcLbF2P7OZ2DCcUwa/gdDSKTVHc0iQy30RlSEo0dc3tzZatAgwfPD95/4cjsPmjxkkBVN5/zlqq2pI7Nudea2IcGG2iqlV41jJr59hTx83NDevNVtb+3BFdwlZGDClXtMI7NwABAABJREFUgXGkIAR8ufu8TUlz/Twhdngf8T7SdcJpk4AYIvuuI6QgicbG0M6WOFfJvUxesnfBSTFJsszOnt4JcBnnTz47zasqWCOZkgMiezPrmRwloCjwEikwU6hkQb2p5Rq8/MPdtZUBV5qupqlAVKk4rg/93+r6KaHxYnIDRuSzs/hhzClMRSZolCIlopl4tctTlScbx7igvOluGN8pFf4xnYuU8aJGWXQ8dQVO9PfnP74Q4EYsolTmRl5Ga+KNJRk/QpfaMn/4gNOvf4v98wvWP73AYJXbZvTJ2MmgJHLyZMblo4fHIA3DDEJ5n3rL5icfUp094GDW0ja1lEGGJNnHWchk8GQL1pcFYEC464UN1yIhAlTxdPs9rZvx3vd/yND1pAC/9Tv/iN/+/m//oSEoZy2VtZycHfKlL71JVVU8/ewZl+cviCHiu6EgemMMfRB25eUcwtBLojDQVC04yywMvPLGq3xiP+Kjzz7DmkrR/jFp7qhjwrPD93tiPwghVxwY+o7kKoKH7XbPxeUzLq4uuLpd0w8DQ9ez2e1wTcV8Psc6R0qG03tPaKpGhZ86ZCc5CBiDTa6EdZKyTVemElCQUqlmsqpkc/rT6DCWf52T8Ivw3mS1Iz21jFrCMUbtbEtGpKQkXj7Z0FE/n0YPjFZ2RaI2PDQIq50chR04JkmGNMLRYbJ1Qk7mU9Zg5T2yxkpel4ItGRMgRQ4Pjjg4XLG/3pdeU06bg07DZhKWE4s/qEdFdKBy2kiJVGl1IeOROWqiUtX7UnFijCMQIOp7FOstlu9NblceDc5+IcTI5z+mVjVQrCCTrUT1hDgr5eH3H+K3O/qrHSXjwbx8yaws1ECT307kmci5MmwYUjD0l9fYxZKmEk/Z6EEbAel4jA89qgxLQcXFQyGAJHoPtuLixYWEjBI8ffYJT188/cOHxognezZvOT05xlrLZr1lt9uK53GSPG7Qyj0STWULazGI58YYK70Cjw65NdfcrNfkkOiMRFWAmpCPxpCNklAAfEKqSXe7Ddv9jq7vCCESQmAYBoyTKiqp/oPZ4kCbDZu73hQoJIsCEFKhochGaU7wLZ6CLNUneHI6+AW8KOAV2pssvxQMkKSfXVkzpniMs266QzI49R6Rw3UTj10BDZP1MJmPqawpD6ng1ICyoo9J00nlU9vOaGYNvvOSd5MYweEUfhUvTVIjYDIQIGtxWnKVb1K+F7qJqDIu831l4CdG2kiLmlIY91Aax/LzHF8YqSSLIRbhCjqoWisfUyQkj0nQLGbMX3mFo69/ld3lPyZe+hKWmqJsg5Srlv6lee+/dO98t+z16S72XP34PdzpGfXhCu/3xDiQoi2ljAlb+jMVYQjydzEHdFJy0lpUwTDwyYdPubq+wQ+ey8vn/H/+0d9l+AO4Qior94hRckfffffrPHr4iNvbWz758GPCEBi8l+7SarmThNkWYN6O7L0pRil1bVoyW/KDhw/wIfCTj37Kze0N949uOVge0c7nukmTtCOwkmDrw0C3vma73fDi/AXPLy45v3rBdrejHwb6FJjNFjS18FE4a/EhkWxTBj9Xk1kr7QJkfMCYRIxiyRh9aS28hrzRkyhmtNoiL3qdPrHgTKUhI69KPwuSKbgoKk2TG3WNaEl4VDAlQkoZ9ED75ID4mLToN0VCCli9l8qSIiCz4WJU6SS1zOXaIrivb67Y7W7LvKeUCCGyXKw4u3efi6fneJ+Ku1h6cPmiCNEQnISmwkiPH0QASdJwKp4rCWOJly/vuZTEapJ370VBWuXvgTJXIhhtEUxY2Ze/SEdRFkn350t/TxMFZ2tHdXhAe+8efvcJfp+9FaOsyYpiKtInq/bOtS2JaHJmHoSdZ395jpnPcW0jnd1jEEOtWOJpImfyG0BmHs5/l28zKE+kFLi93rDbd9LAdr/lg49/+geyvI69y+SZHz64z2q1ou97bm9uSTEqM/EYdgCVL0DlJjosiSHgnBMIYwzL5YoYb7m8uWLRzRlmPW3danVVGkGCht5CDNLyYRjY7rZsdjt2+w2998KUnBKuqks4LHtmmSi/fK1SapymJq0YLSgIIc/USyEgk9nspmiA8VmnrR1Iefz0dGNfqp27Az/I+XNTsrty75Tz3+zkiiPLenrpTWT8zAjcs7cqjWsixiQhvKEwVOp0Jeq6YbFYslvvSng7WXS+x5B1DmdlA0u4sUaQlJs7T2+dKStKa5is61HwomNlVEmPyzOVOcyGyC9ctZSgNnHh21wiq0ovx2qDdkJ2ChjakyOOvvxV9hfn7P7R97FxunS0ggrhTcmJl1nQlLaJOlsWg7ERqwonBbj96Jzm8Ycs7j8g3XtICmPczyhvTYZD4vZzxSqxdvQfyaREUjRcX55zcnLKBz/5LoMXYfHjD36P9eb67mgYw7yuCDEW0PPW66/w+MlDnj9/xvX1LZv1ln7w9H5UTiRhZI668WKC63UHxmhuR6KqZ+Ty5dXhMY+SwZqnfPzxx3z80cccz5fcu39G286oqlpcx8Yw+IGhH9hu17x48ZwXl+dcXF8IgVYK1O2ceXtAWwv7qtXy4yHA7/7OR2x2Ld/+9ldZrhZYjd2WHJyUhCXZCrtoVhc2g0MjJdoGSQh2BCCXk1oFMeLeHdJQLDABU+phg4mFmw0fKwzWebOi0WCT2QVFYFprZKeDrrCxG3dxQWtoKjGRjwaMtZPnNEoHIGEGZx2GROgHTIxUlaMfYkl6XS4WvPrqWzx/+imbz67wHozNTTolKTqCcIdNvDnCbqv3wyCVYhFrKryCNvHCSIg1qiWVkBBmAjBJ1rzx5LwHjIZFndEGrkElzucXOF+EY5ozoquE4vlUQ2pUNYZq1jI7OyPstwwfS3PNouvklFJVN7HBKTU1E/ZhU2YmJ59Cd73DrW6oF0tYrCZ6zkz+hxKWMqYssum/8q3cr9tvmc1mPLs6V2WVuLp+Tt93v288amelF5NqlaPjAw4Olmy2G/b7jqEflLMqjUqMrNAyvkp0fRC5g4ScraupjAF6mrZlhYCQm5tbbm5vmVc1i+Uc52oN0YpczU06h6Fnu92y2W3Zd0ImGEg4J61enLOa4C4bOkZ4/vyGwVc8fHiPpql0X2aZnUGAKs1p1Ta5OiqHn3V2UxznUfd8ZiLPwKTADDOdibugtugbGL/qWsxjSVmL09/HIq/HFTEC6oIDdElMP8tkrVitqpOwp8i0EFLBzHVdcXhwzGZ9y7Deiw4hA5SXnj3LzHIvU5YeBYyMHpwMghTaF09N9uIbQS3C9D4ZO5MHdLLmJm/8M48vCLgBWYEj7s2N3XIoICSxVI2rwFpc27B68ojhm9/i+uPP2Pz0usTD8zKcbvyo/0uNjt5vYglZhDUn6dIe1nD9k/dZPX6Fg0ePlRguEqPBKEdNroLKwt86V65aFph6ooah5we/9bv8+l/4S1xerwlDT+/3/OT99+6MQl1VHC0X7HYbfJDk4Fdfu8//5H/8P+IHP/g++/2W65tLdvudNFVMufUAxZ0IUkGGgQ8+fcHtruM+huS9EGI1LU0Sb8ViueD+o4dUbcP7P/kJP/j0I373/fdoqpbaOZq6lqaRBnyI3N7esN5t6ENPItLMFyznC6q6oXIN1iaqSvI5+n3Prnek3vPjH33E86cv+JU/9U1effUVjIvFlS8eAANROnLbJGEbUTJSFeV0w1hyhZS+c+7lZQ1ETdjNO0aCuAWAliZ2CvysSWNPFUa3+pjAmS2qsXz1ji2en8epxWTzTlSwnrzyQYhvqIReEQBT1RWztub05IR28TWevPEmN7e3ONvw+muv8pUvf4UQA+vN1f+Puj97tiy50juxn/ueznzne+PGHBkROQMJFGoAamLNI4tTdZdI66Zaasn6pc1kMtOL9AfITE9tpgdJZm2iiaSpzCg1SZFFGqvJZhVRKKAKSEyJIZFTZGZM98Ydz3zOHt1dD+6+97mBBJCoLhYTOy3yTufss7e77+Xf+tZa3+Jb81cpsgoUVJXT+nBABRG6zVNgHAgxvuTd53wZQ+Vysup/2oLCutRbrXRLxpeBV66PmkYYrzci3JoQKKUpqx8t5sa7lh5w1KyH8N60Y5DdvcowIO730Du7ZNM55SRzGybUFP+Fja0JLFzc5BqLtLoJ6gKy0Zi416fq9dFGE/g1LrxDJldO4fNw/IbXbAJge4WdHZ1w9cYtsiyv23KMxuesbg5SSFpxRFkVVgxSQr/f4Sc+9QnOz8+pqtK2Tamqek1omlOsbqxGwHi+IK8qOkZY5lUr2ySTCANEkabb6yKDgPF4xNlsih6fE8iQQEoCl2+DsB56kRd1hZTBEEQRcRS53lK2UEM6Q6eVolQSUxlGwymLxZL9/V0Gg37NPtoptq/3tkDQMC9G+FCVH/ZmjO3evrr5NkDW5/F4mrYuIXdzpaGOGGJWgI4HRvW+5RmKBro0TpRfZCvA5cK6sntB7eAL/357HVJKgjCg3WoTbAf01tbI8wIhA9YGA7Y2tzDGUJQZJ8WBbbGjccC4sQuNHtnKSq4xeA2HXEGHdh3EfTGGqh0w7RWvvTOOA3K+UMTZb/t7V2FmcPmUH+74iIAbh9q0T4ACF5UGlA1JKft3KQKXPCYJuyH9qzfYfPlFZsMvo2Z2A1lNOrVnWqEKHWq3nwpgM7ytNozd8O3gC5ZPJswfPaC4dQddlhjdRYYrqLKO17oNxWhWSzBtcrH1eB68d8jZ2YTFNCfPMpS2QOG9h49Ic9vfJwwDLu/tMhqeUypNry25cmOX/+Xf/6/pdfo8OTohzeZUeU6eV64HjN+gG2xrP9t6Fg8Pz/nzr36H61evoSuFKnLCMKTV7tuwRQJoaziCQNLtHHE+HnF2PmRyOmIxn1IV1sAICaEMiZKYbnfAoDcg6SR192mfVBgIYZkBDG+8+RYPTt/iF3/2N9B6jz/57Fd47oVzXvn48yRJ5B5qX0LtdHQFCG29jRV40ayWlbivNSayLkn21KYtgdZuDsRKg0hLf2qh0MYbOppxrAtnmrCXlNiyc2FqsOIF72x7BwsqfDsMSxbZB3pV4cAgwVghx0BGhGFIp9+j1+uxtbXLYH3dnkNBt9vl0v5Vojim1W4xOj/h4O13qSpDpTSVrvBV2EZ54UGcV6XBuDiB0RjXfkIr0MqgKlBV09VbK1uGZa9Z10l9wuW9aRSBkYjQtcZwoFSpCqN0Dfx+VI4GEniw6XdrwwUGDN9HzhBEMfFgnfbuDkV6gM6bc3nbXq/KVUxjmjC5P6RwyfMrIKGcZxTTCWpjs8mN8oTNU5+0+vOqe+Yrq8ajOctlRlkoqqrCaE1R5IzGEyrlniYp6Xe7ZNkSpQ1xCP31Lq98/JMkccJ8vqCqCrRSVJXPRftgv9nto0xnKY8PT1kbrNk1pCqQsVUK1gbj5b+6Ntk3ChekWcoyTZkt5pRFblkb45sX2w05ihJacUIQuealotknfC6GwXB2dsZ4ecbN63cwpseD+4ds76yzt7dt9ww8pF2dk2Yc/Rw24UA/hdbxbrI1V8fe/+QRkWeSVrMBG3faf611slZCUg0+EHX4xw+wrIUHsTmQjgGpr2JlX1t12q1zYyvS4jgmjiI6nS5J0nKheIiiiH5vgAwCwigkXS6YnQ8tO6tXekiBY1uahWBZLCuKY+qQtXE/23+6Fpr0ITg/rhqeWlPGFffUYcb6/qwD9sNYmo8EuHE2GF+pIIwA7ah1A1pVruJnRQ9BWM+qvbbJ5u3nmR8dcf6N+2hlF5/ru1YPst88m6Fc9Z0kgTCEQlMaA64Zp84E6cER+XiCbTUkwIQriw0QVvPFCp/hIh+2RNZPyHRe8K1Xv0p7LWY4HFOWJUYYppMhaZ4jBCRRwPWr1xgOT8jygm4n4PmXnuFv/q3/jNvX7/L7/+T/TbZMqfKSLKsolULX+9lFYAMQSutBZIXin/7rP2W5zPl7v/vXuXKlTVCWRCIg6XQoq5w4aiMCQ7Qdk8QtNud7XL+WMZtNGY0njCdjzk6OSLMFg/4G3V6PdrtNK2rZhGptmYnAtZsQ2oY0qqri8HTM119/zOPDJ/zKX/t1XnjuY3zrm+9wdjLkp3/mx1hb64PxpcU2xq3reHPj7tjx9bFb+3DboXadYoXv2N54CsIZGGtEqJkWLewcW7tiP0/XIQm7II124SjhHRX7uYEIMXWXaEBDZbQVN1SalgNMtTdWx8FXXEJhpQ/CMCFJbLPWre0d9vb2QVi9kDAM2draJm53efb5l/nkJ3+G2XTM6PEZRaHRCoy2DQyFqzZr1nnjnWpsabt2yq62h5CqczusM2gpelMzN45fMpVlJ3FGrqrcYATumdVUWqH0jxhzU3vKbjPyc4Y1orXejw8DOaARttq0N7cp5nNS13sKUfsyuKUJNIBnFZoA9aYcGCuSaJzgmqmgms5RWe4IAuGAsLi4aRljE6/8Xgq2sspYL70oFCcHhwRxQLrMLBsnIMvSOsQdBpK1wYB0uaCqFHEk2dpZ5/nnX2RrfZtvfvubVC6Xr6p0w4Z+j8Mrw1dK8/rbDylLxcsvPsegHyG0bVQbRrHNJQpChAyR3YAgiOgUXdZURV7ktpdenrFYzKmqkiRuEScxYWhbxfiwSw0YhUdcxjqLy4wnJ1Omsxm3b9xla3uX4+Mhy0XKtWtWAf+iTMLKxACe96g3VgN1mMoleNftBKR3bk29blYu0K4rhFNPdxPlQ5d+015hbjx48qe3IMvmA3rHThjbksUoQ6A9RFtZZfX6M259eFtjpTsCJxTa7nTpdfvWWdO2sq3T6RCEMVtbu+zvX6PIM7LZ0uZMOuCitbYaTPWY+TxIVkJtzmHSvvedtynea6TxAFbH3rPq/lnSvopM1uf3/fQ+7PGRADf2MFiOxSWCSuUqaiSqss35DFbLAGkHS8gQGYd093fZffnjZCdnTB4t7PiZBmU33tQqdm6UWnGevu9daNE3YAT5+ZD07Jg8ndPd2LAvkNIuOcfY+DijrEMfooatVWV4+OCUd956i0//0k9S5lZ9F61ZZkuUUrSikN2dLaJAMJ0vGazF/NhPfIxf+7Xf4sde+Un+2T/7Hzg4OkbrnNFoxHSSryjLfjewiaQgDGX9mvE05Q/+3Z/zzvuH/Od/61d56fln2drYpL+2QdLuAUtMWRJFMUEU0u1XlGVBnmfs5RlFXjA8P+X8/BxESBSHhNKOo1IGXWkqo+zQIKlMgUKzWGYcnE7QxnA8POOf/5t/yqePD/iZT/88B4eaP/y3/4Gf/synuHrlstOZMTbMhK08oN5jfMmlBQhWedRYJgRlVU5rSXf7sAVa1iWelr2xMWADtUaLXwe2GqrxrmqZda0JpHCq0sKtT+8N2YdWacgqA5Goq2S84bRfTW1+LLVqQ0HWPtru80qXlK7PjhHGVnJhNwtRFgRBwN27L3A+POHV2Z+wLIu6aqTuD+U2ZZ8HYDshW3E4ZbQDM5YB1dp3dbZ37A2X1srypatgxenjaJc3Zp8NtRK+0T9SjTPt0cy7ndNVz7TRM7Ll2BbYCie/EPW6dHf3qBZL8rr31KqrdNET9R59/XfP9nJxXRigWqaUyzlVVRCZFkIYV+HjN6qVT1oF/56214bJZMn52RlXb1626wNvh6yGThhIuu02gRTkRUmSBFy6vMvt23e5vH+VN77zOtPZHOPawOS5enofunBIQV2pBJDlFW+9+5jz0YyXXrjNzvYWnVabuNUijGKgtOFnaaUh4sSun45SlL0SpRRpakvXQbq8Gj90pp4fz2FZBtZQlYrZwtJpizTlO++8ztXFlGtXbzCdad659z7Xrl1mMOhj2VvTzLubADu8K/klwoMEP6navteDSQ+ADehaPNHZCn8Os3KCi9tP83fHoEg8+3KRVaol/wxUxoAMm1P4PCL3sfWlCmq74K9LSFlXPfp9y3d9Udq4eRFsbe2wTBccFA8otaJSVWN/HTBswtfO31kZN+2SkL1GmVeRBmqG3adSNIKHgLPfdQ4pAuNszWoC84c9PhLgxtPhvmVCHc10A6MccxOErny3hrcaIQVRp0Nv/zLrz91mOfwm1QJrGPx5hIdO3mOr/Shn/CVCVASug63AVfEAam5IT4/Jl0u3aJzMvnSlf0IggtDn8eGpy9HZGUFgqFTCdHxA2II4tJ/rkblStrX7xtqA61ev8u3X36DTCfmJn/okv/qrv8nHXvoE8+mM0XhBKCPGsyF5XpHlvmP1d5ucKJAk4QrpagxZqUgqzetv3+ed/+4fsDHosbGxxtXL+1zZ32V7a51Bf0B/0GNtMKDb69Bqt0naPdpVjtaa9Y11Nja3WSyXVGWBcJoZeZZRVGU9J5VW5GXFaDTlq99+j6OzeX1taZ7zp1/6HKdnx/zGr/wOQm7y2T/+Ep/6iZd47tk77kFz9VHa4Ou99YohsmMsndYQ+KakNn4eWAZJOiViBEJEzgsKbHq5woUKbW8Un7Duk9pqRFVv/AK0QYnKlTwLrDaF/VtWaSpCet0+raRdV4M5SsTdj99MRb1R4nRuGpEyW44dRhGVKQlFRBSGBEFEFLdY29zipRd/jMl0wv3332Q6n5FmKZ1uD2l8fFs59WXLslRVgVf4tgBHr5R02/CS8eJ/pinz9vkCUkiMsNUQ2lPOQiKckKJWtqzT/BDe1H/qow4XroamHVCoAZtLbrd/Mo03LITN++j3aW1vUqZH6GIFuKzkdlx8MmuIZCGNA7y2oNL9zQh0qakWC1Rp5RekD3Os8kBPhQCFgCxNEcKgTUCWTpEhdasOv5a1C1u0k5i1tQEnp2dEkeTy1UvcfuYuu7uXKPKcNCuQUpJlqQ1/VorvtjL2kEIQyIahMtgqPxUITs7HnP/512gnMe1Wi8Ggx6DXo9NpkcQJcRLTSmKiOCKMIpuzp2OMMbRaLVrtDmVR1gmwxlhRP7VSKaSN/bwsy3lyOma2bKqAKqV48PgBy+WcO7eeA9rcf/8xly/vsrW9WTuvzRwLhHFWRjSbK86m4xS7fe86n2/lJ1LWfS/8Ru9INq+bdBHxUjO59WIx9ftrFsMBG/+aShs0kiSKV4QKPUvk9zbq9dR8mAvjudfYPBiNdOXvwuU7SREgg4ik3WF3Z588zxmPzsiLgqqsiKP4AtDwqRm2QME5jI7lqatUfaVV/VrTgOU6P7KB+KvApkacq+f8fhTiU8dHAtxYIkPVYmD2oReNFLdxKBRHiQXCtgjwJb5SEPR7rN26S3p6yuj1A1Qlax971au6WAxov9M4rRUEodSUaiWWqWB5dEw+HaOqiiCO8GJvwn2CFwXwqshlWfBn/+Hf8qmf+gmuXr3M+UZJd00wm47Y35OEMkKZAikMe1trrK93iQIBouTHf/IT/Oqv/hbP3nmeKAz57Fe+QqUCyipnPpuhSkFRlB8IbMJAkIQCGQgiGbhNDYqqoiglEZJKCeYnZxyeDXnj3gPAMgVBJAiFrXJqxQmbGwM2NtfZ2dniyv4+ly/v0I4tlRwGVoFXLSytnRUFRZEznS85H454695j3nz/lPGisLlSK4elrt9kOpvyO7/xu2xvbvP5z3+VdLngYx9/kTBwGhWua7XWPpHRCSNixQr9A2kc22Gc/oxlPQyh9DUp9pBCoI3N7zEu4VfpEkNppXpXhO9WdWOM/QmJsHo00ssyCnJVUeiQ7to2G/1117PIOKBVWaNZVwzo2mjV3plLWNVGUxSZFWAMgjoMIGVAr9tle3OHLM8oy5JPffIzYCTz+YLZbEqv10eKVp1jpbwAITbUpLSrYPElne6Ba7JqFMpoVFVitECZijAImk1U+aoQQWUqe+9OPlSZqg5n/cgcztX0OkuiNqTuq99oaoZkpcTae7txTGt9k3KxIDuZobTg+x+NDdIIfGJ5jZn8JWgo5nOqLLMhwsCH0RuOx20T9RmVUjx6/x6Xrlxmba1P2tHELUGRZcieIBASLWz+Yred0GpFBFIAiv0rezzzzF22NrcJpOTB4SHaVc8VhdXgevr59YcUVnVfehDmNnOlNaF2gn4VTMsls2XK6XAM7hkWUtRVTmEQ0G4ntNttut0O/V6Pfr9DFMi66hIDZWltXuWS4YuiZJllnA0nnI2WZIVnIlem2hhOzs/I85xn77xIp93hwaNDyqpkb2+nDvkZN781sWL8aDfsrqQBL7g8O08p+SpZ369QANqz+Iba6bJK9o6p8euNBuT4Dd+uQ12LDIJlVpSRRK02raRFENgEJtvOxTM7zpGvgZOoGT+/xiwArZwAY1PhJ4QkjiM6umOZGqXYv3QNjKAoLFMcJwlRDcC82roPW3kmVKwAEer78vyTr9TEyW54YVc/7pbUELUz65/XWizxw2Objwa48SyNj4N76t8SxtpR+XYAtFEYbTegxusBwoDu/j7bL32c9HREfrh0qVTB6gfZPcUPpjMVtlmYK8FlFRAZhJEUwzH5aIjKM2i17ImEi4VqBYHto+r9MyklSSskjGzH7a985VWyYslkPiFOQooiR6Dpd9vceeY6cSvk/GTMj//Ex/jt3/4d7t55ls31bcqy5PRsyHwxZTYdM5+XSNe80h8CEFIQSsvY4IAhxrUi0LY5YlG5JD0palpXC41EUKmCQIfkLpt9KjJOR1PUOw9spYKCIAzotlvs7mxydX+bS7ubBFIwm6cMxxPee3jE46Mh87SkUHplLxCOAr443w+fHPA//Mvf57d+5be5evUWr37pW6TLjJ/8yU8Qx4nbBOx9+KZqddM5nwvjkwqdkZIiqEOZq3L1woFXtBWB0tqJAiKQIkRIDVqjhOvKjDVONsdHI41jgoxNWNZSUipFaUI6/Q0219fottso4wTvaB5EK/rnDYxZoYpVnX8B2horb2xcQqWQAVEYs7mxZYtTtUJVNm/m4cP3GY5G9AdrRFHk2lNopwelMD6XSCsnaibRUiBcaoCUso6Ha72i7YNGa19TqPDJg7YSz+cViEbQT1WshnV+NI4V52Xlf8Yr1dRer17xgFfyC6Qg6vfp7uxRLTPUrKxDsk/DnNWf/Qbokz+F0bXP7Y2TSjOqLEWrisCs9Jiq6Xv7+poLEhCELnwjJYeHB5RVQV5kBIF0IUOrVLy5sYYMJFmasX95l2effY6tzS3arQ5aaxbLlKLIyfOMomh6qT19P5axuegyap8calyIA5pcIbdpCaDSCmmk1YM2hpySRZpjzLjeEIUQxFFEt9tmrd+h120jhHXq0ixjOJkznaUUla4/6/sdk/mM19/6JndvPctgsM7B42OqsuLylUuEzgm0+MwxIathRH/XKyBB+OpOPyAe1NQo1Y7chdJyA7XyKC6M7ObPKyh7VqJJprAfqDUoI4iSFu1WiyiKavZjNUzjHRZRA6Y6KaNZR7iKp5V1Jdz9SRnQbrdrkOXzZiaTEWmakiQtAumds9XQVANoVu2xqLXemuow7ZmbC2ClpnJWgKYfC/9e/56/ROZGCHEN+MfAJTsr/PfGmP+rEGIT+P8AN4H7wO8ZY0buPf8n4H+D9Yn/d8aYf/t9P2RlYPz3TQUOGFNhdUwC9/sGUfssCCEkca/H+o1bzJ9/zHz4LeTCVul6gq8GM27hSXeBylW72Ndqz8fg+xfpWcry7Ih8MafVH9hNSIGQmiCQ2D7kDilLm91/9eZdHj94h+MnD3j44DFZqoijI2Qg0MYq0q6tbbOzs0OSxJycHPLKJ3+e3e1tOq02QmqmszFRHDOZnHF0dE4UxkxmCztxUhJHkjgM3QqxG48xtsliTmm9bRf3zAtFIAXSNFoeCJcnYgIqB+58GbQRjZiewZAXJWlWcHw25bU33q8BQ+XE49RKzko9rdDQlx+wKEfjIf/63/5LfuNX/jo3rj7Da994m6qs+Nmf/zRRFKJNgBSuBFnL+gHxIR1bUh1aT8olWRpwIFU6sAB1KBGDzQy3CrvSCIyWaKlddZYzJqimm+0Fo2MBbKUMmRK0egPW1zfpdbpIGVgv13lqULG6DeHGVTpmyf/NKrnaxpSewhU0nbi9od/a2ESrisrlzgghOT87ZjgcEoUR7Xar3jhxoSmDLeO2rU1sTo8FbmB0ieca/a7kEx1tmabzrIR0SXz2umvlZmz5rVLayST8zz/+SmzNisFv8ILfkHxZsMYQUJPlghUBOGtrZBSRrG/QXkwplsd2/aysce+t+q/OtLl8Vpffh9sUTZ0yiikqyuXcVjXGsVNAd7orYkWd212HkJLB+hbTyZDFfMJkPKEqDYtgYXs9oRHG0Gq16VRdwiBguZxxaf863U6HKIwQAvI8R8qAPF8yny+RMiTPi3p8AifK6TfemnPQUHm5A+fEKNUoMdvrNvWzKBBoZfDaeH4rr3s2YZODl1nOYplxdDqy8+LOZ5ncH/7I0pS3332Tu888y9pgg6OjM5TS3Lhx1RV/uDw+0WzEBr9RO/FKB05W2Z46x6beYXzY0PKidR7gyv15MOVOQZOis5ow4Zx5DZWGME5otdrEUVw7bZYosRGMeqHhLa0PRTUs4Wrpe0OBuCIe91MgAzqtdsOau305XS5I09S14AitrfGD6/efGtjpZs0LexNNOsjqP6hzRk2zf/kbsWyPB0FNPuGHPT5MZVUF/B+MMS8Anwb+WyHEi8D/EfgjY8xd4I/cz7i//V3gJeA3gP+7EB9GM1nUX6XjTqzYmwRCVyEg6jCF8JdvbD6BkIIwTmhvbrD+zHP0r20QSSvxXT+Swm+4NX52QQiJNqLp9yMMoXBVAEagc8X88DGL4TmqUm4Dcl5XXWpsaVRcOCSJIqpKs7W5y42bl9na2uT4yTHz+ZhW0gEjiOMuYRjTShKu37jK1SuXiJOQKI6YTsecnJxz+dJlnhwckqa2yiWQko21LptrHTpxhAxcNryL0UoZEoUBwnhVZ7t4Ku2Tf+1XpS3LUFaKUlXunw1RVKqyVRIuU94LvCGE3RgNFEqTlcpVU/j5e9pvtccHmSMpoNsSTBcz/vB/+tc8OryPDCTf+vY9Pv+nX3QhmtCGzLyuhZS2mWPdaC90QCd0dLckkG7GpWdv7CblvaTGxXIeWp00KJHGtfGQgaVLpX2/EKEN2aDRRpKVELV6rK9v0e/2XZlpU7lQr2jhPx9r9EQDcIIgIpBWs2OVHkbYUIM2PoxkVbHjKGZ7c5crl29w+fIVrly7zvbOHstlyvnwnGWaUpaVu2dXYaA9yGnCUMZvMsJ7rBIpI4IgtKECN1ZaabtOlDWwWhsqbSv0lFKuiaHTIPnLC0v9ldsa/9V3Z19VyPJgeTV05Y2rDEKidovWxjbJWtvKSXzXCvDHipZH4wbVm48UK+evNMVsSpmlNvnSGywPwNwa9npNCFv9pJWh0+6xttan3WmzmM8piowwiADh1pskDAMGawMGg75le4KAPM9YLJYM+gNmsxllqV2Jv6CVRLSTyIaJaqkd4VaTJJAeFDYaWzZ3Cxe6cPbWWGBsxQKtM9RUwDShDft6z6qJmgmyNusvBmwEEIWCoix45923mc7GICUnJ+c8ePDI5liJoG6HImzCWRM+th6TPVfN4IjattT/RNP8tnbnhLh4IXjgYsfNh+c8iPKig5bBFVQaZBiTtDokUeKcuou2RrjPaX7nv3PnXPm3yuCABQ1+fjyDEwQBnXbXtn/pD+gP1ml3e7VadFlWdQ+05rmoT3nxvh2S806mL+5o5Fj8OjC10jFmBcxo4zS5fGPgv0RwY4x5Yoz5mvt+BrwBXAH+JvCP3Mv+EfC33Pd/E/gnxpjcGPM+cA/4ye//IR7Yuv+Edp2S/R8voj3vOdo/mZXfaAgl7d1ttl94ke5WSCggWFmkTy84r7CijLcVTrFYCPy2iBLMHx0yO31CmS3xr5IuN8FvuJbutxvj1dsvMDof8fXXXqXfG7C7s8dinvL6t7/Oxvqazd8Rkl63T7fX5eWPvczO9g7P3LpLv7fG0ZMnPLj/HpPJmNF4xmDQZWPQY3u9T7cVIQOQYUAUBNbzQDjjoai0IgiEQ8L2PrWBSlsvuzKaSttKLu0cAIwNU2jlfqft6yttKN3CWqWbXWSoeWBFg9s/zKENTJaaotKMZ1P+3R/9K05ODpBhwLe+9TZf/OJXMLpCBhIRGILAGVKxEkeWNnHSAwRZP8CyBgp+fTlraxOIHcOhtWcdnCcvG79eiKAWCzPCIMMARECuNGG7y/rGNmu9AVEY1g9jHW4AfELgam6UNWambrgq3f0EMrS9y2qMYCwrojVal+CAWRyHbG/tcOnSNS5dusLepX0GaxvM5wtGwyFptkRVJWDvSxkvlEWdQCucKBdA3QMHD9i98Ra11H6lCrsmtG3nUKmSslJWL0dpVKX+0gSK/ypsjVlZFrU9EQ741rbm4muM+CCv04AUhN0OnZ0d4o5sGtuunL32old+9pXeYuWTPKQSRlBMZuSLGVqV9nXftQH6h81uaIONbdI04/DJY+I4odvpURYVJ8dPaLdaNp8RSRwlxHHE3t4u3XaHjY0tp2kzYzwekecpWZqTxDGtVky7FROFsq6IstV99kp9GEIZB85WHnsbwjQrr2kYFx9uqTc0D2q05cu8mrzfw5oqse/nPn3/wwB5Ze1XVuTce+9tFvMpQkpOToY8fnxI08uwYTgaW9M8G9/1t1UjY55iYOqN2tSbeH349bZ6Xn+v0towZQwijGm1O7QSB2z8+T1rtDIyPoTsf3XRPruUC2FzRJt8GFMDCb3K4AS2PLzXG9Dr9+l1eySttg0NpqkVdtS6vha/C9u9XKwAHQ/QvZFYMRbemXIg3lZV2esxuiknN4a6DcQPA25/KPUtIcRN4JPAl4A9Y8wTsEYJ2HUvuwI8WnnbY/e7739uBypwtJRvLmiZFOGkQpTztG3M0udeSGzc2b5dkPQHbN66zeadG8Sh70+kGzTtHxxcsMIItJH4hDDvXwU1JSlZHo8ZP7hPNp3ajd0JCUrHLkgZEgSxVYJ0wl8nwwV3777AeDxBBjCbTfjin3+Bjc11uyA0SBLarQ6tZI319UtsrG3R664xGGzw5PCA9957i499/AV+9dd/gbsv3CYKw1qDwm42NrmurBRVpShLhdJghCT0pergWBqD8gna2teOAVqgtKEyvhGeAzeVTa6ulLFgSIFS3pFskudkM4ms2KIPmOOLh1+o2hjOxxP++LP/huVyQhBEfO2rb/D1r38TjEt4dt1sPT1uJdsDmj5HzfZhq6lWthP38K3Gbms7U4dEbQWNcAluUjYNLoMgQMiAUoMIW6ytbbE+WCeO41ojZxVMXYhBr0K+FWNkMUSTU6GULbn0BlAp26hUaa+YbI1ZEifsbV/i8v419q9cY2tnj1a7y3Q2YzIeWu2S0orrsWIQvBEzwpU1i8D15DG1cbVg3Y6X9DoexiUdu8aaSqla3M2CYYXSTUn0X9bxH9PWwEUQ7j1WUXu/T21EKxIDzdqwfwrihPb6Ju2N9boBL0+Z4KfXRtPKw39+480bBOUiIxuPKbP8AuAUUq50d27EKRGCZVqwtbVDluUICXme8fjxI9rtpAYQEBIGEWGY0Gr1aLc6xHGLJGkzm00ZDs/Z3d3h9p2bbG5vEkhZhyaMAyw+LGqdnaZX0NPZRjavzQ+Atel2Ibocx/qa7Kh4pXX7jxr8gK96fHq8/uJAJ80y7j94h7LMEUJyeHjK0ZNjfJjJpqSsAspgBWSZ+pPNyvfN2f1m7nf3FcDhQQkNS9LcEc0aFNI6kjKk5ROIZXARIIkaQtXnbvia1dM2a9szKNo5dk3ptra5c26e/fsCGdLt9Bj01ugN1mh3uoRRRJ7n5FlKVZXNeYy5YFO9m+iBYI3Ha9u3wjN5J9z4eXeJys5ZryUuVhyzD3N8aHAjhOgB/wz43xtjpt/vpR/wu+8CXEKI/0YI8RUhxFdG49GFxm0Y5XRnAgcCPHpzaodu09aqqjcuaZp8HBGFdDZ32XrmOTpbbdezwspgW6bCrFyUTSNUSGxjwuDCwNsXScxSMXr3bSanT1BF5eh8WW9SFyZNBLz6+c/yrddeI2r16bTatrwxTnj7rTfJsgmtdgelKgadTcIwIk4SwiBgNl9SlgXr69vMlhVh1OPq1StIIbl2/SrrW4Oa4s3LkrK0FSuVth6SwbIqoQyQwUX6sqb+HJjxnnelnSy2Ny7KemRGe1rQ6rkYLMPllXGtJ+C9OhxF/T1WgBvKKAgIg/C7fq8NnJ6d8Sef+0O0LpFBxJ//2Wu89dY7drNFENYgR9SyAbWx8Zym0RhXqu0zp7yaZy0jjnA5LgafPFrbDJcEV6M2R6UWymBERH99m7XBOkmc1Magod2dXk6tUO3P7ZOInVmraVkLuJW2TUl9OaXBAsqyLFCVp+0d2MD2gdne3mN//wb7l6+wtbNLkrSZTGdMZ1PSNKWoiloZFD/vAMYLuhvXZNR5ooGbR+dMoHEMF43N1l7rpqmgEgRWvfkv8fiPaWuyLFsBICubpwsH+IXQlJ06uLOSV9RsTBZchO0u7c0two5rAunB7YWLMvVXDbVoaQNpVm6pNKSjIflybjtlCx8285/u2UH7+4OH9zk+OiIIY6IoJAxDwiDg/OyMqsqJwgijNUnUtu0QghApJUVRWJ2tVsf1NIsZrA0QQrC2NqDVscUTxlhboZ0R0PW9WZvXhFaengQfrjI1SNL1A4PbvFZDV82z5As9LpAd4uK/H3TUfaeeOgywWC65/+AdvE7Wo0dPODsf1iPsmSrLCD99Dt1cbO0pO6OxwtL49VP3UzLNynMzfeGGPMBVxmBEQJx0SOIWYXCxaVB97hXQtHp3Td7KimPlAYcxje1zDIsxpu7daPdfD7Y8g9Ol37Mhqk6nRxiGZHlOlme2PF+rC0C1ubSVVe1CeBdB42ogDTdW1Gtj9X7tH344OPuhrJIQIsIam983xvxz9+tjIcS++/s+cOJ+/xi4tvL2q8Dh0+c0xvz3xpgfN8b8+MbGBnjFX6f6KYMQKW0tv/EKr9oNvHYVBzjTJAOXM9oslLCT0N/fZ3BznyB06rfgCvJWhaBWN22Nz/K2KcaNqJI0gsXjYyZPHpOnS3s+IR17YBwydarKWvPalz5HqDNOD+9b4CYVYRiQLmd84xuvsr216bQnYrSSqKpiMp1wdnbG0fExWZqxt7PD40cPGJ6Pmc9nnJ+N2N3fJowkVWUF2YpKkVeqRtAWcNjqCS857g9lcI01rfEwAipDg+jrsfAqv6C1cCGtxjBpY/OXnIWtx6hJCv/ea0nKgP2dHeIoeuraDIU2PD485MuvfYEwDFBa8CeffZUnhyf1JiylJBBB89i6eWuqNVYMTm1gZJ17ojFOUdd7T55BkXbGTdMUVbr8lUqDQtDpr7O+tk671Xb3q9x4+P5MUJeRG7/BudJwGdYPrB8ir22jjaZSirIqXcKuwGhFnqWUZYGp58Mm+wqgnSTsbG5x5epNLl+5zub2HnHSZjq3CaFFnqNU6bweF4ZyRq2ZX1uJaDcoC+Lq3CpjVko3q1rkz5fS+wQ27Ypc/7KO/9i2pt1uNbbG70s1IwKrhF/9/tVvmvgr3isOooCk1ydZ79nKO2cP/DPlHYGmw7oLIaxs0sKFxgQWtJfTOdlsiiodK7bq7Xob7wDv0eMHCFOxmI1dybJGSklZ5RwdHdDptN06DDDarqEsz1gulsznc6qqotftMp2OSZcZRZGTLlPb5FaKuoedcmyNrp8zd73O4VjdfPxr6hUvfO5eM5Q+/8hjSm/iV8+vVyeKeqv+vjamfq0Q9LtdF0q7OJ9Kw2w24+DJI1dIIXhw/4D5bO7vqp6P2lb4e1pdECsMTX2vK9fWqDu77bvWr4HV7dfbUA0YI4hiXxlltbWaJOdVYONHz4MmC1h8/yez8km+X5oHmFqrOknKGIOqqhr0GA9Q3L2FYUi33WEwWHcMTo8gDCmKiqKoXGhaNWMj/ISuAjGN32EaeL4y9+76V3OALoK0+g4/9PEDwY2wo/4PgDeMMf/dyp/+APiv3Pf/FfAvV37/d4UQiRDiFnAXePX7fkbtHRmnSCisMJ5s2BBreLT1iqVryysCJKEzThZYWDEiCKKQeG3A4MYtersdpHuvxtRJtjWCNlh9B2PqzG5bOdV4VlIIynHK+OF90tnU0mP+AZeBq7TRSF1izh6gzw4Ynx7w+jfu0ekPmM2mdLodZBDwuT/9LP1By3bFVhqqiDhqMxqPGY6GnJ6eM50tuHrlKj/z0z/HndvPYkrJaDRGVYLuoIUIqA1O7Ul5QxlgN2htauMJHqE3IMUYU6uLemNjyxh8fF24cF/jVRhvpIzzjOp1YufpBy2+oiyZzMZc3t21+Sqrf1OavCx5+503eO/+68RJxHye80d//GdMF9N6tQrfV8PBFWFRhWM+aB6s+j8rROYTF62Ogs+jcBVjMrQgOZAOWAdIGaERlNqQtPoMBut0Wm27jkx1YQ01Xx3bIQw2l0U57RnbPsRXS2F85+PSVYbaKjf7UNtYc1nmVkTN21BjQbo3Iu1Wi93tS1zev8ql/X22tnaIooTZ0gr8VaVq8rBU4YyHV5ytV79dv4F0YSrZ0ML4DceyYT5HojZSgrrc/C/j+KuwNSvbI3U+gPe6RYNZLqiZC6AWMHQep/EdqUEEkqCVkKxvEHcjPBPjw5UXnolmL6zzBVf8a/y4qqwim4woi/xiEqVYYW7QmOUEs5ySL6acHA2JkoQiz4niCCkk9x/eJ05ssrjRGrQkDEKyLLN9nZZLsrxg0B9w7dp1Njc3MVqSphlaQ5SErrLJbYr1TQh8Kbq9n6cQob//FVtTv7aZiub+BXWIjaf+bqdo5cU89brvcSgH4izAufh6ZWyC/PnwlNH4FBkGFEXFe+8/sp3T3ec0H3Px/i4o5a6Anea5WQVBTx0upwbhWVznFAubDhCEMa2kRRhG9WfVMOYp0N18tBtn7VniBph5m6GVz2lhxQZ4Zq5qHDTjOZR6YyCMAjqdLoPegF6vT7ttG6DmZV47ZU2CuJeQ0Cv7klvlwpXRS+o5rHdjzy7VQo3mwl02gOfDHR+GufkZ4O8DvySEeM39+y3g/wL8qhDiHeBX3c8YY14H/r/Ad4D/EfhvjTHf1/rZjcepp1ZWIdSWrbo4s/DyeIamKSCAbZQpJVb8zVXURGFim4C1EnqXLrF59w5hy3mj9QNKfc7ayzIu6Qo3ucLn69gHWZaC6cOHzEdn9hqlZyzcJGpDfP+r6D/6f/EpOWc5HPKv/sW/4P77T3jrjXtEcYDQmsPHj3j77W+ztb0FgNASXdoNrixK8qIgCCX7+5d45tZtfvM3/ia//Td+lyjukBclg8Em/fUWlvywGjdSQCAkQSgIXdfyylGN3zXawqNkU0vq+z8ZdJ3wCiCFsS0IzIrniH8AGuQt/ER6p+J7HQIWy4zpdML1/f2LAMdAWijyLOPrr71Kmk2JWglPjs74/Be+SFXZ5Frbx+Xiw9d8uHs4jAsROTrY/tblaomgZmuQgQOnNn/H/t7+zgjbwiKIW/T6A7qdrt3QHQ2rlXG5J8ox1WYlVOZq8YzGaJuvIoUNqwnpmSI3dm7wtOvS7RtRWr2RrFFTBpeHIJ3ODLSShJ2dS1y5cp29/Sts71wiDGKy1FYzaa1sPF37hphgdMM0WZFM38bB1N9778sKjwknuWDAgSM/4bZL+w/eaD7k8R/d1kCjQuzZvIYiX9k0jd+mRL2+6k3Y5WIhcaE9gQwC4m6P9tYmMmxY0BXHfuUKmgJd7zz58/vfSQX5ZEKZLsE0f1td58H4Ceb9r7MvCso05e233mQ8mnF2OrQSFcYwn045Pz+h3em4DxceI9uwtFNJ7/V7bKxvcufO8zz73AsEQYRSmlbSJm6FteJxE6qxYMRXLjbA9wNGvBnS5nfuez8C9tyNfEwdMrlwJrFyjg+3yZVlRZ7nrPX63wVwSmVQleLo6ICqygjCkPl8ycNHj90z913Q9OKk4jfmJn/lAouCKx/3bI2Q4HL66rW2kg+jjUAGoRXL82Kx3nE1HmA2AOTCNTjKvM4nFL5god7NHNDwr3OA012vUpVryeKThJshtucURGFIp9ujPxjQ69kQlZSB7VXnpCzqMvP6ui+G0DzY9eNYyxz40Xa/F6vv9Y6HEB922oEPVy31eWOMMMZ83BjzCffv3xhjzo0xv2yMueu+Dlfe8382xtw2xjxnjPnDH3wZvveJQpnSMgrCdiGWIqqVaDE4zQ2vNeAXnysHDkJkIO0/GRCEEUl/jcHV63R2emi0lSVbWRmNzJLTuzHGpfRoF5aCQFj1ggDIj0csz05QeVWXC1uRNAimp8i3v8DDt94kmY/5xKDFfHzOa1/9Gpf3r5C0Wuxs77C1tcG//5/+kPW1HmEYoJUinWZURUFVFVRlAcawt7fH7u4OSRzxY5/8Cf7O3/49pIwJgoSNjT36Gy3aHUkQiFoKPQxd8pun975rPkWjKooFM57R8IldfjFql59jjbpLsl6heLV7j24s1Q9ce948T+YLlssZN69eIQ6D+nq0gWVWMp8v+fJXvkCcCIIg5PVvvcdbb9/DC615oCtqytY/L6ZOQLPhIhvOAd9YUzgnXCJc6NMlnCB9Uz9hS8w1UBlBq92j2+kRBqHLE9CkWc75cMxoNCGdL8iXS1RZ4XuaUWvI+IR1m3hbVdaA2MRFP1e+LL+sWR+DoSxL8ix1PaS8xyXqMJwFlZJeb8Du7lWuXX+Gy5evsrN9CSFt4nlVFraUWzXvteDKbbLCZv7Um7CwocNQBk4YzpXIeqar1hhqeDG+C0D/xY6/GluD0/HxINhusBcSR8HNW7Oum42uSfr0IMcmY0vCJCEZrBF1k5XxWTkF9Z5de84rpFENdPz3apFRLBdo1ShbW/0mEMUScf6QydkZQZGyn4QU2ZInh0/o9wcEYUCn06HdbvHuu+/QSiJXbWMo86ZxqnKbeLfbpdftEAaS/UtXeOGFl9z9BbRbPSdK2lRJ+lw7b0U+eD4vOkR+0/S/rwGkx2ve66w/Q1w8lzvHDwul86KgLHPWB4OL+TMGisoWZBwePCIIbXj25HjE+dnQzo+/bswF1qS+7fq5bBhVewsWsFic4Z10P9mN074KPrSBMIqJo9i1bbDnraqKZWor2aqioCpLx9DYa/AMjYfIHmT4de6BQT1bZoXldmtbae1s04ot9a/194ogjmJb8LK+UefgCKeF5cvD7SlW9ItYXSErQAtocld9tasfNwvYZC186J+lD29r/nIzAf+ih9Zo15/IxoQrhLRtCqSwuQ9WcM0/GNZb9ObD5kaAqVVnA1flEhEmMcn6Br3rlwhbTlxIeD9oBYEbQaUdQ2FWqV/7Spc6iZ6mLI4OKdMUtE1XxWjCKmfw5Ju0VIUE7j+a8cJmyK2rezx+cJ88zZhN5ly+uoeqFNPJiK9++Uvs7mxjtKFIc06PzhiNhxhjmM5mJK0WrVZC6fq7/Mov/wa/8su/jjGR3dQ6m1y6tMvO/jrtdkQYBoQyxBhDUZV8UJOxuirB0LAHNF4p4PotSXzuhVgBHh7crBplMA0F/QMP+5pWkrDIcwKhubJ/ySme2jHPS2UFA49OePzwfVotm5f0hT/9KrPJwj7YyoMXH+sVoH0SYuB6HnlPwCvxNkwdwm32eIAGRkjH2kQWHLhkzlZixbMwLqynDJPpjLfv3ePtN77D0YMHjJ4cspxOUFVRsyKe1fP3XTMnBiuv771DK19qq90q1x/HCNJ0yWRyznQyZTpbsFgubffkvKg3Apv3o+l1++xuX+LK1Rtc2r/C+sY2ldKUpU0aV9rG1C1Toy54RsIZN6Uuhqy8yF+ATZwNHIj3OddgQ5/6A9bZR/aoqXucPVG1EbW4V9RSAeCc61WVYgduau9SNMBIhgFBq0W81kOETz0LT+3IesUTECsvaUCQwOQl5XyGdnk3fluQWpHMjgld/tVkUrDdlqz3e8wmY6qqosgKBoMeRmuKPOPw4IBup4MxoMqKxXxJlqVgIM8Lm4Qchk5LxvDMM3d45pk7YGx+Wxy16fW6dPptwihwieeOtfEJqh843H7DbwZg1a565nJV/8e/77uSgb19qjfy7394RyoMAwplFe0H/R6rBI5SmrJSzBcLpuNxLVD38OETirxoNnujXQ6a/1nUdsfnqeAolibX6GIobkVOr/neMcjeQbR6RE4by4GbLC84H444OztlPpmQzWaUeVazS/bFDcPoP7BmX1zYe3XUlK9EctdVOUcqzwoHBktbbKIq56M1J4zjmG6nS3+wRr83oNXq2H1FmaZ8261Nnwe6OmsefNWXuwLQPK/lBVWbiRSsgscPc3wkwI2NBVduA6qoExylsCyKdF2J64mz1lW6AbGvd2JoAkQgCMMYGUR20SQR/as36V/dJJQKl5ICNIPquZrVROPVf2BDNLJQLE+OKBZThLGGPy6X9N7/IsnJ2wQS9nY3kHHA+ouf4L/43/59Pv6x2zx6/x0e3r/PaDKm20lQWvP1b7yKEIJW0sFUUE5LJuMhebEgzzJOT0/odjrMFwsWiyVCSv7u7/19PvPpn6EsQIiQ7Z1L3L59l5u3b1jE73syOeblu1eDI1KNwSg3hmY1f8c9Jw7RWwak8ZeUseJe3gOz4yKaTfsHrj474kVZsr7e5/jslEs7W2xurJHE9jMCKZgtF6RZynfeeI0wtN3gT89GfO2rr7nsfH+h1Nei8ExNU4bqaVabH+A7tjsgJbyKsadv/cKwG2ClDUJaoy+k70xuzycBUeQUozHL0xMW5yfkywW6qtC6olLWW1SVb/xqm/lpVbkcmNIZAEEU2iaZvuwRI1CqZD6f8vDRexwc3OfJkwOOjw44Oz1mODwlTRcr3qLNDej1B2xu7rK5tcP62hZBYBvd1WEz7aoL3QQbR3FrrRG+nMoILyiLkIZAWjY0kEHdE0hK6ehxV1r+Q/vS/+kOu25849PG2fH5fXiGqn79UydwXjBuGdlxsgyuMSCCgHiwTjJoW8a3HpqVc7KSVFxv809/jEEoQ7mYocrcgSlBoCvi8QHB4gwpoNdtQyBJdi7xyqdeYW9vk+nonMl4QppnRJF1do6OHiMEtlLRgM6Va45ZUqmK5WJBFEeUbmMDwcsvvcLVq9dRChCSTqfH5sYm6xtrVh5BrG7wHzDWK189Q2ZW7I9e+bvt18cKSHBOl9vYLs7hheH8nocfXaU07VbMYrmk17VsVugmRgpBUZaUVcXJ6RFSGoQULJYZh4fHNXARUDM39uObPBjvClwMYa18X4c8n5rolRCR1g2LgfDg2p8ZhKpQaUq5WFCkrrmq9i0Sqjrp3zt0vjmmcQy2B+ZeVsM7fAKbi1UUOZPpiOlszHw2ZTGfslwuSNOlK2rw8MTeQBK3aLe7tDsdWq0OtVip8bBuZR69w+TWvGgG0Y2DAeELL0Qjd1APkUNoP+TxkQA3uiwgz6EqENh4vzWskdWOCQLbCLE25mYVSILQ2HYf1psIRGDVX92iMkBra4vN556jvW4T/nwSrs8lMK6Dkd0oTP2wSb+RudcFWpMeHZONR4gio3P0HQbf+JfED76OyZegCjY21+l0WoSTcw4/++84ef8R9996F6lLNjd6PPfCs0gko+EJr33ja+zs7dmy9wryUUlZlsRRwGg0YrFc0G2FTCZDxuMJcavN//q//m/4+V/4RXb29tna3GVtsMHO7iUG611qz0FbbZqnE+8MXkrdAUe3WdWxX7dV2Soab3i19eFXAI39PbXH4S3JD7I51pDZ77TSXL12iUePH/PyCy+wsdYjjgKMsQzRdDFnNB5z/+G7dHttorDN177xJudno3qD9hRmXZUgJF7Z1ziPy7j2Gjaw6HJtROh3JvtV2v5gTQWVPY90jEVd/elWQ6+dcOvGda7fusFgZ4dksIZ0+UPGGIq8ZDZbkGWFZYi0wuiKqiopywKErTQywvaVisIE36FbCNv7qVQlw+EJ49E56WLBfLbg/Oyc4+MnzGZzy7S4vB6MIBAhnU6PTrdHGCWIILCJz7VTGdjrt6WFzRhpgzE29Ku1cqyWcVV3Ye2l+3Cb3agC+6wY+SEZu4/GYZRCKAXaaWb5Ne7VU52w4qpxfuoMjrH0FTVOM2jFTQrbbdpbW4QtH76znn79fu/XG1HbFfv4mPo8ApDGUM4XVFmGUBXR/JTk6E2C8ROoStCKVjshigJknjK9/y6L0YTx+RBhFK0kYntnCxCk2ZKjoyd0ez1sRSeo1IanAilJs4yyLIjCgDzLyPKcIAj55Cc/xY2bt+h2e3TaXZKkTbfbI05idw/gk40/aLis4+mZXlHbFL/X+7Xmvqnf04A+P6q1T/sXOrQ2DNZ6TKZTdrd3bAPRQNb2qChsafNoPCSOIwIZ8uTolOUyrUG/54Ia0OavWTQIzt2AwD9jTzE1QJ2DU4+Rd9JF3Si0trUG4jBgfX2NtfV1kk6HIGldyIusKk1elFRqpQ2GyyuzlaEOmDgAEcjggi0XwhYGpOmCLF3acHhRslzaarqiKJyNaO5XCBuiCqO4Dl3XNtiNV8NOeYfS1HbUX1MzBo2NaZS+PWhu9qUPhWrd8ZFonKnynPzsDLFnvQwRBEgiEE5PRthKFqhs1oygzsHBbeRG6Fpvo759YSujtNJE7RbrN2+Rn59x+tV3oWrUJWz1g9UXqICYJrnN2NMghUOPRlKcnLE8fYJ4FNE6ew2ZLRFhYBsrYuh0uty90adTjsjGI8xoigla/Ppv/SqhEMi4y9HBmNH4nK989QvESZtnb93k9PSQfJozPZ7QutYGQs7Pz+m020xnKe2kSxRGdDo9fvfv/B6tpM3jRw+YTIc2H0TJWlitVE1vkAuHsZSkDy8ZYywwZKW83uDyeAJUpak0dc+VVU/GJ2DX5to0huh7HdZuWQZgMpnx0ovPcn46Yjwccvf2bd55913G4yVS2IaeaZrx1ptvcvfOC8ggIFsUfPHVr/Cbv/5rFpfU1+NgaP0weG/BG0zpQlDY8JPWICTCKLuWtK7pcXsuV/JaGcqioghKC5PdugvCiP7GBp3+GmjrxckwIIxDjIHRaMijg4esr29x+dIlWu0YKQx5ntJKEtqtFkmcUOQ2z0apkkpFVoAvARlIy+hEMXHcotfro/y4V1a5WSmb8O4rtDQQx206nQFBGFH59gnKYITT0DHUdLSqSndG6XLefC6Tp39dTpNekcnXrsFmLe7muvz+iBxGKarlkrDrRm4l78HntAgpbKFbnRbsNiL/LOmV3/lDNNVBQRTSWt9ALZcsngybklu8Wo1N0NZQd7BqGAr7WtcxCLVYUi5mMA0Il0eIqrwQVo+imK21hEinqCzDZDlGhNy+e9turWHMfJqRZksOnzwiCCO2NtZZLGZUhSJf5ISDCIRguUyJoog8LwlDm6MTRzEvvvASYRAynU7I8tR5/mJl/r93uMCGnZrx8yCnYeGd/XWOqK71oAwrjy/+yfQCIB92i3MpHORZwe7ONstFSpYu2drc5Hw4IssKJFaRuyorzs/P2NraRkhJVSoeHxxy9/ZtPN1g4IKNgWbO7DVrhE1WsL/zIUzxlI1cAXA1K6Jd2xOhWP0EGQTErTZRnNgxwbh2P3Y1ZVnKdDallbTp97s2vEhApSrCwDLPQRDY1kH4Ckf/3HpJEyeSGoRWnNTfmSvu0caxkHU6iA2hRVFigY1u8qlM8+7allj1YQtSvOqwvfcG2PuhrZPTzUV79LRz/YOOjwS4KZcLzu69yU6UIAcDZBi51gu2siVwXY2NsaqrwiOOGtHZh027WJ4IgwsUoDKaVhTR6vZYv3Ob9PiExYMF2gjCmiOzplxpi2okhgBlzbvwD1ZAICrMbIE+e0jcm1LMzkhaMTKO7aatI2QYcuXSJdR0xt19yccOl/zpWc7w5Jyf/tnPcHJ0ygsvPcPDd9d49/53+Nzn/pC1wf+Cfm/AdDJifHRO1E4YbKyT5RlCSobnJ5ydDvnCn5Z0um0+/TM/xa/80m/y6OAh/+gf/j8QQpBnmRPg8z24vhtq+MUihTWwGA9sALzn4LxW53KFUlLpplrHwQX3/8ZQ/VBlekKglGY8nnLr9k3uvfUeP/kTP8Xl/Yx2a8Lp6TlJGJMul8xmEx48uMf+/h2qouTttx/wqU8es7e7W3sHtUowgWsG6gypDPAxXinC5lpFgC1VdI+VCDC+XxiAEKSLOSenQ44PntDptYnCiDCKiZyxCIKAMIwJg5AoimqZ9OVywcnZMW985zUuXbrM+lqfXq9jX58tiCKrPNpud1imOVVpQwNlkVMUJa3KNrzstNuEYUS/32djY5MwivFGQzglbCtZ7+TKje2R02r1kGFIXpQURUkUxRjjWAStrbIsvgmmZWu8cfJ/A+r+ZNpolLZNMhE2ObmsKnzn+Q+/1fynP1RZsDw/oytDSGJEuBpUW2GoTMMorPiXWNjhNihjnBfe/NkWJEjCdkxra8OGEcYFBolcoR4sIBWOjjcWpIvVTxNIozFFiVlOCGYFKl/YEGlkxQItwykY9HvoLGezJ9idljxcVqSLBdeuX2cxX7Czu8Fk1GI4OuHBg3doJS8Tx4lttzBfEoQBcbtFVdnmqmm6IF2mPHqgCaOQq9ev8Mwzd5lOJ7z22pcRQjRgeGWz+6DDGB+2Xg3CUYOaeuhcqE8iVkLKqyfyXz78WlvlfrQxZFnGxsY6w/MRVwZX6fcrwjBnuVgSSklZleR5zng8ot/bRCvF+fmE/f0Fva7tB+iZvqfuxs+Yu0+7b3lnUTfIpnGo6/fb/aUsShbLKYvZ3Jbxu16FgS9aEcIVrtgk/9CFssuyYLlccHr6hF6vT6sVE0cRIgypqtL1EwuJwoiqVLZvncuvU5VCuwKUKLT9+ZIkodVuu7yfFZatvu9GhwYhiULL3FTufHLlffXrVubSh8rsutErf2tCcasK8rVwr6GWqPiwx0cC3Kgs59GXv0DQ6rB5+zniOMHHw6PIbiS1GrABhO3rDWCEQVEREtuRkMKW9kqXAizAl9EGcUz/8jWKF0eUo69STvx5DL6poXLnlUJZbRz38NqyfAUS9q72+LHtgs14iRn0MNpWwJjKVjmhDTt7O4zykm6nwy/dGmGiAFGs0euuk/ZT9i9VHB+eEsct8jzlT/7D/8hv/87v0mq1SRdTTu4/BmGI2i3CIKTd7fD1r7zF66+/w7PP3uDuc7coygopbFXEwZOHtPoJ8+XcLjTzAayNO7QzigFWfKvu8cKKkTWyFpjz57FMlnTeiT9Xw+R82IUnVjjXBw8e8zM/9xneu/c+9+/f586ztymKdzFKM58tIdCk2ZL333uXW888RxBELJcpb3znbba3N204D1zMV7v4svPwjIstW0uKQdlcB6McmPH/2auXvl2FsToYWVHy4ME9Ts/PrBkSgiAQ1rBEEVEQEyct2p0uN2/c4YUXXqTfaZOmS46PD9BVRZbOmc9m7G3vOuXY0HpBUiADm/dSqYKAgLJSzOZTSpUDkKZLdGUYDc/o97dod8CK6Nn7WoJTjnWl6c6Lnk1mLOcLVKhdOXirnpmmkoIanKinEkKNS7zSlr6wycaVF3FzrT8cRe0B74/KYSrF9PAhIozobG4jg5CaLZGyDkvBxZBIzSagEQSekqjzdRz/0mziQUDcX6O9k6HSJ+jcWNBduxx+e5P4yszVvwjrddDtx1zqKDqywCQJVqfI0GgeCTrdLmmliOOYZzYyCCSoFnHcokxKej3NfLawbF5Vcv/9ezz73AuEYURZ5MzHU3oCZGhDkFEU8eTwjNPTIZuba2xtb6BcJ/o4ipnMxkRxSFmW+PYj33O8sbIuBuFy9TwsaIIMwgPslfP48PBqxdoPG/60PrCbJwyT8ZRrN64xGo4Yj0Zsbm+iqiF0WhS5TdquqpLxaMjGxhYik1RlydnJGZ0b16jltWrP2TpH1j/2m5O/WMdAOSbnu8Kcfo0Z4ZoVK8bjc5bLJXW+iWs1I13z4CAICaOI9bVNdnZsFW1ZlcwXU4zSVEVBXuR0O10CpzZubaNdo9axVYANIRVl7uwltlJTG9J0QZy0IWrAvbXs5Qpb2zjJRV5QlgVaOGFA5zDa8dfNfRtfxbW6LzWVrrZ7vS94AV/2fqHE3qLUDz3/HwlwY7Tm6OtfJ+wPaPV6RJ02WjraWEqXHOzi+8I/DhZF+2oU+3BoJGHtiYNPTvIbtSJeW2Pr7vOkJycMX3uAUAJXM4MPtSita//M8RogFFLA7vV1fv43PsVWr43UGtFpQRSi0xS1zEBZmq/VapFmKYmEQRLw8bWUbw1nfP2LX+P5Tz7LaDzk2Rev8eToGKMqRpMjPv+5P+bn/9ovUWY29nl2/5DO3jqCgI2NbbZ3B6hvpCwWM46ePKEoCjrdDknS5vLlK2yuD/jC575Ams2/ZwwcmtCQMTZh1Pfq0saOldEa5ZPQBA4kNJn/dUljzZb4NfeDw1KeFLKwUjBfLDh4dMrtO7d56423efbuHfr9Hr1On4PyAK1tB+rpbMZ8NkKGATKIePvtB/zYj3+MTqcLNZ3tQw2WrRECuxEL6RKtjVsv7j5XY/w+9wZdb1q9/hovvPgKz1WKUinyPCPPUrLcVpoMR0PKyZggDBn01ylKxSLLeHz4gOH5CYPBABlIFvMxWZHTDds111jPhDEURYUMKqqqYjg85Xx4xnyxoMhzqqqi0+lx7eod+oN1/CZrjGn6UakKg6wZmNlswsnpAXduXuOZa5drXRd/z0ZbgKfr6jI3h9rUifv1e3DtOLSiUtrtqRKtK2/ff9CUf6QOYwzzoyNEkhAmMa3I5V5hXC+7oF7n9RPkwtZNRql2kLiZxybK4HWvNEGS0NnaplosSI/GCGOBjH+nwUoErG7z7gwIAd21hBt39+kkVsxNRgHICFNV6LxEuDhr6PrNGQFJKNlrlRynBUePn7B9aYssTdnaWWM+X2C0IsvnPHjwPjdv3kJXJVVVshjPiHsJAkGr3aHTbaGPbX7YfD5DKUUU2e7x/f6Adjvh0f1HlFX+A6ffOw8NaGxggd/E/O/Nhf+vsDummY8fZrmtstd5WTKdLNnY2uT89JytrU3iJCGOE6ZqCsaC97woKPLMstgysOzN5T2iKHbTvQpOV1gJr0DuClu8rbEK+w1wNTVjZVykRhA7vSrPrNpKJTs3VVWRZkt0llqAGScotUVZVUxnE5bLBUmSIKSgLDIqpYjkB2ztxrbREMLa+jRdkqZLiqKsRfyiKGYw2CRJWvWMGKiTl40HL45dyfOcxXLKxtqAjbW+s03Oxppm3rzddyNUpzdgvKjsyuv877R/raYewB9i8j8S4AZjyEcpB1/+c/rbOyS9Hsn2Pia0iDUMQ6IgsjFGhwJxi0fgkZ/12DFWpwNjMMYmUwlsToNSFUnSJtzeZePZ58lPTkkf21YK9aaBRY9hANLl8hig3Y24+eI+r/z0i6wPWmgXzhJ5hiwDJBLT6qAWc3Blh1EUglK0ooDNbsHG9HVOjz7DtSeH3HzmLg8fv8/OTp/xaIIMIw4ev8NXv9LlYy+/SFEsyeYLF65Q9Htr7O5s8umf/iSHh4eMx2ds7ezz3PMv8OI7L/Hg4T3a7ZjNnU3Oht+7HY8vZbXJsrbjtY/wCeel+8UmRQBSu55cps5BMm6cVzMtxIf0rGqmxGCTxIGDJ2f8/M99infvvcu7793jzp27vPv+e9x65ib3378PUpFlS07Pjtnevk6ewcnZOcdHp9y61QHhVVicMfEljj7JBrOibeKvw2u9OS9LenBjmSCk7amyvrZJt90hkIENzyhbVl3kOZPZlKqsiCKbB5UkMefDEQ8fPqAqSwa9AVEco01l+0SpZMWTslSz1hVlkRKEAVoEnJ6d8pWvv8psMkOEEpdfz7e/8y32dq8wGGwQhja8VlUlcdyylSsOsNkNQyFFiKoqisJ61wJcRYWjhFeAqa96ERKEcuW5ztBUStmmqqpyFLFPGjTudfJHCduAMVRpyezgMUm7SxjFBN2+ZXxdcr2n/+2xEoZwz4lm5ZlxIYdmLHE9zDQyjJCdLq2tbZs7My2fvhSrKySMLT93nxZGkvWdHnvXdmm1rLMmjMGoCqFtU1gZRrZE3OWKyUAitCaUgnakaOenLGYJg+6U9Y1NJtMx3W5Cltkw92w65PAgZm93B1UVVEWBnimUMsRJi263zdWr+8xmM7J0SbvbY2t7h53dXcbjc6IooN1tsUzz7zvcdvT0d60Tm1+zwtQ4tqIu8FzFkrDy5P4FDkMt4DebL7hx4zKj8xHD0ZCtzS2GoxEbGxuMRyMQhqoqWCzndDtryAoWy5T5fMHGRsTF9WBDK3VeTc3LGU/cNMhn5WLqyqk6A0sQRTGtpEMchTXTY6uobCgpz20T3UBKoigmCAOWacpkMkYrRdJOCALr1CldERqnhC782Fqbr1RloxpasFwuOHxyQJ7lltlx4x6dHNPr9kmSdq1ppbQtfGhKtH2tsn2TD3X5KlZ//Q2QWQnh+VP4R8rtR6sqx6vl9cYvAlgBhj/4+GiAG0AbyeLJhMMvf5HuYINNKQnWtxBBiHa9UgIn9mOMsbo3wnqhQtgUbI3t5O1LlbXreIwQriTXIIMQk0h6V66w88ornCy/TDEs6hQwbYRNTgYCITBCsb3f56d+/RWuP3sDqS2LI2SEykt0tkQ45VopJHS7VKMJxmi29vY4ffyE3d1rDNOMS+aY4fEjDg8Srn9im6jb4bWvfZtsOaXTX+fS9X0GW12OzsfsbawzHZ+TL5Ysi5wgCtjf3+fWrWu0OwllUbKxvsZgbUAch7SShOlsRllmNPUXFw97T+6R8jShBmEklVtYNvRnF5bSyiVcQhj48JVromk+QEzLPeQ/6PAAKYol3UGbPMuIojWu37jKyeGJ9UKE4eaNm4xGI5bpAqU052enXLl0h5mQCC154ztvc+PGdaQwdi3U/p5PMPZJc4Hjxm1823sM4H/2o+Perw1SGJeIB2BjyUEQ0iJGSInqKlrtFlKGJHHLVRwYzodnnJ2fEAYShHFKsVCWpWU+tA1/RGHssLhAKctlychWTd249gw7H9+m0+9gG5cqWkmbG9ef5cr1OyRJi6oqKIqcOO4QJzG2AtAmxmpdMZmMGJ89smyMamLbloa2Wh4ahfBdUNH2mfJJ2t6jNs4jVQ2FXKeOGOtgyI9G0eWHPoyRFPOc2eFjoqRNRwhEu2Mr5DBNWwX7YlbzyrylrXmWFXDjmRxbkotNVA4E8aCP2dtjUR6g0jrLa2W9emVeTbsXc/XOJda21hq1ayExSmHKkiCK3eYgkVGESnPA0On2WExndLtrpGVFjznpYspsFrC23yWIY46OTqiKnDBp0xv0SDoRszSj126hsxTlKm6klFaxeGNAGIeuuabV3AoCm8ORF/kPbLvhnyicrRaO3TW6Yb7qp9Y/jxiC2okyKwJyF8/7w7I3MhDESUhVVgQyYW19wGI2JwhCEIb19XWyNHVhXEO6XDDob+KjBGen56yvrz/FsjnL4eZf1yEwceGzMT4k6e4fHBOIe5iMq/S1tkm6yl8LgiKM0TbXStixx41Xmi5ZLhcuBcPU/b10XUwi6lwdfy2eEbEgPmRtsEFnr0OUROBkNMIgZH1ti/7aJqGTqFBKWQ2euomnC54abavr0knNunx3ObgvVlmda7843Pj4GffmqGZ9aNDuyjP2YY6PBLgxQGVChNIs33/E0de+iAkDNu68gOyvIZR2vX682JasDa0AjLIGQDqUKqVN5pJglYuljZ1aBtAurniwxtbdF1CzMWdf/jYmA9A2CCUFIha0A7j20jVe+dmXWF/vI0QFQYAuSkSVEYQtTKdPNZ8SJLGt8qrsAjdFRbvbtTLaQcSNy7cYZ/fYPn+Lx4/2eXjvXZ7/sU/x67/z27z33kOETHjx5ReZTGfcf/gWZfUM13Z3mI5OUXnJ6YNHBIFga2eHy5d3GA3nVGXBV7/yRd59/wHdVsJw+B4nJ2NW1473JuqSTPezMobQLbpKV1RVo/zsE42tZ+WYHNHkVnja0Fd5eMD5wxxrGz02tztcu3KLB/dPKArBs8/e5fz4hPFowu7uHspoXnj+Rb71rW8QRiF5mhOGIIxGBhHHx2eoskJGwYW5NcaFV3xVizRWMM8zFMaCVoRtSrfaMwgEWti4tJTWc8rytO43EzrdFzSoqoLAYEwIImSxSDk8fMR8NmZtsEZZFsRxVDfFLKvSMmOuzYYwFjimWU6eLVkbrJFEEXu7e9y6cYutrS20qigr27n4+rVnuH7jNp1en7IsSbOUKIxtdYNStrlpZWy4st0ipCCROb40vinDVHbbcAmS9q5tOEa7nmlaN//qDr3GA2ABxnlu4kesWgpXA6ahHE2Ytx5BIGiLbUTc4kIuTV2yu2qkde15223MglgBteqsduW3vsokTFrIrW10kZEenGAqH6YxjS6XgMHuGpeu79BqWYVjhGUhURVCBIgoQRe5rcwUwnbCFWCUdiEjC+LXBhuk1Tmd9IzptMfkfMj25X3uPPcso9EECNjZ2yHPcyaTc7ReZ63bIUuXqEqxGE8QEttLqN8hXRYYrXjy5IDhaEwchqTpiMUi+0CQUYMaP+amqTz1cgercr+N7bD6VKvg5Wmz8uG3tma+W62YTidiMFhnMl5QKcH21ibLxYIsS+l1e2ij2dnZ4ej4GCmlS47FzZNkPl+itXJhfJrQ5SoDyipj4R3Ap8CMBzli5T4dmNbGQFWhREUtM+BLw7WVO7HhdklZVsxmU4o8I0msbpp0VVDKFw04dlVboSKXCK6oqpJWkhBISbfbZWN9g3a77ZgiWx01GGywvr5JFMcopamq0iU4B87+UztecRQihbLFNsbgLrSegcYR9uu+HjwLiFYqrfyz5vGNQFwowv1h9pmPBLjRQGkkLakRRcnkrbdRcQxxi/71mw7ZBpZ1MZZex7ekR4C0XrovaQuCyG48wiZt+ifLbniassqRcUB//zLm5U9QjkdMv/MYlKVOtYbBbo+Xf/Z5rt68QiihKksoDKJSBCJERjGmzJFJG9HvoyZjRBQho4ig3aIqMgJj2Nzd5ui9++zduMZzpeLs/F0eP3yd8/fWedD6FotsxiufeJHZrCSdLzk6eMR4OmE6HdNu/Rx7m5c4P3tCnpY8ufcAVeVcvnqDwVqL6fiMN995h3fvvUW6mLNYjimLgiQW5EUzvj7VUQpB4B6kUEqnXWM9dFtVKG19mMsv8OELz9j4CqzmaGhH+znU7M33W4K3b9/k7/293+O1b3wdkETxiGWac+vmNuub60wmI24+c4vZfMbHX3iFx48eoYXtXdJqh26HUgzPRixmE9a3dmgS+qzxkA60KGN1WyRYqXnRVGOATSxuugY7w+RKxC0ja1+vle1rVZncCra5GLQPgcog4uTkCQcH79uGqMYKY0VRRJal5HlRg0Qrsth0457Opjx8fJ+b127Q63YpipyyyIiCACUbPzEvlihllbxxHlOqlwSEZHnKMluynM+Zza0QVyeGztY6GOk8y8oyWkYjha208iJ8woVGJBIlfO8l1dDE4EChACNQPldEO2P2I3QoVyUplCY/H2LCEGRIsr5unxO8KJ/BK6n68JPXJHF8vxU01C5nb2VXXw0rCClJ+gNQl9BZRn46xQvTGQNxJ2Lv+g6DjT7SA0zlGUSXGKqVrexKEnSW2R5FgUSGIZWqEBja3Q7z0Yju2hrbSrNMh0zHJyzHLSbRKUWZc+nSDnmmqIqS+WxKmmVkeUYUXqfb7pGmM6pKMxtO0FrR76+RtELydMnZcMhoeE5Z5rVAZRCAeorAcXt4HWryDXZrGQlhWS3vLHkQ6De31e7hTx81Y/Yhj431NT7+8Zd5cvzEsl1BRlUpeusd2i0bptvY3CDPC/Z2LjGZTDGuV1QYerkMTZpmlHlO0AnrufN365eEE4Rw96pXGL+Ltuliry0PduzfLbNi3FsqlLOn2hik9uAgYLGYM52OaqCgVEVQSarK94jytsY5og6MF3nOeDpifbBOHMeuCrKyLY5WIEVdTOJGvaoUprRVnFVlRQ9tdWdOXuREgaHbdnk6ZiXvhlXms/G67Rj5cXF21+0zHuPUSece8P5w/vNHA9zg4s2SgBCNni05e+01ZLsPYUS8vYPAes01RYbt3KxWysbAagL4skLvXUkRoLEtHsqyRCtNGMREnTZr125SvfLjqPGU5eMx3X7ESz9+h+c/8QydVkJolKUdFQhjCJOuFQCzxTmo5RLZaiE7PdRyjggidGoFsIyuSNodep0WRbrkxvXr5JXiwZ+/x7e+tsvBw7f4qd/8NV5+/iU+9+8/SyoCFss5whh6/Q737n2L3iuf4dLl6xwfPiJd5hzfO0IQsnd5H2Nytjc3+ZnP/BwyDPjX/+r/R7s7p92OGA8zsqxCGxfTd0BQCBt/1qimWSTGldsLUJXb9KRNPKtl/r972rzxagyO/en7rcG1tQG/95/9Lu2kzaC/zunZiF5vk9l0SiAvc/nqZU4OhrTjNo9Gj1gbDLh+9Tqnw2PCMKDb6+CVrPP5gvEX/5j+Z36RcPOS1a9xJd+Wh7KelvJG1QMxY1x1lQVAxl+662MijIujS+lYQYNw8ykQTbsQITCVJtearNA8evgek/E57VbLlkpTkRe2+/LG5i6DtQ0brggipAzrTVOpgslkyGJjh06rw3KZMp5M2NpaWoCmSqIoJE/nzMZDVFUyGg955523mU2nlFVGmi6ZzcZMZ2MWizlCaH78lU9xaXvD3pxjb3xuji+7tI+JT1C2SYVWZVnXOTZetVjjm+Nh51k7Ot4xFT8Kh79jvwGbvGT55AkijEFKgm4XoJaesF6nrENWteEV1JVVDaixTI7NuVCuik0jRYSMQpK1dfSly+gsp5pmhLFk5/ImO5c2rRAfXpzUOMBsw401eVRUEAaIKMaUhV2flap7RgVhSBxF6KpkfW0NpQ2TR0NODs+ZTc64cuc2uzt73L/3PqWUFEWBAOI45Hx4TLx3jW5/jcVsSlUoFsMZAkGv38eYik67zbWr1xBS8vbbbxLGOVEYkKWW+fUMsbcFnqEwLufGB2yEFLWlWGWZf9De9RSk4AfZmiSJefmlFwnDiCRusVxmxHHb5pjQp7/WZz5NCYOISTYlSRLWBgMWqQ31xHHkKARDVRSkj98nuXYL0e7Vq6lWZ8eGlporWrla0XxTX+9KUrEfOB998b0Ba6Cw0spAlSWVKphMR+RZWoeNAFJVUaqSVtsWmViWVdbOm2WHFFmWUbRKojCiLEqyLKPT6WDBlSaQAlXlFGmKUYo0TxkOz8mz3OUPlhR5Rl5kbg0Z9i/t02u33T024N/e3lOzZGjyalZyPO3XpubQs/Dg/DlqeudDHR8NcANE1me0E1UFZOczHn35y4h2m50XP4bsWfVdMChly9JETD0AAhdH9M3vjPPA8D9je/fkmWUlhEYEkrjfZf3mM+Tnx5j0VV75idt87FPPERqF1Mq5JTGmKJCdNqIdY/ICU5YIAqhK1HxO0OmCDiimY6Kki8kMVZYShILuxgajxwdkp0Oubq7xiy/t80+/+S1Owk/w7VdfQ6uS+w/u0To7ZmNrn2A9sW0OZMB773+bn/jUz3L32Rd4996bzJdLHr/1PnmWceXGDbrdhH7/Nldv3CKQgj/4V/+EXr9HHI14cjCiqrzEPA4gukabUno6w5YNOkbBo/2msqhB/6vHyvPqfBX7O193pj5gESZJwt/6m38dITXf/PY32dvZYzRO2d3Z5snhExBXuXnzJqdPzi31WhWUVckzt59hvpgSxwlhELi+TJZunb//HQozgRc+TXDzRUSU2A9zG652pY+NAKFLjpZhHYayFQuWgRF1+aKpDbE3MPWYOA/ev64qFcOzIYeHD9GqQmmFLgxKFYzGY2QQcGnvKjs7lxHSwGoYR9j7KHJrsMIw5ODwgPliSlEUSCnZ2dnm+uUr9NoxRTYkS895+917fOnVLzEdjzGBTSwWGrI8p6xKkiiy4yRMvUmDK7kUFqwYYSlhX7milM1hU44qrrSy+ToiwHdCt0ydZZ6Mo8vNj1BYyjIJbm9xbEGVFkwPDiAM6co9RBzXr9dOydiZkNq4WqfJMVbGs6Oi3rO0tmARDCawYx7EkRX321uwLB+zd3mDS1e2rf6NY+OQgQUsUYiILC1ilEIg7VouSkQUYYxA5xkyjKEyqKpEioCo1SKbTqlkyqCdcGu3z+vHJyzkJU4OjsBoJpMhYRrTaveRYYDvHzcan3D58nU2t7YZnZ9RlBXTszFVpRisrRHHAXG8yWB9AykFb731baI4Jggy5rMUpZs8PM/cSOnZLpxTseoCue9WQhLme7A2YuU7UXv73xsUBUHA8889i5BwfHJEr9Mjyyq63Q7z6Qwh+qyvb7CYpQioe69tbG5SHBe1MnddvqwN5egUZTKCnWuI9R0IAsduezvpBQj9Roxjqrwaune668XkbtwzWNS/b3K8LtIWWleky4zZdFLruiklatAihKTXHdDt9t1a9NfhTucSf/MiIwgks/nMlnK7/MpOp81af0AUhlRVSlktGY6GPD44IM8yEMrmKRmolJWFCAIJ2riqMMfA2A/DC+TW4TpHXRnf7cXdvnb2FWeTVif1gu7Njxq4kQJCYWPhlbKhk0pLsicjTl77KlG7RevadUwsMTKw5b1SEZrQxcXdCAljwwTCL6oAAi+CFKCqgjy3Kpw+aVCGIcnmBlvPvcB2u+L5Z9aRywVllhN2EqJuG13apMlyZOnksNOBqsAogzEKnReAJOi1KE/mVDJDBiFBEqOylLjVsV2Dowi5XPLxa7soA7//3rscrX2K529vcfXyFe4/eshiMWNze4/d/etkZU5eLvnKa1/g05/6GT7+sZ/kW69/meFkzKO33mM5X7J/8xpRWHF+csxnfvqXOD095Mtf+SL9wYCyKDk7maGt/A+BFISh6y2CsRU1gcamiDlRNwHSQOkS0r6XjsWFpnYrFkbiAc53G52rl/cQVHz1q18lCBOOjs4Iw55VhdN2w+ytDWh3W0RJQBAI8jzjxs0b3H9wjzCQFLnVZdHalngXRYkZHlF86d9gHr1J62M/j9jYwsgQgxXms5foRB4JbK6DAQIHcHw3WpznIARCeO0Y467NlstjfLhGu8RrQbpccHD4PpPpOVEUoVSJVoaiyChLhS5Kzs5OuHp1RtJuo5StnkrTJVVVkeUFZ+cjJpMZnfb7nJ2PAcF3vvMmYRTwG7/4Czx34xb9bhcjoMxLdGnzalrRLmEcEEchpVIsl0uKvMAmvRsLcOyE4RvLroZblFcOdfZEGW2ro5yx8ZUMnjL2DfIsSNR+MfzPNQF/pUcAGCNQrkhOG0E1z1gcPSGIIsK1NUxQc1r4zcbnTwA1UwPe1riQnWNItVYWcPhKNmwVZ9hu0d7aph0odjZaUJaoqrISB3HkmtYKVJYDAhlFCMcAYTTGNXOVcUi1KNBexT0I0VVJGEWuP4+EsmRvrYsGvjkcMm9dZmejTb/fZzydUBQF7U6Xbm+NSisqXXJ49Iir+9fY27vKyekBaZYxPRtR5SW99QGB1KSLOVev3WKxmHF4+NjmfCjFclHUa8bam+a5EkKihVcVaxJHfVUeeO/8BxwruTrfr35h0O8ihOHw8BApA47mp0gRYRPP7HMdJwlRbHPopBBUVcX6+jrj8RApQFW+V5Ol6iqtMekCdfA2ZnJGuHcd2h3qdgp1iwZ3M8jm2XD7jXEOlRC+XYyoE8c9eF5lKMxKvwJhbGHCdDYiy5dWxNM9p0pVKGXBznK5YFAUhFFkQbZWVGWJ1lZPJ01T8jwnCkOWaQYGTk/PEFJw59ZNttY3SOIIWzmmMUoRhSFhp+P6zFmdHFskofxENqCmZp5wdmVVddo5i+4l+mnH2TRgzHgWsz7RD2dnPhLgxh8GgxUItpnVUhvSB484H3yTrtDE+7uE3R5GW6RqiBFoZCCdpLxla2y4xVgDj657J/nWBDqQzli7eHgk2d1NuLR2hViVVMsUHQqQAl3ZkESQRJSzlPx8hDAQdNqIqkQagykqVJYiAknY7VAs5kRhhM4Ka2gMrF+5yuL0nCAKqBZTXrm2w0l+yB8dvMXs0k/yt3/v9/iH/+D/yXQ2JZtPefT+m7T7a7R6AxaLKV949bO88sIn+fSn/xpf+9qfc3B0yMF7D1jMZly5dZ28KElaHX7zt/4OJydPeO/+O/Q3Bhg001GGqjRRKIkj2/NEaUVlbGhFSM361hrtVo+yzJEm5Px8zHgyd/PywYdP4MZ5YaLmoT8ADAHj8Rlf/sqrJEkbIRIGg032L93iwYND+us9AgmBkPR6XeIoIQxjVFWxu3OJ7c0tisr2O7Gl3lY190mhuFsWRFrAo7eYHz9AXnmO1vM/idzcQbgu6XUirIC6vxRg6qaHjdaG8IbFgS5hbJ+fpnLD5qZoY7294eiUo5PHKFURRSFpmpGlKXHc5srlO4zHQ96//y5J0mYw2GQ6OWcyGdq+L8agdUmalgzTBUJM6uGbzTOSJGKxWNZ0tUASCEmr3WJ3dwelNGFoVZmKvCCKYvIsR+kKIR248/F+05SYeo8K33zP2HLP2msSVgqgMqo2Wh5Ueusj8Dk6379q5qN0NKt1dY3afKNqMmGZHBGjCfo9ZBw7A1sRGCebILyOjetg7NcRrhrEAZxV9tNDIJyDsdEJ6CYDAmOBb00naQsCRCzR8xK1TKGDZXF8xZvSmKq0jlkUocoCKQN01fSCaw0GlIsUKQWqyLk06LCoZrw/PSPvXeWFl1/mta99lTzPqYqc6fiMME4I4xZFkfHo4D572/tcvXqDw8PHzOYzpuMxRZEz2FijUoogjLh79wUWizmj8TmJS4LOMys3YKtxRG0OtFejFcb1w4pRSoGRZGlGlq0kCX7AnK1gydVv+F7WKctSDg4eE4QRQtiKxv5gg/F4RtKKavYuiiMnEhugtabb7dJpt1FKuQaiFoVpY5hXmm3tcs2mZxSLMWKwTbh9GdHquorM5tmwOcSeJsRVTHkW4+JdrLI4dQ3Z6rmck5mlCyvapy0y9zo4UoYM+ptkWcZ4PCIMIpJW2+lypXXSvzGasrRJxdCU8RdlShBIysLLFQjXdkgQRCHdrk0HEK6k3qsRh07xGM9ke0rY37OPtdkBqFmYJvG65vrwAM//bTVZ2+4v3wfNfsDxEQE3AmUEgZtYq93gysbyiumbb5MFho3wk/SSNgpZx5l9rFI4n8CSNWFtYKxmRcPsaa0QJrIToDShqdidvctafkZQ5BgZEbbboCJMqdAogiRAJAlRv0t+fkYxlLRCK90uWwkog0kzdF4QtFrkJyeQRLTW1smHI0yoiHs9dKWYnQ2RcQeTLfilZ68w+cZ7/Mnn/4Rbt3d47qUX+fznPofRkOY5HJ+xf+MGnbUNxpMhn/3zP+L07Ihf+YVf4zvf+hrffuMbnD56wvDkjCu3ryGQXLl+l9/6rd/jH/7D/xuLdMraxjrrG5AvFOPhGK+FAiBCQ3fQZnt7l83NHZcJr0mShPWTY95/7z3OzpbfZT+sLbZgJkB4raV6nUoJ6IuhKQNMpilCnnHtynUIDB97+ZMcH80Z9HuEoZ2gPE/p9TqEgSAMApSp6HY69Pt95ssly0Vex2qrsuSx7HKe51zqgFAGsZzCO19jeXgPcevjdD72s5ikZXMmnKd4UUatcRedz42pf7eSCGndDIxSaON0rI0hy5YcnxwxnUwIwog8XXJyesx0NuHWjRdpt3ocpge8+pU/5ctf+RKtVpf5csbO1g6f+NinaLW6tJJOrcPx9LNrjCvlds03PYC0PWBaaFXZQiitCYOAKAggjikq7/k5yrhm4KwXZRkYZdVAse/XSjmFUMfwYBlLLTTe42XF67bOiKqB4Y/C4bePVfVBz9FQGfKzIZWEdhAQB6HdkDz74J8b741LB24c/e9z0OpogNFYAUzAaKSCbjEiUQukUiAkQRShdVCHPUUIIrSsb7VcopaZDckLgQhDpDY2J6rSiCigWpaEgSJstanS1AKoKMG0DHmaIoMIU5Xc2hqQH4+4//A+6xsdtnd2ePjgARgolYL5kv76OmHSIstS7j9+j8Vyzu1btzk9fsLJ2RGL6Zx0saS/uYZA0l/b5O7dl3jttVcpy9yVi0NVarI0q9eqwYA0RHFEt9Ol3e5YZslYuYXFYs54OGKZlt977xJeTtWta5cA79Hq02/L8xLEkrXBOgbD3t4+81lBEsd1FZSqKpI4slW4UmKMIgojkiQmL0rKUlFXHGnFVEQslaLno0tlDueHlLNzWN8j2ruOCcLacfqAW1j53q9BantTR3XAb1b+r4BVT54v5uR5hhCBFV9cLijyjPW1HaIwYVbNODh4yMHhge0TVhR0Oh32dy8ThhFhGF1k3S88HM7xMeBlFg3UDXRX0xZ8LypvExrH1gMax3auhKSMiwzYKIFeea3HQk5Rvg7DeUrPf1kFOz/4+EiAG22gwhB6A2LAOM0OgUQtMkZvvIXo9Yl6XWSvB1HSUJtC1C0DvFhbnU/hqHjrtBuEM95aFYgqZCc/YKscExiB1tKyPYMuQaUsuMly8vkcXRQEcUwQJajlgnIWEq8NLEXcipBljqpKRBmTDNZJh6dEcUI06FHMZwgq2ptrzGdzvv2tx7zyyjVkVfEbz1/h/T97h0fvvMX+/iXySnA+ndEOBGEAR48ecFlKgnaClDHvPXyPf/qv/im/+cu/yebmFl/44hc4PT3jra+9weRsSlXmbO9e5pd/+df4gz/45wgCdnb22Htpj7feeoOToxNkKBh0u/T7a/R664RhRFUGENhNbr44J80z2409FLaJoFtTYSRoJZEFQtp6r2VVUlTWOFsDZC1Ok2vfzHMgE2QU89Of/gUC2aLbhfliws5235bwUyICKMuKxXxu82yiGBlKoqjFdLKwnreRqCpjvCwZhbAdCYIwxGhDGAlEOkW9/gWWiwmtn/otSLpuTUh8hr77CZwejqi9pSaPxHpgnk61qrxihTqdTqYcnx2htSEAJrMJB0cPydKMm9dfYjKd8N7793j/vfcYjaYo1yvlpRdf4GMv/hhJ0iZObC7RBx7GOMakqj0i7Uq5lSowQOCznuyjg3IS/bYk1BlonNC/8dVvug4veeHGut+LEbU3hrRVGrartWsKaEqM9t7oj1ZCMdgtxYoAuCROD0mEwZQl2ek5Io6RcYSIY8eA+c3Ji+01yqneZjlj1HyQ49aNUaAlnWpGW6VWT8iNJ0lstYa0xlQKXRQYpWw4S4aYqkTlKUErsZ8aBjZMpRUoSZi0qNIlQVASxDGqKABF1EkoioKT4yl7l9YQWnNne8Do4TmT8zN6/R6VhmWeE0pBIGA2HTNY20BEAVIEjKYjXn/rde7eepZWu82jxw9ZLlPOn5ySL3O0ruh0+zzzzB3efPM7gKDT7dHr9jg/P2UxW4AUJHFEHNt2EDaU0lRqLl1o1obSsKrL7pASwjCox1cI125ErzDFpvH4L8yxwTZcFpJr124iCIliKMqcTid2CeK2klIrW9kYBKEbd7uZ51lRw1+tK7JSk0pDRwqneG71cyhzzMkjyiInvHoXEUZuVTR5eZ51EPXGTe0g1D/7CJb//YXXGvI8Z76cWydNWnXg2XxCVZasre24ruYjxuMRaZrXYfXdnW32tveJA9/K6IPBjcGGmjXWFvjEZoOp2zT4pPDmPSs9B33ejH+e6pCTcU15acJ8qz3JGnIGX7zgx93nONaf96PH3NhDCMe/GIHlBARQIZFUI8X5628QD9bpP3ObMG45+tMaJQ/8qqpAK99NXNQSzkIIK4SlNQKNMBU7y0PW8yP7OTJExBEGQzVb2k0yjJGthLDXQ1cF1XyJjB24mUyRYUzY64EEGUdoVaHzjHa3y+TwiLKqSMIEnVeWWjaa9Z1ttloPUYslJC0iLfhffeom38yGFN2rbKz1GfQ3mQ3P6JqStKw4fPA+3fV1eoN1+mtrLBdz/vHv/0N+8sc/w2/8yu/w6pc+z+vvvMF7b97j+PCY5z72PFduXuNv/Pbf4PD4iKLISbOUwcY63X6XOE7Yv3SNVtIjzyuWacbZ+RmLrKAsM7JszjKdkmclSjvtCQNxLBistxkM1ul2bYK3Noqq0KRZhtGKOGqDgbPhkMl0gVZ2MYZByAvPP88v/tKv8czNG+RZwPHROWFUgV4yGGwRhZKk1WHQX5DnJWme0Wt3naaMoZ10GJ0u6zJsISrWBgMCdYYqQxcbN1aevqoIo4jg6G14ewf5/GfQSRuE7alVJ/VpA0Lj+zXbnknNw2nLwq2hETK8oBlRpinHZ8dMpjNkEDBbTjkfnrKYz+m012i1BiwWc87Phzb5zuk5aGM4Pz/j6OgJqirI0uX39EiMsYnwNgxrgZeoy00NRuMqBq3mhHb5MTYEq0HbnBJrSUUdg/eGDGMZLaN008JCq/r+La1uOwBro6lUaZ9HoUCLprHdj8hRe8VN9iaNMbY2SGea9OSMIGmTbGxAy4U2hawZZYH15n3X5LpUvP4gx9q4OeuWM1rV3IFQafs/YdCFZSuklMgwwMSRDRUWJSIMMFmBygvbLy92An5hgCk1RlWEUUw+m1sF2TDEKFsogTG0uh3a4QRdlDanR8MnL69zVKWoaI12KyGJ2+RpSmRse43pZESctIhbLSsWWZZ841tf58rlq9x55jkOHj/kdHjK6Oyc+WzO9u42g/UBzz37HPP5nEpVVFVJ0mq5kE9IrzsgDGMqpakqmxdWFjbxvqoKyjK3uR0rznoQQNKKSJIWURS5ubPruqpsqXPgWgykaUaWFw1GEIKd7W1u3brNxvo6VWV1agKpQRckyRpS2h5xRVI6HZeKOLLVUVobwiAmW9pegTYPStNqJUi9dMn1zknSgNLIIEDOz+G8C9tXEUHkwlIreTd+7dVrsSmS9uvQQzUvQuqhRKUUi+WCPM8RQlibni5cKDohDBObx7dc1nk4/qOW6ZL5YoYxiqr8/o6IdixvQ4e5K/AOnQNc9We4vzVJwD4ExYWcGeMAU32qlRYN9f27x1JI6XIFteu89iOcUOyxnqwHQGBM4AyJFeeThCwOFpy+/hqy1yZstRBRSBBIJL6kWdheKUVmDbPxHUqtBo5wVTNo2ChnbHFGHAYEcQKBoJhlgESVFQKN0YJKlURdQSgCqiRC6QIhAkRpKM7HyCBERhEyTpB5hipKTCEZbG0xPT1jYzcgWVvDVCXldEzY6XD7Uy+yHA95/Z3HHIzhlz99nedkxOv5kn6rxcb+cww+FjD5+peZL2ecSsFiOmE6HiJlQNxu09/Y5d/8+z/g25dv8uu/8Jvs7V3l83/+Hzg9O+VLnxuyd+8yz33sJZ67+zK9bo9KZXz1tS+R5Tm/9qt/g5/72V8hTros0xlf+9pX+NM/+SPeevsdqtIwmSwYT6aUeYlvkCgERFFEHHVptXp02gOiSFKqAqUMnV6JlJJ20iVJYvrrHe7de4/ptABjFY7jMEZoOD8dUaqY6WyCUgV37lwnDCRBGNButen31nj44BFVUdDtDJjObP+mfKEpigJVGco8p0ynBFWHXhS4HmQRWlgvWFUVMhBEwiDe/yrkc3j5lzDdNUvxgzM6niB2voKUtTYJPmdCCAQRSpR1ToXWiulswvHJsSsXV8wnY5bLBXHc4dq1Z1jrr/Pu/XvWsGhV6+sEUnB2fs5/+Ny/Z2d7i8ePH7Fc5gQrTUwvPB9GO1XolQi1seEmpW1Jv1GmrlxSpukNpX1JsrACf/Z83ogZtCnxna7t8+GeSJ+D5L1IbPuNIAhRQiMr4/qS/jBE8Ufj8OFHwHqQRqz83m5IxaxkcXKEiENaYYh2An11XzVw42s3Wg+O8ayxaYRGW7qgo5e2KjEIbRgxr7CMgK6ZQKUVQRzZdRkEGKdLhDKo1LZNEDKw/0Rlk4tVRdzukC0WdLrSMjxa20qqKGLj8g5llnI6nDLN4Jkr62yLgBNVEochrd4WrUiSPTmgKAsWQJln5HnKHEkQhSStLu+89xYn/XXu3LxLrzfgwaP3WS6XHDx4xHjYZ3tvl62tXSsoqSsOjw6oqpLbzzzHjRu3CcKIsix48uSQB/ff4/x8iFaGPCvI8hxV6XqjE+CaRUaEYUwUJQRB070+iu0zGYU2XyZpLRkOh+S5nVMphO1qbQTLZYbWksIpKm9urtVhqDC0uTiT8RStFHGUWPAgJapw7QS0sRWQZY7QEbELRcpA1hu71lYnTIoAMT4ElWN2n4EooXliqW+u/o3H16IJf9u/Bxh8aNiusyLPmC/mrkLcUOQZRVkQBhGDwQatpMVoPKIorGhnDdsFLJcp9++/T7fbZjKdUpbVBydj10zjCv4XDTNphVtZsRFNbkz9vXbBo5rdNg3QqUtNsAB/9QIugL5GC8kn2D/1kg91fCTADfh5Fi7xzNUmGBtnlcZWU0kVMn3vjHjzLZLuOkEUo4MISQDCJqcpLPUYiNBR+dpl70sqDBhFn5wr81PiWCDDxBq4orLJZ2GIDARBu2M9o9TlYQQhQSuytHFgoKgwVUExiki2Nq0z1u5j9BxjNK21ASeP7tMt+7Q7XXSmEFJQjCa0NjaZjCa8+0izrAyj0zMu7V/m/je+wLP763zxnXt84pWf5tYv/hqTr/85g9Nj3tYaghBVKfLFgqo8YGvvKqPZOb//L/4xn3rlp/j5X/xNvv3613n33ts8ev8Bp0fH3LjzLHdeeIFbd+7wn//t/5JOr8dLL71C3OqSZSWlMrzyiU9z69ZzvPvuW/zpn/wxf/Znn2VzbZsXX3yZNEt5/PgRi8WcTqdFHLcJww7aROSFBhHbKizZsiXmQYgxARvru+xsL5jNHmOMoSwrJpMxTw4O0JdCFumYs5NjNjc79PublGVGWSjKqqAqFU8OntAKE8Ig5NHjR4yHC8pcUKkKVVbM50NUOUcXOTJ0Dd1cWEwp2+Q0DKwCcKBLxOl75N8o4cWfR67vImRkQ5bCeVAudGNZHCctjq6BjzZ2feH6lamy4vj0kNF4iBSCyXzEeDIGLeh1Bmxv79DttTGiIkkSojhBypx2K2F3+xKT+Zh7793n3rv3UVrT7STcuHaVs+GQ45NR/VwYDKoyGGU3YS1E7R17KXUhIYi8mJu0EghCUqrKim/VnpLXknAPHEEtuW6MsvevwRf3Vy73BiTKlCACpHtCwyC01RlOL+lH6hDem7T/N75iRdiZl4Awgny0IOycEcYtIulaeOjAsoNQl9VaQTpVU+lW5duOd4xiUCywb3fS+U5xHVdNJCMbTpWVN/wCEUmEBi2NE/RTqDQnaLdt+CaKwRQYDGErYTkZ255CQVyHFFWaE7XbFFnOaGLINaTLBb3+gNHRQ7Z6LR4Ph1zau8bGrTtkTx6RLBecO8ZSa2OrbNSMTq9Pmqd8881vsL93lRu37nJ68oTh8JzpaMxiPmd9c5vNnW02Njd56YWPE0URO7uXbPfxygL0vUtXWV/fYjQ648H9+zx6lNJK2uxc3aWqKqauiss36ZQysnZdGcCp1DsAKYQEI2m1OnQ7BUUxdcBdk2UZ89kUo9coK8VysaDVtkm2vrLI5plp5rOZVR6XAdPZhGxZ2gJOp/hbFBlaF5hKIeJm4/bJ5X4jtkn6GrEYUR3dg50b0OpasOJDUjSp7DW2cSEaCziaRFsfkjHaMF/OyNIUIQR5kZLlGUILojim0+kQxxEG2/8pCCz4DcOQbqdHXmQMR2POR2OMMURRwPpgwDJNWSyz+rEwOBbWXPxZ6UYeA+FCclo2jLewFZY2JeQiW1M/Zw5NNRIjov4cYVbbyWLDuJ4xhwYICc+GfrjjIwNuLE2+WgYn8cUtgRAkQpALSZZKRm/cp7W+TdjtECUttJAYKlt/XwW2PDKwiqxGGFsKHghkBRGGy8sTjJog2ptoVWHKwjawkwHVYmm776rKxl87bVS2hFkOQhK1u5iBIj8bIkVINZ0iopCob5PkgnYLVZQIDJ21NSYnp7RvdAn7XdRZDrqiWsw5PRih84jLg5x+t4OZDvnZZ3YZzFLeO9Z8+xtf5Mc//ct0X/k5sm98nv3TJzyqlH2wpZ344fEB3f4aO7uXeO1bX6aoNB97+dO88uN7vPv2Nzg7P+Gtb7/G4YMHHL/8Ij/3S7/AlatXmE/HiGWKkCFKaypVEcUxL738KXZ3rnDn9l0mkzmddofFYs4nP/FTbG5vE4SGg8cPOTh8Qp4XjCZjlvMFeZ4ihCYKExCSMIppJbEFP+B6n0BepDw+eMzm1hUWiwkbmyE7ux03+xZALBdLRsMpjw8ecefWXYyQnB6fUWZQVhVaKcqyYHL+iM3thJ6oiJ2arAxDjMoxWiGN88O1VeOVgDx8GzU+IXzuM5ibH8fECbWGgqeO/cPtvRCj6p8xlQUBxjCdjjk6tp3ZMZrR6Iw0TWm3emxu7XDzxm32L11GRAFra7scHD7g3r3voCrN9Su3mcxHfP0brzJyTU6vXL7Epz/1U9y7/x5n56+iVvpBlWWJ0pUtMa/sZ8+WM9fMTtLu9JFCorShyAuXHCmYzeeMJyPiVkIUxs7INJuxi7UBFcas9k/yOUjei7Pl4r4hac1euKiL+BEDN2blHzS9ngTO6xcQGEFZSdLTMUGra9XHw9DqJDgJfAtwrA5OLYooGmE/iaFfLjA6Q3Tadq2VLndBSHRZ1jpKQgqIbI4NuVNXD2NMYqiWqU3sznMIJEHskkLD0IXZLcDJFkt6axFBHFMtrWOny4LFNEVXAYNEWf2jfMmNjS5JXjFawMnxYy5feYb40nWqo4f0l3Mm2utj2S14OZ8RJwndbp/jkwMOtGFv9yqXLvcYnh+xTBecnTxhNhmz2N3l+q0bDAZ9ijyjLCvqjvRGE4QBO7uX6XbX2NzcJM8smCmKgkuXrtLudBDCMJtOmM5maKVJ84yyKK1CN1Z01CDrXleVauYQrG7NdDql3R5QlDlJW9LtRivhDU1ZFKRpzmQ6YXN9E4NgMV+iVdN2RCtNvpzQ6gTEQhN4N1xKcNWDNZenjQWeCMTsHJ0tCLavYdb3EIFryFsr966URtsLasI8NfNhf8rzzIX8bEPmNFtSliVRGNNud9hY36TX63NJCpKkw2w25nx4htGGtcEGeZFxdHRA6pqc9ns9rl6+ynA8YpkeXAj1aF896XIO8zyjKHMrPiptg08LL3PbINqFY4uyIM0zgih0uZPu2RISs8KSWm/Mh6M8k7waurJjYnwBg6hTcWqW68MeHy1wQ9CIrjlRv0DYhEmJzcIJCcjPC07feoNka5t2r49sC5Sp7KAGhkoVGBHW8UNLU9pzrqs54egA022jixxTBjaUVRXWw8hzglDa0sh2GxmFBO0OJApTGdCCoNWBYEKV54RxRDmeEMQRQSu2RhAwWtAZ9Dh88oSizIn+/+z9x7NtWZ7fh32W2e64a999Lr2pLNemADRAgWQEbYgDKiQqQhQ14oARnChCU1IjjRihf0ATzjhRSAxGKAQKBCFSNCAoNKBCA0102cystM9ef8x2y2nwW/vcV9UNdlUT3cxi56rIypf3nXvPudus/ft9f18TZG5smoYwOorK8OaDkWUZaMqKhGdz8ZzvnDzgf/f+in//v/0Z3//b/ylvfuN30GfvsDQlR8+fcDn2KGM4mM/x3nNz+ZKb6wuKakY0ht/9e3+Tg8P7vPboPY5OHvL82Sest1f83t/7b/n4pz/gL/ylv8Lv/NN/lQcPH5OUxtgKWy2om4rdpuXFsydoXXB2dsZ2uyPEwOnZPd59730evfYa2hhi8NxcX/Hxxx/y05/8kJ/97EOC8/jgWW+2kELe1Ebms5rKatquFxnjZo3WI8eHiaqsspJHbhxrFUPr+fGPf0jXdbz95vus11uur7b0wyj5SW7k8vIJ3e6C4w9+i9eLSF2UQjYceikCvKcuxeFRZ82nBgprCLcvMT/+W8TtJenb/yypym6jaipeMokuw80q26irPPKJKeLGnhfnz7i4uiTFxGa74XZ9CxiapuGDb3yLt956l4PDY2aLQ06OH/Heux/wzpvv8uTpF8xnCw63K25uXhCHH6GN4Vvvv8/rr7/B5e21SHjD3Z0RUsyoJrR9y+X1Fbe3t0LqldwMQhQ0J2QvixACLy8vmM0aZvMFhweHmY9sJFcrsEe7UnYFnbgzcVIsRFGQ3JGQ089thCRxZQ2vskB/TZZIbbP/RhLfkUnCMD3UdQLfBtqLc2zTUJQVWCF0G6NyQxbvNuWpSFIyJK/TiO7WUBSkGAhR7WMtlNbEECQZ3nhMUaCMFjKqTVJkR0n/VmoQV3atif0gqI818vr8+5RVyXqzISwXGKlixewvBLTVHCxGKhOxxgKRod1yNlvw3eOKv//FFU8//4jDk0cwP6LUhnq7oQtCYq/LkpgifdvS963wr5TmyycfU9dzVqsTmtmSzeaaYeh49uRzri5f8vDRYx6/8QaLxZKEZP5pW2KtxY2O3WaNVob5Yi5+VSkxmzUcHx+zXB1IUnWM9J045F5ennN9fZW5TolhFF8d7x0xBorCYrVidB7vHOM4oFSgqcS9eY8UKNlvvBPum3OOw4NjxnGk78bM/xH1YNdtcG7H0ewBBzphTS5vgpfXpCgKRTnke/TPaE0cdqjzz1BjSzx9c080np52+UJ85aG+r7yk2EE+w7bd0HYtAMM4MgzigWRtwcnJPQ4Pj6jqGWVZM2uW9P0pR4fHbDZriqLEjTV9vyOGc+EjnRxzcHBAN3S/MJ7K93ku972X/LqhH/JIXDMhSjF76gi6ldi1LUVhKcuSuqrz8bhzbN6Psl75neXrMSOnKnP+0r6XnF6npm/6xVHWH7O+EsXNpD8ICcbIXTqqksJkmtYlJdWcD4rLTy9YPPyQ1cmJ5EwVJXlECOrOQl4ecJJLVZrEg+0lyg9Udi5ySo2Qhdc9Pm0JzpFcxNRil17MKsxshq5LSD2h7QjtQDlf4lRLGHt0crjNFqUP0MXkfRGpFitMVbM7v+Hw7D7V4QH95RUpOd5+/zGvv/eI6xcv2G1vOTk7Y7fd0F+95J+6/wD9W/f4v/7+E/qrH7C8903U/W/z7v3HuN//+1zttlwMl+hCNB8xRIbNhvrggLZrGcbP+PLzn3FweMajs8ccHp5xff2c3c0Nf+s//3/ze3/vd3nrvXf5xnd+gzfefpfVakVR1Vxd3XJ+/kRkhk4KvsOjIx6/9hanp/domhmkRLAlJ/cqZrMFq+UB777zTY6Ojjk6OcX7kU8/+YgvPv+Uq6sPePniGZ9+8lNCeElZWI6PZ+za51hjUdTYQqFNoqoavBv5wQ/+gI8/+YjjxRHz2YpPP/2CzXorMHEY2W5vuHj6EcvDhgeHSx5zjSISgpeiMgRUEn6I1nkEAEAUCWjwhG6D/fL3GZVCf+efQ9kqK340KUqmStbpZeJc3gGycV+7a3nx8iXDMOCc5+rmnBA8h8sj3nvnfd5/9xuslktSDBiTWCxKrD3Eufv0w5p211FYzcHBAcvDJdZoHj54zGK+xBbFLxAQBRqe1Aht23GzuaHrW0FbVCVpxm6k69ucLSN+Nbtdy8uX5zw8e8xicSDKE6Ug2pykHiQFPCIo54RYwX6jkc+Qi58Ekxt4ymOBmAJ/XDr0V29JoTgN3QQnnmZ1d/9WCBm7u2kpF1dUzQxmM9SryrZMwmYaVWSJbFKwGDtUDBhdiPpOCfoVBicD+CBwvrKaWNXS9RaFEIaTI3pPGgOmLGF0IpSIkTAOGF3vx1opJkxZoW2Ba3v0bI6pK3zXkVLk8HjJ6mhBv9vhxp5mvmAcR3y747XFAnV/zj96vsH151SzU5ifcTxfcfHiGZ0baEMrJGUlIxIfRmxV49woDc3tNVU9ZzlfUTcL+m7D2PV89rOPefbllxyeHHNy7z4HR0dUVYk2BX03sGs3wl8Lwg2rm5rl6pDZbE5RSI5g0obZ3FCUJXVdc3x8Sl03NM2MGAM3N1fc3tzQdSfsdltub66IcYfRirouGN12n21lSotSSbh5IfDi/DlXV5fUWcl1c7MWhVQe047jQLu+pKwLFnXFki43AXlcnUQ2nWsaQeDkopACKkbJH7x9ITrDs7fEgXpfVMf91cYvFDcTauqcY7fbiaggRrp+R4yRqpxxfHTMyfEJVVXJ3qQTZWnRuibEBT6MuNGhtaKuaqq6QilYLJaURYk25pVrfnrrO1zTOUc/9DifJfrKSgMVQi4o436M5UbHbteymC3FLV1PajH2d9kUjzMRsX8OKd6//93neXWsNYUz/yq2E1+J4gYm1rgi5PkkkPGaSfpa7DvMhGLs4ObDn3H88CF23lBXZZ79Z/5EkvwfhcbYEmsGzlTPqrulWK7EpTTGbOYk7zy0HVYr/DDgWk8KiTjUFM5TxAW6KlDFgJ3VopzxI+NmwGrLcPEStKFYiIujcAIN9WxBt96xOB0olUjJlVEM6xua0zPKN97k4osvuHj+ksViweXlC9rLl/zV99/k8dGC71+P/HD3McXiHbp0RnXyCN/9jDCMNAAmG8oB3e0tJ48fM4wD23HDZ59/yIvPf8b9kzMevPYOp2eP2d6+YLvb8KN/9A/58Mc/5PT+fd5695u8/vY7KKNQahCr8dFD9NTVnKqwGC08E1E4eNa3N3z5xRdsbm94/MabPHjwmKqZERM8evQ6418eGfuRH/yj7/M3/pP/iDdff8jh8QmzZo5WFpIRhCE6QIiB/+D7f8Dv/d7v4YfIax+8x8XlBj+R+ryn2215+ckPsdsbTj/4LvP1c5IdCXqBSiJ7jmFEGQk2NVYCwFJMe0O+whiS96gQiB9+n8HOqD/4K2LYGF0ewQhSQh4vpL2RnTjEbjZrbta3xBBYry/ou5amWvD2W2/znQ++y9npGVrLddrUDcZaCaczoFKk73ZoDPNmxttvv8tqueT07BhbGLQWP7dpJUT+Kp9J75VRxlj6YUChCNqIW6gLeC8OznnIwmbbcnN7xfHxEdrU6GQRaeedEkMrRVIGpb2gQVOAZsqKqOTz3F3u1YSosEJ07D0Cf02WNEDyRIpJvaJ+ujPjy3Z8TJus99BfXdMsF+iyyN37nSh2QmNAuH1JKRbKU7keU5bSoKVJeSY/XUQLEH0gOTmeyVtMjOhUiuRbB4lg0IYUA26U4MLQ7oTUWmY3YiVFlS0KXD9SzmpUMjliBMIwUMxmmINDuvUt7W5LWRS03Q7X7nj95JBVXfK0D5y7K3R5jE9z7GxBvHVEHynyOGE6Km7omS1X+OBxYeDm9pLd7TXz2ZzF6ojZ3DD2O0Y3cP7iOVfnL2kWCw6PTzk4PMoPPymoRdUXsWUpx1YhNgV5PDoMPevbNUPfsTw4ZLFcYq2MmJbLAx49DgQfOH/5lA9/+kMOVgvqpskjlIkzljB5KqCU4sWLlzx99pQQEqvVMW035Ae1jKOcG9ldv0SNPbPTM8phCzoQVSl2IqQ8klSovbxa1ItKSSMkid7Z2fzqCU4X2JPHmW4yOQ+/+vh/pbjIxc44DPRDT0qRfsjjKFNwdHjI2ckZ89k8v58QrLUWNEXnYst7h0JRFFYQnrJkPp+hzYRQvnJz5OZlUjbFjCgprYhe7CjUvhiN+8nINFkbx5Fh6Jk1Daawe6RFZO0yiprGWJNP0b5wyRl28IoK65V7cAIqfpX1FSlu5IRGFD4VGCJGhX03FZPBp4nkmUG9ZGhfDFx+9CHN6X3miwMpfNQUjgjEiNE6D7kSJ9sX2LKgUJYwRnQawGoijmI+Iwwj1liSD/jocbsNyQtcilYUzDH1gkBH2I5opbEqG32NgfH8BUqdYaoabaRKrZqSq/Nzwm4gzDR23uBHQ3kA/voGe3LC8YMHvPj0M3abltVixe36lsIWvP3gISerlpOPPuU//cEnXFRnPH70XRbNCZ9/+SPa7S1FSqAzTKjg+tkzojKsdyMuRBY6srl4yvb6OUfH97j3+B0enJ3RdTfsdrc8//ILXjx5yvf/v/8Nq+N7vPbWO9x78ICyqqlnlhgGnnz+Y24unzCbLymrhoTi5fMXXF1dcnB4zLxpqKoScLi+xY0DXZdTa9OO3/6t3+Lm5gaFxVrpemNwWKMwgOsdf//vfZ/v//1/QGFq/sJv/w6nx2f0fSeVfIh0uw3nX/4Ef/GUNx4cc3h9Rf/kGZ8dFRTvfECtLUVRZDXJNNUWuDNNuUgpm0MmGHYdbhhY/+5/gqqW2De+wWRUp/LNKEz9dIdWRIghsNtu6bueYejZbFt0Knjj8et85xvf5uGDhxRW3E5ldKFx3cD11QXPn33Okyef8fT5U0rbMJ81/FPf+yu8/sbrHB0eMQ4ea8xdZlFeMQRSFARyPl/y6NE7DP3IxcULtptbxkGSnb13uOCYEtKLQgoZ5zzeJzHsS5OUPYfJpolADfsg1LyxTbCwPGju5J6RJOO6pPLP/LPZJf5JLUHIFVEZdJKB39RjpvRqanx+fVK4rae7usLOFhRl9QrGcwe7a6XE8ZrEbNyKklNpkhc+mdaRSEQXhZBTJftBEJxxyAVSynSmAmVLEp40SmCrVhItQ4j43RbLHGXtnoNnraVtW+LoUYUQlWOUOJvY9ejZjHqxYHd9wzh66rKiHwaM1hwtl8wqR3N9w0cvf0Zr5yyXZxR2xu36HD8OaH3HkUhK0W83JBSDC4SYqFRk2G0Yuy11M2e+OmRRzkQs4Aa26zW79YZn+nOq2YzV4RGzxQJjLLbUpORZ317QdzJOMXmM0263dG1L1cwoiyJ7QkViyCiCk1gdkuPBg/v0vahetX4loTtf2zFEvnj6BU+fPkMry6MHj2gaGfFPNYXPiE1sN6wWDXXf4ddbbhuNOTrFKE0xKecmS4n9gDCSkr57DicJuww+MHz5UzAl+vBkf9NM3/Vz45epyIiiDnUu4INnHKVZX61WnJ3cY7Fc5iiEOx5ccJ6+a9lub9lsbthsN5i8N7728DEHBwfUdU0IUny9augnW2TK0w5NWVQsl0eEENjttrhxIAShH4QQCFEQKEUS9Vgif12oaZNh6IRsvpq9dXfcXlWH3o2+98/wXKT9SdZXpLi5q9FiShidMCph88GfotcnSer0ejcqrj56wurxZywOjzG2EFk3mohU1VbLwSzchspL+mkYXO5o5EEQhgFdRKwtMNoSrSXFiuAGfNsxZbdoXaJsgalq/HaHKgzVyRGhHxi9J2136OIWjhVUBSkkloeHVHWDIRJ8hyrF1l0bkSqmfqSczzl6+IDzzz/H2JpZUbO9usRYy+HJGf/st7/BcfUZf+2nz/n401vuP/wW3/rGX+X8+lOefvkR274T2FMprBvY+cQuyShvjeK+1Sw0rDZXmJ/c4GYL0uF9lov7jGlkt71lfbvm4vyGj376E45PzlgdHfLwtbd4/Ph1jk+OcN6zXl/j3UsiMcOdA9fXn/PDP7hkdXBIWdZYo0XWbcRNtWnmNM0KN6ZMvIx4N+DjSFkvaNuOf/gP/g7PX1zy9uvf5OHZa5RlRYxko76Rzeaam89/TLo6Z6cS1dGK8ssL2hQZD5R4GxWKMQ4Uxsj3kgRKJxGDQ7lECh5iwofI5fWFeGYA7Q/+W1YP3iBZKQako/CgJghZHk4CyTva3ZbNdsNu1xGc5/69e/zGB7/Bm6+9QdNUMvRIEMeOy5srPv70Ez7/8jOePX3CRx//kC+ffEE/JN59+21+53vf483X3qKqS16ev0Aplf07xI4+pTuTPa0182bJfHbE6ALjOHJzfUHb7dhuNjKPHwesLVguVjw4O2PezDg6OkabqSvMQ7ropVmIgoVKnAQElV2Qk0Ipuy8M4yT5zrBwyETrSer567T2qhQAElqlfZTI3utnQsxzVx0itFcbquUNVd3Ig9PIWHgaQ0wduI4jJnhsWZB8zEhEJmWHANpIt6/y7BQrHlluikPJgb/aoKwljiNohW1qohcUDecI/YBp7gipZVNjrBWHlOgEJc7BwSkBPmCLgma5ZHd7i9aGQhvGrkNpQ9XMefP0hMbc8JPLLdfXA4vlKfdO3mDXX7O5vcJ5v3+WpxAYY2JELoGexMJoSgXV0KIuemJRQj2nKhf4FHCuZxgGdm3H1cUlzWxO2dSsVocslyuaptmjNbFr9+iN0oGuu+H8ZUtV1xhtRTmVjxcJCltgi5oyTOdOELUYAkVd4r3nyy++ZLNtOVydslysMNpmPon4Fo1DT397Qep2jIBtKsy6xaVIqDUxinAlJI/JJOn9RQWC5sgfZA9Iia4V37QI+PPPqRYHJKNz0zTNIl5xX2Yyzos4NzKOA24UXtG8mXF2cp+D1QFFIamAwnH3tH3H9c01t+tbNps1V1cXrDc3eA/Hh4c8vv+Aw9Uhxhp2ux3kZ8ara7KiELSnpCikEAohMPQdzo+Mw4gPUnAZbSjLksV8TmELmqaRcOAkuwrTseDnLRf2e8cezdQ5CJRpwjudxLtjnH61veYrUtxMfXbOlCJgdcIoPYHg+45zimYMQJ+A68D1j3/KwckZVZNHQnuPEnkgqBhZDWuWqzlFUaG8mG8lQBcVGsloMUWF1lBQY+qK0Bf4cSAMI2693dtS21mDXczpL26EPR8QCXlhGW8uUKWFtJCHnErC+5jVxL7HDwNFJTkdtp5JJlWE+dExY9dye37OcrbARs/u+gqFYnZ6xm9/8D4Pjw/4r3/yGX/jk++j5g84ufceq28+4uXVx3z05WfsnEMDDpiOVh8TlzExaE2hFPdqwyp1bC+/IN48IdQz6vk9FveOaMeO2/Ul15eXXFy+5PNPP2U1O2Z5cMDqeMnZo0ccHR0xm88whaGuFxlqN7Stx7uRqipQtcZYjTJQFDVVXVONA27scYNj120JY+Tl8y+4vVlT2hXf/sYbAiPnSj3FyDA4bi6eMD77iLLd8HmIPLq3ornd0G9GdKWIAVLw6KJEk/DBo7XG+4CO8tBKQWTOd7ENI7e3VxhlcCniP/p9yvf+As07385XWy6Kor/bdFJi8kd3buDm+pK265g1Dd/9xrd49823WcybPCCU7+r7Hc+efsLnn3zIer1h6HYE7/CjY7Me+fyLJ5xfvqDv36Eocj4QEm6qldoHyjkvQZvejVJwMOKGgd32lu2u5+rmmufPP+f6+oquc1hT8Jvf/W2+/d63uXf/PvNZg7EmIy3+bo/ID+TJmThm6TvGwiiqlDiN6FCixCQXAPucmCRcuF+n9erOmQsb/QoEnrK+fk+0JjePfaS7uKSazYUArCYzyMSEvJMSlR+oqhJjDDGM+e8VyohjbgqSy6NUzo0ClNNCUvWB2I+5a03owqLLMiumVC46NWhN6IULo8uSCf0mJVRhIRtZalsI6mcLUkYnirqmciND21IVJdpHXN+igGI258HpCcum5tOLGz66fooqF8xmx9SnK7bdFVebG1yQayW8cjhDgi5CMKJwnVtFlRxjuyb1awpbUJRz/LzBBUfft3Rty67dsb6+oSpryqqmaioWyyV1IwZ+ymisLclHCjdGognCITOvqNOMxVpLKKRYDF6KgxQSu8tb+m5Aq4p7JweYzJua7m3vA323IWyuMG7kNkYW85qiH/FDQJmMUsYEWtDfmBEhER5IzA8x7YsTkoyxh6FDGHyJePUCc/wQe3TvDqmZPgevXEvTMQ2evu+yOqrg/uk9jg+PKMvi577f+5Ht5prbm0uGQfaKFCW1exgCN7cbdv0O50e0qZkyz/4QSpztDUJOCSdJcTiOA4Pz9F3PdndL13V4F9Bac//sAfeO7zFfLDJ6LudpcnkXVDgXcCmRMqcWppHUq+iNLDU5T6cJvtmzcn7p2/wrUdwoEloFfI5cEGVUyhkgmffwikkWgMsnp4iGzWeXXJ3+AdXygGXxGF3XMlJQCp0SS9/yuKmYmTOM0pT1AehsxBQDYl4WUEkuphQ80Q8QIqFvCcNI0oqkC6KLRJ8w9Qzb9LirLbapJKXXGuI64G6u0bZAlyVKW7Q12dK8xK130l1lQzvdVIS+xcznLI9PxTzrdseirhldx7DdUFQ11cExr7/xBv/a4SHvn33Of/yj5/zsZ+fUR29z/943qOtDvnz+MVfbDcnJbDSRsArGMXDtAmvteRoCZ1ZzpgKnUXNPj4Thhq0quS0POL33OrFZ0A4tm+0N4zBwfvmCi8tzPv34U2xRUtYVs7pmcXDAfLGgmTWUZUVV15RVQWEN2sjFvd3t2G53uGHM8+ORoRMfCUXFanGGwlJYmzvkSD/29O0t7fNPWNy+JPWOn44BUxXcO1gSnlzjUmRmEot5jSIxji2aBUYLcqRSQgWPssJZkNGOKBymObgfHbq0jLfXtL//X9I8fgtdNvsbb19aR+GeCKFYbrzb9SUpwW9/+3d4/533WS6F9+OdOBF779isN3S7HYB0N7M5pycnhOA5OhpomhnD0HN1dYEPntv1ln7osSqnlecC/Waz5sX5S2bzBbYQ1cfVzYXIPYN4r2w3W16+uKHt5bOfHH/BX/qt79HUQjz1IZKik7ttvz/Eu5TiaTaeIEYnKojgM6E67osf4kQ4niTyv35zKUEQJ6ZNHknpV43lpw4z/65M5mWK8baju3iJLWvKlRHyb34aqQRVdKysodAzQeFsldGYacyZi6g9/B5J0WPKRPSO5INUSZMxo5kap4LQjWhrxNDOadQ4SHOUkSCV3wejUcpkZ2Mx/iMB1kjoZllSzWaE4BmGkdJKkn0YRykQ6obVwQHfqmtOFrf89HzL9fUO2xyxmJ9Q2Jrb7RXdOO6bxOmohRjpIgwqsYmRudbMVWSWNHM1ELuBEcNgKmbzA5ItccExjD3eB3y7o21bbq5vxMjPGgprKesqR7FYGWPZbOCq1V5OP7qRcZQRUPDi8RT2zseGqpwLCq8nN3JJ0/ZuYNxeUw478JGLIGHM86okbjpiShSKXFAkQnbplto2B86kLHHO/JFX85VIuVHSmjB0jM8/wa6OpIn4hattL4FmIisrhqElJXhw7xHHRydUZSmvDl5EdTFkcYMUxROa0sxmxBhp6iBFn/d0XZeRMUFfVM4anPa8fhzYtTvKshSQAHIRupM9EMU4DOx2Pc7Jdd80ax7efyhKvFys7K0mmH6dqfon1ymvjDgnjmyaEJ+7vUheeXdMfpWd5itR3EzxCZM5k9yfEp+QIM9M9T7VOKS7DUcrTerF+6Y8OKRoKprTezmBNXIwdLy+fkI9dmSzT6EpayTkDLk48H5f6KA1Rhmi0phqiW40qrRCDiyEcU6I2GZOqDpiCjkrLUFZE4cOd3NDcXCIbhq0AtcOlE0FPuB3O4qZQhmFwRKNJ3RbivmSg5MTXmw7NruB1aoh+IDbbTBlhSkb5oslf+m73+StByf87k8+429++CFfXn/O4ugtvvHmX2HTv+DF+edcr28YfdiPLBXgQ2LdOTZa8YVWrIzm/qi5bzSnZU85dLTbl4TDI8rZESdn96lWR0RluL664vrmimHs2W1GdusNFxcXebOw6MwvMFZ4ATrPpLW2Yl6m5KZTWmGUFWQHIw9VFcXDJXiiGwhXTzm4fcpRu+OjLvCZi4xK8cHZAd35DU/6kTdKzb1lxBAwWh7OIUjKtgR3RikqtSA7MXgI2Z/Eg1WJ3m1p6iOqWcNsd0F88iHFO79JmB703CkapsATrTVlaSis5rWzN3jvjXeY1TXb3ZrgPaN3eOcZ3MCu69m1LXVZUGhDZQxNXfHo3mO01hRlyXIxZ72+pe1brq6v2W1ajCkx2hKijKYuzi/44Y9+yOg8B4cnVFXDbjdANDR1zejmzGZzykrTDwEf4dmLcz7+7GOquqGZN4DKNvNjNjC7i5HIAI54fCu7dzeezLmYkJpIJve/Ejya7tydfz3W1DFOeDH7DX4qOqa/uXs8TaNwTfKK7uIGU4tNRDGbZUJlogqeg2GDDZ79fpx/WnrlgZohAKbjL5VRNhS1CoxCWbO/b4gJbQuimVKqcyWlLQRH6DtMXaOsKO3i6IXQGRPROXRB7qY1KWqiGzFFSd00bEfPOHqqShRd0Q1EY9C2oCxLHt075XAx48uLGz6+umTd31LWh5wevsbgd+x2N3TDQMiF/37EQ6L3iUFFbpWi0pFFVMyVYmYiJjjcuCPVNaZoaOYLbFWT0PRdJ8q/4ImjZxxG2raVc5SfCyAuw9NIQ740uUjn0YdWuQi545aIxYN4VRE8sdtQ9Rtq57j2kZuY8MDpvMa1Pd5HVkYxq5IUwnmviSmgYn58p4xWTKjzvuBXe1uXGEasqVGmoHQdaX2JPrqfgZp80NKdt4sggUqMUbViOVtxfHBEYS2jG4iDjOtCFKWooLs+Z0dpjFYUxrCaLUEpjDGUZcGQuXld32VPLEGJp5Dj3a7l/OKcECN1NcNYy+hESWotFLHIjtGd8PgSbLY7rm+vsdZiM6I0FV37LKl8I9wNwQSB3EvgVdoXN2SER5Cbu5vozi39l1tfieJmEo1ppbK3Tcip0yZ7bLD32oBXuEjcDbS668TFD35Kc3iMrWrMfI5JkdX1M7h8Rigr6VyCE48IZUjKyczbjeAnlQzoshQZZkpC/KsqgXmHgWRa6eaGAUqNXc3pnp1j0PJQWjaM0RN2a5Q1FIVGF4bgAroosPOK2A1411E2C4KPmLLG9zvCbke9XLE6PuLpR5+xyCqw5EbCriUNTk6y0ZweHPIv/oU5S/tT/svP1/zDm4+5vfmcBw+/yXtv/w677hnn519yc7umc/LQV4BPoEJiDInOR2685mcaDp3hTGvm0VGPF0R1zrNPfspWF8wPj3n85ju88e1vMl8c4GPi4vyC69trhkG6JedH4bMMEk8RdMg3GTK20ApsQkcxVAwugBqwSrpnM3bMNhfMNy8phpYv2sA/6gJXITEq+PZrpxxZQ9iMvGYLTosIQUyrxEME6kIu/uAGttcXaBLVagZKE5yTsY/REMEWDcFf4boNRRGp9AnpyY+Jr39TYP3MyZhGDTGKokNrOD484nu/8ReYlw3KKJ6dP6UfBkbnGL10jj46fIj03YAfRvpMxrPKYOcLrCmwpQQUrrcbUoKr6yvarhXDSX0HF7fdwNNnz1ksDyFWLA9KjKo5PLiHdw6tFA/vv4Fzjqa5ZRgdZWl49uI5y4MDjg6OKUpLCIl+aOm7ge1ux2YjrzXKZMUNGEy2XFB5Q7HTDi7XkJaCT08ck+nh/Guy7sqWuz9Pe4ikzk3corvXI1Ol/fI9tC8vsHUtmUK5k676DbQborF3SpnpwIYge03mfe13bWsgZnQhu5AThZsTlQeS8HSMwlQFbtuiUvaMqSxhELlx1HcohoxOtDgfO0/UClOUUiQZS/CO6By2qqgax+bqlrIssGYqcJxkVEnlx6yqeOfhPSp9ySe3A8/7K4b+lsXylPLoMQu3pW3XdH2Pf0XVMmXSBRIuJnqluFZQR8VMKcoUsbuOpFo2N5eMylBWDavDIw7O7lEUlXg77XZ0fS/jkj2RVWIRUBpF2KvGIO0NWQmJpJX8W0UmjEJHjxlaymGHDo61i7z0iS4mAnB6MKMxmjgGllozM9LYGFvIMyLt/SuFp9PtUMwwlXiZ3WWOCT3C6AIXO4IfM5+0Ia0v4OA0c66mi+0OrSU7H9d1w4MzCb1USrFtN3tFZIgy9poUlD6bnE4Zc1rJyFIrkxW8mnGUMNCu63DeMXn+kHlK3ns2my1lWQvaVWk0BXWlsxu3YrFYyV5mB0IQ4cRmt6GqKuq6wRhNTIJeex8YR8c4SqGoc1cxNRU/P2Z6dUSW9vLvCfBR+zv3l1tfieJGlsz+jTQuGG2lAIkjPkFIZl/VRIFz9jCX/Kdm+2TL5Q/+EfXygOVrr7P0Lc31M3COZApJii0MKEtyIxhLCiMqyM0yVf3Jeyl2glSscbeTg1yVewfbaBSmbrBVQXm4pL9cU9clAHrWABC7llAV6PmSMOyIoUE3M4gwrNt9aq0pa5QxjLstKiSWx6fMVhes1xsevvYIoocYCf0ub2olahiZ1xV/8YO3GPWnVLeGv/P5OR9/9n1m1SGnZ+/x5mu/xaNHa87Pv+Dy6prd4LKMUQ5aSDCkiFOwc4nnBgqlqF3gntHUKpFGz+3FMzY3z+Wm1iX3Hjzg3fe/yfu//ZvYsmQYvBhqkaSD8KLO6bsub0g+e0LkSPvk0UOL2l5j21vK7oZy3OF85PkY+aiLPHWRIZPtHyxq3l42+J9dsNQlBYouwhunM46WS4bNFXWzEPhSKSyWFBxut6OoCnRVyHlMQQzOVA5P1QqNyE9LaxgvnxBuL9AnD5hyyORak4d4UtINHh+f8MHbH7DerLm4vqAfxn0HNc3gUxTXzsurSy6vrti1G5wXZFAyuiqaZsZqsaKuZyijGTqHGx1GKbS+EyOX1lCXkhnUD2vMLlLXM0E3S8NiOeO1x69zfHxM3w0MbovRBfPZkhQkPThmtVPI4YXrTctPP/yQL58+k8wpNaHq00NC7TtgCaGFPcSz35wmvsMvb4n+P/7a4zUoYvZDknH4VGRMuhXgDymnII+nNo7u/CVFWVOuVlTJU3TbfRGTYh6XZI6NFDbhjk+xh+jFqoCJn+AyR8fafceblHBmlDHiX9P2aCMPUgqLTonkHMlqVFHJSL2wuUgnCyjk0a6MxZSaMA4QoWpm9FXLMAwUqyU6FyfJZ3KzMRAChbE8PD0kqBtsr/livePq5imFrZnNjzlY3WexHGh3t3RdzxjC/vqVYyZFTkwwxsRGyV5vCcy0opBfniF4zvuNnCllmS3mHJ/c4+ThfbQxeJ8zn5AsrhjTXUzENObL4xwRA0SUdzD2GDegXY8NIyEldj5x6RObkPbcoUVpOaoK4nVLpQwGaQgPZgVNWeGHDmsLsIIw6OzdEscRY7QUq2nqvve/vSBzTKiKJnRrYt+imgW/2BwoyOPiRNM0nB6dCgm7b6Vw2Ydbsr9GfAh0XUfXdYxuzA7DUgQbYyiKgqqssEZQJu+lCFKo/aUI5LG+QXhII0pDYcQR2xoNZcFquaKpG/HUii7vaSUp8Urci6gzhfPjuLy6Yr3ZZMAy7e+B/VvvEeRXvjbtNRNY+Ss2Ul+h4mY6qTLS0MqSiEy28HdonTycIwkjyVN3M0NvWX/8kvnpD5nN56zcLbrrcnZLBKNJzpPwgiQEn9GaJBCjpJ+Je2gCbSTpO/Q9KEXwrVyvlUWVDaYQBMjOakzb0e1ayroSc62mgaEnbDtMs0Qpg+97bFUyDiNDu6NopNgxSkMcMWVB6DqMMRzdv8eLT76g70ZWRwdMPFfT1KAVYfT4caAqat4/mhFsS5g/5vc+fsm6veazL/5/1MWcw8OHPDr7gIcPHJfXT7m4vGS7axlCzEGN4PMYJngYSLQKNjFhjaLQigJFhcYmqI3Bt2uefvYjhtDhQuDjDz/GbLcczGaY5RLbzFiuDimLiugdNolXS3Qj/W6Nvzxn1e0ocfiYeBbg3CdejIFbHxkyNGwVHFaWt49mLJ5c0QfFNkW8Sbz5sOSNx0eE3S1j3zKbr8Q/RyXKoiFpTfKiKNGlFQKmj+gMl8YQUBSoKJB81dQYldhdPUWfPITMw8oAt1x5efMU1C9xcXXB7c01Rlsh7Bp9lx8EDN3AxdUFn3/xCdvtTozTQkBhsNayWq546833ePTwMWVpsNZIuKJKFBqGvOss56J4Ws2XGJVwY08I2bYg270frJaslitiirLh5O7eWCuj2ygyzRTyJpskWXi37Rjdrxkh+H/A+sOwttg1TnvM9M/06ul7VPoFlCoqhqsdXXOOLUuq2KO8E35LTNKhhUjKWWU/x02SLiFv5hpUkEZLKmJQUuSkhBQXhc3EWY22FlUY/OjEdRcFRQEhS8athDVGL3wzMVwb0cGCLeV3iEHiALwUPc1ixvZ6jXeBqq5z42jEJFQpSYyPHqMtx01B1I5Yrnh2vWVwHTe3T7G6oG6WLBenLJbi7Nu2HaNzYlSo7o5tyv8XAKdgSCkX9BngVRqdElYpohvY3JwToiOkxPXlFWocqYsCVYlxYVXVGGMELZk4HCESXE9oWyrvsNlpe5sUbUxsgzRPPt1JCGqjOWoKynWHjzCSCAoOFpqDZU1yPcFLCvcUD2SMBRWEM+KD5DppRfAp0ypijsiQIsgYne9JGNsNqlneqfReHUfEyYJCnnpt1zL0otxVOo/etNlfpsEH2q7ldn0j4cK5CFJ5fFeWFUeHxywX8izSeby3Vwrmty6LgrppqApBI6N3jNHf2RAAVVVRVVUuYsK++dOTqWQubqSmk+s8BJ+T4P/sRthfmeJmMs6a8omnjkdksIbMCHjl9XKrTD3jVOb4HVz+4EPODg9pFkYkyfmCU8gBTwBjkJMVnJhhGSuGeGUlECQ6w++aVAX8KInfSmuUA117tA5AgdYW21S012uK0lKUpUilq4rYjaRhlFTc7Q5b13gnsKHSWsZNjc/SRkM0JcP2isXBIf39npvrG+aHh1SLOSkF/NgJoGQNaEsYRo4PjvmusTS3V2wWkY9iRec9Y2p5evER5fnPWDbHLI/OOHv3IZ1bc3Vzye3thl3bE2LC5/142oVCTLiQGI3C6sQQA01VM2tWzA+PqJs56+uW6/UtJEVZlqSup91sGVJkUzYslzNMWZKSou87uuwNQwi8UIqtV9w6Tx8iY4iEJOhoBGqlOSotr99bUF51POuDEM1t5LceFXzrtRrdb2h3G8n2MoUQMyc+j64J/Y44DhCkgBy9By9RHX7s0SqyOjgVIyzApITaXO/t8fc3KgGSkULYJbabDU+fPeVnH/2Q68tnGGWp6yW2mlOUFbao0UYx9AOu91JMKCUpyF3HOIoB1jB03L//AIVY6xeFQZsI+LtrXUFVl6xWC5bLOWj2ZPE9WTEpdDR5LGEFk0iRGGAcBc5v+5au61lvNlzfXvLy5UsuLy9zIOGfn3VXqqqJ/wm5+BB5+F0Bk12O9o3Vq32jQhGdoju/ZN7UFKXOPDO991nKPyTzl4AYcwOl71CRfdeWUNEQbcyGaRm2nFDGaZSmFcYaUf4Y4bhFH2X/8h5CQBtDGEcKO8s2+YJKRzdCkoZMkEhDGHtRKM0DQ9dT1jW2rEjZRyZGhFia9+OmajhTmqLvGEq4ThYXIhHHpr2k3V1T2YaqmTM/XuLCQDe0DP3I6GTUH9XdsZyKHZdE0ixTJEGKiqKirBusLRg6RzdKDIA1huQ8fhjxJAZjqcoSbU1GD/z+H2JkpxRjVAwhiqQ73hWyEbAoGqNZzUtM59l6Kfa1TpwtNaerAu1HnBtk3KelUFEZiVEoYnCC0OWCZBqdyXH0MrasZxRluR91MnaIu1tu0DOvj0x2J/vcbLYbrq/O6dsNSmmslaJOgkXNHomJPkfFgKC0zuGDXMHeexaLBZDQWglPUclRUK/MXK011FVJWZV7tGQ6WvvaK90p1BImm/2JqjPFuEfvx2GgGzp2OyGJxz/Dwga+QsWNjIXE38ZkIyyUIiZFSPvemVeEdpkAKTfJXfWpiWvHwdhRxhllVcgJLy2p74nDIA6lKWZppjywtFXYZj59FFRZgHeZY1Cixn7vS6GMxdaFlGJBAE2tLdViRrvtWC7nghCQ3R37AT2v6dqOKgSZf6JITnwnwjASa03yotQqqznODRyf3eNZO3D14jkn9++Dgn50bG63tNuBwfXoApp5Q1nVfPPefQ7La/6Lj6/5/pWiS5ZRRYYYuRwvuHp6Sfm85vTojDfuv0P5ds2uX3Nx/pLzq2t2bYfz2RJcZdF9TPiYUFERXc/l9im+vcE5h1mu0GXBsHXowlLP51KUaINVcj4ZPePguB56vthtGJyw4oOXTsqlPSiFAmoFs6pipgyHC4u+2eH7iFVwb6b43uOC108rqjjiuo7BeQ7mK+mSMmoxkYqTlTGiSuIWnRCIVGtD8JHQD7S3F1gVUOkUW1ni+gU6RiL+lTwl8sNPJJHXN5c8+eIznnz2E67PnxED2R+pADujrOZU9Rxra5x3VOYIu1hRFRu0uiSFLWPw+NGzuVlzc3PNzDnWt2u63Q43Cn9nSvD23hPGgXHs5SGDqLJcjNkOXYnaJbtHj6Ns7P040HUdbduy61p2u5Zd29IP4x4+/vO6VG6MJEE9TQpc0qvkmlcwnD3xmleKnKRIQ6T2Dl0U0kQpZCyVZd0qF6B7bkXe4HVZ3hVNOhfOChQWshBgqr60zTb5eRShlJZMu9FRZhl4InMUnEeVBcF5bIw/J8vVOu9XNvNyYsKYghCCoDfO0223zBYLkgLvI+Mw4kYxNdUabClqpdP5nMr0fHLd8axTOJQ0SSrRhZZu02K2llkz53B+jD60ON/Ttjt2bS9hsHl0sy90EvmaV8Tg6cYN0UlxrqsKZQx+FCWTLUusUjQqe0urJOpWH+iD53Yc8Rn9SHncKIj/3fkzQG0NpdJUpUb3I9HLXjQr4OHKcDAz2OQlOy9GquLOwDEHtEnDkV6J4MhCGJ/H1CkJP8j1rVhFzBq0VTDsUDGR9B2fdF/tJRm/9X3Hen3L5vaCbrclJclzi9qgdCE8TysNdowRqxp0WWH1QK860nAnIBj6gb7vKWJkGAa8c5KQHsP+Spek9JD5TFLYxCB7trgSw12mVI4QSTLq9tmyYnQO5xyjczk24n+cjeYrU9zcBZ5P89K7S2gKDZw2A/Z/o9gTH+9qVo5Oj3h4MKOwWqTAIRLbltgPJCeJ3UlblB9BRbTXpCKiywqV2fdCnrSkFES5MJuBy0ZbWqOs2EsrpWUEEiNGG4iBbruTtPIoOSbJjWhmAu+OI9pq6c5CwDQlRkuSeHQOrQyqNCQUrtty9toDbl68oGt31AeHfPGDj7h5sabtCtahYlSJotyxWiVOTkuOVgv+V99+wLvPrvnPPtnwzGussYwx4EyiTz1fXH7K88snrCqZZ79x7yHvv/8+u2Hg5flLLq5uuLm+ya6dUkga4FQLsuKHnqg07W4LbSQOATcERgUrrWmUxljh76QkdnTnybP1ic6l7FQkZ3AKAbAaVtZgTQE+cKgDb+4SdVQUteWde5F375csSiFgum7EBU9RVTSzpWzvSsJVY0gUtRWIOkTSOKKaCqsNW7cWC3vfU87mzOcrie5AErU3t58wa/8Bxey7qFRk2++UWf+RFBxD39K2t7TbLX4UfpHGMdIzxI7EDWVZUzUrmmqFLipi0pA0VhkKrRkTtDvHp59+wtXNOXVdMY6ely+vud0O9P5uw7m6vuUPfvwHfPnsS0IMuOBwo2d0d/+IYiJkw630SoDmZJP+h70k/ryu9Iv/fmVjET8k7mbke+yG/YvUK5tQPatZ1IV4chklxUuWdKfMDZEAu1zoaAU6kYzdj2oEqc77nVaookBF2VPQKnMB8yN5T7JUwotwDmNsrp/kfaDcj2am8MkUo0Q6KCv3xORjosWfJbqR+WpBv9vinGRHra8u6XcjzmmGaAkqoc1IVSVmM0NTVXzr3pLjbcfPrgc2CAclEAkKfPLctjds2zWVLWmaOQezJcfHJzjv2bU7CdTtB0GY9rt6YpYLhOjlITuMI0olopeHrVeKCrBZ/m7UxOuBXYqMEVy8463dPU3kFFRaxrbESJUCh2PCJoW2cDRLHC8sZf6hISNp2po8kpquFCkSJ1UmMUpSdmEwSjEEL8c2eIwtKYtqH7wZfWTw1xTuGbo4Q2FeUQuxH4F777I/2JhjD8SUIRAIyZHoszS+wtoKpc2+XNSorIQCN0Zub24k+LQQtG+36xlGj3ul+Oj6npcXL1lv1qQk+0iMeV/J6qwpemHaV/bZd+mrtc98JYqbqVjVKlConNehgajFW+PnBlKZhc8E+k3DLLkpjE688eYJs1L4CypGQt+RnCP2LUlZVEygPSGMGK2FB1EWkDRmPsPohCREm+xCmjBNJSm7g0bPDLo0QvrKBmYhBtwgEsuha6nmc4xdQC6oknMUVUkMfm/gFYLDxhqUMPFjDEIkdAIxFuWccdyxOj4EXRASVMsKu7bgDafHmoN7DbNVQySgS0vveny74ZvHC07rxPe/bPnhWnGjS3bOYXXCG01UgYvxlvMvbyi/EM7G8dkD3n70kG++9x67ruX65pqr6zXtdkMVAgcp0TtHS8TO5lxfrxl9YGZUVg8oFkrMAk1GT/oAXxC4GEWNoCB3zLIpzUrDzMhX12PA9AO/VRq+uywobMFqCW8dKw4qg1ZObOp9wsdAQLFaHFPVDUVVYHRBaXMqOxptChKChulUUhSWwQ9oFOPQUdmZcGjQcl5swWyMLK8uGA++ZNzdR1G+4pwZKKzl7OgeH7z7TdLY8fGHP+D85WX2wtAkY9C6oZktWSzOaGaHmLJhdCPbLWgGdJZY96Nns2nZbtp8DSU6LxD9qxvEtvP85GdPUeqp3C+5w82NL1+RveTXYt2VKRGjYm5QBLG5c1B9hR4z7SwJopp2mYwWazg4mFHkLDlSEjFCCETvpKhJCKcmCqlYRkgyfNdlsS9SyKgwiOghRUF/lJWiSdDUPFZPSRLFjQTcmqLA6FLGUjEgga1GGrPJnnCfkyGcjSR5HqIkigljSnwYqZoalCEiQZN6cBA0Ta2o5wVFJfshVotU2w2cNiUzm3h66zkfFX0yuBiJKhG1dP9t6GnXPXqtqKuSZr7gaLnk9PiE0Tv6rqPte/w4YmKiTgmfIi4lKAq6fiDERKEnfRtUSqIlJiTGJ1iTaIOM2ae9ZkKiC6MosvHi4CPKee4bzf1KxktVCYcN1FajiFKc5sYmAk3RZI8yUTmaiTeF8DTlOZbHVUYToieiJFdOZ/fzjKJhDEVIVF1LqDd4N0flXMWUb2ytNfN6xsnRKSk4rq/OaXcdKSUp5pRGUVAUJWU5z+NwSwiBcQRKKahTEsLxMDjGwSGy66yZ+YX7Y/SJi+sNis3d/fJrusd8JYobkBu30MI9MNmh1WXTNbklyeiNyiMouaSnskfn/6oqzYPTOSYFUpCqO7kghU0mE6dcscusVN5DeQhuhJ2Cqsj7jEPVjcgzU4LksPMaM8suyMbITDxKZ+XdKImzeVygvZADjVakccCYgjR4dFkDETcMFE0jdvs6FzhjJISROPaYuqYq53g3EE0ihZ5Hb77O6f0HjC5ibMAUBdqWOOdwMdIOlhbwMUAwvF8X3NcDz2LJF77hk5uO0SfKUuFKhUMu6JfbDU9ubik+/pDVfM7ZvRPunZ7y+L13iMYQ0Dg3MHQ9hz7ig+PgvmcYesI4YqPCOEnUHVVinFyklaJ3I81mRxET80rC7FSUB4pzA9e9pw+OOfBXl5Z/4fWKt+4vaaqGFEbxw3AjfnCoKJ0vSlGVBfNmhlUy0qtXS5mBew/BobSVzjcGub7KkhQizkdRilQlVVWjtZZxZYTDcgaf7xiPn9A5TV3ekws0TcWz4vBoxXe/9RscLg5wHp6+/Du0u4HCBJQVjkxRFMwXCw4OTsUrYhzQasTVkaq0JMDuepwb9yneAEYlQtonFu25AT7eaXh+HTear9oy6o5sKUhxuMNoFPsw0GmHmcbfoPbqDWMUi1mBTpmTEGQ0EoMTFdQUNjkVSjk9PcX84BwR7lyGFSafGllR3IkLtUdvZPSU/za7HE++LSpm5UsWSuhsAqiMkOxD8OhYoIzcO1obyQyLWRVqLdZI8yUTFs/q8IDZYkEICa2jGAVmQ8yQwCmNI4+SoubEauYqsE2a21Rw0wmZ2BhFNIqgEZXSMLLpL9BXV3IPz2bM5zNWJ8ckJbaKMXi889TZEK5aREKWOuuk0NmrJihRYY2IM7uLATs4dEqU1tydr1xk9F4KpgJ4o9S8fWA4nFcUVgjdMYxSnIawd8lFCc+nKAqMEi6MrSZydoKUUTAlHjiyT5hsZidFpTUiIlBKSdEK1KaEW0eYbfABrJnnK0zufK2gbirO7p1RlzUxKja7L3BOECGlI9bKxKAoS+pKHPrFnC9iQxKFEzC6HHiZRKSjU04u/yMKl/RrWsz84vpqFDdJBk+FEqM3rWQclKLizsD5juY3rV+cjivg3oMFq1kJ44AbegmFCV7UBDFAhgWVkvA1pcy+fI0+AiPJD+iyQJcFDINsOimi6hJdgWlKmbdPEGKMkhWlssdBCrTbLcv5UjYLRAaqi4KJW6SLAu8GQj+KJLksc/XmhRhXVqQUCN2ILWtUZcEUxBSwZUHpRlw/kHzAFopqOWcYPIXVlFbRDjv8kbjTLneG15Xmm1j+gVX8aD1yte1JWY55UGhCpQi1YfCRTbdl8+mWDz/5LAeoiXlhXc9YHT+kni3RRrM4KlgqDyGhjcJoKVKtLej6TsLZfORkGChu1uzWa/qhpxtHejcSYqBIsuEtNPzP7xX8q+8dcO9gjjaKsdvQ71rC4JmG5hrZJI21HB+cUlel1JjaUBUFPpHPq3RfQr4RCe6kVOg3V9kWPxKdx2vxFVGlPDTC5XPG8zXq4NGe5yDFRyKlgLUly+UR9eya1iee3jr6LmFVwpqIbddshkTnFNtuoKxmOOfoh1u0HonRo1VEa9mkghJZvk/TqO7r9ae3poiXbDQ5KaVeGYO/OsL4w5v89BrFbF5SF1bM4MJ0jUYmcrK4HrMfOaksUgAyGpCLEiNKuxR8RgASGIO2yFj9lfeVlGadx1PS7vnMvRFvleyEbPQeAZgKkuiDPBSNEG/l/lBiZpqSxDUYC0bGVSlFCqOxMRBcyj45CluVe38To8EFR1mLsqocNQcKTtE80wUXfaAbPSgk+05DshJaGqK4Cg83I5c3N6Le0UZckk1B1SywpTg8V01ub/NITuhICa3NXgauYmIWArYfGIdBSMUh4IPw+4StBiXw7lzzjeOaeVWgtSL4ET+6/AxIU01D1DLua6qZjJTyOTXa5MYj5JFhVoSlrKzTCm00Y9fdxRCEKCa/MYHJ3JVuS9gNUC/uRlJyoklEtDJUVUNRDvgEmz7iHaJy0gHtIkMAF8H5IByqGPB+QGUVFyqhJsfBXLj86mEGv37rjy1ulFI18LdARpzAf5RS+j8ppY6B/zvwFvAp8K+nlK7z9/wfgX8LKRv+Dymlv/nHvU+pA6VV8qDCSLeRIiFlCFfd/XmCjKdNKJIEfNWJBw+X2BgJXQt+kIec4PjyPdrsK3mVMnKsII0jAY2yjexRgzjmKlugXCCqhNEldl5KhzYZnSUhkGlrKaqKbr2mLGs26xtWq0Pp4JTOKcoIDJ5zaaLvCW6g0NWdk6NKGGXQVcWwW5NMAg1+12LnOUG3qijrOb4ZcN6hjfBLjFaYoqYoKmbljKrosPqGsVYcNg3fWt7j3fWGv//0gt99qfhsHeg7h/cx47eJUkNlNRiFjxGfEsH1jGNP297y/OI5EY0yJaZoMEVFYUpsUWEz9yjG7NTrHc6NON/jfCcmeClRAwsUjcocHqv5V9+Y87/4xjGLpmYcdrS3a4a2YxzSvkvWVszI5k2NLQoOVodELQQ7cc3UxJBwEaxV0tFOypUgWTRNXbEJQyYaR1LwmKLCzGZyRbmO7nZD+KJmqL6ktPfkKssb1FRgd/2OL55+zh/89CPWbWAvOoqgXOSyu+XJ1QZbfEqRrfFjDHJs8dmvIzL6RIjZ0RP2xMI/atP5n/JGBH92e41RYoOg9YQAZ1XLz2Fj6o/4TjV9UAAWy0oemM4JpyZ37pmBjtrT5H/+R4oIQZRtJPnvyapCRYlzUAXktNP9OGP6DEprjDG4YcAYy9B3VFXN3SsTpIw46XztJRnPqtLsP588kOVneTfsP190Dl1mD5fs4q6tRHFMxGoJJZbxfBFKrHZo1RMs1LbgXjXjeBh5umn5cqe4GWLmrpCPzeRnJoVKINeGweOCZ6Rn221kr1FGYmyyOshkV92JlzLxQmIMhOjvnMpJGKAACrJJo4JvHBR8cDKjLCwhjIxDTxj9XjmopfJFa0NVWIzW1FVDzGifuABL1pTYnikm0z2pcyRx2xrLEDPpOLt+K22laQYIHt8PxHWBt2tsOc+vTRk9lBPivON2c8uLi0sGF+9GRQFUSHSuZ9MNaH1zZ/6ZIkas2rPvVnb2T3fIzP/U95NfBrkZgH8hpbRVShXA31ZK/Q3gfw38f1JK/2el1L8L/LvAv6OU+jbwbwDfAR4B/7lS6htJTEP+6KWgskmkbUqTEBfPacOX0zV5Bey/hWlrkrlr4ui05PFrJ6S+J3kpTrRSmOwxMM3FJU1RiGokUdOQCcIpRUls9UHK9hDBDajCknCEQeesFyMdTsxzeytFh48eayxl1YjHhQLnWwpdokIQYy0klkBhCG7MMfOJPb1WQXBe5I7jALXCVJL1EYceXTWYppbf29YU8zlpHIjtDhCDrmY+p6prCmu4sWu27Y563PH6/VMenZ3wjS+e8F98ObC1c9LlluGmpY+Jm+hpB89ARJMoVa7hFAQUqVAEBUmNhDiQRjkHQwddyAXapAhRiiol5si8e641D7SiSoZnPvAsBg5rw//2W/f4Z944JPmO7dU529sdo5OCIUUoK0XRFBSmoC5nHB4cyWZMYFbP0GVDdB5tLRovCriM1ugE2CJ3VFAVDSTJFKvqOWVVYbCk0WFmtThIb9f4Fxr97jNS+u6+q1dIpZRC4ubmhh9/9FO+fPLyFX6GXF+TSaKPQQbbX69fdv3p7zVkYCIb9+VYzMy5eQUdnti+P7fufEfqmWG1asQrJuYOeZppvUqYUncowP5L+/dG9qJcOIu3iZciJ0VSUCStsxmg2r+/yorNmDo0GmMLkhLkIMTsOD1xahTs84NywrvKv+L+t43TOC2AZZ9TJeMTCQQGKw7WRZmVYE6+NwSKopCwV60Zxp7RO2xwrBYzFvMZJ+s1n9x6RlNCO+J7h0+JPkVciNmG4u6YTR54Sascspi9yQIQxCgh7Z/Qdw8Ek6SQkfBjWCiNTYptTGxTpLKa75zOefOwguAZux3j4GQsnH+cNFEi9y5MQV01hOiBSGHFMkSI2hNRAn4uNkFPkQIi5JiKUluU4oWF+AapQo5rGgfiVqGONqR09koNrPKllOj7nsurC9ab3XR1vnJF5gY/pkwmf/XS//O99/yxxU2S2cs2/2eR/0nA/xL45/LX/wPgvwL+nfz1/1tKaQA+UUp9BPxl4O/8495DKyizA6cQsqYqM+XaW2DkST/y6pDqVScKozWu29KPO8qUpItSCnQUAhaINDvPmVW+EFXKwZlFTXReNpUwooIB5cAYTGUBSZRWKWFClAIHBYa9wVZRVHTdAG6gW2+YL4/xwyiirlzBK60xVQ3tTiBVL2RgpYQAnawhJY8pC7Qy9Lc3FPO5qG5eMYlPLghXRxuisRhbYIpSDJqIDN7T1A0J6IuKdb/FdCVHhyf85jc/YFl/yR98dkX3ncc4VROevKR7ccnoPF3KrPwE1z7io7gZv3SO0cLZ2RHNwYph3PLp0yt8VBijeTgvOWtm6K4nbjuUSqyM4mGtWGpN28PzTnOlI3/pdM6//hsPePOgZHt7wfpyzXqdaDvDYqkoSsXs0FBUllm1YDFf0bZriqIihZ7SGGYHh9ze3lJojTIalfMcg/eiXks5WyZGUEY4NsYQu5HRjfQkjNXoqhCEzWjKWcN4saMaWnzTYvQMhQQQpigy6xfnz/nRhz9l1455g0mvbExfrz/J+rPYa5QSF1Zy2KJQKKYRs7RRUw80PUTumH3TBxXkInqHDyMm7UuVu1FU/kH7LCkt2Vx751xrIQQpnGPg1YgGbSUzSXgfQFSTCZV4oSgpcLS2eCeBsK4fKKtGfoYczMz/EFdinFgF2IwQocjCCkVMQk5WaPzQo4u8F+d9V7atmAslJWpRrUVtlDlFwUcKa4Fa0CQ/opyhqRvun55Qmg0vbzv82ZJIQVxvcTsZXXsmew9FH0RC4knsfCRqmM1riqrCh5HbTS8jJq2Yl4Z5UaCcJ40ONNQaFlZRKYVzsPWKXkUezEq+e7bgsDaMQ8vQDgwjuFFRVhqtkagBqylMSVlWODegjezFWinKqqYfBhntTdYASgjHKC2TgFcI4sZYed64JGaKCfGiMpkhqhWmsITWYYIjRodSmXeVuT0xRHa7LeeXlzgXfq6w+Xr9969finOjhKDy94H3gP9LSunvKqXup5SeAaSUnimlzvLLHwO/+8q3f5m/9o9dpqxQKhKTXCBJa5IKGaqcoOCpCZL/1q/kUEybT2GF1KvrZk/80kWBSl6g35BvI5Ug5weRDa2UsiSVK+Dg5UGVEioKByb6EUVDConoesmpShWmkOrcFCW2rqibObvbW6xWYC1mVlKEGtf32dYaGVEZ6cRi9Pi+pyhKoYfkMYopS8a2w1YN9eExw80lWkFxcERKAZ+jDVRS+KEnEcRMsChIIWLziAZlaGPHolmglOJmuyGiODo45hvvv87xwYyffvghN7Emvf8O4Zuv02yfs9hcURiZ399sR768GLluFU2XUMdL/pV/41/j4Ox1vvziY/6z//pvY+cL7t27jwqOd88ecK+a8eVf/49Ruy0qQdcVfD4qnriBwY7889865V/+4CFpWPPs88/pNz1jpxlcycOHDUf3Z/TDjqaecbg8Zrvb0NRz2t2W3eaKeVmzWB3hXWB3e8nx8QNpnIxFW0Vyr1h852th8gcp65p22+ODoksO2w/43qEqmVHWsznu4oriVhGWNxRmlR9KUsSOw8iLly958uwc/3MPwf/pQ71/2utPe68RVGJyf5X9RNCB6dy9Ag3Huz/enVdBiY0Wx+fS5u48JfnZKd6RiUH2GqP3HBwJ9LV3AM+Uqp2JqEoJqkgSVVLKUuiUTOb1Tc7TQnBth16iMbRk2JloJfdnv7VP7sBS7ER/p9bcT9mMJboeZQps1RD6lojC1CJ8iNmcDS1E34nTpo2QZrXJxWHUuOQoixKlJGE6oWjqmpOTFbPacnF5RY+Fk2PSvQPssKEc+r0NUD8G1m2gd4lrD9Ql733nm9SLA9a313z86efosmA2X6Bi4Hi+ZGYL1j/9CcqNgMI7zW2ATQw4FXjrdMa7pwsII5vbW3F3dwofDIulpZmLUsxaQWrcOGJtKSP1safQgsTHmHBDS10v5LhlVC2F7Ok1jSFTbratmMiCJ0aFI6B9oPBhr4CzRUlsO3SviGWP1VW+niApRQiB7W7Hetv+kVEgX69//PqlipsM8/62UuoQ+H8opb773/PyP6p5/UOnRSn1bwP/NsC95ZLq6JD+6gZlKlCaEEemZFAhAMqDeipv7jwR7jql5dLQ315RPDyhni8hBnRlwTQkH4iDQxsNVqOXCwhBCL1G051fwhgp5zO0rTCVkIajcySfQAmRL8Uc2RAgxUAMWb1lLKaqKRspcLqbS9IqB1YqRb9bU5anaB9QyqBtiTIF0Y/4sadwM8h24imJyZcqCrH7rmbow1P6q5ekGClPzjBlIc3e4BhurvaERr8xgnqVFSEFIQBqS1PVdEPHYj5ndC3PXm45WBxwuFrx1luvc319SdE+ZbQ1LxfHxHe+ycoPnMWOFEZeP3/Jk+cvOb1MVO++z2/9zr/E/PQ+99/6Jmp+xGZ7y/0HjxmHnvMnL3jrL/4z6Ocfcvn938UPmt5HjDI8Oir457/7Bt8+W/DyyVMuX97gndiYN4uK1+8vmB/M6V0rVuBlzbxZ0fUd690NKjnGG8/Zuw/QTc3u6hLvPbYoEbpxhNyJp6lL1jpn+ASssVR1A1yhcDJ6jFHyd7yYhdmiYFmXrJ9csnr9ihReYzK0SgnatuPZ82fcbrp8cf9hU/8/ydrHiPw5Xn/ae82sLDF1je96UDIinpRS8gPT3fg6j6YmRC5jJwCUlcYPHbpoRIWXROKttBX+XA4ZRCtUWQp3xkvsi991pJCwhcSCGJvHVCFk/nq686eZ5Nvk6I+k9mNwXVhsUeK7FqocvqkUYRwwjRH+l8qu1UpQx0k1RVY+pZQEyZwQCluimjm+2wIR08zFl0uJb47vu1yQJaLSIhnP0RFKC0+nMFbMK4uSEByb3UhdVtRVxdHRAV3XYtwary27qiEd3aOKnkXypBQ4aHesNzuaDszRMQ8ev0s5W7A4PIWyYRz7fXjjbr3l8OEbqO0V3dMviSERgqjLFrXmrbMDzuYlu82GbtcLSKbEDfzgqKKsC3x0GAyFsZS2wjvH6HpIkTBE5kdzVGEZuiySMFPO4aujsVydTTO/JPwkYwugQ6msvkrZeys6OYdacu2GdUu16iCtfq7I9s6z3W0ZBvfngifzT3L9SmqplNKNUuq/Av4V4IVS6mHupB4CL/PLvgRef+XbXgOe/hE/698H/n2AD958Kx1+53tcfv/vggt7x0TZcCJWScDdBLMCe2nmdCFoBbMqMF8IoVYZha5q7LwUlERr0ihpt7oQn4KoFMXC4vsOf7vh4PQIP96iixm2aTIZ2eB7T0wOZZUY/mlRRqWcyhqVQiFuxnbRcHB2QhzGDDdnAqDSdO2O2VLcP7W5ywVJQbojXZZCInQjqiixzYzx9hofdxTzBc29h7Qvn+D6nvL4FDObk6pMShwQh+PRkWKk7yTa3uMZU6L0ltJYmqpksxXp52a3I/iAtZbFYkV0kddO73F0e8PFpxdsH75Nf/KYw+S5Pz+gWjTcP7the1Jy7+wBBw8f0xwcstmu+d2/+9/w4x//kBRhdXCEqRuO33qf8PHvSqfYWqqy4p9+/wGL0PPj3/8Zw5i49+CYg4MltgBrNYnArr1lNT/CLmrWm2t8GCmsZrPdMKwdOEMxb0RW2t5ibIkpCjIuLBZXfhRFTM5hkbGgqAnKeoYuC8LgcSoQZgvcMGLLEl3JtbZczDhfbwlhS1QOlcx+tr1eX/Pk2TP6vOH8k1p/3gubV9ef1l5zenCY6nsPaZ8+kREwU+QCCMoxmUz+Ak+GV6EOKEykLC3GGNCglUWXJlvbZB5NHvtoJSnJlCXRO0I/Us9qYhxQpkDbWgqhQsw9pSBX2eZeZy/BJJwcZMyulEKXlmrWSNGU7sZGCoV3jqKUIN8c4Z7JLOLYq6YHdBS5urYFoe+ISby6itmScbeW8W49k73JCLIeIY9MhMPjnZCNI8KTM0b2u8JahrEHFMPoiCHuc45STBzPZjR9T3vbMi4OuZmtaFJkXtaYwjIfB8baMJsvqJcrbF0zjANffvk5FxfnpJSoqgZtLc3hMenqCyEfOyFJv35ySJU8Fy+u8T4xX9RUdSUZVlqDioxO8vl0YRnGjhjFQX4cesKQs9iKggQ414uaK2c6KSZSc5Bx+MRtQorgKdtNWb1XYcWiJPg8BswFYVmW7IaRMo2ZlqFyzZToh471RpLAv16/2tJ/3AuUUvdyF4VSqgH+JeDHwF8D/s38sn8T+H/mP/814N9QSlVKqbeB94G/99/7IcqSh3/5f8bxt74FKuDDIImv+SQbFbJNX6bQZJKwVlO+hUIbmK/mHN1/xPLxGywevcfi4bvU996mWB1i6orPPnrGT/7gY8IwijeAtRij8DdbZkeHlKsFymiCy9LF0oKFYmFoTg4wVYmdVdimlg4nE5CJId/xmVg8q1ndPyH6yLhrJbzRlkQfCD7u04GnGHpJT5WsK2V07qqUkIbLWuTJ40AxnzM7e0QKjt3zz9m8+AK33ZGiQtc1ej7DLGbouqaYzSjnS2xVU2rNZnPN0O0Yuw6jDAezJcE5jAIfR4xVtP2aq+srDhYLHi4rvm0d77pbdrfX/CSVbB5/k+r191nSY4Y1Glgu5tx/+JjZbIbSErYXo2fXrtmtb+n0nPj2N3j8G+/yL3/3EermnOefn3Pv7JDf/Itvsjw+wkXP6mAlxo1oFvUBTdlQlyUpedabK6IPzJoFt1uYHR5gZg1D3zGOI4WtxI045i43QfDi+DyhfxPxUBlNVTRYW4KKOD/QtVt832Gs8Ja0MczqOe78BZeffUYIHSE6Sah3PdfX17w4P8/27l93U/+k1p/FXqOMYfH4NZp7p4I+RBm5TOdQ773Q8+uR/eau/Mkcwaqkni8plweUi2PK5RF2foiuarS13F5tuXh5tUdwjJZk9TSMlI0gwyLbjnf3vQJTaIpGeGE6k07lYTqRaOMdf1VrTCmxLymKait6L3yZyTspj9+Umgiq7KXJ4pacc4IKK2TZmMT0sigp5ytxA9/dMm5vCaPwy5S1ovgsS3FvLwpMWaJNgdFK8sy8I3iHVoq6rEgx7HOjtFY4P9B2HXUpruNnOnIcesah4yIZhtUpdnVMRUCHAUWiKgsWyxVFUeybxkTEuRE/DnhVkI5OWNw/4p2zFarfsbnZMZvVPHh0SDWbEVOkrivZa5KitBXWWMmrIjGMHSlEiqJkGKGopfCRnKaQz8WkbJWrQpyDc6Gs7nAXSdIW3uSeguBGOUeZs6S0prQFsd3R3twQk8teNOK10/c927YVccWvdDd9vX4Z5OYh8B/kWbgG/sOU0v9LKfV3gP9QKfVvAZ8D/xuAlNIPlFL/IfBDwAP/+z9OvaC14fgb3yWst7QvXrB98oSJPqyQdNWY9C+c3MnyWV5zeFDwwW/8RU5XJ5ikIWZ3YgbAM643vPjinKJGAjAP5MIaXpyTvGN2egIktLVyIXmHns/QVYkqsmmfViQvD1Glk5h1kXNhkqimtKlIJZRLaab67S3zgxOMc4ShY9i1VKdHd1AxADIySdmhWJnsi1NWmPlCiqLRYQpPsVgy14nd86f062vGfke5OKVcLLFNtScDkhJFBOO0zHGHLTfDmpt2zayscFpTVTUhQmFrXBgIwLMX5yznC2xZM/Qdx6sDvjHTvLh8QtvNeGFmxHvv8+nPfsSxKlie3GOxOuJodcDter236n7+7BMubzfE17/LYb/hvYWnv3hJYSreePuEq82an332kuPjE157+w3KwhC8R0UNOS1coyiKCq0tdT3jdtux2ynOHp8Qk2K72RBClMgGLSOoJDYjxBhxoccanaF+C9l/oixKikKTwrjPzkrKosss09RaTLFC4vyzL7j32kBVNKSY8GPPen3LzWabZaBfbzn/BNef+l6jtGZ2cp80jPjdlnG9ATUVN5OQWv38WU1kXo78fVVrTu4/ZF7N7hCdIKoeSIRxZHu7Q1t58KlaXhN2vaiLZjN5L61zsRFQOZsKo+5g6X3mTLojHe9l3Eo8ugwYiZfCDQNl3WR7fId3I4ZaxliT+1/KFvlElMqp3zlnT5clMUchKB3QZUmpFozbDX4QJNiWguIYa/ecEyZvFyUBrsqP9H6g7wYKY4mZXJuSkgy26IkJttuWqqgwpsB7R1PVnBSRXbvGuYKtLkiLE26uL2iUoWpmlGVDXdXC58kS5+32mrYbSAf3qfzISZnw3Q6tDIdHM7px4PpmR900rA4PhI/YToaIMQNsCqON8PKKgmH0DCOcPZyRUIyjqFp1kREvcjOV94AYPEarfZM7VcHaGIwRr61Ijiwgix+M2aP4NsLuds1s5bFGqAkxeoZhoB+G/yH31J/b9cuopf474Ht/xNcvgX/xH/M9/x7w7/3Sn0IpmtMTjr/1G+yefYFb39Le3GbVdsxMiinoTvKDFDlLVQmh7Vu/8Q5Hs2N0EAkjwZPqgkSL33Xsnr5kve545+RAyMhWsXt5jh86Fm8+AiD2o0CQzrGHoI0GU+QAunzEYgQcWtn9TH4iJicFKgq5rzqY4/3AsN2hjaGeLxn6rfgTaCQwT+VsjiAjronkPBEMTVUSq4rQ7vDDjsIuKRYHzM80XD5n197Sh2e4cUO9PKJoFrnAUaICyjLSFGvmjeMmjASVMEozM5bBdTgnZNmqqqlrw2bYsmjmhDiyvnhCPV+xqksezBuOrm94+smnfPLh7/GTgzdYfPAdQrkktDsW8xnOi1Pq+acfYj//ETy/5grDJ4eWw1mBLT1+u2W+nPPgwT0ODk+gMLjdjs31JYerE9CKvt9gleNofoAuKq53t/zsk2tWq5rZwZKh27DbXaFSpCwqccGzag/PT5kn05WSTIaPk6Vsainsuh3OeUqfhBhuhMypsiz/eL7k+W5NCC2xWJFIOO/Zdlu6rv+lL++v1y+3/kz2GsDOG5p79xm3a8LwM8mcYyL0spdLC2oj37N3KtZwenZEUzSQMvKSsgIJRxw9brNjGDyHTSaHaoXbtUTvKA+WCL/GC0Ib5H7Zv5l+pRDRZOJzQtLdyJLvCXBXYjehtewTMeBHQUtUURL8uKcOZViUKf/nLq1WuCIqSUZSskYQoOAEbSpryrmCbsvoelzaokNBKht0UQqSoWUvTgpUAJKlKCJ9DDkeR1FqjY+eGDKR1loKqxnDQFGUpBQY2jW2rKisYVEW1F3P5vqG68tnXNQHlCdnJFOS/EhVFDl5W7G7uUSvL2DT0SnFdW2oC43RkW4cKMqC+XxG3TSgNcE5xr6lqhoUihBGkorURYU2ls4NXN90VFVBUZV4PzK6FkhZgZkgvSoF506aPtn+5mGnoMGG5ET5FDVoI4VgInulkWjKku04kJIjUTMFVo5uwDv/dQv1J1hfCYdipRS2bpg9fMTJb/xFNs++pP8H30e5EYPKhk1yU2hyc4Oa1JwcHs35xre+iYpB0JSUiK5DlQXRdQy3ay6fXbLZOUoUwQe6y2uGzYbjb76HQhO6TjJZ5g30BlVYfN+jRqmyTVHlalsuamWtMN6jR6XiDupVIr1UJpLciDUVu5trinJGaQzWVkwVkcqSShDeDUEIhIK8ZNM4IxtXGPoctjliSkt5dIAqLerc0m5uCGlDH8Qbo1wsMNYQrYz8jIZCw1zD6B1t19FET1PVaDMjjgNdcHgvMvebdse8nuG8w2jD0HX46Eh+BOV57fCA+vYFn370d7i5+Iz+/d/Bx8T9x4+zQzCEpwObl5ecLT2P7x1zvFpxfHSMrQq88/TOo7xHE/E+0W7XeOcJSVRtRleYcoYpSzabDZ9/esWL55F/+q+cgDa0u55hGKirJbaUyAudxAwthiCcgOiyWsVIeZyCHHOlZNTnPcPgmM8cymTFTBKCqVKKxhhsGBnHLWUt3XKIkW4YGMacO/Nne6t8vf6Hrslwc7lkdv8h43aNf/YUFbIJ2ytMGylw7tg2CajqgpN7p5kD4zPy4nJh7AhDT7tpGcaARUZAru3xw0hzegRIcjdJi89JllZPAZF4JaacWQGVO7yMkESY0qengkhpMXOKErkwDj3GFOL2m8099y/fExVTbtDSXSElL8hBwzKqiymglUbXNaXRsNP4sSelER/BJqAs0WhReWaXdq3EBTjEIMnTSdDVQhWMQdK1YwwoAl0/UlgpVJTSd6+PAVRkVVfYfsfN5RcMuxv8yWNCSsxXq6weSqRNYNi2zKvIct4wKyvqphFTzxjxIea4HUF0/ZiDOrPdhVKSIai1ZRgH1jcd203k9dcalNa43hN8wJhS0LWYQMc9Ckbm3SRFLjwFGZuunhSF5xRCpCiEfiCAXL6qFBRao1OQvEO7x/NxIcjn/3r9yusrUdzsSbezhvnrr3P6vb/E5uWXtB9/Js7D08XwC/+AQqvEW+88YFFIbpMPY77YPDp63PqG9uU5Tz6/4eS4pm4qbF2xfvKcel4R1j1m2WBqIaYpY0H3+G5guN0Qo6eoa0xdU8wbbDXLYXZkMh7sac1h2jB0JhJKyNpu3dIPWx4+PsMa+WxJCxERbbLfRcj8kLscGVJCa0sqKnRVE4aWMI4oXaCrgmKxZGEstqzZ3J4T+pZR3RLjQNmssFVNKpH8mgSl1sy8Z/Re/LBi9tJQCe9anOvE/dNYbjdrDo6OaLc7To5nbLZbmrKmqRrG0bEo5zy613M7tPzkxTN6FD/59CNCDITNhqOrLasd2ANFVZf4vqO0MmLyKQgnZuzp1muZw5M4uXcfbTSJihA9N9s1fbvl2RcbPn1Wc3qoObl3xNh1bHa3+DFQLGu0KSDL1lOQBF+F8Jnk/GRPoyAPCNl/Am50DG1knI107YixO4o68yG0oaprlrFGpam7FiWaD4EQI3eZw1+vX6ulNNoWFKsDZg8eMWzXuOvbPYLycx58r9CNNXB4tKAyRkzvpqyoLP8ObsC1LZvbnlljsYVFW8uw2WILQxy8xLoUliSsVqLyMnYeBlKKYkRpLbooZD/KRnyCSE7Xm9o/WPdcGiUjonEYCX5ksZpPwRI54FeRtBJvm5zXl5Lsu6S7fUucgKVJTCHsvZ9MWVEpje4s4yAoVFDiD0ZRSXFgkvxeyJinSPJAT3virRSQKThRbeXMrH4cqesaN47Mmhnj6IghUBiLD5HSFiznJYN3XOw2+KS4vLmS4mQcaLqR0oGuJQMqeIfRkjMXoxM+TPD4YdhnPTWzRSZ/i2KsH0e827Bdj9ysLU2tmM0aQXnGnhAiZVkI2q4n5eSkZmPPv9nHMSTIeTFAFJ8blwg24F1AGwdmSmqXWJgq2ozYi2WAFM5p71r+9frV1leiuFH5/5JKFIeHnHzwm7TnL+kvb/CbXX6Q5AF0JvdNJL+6Lnjr9fu49RWBzIL3DnM4w4/XDOsd68sN17uRdx8tsUUFCbrNFsYeY0rKYYWdz1BGE0PEdyPjdsfQ7hjbW9CaZrGi7g+Ii4CZuC0K8cdJPkfNh1cgY9lUlNHMDld8/vufsVxUHN8/y9wPqfJVhqNVNtNKZIg7M8iSCqiqwPhKVFU5iVcZJH+mrmjOHqCsZXd9juu2ED0qSsxESgWmrjBFRWRgvlqhjMaPXooMAhFNDI7oRpQxNIsFzrWsrxyFLri9Oicmx22K1LM5XRiJxhJTwLdbDopL7r35AX0pJMRnf/dvUYwD2ijcqEkh5cTyDh2k0FrUC/RiJTkyIUC2UR/Gnm7c0W5v6Dc7bs4HXl42gOXdd5ZUs4abm0t27QZTFJSmyBu//DuGKGnFKWKxpCTeNSgJOX2103LeM/aJru24vnhG9ANNM6OsauxsRlXVzIdprg4poz8xxmww+fWm8+u4FEniVOqa5vQ+rt3hu544jpkgfjdWeLWVMlZzuFoQ+y6PopXYTTQlMXaEYWRoB7oxcLQs0Vq2VzeMEDRK7bB1ted1pZj2fDo/OoLrQSlsWVFUNakoUYUR/5zp/XJBk/ZWw3e/FVpR1jXnz28oK0Mzn09b5h6FmhSFUtBMNgl3dGllJQJCZbQhxSAv1xplDcVigdKasd8Rnah7SApTID5lWd4soE6VUdIofJM0OUGH7JYsOVUxjAxdEMPSbkci0o+Jwhb4KAVWIhF8Tz226MNTfC8F1/bLz9Heo5QiBJWRb02ITswZQXx3ykpQ25SwSQItQwj44HBjjx8d/c6z6ywJzfFRiSlF/j26Icc+iHM0SoqQlEM9hUWj764VJRwbEvs4jhgjwYG3nq7bkKIXbzNjMGWJNZYiTWeBqSyVYoyvW6g/yfpKFDcAJIghoYqC5uFDTr77PW6++ISL3/s9vHeQpsj4qbCR/x2dLpnZQL99TlkabD1DFeD6FtJIt12zvrxivtAsZjXWWOIwkKKmsAXd5SXRBfTtTiDLocf1HT4IgcwUNSoE4tAzIuRUG8Q/ZzIflKs4IwKZS6O1JWrx0Jkt5hzfW3FxuaGsC+rDg/3vDGRiYc7MypsKZJgX6bR0VWGcJ46yIWofUEaQI601zdEJtqhor14wji0+RQgj1s8BJT/LFJhCMWtmeDUQnSeqREyOhGSgpMwBqGdzUpA5dCIRXcQPA/3Q47wnjiNu1+G3jsXuQ/qjE4K3vPPee4xXL5iXBa9/+iP+8vuvsZw32CJv0CnD3zrvuEjURQqBsd1w264Ztmt829Ldjmw3Bh8M7z1SvPnOI0bn2fZbSIGinGGLUhrbMJKMwQcZXsYYpByOsknobOYnna4meZHo2jIxuJGxb3HjnEIblA8QE2Y1Z6mO6MNUJE1ojfqFB8vX69dlCfaRiwOjKRZLmnsP6W+vaZ89J0YPkzZTqTuXX6CZlRQm4cctxogjOUaiUkCiUoa2oywVZWHRWkmMS1IYZfBdJ6TUQVR80XtBMDOaoHOAZQqeMA6klNCpQJm4Nx8EaXjkEtRZKq6F7JJNKmfzirYdMEZj6+queySPTVIu3fJ+M319QouVsSibwMtYLWktiA8y2iqaGdoYXLcjBAmtJEW0lXFYUoLIKAMFBRHJfVKZvDwZCk4EbVOUECU5GxD/MC9O4DEnqEfniEOgGK8IzYwYNafHJ4RuR2EMBzfnPD5eUZai2JITrXj1dk3ovUQ/+IHeDTKicg7XB8ZREaLmeAkHR0tiSIxhlO80di8BT1GcpOWQ6Dsek8Bhd1eaIhfAwvvTJuKjoNahKNHe76M3dFlSqQoX9c9VMurrjeZPvL4yxU0CMYGyBkxN8+gxx7/xPdbPvsR99gSlJGAQyAS7rKIaNvSbz5gfLCnmJbpSKAQyHm57dhdXROd59PohdV1j6pJh11M1DUXTENdXhL7H9SJD9KHHu5GUhDVvlQWtCL7PLGCToeIGknjbKKUlgiFqdKGJbpCLXFjDmKLk9OEhH/7gcw6POimApnYKm4ubeHdRJ0SWmY2gJmiYsgDvSFE4SNE5KVq0zO/Lo0OUKTDXL3DtjpR2hPww11WNLlPmD9VysxsNo2L0Tj6H0dLtZFJtZSRywtgSk0TuHpKX7i9LGMuix6aIvb3kyB7xt//6X2ezueIEz3tl5PDogLJpSMETffaFUWJ3nuGrnCUT6Yae3c1LcAHXBvpeEbzh4VHiO7/5EFsYLm7O6dodCuEv2YkHlRTeBUIIoiyZOqxMUUh7UqXK5ouOfgzMDyuBx61C0rNkA/Rdh2oqZqpg7DJaI9iNyHT3CN3X69dp7VVRSgnKWyiK5ZLm/kOGzZpwu7kbNu7JvHlU4EfCcENZl+JpY3OplCK+D4ytJEAvDmoKa1HWiN1CHjOloSPlh3YIXlRDMXf42mAm0m8MBD9hLTqPPDJhF5WJwAp0ElNR2Bfu2hiaZc3Vy1vqxt8VNmpPvNkXMfs15SFNknct46qopNGZnJRV/hyTTQXaoLqtWC44kYnHzDnETD/HSrp5VKg8zs3GQEj0RJTfXYtRodIGnUzOZ5saRzBKY4xHp4DuWxrd8PmHP2UcOhoixyZRNzXGWmlCYsj3vLr73PLLkphQ251w81wieEhRs6zh7P4SYzRt3+LcKAWYlrBMIXqqV6T2WQSCfuVYc3fOkqA7PkaK2uybLLKfjfBDxdCvwOC9mDFOSNck1f96/errK1PcQNorklIEPa+ZvfEGp9/7Hfxux/blLVJ7x71qSgFnJwWHB0vqgzm2kdFSCpHYDgybNeN6RzGrODk9wbeeYt6wffaSohSfHJM7jehH8bwIURjuShRSJs+VoxeSclAGX4i/g3RTkgMjrriRkBzaGrQtJLhTa0IUCPTlpqB82fL6BwFVmUzAy8TUDDUnH0nFXXRAyhuxMmIYlowlqSCqibxJpRhk7JI8xXwG6j5aXzK0W1K3BSQNV5kapUuUEtKyseLQGrwTm/BIVqAJWm1sASlJuvfYy9EPHWH0uH6k63uaekFaHqMOj/lNrWnUnP/u+gW6qlgX8Oku8rrpsd4LQqMQHpE1knSXUs7NsTg34PsR5aAfAs4pjg4i775/zPL0iK7raNsdIQYKW1CVlRTDSo7vFIgJKRc1IXei2chPtl9JyPUJ7yKmcDTLJVWzQJEdqG1BcC1mmFNXFrbXEoI5nQ9jRBzz9fq1W3uK3Kvuw6WlODhg9vAx0X3KuBuYCiDS3bNqPtNUdYmtS7Qt9mOi6AJ+HAiD3Puz2YzoAqYoGLc7jJlQQ/kMKSdEC2dGZ0M5tX8/IaA6YtAo7dHhDnHcV16TeZye0Bu1/zwpJnajxmwdq5MkI+xpnyIjV7Dni+yBnWnUlSXed3yc/H5IY5mUNACmKIAFQXUEN5C8FAJyeK00gqR9FpUCbAzy+6a791UZfU7kwi54eack+3HwUowUtiSVNapuuK80BQXPuy3KWAYNty6x0h6dJeIJQfmnAFH53UCQXS9+MxF8kMa5rhJHxzXlrMF7x+hGYhKFlORETYqzkD9f3B+zPXqjpzeSong/vgoJpSOmqjCveqQpQwqOFEqs0TD2RCaEmDvqwtfrV15fieJmuuVIKbt5Cqu9PD7m7De/R+xa2v/qv8TuHIlCID4UsxK+8fYxs9WMYj6TOINcSLhdx+76iohndXrCYnnAzfYSU1aMQ8/8cC5vbstswpRQykqmnJ5uOCu8lRhJyUD0hLEXiNJoYdnXpdwwMT/tovw56VysaU1Ska53fLKx2EaJ74MWmFNPsu/cXE1ENUBUCPlhrEC8MAoZ4cgILH9Qldn6EXQB5XKOtpZ0Y3HbG9xujc0FVERnc7BCoOCioihHqrKiLzTBRUJIxIh0mNERRicpwFqRfMRtO4aQOLr3gPnJKT+6aJkf3UcbeOPxAfHeY4KxPN3c8mwTeHPb8p0y8qAyuZvzuUMRy3pbVdIFakOKKocBJg4XlntnK47un+JDYNNu6bsNKmmKohbzPmUJIREG6WDFSl9LvnrKRR96j9rsuykyohMj47bDJoudlxTOY7So32I/UNQV8eozeOs3QRcoVVBY6RC/noP/+i1BDpFxjBIX4JQSpm6Y339I8g73yadol0fDOfrAajg+aiiqIvPtMl03RoJzuK4lEalmDWVZ0Y8t2op3U1EX8ubaCu8kv7dmkn2n/biI/OAU/piTosBLS6dt5r7sfxuVRy93qEsi4X3gZjDoaXfXWvbVPIpSKk11DlOFJ9JkZC9KZJl6knHsVN1llDUTkyQlvJKgXnpFGHvC2GPIfEMUyWQvnJhAG4zJhYKRTKYYpTAIuUlLeQw1GRyG0RFiopnNKWZzLlondhcKVsuKOF+RtGY79Hw0JA5Gx5lJLLIpYpqCLXPhofdFiqC9IciYqi4Ns3lJs5iRUmQcx6wezRlR2uy5TimPEFImeQuuNxG+92cmv2Yag+bfc3TopDHKEIn7/T95j7Y1qbslxfskZVDK5OfE153Un2R9JYqbqZuSahZidITgMFXJ0RvvEduRq88+5vpHP8MHGQ2UWvHwtObBmbjV6rqWC6/3xFGkgb5vKZqC+epAeCPTZjR6bFETncN7kd/5MKAxGCtySDVJLrVGKyvqgaQIY5e7jCwvVAs0hRj9Jfn5cRxkVp69b0hSMIwRbgeyD0/OgslcDjVd5JmgJ0F1WtRUk8wcLfJvl7u7lDO3MlQqI6sRdPH/Z+8/g3XLzvs+8LfSDm84+ea+3bdzQgaJQIAExGCKEpPEsUhKllSS7JqkwLJrRvKHqampGtsqffBMjVVTlq0pjWTTJiXbNWIxggBJAQSJQIBAo7uBzn1zOvkNO6w0H9ba77kNBlEwQTZB7Krue+457z3nPTus9Tz/5x9QZcVo+zSt0LSzfeziKCkQQiTWdTILFICS6LKm7i2Lck7fHtA3c7QQiCIXkkIglMD3DnxktL7O5voWRVVBPeHKc3fY9F/BTEeceu+HuGgUz75+nWpjEyngdnD0h7d5nztma33jxIvMD/EVElklUh1B4FxAa8Haes3WuTPo0YRFu2Q2O8B7iynXMKZGSZkI1j5Z1gtAhLygCRDCnCBbXq82kmFx1hJkCPjWsrRHqCDR00lSeghFcBYdQR28Qr94DT15DCkFRalzAvI3jz+RR0ZuRCS7wQakVhTrW0TraQ4PaO7u53FmRCGYjDTTcZUKG538rXCe4COuT87AUktMmTguCYVITZpSOt3nITVRMSZeT6oXchEQc55UVAgXEgcvOEK+Z2UMCFHksVHe7DI/Jzl/ZfSGSIhJj9C6tAGL7KSdu7CVXHl4DiDeg/xwwldREhGy5Jlc9AyvCRk5EhKhNGY0QaBwfYPvO2QIyKJCoJMyFFbFhVEFvSpwtsG7DidAq7DiNkkpsucXmLKiHpSspuDozoIq7iILw/i+S6wryZ3DY3RVI4BFDNzs5lwMPXVZnrzfmE5K8gVSGT0SqamVgrIy1JMJ0hRY5+j6NlmDqBIpzarYGhAaAakwZmjO1eq83MtxGopHKcnBpclcVEQQZZFGXkISQ0BGkO0+vj9EFlsgQGr5zeLmazzeJCt0nicLhSDxJUKMKGUw9RqT+y+x/bZ3s9jdo7u1JBLRUvDQpXUm4xqkIriAtz2+s/TLFDMQhaCaTClGNd4FiskEb3tCsEiZKudE5nMYUyVyqk5W50IMXBpJ6DtElNhmgYgR286R3iFj7gRUeu/D3DrK7OOgJEIbkAatNUFGWj9kssT0+0oFMUOPWqX1xntQKsGfPuTXiBNHUGOSx0Zwqfgh+dskAYQfXNURUlJtbSOLkuXBLVwzI3hLETZRk3VEoVLXIQpMUVGN11jOj7PrqSDkjkWKAkKBqiJS1YlroAtUPaKNnuu7M6pJjZFw65O/ytntLcYBmq5FCIlWksNiwiu3Xkd4z+bmJqYwCZJeJQ3r3D1GrIdRpVjfXqeabmJ9n1CbtkFITWFKTEZObN8R4mBxr0HITN7TqefO0D0KcMMMPFJoxagqsNbSu4CWkb5d0GkodZnOaXAQPbqL7N78BTYeukjM83f9zeLmT+QhVn8Oct68WckUZlusrzM6cw67XNLNLZCepa2NkqLIjr4howw+EKzFZ5M1U5YoYwg+ooqCIWQXIVPBHSMCn+XWaoWGJDxREmUy94sxxYcAiaeW+XhCpEZj+C1WaEtO7E5FT9q4o4i4ASUaRtsk/l7aNRPPRoSYno2Y07QGBEmIDHamEdRJ3EBSPK2qN3ECiupRjVAK286zgWBAxQpRVDleIlGIpfKYosD2XbLpUZyg0OlMgI4ragBKIo3BEThuOlSpKQXMr7zGpK4xMaHMQiRPtFaW7C+O2AqBqqpTMOkw0svGf0OjE4LAaElZJ4VaiIHOdknEIlJGlZKSSErojhllH+B9EUXi7EUBA3pzzxgp8dYFRil8SAUuQuC9xVvQZSKREzwQkA6W85eoNt+d7z3xzeLmazzeJCt0HkyJSAzJ/EmIiDIF0iiKtTU2H32cxe5t5oefggVURnDu7DqhHEE5SuZPXcA1Hf1iTtcsiCqiihI1HtEvLMXU0C+WqGqEqivK9XXKjXWCs6mAIEGIQuWHOASij8SyxBctSiu65QxnO/AO184yb0aiapUcPkUAFxARtKwQyiCUpKoMIyOwPhA8aawFxOhW3c+9c+8oTgqsGHJmiRYIn227ESl7a0VcHsL2ZEKomiapF0YVpVlHSklzuEvXzGgPemqp0DpBujEGTFlQ+ynVZB1lPdN6I5EgI6sRjozJMl4WBkyJrEv2r91h92jJ2bZnXNWUMeK6jvvWdni5sUgVkMogyprXO0lx6ypVVaLUmOg8ujDp4Q0C11tsH+h6wc72mOnWaaJSzI9nHM+O8REqk5QaIQZ6b1NBEwWShHwFyAtukQrlvDinzSFdn+AsNiQFh5EaLzydC+iuoxiNcdEjASOSxb2KJYcvXIP1n8WMvpuu7Wj6N1qii9Vd/M3jzXzE3/Ff9njJOT+qLKm2d+iXc/r2GtGCVoLJtCKqArRJ6h0XCdbh++Qrs1JJFgZrA6pIdgtCZd+aqky+U0OMApyMewZuRgR8SugWUuJdnwr/EAiuX/FupBm8sNJ7jyET3GUK7tRKojPgGyOrn5ciF8SJ2zpk0m0qKVbrD/d+LnVKQ/7WG+Tkw/rjXOLVGI2qS4QUuGaJcz0xLNBCImWZybERpTU6pnG48IHC1Cecm4EHlUdlq6w9rWhmS5atZWI9hTIoCcE71ssR+zmYEjtXauEAAQAASURBVKkQWnPoBMoeo7VGyjSCH/K7iNnE00ech9HIUI7GRJkCM7u+JwBamUSszvymExFBQulPKmU1MI04WQXECYcoF9BKSBwBFyLCebQxhFwsDUWrjIp29xiqF1H6IZzzOP/N0Myv5XiTFDdpVhxCJtdmjwApBVIohFGMTp1m64mn2bv2GvPnbjKeVFyf11x/fsnOuYqiO+LUekmtDX0M2HaJ0pqqGqPHE7rdO4w3a5qDA+r1SSoupESPRpAtzSN+leQLJAJsDASrktV4kYIsu1ka3TifCGdRSAopiTHBlymN0hJMQhKkVGijkCrd6N62xDg+8UgYzPwQyfmYmMI1VZJRrgzpYsiGfIKITKQ9UtW/2liFhJAklLgeGp9C8CYjdHUefXxMe3wXNz9CG4OsquT9oDV1UbG+eYbF0S4uRkY5vTfEhHBFUmcki4KgNb2zXH7lGrIXLOctbnuDcm2TxfyQ6cYmp7fX8cDe8T4Hd/c42F/SqMiZpqXQBTJGTFUilcRGx3JxRNMGpNLsnD2NGY9orWXeLVIirzYIbYbtCB89BJU8JmTMqbysMp/S4pLh96GrioIhwMNoDVZQaUHrLc4mHyHvOjAFBJ9IkDHSXAO/3TB58IiD4z2Wy6/OeznhPHzzeLMf+X7IyA2waiSEkpjRmHrnNM3xIf3dGcYYZr1mdrdnNFVo1zGqVDKMI64CIrUpkEWBXy4oKoNtW3RVZNuDlC6NMPcUEcOGSE78TiZ4QmXHXKdxXUvIaHMaH6UNWqqTUQ/RE/PPEEIiVTI3DeSx1cogNP/2maQ6kHzTmjeQh0/QpLgSeGRy8TDKWp3DNOYKMabxVVZvqsIg1RTRdfhuQejbtN5qk+o5KdFKU9Zj+rZJaMjKTfnEP0qIRBGIWZRxtH+E8GB7RxiBKit621JWkVFdEoFl17BYNrSNxcnIxLnElyGitcrFSsD2HdalZm00HqOMwfpA7xIlQorEqRw4WoMbuYj3Fne/s1gmj6yGlyWJRtrLCAItJc6Hk7DNkGI4hn8niLhjWO5Zyq2OtltirfvDue3/lB1viuJmeMSVVNmaO99IYgiSS8S18swptp54K7Nb+5Trp6juf4qiqrl75yZXPvcK9eaEp564xHqxDtM5SgaKrQ1kWdD3S6ayom871k/vIE3JSSpunkWnMADwPpF7M0QspURU6b0IEUBuIISkb2YE7+iXhyAEOo7RpmCIDBGuR5kCHyJSCsalYrawuN6lF8SYuqOs/RJD4iyk9xNsJiSTFp78sERCHrUo8HZF+hMyE91C+r18iIjeIWTiCYhCUa5vopSmPd7DLmYYqZGlQUZBUWiqWBAmG7R9T907tEnBd9ELHCKloWtNFIGbVy9ztHfEOW2Y2I4eQRk8MkZC33PpqYd44j3v586tW/z8v/6XPP/s89xyger6Lt91wTGt1igzKtU1DfOjGZ0V3H/fJuunzuCj5HhxxKJtCSFiinTJlFQpO0ukBTFdRp2zpNJYLp2jbIw4kCGzOiXeU+wEFcGm69N2gW7ZYE1FpYs0btQSrTWbm2dZf/z72V827O7fpent73ovfxPB+ZNxJETUrzZrcc84QWqFHqcCp5s36HKEXjuFMobFYs7RjX1MVXDq1AaVKtPYJZsCCqXw3iKkxjtHOV5DDMxeCcMdIvJ4Ky0WrEQESYSgMo0uoqmSm7jrE5/PNvlbmFQQDEVR9AihMk9aYJSgsxEfAmZ1V56MtNKbGdbZSAq8yxv2qoARGUnOI69Btj58ieHbZqJtiGmtzAWarhIi47olwfapYNDJXFTlAicWFdZ7tA8JvZFAiEkQIBMqHoH58SHtsmUqFYVPDut6QLy8Z+PUJjsXLrKYz3n5hee4e/susxhRx0seWguUulih4s46+q7De1hfqyjHYwKC3nb0zqXfUaXzInKxN2BfQqbxXqLW5HuHTEeIIaleV+dl+GA4h4n3I0RWaFmHlymRXKQKCCUVVTWm2nmMxjmWzRLrvhm/8LUcb4riJh1itTOcuG/myDhZgJKoumR84T62nnyYcxceZeP8edzBHjs6Yu6/D20U11+5gTq/hpKbqGmF0yPoHX1rwQacc5iyAjwIk1CijICseu/snhkzTpr+nsoKUY8QpkTqAg4EtlsSbY9rZkgCYTRd/TpSKRaLI1554SXWJgVrlWQ2h+AyxKt0Lq7SgjrIRRN8KjJjXt6DBoSTMUteoyIClEHKLC/NyqoYNcIln4sYAj4kIyxBpJhOCa7He48g5rkxKGGoA1BFOhHo+gYtJygpkvuzUMTsq9MsDrl54waF8dy/FZluTVhIRbu3T2kUy8NjmB2ipeDt3/I+zpy/n/PnH+Tqi89z9foVnj1qeDpEirJAVyVHe7vMjxs2Nsfcd+kiGMN8sWS2mNN3PVoVSF2i1Cg5juZZuModcEQlc7OgkTIgxCjFWoSs+EADlkDy6gmZ0O1jshYQQeBtpFtaXNURRyOkThyCGAXrFx5Fj6csd/fY3T3A2ZMSZsg5W12P+AfDb8Q99/xq14jim+jP1/kQb9yWViOWtI8lLowwCrO2Tr2zyWS6RbW2RmiWjGREra0hlWC2P0NMS6SoMYUmSANZupyUQCHbLZwIBt7Q8Z/AjKuKeFXkAGiTCvmsRgrOJo8m25OwWzKJGBASGzsOdvcoSkVpJF2fx+pwEuMgyLEH6S9iqFRWasJ7kJksLQeyklNkpAjIBP5hhBRDjlbIHJ+QUU9VFuk9D6KIARiXEkPim3hCRkuKofTjRPou8LZlPpuhZGSt9pQjgxUSu1yipcS2HXQdSgjOnr+PyXSdyWSDo727HM+OuNNaTpcRpVSKw2iW9J2lqgvWNtYRStFZS2f7HAuRuJBCGFQeEQohkKuiLxeGcdBymNXoO11UCSKrNu+JaAgZnUmCkYiznqAzj0fqRCgHyrXEk7TLhuUyNXZvvH9Xp/Kbx+9zvGmKm1UhkbTUqwdS5swUJQ0CRbmxzpmn3smFs5fA9YxLRbm9xhTH/MZNgoSHd7bwbo36vvsppwWz1y+ztrWObTuKukLqNOZJD7YELEn85E9UBUohRCA6RyTxUtIND8oYJGMIEXkssO0C3y/p8zBE6QohwQvJtcs3uX5lzvSpDQrlCCHS9T4x92NWTIkhjkEglMnvKX3+DZvl0OFlGDMpqrIiKwBCImRcLdgiQ9fBe4JNP1Nm4qGux4TZIdGHhH4gUruiIcYRCon3ji44DAqPxIsAeKKL3Ll1jb7tGU8j2gS2HrnIfOdxbr/0InK0hrWWrZ0zHB/tc+nRp7n00CP8B//R/55mdsSv/fN/zPOf+STcPeatqkAtNbeu3YTJGR77S3+dcViwvH2V/d0Dlr0jSo00FUqbJMvURUosViJ1k2GYV0tC1rhKIXLG4NCdp0VHoABFHwKlkUgBrk/W6N4JvIfgUkcojUrn2FmibQjOc3x0xMHuAav6m9yU5T9DhCzmXX1t6OIGG7HVEjmABfl/Ib9ulcXzh/VwffN4w5FM7IY/73le8mYvstW4rkrGp8+xNtmA4DFKoOuSkkA/mxMFbI1qYihRa+uYQtEdHVLWFcF5lNb3IEJDYZOJMCulEgwBmavw3cyjS928QhqBzveV95bobV4hSZsiyTzv+HDG8VHPzqkKJdJalqTOuWFcgTfi5Ofec0/eU8uszo8QSQof7ynMUgUyFGtkvtGw4effI5z8LGkKYtfm8Vd+XvJ4TSuDRCQLjxiQyGFguDpXi/kxznpMmUb49dY6drTDfG8XYUpC8NTjMW27ZH3rFBubW7z93d+K7Vpe/+JnuXv9Ciw6zgiFsJbZ8Yxoxmw//Q6K2NMvjmmWDdZ5QOZCQ2XqQjbek2JFRobkXD3kPwmRcrveuNYM/0l8jCiZpP/RD743Ip3CwadQZQlp8Dm4NNL1Hc2yecM6cC/2Nly3rz7E7/K51ecHAOH3+fffKMebprhJ3VS6GdIoSK0+FlIkUphIrPntcxeYTMZ0Ry0THCGCthYbAw/ed4pqVKUUV98nOaKMbJ7dZu+1K0x3NgGItocoQSUju9UiJ/OsNfgTmDFbdkffMxQeQoBZSyhNCAHfLXG9JYoGUyaejY+Ow0OHMoZS11TqmBAjtnd45/DeI6VJjreqQJQFaVWAFekw83IIJ2dqeIBEXo1iyLwcKZJZlDqRj0cpiOikrnIQHEidAttUlQq00PegDUJEjFJZ0q4IweFjkqUmd16FQrJcHHGwt4cUkXFVIApNvbXN5NHH2L1+lfLUDv2t26xNNjh73wMEIrqsGBMZ1SO+/Yd+jMuf/01eXErk3buMFguaw5ZHv/NDTL/9z3M4mzMpNA/7jsXty/S7N4jzBeHwFrJZIG0iIsZg09hJBpSQiXSZ8fJUiCmiEHjXo2PNKpMnJo6S7SNh6bDLyNKCDYroABxSa5SpVuffLY/p25bdoz0Ojmcn+1IuWZRME1QfycqJ/PW8sa3ELAmZTh1sFnGkdPt0jomQAuJFJjJ+Yy9AfxxHUg0Na86QjH2C4oh7OCmjyZSiKPDtEjN06z7xTDbWRmij0zgm+jT6FVBPRiwPjihGNVlvngQCKwl3RucGwcC9/Jvhgmfe4QDuqUFi3iaOTwqktCid4w6cp22Tb5RSBi07IjG9LvqTRiib8w2ND/l3hhPUaLjhTlhkJ2X5qsgZJNb3BG+uELDE9mGoT5LzfPL6GZSgwEoFFOMgy88jNjH8TIHrO5qmQYhIoZM/jq5ryu1tFrMj9HiMm88pTcVkbQOIKfUd0MbwwBNv4fDmVfasQCyWGNtjW8fWpQcoH3iMtrcUSrAZHHZ+hF8eE3tLbOcI2yNCpijElHFFTM74b+AwkRVkKEIIObxj6GrSOQ0eok1uyDaI7AQPkNScUurV+Q+2wzvHsl3SdifcvmFVkcPpH7aFe+6T4XLei+4MCBP3/LvhiyGuEji+4daZN01xIyVZahfyxcidixh8FpLtv1CKiakpjcBMSsreYPueeW8ZrU04tbOeRhE+4GfHuCrQ3L2J2azx1jFem+YOOxBdXLHyk4tmOh3JJC8VPnGIG1jhxgG8TxBjWVJMxun97Xus7whW4mgSOpSJfDYqkJFSeUwOcBxki1ElpZQYXEzzzHq4Q1NzlHbAYV0J1mZQOi/KMcHBaeFS2WshEpU64ZeEmJupRGaT2iC1xwdPtOl8q6JIvKIYEFGghcZ6iwuOIIcHw3O0v0tvHZXRVEVJMAJdjTj32OM8+8u/yNGdW4zWN7h94xXEWsHO6fMIkTJkgrCcfvRpzl54kmu//gmeWTNcOFzy4H2nkfWIZdPwX/+//iVKl5y9sM3psztcuP9tbD28wWhcMKkKlF1COyfaFhYzRLfAH+zRH+5Cc0xYznHLOb7rCa5NIyhOOAXJ6NHheodvBTYKFtYQfQrcQypUWSLLghA83ltce0B7uMfe3dsslu3QvyEEaAGlSqO9EJPPSKENZVkyGpesTdc4c+YcmxubWNeyXC5p2gbb9/S2p+1alk1L13c4G+j6nq63WCfIHmPp1sur0jfaIvRHfgjSMzuMXFbjmQHJyWdYSgqVjD1VqVFe4oOg9x5dGsajaoW4hK4DHbGLObLShOApyiJ9nyGTbIDmhpEL3IOIZMVjnlHF3OrFPLYSKmcwRYhhkdzUA3mcI042xphNB8WAxubfcBh55xHLytI/z1PFaq0RJ6Mu0rjppLcSw6+TeDpfRUIeirRVQR7Ti6VQCJlFCVFk3yyV/1kqYiQyhfjm2ASR0ay2WeJ8QEuJVoqoknP6dHub26+8RLuYocuSxfwADhSj8TS1yEoSAoy2TjFd2+H48hVuV4q11rIxHSONwTrHZz/9LFJqJmsjxpOatfWz1NsVxmgKLRHeJmGGd2A7cD2haQjdkmg7ou0Jts8j8Cz9X8FW6fqmfKxAdAIfofciF7iJZiCzGmx4bfANrl2yXC6w1r0BiZFkGmr6FskbR0m0VhitKcqSyXhCVVWE4LDWYZ3N65jHeYd1Du88IUR88DgXhsitk+v+tT1Zb6rjTVPcEO/tHpLRVJLe5VFRTA9BoQs2RxPEcs6krKjOnSOEyOj0DmJ5xLjSeNtTViVSw/LOFXAN0SefimTXrxBFldAMOBkZRJFhU7lacKTOsuvYMdQ5IWuj47JDGEkxmRCdJRzewfs+3STZxK+qoLce6zzOJyShGk8yQpQKICkEIgw/lxNoM6bcmuTh47NzcCD5AGWfCqUQOaVaqHhCgJYSJUT204CQZaJ4n4nU6fdyfQrNNCv/nLTgaK0hBNw98nwlklTy6PAAEWFUF5RljVcCUxi2z51j7dRpxMYGW/c9QmDG/u2rWf6aurch/+bRP/O9PPORX0abJVdHEy6Oao5v32DaLwmx5M6tjqtXXif4VyjrMaYySBOZjCu2t2re84G3oIymbwu6TrCxfo6dRzfZnNbUpUIFi3ItHOzCnSvEW68SD+8AqbANQ+q6h9ZKFlajkbjokCqijUZoQXQCB7jjPcJXfpPF3ZspuHToqIFSSU5tb3Lh3HkeeeRxHn3sER544BLnL15k6/Qp1ta32NzaTuOKkKz6+7ah7zraxZz5csFivmC5nNPMG67duMrnPv95PvXpT3H91m3atsUHcF6cNPacFDvfPL6GI8IgpR5GUm9c0pOfUa1LcD1GadR0AhHMaISwHYWRyRhTJ0TELo8gWEChsjOvEDI1MAMqshoLrXCj/PnU2CTQxmeTvAHJiUTnQIrUgASPbRe5QXNJOi4kWicCsY+BkEMjtTEn/JoBgzlZ9FaRU8ONFcOg4hlGWXE1JhWZb5PQroGMnFEusjBDRPJidoKK5fF68rNKZoNDHhwiBdgGGRF+sJ1IiozgHV3bIIgYY9DaEETiMtaTKdV4DGVFvb5NpKeZH3HiNaNycSfZfvBRbr/yKtJajnTBWqHpFjNKbyEq5nPH0dEBMeyhdYHSKfSzKDR1pblw/+mUu2c1zgvqeo3RTkVVmpRtFxwyeGgXsDiC+QGxXWTEJ0v806nEB4H1KUQ4xHDCscx1YgBC1xB3r2EX8xXfZsDEtBSMRhXT8ZStrW22d7ZYX99gbX2dejyirEZUdY3WOhVLfpgSOJy19H1H31us7XG95Xh2zI2bN7l2/Rqz+SKFlcbVbfcnush5kxQ3Im24IT9EnNhkx5BtzgkoqeiDRefgwriY0xvF+MwOo5Gi6JKsWeg0E/X9Ed3eLpPNdYJ1VJMJaTGLycsmOwEP8GAUPo0U7skHSQ/aySKYIgNIIx7fE11AmQo9GmOaitg1eN+R1DqKcSUJPuK9xwdJoaGqS2BAaXLnpsWJcitVE/gQU1GTiRw+c2ciBZEJIUhcSFCowCOlRQmL1B6hHQ5QSqNkXHWnMXdWycSL9Hvhk7HgPQZXyZzQg5NIkUjHLvTMj45om56qNNR1sqMXJKTCVBXnHn+CZ3/91zi4eYvRhXWePv9tBO/S6EzpbEgIj773fayf3abiDqYqeHF/jpxfZby3R1WVhNjT2S51ejEmlGXpmB02vO+Db2W8vs6tm4eMRjX/5qO/zd6dGUJGqlIyGpeMRiU7pzc4d3Gbhx56gre988Mc/tT/g9I2eB9wAaSH1ikaq2icoVaJJGmKElWUGS0LONfjujnTgys84OaUUmAmYy7dfz/vfNvb+eCHPsTb3vUO7rt0idF4lAofpRN/SgyoQD7VGMqyYjSZ4PsWdrYTZL8CBhPa95ebht3du3zly8/ziU/+Gp/61G/y0kuvsXtwjPNxBUn/SV+A/uiPwcwuIyKIjBIPGzepqRCDAWR+ve3xUlCMRxgjkV5n1U8qGoJrccsFRVUSfUAXxb0/Mh15oxMxsJpcipO15uQNcC+UkpCT3FpLGZMtheuIzqZxiU+vN1qmoiREQhQoCcakJT65Hw+IVC5sxMD1yWhLHrcRs/LHhzTSxhBiKvRPpPMeQUCqsEK2ZRZHrH418q+k7sUeAjHIdPPKLH+WQ/E3lJgi+Vi1Lc55tEqohMyBbkomYvBke4c7Vy7TzueYacWp8/clpCskNWnM13TrwgXK8QgtFkil2Fv2iO6YYrnMRUDKs8rxqEmm7SJd67hw8X6KqmI2aymM5vWXbtIsusS9VElhaoxiNK6Yro/Y2DzFmXMP0j77m+iQ09/zKfJeYL3ARokZuIFKpTR4kZCcEBzB9xTtEeu+T9tCYdhYW+fsmbPcf+kBzpw7x/rGBqYwJxyxzJ9641oDUWtMEZOVQORkNLq6HyNvdY7lcsHu3btcvvI6165dY3//gGXbr4qr8CdwkXmTFDfxZPIzILcZqQnB54pfJIO8EOnbhqlPzqDzu7t0B3ucOr1O7FK2CcEjgoNRsq7WRtEvlhRGIYRGmiLBiBqESxtvFDJJv0UylFs5WaZ3lz4WqZuKZOKocwmSDAI1HlFMNgk+El1LxBG9pR5pjISuswgRmdaaokheNEAeD8k8TkowpfcR3zu8tcl5WCncsmLZrDFbrnHYVBy1kuPGsXA2jYy8Y2QEW2PNRHdsrTvG9S6mmGHKJGVUSiU4OS8AZjJGlRW+a9N5tg5ZFVlenZAhKSRRBqKDtmk43N8nEKmKGq0NWpUYBYU0CKl47Ns+gFCa4/k+D7zjXdSjCu+Sm7JQBUOozfb5i1x44imuff4O0vR88OI5Xj3q+dmf/kmu3OyZzcYIOSKQfCHwnkBARI8qDS++cINz57e5/MpNnnzHw/zaL30B1wb6Ho4OF8Cc1145gE++ytbWmJ/4+3+B27fv8mCVuuMQBK6VtL2isZouGiosUkekMkiVjL9c72mahqZrWQuBdz/0CGff+318y/d8H0+/612sb+9kAiqZZ5Dvm8Fy/qtXG0EuqAOqrFmRx/MzMJBcR6bg/umUiw88yHd+z/cyOzrmy19+ll/71Y/x0V/5Vb70/JeZLxr8ip/6TQLyH+z43QgGw3g3NzMiQxohOQWX0RN8wC0afLtkNK7AubQuxZgyzMzgjC3wbZdSroU84b9li30xGHJmHs6qRR7eh/jq95XxpcETRabNThVV7oEsKXxXpqJLgHMhNxwCqU7I6en9DDONk/sm+LAiAacQYYW1I3pb0TpN5wStDcn4UoAIAaOgLiSF9NRlwJglSnYpvoZ7Cpa8WMoiSdejT6KKGDwpLGsoJPOISqRGznlL2zbEOJjpKaTUSBFROZNr++L9ICRd37B+9hzGmJW8/wQRi9TTddZOneL4xhxTee5fn3LQOl549hmO5oGuT5lx6a3GN/jtSK3YvXvMdG3E4f6c0+e2eO3lmwQX8R66tgcROdhv4coBdW143wefZD5fsqlP4hmCE1gvsUHio0SLkEQkmeNJjEQfcTk1voyBc5ubjC88zPmHH+H0ufNUo9HJPbJqTIHs7/U71hrIFzkZqX7VzZXOPRGpFOtFwdr6Jg8+9Ahd17F79w6vvf4qr736Grd39+h7u+Lv/Ek53iTFDSkJNZ44MSbeSQqrjIM1NanilwFUtjM3BPx8RhdnRKMRvQVnUZUhNAEZHVIbvHeYusgzbA9aIoNEaE1wiZ2OAmyKTiDzbkIQaQzkXWa6J3URQ+I0keAsdA0ojS4rfOhxIfkvmKKgHimW8xYlJWu1QhdmmCtk2DYFRgJY22LbBoLE9wEX1ph3D3P5puL1o8B+VMxCAXXFZGuNO3fmCDSIntB1yKWFtmG7UJwvN3l0+ww7O7uMxwdonbk+ShKsz4ukInpJaF0y/AomT8UGBx6FDQEXLM1yRrNcIpVCS4HSBUYVKCUpcnLuZH2bpz70YY7373Lhkac43L2ZH1wLJm8cEkSIPPkd38Hrn/lVFm2HUpLHdzZ59H0fQj9/g4/83Cfo3IL7Lj4K1HgPQkeCh9m84dIj5zh37hS2bzk4mhGIuBATP8g5jJa43lOWIxaN5+bNfVprcUrhvKNvI93c0HrBwmtcLlqlkJhqBEoTInTe09ZbjB59nOKRt7P1yFNcOnsetOK5Z7+EEIKiKCnKgno0oixrptN1xtMpuizesJyIAflDgDL3KKnEqqg/6b7y2FFGtFJs7uzw/g98iG/91vfxN/7m/5ZPf/Y3+V/+5/+ZX/21j7N3cIj1YrXg/Qlaf/5YjkxbXf1d3IOeDKOYgRQuMngic4EQux4f+4EkmDcORXSeFK2QNlilzYqDkkYwqbiI8kQttTKYHAqqge8zxB0MKMk9PKAYPMHlsYvShOjyt0jvwxiJtRYhoDISpeQKjVpxezJAFINLMQ8xCRFiLOndJkdzyWEbWCLpggStKeqS5cLm8+TT79snZc9ISaa6ZqseMxotKYp2JZtWuRhCqZRhGwSCnIg+wI6rmi5JpAMBa3tsn8J6ExlfIoVCSpHG7VJSVDWnLz1I18yZbp2mXc5y0ebzmigyOhfZeeABDq69RnQOIQU7o5qt+x7g1d05r7x4GRcs07UtwCS0Ivvt9J1lc3vKZDoieE/TdavmNuR0d5mNFLUy9C4ymze44Akhq8Ac+F7iItgo8au1RqC0SSg6AhcCTteY7W301lnqrVNsTqcgJbt374AQCYlXEm1SFl9RlhRFmegW91Qew9AzVZrqq9aafC+t7vt0o4uY1HH1SHHx/gc4f+E+3vnOb+H69at8+cvP89rrV2iaduVe8GY/3jTFzUotFWPyGYjZjWLAb4ebSUSK0QixDEjRoJREItGAiiCMRpQGlMS7GVKlTcL3Lm0qwROcTPyTnA8kzZDaqkCByEopfCTaPkG9QhKDzQVAhhSNxoee4Dti69GjEbqe4PqG4FN0PUqysa45OpyxWWvGuiI55uTcqRARJDKZ61MCd3AS10ma7hKv3znFy0vFLT+mG5WcurDBk0+fox7XnL5vk1/4V8+jdMsHv/cJbl2dcershE995Msc7M744v5tXry2zxPHZ3nL2XOsr71OOWoQ1qGlpNAxqabKUVrcQuLXJKIgSF0QfZM6KdfTLo7xMVJIjdJlumIyEfwkaSYvlaQqR7C5jRSCsh5DDickOIaUbiEkF9/+LuR0TNf1SF0SrUV2Sx567Ak2Pn0XISP/wX/4Q+hixN7dQybrJa4X7JxZZ21tgpSCQGBre52i0jRNn6Dd6BFeoGWBKmq6bsadO0es12O8b+h6R7NQWCfpgqANJi04IuIk3Gobrty9xU055ZZZx21dxBcl4e5d3O1fIZCKYRdsKnoRSRFnCqqqYjJaYzwac3rnHGfPXuD8hYtsnzrDeDpJJNNBvp9u/PyneMNfV0VOTB4+IgYQHl2VnD1/nh/4/h/mwx/6Lp555gv89E//j/zCL32EG7d28auQxG8ev9dxwjvhpOsFhr0gfZjKCW0MwgLCrkZUKyq/yvw9IQihXyF4wceTYsWHLFbIhYXIyqOYOvcVCTc3Q0SRFZoraCW/TZlHlh5cRJqUTi69xUcHmd9SVZK2tVRGJh4dafyexsEnuqfgExoVvSB4gfXrHC3G7PeSWTR4oxlNKy6cmqALw2S94uXndkFYHnh0h9lhx3hacu2Vu7TLnlvNnN3jhlPdhNOTKWV5iDYuo1YiKwNlUmXew0NZ8Y/UyebsMy8tElFCZeUsCJHz+FZNgERpTVmNEAi0LvLYPebnZUCpBOtnzyPLAu+S2WEMHuEdm9unqEZLEJG3v/txpDQsFy1FpQkeRpOKoiwQQhII1HWF0qmAJNMliBKJQiiD9x2LeUelC0JMqjbXC3wQ+ChwQQ5lKh5YOMfRcs5cFMxlia/XiEoTl0vC4rUVUdzHe2gDSqJzvl1hSgpTMB5NmEzWmK6tMxqNMWWRiMrD/XYvKvg71prhbzFvt+m+UwIm0ymPPfYkly49xO3bt3j22S/x0suvMF8s3/SjqjdFcZPvVXJkGiBy5pHPhmv5wmajqegcA5QspUmSYO/xzqLLAqJEVYZ4mGIIoouE3oLztHfvECOo0RgzmSCMzkRXAA0aRFC4rkuITA69Q0LUEWE02EGeHRE+ENyM0PYAmPEUXYzxLuB8D7ZnfW3EzeszNmvHxjgtZCJ7tEipiGRujYu4zmG7CXd3H+TZOwWv+5JFscb9T51hNu/51u95nDMXN7h+ZcbxrEVXgnoyZn+/YfPUiMlmzXf92Ds53mtYHi147rNX+NKrN7j1+j7vOfMWdtZfYzq9TakjykSUCHmhlRB9WkAzoTtJSi1WJDKac4ncrZREqZClnGlRlTL58wwz3fF4DSEExhR0zYJiNM4XOT9EBLYfeJjy1FnUzWupuAiWODtk+5EnMMZgfeTV1+7wZ3/wA7z7vU/hvKOqSr70zJfZ3zvi7p09zp0/hyklP/7XvperV27TNh2f+uSzTCY1jz76MM8++wLzoyW3bh9w5sxF3NUv03cWfEIL+5BUY6bqOJIdv94Ejm/t4ptAub2FMYZwtJcWXG/pXZuIntm6PgqPMRVGF9hyjPOwXPZIscfNO7d4+fILrK1vMK7HrE022Nk+xenT5zl95hzr21sYU6yImqvd9V7exWpxUimIlYQeKqVZWxd82/s/wFvf+nb+4l/83/Av/vt/wc//4kc4Op6vSIHfPN54nJxesaK0pP8nNc9A2B82gMF7ZkD1IkNwZsjXQyKMJHY5MXoYuYSIWy7SJTUFqjDZOyuLBkgkUhHJnLQTEi4M99fgYpxaZaEiwXapCBIgTYnUhmBjNsrzlKVmdtxRm4AxrLQJq/EPMRsMJjPR4A2LZpM7c8Vh1PSyZP3UmL73XHh4h8l6xeyop+s80oA2BU3jGE0Kytrw0FvO0TUO2/TcuXHE7YMZ88OGC+PTjKoDinJBlGBCPFGkDWvAvXEPWUDiRUjZXUOW1aDyGjbkvE+wUnwJTFGl86EU3vUoY06udX6u6vVN1HiMmGUbhxiIXUO9fQqpJD5EDg4WPPL4/Zy77zQheLTR3L29S9u0LBdLptMpSgve8raHOT5K5NtrV+5gjGZ7e4u7d/foW8t80TCZrBGP7mYpflrxfEwcS6k9nXRcdZFuviS4iK7rtBd0TebpeHxw+frJTOCOSKlRShGUIUSw1rMUS2aLGeZwl7KqKHSReH31mPF4yngyoapHybdH/AHWmtzoIdJoUUgoRcnFixc5c/oMTz75FF985ou89PIrdJ1906I4b4riJi00IskbByg35llzlCfkuxCIwSMlGK2gqJIPQShA9imEUUmU0VBK1PIoEf4ywcy1HaFr8H2Lmx3iFuuYtSmqHqGKKmGoEVzX0R0eniC5cVALJMVRyjASSAWyCERf4/wc3y2QSidPiuY4K6sC1Sg5LC+anrrOzsfOIUihbK5tcd1g3LTO1VuP8uzxmFvlJsXGhPe/9yGOjxre8R2nuPb6Mb/2Sy+zd/fgZOYLPPvFy0ymFVVl2Dkz5W3f8gAPP32B8caYK18+zXOfe5lPHBzxrd3j7LSCzZ0bhGWgrgt0VpG5EAkhopTOIzrHQKK2fZeuR04mFtGQ8rBScjhKZXYAudhRBGeRWtG3i1QkBr/qbkFQVGO2H32Cxf4VOtuA7elvX2PzPRtUlaGbd3z6k89w/uJpvuV9T6Gk5vh4RlmW3D7YY2tnCxs8V166xiOPXuK93/Z2Dg4O+XM/+GGKwtD3DXf+q5vs3j7i2tVDvvX9F1i+/Nv0fYcXAV8I5KgF13KDyG4VOTKSYCWbjLGtpZ9fp+9bmuWSrmtx0WJMDTIyqivW1k5RKM329DSXHniEixfvZ2fnDOsbW4ynY6q6QpmU9u68pe9anv/yM/zix/41k2rMIw89yRNPvY1T585iijeOsU5uQE46AER2Mo1ICqT0rK2t84Fv+yBPPPEE3/Pd381//U/+G77wzLO0nXvTLjx/fEcuWu6xihNv+GhY+/N4SiRHX1QaMyX1oV9tFFJJohII1yWebkZHgnNJQek9om8JfYmsUjEyEEiJkeA9rm3vwfnzjiMyITYXQiJ/b6kMIfYE15NkxBphsxdKjBiTnG6t9RidwZEQVr9jcEl9GWPEh5Lj+TZ3WsNM16jScPG+LdrWcu6BMcdHHa+/sk+zaBLH0AYQcOfWEUWp0FoxmhScOb/B1pkpRW04vDvm7s19LrctF/wOtRPUoxkQ0QzGeDKRlSOpsBfcw1hN4ovhXIiVTF4yIL4rwygGoUTmM+Ww0RMy9snTpLRhtHWKfnmciobg8YsZ9X0lWitclwqVydqYCxdPIxB0XYdSimWzZDQaEWLkaO+Yre0N7rv/LE3T8ujjl1BK4b1j+Zk5y0XH8VHLhfvXsPs3M1E5EhUIk4zG5kSWGlopiEFQR0NwHt/P8N5hrcV7h48+rcUkYnhZjlFCUhcjNta3WFtbZzSeUFU1RVGgjc4BpHFld3H37m1efu0rFKpga2uHnVNnGE8m6T6+B6n86rVGrL6Svl9S5UrKUnL/xQc4dWqHhx96iN/63Oe4dfsOzr/5Vpo3SXFDRsIG66ZkhpVSuQcrc7ciwAlTUE3XqCbrdIe7dMsFEU3x5BOo8Yjw2ov4gzuJsKk0iEg1HVNtrBHDlNj22PmC7viA2HWYjS3iKKDqCgC3WOKadkX2iiHJsFNAHYlwKrNfAwJRj5GAX87pZ8cU6xuU1Rg/OyR4h5CaqjJcvxtY34TQOYRURCFxWQEVAnRNxdVbD/HFo5Jb9Skee885nnjnA8m25qbgl37my9y8fpdgU6yCUJIQ0hgv9p6DgzkAt28ecOXVXR56/DRnzm0SS0ExGdMaw6eO93kPj+Njw/bWHYQU1EKitcG7RHgkWIQoUjeUN1TvXcrMCRCjJYpERBQGQCUXYaHvMeOCwxtXmJ45TzM7xlubSG1qUG8olC558qFLPPt5QWd7sBaOdykkjCcls0XPYmH5mX/1ce7c2uMt73icnZ0JxkjW1kbs3b1LWdWsb6wTY2Q2nyOUZDwdA57RZAOhK8p6yt5BQ5xcYG4ds2ZBVwVmVnBnCbfKyE0VaDuQXjMuJ9y+c8B8cZP5vKFvevABoZMTrBFQjwsevPQQP/jdP8p73v9B7n/4AarxKEno7/UR+eqbHMHx/Jhf/pWfZzE74vNf+gyjXxrz+MNP8a53vY/HnnwLa5ubCRV7A9k0HytIWaRzqRRS9BhKdrZP8YM/8MO8653v5r/77/8FP/k//DQ37uydqGS+ebCqIuJKJpA3V7HydBlUTZEISmGKilgEfLvE22TkqXZ2kIUhHO5Bk5oan1FLVRp0VUIsiM7je4vv24S4VDWYiMgjcd9bgnWrTTzis3rT5lr2xJdGCMCkAjjYHt936LJC6YLQt+n9K4nWkuNFpKwAN+QdyRVHJMaIc5rZYpNbjWJuxmydn7BzbgMAMRe8/MIu89kiK6ZYqa0EqZBom0CkZz5rODpo2NwZM55UYASqMDgpudY3XGCHGB11vQAhMJkvMyi0UozD4HlD3gcy7zHlU6yuVypmhkInXb2EMkfa2THlZIrtOyofkvgk3lMcSsGpzQ1u3ySlbPsA3RIloCgUXe+x1vPi85dpFi2nz25TjwqkFFRlQbNY5CDmEiJ0fUppN2XKrDJFhZAapQua1kKxRucjnbV4HemCYGFhriNzEXGO5KOkC+bLFns4p+ttKiCHkSWJb6QLxcb6Bo898RQXLt7P+tYGxhQr9djvvdZA33e8+vpL9F3LzTvXMS8bdrZOce7cRbZ3TlFW9cnE6vdba0RyVBYiYQCjeszjjz/JuXPneeaZL/DMl55jtmi+hufx63e8SYqbRKpLRK1U6eayIZOME/dmSNFGROz8GOl7RJbbLRYN9cEu5b4nHt0lBosokk+NlBEzGSErg184fN8hRyWV2qabHdEf71Nk4ztZVkiVINLoHMLkB0+SWP7e0Xf9anRjipKiHiPLUZJStnNcs8SMxpiuw/YWVSgmazXPXRY8EsA7DyrikSvyoPeag+MneG4+4kZ5hnd958NUo4qD/Tm/9Zuvc/XV27Rdl6IolCSSEmujgCgjQpgk98sLYmt7trcnlJXigcdO897vfoT2uOfLn73M1WcvM+nfy+27H+HsmQ4RI/WkTh4afZcXlQRji5zIG2OC2kPOGRj8iBDZ7bWoIAd6qpAW4/mdmykcT/pMCs8kwoyMCiXZvPgQwkiW3RITJP54D3zL2nrFrdszhIDD/WN+7l//Bp/77Ct83w98CxcvnWI2m6F1IhgeHh4zmZTcutGydWqHxXxO3/e88uoNbt08JgCHh3N2jz2zo4Zr147YPRLsE7mmPbfbQJsXH6Md+/u3aFqHzQ2k4ATICjEQtGQ8Nnzbe76TH/nRH2W6tZnzwIZX/15H/lqM3Ll9A0hp7IvlnLv7t/nsM7/BhdP38Z53fQff+r4PcOr8+ZMiZ/WofHWhksNMZbIokFJy6YEH+Ht/5yd41zvfxT/6L/+ffOGZ506yfb55rM7hUISnxTsyOOsOnIhhg/B9m40tk7N131t0u0S0EdplGmOpbO0gIqooEFoR+oTMSKMRssZ3Hb5rcsccU0r2kPMUQublACIDGRmpHtZDqVQy8ht4K7ZP6KgxKO8ILiC0oCgNd44EWzERWhGSIEIi9sZk9Nd2O9zpDDM94eyDm2hj6NqeG1cPOTxII5dVQbWiC+R6QZygtAiB8466Migl2NiacOHSJq737F4/4ujOISZcYLF8BSEdIkZ0YRIS4HOAsBiugkxXYOUJNFyJExVbhJMGaViYEfSLWULY8mvf8BRmJKJa3wQlsN6ioiB0DQRHWWrm854ooG06XvzKFW5c3+eRx8+zvjGi77skc5eCtu0oCs185hiNamyfMvoODufMZols3LaWZRvpOsvxccuygyZGjmVg4cBF6D1IGWibOdYFwsntRr4diES0BBMVF88/yFNveQvlqOYk0uMPsNYAi/mMSExWKrZneX3B9VtXWZusceHcJc7fd5HxZMrvqJF+t6Yo8wWlACMEG+sbvPe97+fsufN88jd+k1u37/4+7+mP9niTFDe5kMkPnxhgWTKxNxNSEyk1IrwjNktMrSmmY/S44jD0tLt3MHUmzuU0cZQiCocPAVFWaF3gmhY/n1GeOg1C0B3v0ofUVRilUEWFKhrsoklxBjIF2A1gtlQ+s+C7RJKNHl3UqNEEBLh2gQ4jitEY6/fx0TKZaHZFg1c10Vt674lRI6LEe89i+QBf3q14za2xjA2jjRKi5GO/9BxH80NiGRiPIz/wI9/CaBTZ31/y4vM3GI+nHB1abt5oqMoxO2fWeOjR05y9tMVj33o/Iiqe+/x1Xn/hFpvjgktvPcfyvg2ufuw57jt8B3sHH6c4pVC9p6wMGpPyaASIkAqX1E1mUzFPVjwoBAopVJLEFtndORefEkE3P2R+wyNPb9MtZhT1mEHqTH712tmLSFPQeYuIGtft4+ZHXLj/NM99+RoxCpxPXIjbd3b56f/x1/jBv/B+Tp0e0bWe7VMTbOfouxYfBQevXOc3f+MrvPbSNY6PWmJQCAKiO+RLP/VPOX7lNY46mMXAFRG4dhxYuMgiw+S1DJQCukgiT+c5tBBQSuiioKhKvu/f+yH+yt/4j6jr+p5F4fdbbE4Oax2Hh/sURUFV1YksGCNt3zJbHPPa1Vf56Md/lm9/7/fwHd/5PWyfObOyqv+dC07+e7a4TzwDx/r6Ot/1Xd/Dfffdz//9v/jP+divfjxxpr62B/Qb6Mijp4GomwuHQfqboQOGLCYRA9FZlFaIskAUgS563HKBMnk8MnBCROIqhBjRSiOrNJoNfY/KnDPfLfERpKhzPpomKJtl5ayQGpnu2jxhSRyM7GyURlE6+egE1yO0Sd43oSHGQFFIljhCtvQPIYU4AsQQsXaT3aXmMFT00VFUKYLm1Zfv0HYtqEhh4LEnz2IMNI1l7+4s8ee6wHzm0MpQj0s2t0ZMN0dsX1hHILl7c8bR/oKqUGycmWDXKo5fu8Nae45l8zpqJBE+pMYElThFA2KTC8yTri39OdC4B+8hVM6xyl5FIPC2oz8+QoxrfN+jzDDiPbnjy8k6Qqq0F0RJCEt817K2MebO7nEy0cuI0nyx5LkvvcbjT15kNDI4F6nLAu/SuCdEwf7BnGvX7nKwd0zXOmJ2h8a13H7283T7h3QeOiJHwHEX6QPY/LYNfhXZEkhWZ8MdOnxeKs0jDz3G2971bkzmEt17H//bDh8CbduglCLqhIpFQHrL7kHHwdEBr77+Avff9zAPPPgQo8kkI0GRr14sVuNbcWJ1IWOgLEseevBh1qbrfPzXP8Frr11Ofkl/zMebpLiJmczncocZT6SXeX4YQtpgNQLRNETf4nuJKWpC2xLnMyKCKA2irAjLBYE+FTnSYBeHuLpBT2tkVdIfHhC9w0ynhN5i7RK3PEIWGjkaoUYVwTlc2wA2zXmlSj4LxYgQLEoqgvPY5ZxoA2aUERyXFitdjTHtAu8ctZG0oscGz8IuiEonQ76+x7oJl/e2eaE1HMeIj5Ff+dhnOfO45tRbWy6UYExJ8I63f/tFdJCYquDxt55iuj7l8GDGres9a2fPYTYrRKHojzo+/ksvo6vI+c0ad+uQV45adm8v6VtPN+uoxAU2ji8xqi4nl+NeM16fgnAJwiYXMzFbp5MKnCBS8rE3yfkSAqocrSB9SPwpu5xz+7nP8cAP/BjOtqmjikNqeXrdeOsUZjylny9QMSKJHLz+MhcfeIhRrVjfWOPwaEHbRsqqpF12/Ot/+XEeefIcb3374+z4NCq8fPk2L710m+efv4ltA8eHh5iyYjyu2S4bzux9gWsvvcYsBmYq8FIfuNNFbIA+P4hFuhVZRDASJkpQ6ETq9BH6kKDib3nnO/iLP/5XWdvcSPboXZKsKmMYUt5/98UnIZBH+/u8/sprTNfX2NraSYnSJGsBKSWtWrJoFvz0z/xzPvnpj/FdH/5zfNu3fycbOzsMeWIn33FYhBL6iQhZ/eepCs3TTz/FP/zP/zP+i3/0j/jXP/PzdF3/p7zAyULwN4z8BvLBvYVNDjixFoJPAbNCg3PErocColDJu8X2qfiQCUkItsX3BllqhNb4tkXFgCzLTJa1hL5FKJl9rkyymfAW8Om5G4pqbRJilBPuk69WMvITOvu6hJBGU9biQkArgRMu5dh5m8QZg1dUMBwtx+w6SUvayF999TqTHcnotGOqBVJqiJ6zlzaQQaC0YufMmLIqaJue2bGnmk6RVXLx9q3n8iv7SA3TSuNnDfudZ7no8S7iO49mStVt0OojahICXpQlUWR39QHOjUlsMJiNJmO7gJRppBZkPDG9XF2+gO87ujs32HjsLYTgVmOs1bOBwNQjlClxfc+QZNge7bO2voXRgrIq6VqLdaC1wlrPV567zNbOlDNnttNYTgiODhfs7c+5e2eO95GubVBKY4yhNo5Jc4vjOwd0EXoZ2feBeRbZDmyiIdnLxnTblCLVbIM63mfw6tzZMzz1trenJigEhAtEmcb6wxIzjKV+t/Fz1zQc7h9SVCV1JhWT9J5IBE5aemuZvfAFrlx7lYcuPcbFBy5lT52TVSze8//8w4AEIggf0Upy+vQpvue7votPfPLXeeGFl5I/2R/j8SYpbsCHZBNNSKGOCEF0A2KTjZlioBSWQgKuT+OdziKMYnLuNJWbY+cHyKJEVCN81+eFSoBQhOWSUOoME8s0sx6tUaxtEI8s3lpc01OUJVJrdF3hbYcfFriY5KDKJCaKVAaBSNlD/QIhArqeIMpxMq3TBlONCV1HISJGC5IbhqIoKnSl8X1Fe/goLx9EjvQaKNh52GNO7XL1uqU7HNEvfBpDRc/syi/y3X/2CWbLY1zvuP/SAwTfs7ZuWd69xZXPLDlz3zZnLk4J8wZ/HCnWah577D4Wy5Znltd48fJNvOv5kpF8e/00e3uvMRmBziZfMiYfnJhR36T8cinsLUKwDld0iJCkqLhILAoGn6KYTRd9u+TwuS/wwHf8OcSZ+/C2R8hk5pVeGKmmm1TTLeYHexSyoO8s/vJLXPjz72N9OuItb32Ym7d2KYqa8/ef4fjgmK985XVeeeE6t6/vcfrCaS6/tkvXN/RdQkWImq5fsrmxyeMPVvDCb7B7+TUOWs+eCLzoAosApRQM+co6LxBtjBghqOTQPAqKWjFvPH2MPPrQg3zfD/xFytGIpukwpqDtLCEkmLqoCjwwmx1zcLDPfH7MYj5nuVykuIWm4Td+/eMc3DmmbwOL4yW6MIwmY6q6QMi0gBrdoGTJy90LXPvpq/z6b3yMD3/H9/HBD383o+mEVQgoguS5NGQLJWfZ4dBKc+mBh/i//V/+r+xsb/PP/vlP0jTtn+oCJ6maEiossrNrzIZzq8iBGFEElBDp2Q+B4BNqUExH6GAJfZMUULog+pZhEwVJtBb0MKoSxDyeUmWdlFUhEK0nZid2ZRQuuMxxyRvHPT4kqVPOSiLXAzGNI1WR3rtMocLSOZRIzsk5yCY5+qqUcN+2W+y1kVZWICKjrYgcNxzPPK41+D79DpFAd/gSDz16it52eOdZ39ggRE9ZBfrFjKNrlsnaiMl6SewdsY2oUrO9vYa1jtv2mN3DOTF4bkvBA+Y0zfKAwsCQl0cQiBAJuSEI96AnQDrv0eNjtkNwkZhR9PyC1NR6R3vnJtz/CIynOfIlE5BJDYEua3RZ0bdLglDpXB7usf7YRcrCcPrMFvP5EiU10/UJXduxu3vI/u4x8+Mlk7UxhwdLnHd4n+T0IHHOUZU1O5sa9q6xPDykdZElkT2XGiglTzjTQ8GQwijADHUdAmUEvQ14YHNjg8cefwplCqxzSdXlUq6hMRqlU4nU9T1t2+RohX5FSHbWcfXKZZpFh3eBvrNIJTP5WK3GgUo6vFDsuz1mz32WK1df4cFLj3Lx0kNJ5LBqqAQnbv25ORiaVVJjtrGxwYc/9GFGoxG//YVncO7Eu+6P+nhTFDcREqs8OJApdVWIdAIFcrXYRB8YR5+q3qRlxDZLYlFQnd7BtI7+OC0AfjnHdXPscokuDbJSabERoKdTzNo0FTfjgBwZtFsjLhZgO6IdIUqFLAp0PU5Kl35BTM8LQujsLqlS2GZR4fsFtjlGCImuaqJPEnJTTwmiQC4XTLRAFCVGV0gniULSt4rLt8fsT85jfWDrsQbWjjh4dYuKLR64uM7Z+9Y4d2mH2zcWXHv9dW7dvsmNG1d4xzvfjTaG6dY2fdty5uI5vr2ouPKVm7zw3C6vvXCH93/gQUKE6XbFsu952/vuByTPPXOFfRe41pdsd2dougOMMTgb0Foiokwkkxhw4SSZfLinA6kgdTmhWFY1QuQxVX6R7Rp83xGPDxMRkcwhWKUBB4rJBD1dZ9536CKNASaLPdYmNdtbE0aTmnPnT1OPasZrFfXI0HvL5Vfv8NAjZ/jc515jOql4/MlLOBtYLjuuXNlnbX2Np56cwLXf5sYLX+Go9+zLwHNdoAuRsZE0PoVcKpHW2T6kwmYkwXmYB6h0wIRI4yJVWfDWd74DLyS3bt3AOctssYYArl2/yp3bN3jttZe4cvV1Do+PWCzn9LbDOUvw4JxlPptzfHiINAXOOmbOAnC4d0hRl0zWasqRzu7PHcoa2r7hiy/MePnqi3z6Mx/nh3/4L/Pk296+yg2KUqenKHqEl0nm7jNXyncUWnL27Fn+k5/4TyjLgn/y3/4zlk37hgnXQKz9RicfR8ik2rDiYpyAbCvgHWKkWHE3UmMVe0tUCj0eIV3AdzFtzLYj+B7fJ3Wg0CLZOQGyLFF9n4QFpkAYiQol3vYr00xUcjKWusDTg7N5L8ljGnnCLxHKEHxPsB2Jb2UYOHJSlygUwvYUkkRwlRoZBUSBd4qjeUFTTAghUm87qFqa/QpNzdq0YrJWMt0YsZhZjg8Pmc9nzGaHnD17AaUU5ajGW894fcIDj2iOdufs3V1wsDvn4sVNYoRipLHzwJn71gHBndtHtBGOvaL2E5xP/mTBJwO8mA3zBgR/hUbGtOGn9SZkWXVEGJMLlxTESUxGqtF7YteuxoyJ33fC21GmQJYVvfdIReL/2IaiMNR1QVEYJpMxxmhMqTGFIsTAwf6cze0JN28cUhSanVMbBB+w1nN41FCWBadOFYjjW8x279L6QCMid33EZRTYhXtL34TgDIWND2ABHdPEwoXkJn/m3DmCEIkzEzx9XyKE4Hh2xGI+5+Bwj6OjQ9qupbd9GpcFn8drgb7v6dqEEPoQ8X1S1nbLFmU0RalRRuKlXOURem+5tXeL/eM9rl2/zBNPvI2dPBZPKvI8io3p3lxFd8TU1CopmYwnvP9970cpxec+99vYP6YC501R3AhSum0IGfoVihgdoFa8qRg9InpK1yPLAo5PjKD8Yg5NjSiKJAn0DjktCfvHSXbYO7QxqKpCmGStL+sxbrnAN0v0dA01qrL7Z49vl+himl5rCqRxiecTLcE58A1Sa9AeKTRSCGQxoV8e0S4OKZVClyOQBlULZBT0B/usa83aqE7ISPB439H1j3Crr4hbWzx8yXP67RM263ex9u0X2L60gVSKl3/rBi++dsD21oh3vv8Sp8/A5tY6fd9xPJvx/AvPsrN1hktPPMTGzgbrp9Y4/+hZHnlqh6O9JX3nOZ71aK1Y2xzzyBNnOD7quHl9lxvBsG0e5e7+xxiPx7RNSz0uiTF5KgQsIdh0E4sUW5CUJRYtaqSQuBhR5YgYScqtkKB33/ZY2+MP94GAFJqVa2a+eEoV1JvnmM88pvKsVdDt3uTVz32KH/oL70FX6zgvcV6wXLbcvXPApB6zuTZhfWPK2bNrHB8tEwFSwakza3SdxZg51778WXjh88yt5XaMvJgLGyUErQsJEibNuvsQqY1iq1IE55j1ESVTd9X0qbjumo5PffZzrK1vcnC4T9s23Lp1g6tXX+XW7Wv4GNA6BbSmezihA845gotY29MsmxWnyTqfQzzT+VguLbPDOUWtWVufUk0qChOT9UFhcb3l08/8Bi9ffoEPf+B7+XPf/yOcuXBh1eFHBFLXxEIQly2JCKrwwSOUYmtrk7/zf/y7hAj/zT/9/7JcnqgblNZIBL3r/2gf/j+GI4QcxrsyeQsM0Zn5FUBE5fM2zAoSatmDTeOm9PmAKDSx6dJ18CGZkOpkjyClJBgDtie6HlGWyVsrRmJIcnGhykTUVBERdHIxHsjEwSFU8v1KSiGQqiCEFmdbdObtIBRS56ajbSiFpCw0IttYhNDj/RZzr4n1iM31wPisp9ZnKS+uMdqsEFKwf2PO/lFDXRvO3b/BaJyy8Lx3tF3HfO8udT1iY2eDalRTjUqmW2M2d0Z0jcX7SN8lD6yy0mzuTGg7z/x4yXGUjOQ2i+WrFKbAOY8xSRghBrLwgKBBLlzS5+Twmpjk8MSYPYNSwRNcThRvGxLqNcjFM3+ERLY31ZS+CygjKTW45ZyDm1d58sn7kLrEB5H9YxzLRYvWhqosqMqCyaSga20maUdGkxLnA0r1zHZvwN5Neh9YENnLhY0kFS8Dliozl8ZIQZVH3r2PQ9oH1qd365zn2o2bVFVN1zU455jPZxwfHTCbHxNisiVQKknkyUVhCj1Nf1prT7KhsnAl5jGdtZ6u7dN5KJMdiFIKLzxSJpTy2q2r7B3u8uD9j/DoY08xnk7vWWsiQmqkEjibhlyJCJ/MXOu65r3f+l5ihM9//gtY51ZP15Dl5sPXt+h5UxQ3kWQo5UNA6dw9BbEaRwmSjgHboNolajLF37mRPCRCRBDwxweE9U0QGjtbIIzFz2dIFQmNxUzrnG+iUmCbUSAVrmlQ4xGyUMmfJpLkm22HqqrUiUnSKMWnUY2LHdJapCuIKubXSEw5pl8c0xzcophuwmiKk5qmWzI/PmJLl0zL5MbplnOINfuHJerSWb7rh5+GcckieNZ2RvTHPZ/4X56h9y2nz27ijlqee2WPdnnED/ylh7h46SEEgrt7u/zLn/zv+Pd//G+hC4P3Hqklp+/b4tS5DRazhteffZ1/89EXsd2IRx73nL4w5p3fepGjg579xYxOb3N3T3HmbIPrHcQx9ahO6cI+5daIEE5S0cnqjaDAe1SM6LJAiuQYHLOMM7hkwBj276Z5f/QIF7LjqFzNsKenz+M6ySL0bI8rxqHl9s//M77SQFtvU546xfTUaU6fO8+DFx/g6UcvYj78BKYe895veZy93RlN13Fn95DDgxkPXBrx0V/8BBeaO9Si4VjCq11g2LZtPDHfDyQuTaEEEwNN71i6iMsLgXcn9ygRXr9yhY/8yi/jrGM+O0BKlxZoITDGIESTSXsxF7EQg8WFmPgH1lMUFc46uj4lyAtxD8oLNG3P/HiP8aRgujGhrDTKaIyRFK7E2o6f+chP8+zzX+DH/v2/yTvf894coidAKlQ1okDQZBdR6wUmk1M3Nzb4u/+Hv02Inv/2n/4LmqYFEqr0p+UYMqSEyIhXHsMMqFWMEbxFOocsC8IyRyWQuv3Qt0iRcsF8bxHSE/sORCS6gCx0RnUzCTyHOAbrkEWRuDZKJdKlD0Tr8qg8IdZC5LBgAURH9AIR0hhhUFdJXRD7DtvM0WUFlAghsc7Stx211JQ6KXySfF3TtAqxPuGhJ09DobAxUo4MvvNc/vJtfHCMpxWhddzdX+Jsx2NPb7K+sYlAsGyWfOmZL/D0W96B1CqP9QTj9RGjaY3tLId3Drn86h7eG7Z2asZrhnNxndcbT9t3OFXjGsFk4vJYp0Abs3JkHlzqT/g0WbIfk7JUxLze5lHiQPwe8tpiszjh7YSUjSdWBY6gmEwJXtDjqY2iiI75S19g14IzNXo0phyPGU+nbK5vcHp7A/ngDlIX3Hdhh+Wiw3rPYtHSth0bG4ZXX77M1C3R0dKJyIGLDFv5V2/fPiPFhQLnIzbE1bjqq61iDo+OeOW1VxIK07UgAkqmglwqCc4ywK8rUnxMyqs4eJZJjQ9+ZSY4iB/SPR5xLtB3HlNIyrJEG4mQyUtOa40PjhdeeY7bd2/x1qfexdkLF07MAJGgJQqIvcXnvlWGtNbUVcX73vMeIPK5z39hNaIKQ+bY1/l4UxQ3xJjVAiEbYaVPixzemCr4gPEdKnpUWRByYnMIfUoL6Hv8co5eW0MWEGKPWy4ppyXeB3RZpfA1nVxCU3aVzEhNh65HyCIhFsEHxOACWhQwQHFCIVVSE/XeoqLFiJrgknusNCVmNMXND5nv7bJczlGmpu972rZjYgqULBKbXxiCrDnqxtxZTHntF/4Nm/cH5MFFhC45fWHChYs73L58m7J16BC4feWA1rZ85pM3sX3B4fGS27u3OXvxO/n4Lx3x4nP/ExcuTnnLOx7gwqVT1JMR040R4+2SerxgVO3wSz/zHD/4I2/jgce3mH72NrdnxyxEje52OJzfZvPUmGXbUtUVPidiB2+zRDPdvCLP/mNezBGgqprhMYuZ3OqtTY3Y/DBJ60MYxt/pe+SbfHL6Ah7JcuHw2wVVoTkVF/TNAe76NRbPC253gheUQFUKhKGox4w2NyjX15meOs3Wfee5cOESBM2v/vrnCYtdtosFr4fAi31gSVI//W7PVAR6H7m79LmQ/r0P5wOvvXoZowRaC7SW9H0ieyrV5/s25cb4vGppKXA+4nzAeWi7hhCTS+zQTUWRIzRFSiu3FmzXsZhbRuOCyUZNWRn63mKrROR+8fXn+a/+yT/ke1/4Ib7/L/wIG1tbadQSBbqqqaVgfniMtwCOoihQIrC5ucnf/t/9HeZHc37yp/4VXf+np7CBvBEy6IdOOvv0xfSHih5JSJLlXPwQfdocvCfYDlmVCAsRT7AWVaaCRWqdHIYH11eRRkrR53BaYxBapycl5KgASI0XkojLhOL0/UIMyOiTC3jIRDipkKYk9C3dcok0PUJqfEj8uEIlNWPwPhdLhtYVLGTBwcuvU69HRLOGkJrRtGBtfcT8cIGyARkj86MW5x3Xr8wIFxRtZ5k3C6brD3L5lZ69u8+ztl5y+sw6080xpjAUpaEYaXTRY+KIl79yhyeeOsPGTk15o2DedfQYpBvT2nkyN3UuJXMT8WFwSM9rzUCrGRaeYSPPHkEnY9Qc/hkh9u0JOXlFg11BQRSjNSIC2wdCrdBKMqbHu5YwO6K/I5h7wV0BUieuptIGU9eoqqQcjanX1lhbW0cIxetXrhD6JSPdcxgjuz7S8/vv3T7Cwv7bd/cYIwcHR0nLkjO2fL5dU7JG5mPdozEYTlMISbXnyIGX4Xdf+4QAQsQ7j+0aTKEoqsTnCSGgVCog9w7v8unf+gQP7z7O408+RZlVoiKm8GctBKFtU940PqmLBVRVzXu+5T30Xc8zX3oO/0doSfGmKG5ijFjXsQoVzDr+SCCIDM0GSd0tKIOlu/YVhD3OCgKbLjQidU+QYNze422P1iOCHFxGkxOyEDmgbchycZlYWAokJfSWNAjOb0VLQudTZyYEQqR02hB6rOsQokBan+IMtKEcTXDHB9jljF45vBCEGBmVUMiIUunCt0vFrKs40h4vjnjmhddZO54yP5zzgQ8/wvFru5T9HR5c8zz5nqd59RXD7PYxX/zMLs994QDvA/VWpNjsaWaCF5494NUvH2LbgtsvH/OVF+/iZc+pM4qttU1k0PRtcld98Uu3OTqcgdTse8f95Wma2VXWRyNCDDhv07hfpgBJ7wM+CITK0KZUBJuIalQ1qhoxwPmC9DB55xKZsW2IfZut7R3KZOfjkDDY0fomQiq63rFsW0K0jMqCzXVFxNE3kfUuXTupkimaO17S7u0yj3AUBa/qipc2znFgSmJ/yFu3LPv7LS+2kVl+0H+/5SR+1Z+/1zEML3wAbyOd9SvCnZJ58xMpf8jnFUdJQYgCnzk+JwjBPcB5PCmqhvFIkGCbQNO1LBYdk7WS8bTCu/y9gkSIA372Y/8TN25d4y/96F/lgUceZhDP6qJmugGLoxld2yEIVKMaEOxsb/MTf/cnuHrjBh/72MdTN/Wn4YjxRE0j3ljaDCodImjXo2LAH+9C6NI1C57VtCO76ApJNhn1mJwsfeJDAgwd9eASHHIMggKBzt8n+8gIeEN3R2rwZExj+RBSLhJYZEzmncoYQtcmdEYGQuaoGJVIrEJKCAJnBb3TdDIS6Li9e0DZFfRtz8VLW3SHDcrP2SwDpy+c5uBA0s89t64vuXurTSTWGmTtcT3s3Wk42G3xTjHf79jdXxKFZzQW1GWNRObxq2Dv9py2TWGjTXBs6DGuOwIT80acUYVclITc0CYjO9Ja4XO4sU5xOcN1WiE42f1cuBQAPKA6IgSGwFoimKoCIXE+YJ0j4jFKU5fpZ3sXKX3qNoRI1833FtcsCVHQAQdSs19NaZQi+pYzo5Dk8n+AwuZrvGXxPmVRDSrtVDef+DStzkcueMLQNA3v5vd4U6uiSEBwMYUKW09RKIpSo3OER7o+LS++9jyzxTFPP/12Nra2Vre5VJqyKum7Huc8AocyBikjo1HN+977Po5mM1599fU/5LPzex9vmuLGO5dm1feQ/OSQ3xMjEceoO8K4Q7i1JITk7IusENRIURN8UgrIcQmzu4w311FGo6sipd86B0IjKpnk2s5mwnh6CEUEWaWohOhCkn0KlW8AjdQxdV9CoGLExYCPAhn6pJiyPWY0RZcV1XidvmvovCWQvFbGE4kkqXnS7zyiVxUuRsoRqGbEYtbjLJwaec7F13MBVkBR07mIQuJsS8AglcK2gUklaGQkuoh1kTu357z9rfczWtvgo7/4HG4hefhDZ/nycwf0LhHzXn3liMUsBXzOxhZhxzTLlugDNgZsa9HKEPNs1Lu8gQeRCGvO40UiShZmI/l4pCYKKXKsxKJhMhonqexizuC54b1FCo33qTAo19ZRUtI4QbNMLP+yKDFKMKphUgvw0PepSAk2wdc+RrwDFxR3zjzCyy/eYKxbTNfx8u2W6zFw5BOf5g9rwYkMBYq4Z3OMSfjhh8Vn6BjT0eUMnXss406+Hsn+HuJ3/LsQ8msDLH2k71u6xjHdCljfE33OmtEVz73yJf7p/+cf8yM//Jd527vflXxZEKiiYrwWkTE1AiF4jE5+Gffddz//4P/097l7d5dnnnnuTeFN8fU+ImRu3z2BmSKuNoWBC2Z8hwwtzG3aKH0EqRFRg9CpWBEgjCb2S0xVZml3UiURQopp0cPIxJNhNVbxlSpbvoa4en3ao2QO1WSVTh5DJESBiB4GabgpkMqgC/DOJgI5AkGgKDQi+sS5AWI0eKkIgDIgrEnohReMTGQaD0gwqyIqTQJkBTEkJY0QAu8ihQYnhvMYWcw6zpxe51xV8epLd/CdZOvShN27Ld7HjD509J0lRkdvAoQCa1OxEkhxCyopNVJ5mX1bRb5gMQxNbkDJEmGK1dUcLpu3jsKY9BDaPm/IAzosCLlx1mWFFAIbwNlA8CmnTQmBMVAYAYFVAG30qV0bft8QBcvxFvv7M4xwSO/ZnztmMdLG+DtGS38Y9+tXozLDF078teJqLbmnnFn9m9WXfr+fcw84Fvq0H3sXKOu44usIJFIq7u7f4bc//xmefPKtnDl3LikCAZTBlCBil/mGaSyIgOl0nQ9+2wdYLhZ/ZEZ/b4riJuPzKGUyhJrm4TJGRJTEGNBdx6hfoAnIfpnwgb7Ddof0LlKON6g3dpD1BGEkwQZ0PSL4Pj3ufSK4BusQagPfe6y1FJnglyobBcEhdFZBCZlMm6zNU6mSGDukTKFlipSWHbKcOLq0iVOP0UbjQ0XoWvq+RYjIZFIipU5z++CJssTpmoikNBVVoWlCQJclt44jxbm3IbuWjdoiyjEXzm5RG8nxfE7fe4KUSZWVH8LgA1oZ7lw/Zr6wbKyP+PCfeZKqMtQjQ7Pcp+8Dd28taJoej0cUET+yhGNDG5IVuiB1NUprnO2T2sdGpIqIIJK5X3TEmEytqtEGypR5zuuzD1ckdC3rkzHRdsmbKIrsFzIEbkqC95SjNZTSOA+LZaC1lrIoKfUIqyylSuoIVzpcBLxLn5MK6xy3zBm+MpOcLiHMGm61HVdEpJjULI+Wqwf7qwYQX/ORtr94sgADPt4DEZPnTKtyhns+zptbfjORRCb83covMXAQRExERwvu2NH1MzY2R4igEGJOoWts5bh9cJuf+lf/nP29u3zwz/wZyrrKC3rNeEvRLeeJy4agMBVSeN72lnfxH/+9n+D//A/+Abfv7P6hd51vuiPDZQNvIF0TlUZO+Q6R3mFcjxIRvM0Fpif0LTZEdFElwYApEhrsE2I7yPGTXDt546i6Ss7lOew0jcNPilkhRSpqcpEzoJmIEzEF5H8Sk5FfjBBiGoWlCZhMhn2+TfYYAkyRQzrzJo/QBGmIUaCkxmiJDYm/sugienoG4R2V9ghdMB3XaCno+j7xNYQghrTWEDICJRWLWYe1nqo0XHrwFForTCGxtsGHyHLeY4egYQnBeGKXRAjDuD/4gNRJZDGofVYIWTx51mKIGFMlzt6AgA43rHNURZGQsLxexyGsM4Ig7SPKlDlhXWBtzIRgUNKgRUDLlBUWstkdIaAGCkMIzOWY3V4wUkDvmDnHEcl12XZf3/HuVz+bf5Be5N/leb73tT5A26Xw56rSCcmiT2HKOjBvFzz73Bdolkvuf/ASSmuSi7bG1CJREjIcqZRGiMCZ0+d4//vez0d++aMslst/h3f2tR1vjuImxlWEuyCuGN5pzp1UBUV7gLJN0s5JTfQOIaAoDFQgQkNo9wiFJc4V87u3GK2NkTEQokD2ntB0+K5P+SujElONkFKmfJayIjpHIM29kwI9cYG89wnu9RaRZ+FSF0QEGknwKSnaOotrFwTXYaoJQhuKssS5gNESrQxCJNdSgSFETe8CjkA3l+ycnnLruqKZWz7+q6+jS4HSkvXNmu+sWi48uMnf/Ntv5/LPfYSr8nE+/pmrNO4K3rYIGXNXGDk4XvALP/sF3vNtj7AxGYMM3D1ouHlzj62dio2tEU3niAHMKOK9pbc9ikTyEzLioyP6iLWWtunSNfGC4AVSx1VXpxRUa+tETrxDICFc9vgAGdIZFV1DzNLxIeE95hTmoq5RRfIMWrSRpmtZG08oTYWoE4kwxkCpClxMSgwtNRC4Me95IZ5GLg5gdsD41BqT5Zx4tGR/ljYjgEJrlJI03R+uGih+1UcnC85Xf+XkY8EJifCrv/47v/ewgMfUhQdom8ieW9D3yaitMCXGaLRSzNWcX/rVn2N37y7f9wM/xHR9LQ2plMGUFb5P1z0IhzaKCsN3fuef5cd//Lf5x//vf5J8gr6Rj5isJuRq5jGc5VyyxoByLTI4ooKcuwLEFMqrgeiIbgk6EHqBXc7RRcFQKkUfkyjBJ2M/aXTyxBICqXVSN4WQ61+ZO/BsVjqMT6PPxU0OzcyErBgdQmTTU9unZ1AXCKVQQeNDRMZM2h8CJZHEmOTAQQZ8D/W4xB8LXO+5/PohUgmkFJS15kHtWNusedd7znL40iscix1ev36E80fJrmMFqUTazvLSi7e4cHErFRcismwds3lDXWvKusD5GTFGlInEmM7LinMnYh6lpSLHWb8qoIjp9xb5ugkBqqxyXRhOkM4Y8F2zMghNUvqQlUPkdTGt50rrFdG7dwLrHSUFOl3Y3FBENCYJJ1S+V4jMg2eXCaJvoW8wo5LSCmh7mt6tnmkpJFLyx25i97/6iOBspAlJBZe8bFI4p5SSXva88vqLLJsFjz72BEVZMLgXS5X2gIETJaVAa8WDDz7CW996k8989rdW+/zX63hTFDcxeDQieaSEJOuTOmeNeE90AT3bTdWgKpBCEX0PQoEGqQS6LFFSEfuGEE1CfwpNaFqkUYiQJKC+s8Q7UGxusP7wQ0TbI7ON+opiKFUmHYLt+hR4l8cHwYXMq5BEBC4EgkiyT1FGCA3OpcRZWZRIU6NKj+y6TByUSFWCSEiLiGkEttg1PP7UKfYvdzTLgJQLkCOc17RtT9cHmq5nXbXE3/pFJu/7K3z4u09jxhVdF/nY7i7RK4TwgGe5WPC53/gi9186w9FRw+5dy3Le8l3/3lt46YU9bt86QkSBLCx0EiljKtdzp+N7h1eOpltg+zYrNhKfMdV+ChEFdTlltLmZIOUQVtJT13f0x8eIiaEY1dC3DOnqwedguKxwQChQFRHoOknTWKzrGdUjyqIk8SQsabhjQER6vcG1Q8kX966xGDcc373JfU88xPjMGgefeYZaSHp/olUoy5Jl8+YIdvtaH+mQUR6BwFo4Oujw9ihflHxhctL8b37uNzg+OuJH/tKPsrlzCgBlykwwjak7FpKy1KwLw1//q3+DT/z6J/jc57+04gR9Qx4xObOuFEkhMkQexEAa9XVLgk+kyFQYeERueIQAqXV6vUu+NzFvgsmgRGZ7mrBCIVRdUW1tJlRBiRPuXiR5PmV+RPBp9JLfaJLV5u43Zt7eMLJK1zCPDPoOoXSW5gaEc6tCa7DJDwNrPUC/VOycHtEcOpwFIXoQhhAkzqaQYOscpXJw4yWK+97GpQfHqELhvOC1xZLESUxVSN/13Lhyi/WNCV1nWS4Ctnc8+PBpDvaWzOfp2RcqgEtcGkI8qZFy0KX1ffY7gyFZIU1/UyFa6AKTw43vHeEG5/FdB4VEGZ3EIMPAOI+ET4gjAiE1kcRScNbjS09hTOJCQhqpAMmKJOJlxXEruLWc0ReOdnHM2vYmxaSivX4bIyTze40ztXqD9PlP6jGgziGQ4iXCgEjDYJ0QI1y9cZWubXnq6bdmTh9ZDTg0poBI4guE5B1veyeXr1zm5s07X9f3/6YobnzfE5cNmKTQSY+wJAafTOJsS9HOkknWuMpigeT6iRDEKHFdTxAyqU6UoFvOmcotgo/oUZ3mtUVF6C2ua4kHBwi1jZ6M0kXyPrmMZig0hAQtu67NDO80Usm7MjF4OtfR+SbByTEmRMeURNfjF5bQWGTRoUvNdH0bXY/SQiYSvCulZVxqTChoDy3Ht1seeErxpTs3+PYPX2Jza4cvfeEai3mkKAIPPLSFnc8J0qBrOH9/xUNPPk1VT7DNr3C4azhzdsLWzoj7Lp2nme+zdXaT2d4MVY/5uX/5i3ziUz/F0Z0HEHGDICzluqW4rPB+QW1yUKbtwZT4GFi0C7re5W4qkUwUKTunLkaMR2tMNk6n6+UG7yGBbRb4xlLubCbS42KezBdjDhMUMs+wE9cg6oqQc1cWrWfRLhjVI7SpUBKsNVjvUNpwLHb46NUJ3Y0vc/vwkGWx5LFvezfjrSm//cnP4A8aukJyb5LSfLn8hti0B7AhkmrR+bzH+31Sro1OxMPgqWvLF778efqftPzYj/8Vtk6lAscUNbZr0tjQB5RRGBN56MGH+A//5t/ihRf+U+bz5ddcgL3Zj+B9cg9WSaETIwg5FApJvKBcl8m7Oo9HxD1FR2q4BuaUkCKZo43rxDHQOm3cWkPvkwq0aREiW1HAysNmIDokQmziOQz3aIiwIt4QEu8t2gEwSQhydh0O1hNsj1DJBqIsR0hjWOGEUSCFx2iJjArXKrq5Y+OU5PbiiPsvbVBXI27fOsb2EaVgfbMm9GlNFRrWNjQbOxcxRUFwr9PMBZNpST0yrG1Mcf2SelLTNT1SF7z4/Mtcuf4s3WIdEWsiAV155KEkhh49BPD65K4ciViXQiiBNMIWiWothUArgzElRTUBZJbmizTid5bgAnpUIZQi2D6vNQmtGVS3IRc3MRc3IQp6l36uMQYlTVIkBZVsK6SiY8SrxwV+tsu8abG6Z/vieYpRya2r1wmtxSnxBoVlb79x1If3rjd974mzJhWqef2uqogxnlt3b+G/FHjLW95GPU7RDVIZgs9y9czjkBI2Njd59zvfxUd2P/Z1PVd/4OJGJJr+bwHXY4zfL4TYAn4auAS8DvylGONBfu1/Cvwtksz/78YYf+n3+96uXTK/eZ21okJku2chVcqacg66OWG+T+w7YhgRY5JoBt8n++6kvU0Lki7ABoIDKQwuxuQY6gS6rgjWge3BB3xnQbXJWVcJMCmrJXqbRjBdyohK8JlHxPSepEzJsj5YXNcls6TBEEUqiqJEVAa77PDHc4q6Zro1oqqneCLeNghZoOSCDRUpZOQt736YnQcVt7uXeegd93P18ohTpyb82F//EFFIvvT5L3Lt6hHbo4dR3/ejbJw+gywCy1lDqSs+8B1vY/PUDqYwlOOKelLTLi5wvH/MdH2KMHDqguQn/9X/j3Onvpczmx+gmqaMqLVYsGzusrVW5PUwIqRk0c5ZLmeEPiICeC+QZUAbQ1lUjCfrTMoR5XSDQMTZBikUIkb65ZJoHfXaJM3a+5aIWGWHhZAKJh9SCVKMkxN0DIK2DfR9R7OcoacFRpZYeiKCRRjzyzenvP7ypznn5nRC8vgH3s3kvnP81ic+xe7Vu4QYmfX+DTPpb4TCZjiSi4dA5UWnaRy3b+7irKXrtgk+MF1zjEc1X/zK54n/Q+Av/5W/xubWFkJItClTUU7qmqUEoxU/8Oe/n5/9+Z/l537uo3zt+NL/uuPruc4ABGex81kygsu8mxPFTQDfE/sGnF8pblKF4xl4VCtyuJDJoTgMnI6shJIJ3Yn+pIiJPqS1J4+ZUpBQyE7rqbkiDF47iY8SM0M9DBEE3mfJc/YJkZnPoBTBOkLfoYOhqCu0KfLz5ZLnjrDUElSMnD63yWhTsvD7bJ7d4PjQMLlQ8NZ3XgIEt2/cYtl0jIpN5KNvoRpNkCpi+xSYefH+09TjEUqp5L9UGmy/Rte0FFWJUDCZSr703FeYjB5iUj+AysTUMhp6t6QaZwtnAUJKemexfb8iEw9Fp5QSpTRFUVFogy6qdP8Hv0IPvLVEH9BlkYrF5H3AKkojpLyuwXZBFcXqZzifCM2u75GlQspkehmjwAbDq4uSg71rTGOPQ7B98Tzl2oQbV66zPFoQI3R/0sdP/5ZjQHAArA3M58tkOVCnYjyEEmMit+/eJH4p8ra3vp2qrkGknDIXcgETkiEpUvDYY4/x4ksv8uJLr37d3ve/C3Lz94AvA2v57/8A+FiM8R8KIf5B/vvfF0I8BfwY8DRwHvioEOKxOAQP/S6HWzbsv/IViumUaucMFAXRB3ywdF2DWCzojw+pos9mIMNIQzA4M4qokVIlmaBz1JNRfjhSoGGUnhgMxdqI4AwheXnilh2ITDDUGqklwlQI6ZBBpjDErsljqSQrlEqhiLhgkzdF3+CtwwWPdw5rysTcNxFnA+3xDKUUwowQSlFKDSKg1ZKJnDM124ymFXQFt76i2Xqg44COj/zCFV78yi7f8V2X+ND3fgcQ+ewnPkXTL/ned36Q4DzTzTXqyYjNszsUdUmzaLG9oz+YsziacfriaZ7/0jN89Bd/gY/9wkfZ2Xofm2tvx6zNmJw7Yv/5MRM8rd2lrIp0TrzH2Z5ZM6dd9EQviC5JTLWEUVUwWdtkUq8lLst4krLBfHJTJUS62SGSJCmMAmK3IOTXeBdS4J5P5lIhBIwpcnaVYNlIlo1lpFvGVUcxmtL5AtsveXZxhmde/hJPyGOuecljH3w3W4/ez+c+/imufeU1TCQ5gw7chW/QIw7KDCFQUtC2jt07h/mc+uQM7dep6oLPP/c51E9pfvRHf5SNrW0EEq0NwTtiFIiY+Ejb2zv8jb/21/nkb3yag4PjP65f7eu2zgAEa1ke7CLLAj2akJyk08brnQVr8V2LzqjKoNZM3WveEXNC9ZDXlAwUSSMPpVIIrVYoTCLh5nI0umFUxMoHRyiZjPuQCCVzUC0rBVfy5CIR+ZPJTlobYyTagFc+EV5VGjV2XYeQAlRqEnUev0lhKegpdY0pDTjJfE8yWvc0eF556Zi93SUPPLjJpUcuAZHrV65hfc8j5+4nhkhRlZjSUE9GKK2w1hF8oG06bNczWhuzd/cOr778Mq+++Aqj+gJ1dQ5Z9JRrLcu7hpKI8wu0VpB5Md47OpeJx4GEEMekijdaUZQ1hSlRQiKMWRWiIiPgrm8RBLTKm8PAuYk5lHNVICaEXUmVp1RJIm+tx0hHoR3KlHjpsd5y1064tXeHU7Lj2Aq2L56j3l7n1uXrHO8eIGMa98k/xJv/zXoM3G0hksqsmTd5D454H6iqgDaKW3dvIJ+VPP2Wt1DXyXZCygFpiwlhFoJRPeIdb38HV65eSzYBX4fjD1TcCCHuA/488J8B/3H+9A8BH84f/3Pg14C/nz//UzHGDnhNCPEy8B7gN3+v7x+c5cYXPo1eW+N0WVJsbCOUwVuPtS2iW+C7JaKqkSK/5cG6WUjkYGYUA1IJ+rbHmCK/ZnBDTPktoiwRUiNysFh0XSqItEZrzVA9RUCPKialphgV2LanW2Y+TR5DyexwKoREaYnwgRgU0QUanzx3iBHnPXd3Dzl2gnP3XUgPkLNI1TLWu/9/8v4s2LLsvO/EfmvY0xnumGNlZdYEFArERIIQJYqjSKkVbXXTstXdtrqlkMOK6OgIdzjCLw7bIQ8vjvBjv7oj2k+tDrdaTZGiQgNFkRRlcRBngAAKqCmrKue805n2tCY/fOucTHAAAVSCLKJXRVZm3nvz3nP2Xnutb/2//8Chu8b5yYYrz+3xyvOv8qu/9jtc/fgFH/m+A+68vub224/YP5rwyidf5a/+R/8h99+9x9HVy/SbjhAj7bplebagrCo54flIsomTs0f84i/+LP/kJ/8JD+8rDvd/mCsvHTM/HojlGcv3LzP3NZN0n55zqrIhRo8fB7wtWCzOGPuQ4wHAWKhrw7SaMakn1FUFKChL6XsHL46gIdGeXTBtGoqikg1i6MnB18TkISRiSDmbymONyR1BxegUY59Ic8WknlLVDd3YceYn/Nu373LdPOJxl3j+s5/k6qc/xjuvf5n3vvQWNokXhJN9CQv82e98/9EjIf4XIHDvOAYuzlaQFDEmXBg4PDwkNvCrv/1v8X7kP/tP/zYHB4cYbQjB5X00RwYozY/80I/wYz/6w/zkP/onf+LF4bd7nQE5FK3v38FUFVNjsz+TtJ1C9OBHjHcSvfLkJCWv76n/bwmu0Qe0MflrtlcsFyLG7gjJMcSsMNKQtBQgKGl5Ie2sciqckeA9wXnh0+yeiq3loLSOTYwEpcRlNj6Z5SEm2rbHBCWIrTbi7Ks8hW6p44xuM4oD7/yYO3cfMLvUc3SjZvF45Px8TdVYjq4c85Hv+hiriyXNbIofZa640TF0A8aYXTstGUXXb7j97tt89UtfYb2CurrF/sGEauLB9PSLCWW0FKzx9JjcFgwhYIxh6Duiz4atyGWzhaa0pSA2xsj12rbiorgjq5RwXU9pLdqYTDHwu1uRUkbGIjvBg9bbTHDwQSTuqQJrS6y1+ODoYsF75yvmas3Gw/zaFWbXLnFxesLF47NdXEJAbrtkbX9nj5ieGI36kOi7cVf0x+RpUkMq4M6D94kx8OlPf4aqqtFKE5Aw5e1+CYoXXniBl158gS+//sa35fV+o8jNfwX8H4H5Ux+7mlK6D5BSuq+UupI/fgP41ae+7k7+2B89Ipy9/lWKg32mB5com2kOlWwJ0VFa2USVymnhcWvTHSBX4UondCneL9oYyulEYDFbbHWUZOcjWS6CQiWDqczOMVRbnVUJW1KxGGwVkwlFXVE1Ja4fGPqBsc+mUdqgjSX5bZpzIAUlCAUekmYE2nXCdRuOr3kKBnTcQq73uDa+wtvn8kBeuTJjwjXe+dUHlJcfcPx8ZH7tEkfXL1E3Nd6JUdyjuw+ydDQx2ZuAhodnD7n95lf5/O/8Lr/7O78DRWS+f40bL3+WV797RlUb+vGCe7fPad+/AquCV6pIe/Y207pnMjlEKYWLjs2wZLPeED1Er1AWyiYxn82Z7R8xmUwxxuLcQLRWVGnBEQCTYPHwIceHc0lQ1zaTJUNe0EZUqgQO9o4QAlZHjJIoBOcVIQgx05gSpTVRad7v9hjWb7IfA+n5W7zwuU9z+uAeb/76Fxh78Thqo2RFNUkxKFh+B7Wj/qgR47ZVAl0XiHEl1zVKvzsdQGwafu13fo2yqPhP/+bfopnUWFPg3ICy4syttGFvb5+//bf+M/7VL/xrLi5Wf9Jv5b/i27nOACToTk7RTU1RTaiLMnu4uLzx2dzsEBLv16rftgWG5PoI+pLRXaWyCift1DlkP5itJFZbtYtl2LoXy2KfTeZAlFVWlKPRe7z3hJBtGbdIDsL9MzqToFMSJDoJ98ONENxIM0togqiItELpFTN/yPkgB77ptKRIM87vrDHTNZP9RDWb0MymGFvkDCXFZrneHd1tVYCCTb/h4uyMRw8e8ODBA5KKlPWU2cF1jq6WWKvxsWd90TEupzBo5jbhu3MK6ykLIQbHFHB+kJZULkKUBlOICrCsGoqilA0y+q8J3d36Tg7rNZOm2rnOp12OUm5J6W2+ViTGhFZpl/EUkxhsKsgKM7nvS9/gxzPqlEh7exzcuEq3WXF29yHBS9aVy+osCxTA8MdOvj/7I6anWlQ+kroxX1c5Adc0JFtw98FdjLF86lOfpigkjiQGn6+xtHSrsuYzn/4079x+99uC3vyxxY1S6j8AHqWUflMp9aPfwPdUf8jH/sAOo5T6z4H/HGBfa8Y28uh3v8Te1eep9/apjq7gxw5rKqrJAVZXWGsxuWfHluAXhREvE1tIaFuzuBRj9q4RZUMc3U7tJOZ+gjurQrJalDIkIsFll8ssZZN+ukjQi9pibEVhu1zkFHgliqvkwMTIGDwxOowWgrNSkag0y84ykCjUQKUlcLOpT7jkLrj9eJ92fZW2jewdTFhtDnCPJ9x9vOTfPv4KoR34+Cc+xd7RAdduPUe72dBuWsZ+5Jd/+Rf4Z//8H/PowQX9qqbQLzCZfi+2iXijuXCOrnWsl0suzfb59/78j/Abv3SHR4sHHPuOs8UX+chNQ2kVMQQ2yyWenqH3eC/XqCoSk0nFfP+Q+XQfW1ZIKGQk2ZLoPcF7Cl1BCmzu3+fF4wNZbFIi9gNhFHvuGGJ2iZUFSpyMA4WGIQhcTFIUZUnK5MExFryz1Byx4NTO+N4f/CybYc0bv/47nDxeiXJ0C50ip6jN/wQKm+3mmSJYIwTXcQxcnHdPyPEpcsglYun5hV/5lxwdHPIf/MRPYI1FofHeUZVm9xz9wPf/IH/++z7Hv/jZX/gTex/frnUmf+/dWlOh8A42Dx5TTfewdYWpZ5LarQy2qNFKAi+34ArpiUeRtKef/Pht1IhIurUgMSHzd7IiSJkss1KAzgXONlomJkghH9iyvV8S7bcuSgpj0d4RfMAHQ1JBUJ884WNuv+h8aNuaBA7OEFQiEDAIz6coWiZx4GLTM45TvIeqKRhcTdwULDcDYXNKdIHLV65S1RXz/RnOOZzzBBd4/85t3nzjK6w3PX4waLVPUVxD20TUmiEGgg+Mw0BTVLx84wXuvbtk06+ZREfXP+JoT2TnxMQ4DiQ83osDOoDRiaKwVHVNWVbS/kvZIkTbLPGOYoKYEuN6zUFWUSUQvlTmQG7docnFjhg4SnHjyYVnyoVNrkZD0pz3mgkDrSq5fus6Loyc3X1AuxGDwKC2tCcpnL7z42afjLTDCcQpve+FUyPcNWhqSCbyzvtv0dQ1r37sY2gtaE3c+gZl5PPmzVvcuHGDt95655m/zm8EufkB4CeUUv8zoAb2lFL/LfBQKXU9n6auA1td1x3g5lP//nng3u//piml/xr4rwFuWJtCsoznG04+/5vMj69yoEBZsfIusu25VjFb+EeUFSMmrRXGFmgjnBuVT1xqe7IySg5cCpRRGGPyBJeVS1sLhZH+69gTR09wA9GLQkptF7gd8ChhdEVTYyvL+fkZQ99S2JKkISlF23pGpyirSFlqytpghsTFSrNcey5d2aMqaoiBslasui/ycrjG3TdXfO7HbvHRTxzzz37yDe4/uMAGQ7eYcnYi/d3Z4ZRf/NmfZTaZceulV9g7OOA3/91v8dYXHUfz72c6u5xFGBrrKlhNGC4cY4Ky8PzFH/sEr7x2jffeWFM8eIBbfJW6OOHKlStYY1m3S1zsaVuHHxUxKsoi0TSK/dkBB7NjSRtW4grajy1UNePQS/ipdoRxQA9r5sdT2V9jJIwjVT7xxm3xmWXhIXisjVRFovXCJVEG8e/QcrrtQ4nfdCzGxEd/7HvRTcnt3/5d7r3ziDbJySkBcyMP2Ri+szk3v3+kJEZ/KS8a3kfWq57EOSEGtDLM9+ZUVcVP/+xPcXx8ib/wA9+P0RbvR3ywaK1Q1rI33+d//hM/wb/+pV+m7//EzqPflnUGvnatmWudEprQO9qH96iaKdWRrBGFtRi2XJu0I6SidbZJ2HJkFDuIF+TzbNeZlPkyiNP5LlIGUEaiYZKSvLaQnsQKQF5nno55lP8Za9FG03dtPgjo3NFSOBdFYW4jxogvlvLQBxiGyGRWYbRFJQklHsdHHKYpq7OR517a5/hywxtfPmW9HohJ4YeCvpX5VDYlt99+m8IU7B8eUdU19+/e5/SRp6meZ1JOhLNFDtEdC0IfCSSMitx84QpHV2Yszhx6vSYOp1jdMptOMUoxBkeMHuel9Z3StrBRVGVNXTaSeq1kDfHBQUa0UkxEFVHBo/xA2RTbe70jcYvcP/Mz860UdC5hddolcCst/KmtNt1HS3SOPiSOXryOtpbzhw9Ynm9w2UqABKUWOf//FBCb3z/kQJV2UvFx8EAn8m+lqMoSYy2vv/U6k8mE528+Lx5vW9AhI51VWfHax17l3Xff2wVrPqvxx3KhUkr/55TS8ymlFxEC38+nlP4W8I+Bv5O/7O8AP53//I+B/7VSqlJKvQR8FPh3X/9nqKz+SAx3HvLoC7/J2btvEocBo7Ukcme/BsnxkQmrksKYElPV2LrCTiaoMi/SWqTipihQFkxVYJtKIN+ylFZUURBSZNz0tKfnbE7OWJ+dsD6T39uLczYXF3SLFf1qSd92jEMvp5igSKZk08LJo56+63CjZxgd65WhXdlMjE3E3GY5HRzvPBZDqzAMkprtAvvzM6bjW4S37nD33QvaleMHfvwlJk0JSdFvLL/xSx0/9fd/m3tv32N5fs6n/tz3Mjk44F/9i1/izluXeO7SX0FzIMjIqFC+JHlwQ4/regoT+PG/+hqvfeZF3nt7zf2v3uUF1izOf5cb10rm8ylJa1arDf0QcX0iRkVRJJoG5vMpBwf7TCZTdFkSY8S5QDcO6Nmcse8I3hO9o1tdMMVhc/J68IGx7QT6356Ogpe8quDw3mF1oqwSVql8yhQliLUSANjrKa57wNFHX+bSi89zevc+733pHRYuoJJ4O06tpO0mEivSd1QP/InV+h8+dG6hbKF9rTWjiywvetaLlovFOW3b4p1n1a74//7D/46337iNDx6lNEMvEk/p3mp+5Ad/kBdeeP5P5s3xJ7PO7H4WoFIiLDdsHt2nW5xlU9BctOivvdhbrxSlJc1bWyvrR0ZkJFos5ZaTHKy2Kd/aWEEYtPjh+NHjuo6x7XFdy9h1jF2L63tcP+CHAT+OBCdctG0gJNowekW7Ea6gPDuBcVS4UeO8wvl8/xN0IXLeDrJWZsVnComq6ijCOel8yWrRMw6Bmy8fUlgDSeFHzb13Ha9/4T6r8xV923H1+ecom5p33nqPxWnD3vQjKGqZbwGIJkeyCHprVOKlj1zi8vUDlueO9emSA0aG7gF7M0NZFSStGYYRHxIS9aUwJkkEQlnQ1JW0o4zdHYJc8KiyFMf0HLLpxoEixVwESUvqCV9Jbva2RbV1QNYqYaxIzBVKgimVzuiCxquC4NfUR4dMD/dp1ysWjy4Ycvt3m+pt88H325En9WEe2+J7+6aVkpDgvveMg6Pv+x3ZfHQjX/jS5zk/u8j5dQr/lAeQUpoXbr3A/v7eH/KTPtj4ID43/y/gHyil/i7wHvAfA6SUvqiU+gfAlxDk73/3xykYUn4hhVLQB06/+Hv4ynK1LNm7cUscLW0pRLAQ5ESE9P/8MEp1XpWYNKBiiZ1M6dtztFbE6NAUYp5FRJkcPzIMjG3PsFnRrdb06xVjJgynbKYlQY2SIK4LRTURJ92iLKnrGUVZS1W/qqgrR1lG+s6RokXpxNiJrbs1kRQtQwo8PmkZ3YCtGoFPo6e0hsp+nlvDMa//4lf5vv/o09x65ZhPfvoqX/jd+7TtgPewWSsGP/DyRz7K6dkpP/X3/yVf/PWeOB7knrXaPWQxepLXKJ0oS8MP/9irfPQTN3j7yw/5Nz/zJZ5vL3h851eZ1g+4evkSRinafs3FxZpx9ISgMSbRTBPzyZSDvWNmzQxT6F2fvxtbOjeiqwa3WFAUFSnBeHHO8TRHafiI63r60rIXEqowO1l2DBGfDRILLWF/VimsVhgds9RT44Nn0UmW1Svf80nWiyXvv/4Wjy86PDDVUtikpBgCbEKi/Q5rSX1DbyeJORxAiDEnk0dWiw3aSAiqUoaqKrh3epf/7r//b/kv/8v/Pfv7+4QYiClhQkRZw/PP3eQHvv/P88Ybb3/bnUT/mPHM1hkZQs01KPCJ9vEjotVMjaGa24x8bf1tnnrfCZIPws+w5Iw4Ca70TlyDpQiSAiclYV/ucti8J4zCLdkWL3GbKZVk09wGbiojCk9ttMitbYkxFq003WCwNmCMwrtIioJsBCdQv1aiSPEp0rYeHzyFLVAZvTBaYfVD9n3DyW3Nje+6ysFhw+WrUx49TLIpRRgHRUiBw6Mj+q7ny194i0d3HSnU4kUT2ZFyt6RdUe7BrRePOL6yx/nJhne/+pi562mXdynsmul0glIK70f6fsxqSSkwbAFlUVJXE4rtep/7ri54fAgoWxD7IZO4IfQdkzIjZykRnccbTZW2HKm0Qxm2Enqt5Jdh+2e1mxsxRQYPEc/R9ecZhoHl43M2vSMkKJWsVQkB88aU+M5xtfnGxtOrQcrFo9q253qXW1ZS+BtjWLVrvvB7n+f7vu8vUNXVrk0oDGXF3nyPWzef5/T0/Jm+zm+quEkp/SKiViCldAr8+B/xdf9PRPHwDQ+jIzbDfP1Zy+Pf/TzF/JCimVDUJdaUKOVZrJZUdUmZNISAropsnCXMfUpLKgtcCKQxkjYtRa64Y4iEYWDcrFkvNmwuTukXa8a136mCxEQ4Eb2osJSJoAPGatpqAypRNIZm1lBMGqoanrs1Z3FyzqEROeL+QcRqwzBEBp8IIWE1dDFhvcOPA7GaopKHKFLOw8M148Pf5KXV9/Mb//R13F/+GJ/7wVtYW/Bbv/YOq3agKhNf+s3fptnf5+//f36RxaNDxq4kRJedZy1FNqhS2mCsYn9e8u/9tY9z46UrbFYj/+affp6r6zX+5Lfpxs/z2stz9vZmON+xaTt6N+C9xhSJplbsTWv29w/Zmx9Q1U0+CUW8d/T9RnrNWuPHAY3B6xE2F8ynjSyyg2MYRgY17nQfIJku22A1oyxWK8oqUZmAtYmytJS2QqHZ9C23333A5Y+9QrKK03ff58479+ljolQwMaBzQKBLCenif+cMa4yEIubNVpERTLacD/mgUsIT2fp5WKNwMdEPAX3eUZcNq2KFNftgI7/95d/g5/7Fz/IT/4u/jjaGYehomgkqJeq64a/8+F/mH/wPP8V68+3PgXl6fDvXGWBHKCUlQufYPHiILhtp/1ibXX0DwzhgrMEkBSlmsYLaPQPKaJIxIssOgTQ+ydNJKUoEwzgyDo6xb/HDSBiiqBkTmVsjCKkGyBEqWiuUGaUlVWhsYTGFxVjF/KBk2PQ0lbyHuolopfE+SbxCZMcnUdmUMJH9q1JEKUPTjIT1fQ5Gy703TogvX+LGC/toY7j//jmjDxgTeHTvPkVd84XfuU2/aYhOWspbGbbeqS+kOKlKwyuvXmbvYIobA+++8YDp4EjtA1x4wPFhSVWVxOgZncNHL+/dJKxRVEVBXddUVY0tirxeCE/G+1GUSUplfpQiqgBjT1laQInpagh4ntS4UhttW9SZAK4U1koLTGuknZeJ5M6NnF+smR4fkbSiO1+wuFjhk5yPi22HEXCIWuo7CSHW2Qn7jxvbNWh7bbXKCk0fIYcuD2agqWtQivuP7/HWm2/y2sdfA6Xx3lMUBaCw1vLKyy/ze1/88jONf/lQOBSDwgBGGRRivjY+Fv6NmTQc3HyBMpta/dZvfpH1RcdHX7vE9cuXqYcJar1BFQbTVPQP7rPZDKTWcXTpCHd2SjHIQtGuF/TrJevzNeNqZOwiPkYwYKeGsjD5pJSTwKP4sKiQCEOEkAgu0g8et9lgihZqzf68pqpmrE+XNIVmPrHUTcU4BB6fbkhJ00ZFTHCtCTCMhJlCp5T9XRJ1odjfewd/WvDcg8/x2/884n/sZb7rs5e48tycf/HTv8f+Yc/v/ubvcf74kG55RAyZjGsLyKTBFECrwKXjOZ/47ue49fIlji7VvPPmCb/ys1/m6nJJs/kSF92v8NnXZrz68vNYq7nYnHJ6eoH30pMuy8R0UjKbztmfHVKXjcCPKRG8ox96nBsIVNlxOZFUJLgB3a6w2pBCZOx72r7FG0vwElaqCmlVhSgo2TD2aKC2mtJKkF1hizz5Iw9OTrkYE3uv3GB5fs77X73NopPz0twqNAlPwmWH4w9HyMKzG0YLT0P2TZUXkieSViG9bxGbtGtRuZB2nLFN71AnZ0TtKaxmOpmCDvzMv/hHfPTVV/muT36CkLO/TIbxP/vZP8e161d4883bf4rv/tkP4fVqUEJoj63wb1RhqfcPBNVJiXt3HzMOjuNLE2aTKdZY/OhyXpTBr9fizTJ6msmE0HXEbP3vxh7vRsZuIIyB4LYOuaBLUTopLR4gUp/mw1mOgCBlq4QgfDVlHMoq6tJiTcnYDRRaUViDtQbvE20ntFaf5P7PbRJ0uABImTQLVivq6oLYaebrG9x/MxFfOuTK9Qmzecmbrz+ibjwP7z+i39S4oSFFMUnV2hCV2tJTUESapubKtRn7h1MmE8vFecv7b50w7UcK95jOvc/1SyXHh3torejHjq4dEI9CcUQuCk1ZllSlqPi26j9xqffSUkIib7by+BgDyo2YLDrwPuC8I+aQS0n8lk13a8gYMtHYaIXR8nxoLZwmSKy7jt4nqqM9hr5jeXrB4OSeVlngFpMUNSF951lNiKll2oGW22JnB249RQaLTyE2W3RXKTH6a9uWpCJGK7FlAb761uscHx9z+eoVYkyCLiMgzvXrzzGbTzk/Wzyz9/IhKW6QvJedsM6TouHsnVNc/esko2miPADTZsbDtxa8+9UHmLrkcE+jvGS2jKcXXNw7ob244MbNa6xOIaw3mH7DMI6052uGjSOFRDGpODguaeZT6nqKKQpZcLK3hDIFfuwBQRv82DG0A+1izdg53OAZVxE6j+pHzLxk73jG+qIjtKPIlz2s24KL3vB6m5gYuLJvCX1P6DtMabO6K2EU7E0LYvgKepkwp9/D7/7jFfc+c5NyMmM2s7z0wkepzVX0cMaFWzO6RDQaHwJ7+zVNXTLbbxhd4q/9jc+gC0u7Gvjln3+fO19+i1dJVO5NHp38HJ/8aMPzNy6jIwxdz2rR0bUdVoMpE1VlmE3nzGZzmqZGWSNJvkH66s6PDM4TTM12B40+ElVCdS0k6DZrHjy8x8npY/ZvviykQO+pSotzPkcwCApklcYWWzk9VGWBsQXOjbz3cEnz2qcYvOPk/j3u3jvDI+RhKX8EDRpTLm6+g1pSCnA+oJTCGHlKEglrn7T3tFbEXMio/PeUEj4kjFFbPj19F+g3A6tyTVFUFJXlfHPGT/30P+TWCy8wmTb0/UBTSzv22uWrfPZ7vvsPLW7UbpP5szeeNCFEJJCiojtvifYuKEWR5BqWRcnmvOfiZI2+aqirWrJyFIQuMaxaxr5nb2/G0LUkNwqHLARcN+JHIbbqwlI3BlsWWJvtKoSoIy9Ea3Fiz2SGsH3G+pHgYkacE7iI8gFdGqqmZOyFswfSkh2dpveaEyfctWktaEbyDmWzI3BOyi5LTUynqB50e40HXxmYXt3HlCVlqTncP8KqKQvXocJIyAbNMSXq0lIUhrKyhAgf/a6raGNwvef920sWj884IlHEM9bt21w5suzvTVFJDmPj4HDOoZ9CTsqypCyrLBveuglnc8UYBOnNViAS2isoF14QYT+ObDYr2ral2juQ4jAnscesrN2GaWqkfQZiFG2NzrmGgcV6wF6+QoiBdrViueqIKMrcxop5AoUIge+8llSIoibWT1kV6MxzBXaB0pC2zirCmY2COIJMY++EXzYYh9Y5tHjs+PJXvsT+wQFFURC8R1m539PJjOeuXf/OK24UiUIrjFKEBAmNS4ZuUPSv32ey9zoHV+ZQKV5+8Qb375ywXEYe3l9z+v6Gu2vhGriN47DwfOIjx9iqIviB89MFtfb4MaGxHF+/zOxwn3o2w5SFKKySkO2I0jIahx5SkjaZNihlKAvLdLbP3tERw9DRXaxpFxtc72QB2jjMTLN/PGN1tuHRg56YNKebPd7oAu+7Da82JXVVEIKnSJ6krGTIaI1JClVZDvcNSn2F4fEJn4g/ylu/NvDAzLj80jFHVw64cv2I7/uhj7A469E6MY6BX/83t/nxn/gYJw9bnIv803/we3zxt++yOHEsT8+Z947vxbF4+GucL3+FT3yk5PlrhxQKRj+w7jecnz+mznbaxij2pjPmsyz7NlaUHUjh50LEOy/IUebFaGV2snw9dLTrC959+x1uv/mIZqK4dENkst6LtXnwDnSBHz1jP6CDcESUSpRGU2jh7CzXS9b1PvryMe35Y+6++T69D5QKpkqx8InCKEqlcCnRfge1pJSSZ0JphdUmnzKlmIW83uSd2hZWTqU7LqzCWll0JMokEBOslx3WFkyamTiHEvntL/0Wv/rLv8yP/vhfAiKoEq0KbFHyF//C9/OT/+hn/oCS4c9qYQNgVC5rkhxcIhoXwJ+ssdUJ9bQCC4cHc9bLlmFIrNcj7dKxGqW4iWOk1pHLRw3aiidW1w5YFaXQxDCZTymbCluUorLSOVQzy5NTEMduQia3yg2WAMeqpmqk8Pf9iBuk0EkhkcaIrhT1pGToRjZriRfoxpJTn1jGkSMrZPyYAhrhAgm1R4oDazRNpVCc4jctV3iRs7uBtS6ZHDQ004bpvOHGC0cMnRd1ZEjcffecl1+7RLsWztBXf+8Rj++v6LvI2HaUPvAckWF9h264w5Ujzd68wSCZZ6Mf6foN1orpodKKqhDEpioqCUXOsngQD6eY+ULisaJgG3WREsp7/NhzcXHBxekGW8BkLoetEKMcfkLISh3J79LZn0YpQXDEwFIxjAOjqdCTCV3fsjpbygFBCdemT1LgbIscz3dWS0oORxlNzEVNFgnubAZI8vmYtq3V3KLK+WBPH3rG0aO1GOqqXCg9eHyfO++/z4svv/SEo4ZBa7j5/E2+/PpXnhnH70NR3KBkwZFkXomOd0kzpoTtNcuvvM2yfBHXVFw62uczn3mRt778iLPbLecbeLMV74JPP2f41GvXKCP0pyuij9TlhMPjKbZuqKcT7KQWBn6MufyWLRuipC5bS+oT3g1ok1BjyrI1hTIWoy3TZsK0meGOB7rlkvXpmnXf4k4HzMwz26vZpILb71te7xy33YoCg1VS7XsiYWyxRSNIRwyAQSXxKtmflSj1gLsP/wE31We5Vr7K3a9s+P9drDl+4RLNzHB0dcZ0ryImxUc/fomiMbz1xYesN47kHV/51dtcbSyv6YGyv8377/08e81jPv2xA65eOsAakVZ2zrFarpk0NUZ7Ru+oreVg/5jZZI+ybICUpZjSze7HDc6PpDBiipRlyFL4BD8Szk64+6W3ePONUwoFN29OmUwmJBLj4AhTaX9EDd6LIzIhirEiiaJC4gFS4OHFCnfzYwxh5OLhAx6drAgJ5kaxiIp1MaeOPSSHUTB8h6A2SkmsgrUGY4TfYI0oOqwX2Wpi61AsLtjGWFIIaKMyUVOs0bUGY4UI7hxsNj3l4hylE0Vh8Dh+5p/9NN/92e/h8PhATstKCN2f++z3src35+zs4k/5ijy7IdLsJ8Z5ISkCCe0Vw8k5gzkgWsOkqbl69YDzkzXdhaMb4dzL9b4y11y5PMMm8N1ICjlMtinRtsCWRVZM5dTvmHYSE+EpJAmMDCkreNiZ0qmtbFxrSltQzkvCxOOHgbEdGb0ntB5VRsrK4lLkYmk48ZHzOJKzzHOKOKTg0KZgGx+xbWFqJTwZWLPafJF9dZ2ZPmZ56nivd0wOJthS0cxKysqQAhxfnmCs5vzxhtEFiIGTOxfMrOZYB6y/YLF4h8puuHpcM5vWKCV+PD5KgnhhCxSJmAJGaeo6xysYu0OvUoxERc7wk5+j8nsQYrAQnmPXsjo55+y0RZPY2y+Fr5ORG/EBEkVljEHahrlYUmQhW96Y1/1I2D/Cp8CwWbNpByLiSzAkGHSFTY4iY8XfKYcoEKRGabUrsrXWudCR9TSRzUK13ButNJGY9+wcMBKTiA0zETwEcC4w9B1K1Rit8QS+8sbrXLt+nWZS7+6nAp67fp2yKum7ZyOu/1AUN9IDR6DElAhYXH4wC5XwZz2n777PcHiT2XzKiy88z41LxywuVrz33n30mys8ie+6VbNfNxSFpTg+wlYWlRTordeERoVsmJWAmPvgKcPHxhJNwlY1Ka0hRoHpyIuQd6i0rV4jxlbMjw9p9veYrTa0q5Z+GEhB8fJHn+Pd9QlvLS9IKVIqg0Xj/UiqG4Z2xWR+Ga8MPo4YJQiWBsrCcrS3R10OPDj5Fc4ufo+r+jX2J9/N4vMb7rU9X/GOQESVlmpief3nDcOqZWYafuCwYN84+sUbPLj/a+hwm488V/D8jWvM6hKNJ4bAEAJt21NVBSFGhmGFVrA/32c+3acqCxRRetkh4AK4MOK8yLcBSgtKGYIbScrQLy/4/K+9zv03VxxMDK9+7DJXr1yi3jtGKU3fr0lxjvdCpHbjiB966CVdXSdFVUifdug7TpNh3NujXZzx+P0HbMZApaTfvVEzDo6v4c7vMAwjYz5dPeu5qXKPeSuBTNtN6tn+qCc/UykKq6nLgqKwlEWVPyMrcrQpLyByOvXOsVWFVNricmq10Xr3z0hPNvXVaqAsDUVpme/PISVu33uLX/yFX+Cv/43/JQIASazA8zducvPmc98xxc3ufuYbGTOusdXWxN7TLpb4Zo+ygoODOfOppF0vliv02UBI0l6ujXA1mqYRVSWQVNpd5y2SmUk1+aSboxzyvdGxgDSw89TJcQxJycFLEpgTWluqpqGoKsrB4UaH954UFQdH+1yMLWd9R2KLTKksh7Z4N9JUUwKGmPyOP6EAqzW6rrDWs9m8T9c/YqYvUdvr9A9HVs5zEqK8HmOwVnPyzmP86CiV5WZjqHXE9yesV3dR6ZyjmWZvb0ZlBePYHn6c81KoYwhenp66qijLOscrZIPPlAhRYlpEvi3XzGppJUpiuyYMAw/vnrA6G6it4vh4xmw2ESWq0jg/UKeKGBJaRyn4vSf5J/EMxpC9nhxdUoS6xvUdm8WaMURM5v6MlDTNjNAvRIb/bUKIt1Nz+/ufxNBaYY3Jv39tSZCzANhybGKIxBxWb5UIHZ6IGf4gjjUMHm2kzV1Vwr25WJ1z+513eO27Pi6hs1oAhL29ffb39ui7x8/kfX1oihupbRIJTUiycFuVqBWkqHl8r2X10TWHh3M0GqMNZWlpGsWs8MQkbpf1vKGyEqfgVitSlImcQkAXBl3UcipKshAlnVm4mfUj0Q1zTFkRnBD0UpDsjBgESvYx4uNIGnq0E8SgmZZM5g1RiYyzbObcunxB+Z5U/UZpKi0kQZKEtcXQUs+OWXcB73us1gK1poSxBdOq4Oa1fS4dOh6f/Tse3f1VOn+FW0cfx1YHxKSJGEwrWTWmDJwu3mV5coez7iG1XfDS5Zorl4+Z1QVVoVDRk5RmCImLizOU1hzsH7FaJWKCSTXhYH5MXVVorfAhMYbI4AOD6/FhoO83uDES/CiLowLXtxhT0G02/N67a27NFZ/75A0uHR1iTIHJ3hbeO3xwbDYrJpMpMQZC10rhqEBbqEuDUonFesH6+CX6GGgfn3B+siGSKJViScH08DKbrsd4x5A5N8/SBkorRVMYCqsxRlqmLgS8i/jA7mT8LIcCCquZ1CV1WVPVE8ndSglbFNiiYOg6qrphGAe6rmfSTFhvNhilGf0okm4jfhIqn8gE1o+71OV23VOUkrZcVIbRd/zcL/xTfvAHf5DLV68CgVLXTCczPvbqx/jd3/3SM36nf9pDlu2YidqG7FsSFe3SMR6NNHWVD17CdyoslFoORD54bFWID5c2hHHYuaanKEoqrXO2VIYJUj7APZF9a0xZirFlCPI1UYqcrbNuVLL2hOBQQaJXbGkoKitNAKOxtmJ/2mMWQvjXKKzaciNykRMdtpzgvLiDaySXKZEkkNIYzKymaQJtd5fN6g4uTtlvLqNtnYm8CuVFuKBNpB0WDO2Szq+xuudgWjCdNFSFwWyhqJ0HSgdK0TQNwyg8mcIU1NVEnLLz6w25EApRChvvR0JI8pq3NaP3qHwwenQxslfCc1f2mDTNzosIlZGaFHFuFHFCikTvsomceC9ao0AlaUk1+/gUcW1L3465UEwMGIpmyug9OkZ8Srt802c5xAJDjGljIhcT6duyzmyHyaR08RQrnuQ0Gi0J6c5jrLS8vRdbgdE5UauFQCSh0YKu5ZPDVh4uQ9LkjZF0d2M0MTnevv0Gt27dYjqbQjIYaymKgkvHxzx8+B1W3Oj88MQkTSKlEgaZzCFp1j2cLlqevxZQVk43KkVKazncD1R1wCTNe2+/yeVrzzHdP6C6cgljS+LY49uO0PektO1tI1boCpQpUbaUYM1s5KRTjR2cTKwQdr+nlLDeM/Qb2n4jJ6sYSX6kUGCMIYSRrmuZmpZP71t+88JRZOTGDUM+jXiGtmNyyTKJJV0MRCJabdNupdVWFXJaapqCK1cC7WbFyekvcH4x0jvF4AAi0UdKk6iKyI3jmv3navb2rjJtJhTaoJU86D6MDEmxWCyZ1DXzgwNccCjlsdpyfHiJ6XQP0Ize040jbb+hbReMw8jYDxLL4DRjn5gihmJuHMEqXNsxLwKf+egBe/sTVu05m82GGBIvJLFmjxHGcaQqa0Gyhg3eD4wBUAllE1274HSE9fNHrBfnrB8+4KJ3WKXENKvao6gMy80FOgbGBJtnuAQYpdibTPhP/vr/Ch8db7zxJo/OH9CPLX50bNqOth8YXXymC4/Swoew1mIL4U00zXRnTGltiTWGpplR9ANaaYpCsteC97jgKMtCipm82W6T161RmcwKwxgY+oG+79CmRunE7Xtv8yu//Mv8tZ/4CYIW2W9V17z60VcxRhPCdwbDICdAfc1925KuI2KG1/aOvVnM7sOwVRvVdcSahCGwOD9jOptT1DVmMpGYgOCJoyP5sDuBo1Ve0xDXdG3Y7tQKRbIWteVRbc3ntuG8KeKdxvlR1q2YgJD/uUInRe88pXJcrTX3+5DbUiqnvktrxjtHPdEUyeDSds4+aVEpJcRebYQsPJ1G3DjQdu/Q9QEfyPEI0mIzKmFMYq+xVHNLVc0oi0KCczMWFmIgJMXQDxRW4hSCxH6jlGbSTHbBuiFGXIg4P4oKM2RvIB+JQRE8FLk9HoLHJHERLnXk2lFNVRWMrmMcRTBykL9WFFIhO9MHISBH8fJJ+cb7saeNMM4njH3PuF7T5/yoiAJTYYxidGPuLPBM4xYUUFnLd732CWKKnJ2dsek2+OjEvNA5XA5sfpZDahGVMw41WisKW+a26Hat0BRFgfcWpYZcsOfCJgZRxfIk8HRblG3np0Q0xHwvPVpZkk5crM55//33efW1j0mRnSLGWo6Pj3cKrA86PhTFDYgYPEijJT9yCqMSMSlc0vQh8ui8JXiXE2UF2p1Mp1y/sk9K4s/Srja8s/wqTVNyePUKh1efY7K/T1nWRDeSfBDX0Ly4JBDKfCTLBWNO8Q0knSBKmJ1KCVXYfCNLVusFy9UCpQxKCd9EK4OKihBHRj/S9wPfc5x42Bb0XpOSpu9FsmiNYWgXjKszqr1jFJpusyZpsRc3Ssv3NhpSwOoCo2BSTjnYq/Ex4L0UFcpo/BgpygKtAlVZUBXlE8+T2OORHvEYEutFy/7+PtPZNC82Hm0K9mZzmnqKT4m2W7FcnrI837BeOLo2sRksnS9ofU0bJHRuXxl+wAWCc9KHDZFbx5a9/SmPzh5ycbrk9NFIoz/Kc1GCMreyTO89KANDh/MdzomrcCSwGNZcNC+wipHV6WPakw19ghJok2EymXF43HB+5uhjwCEI2bMYRinqQvNDf/6H+Xv/j/87ewczzk4u+OIXvsSv/sqv8Ru/9e945/23OD17yGK1wT/DqIfSGCZNQzOZMJ3MmNRTmskMRaKsKpl/ITGZTGi7DVolyrKhsJbF4hyTFSUhihtozGZ+26AkHyJFDhgchkDf9xijqKqCzrf84i/9HD/8o3+J/YM9imApipKPvPwy1haE8GffaH4LsafcxtsWIFsiZES8gdpeXHBNtvBXSlEWBbNpDUn8Wdw4cn56irWGyWxKPZtTVBWmthLYmP1gdjK2bbsKdu2q3SlXZYBH61wQyetNJMaxZxx7aauTM6hUlpCnmCX8gWtNYu00Pohk2juIlVgGeDcQxk5aNii8GwEhhm6vieRTifeUBorGUNfFLnAyxJBP7EnacCphMwFa59dP9ESVE7OjcOyqqqKsCqnLEL5GXZYUthDEPTiGoWPoRsYh4Bw4r3HR4KLFZcPACsWtkCS7Czlo7k80VV2y6Tb03UC3CdhLh8zTEyLylg+S0KL2jI4QEltZeR8cvd1nIDF0La51+JQkIgJpkTeTgr5f41MUGfgznI9WK27eeIEf/ks/Sl1XdG3Po4ePuXPnDvfu3+VicUbbtQzjyLOsb7RWFIXFFoWoJ22xk20bY4BEKsjFjUORBIU3mqHv8SonfcuNz5YUT96ZKKjkz94nnHcSiorBR8ftd9/mxZdepKprTJJuzNHhkXBzwge/wh+O4iY/VDHlpNbdJRIlw5giPsHjM0fbbnLgX6QoCuaTCZW+TLdeUU5ralOyXq1ZL1acvHefdrni+VdfZXp4BWtLEg6x6U4ik0yJNGZ78hgy/0btKldJZ88ZVVlVFZzwTfwwoHIREsaRYRhxYxCTO5UgKiqj+HMHht88M/ioGAaN8x6cwoRIt1xQzg+p5zXawGa1IFkjSo7oUFEga61lUcg8REpTEm1ANSWgdhNL1E6ZBJ0SIY4iWfQBlEUlzY0XbhBCwoWeEAJdtxZpttFcbNa0D085OWlZLDzLtqD1DWPUuKTweYEqTeSoCXzksqKyWlxYlcePIyl0vPvubZYnntXacOELPnXtKv3Q42NulWDwIVIWBTZLCYf8rLgUGTaR5dVLrNZLxrNzlusRnxKFUoy6oggjJ2ePiWFkBJGpP4OhFTRWc7x/yH/yH/9Nrt+6jjKa2dE+tz7yAn/lP/wrnDx4zK/861/lf/ypf8g/+7mfYbFpnwlGbbSirkomzYyqqqirCbO9PaaTmSxCpmQ6bViuVhSFFOiTyUwQmK5jvncIKdIP404qPrhB7m2GukmJlN26+95Ttj22kMwjozRffefLvPH6G3zP930P3ntMUfL8jeeZTCqG4c9+cbMdsultG+L5Y6i8/sCmE08mrUxe1DVlWWD0BD8M6NJilcGNjqEfhKMxjOwdH1PUk+wpE0jqKUIxeWNOCVJka8C4TQjfOeXq3DJKiJ16Utk/J2bOiRefqJDY/keSVtSNWnOvlXvtgzxXPiZUBN/32FIy8ZQWl/ZtRlbK654UWjmBPGUE3RiSjtLO5ykLgCR8iS36k5LnCcldDqh7+3uZcyPUAe/HLDfW9M4xbjq61tH3kcFpXCwIOY4n5GfaqERjI0eTreeTFCsxRFL0LBYXDG1kGBV91FyZTcUbZ8vQTjrLwg06U5tCzEhdigSnGKYTxnEgdh3jGMhersSMYLZdK6gRz1YhZbViUtd88hOfYr4/FxJ5U7N/dMArH3uFdr3h/dt3+PLrX+KNd77KMD4b8blSYK2lsCXWWKyxlFVFWZToLI0vy4JhGHIhSz7gBPzGUVZCBvY+5HpdRA1bZ/QnyIvgpN5HjBOe5VZqfnZxwunJGdefu0YIYny7tzfHFvY7p7jZtaJJRCTEUiYejElO5CElLhaJxXrNpJLgNVtZrJlSFwV1UdGHjqQ0h5evcHzpEt1mQ9AQxogfR7kJGaL3owcfs+OmqAmM0ShboFRCFUWG1bYvUIl0cxjxg0MpTTOdI4m+gaRLjFb0jIyjRzlxC402cbVx3KpqhqAZRkO3HogFhEFT1ksmB2vUbA9jNJUtGYO0kEJKAqH6gLUaknBrshYiQ4qKFFUussSkKkRNIKduJ3BDoKor9i8d44eBTb+hcwPj2LNZr2mXPW3v2XSGdW9Z9RrnS0KqdqcboxK1jlQmcDjxXD0uuHZlxv6VfUotyhPvBkI/sHjkGVKi9wZTJz7x0gGf+p5XWfQDxLxQJ0niNcaQvMd78B6Mheig13PWRUN/9gh/0bIJshX1CbAa5wPj0tG6AZOeTXidVlBoRV1ZXvvYZ/jBH/8Rcb/ODy8airLg+q3n+Ot/86/z6qc+yu98/tdY3X53txB/q0MBdVkwmU6YTBqayZT5/JD5bC42BNOG0QWM0RwfHWYi64Sua3FupJlO6LqO2fyAlJa0wxofXD4IyLNklCA3pS3o+h5UwvcOX404nTB1RTtu+De/9At8+rOfZFSGokwcX7rEfD7n/Hz5DK7yn/JQT+pQMUDcEsUlsNVnNKfvYRhHSltK29xokcdrg9UGHz0oRT2d0kwanHNILZLbIWxJxMLVI0grKKUgrZvcnlJapPpP1Vj5xSWSCxLgqxS2KIEkpPtcZICYjKbwpMUytZF9i6wBQeFGjzWQvMLYgWIcMWWV1Xg6rzFSSMVsJKi1ykTm7VqT2EZDkLZlS/76pPLvclWDFw+majIhBc/oR3ENDh43jrjB43zEecXoNYNXhGhISVK5U/5/qSJGJ+oiMptoZtOSelLvuDwxJqL3DJtM7o0aZROXDyquXj+mz6ThJ54sOit7oqzLSQkdKoJXBaMpcN2a0DvG/F48kJQWDtAQGIPP7/uZTEO0Eo+d4+Or3Hr5RZkTT80DYzSz/Tkf/9RrXLp6iQeP7jKOF88EJbbGUBZilFoUBWXVSNil1hRlsUN8m6ZBK4W3Bd45+hixRYH3nrKsIfW44LKpaDaSTdl7KyaMNjjvhAPlA8FmxM9axjjy7u13uHr9CsSISYJIV1X1TAJ7PxTFDQBaDikhRYRtA5GETzBGaVd0g+Lx+ZKj6YEYy0VAJdDSJ8Y2+MHhnWM6n1HOp4Rsue3Wa0GHfCS4kegDGisZLlVBUVUoA9oUoHOImsoOjPmhSN7jhgHvHForJtO59LX9iNddhuwMtnO4YhDSbRDi8nP1yFvrks4VrJee5lBjMWyWHbPFGbaqUcZQ7c2ogXFwDO1GWjdWMfoelMIgrZ+kFMbWRMC5Dm20nAqzF4H88tii5tK1Y3Rh2bQrLs5OOFuc0609q2Vi0SrWQ0EfKnzcMg8EkjUqoZWn0ZF57TieJ44PCg6PDphM5lJoKSFkKy05X359jnLQqcT+YeSll65y6/lbzK9d40HXk5LAM6YwEqyJOB6PQSDX0sIwJrrLl1iHQL+6wK9H+ozHDigOD/c4W6yw0dCkRNhSET7A2PK+KquZ7c344R/4S1x7/tpTm4568ueU0FZzcXFK1PEP7Evf0s9XiqoqmTQTJrM5B3sHTGdzppMp02ZKWVsKUzxFSo2YLZnbjZASzo2E6CibEhdKvA0URcGmjZACWluaohDyn5Zipx8iqm1JWgjkKsFv/M6vcHbytzm+fIx3joP9Qw4ODnjvvbvP4J3+KY8d6JAyM+SJHkScZ4Xr4gJsuoGmqAUly/0rpUT5YXUhvIMQKKsSU5bETBQO45DrkLTLqRMvD422RgivWhQmase9AVC7+5t8kCDKbKomuW1RDlJBkDittSA4OmSVEaASezZwNhp8NIxDwjZSjrjB44YuF+waW5VYlJzGx1E4WloRouiAlNLC/VGglBTJIfhd7pacR3O1mCLaWCazGm00oxvpu5au7/BjZBhgcDAGg4tygN26omw3eogUKlLayKRMNI2hqWuKstyhSVuScgyBOPYQxUivriOHh1P29/apZnPWzu/QbK012uQiNkZCEsReG/AB/GTKmCSaJ44Bty3UgLop6YYRnTRZTP9M+DYKQaGqquSFmy8y35uhnq5s8h9VEtFLP7Sytqsnc/iDDGM0tigoy4qqrimLUoqcosTY7Fumtn3blAtdZO3giczeWEG2oolobXKRL61Na7dIoOA33ifU6AAx7iPBvQd36DafoZlOiCFSVw11XbNYfPCD1IeiuEnIQiCQcA7FRE5REkwm7K8YNKeLkcXhOcYeUxpL6De5UjQSZ2BNDgGR3JfkIq7r8K7HuR6dT0FFWYtjaFVhqkI0/taijJXzg2IH2aqt4kErbCVKK60m1KEkOE+KEecbvO8JLlLVkWHT0dNJ1e8Sh3Vg2kEXS3rnwMDh/pzgHO3FBfX8gHK+BwRiTJTTinrW4EZHt2nxvcXHwJgJyUklhl4gQ7M9CWaCorGWyXyPctIQU2C1WvLo/Uc8eLjk8blj3Vo6X+Gj2WaXCfSeSdxGeUodqGxkf+o5nBsODxv25hOaaoKxlqiNkMSGjjCMFGVJv1gyXKzYhEAzCzx/85jnrj1HNZnC7IBhsUYXhhgdthClScpyexfy6TFCPxrGgyu0mzXjsiOMYYfMmKJiNq/ADQzrlkrDOdJN/CBDobAayspw+fA5fuCHf5iiKv6ILxYuy9u338oF3gf72ZB9JuSFYE1J3UyYTSfMZjOmU1GUTKZTxmHAO0/dlJyenZOipjAle3uWYZA2ihtHtBGFz6Zt8SFK3lBw9GOkKMxWdYwLEd0njHXS7ixKHp7c4/Uvfonv/9EfYBwHmrri0qWjD/4mPyRD1he1I0FCDuEl7RC4FBXdIApBrRvxQvFPFm5FEhRhuzNrDSESXCBmbxZBfESJos1ThY0im4Nud7Dt/9LO7Cwp0FaDB1UUWGOk+EjbdGuPiYloE350eOWEJBsTtU0UDlw0Ei+jEk1VEmPE9b0E/laV7JExYgqLLS3BC/E4ei3rcSYky5f1okRSQJJDkEYKB1tWmMICiWEYaJcbVuuBtg+MzuCCzdd7+1aTyNsBTcQ8hdI0laauLVVVYI24OQvCJkTilMnBvheU2KVEUST29htmszmmKKGqBV3XSpAyY3YiDWlpbduSEIIi1FPcOBJGR/KRkPK9MKLIJQb86LAK+u0E+oBDCNyaST3j1gsvyr3+Q79Qft75xTlPgWcf+GdvGxJKi3ihLAtxiS5KVI5MCLl4t4Wlix2gMNqgSymqFducL1m/nHOZw6WyUi1lOwqZ5yElVEio3MoyxrBpV5w8fszN6U1CCMJfmzQf8B3K+FAUN+JvE6W4SaKndykxpMSQWys294eWq8BieQoxcHRwibKeymkKCEOLJ1HaEucTjIF+s8QPLUkpiqqhqmqKSUVRTVA2u1Nmk7TdRqX1U7PoyQKkraWoK5TxWF8Q/LhDgrS3GG/xNmLrSNGUVN2EftXi+pHkPJdKx+OxwBaJoiqopg2TyTGrszPas1NsWaOrAlVqgZqtoqhrirqElAg+EYKTjVwlghtRKZ9Kdm7KmqQS/Tjy6NF97t8/4c79nocL2IyWkAoM4kmgiRgdMSpIKrsJ1EVgUkYmNRzMC/b395jMp1RFhbUV2lbiCdEuhQToA1cuzmjmBywfPsKFEQrPdG6Y7x+KmVk9wU+m+LMLJnUJSR6e0taMoxSAMWrh3AwQygpXT+jPT3GbntHHzPVRufiEbhxh7HAK2meA2hgFpdU0dcOrr3yKj3/qta9btPRdx7vv3abftLuF4oO8jLosaJrJTi4pJ59CSH+mZDqfiGy7qDAahr5nWk9QUYu0vhXn4bL01FXDcrUkBsnoUko4ZaMX0nfatiIQG3o/RlzvCYUhaE8XE1/4/Bf4Cz/0FxkZKazl8qUrH+DdfbjG1to/5TZISBGPLL6JbbEPwxjphxZSpK4nWCvFrlKK6B0hCY8jRCFx+HEgBgfIQckYiymMZL9tUc4cbvpkd9liNrBlESeUFBJWyOE6Sq5eSshmEnX+FdE2oQuDcQVhcAQvSNHERlqv0Vr4QqYsqIuCsesY+5bKWPn+OQgUpXI4Z0bNdxxEJZYZOX9ht0YqaYUnRI3Ubtas1y2LlWczwBg0KZmn3ua2oEk5uDRhdaIwiaKAutSZeFxmgrJFaUtMAe8GsZCIkWnfYauaYb3JCGSkqBRlVUsRYyyxKIldT2GEj2iMkFV3surM7cSDM5ZYFPhVSxh9PmDnJ1nJtfBB0LKI2qE6H2RohGtTFJajoytcunrpa1Gbr5ms4J1jcXGe/aw++CiMwdpiR2tQSu9cmrXWFFWBNTYn0bOTgJPkUDc6l4OZEzYKLycmnuSkJfErQj2J0UhKoVXuzijJ/FJKEUk8fPCQ51+4SYgeo43k3j2D8eEobpTKEjtFyBNoTIkhRkTzoXYbUDW1tP1INzwkqci1y7comgZ8QPUbFBrvRgpbEsYBFRNVPaWaTCmaBlMLYUqZnFOiIloXO5gMtT1B6UwGDNJ3Vk+g6xTBeycGdM4xjJ0k0jqPdy5bqntAo6qIionJ1HJLj4TTyHQSsRrG5Dk6OKCczDh/cI9xs6Quj8WiXW+Je+LBgwJdaXQUC/eUItQFKSqSingX6MeR1XLByckFDx6ueXQWOO8sfZBF2ShFrQJGO0qdKLSjsomqjJRGMZ1ppk3BrK5opjV1I2GBRVmilJXW4LhhtThnvV7QrQeGQXP90UOa69dRKrG3X/PSSw2mgLJqMLZAz/fxZZNPYpqUnXGVESg7Wc3gAkKDUphLB/QWus2K9brPELhwEwYfxPVyHJglqGYTdMa8C1sSwlNEwm98+mE0lKVlNjvkc5/9Xo6uHH7df3N2esJ7d96hGz64AF0BtjBUVcN8dkDTNFR1JQZnRclk1lBVJYW1mMYQowdEfTA4h7USzTAMHcPQsd5sqKtaWlUhMLgRkxevmNmUWmuSklZGjIm+DxSFl7peJd5+5w2GfqSqS7CWw8P9ZybR/NMeW1WU/NqGID5RvKncXjKFcLt8kJb2bLqPsRZSQvlRmioxSrxFELjeWHHINYXN1hJS0GxJl0o/yQdTaisR35YA4ry7PU8JRye3UqK0nkJwIobIiGeKUXYMNFhpwxRo9vGkTlMUKZPJI7ausUVJt15JwK1t2K4t0n0QMnEioa0iRZvpZolkJT4lIUTeECPj0NK2A+vNwKZNdE7hk95dQ6MEhzdKTPSsAmMSVkNRilFlaS1FKYodrfQTlAXEtqLvcWOPGwPBK4b1mmI+B5WoKsvBgUUb8kFAo6qaaKzwkrTca601SoNKGrTCx0SIEi2gJzVegxtHRue35E+2isMYxdOoTAlbFiLZD1FiIrak8G9yKCUcrrKoee7ac0xmfzRSkYCua1ksL4S78gyGWEoUYp5oC2wOXzXGUJRFNvQzua0kNBETjYRI5+I2BDGRHEe3K/pjFORSa03Ma0Uk51TxRBkYAgQfc5GvObs4I7iAKaSYrJv6mbzPD0Vxk5Jwa7aEvjFBHyM+U7csmkJpCptophqXPDrCyeKM/fkxtixJwdGNI2We5EVVUlYlaj4TZKYs5NSvhZSnSGhr8kKmpdetQQob0e6TIdgYA8FHXN/Rr1u6xZJ2uWIcs89NQjZxoylMQWlLgRmTIrDHSi2JumdeRcxCk8oJx9cuE8YeN/TU0z2mB8cMmyXlZCak5q08Pct4lRWDPxAOD1qL0qlfc36+5N79Mx6cdCyXiXUHLmhCEsl8oSKV9jTG0xSBuoiUZWIyMTS1pWkq6XVW5Y5UZqyVNp0yRJLIY7sli9NHrM7XjH3EB4WyCr9cMH/5VawtmO8dkPYP8DFis7OuOrzCJreu8g3HmjIr0QK6muKdogsSD3D16DLd4GjXG867wDQh3AAM1ghjP3lPUnC2bhlipLIT/v0f+hv80m/9M84WJ9/U/FMoSq2pyorD/WM+++c+hynN1/039+7d5cH9+3jndxD3tzqUEiTLFBZblDT1hLqqaJqKqq7kc7YQ35uiYOjBWlGcSDtRY41lOpvSDx1NU0tavDY8ePxACp9xFKJo3jhd8Fitd5wO5xJD6yhLgyng0el9NqsVRXlIiIn9vYMP8A4/PGPb8k75hClrTtqd1jVKWrM6UZSakCSLqB06qqqRtlIUx25jct5Xbj1BkWNatn5Z8hNlDZcCZntCV5nDpTJ6tP1YQrKponfSbhpG4fnljU1QkGzaqTQYgy6K3LopGfuBpDyVSehBgSloplNScMTgsUVFWU/w44Apyp077JOehwajdgKPLbqUEng/0nUDq3XHpvX0Q2J0W7RdChJNwqqI1ZHCRKzepn4/STC31mKNyQiNysi5yYWV3BPneoZuw9A78bqJ8hrjMFAeHaO1oaprUt0QUxT/FRTUU0YfMHZLuhbKwg4XsQUxKFw2gJ41Ymzo3Eg3Rsp8HzSCZog1iLQJO+dFIq4tH7n1Xbx3/026of2m5p8c0sURuK4nXL/xXJ4bf/RYrVas1ytBQ54FSq2NtEmNobBSzFhrsdaKt402O+8b7+VZkH1SDCK1kgR37z1FYYk5F3DVrlEZ6dl63ED6AwqqEBLBxeytA227YhxHalMTdaKuqq/7Hr7R8aEobmBL5jMysVPMxL5c5ao8IWwkaUcXAzNt6ceRs9U5k3rGDkw0hfRZC4UxFZCEQId4I5AkZkEXBq2zH0WGZqUHjSwwKRLGDtcP9Jsl7cWK1fma6LzIdGczDq5exRSG6AMuBly3wXmf+9YDKWm01TT7U+K0wHUdVy6NrHtLWU0pJ3P80JOaGfVsxtCtGbuWYrqHinKKUMaCDbJYKmknRKVoN2vee+8Bb7x7wZ0TT9crbFJYlSehgsqMVCYwrz3TJlCXUBVQlIbJZMqkmVHXDUUpHjpqV9yV6KIkJRjGHhc8XbdivThjs2gJLlE1lnlVMJnPqfoVyhqa+T6uXRNszbSZUVYNKIu58RK9k559cIOElGayIjGhyobFgKQZa426csz69IRVO3DhorTMFIxKuA0X5wtMCFil2JtOWWw2fPKFP8f/7f/y9/g//F/v8a9/9V99wyjDljKhjBR0z19/iVc/8bGv+29CCLz/3nucnpyJWuUDohnGiFxS8nVEwl0UBUoZyqqmLEuqsqIspC8evSf4bL5lLWVlsYNmMpmyWbdsNmtSimw260zy89nzQ4l/RSL3xaWw2QYsD2OiHhPaJE4vTrg4v2D/6ADvHFcuXxIC6zOQaP5pj60MXFCbJ4UNPOkWaQ1JeXyKlEp8N7qhF5MzyFCHyG2UUVn6nfl5ko7JTqVjlByY0hOonu33yATmFMTg0rsB1w+M3UgMUYqBsqSaTgX13KI2Xnx4QkZwtoWTrUtSNETvmUwEDTW2wOZ5k2yJLUu8G4jeoYtqR1CXYKCISkL0J5EFCyOL5Zqzi55lK0onnbYncrlehQ4YlahspCgihRE0VOfEb2tLrLVSEMJOhaoQ1VhCidIzBbwbGYeOsXfEANZKi64oS4wX+w1bVeJbpq0caK2Yy+m9A/zWjye38raXOiVQpmAI0EbZqJlOcF3H6AJ9FB6QUUrWGqDvBmn/KfE56p3j8t5z/MgP/TA/+wtrbt95+5uae9tCV2nN3myf4ytfpyWFHPyXiwVt2+VW6gcbW9Wb0VasRSAX6bI2GG12rXGTeV4hZuWc1kI2DmL2Z63DuZFEYnQjGoXPaFbazY8tarMFC+Q++AAmSLJ427f0XUfV1MQYmE6nzwQl/lAUNwnwSRGitKQC5NaCOG0W6J1bsU8J5z0TaymLmtPVBQfTfSZ1g48jOE1dlMJLKYQwlbI6ZNvH1tai0Dtba+WlFxu9Y+w62uWS1ek53XqgbComTY1Vlusv3KDe30dpzdi3LE/PePz2KYuTc3AOHRVKSz8RI71u8XRPQsBKMFeavTqwPHnElRs3ceMgrr3eYYqCYbNE2XIXpBfJzqSVLFhd23Ln0ZLfe2fFndNACJLVMtGBiQ3UJlJZT1Ml9qYw3yuxRYXSBmugKCyTckYzmcnrTBCiQ+nMJ9AlCcU4jnSux7sRH0bWizP6VSs90cOCqqqk3dfM0MsL3LDh8PpNTtuOWz/+d3jl+38Eff6Q5a//S7j2HLEdCCEytGtRe6VI8BnexvDuAk5iZDaZkGYzuvduE1xkHRMzJafpkOQ6Bj9gkQe1nDSotuXmzRfpWHP3/nvMZzMmTc3Dx98YgqO238s2vPbqd3F09eu3pIa+453bb7JcnO88Pb6VI9X2AdY5IDNFOc0UpaCPRlvKooC0XYBkEeqHgRgT+/sHDMNIQjyZQLhrw9hjlKGeNKz7FpVlvVVRirJhxynYyn1TNmmDrh1QGlZqxaNHj7j58guk4Nnf28suxX/2i5vskfuUWuqpombXBJcF2sdIYeRedGNPXdYU1hIIEJ4Ui09QmJTbO1u5txAqdxtTfBKtELL6cug6/ChoQ2Fl05ntz7F1Leor7xi6jtV5R992pCDuueRDjHRb1Dagb+epUylR/w3thmJvX4xJM5dGG4MfB6wyO/luInuWGCH6e+dYtgOPzkcWbcyyeU2hIoVOWJWwOmJtoioR1M8YUBatBTEpdEFRVmxrvpiysSFkhFzaGS54YpQifBy6bLehqJts228lpV4PPTE4mtk+rfPsv/RpDp9/Ed1v6O+9BbM9kdBH4SQSo6BaOecroLjoE21MlGUBZYlbXJCCxLeUWwArbfcEL3sPYIoC5Rz7+wcE5ViuF1llZNm03ziCI5e44Pjo8tdtSQEE7zm/OGMYumeSlr0l/6YkLaZtQKZSOY2ep1BG5CAXU6Kua0IQs1Qp4EWN5r3f8QNH79iSSMzOufgpF2zYFT4pJbyTItS5gc1mw/7hATEmqhz9I2vrtz4+FMUNiEoqZMO+McmEVEggus2EYQ2oGBh8ZJVaLhWGwY0sNyuqqmZSzYl+JHrHFvZJRMgPmjIlKLJ5nxcycPC4rmWzWLI4W9CuBsq6Zv94n0s3blDPJvlkIRN97EdWpw949N59HtzZAAWzuaacGaqiEEjP5Cc5V6lKKxKGoipzj9OiC0XvWpRRtOOK2EvboN90FHWPN4roxSl5DAOr9Yr7Jx1vn3junFu6oDBKUanEvHAcNwP7s8j+BKqiYP/ggLoRB9DNesWkFjSlqiqstsK3IIGyFHaKUhrnHIMfGMeRflgT/IgfB1FFdZ66rJge7IkLbgoUxlKXDeXQ0rcbdNVw/bXP8cqP/VVUITkl+to1Ho1LlqtHrNcrfLciek9U9gkXQRuWKbGKiXo+x2uNG3oqH3EkNijmSugIe7MZy2UrxU5M3D05wYfIb73xy/yf/t5dbt95J5tOPQm6/Mbmn/g3fPIzn8aWX/+xOD874/a777BZr7OR2rc2jNHEkChyoa5UtiHXRlqD+UQlE18Kl34cIGlmszpn5hiqqubifEmKCedHqqKi7TYs15vdwpMQwp8PYWe8teV8pEyy9CHtSKCjczx8+JDtZnl8dJwXv2fT9//TGhlPye2Pp9RR5JaUelLokBIhJgYc08zVGNwg6hJT5symkJGPp8zt8ikXRSZuxxzSG4nOMQ4DQzcwDh5jLPWkYnK8hy1t3vjlmgcfGNo1m+WK9cIBmrJS2FLtSOdSoMqmwY4zqNBWTuEq8018GEGBCwPJy6biR4+2PqNJ4nETkvDZNq3jbBNZ9gafkT6roNSBifVUZaIuwWhJ9bZW1kg3CgG9KMpMSM3vB2mlG13LGhwiPuboljBIxE0MpBDF18sYyrqS65HE9sCaAu2dCCmMZXZ8naOXPoLaPu/zGRs/MIwbxnEkuiFHkOgnbSmlGRBfLFuWRKWkgMl2Iy4XOAmoipJhcLnYgWXbElPi/tkdfu7n/yUXi/NdR++bGTHzgK5euyp7xdcZXd9xsThnHMYP1P7etoWk3bRNX88S720aOE+6kyQx5UtJUZZWfGyMwtiC0I9Z2RowxuL9SD8IB01rCaJV2edmy3/UT12kbevRZLViiJF1tmohKSZ1k5+DD+Yo9KEobqT3rfAkfD5ZpswlKPLDK46ZCU2kKQo2vaO2awoz4fHqhPl0TvKBuhDnxC25KREkI0QlUnKkKJ4Ofbdhs9xwfrrg7LzDmIrnbh7z0idfpJmKV4O0uSSTxPcDm8UFi4ePOLv7mMXaceX6ZV545SbVrKZdCUlPpShKibKUQsdqUUtsiXIxyoMcokhGh17swHVER/A+0PYbktYE19N1LWcXa24/irx9XrHxJQopahqTOJoMXDmOHO0LwqRJ1GXB3v4Bw9AxDi378z0mzVyssJWCosSWFXHnFlmwXl1wsXiETwHX9UTnIS/KJkE5nTGZzSnLEjdsUCiaZkYznaPSSDX23Hn0gO/99/82qrBsHp8yv3aZRVXw8M597t+9g/cDZujxzhONTN4YI8FYHvvEOsJLVy6xXC+JzlE42YjalJihiNFxfvGAkIRoPlFg82nmvbtv8P69NwXKDJJd9c3MP6008+kBH/nYR/7Yr797930ePLjP0I25IPjWlhytlFAczJPTKShsIT4Qzo9ZiisLxTh2FKWlbsqd/QFE+qFDG4XzQUz7jCxGpa3QenstxJ9F+XH3ekUSu4WQBf6vqwo3DASbuH/33jbEmtV6xXw2p+v6b+m9fphGSjmY8Ck6qBQ2+YSZ+06KhDUa5yODdhhtaYeWqqhIURxV5fttIwGyS7jSkGXjMUibxQ2OruvpOodWltlew+GVfQl0zPvbVq4cQ2Dse4bNhm7Z0o+B6XzC/uE+trS4UYqBHUE5c1ee+HM9pfaMW/mzhP6mFIhK0KUYo2S7KU2KHuccXT9ysYmc95YxCm/FICjNpPBMJommMtI2JVEYTVU3BO8I3lOVpeRFbYtELQqmlHklWmmGoWcYNtL6917a1NnuQyWxI7BlJR4qXhzlrc0INAETPMvNmusf/TTKaMZNRzWf0hvDerlmvVqKqixIonjaxlYkSFqzieKddjidMIyDIKZ5njugJJFSoO/XuzlSIOugA5arM5arszyZIHwTaw1kjl9Zc3Tp+I/92tVyyXq1xvvwgZCb7UFG/JHM72tJiX9Nyq8u5cLGGC3+cds8xiRCGq3EQmKLTMaUduGnIQQ8avcMPelGpV1xtuMdWSs+cTGxWq12ZPrRjVSZ0/NBxoejuEFiFmLu8ZLS16A2BjLrXlHoglIrdAUr55lHR5d6LtbnVLaRB0BpxrZFezlVxZBwrsUNPcvlitOTNQ/PHINTXLp0wEc+9jLXnr8kHjkZpgNFDJFxvcL3G9ZnZ5w/PKU7b4mV5aOfeoVrz9/ATqcoa2kOD4U/k4JENeRCZvv+SGTnUoEArYVEVm4NPRHFOHYs2pbSj9jCsllveLwYeOe04M66YUxyHaYmsWc9hxPHczcMl46PmEz3peCoJ+zN91ktz1i0J6QwgorYNKGp52hVg0m0oyBcdVmjJwXjuKFdLOQURBLpvTbZbK8Sa25bY7VBxUBZ1jTTfXRhSM5RnJ/Rtxv6fsPUWuZXL4NSWFPRd47Hj+7TVCW0K2JKuV2YKKsaW5V0SRxBZ5cOOD19QIwaExIFcsqKwB6wTpGL/PchPZ1lwrdeZGhFinB8eMz1G1e+5nv+gbmaEu+8/TaPHj2kG4cPZB6otMYgvApUygoFMdlLMYmfUIbT+35g0jQYa+i6XjyqY6IfBB4uy5KmriQw0Y3s7e2zXC6fMoGzDMOA3znlpi1/Pr8vcD6yWndC/sTz7nvvMI4DVV3zzju3d+Zuf9bHlm8jbSkZ0pLanlyTJIFn2bayijEGqhTxKdCPHVaLB4tCEZzfbTwpJjm0BM8wjHTdyLqV4MnJpObo+JD53hRtdqQTdhvKOBL9yNh19JsW1zmS0RxfOWS2tyeiCG2wTUMKjqejErZFMNv3lOX+aMl9UikRNSSvSARCEKWdi7KJjaOjHTznrWY5FoTMdyxUotKRugjM9zTTpsYWtfBsbElVVQxDR+9aUvQyjykobIVSlqTAB09yEWsslJoQHK4fhCqQtmCTRpPTyXMcgKAKUf5e1vk5jZiuwzuH906EADORDmtt8C6w2awojAE3SsGUk1JN9hnaulCX05quWwvnLPNtvFw6KsCR6OHZZknlImFSN8znX1/ynFLi4vyMzUaKmw/UpMltU62z43ROTxeHfjJ5WkAFIQoXKKVzplQmlOeWtDEGW1h0Dyl4qrJmGAZBKBFzwpBboPCHo00hJsbRSVirjiwW5yIFN5bz8/NvWvH6h40PRXEjj3nCJSETR8TXplBymrJKoEKjA0lrKmpsCeuQK8xUcNG1XNlvcDGQojCwY0oMQ8dm03F+0fNwGXmwUphguHRg+cynrvDiy7eo6vJJf1AbYky4rqNfrbh4/JD+bMGwGgDN4fXLXH7xJvO9OaowYOSEp8qCwqrsMyGVPymStCIFRUxSocYU0UjRoHQ2OVIZ+o0BO5tw771ziiJxskq8v6hZuiK35RIzE7kx7zmceQ7mmr3ZlLIwKALWVMwnc0A8g/bml5g2E0Lo8NGzWpxRVzOiBu8j03oiMm8tjqE+DJhoqHIKtTUFpS0w+VehC3HVLCtMoXdSS6U0PL7L1Y99jqKZyR3NksGja9dZ/NslXbtBR084fYyOIRMts7slCo8ElNaTmvvviqSfEJkqOIvglUzWAbBJMqY2z2DuJcDFhAmBK5evs7c3e+ozv6/MSYmubXnr7Tc5OzljGMKOt/WtDFnTdS7AIzE6sYfPUtvgHc45+q5jMp0huWHi2rpZbxidoyhK9ub7nPpTYgqE6NHG0rUtq/WKEJ8sWAqw1hDHuCMx7pYfpfJpbht4Z7hYLiRPSis++YlP0JQNhV3LZvVnWhKedunFsFWAqF2BI60pcQG3WIzxDDER8rPbO8e0LnIYYyKNQqqUiAFH33s2Q2I1KFRSTGrNtatTDg73s4/Mdq3R2RPE48eBfrPBdz1+EBuJejZherAv7Zmd0i1lO4UirzO595227sbbFlV6Uvxk8z2lFRFP9AmSQZUF60WHNtCNiUVv6YNkaSmgVIl56WnKSF0pqtJmi32JgChzJEQCqrKhKAqJi0mRYeiwpiQpsRoobJF5YYIYxOhRSaEzv1DlVqzWRv6cW9a2rDMhe7vWKFK7YnZ8HWOz+jJfmmY2ZxhH3OhQRSJ2GyF8o0FnhC0XtuQNenXh2Jq0lkCLFL0a6STIIfvZpYCHlFAJppOZ2Czk+fiHrTXOOc7Oz+najrB1oP4Wx1btRNqitTlXMf+KMRCDwec1RdYaQVfG0eV8Q0tVQhs6QRiTKIu9d4xuyM8T2Wwyc3cyafhrFkm1ZfSwM/rrB+GeohRXLl+hMJZB6Q9U5HwoihtZbLYTTxYcg6bUWk4OStQyCggZVq1NidIar708RCQG1zOOAyFCe37O+mzNu6dwewP3BlmYPr5v+exHS24+J2Su0Pd4ld1AjcW1Le35Ocuzh2zOlwxrR2lL9q4ccXD9KvODQwlvi15yXqKCAilkkpKecQzE4IkhoXIVK/kyAr+KeaCVarlQ2FBS5H83298jlT1v3Bu4N1hcNEx0osmnp6PpyJXjxP50StPUlGWFtROMKZjUM1JMjMOA847ZdM5sNkObIzH261asFxeMm5aD/Us08zmKnDtkK4wp8ENL1VRU1QF1UWO1GHuZInteZCQAIKknYZ3j+SOuVA2TwyPGdoNSmnLS4L3nzrvv4see08VDNm+9QTf0TKfim0LY4mRQVhXKCqlVL1tCSsyV4oyIyz3/kGCuFBbokB75Bx0xidR9DB1vv/MWN27dZDKdYrf5YrBrrJ+dnPDWO29xenaO8x8s9iElsDulXiR62SCHsSPGGSEExkFctVMTMtlypG3bXW5L8F4MzkZH34uSpLAl67CWzcaN9INsONJGUV8j09ymQmulMUbRu0CZFGWI3L3/Lr/4Sz/PvQcP+eqX3ua/+Dv/BQbLl9/4Iv/9z/wPDN8kHP9hGen3/VIoLBI3YskIDnkTUAmrxOxO8na2xm4+O/jC2He4znHRJhZOsfSyoV6qFNcPDPt7U4rSkrwkZm+VJ8E5XC+SZ9cP+CFgtKGaNNTzGVVdywYRRcm0c07f8oRSylyZnMicxM9GxE+5cNNaWlYqF9LGoFOBSYmyrlivPWerwCooQpL1VpOwNtGUgWmTqDJp1hiDNsVujpFJoSFGyrKiLMudGsf7kbEXQUJdTXYRCuI7Y7M3kMMSMVbWma2RqjZ6x/vYboRpG4WTEqnbMLEFRd0QnCALJuchLRcXpODphg3j2WnOQIItOka+t8aKB5F3HjU4UoJSSQs8KNBJcIgqzwfPs0NvxI3fc3FxwXx/jyKHVW7H9uDRdy1n52e0XU/4gEBGymik/CWJWCWT2mMpAg8fPCgoimx0GCQ8NsVtIR6yO3bm7SH5ZKMTThQxCsKUtn5OW+BC5kTcXX+VHdMTJimSSazWC26/9w6r9YbTR2d87rs/h8JwcvqI3/vql74lIcOHpLgBlJD7YpKTVKFEIVUoRaUlj0h6gY7BGAwFha4odbGr9IMf6PqBwTkePO756gN4fe1pY2CmCz5zpPjhTx9y89pzVLUQAk1uCaAMw6bn4vE9Fo8f4AfPZLbHlRuXmB0eUNY5uM4HwhgwTYkuRTIdEXJV9EF6z04eFpIEyQU3QpC+pKkLitKgVDbfkh6BsPsTKKO5emPKu6eOTavRRCaF52A6cnyQmNaa6WRCaQ22LrCmxGpFXU0xRUXIYXXGaJqiEZKpG4EA0aBNTT3RVPVEFkWliUhWTVlXuLYj+UhVV5RFgzVWpPMqQfREcXkjKUPCkLJ0Xg0j8e67GKtR6YnHRFk3RO9ZXpywuPMuJ+8+xvm04xeQIkHBEpjUJV3XMfaeuhvoE8wygrdJiVlOtl4C+/KO6D4YWLsbISb+1b/+Wd75u2/z8e/6NK++9hFefOlFbt68ydVr1zk6OmLaNLz15hvcvv02y0X7gcMyUxKZZcpWlSjoh57GNbR9L35N1mLLUgzbSPTdwGw6Z9Ou6bsO7x3L5ZLNpsV7zzAMjN5hS0vqIARpvohnRch9bznBxdwEV1mat2txK0OMirsP7/EPf/Ifcfvd91kt13zh9c/z/HM3uHZ0jb35nMenpx/0sv+pDXk8t6hNbkUhxnPbz4cU8OjcotoSdLdtIM/oAyEENhvPySZxMiRcCpTKcLWBF67U7M/nssak9MTPRGmC8/Ttmn6zIvpIUVRMLu1T1nX2aEE2IR9Q1ojp6FaBkgMuUww5hDYXqpnjQ8pxHla8SuTEnnbvOeX2v1KK2V7BRRcYnc4cmkhdBpo6UVpNWRQ5E0tQFY0Sj6qdTDjkAEhR9YWYdWhJHNNFMiyEdiX9MpSS4iLmjdPYrRuuYRdWnKK8LVQ2UNXbeg1CIC0vpE2120LBWEuKkaFv6VcL2sUmFwVPoIMEDMha7Lx46Fjn8eTuQJIDU6WkthqAmhwH9IzmXkzwzrtvc/HTF1y+fJXjy8ccHBywt7fHbD6naRoKazk/O2OxOM+KyA820lP3fzuC94TCZsWTQtdP5N/GSOFaFCUutwBjjAyDIGMxSjEUYhQk0WXEBllPUjbg3bVI88/ccnF2xZqSltdyveJLX3qdi4sFwzjy6OQh8/kes2ZGVVa03TfnJwQfouImJnBJHtBK6dyWgjLHBEQ0MWpUTASd8N5htKcqppiqJoWRdtOyWLS88SDy1rnizjDiU+SKbfjUTPHJF0uuHB/TTJpMGE4oI07Ew6bj4uwB/WbBbH7E3kuXmR3uiUIkIrkyMYICO59gmgplC5GUhiBp4f1IGAa61QKlEmU1ETlhjJLAWhtMKYtlQk5Zznn6sadzPS5GojI005pXXqg52TgGD3vNyPFRYm9SMJ3OqeoGMophyhpbNiLfBFIKBBKTeo4yiqEbUNELpG4Ljg8vowpFv9kwthvx7agKrC0piynruCAmS1XPqIoGpRIqhUyY3LabrBDttMErOdFaDJS1kP/KHCroPbYsKWzB48f3WZ0vWA0D/aaVRZGtU7QWNG5vzsXFGuci02yFXmqYAsuU2CSFTsK90sjq8ywSemX+JRabDW++9RbL1YYvfPELzOczptM589mUvYM5Vy5f5tHpfd577z0G98GXOh8CFo330vcWnxMJfu27gaqoiCTGXojFbnRMJlMuFueC0I1CAg0xUhQFbdsBUFc1Xb9mGAcx7kNlb6EtL0k9acMii7jQU0WjKN9XyAqPHjxiuVgyOM/9+w+5e+8+z1+/Tjf82SUWC34qm7xRwu2TAiahlSCwJNmMk9qakIExpbRW8r0YBsfZOnHWKZYhElJiqi1XS8WVA81sMhHnXZ1RgxySGZyj79b4sacsG8r9CdVEuIJqy83LhbMuSyludHZJjxL+G71EArhhkMIsFxAp5rgFa7KKKL/nrPzyweNDEEdmpbBlwdFBoHWBEKEqApMmURZGfJdyBEQEQVeMlfeR2xsRsFYIxD6LELYn96aegoEwOsIoLtlY8bUxpmRMAwlR81ld5Av+pBATYnRWW6mtdF8QeIzdtdwEiYhipqg1m3bF2PWMXsjcWz7SFlWKgK1K+n4kxEQRpU1pFJRIQSP8Rp4qnf5w7si3OvpRWk7D6Hj4+JHkOpViolrVJdPJlE23ZrFY4D+gJBqe3KsYc2sq5g5DjHjvd5YGW+QlhEhZlPR9D8jfYwhCqzAG17aQwFqLG0bJUsvI3BZZ5Gt/y6/jaz8m3xdQsF6vMy8wsFxtWKzW7M9m+PCtKTQ/FMWNyhMubHucWSUl7SjhB6SoIQZ0AG89KWePJCVyzLHbcHLa8dZ9xW8vA8tMfrxkKj49N3z8Oc/VwwkpDgJx5fgFlPjHDG1LYQrmV29Rz/coJo2oi4KE1JFVCaYq0VWVYdWIGzvGtse1Ha5r8WOLCsJZGN0aW1jqyURiAqww1qM2RBfoNgNtt6IbA96P0jqwFcbWXLky45WLcx6dDNRNYrY/pZ4dsYiKxQBDTDTWsj9G9rWnTp55mbAJbFFTTxpImuleIw9nYTBGk0IQnpIuSRYgEAUYo2wmKDTWVlRFQQpi9KW0Ar21kzd4YMzSzYhCFSKpZP9ITnTec/72+wzecXTzOeazI9p2ZHZwlcXJks1mSfBenJi15L4YFLNJw+n5ksJYyswRcUkmaQDWKW3DKIBE/P293A84Rh9ZrFd476iqgrKqs6RV+Cg+eklWX2w+cAo5yEITcnnmfY/zJZVq6PuBuhmlRTU4tO5AN2Bhubwgxsh8Juo3rcR6wOfQOWMsy9WSruuwxuC833FLdjwMANIO/o7pyZtJT61Ie7MJt168RTcMlFYMtpbrFe/euYv7gEqGP82x69psSZaAJWEygpbI5nwRos7mdkqUaSSJd+k6z/ka7veJIQnZc6IMV0vF5XliWhekJKG6UZnsDSIn2uAk42sy3c+hk4Xs4duiJstzlRHERuU8sOgdwXmCc2Kn4MfcV9OEOOYQy0JiAvIJOSlDChLP4tyIy+1vaQ8ZlLZMpyVHfcdm47EWiqqkqBqGpBgi+CiqsTomap0wwVMZ4QBqbaR9i6KoraAzWZpNkvgClaMQIO7UdyZb9mtlsNoIBySEHbl4G38jCFratQjRRhCdqgEt16U/W+BjpNmfU5YNzgXKekrfDricdq612fHKtIKyKOj6USTmUVoeMRc0EeHYCPfmyZx5liOmlP2qAtaIolacgZE5mKIkqw/PpvWbtqgZaWf+aFB4F7BWTGt9iCjlUdmnaBh6YopUVYVSwpPUShOjy5EWmnEccE4cieO2Pbr9mX/EVUu/788JKG3JwcE+3nsm2pJSYhgHLlarHSL0zY4PRXGTIMcvCDRslaLMhY1GTlIBBdFCVFgkWLNUCVVYxrHjYj1y76Hhq+vIMgp6cawrvntmeO3myLVLh8zqPXyIDENPpSRnREXhG1RNzXRvj6Kp0VZQgRSkdaR0QhVlVito0AbvBsZNR7tY0q0XhH4gjD0qeEkcbyZYralmM8qmQhUadCGqlHFkvViwXC3zAyosdosEmYWoMbbk1vMNo++gUXz+LPLunVPi9BI3XvkYV2/cxE5qHrue989P6B+9xyXO+cjhlKvzKdEo6rIhr6l5YQ2EGAjOgVbUzZxuvcB1PSkl6lo8faazGbbKjqZFsbOTj2gW6wtOl6ckDLP5PtqW9GOE6WUuXXsxV++Kvh84e3zK8Qs3Obh8ha7vKWc1zhjafhSSoFa5/ypkyLIuOD3fMLVS3IKYlO3mCNAohQPWSGL8sx4+JtZ9z+hGaNvtIRWV5HM+RAlKfEYj5dPSODhs0aNa2Ri6tqUuK9baYo2mKqWodjkn6uLijPW6pW07urYXybGX+1uWBYUtcN4/WWwUeZ7xVGimXNw//GSouH7tGufnF1y9/DwH8wM+/alPMTuYcu/eHf7Hf/xTnJ9fPLPr8Cc5YkaIhWuU0RsBVXZy1ZQkBFCzJT0KGhGiZxgDq7XiZEj02ZG1UZZrpebSXmA2bSiLKrfRPVZJa0Ul+SHGWoqcpL0l5UtoncBFW3n3NpcqBk9wXng54yDPZfAQxXbCWsllsmWBzjYC5MIghiiy8nHYtQC2QcNb00GtNft7lhAdWHjUJy6WHalomB8eMz3cQxUF6+hYdB1+s2CiOo6akmlZiH7A2FzAPOErxYyooBS2rHBjT/TivG6tePoUVUamYiQZzdb7SoxEe9pB0qiLqkZpI75SxYTJ7GD3s7wPdJuWycEe9XSG90E4OErsEbbiBtSWz6IwVtP1gyhvt22rpw5LEaFSBgTJ+XZYVyZgdJ4QFGTu0PYFbDPfnukKl8joXUAHx+hkzjunscYwqkGeByvtwZAiWmn6rmN0Duc8o3fsrAUyGdho6aqQnuJj5nm2QyDzIhT/iDV7PpvS9T3T6R51WXP16hXKqmS1WvLlr34lI0jf3PhQFDcgN9OnJ942hVJYJQtHSNlPIkKMmhJNJIAuSVHTdz0PTzz3Ng2Pw0qSwdHcKguuNiMpgC7EontvOsX5wNB3KKMpykoKkcJiSkEnSCHzcDTagCpqtK2E0BwDYewZ1i3t+YK+XRPGjciWywlVWVBNpiJdLDVmUqGKErQiJMW46Vkul6xXS4rCUpU1SkmWR4zSAx5VwCbNbDZhctjxz9/tef7T383/9n/zd/nUX/wB9i5foijK7P4e8UNPe37G3a+8zpd+6ee595Xf4COzluMZFKYAH9CFhZjoVyuJsS8rhq5jGBzjsGE23RMUQGnKqoakMU2T4XBN8JGz80e8/s5XcN5x/coNeu8J0yOmn/pBhskMe+U5WcSt4drHP8LV117BlgWz/X3pqZcVo7G0fS8nlZwnU9YVVhnmVc3dYSR0LfspPXlQeFIAzxRMUCxI35YFB2QB6DPM+rVz9NkXU4lEUjKv+r6jqmu8l3TnbmiZThuGccB0WiDc6GVRHBxt2wkKmRdxpWEYB8ZBirNhHBi9F0doZCGTwMyUlXtPYOLfP+aTKfP5lLv37vCpj38PP/6jf5kbL15Ha8P3fPa7KauC//d/899kTs+frSHChbjztjFKodS2MZf9rZIUg6IdioAh5VDedRtZuYJNHPJnFPtGMyuE77LNStqSXL332Q3WYguxmxCjSc2usZpbJlIkCPE7pShRG6MQj70bScGhYsKYAlNq/v/tvWmQZOl1nvd8y11yq6y9ep/unulZsQ6xEiAFijspiwpaCx2Wgz9o03Z4lxQSZTlkSxFyyP4h6a8ZksJ0WLIEBUkRhEiCAEiIJAgCHAwGmH16el9qX3K767f4x3ezugEOgAYxPd09yjeiIquysyu/m3Xvuec75z3vq6M4eOYp0SQ2oX3lCSPqZVFSVWXYPDXj1TSGwK6ZABONV1CUGl4/MPRW13jPR59m7eQp0k67MbNsEhZjqPOc4e4O21cuMtpZZzGpaQPSqzBw0PhqmbIK7SKtAxfRBk5iHCeIRgt6qu0komm1KagJ50XGzv4O1ll6nblw7usW0dopbBwju73Dz627skh3eQGhZDNZFpJDKyW1CVWyqSqy1EETKNGasckoTEUCfyLWOEKLSiMov2kN4s04F8OmqTlymoLiXXm/w5qtd9TGBEE+5xrxz5ooim4jEbtDl4CvIxYjwjUvbpHqrbPNo7uNNDzl8t1WKf0mRxVHEUkSMxwNWV05wpmHztJf6CGE4Oixo+hI8cyzX/mOJzTvj+TGg2kOXInAWo+EReKpUcEt3EscnrL2aJkihUfoiLou2BuW7B4k7JqgbiyAvkyY1yClJ5KKJGkfathoramNCdo3pkLFEbqVBh8nSZjgUQoVJbcWKGT4A1ahNOwqh9KaTq+HlHMoHypAWilUrJCtFJmmOILejbWWcpIxGU+oq4p+r0+r0wqVAR8yXGskRtRor7FKEuuEsycSfvQdj/DD/8V/y8Pv/QAibh/uxPGACt5ZcRwxt7jA2Xe/hxsXLvLV3/hl9i5/hWOxo6VjIhNTlQXO1LTabZwXFPmYOElppS0koSypddB9cXWFdwLVbgfC12TE+asXuXEjZ3lZkyOIH3mafH6Vz/67X2e4t8/ffPpjuDqMDUZpcHZ1zlHmBWmrG/gKUpKNJ8RRHPr33tNpd+mkoddcVxW2KhiE6wdJEM6aBhxD2FElCLK7FnKmu/e79/sP38dDXTu8CwqyVVkSfJ8sxtZBL0QGr5eqrhqiZujjaq0xtg4VAe8xlUEQnKPr2mBMSP+ElOG0tg7jbqWE30oUrNPpMBgcUJaW40dPcubcQ7z6yousrKyhoxXe+/TTHPnkJ7lxc/1uf0RvOqZVm2lLSjY/B/NH0Xx5jIOWUAgUKIW1hrwyZIUic9PqjycVmrSpkEohUCoK1QKCYJprrAykskglG5HGILQnArM3xB5gGmuCJEDDdXO+MQNOECJB+mbtUga9nEgjVHTIqfLOY+o6qPRaS5IkjW4JDZ/I47xAWIv0gd9opGJhTvHwygIPf88HWTh6HKGir481AlQcSKdJK2XhyBFGe/tsvvYS+WCDnqqIpEK68Fl5a9FRSF7qug56NToKGk3eh7Yq4K3Fe9cYgEJZV+wN9hkNa1ptRe1BLh7BtHpcev01iiznI0dOH3KTlA6fXThug9bxYfWqrsL7TjcqcRQTKYXSOvBErKGcVhe4pYk7jTcRYRT8rdDl9t/weDfgnKfGEgkRqAFA4R3Op4Ew37RErQ1chakuj5QK4259Cs66cJU00hXTWHIoMeGnNiDfHlEUU5QFxjjmunMsLs2zs7NFp91FdiRHjx6l232N0Wj8HR3rfZHcTHflkka4j+As6wgBx3rVZNSCopQYDIlQDfHogO1txbCOKXwOeFIUx6OUlixRiWT1+BF63XnCdS1BeqI4RtYCY2vy8TBY0LcihHeBj6OCBoV3DmTQsrBVEVpVQhD3WkTtCKxFOI9wHmeqoEysNSJt4aUMJeTaNp5IYZc0358nbQdyorUmeGjYRgqbULXyNiZyFp20KFLP7sY6p4qCOG7f2maIaZ4vQEcI59A6YuXUCT7yn/0cr/3RH3Lps/+GU6KkZQxSKPorK3ghqPOS/tJy2MR5T5GNMVVO1ErwVYGY6zcl5NAiuXLjKucvThhlkjpts/I9P8rzWxd59uMfZ7iVceTh00RxjKstpqyI0hTvYW9jg0SmPHzsKS5ceR5javIiI22leAvWGVrdLnP9Hu1OB1MZIgG58Cgacp8SYEIlJ2jt3pqRuPvpx92Hcw50IPRVVfASa7XamLoiyyboSFEUBXO9LpFWeEMzQQJFESo0zlvyPCcvCoajYTMhF8rGU4Kna8ia0/H2b9Zek0Iw3++xtrrE+9/7ft717qeoTMlzzz3L97zrQ8wvLdDtdHn47JkHM7mZJgeCQ4HQwx0m4jDWWBMqPKpJNsqqYDIRVFZhfOAcaSQ9qYmERSjozHVJ4vSwAgDBNRwRYkldlwgZRmiFBy/l190QgKAkbO1hS0fFEUrL23tmh/5QgQsYBdKvd9DcaLwNu+wkTUIyJW5ZLHgfjC+n4cM7hfQuSEFEkI1H9I0JSdptsSa0m0TjKhrUkDv9OU6+52l2r19j/+KLzGPRgYlH0gkiddYYknb7kAdU1xW2NkEA1BmETEJ1UUNdGw5GQ3b3K8pKYLWmc/wRticHrL/0EuWkpjPfDwazLhCrlQ4cjXwyRqNZ6C2zP9jCOktt6iCS6YOvlY7iZhI0Cm7WCGo80gctLXtbhypsA95escY31A+8xzoLFnQU4WwYTpBKYowhSeJQ5Z1Om4nQ/gsj2Q5jampjKKuiUTeecvjCJOx0dPv2NtU3Q5rEdDttjq0dY21tFessGxsbHF07TtIOvMfFhYUHM7mBsJtSDYk4kSHgWAQWeThS5r2nqiWVCBMBtswZDh2DrEXpBJbwh5uTMUvasdg2LCy18Upx+eYN+v05Oq0esYzRQiKTCFUXlGVJPhrj6jqQuqLArZG6RCADn6GoDhn5UkcI7YJ/SxJBU50RZYSMFTJO8EJga4erTZimMga8o9VuBXsHHeoSQSXWBrLcYYXf46RD1i7s0Ee7XH3xa5x5x7tZ7c0TpD1v8fiFCJNLQmtUFKFqjYpizr7/Q/hI8/yv/d+8I61Y6s2Hsrt3JJ0E7w3OCZypqOuaqqzo9pepyoxwaTtsVXL15lWee3mTq3uCXCke/YGf5PmLX+XFL38RP7I4Cwd7u1y/+ArHHj2HbgV5+oPtTX7j4/8P165d4Xt/6AcYfHKX6zvbZJMMpRTGe4STxFHC3OpqICL6YE+Ru6BxQ6LpSJgMSyRBd0Lw3bqO3G/wGOPIXCiAt9I2dV03JL0wLUUCk0lGHGlC7xqyLCNJUhCeg4N9qqrEW4dSMToKZoQQFEXrunGZbzhO35o3JCjKgitXr/Lko0+wdnSVcTZiMBiQdINkulQxR48e/bq++oOAadIhCIlN4NqEG/60JTU9HDuNKULgbE1ZOsoqxjSVHQEkQtFW0IocrXYUXOtHI9I0IdJxcF8GhIqCy7ix1CLEkqneTSAQNxwY73F1Q/htdF+Q7tA/qSnP4K08HHKgOU9w0xHxEDF1FBFF6tAIMdydXTOUJG8lYMIjnADrkVXOYHuThdUjdJKUw37m7bGGMOYtpUdIi5CKhWMnQEo2X/kKq9rRStLm8/boSBOmqAgTNzbcJOO0jTWhLitEqOAMRwM2tkcMMkEtBUunH2Vrf5Otm9ehDPosRZEz3N+ht7yEbBKbIptw/sWvMjg44NTDZylfLRhmWbiOpGymhILRadLpcOhM7B21DyajKEkkoSobJV7ePknNFJ6wqfE+HKNWIckDmu6BhSbJlPKW9s608gZQFEVIXrxvKBVBAgARuhff2Kr+duHBWMvBcMDK0grdXofKVJRlgY5lU7VUdHu97/hY74vkptmvIPBEMrSkhADrJHZ6z/dgEeR10GUxzjGZTBgOJJWJD+ccEiHpK003MnT7nlZLsbWzx+UrE+YX93n6nY/S0q3QgpEgopgYD8bgSoVXvhEtEtjKhapLbZtpBwdO4urg4i0wSB2mpswko9XtEs2t4JzAViXeBwsH17QHolYSSH+xbi4sj1CBDOisQbgQxKZTSL7ZYcem5Mr5l3jtq8/QXz1C0ls8JO15f0ttdhrsdBQjdYVUmlPveDfj4U/z+ud+mU6rwntFlOiwU2rOwaqokEITpx2IDMWoxJgKpWJ2hiP+6PlNXtpy7FjL09/7YYZqyIXzL2F8RCsSFMJQDUb8yj/6e+zcvMrqyTO0dIvf+OV/Sm/tOO94z/fw0vPP8vL5V5jkBVlZBOG5OswAxnHC8toREIb5uRaDnYKRc/SkYHF1lbyYwLBkasCdEsZCh9zZKPiUKHq/Yrq26ciwF4HzVdUF42zUBBGJICQpcRxjrGnGvydkWY6pg8uvEx6tFUUFcZRQmxrTEItDK0A0lg7f/APRWiKUZzKqqGuBdYaNGxvcvLnJM8/8MT+0+CMkqaTf7yPlg+gUPp3KZMqwaarE05QlxKS6kaGy+DD6XQhMU0WGUGVOhCSWljjxRJEky3L2DyrSVs7RtWUi1Sg+Q7BOALAOT1Avl43EkReh2hISEwEibHCwgagJ7jCRdHWNjmJ0tw0EKYqQt9xKbGRjNSDUrduzQEGjQYL3oQLj3OExIzzKWPK9bXY3b5J2uqikddvFM00LmRK4wmbPWpyU9FePUJVPsXf5RdZcmGuUqjmnQxaFsxaBQitAKupGFE4IRV6WXN8asz2GzFuOnDxBpUr2NrdxSLQKn4MtK17+wufIx0Pac/NoGfH6S18m7vZYPXqU7a0Ntve2qWsTSPUueNgJQnLT7nZBWNIkosgsxgeh2FanjbGGSXlLPUvfdtT3cQj5jiC4jewrwvlinQ1t7+bfLBZrXTD3bRKMuq6oa3MrGYLD618rFTg37papiYBv+6GFqStPVVqsDTFqPBwzHI65efMmZx9uobUgTZLveCN1XyQ3QgbiXiwhFZ5IBPsA40UQtmtOL+M9kxJqI5CyIi8MRZESxLI9EZqeEMxJRaJL2u0Y5x0bWxPKUiJESVZmtFsdrAvCeZHUxEkHYwrwDmfAmhJ8MGp0xoSLIk4R3mEKQ1VOMHmOq2q8De2TuWNHSFaWcChsXQQbBg94i5ASrSUqChLksinzhUmIUHoWQoQJIjPt9obKjtIRvVSwUg+5/NwzHH/4EY6fe4qyqtjdWmd3e4NWu8uxE6fodftID0qqQ/ElZSPOve8DfOHqBa5ffYYTHYKYnwwk5qosg1Kk1FhpEE4SxZ3QQpOOjZ09vrZTcNEYOgsLnHn6Sa5eeYWjZ9+LUgn1jWu4L7+MEJ6tV1/kn/+vv0DS7vCej/0guSnYeukFnv6+P8vCyhrXb27yB5//PbLxhCLPEDIO3CklOX5kha3tDdbWVhjsDii9xQlYPnqE9WtXm5aBp2jalnHDl7gT3M+JDTTXv+dQEylpRXTnwqRbHEnQBqEcSarpdrpBuG9UUpkK5yxRFKGUIFIR8/0+6+vrzHW65EWBd5bC2Nuk0b/9h6F1cPpdXFhk7dga58+/QkTEx/7M93H50hUGmwcYvUdZFH+CdP0gIFSvghqxEuHm7rw4vOqgGT+2QUtKOIsxjtrowHnyoeYaC0iEQEtPFAUrkdGkxlgBIrREIh0mJK0P7S2pgkVBMKUNNxE8TJWGoSEVO481wYLDm7rhpYTWfdLtojttQDbGg+5wg4gIXByhbhfEE9C0pcRh7JleFyG2ekJlKI4EbVtysHGT3sIic0urWGvJJiPybIyOYnq9PkkcaqhSiGakPMS5xWPHuD7YYzi4QT8CfOPY3XA8QqetEebzgVDsrEdqzzjL2cwM+84RtVIWjq0wONihu3AEKRR2NIT1HcAz2d3m2d/9NCqKOHL6LMZbJttbHH3oLK1Ol+FozNWrV6irCmMqECFNEVIy120znozpdjsUeRH8pIB2r8d4OJh+khia6t5t58XbAaE73UxM6rDZFQKUClVChEdpSRwFoduyqrCm4Tcp2bRVFSqRjMbjsNmqDd7Xh951cGfJoJKBX9hqtejO9djb20EiOXP6IfYPBhTjAq/ywA96EJMblSQkSqANRMIghMN5jWl26Kp5NN5RVR5jQVQlVSEoTSCsSSARmkRqesoSpY4olgzHFYP9GKQjTcDYUFaL4xgsqEihYo2KO1hT44qKshhj6hpHjZIKrRN86fB1RZmNKScTXGmIlCbpdOmfPE776CpCRtg6b8Y0TZAZ1zpMT+gojD5Pe+1TsSoJ3oZdkBARAoOowbiCoq6oncU4w7KQ7G68zmd+7d/QXvocRVVRlAVlUeAEHDt6gve+78M8dPoRtI5RWjY3qVD+ffwjP8DnX/wiC7pAxx10LLG1payqQxGuSCcgLcbUIDXGw94o55qxFBG888lHSHs93vvhH2ZuYRGhJde+/Aw3vvIqHW0pa0+eV7is5nd/9ZcphWBueZXJaMjc0grvfPfTfP4PfgclfTBJQ+JVCDrHjx1jd28bIWFprUe1PkQaD0pS1CHoT7VuCmBRQCrEXRkHvxdw3uHqhkdT5cRVTDvtkKSthnvhSVsx7XZCq7VAf36eLBtT5BWbWzvoKGY+abG7v01tDKPxJEwx3Db1oNSfLBm/EVqtFllW0o48xpV89rOfYn93xJOPPcHOYI+N7Rs8+7WvoCPdCKQ9OJBaowV4J5DNrnWa2Ny+Q3c0AuIuTLIZEyrJoqmqaCQKSSLDjVkqRVU5yjwonmsVktXbBdJEMyXlVXTIF7Em6LA4bFBLVjp4P7kgQGfrGm/CSK6KI9K5OaJeB4RqzDNdU71t2lsq6I9M9WICmqNrEhof7mQI64IOjjMYG/SQvHe0hSAb73Hp1ZeI2pcx1mKMCRVAoNeb4+ixk/TnF5udd0ionPAoHbF86jRXn7lOSxoSIrQO7QVrDUKGW07gCwmct4FA7SGvDAPnqRWsLi+i44QjJx4mabUQUjBcv8lofZdIBoVbU1t8bbn88ssYAUm7TVUWJK0Oa2vHuHrlUtBQcz7otMigFN3r9ciyCQhPu5NgRyWi0ReayiJ4AonYAG1uaW29HeCZbnIcxtZoGzbDumnx0VR/o0gTRRGpSanqCmMsk0mGlIo0jcjyCc5Zqqq6NfrfvMedJiJaR9S1QUuP84ZLFy+Q5yUrSyvkRc4kG7G+uR6umwdxWirqdFhYXWV0ZQMlPNZLai+oDhnYYQdVeo8zgtIElc6ilFQu5NVaeHpK0pHQ1hVJC4QSDA4cRd2h15kggarKKeIwepa0kyaAGbSK0HFMXVS42mDLIogKaoFxFXW+T3kwwdUOKQVJktA/ukrv+HGi/lzj01GFfrkjCFeJcBHLKGk0XW4pb4bpDHOLsIXCm4qyqBmM9tnc32F3NGGU1+QGlPQk7YTnL1zC9FZYXDlCb26eXn+eTtxmd2uX5579InVdc+bMYwgZpsK0NninWT1xCnHsCV69+gzvXhPILMUj6PbnQuIlJM7U5PkYrRRSCoyD/XFO7jxGwUNnz/D4e97F3PwRtI4xruLgxk0GTtG2Nvhs1QRjztpT4dna3md7fYO5xRWKMufd73wXS/Pz+EY1PkysCFZW10jiCGss3W6bOC2w45LtvV3KskCKWz5OBtjzgZPzdikXO99orsjA8SryAi1iRm7IwvwyadJCEEaMi6JiOBoyySaYKvAXyqJkvxizt7tNWVVUdX3bdjN84+5wbLvX6bA/PKDb7WKdZTDIuXp9k3NnH+XqjWt84pOf5Ps/+H3sZQOkVA/UOLiKI1qdDuXBOEzqIHCIwxvXNLGxPvA7jAPlPMaEiU1odvJTLS5p0dojJBQTh3ExcVQ102kGI1VwUdY6cE68Y+rIHEx2w7i3x4cBBCyuzjHFdPQ22Aqk3Q7x3BwqSZpJlIZw3JCjoSnxK91kaLezixqezmH2FgRRrbUUZcGkyMirmrK2GEe4uUWarb19bNKh1Qkk6SRNUSoim2RsrF/HWsvCwtJhtUjK0O7szPURcyvsHNzgSBdEUxqJkiRUlAiaW8ZUzZg2TXJTY5zHKegvzLN8ZI0k7YaJM28pRmNKL4iabkqwfgkVXStgMimYjMYkrQ7GGo6srdFO00CoP+ymCTqdLkorvPPEcYSODL4yZHke/JVugyeYaSa8vRBaSiEBqY1BCIV3JWmrHaw0COPztbFUZUlVVzgbKBvWWAqTk+eTMN4/lRi+/fffYSKSxFEQCY2DWWdR1gwGYxYXlhiMBrzy2ms8dPwUhSkf1MpNytrTT+PGn8PvDTFeUntJo3+LOKzceGrjGUw8cxKKXDUUYk8qQQtJRxZ04opOJ7R8ykLhvURLh/SSg2xAVk6wpubokRPgLWVeYrVDAvlgH5wjbnVxpiQ/OMCUBjMOa2l1Elq9Nt1ja7TXltDtLhB4Mt6GHbJsVMGk0oc7m8N4AwRHVkKSI0OfvKpKtrZ3ePnqOl+9tsfF/YrdEkbGUTrLvBK8dyVjZ6FG2JiHz72DH/zxn+L0I0+gtebmtUtcvvQqVy+9RrvTZXXlaFCUVLKp4qQ8+cEP82//4Lc5N98mbrVI2q1ACnQWhws6Gs4iVQTek5cFu6MM5wCpOP7QKbr9OcaTfeK4jfOGlYdOEB1dYXLjRkOOhtI2LroCTFFx4fxrHD9zhtdfeYX3f+h7WZgLppmqCXQIQa/XI00S8jLY3qtYU7qCvb1d6upPeqsYYPI2qdpACLpSCuIkIk07tNttWu02pjbkxQSlg3/ZlasXSJI2cZRirePg4IDJeMJgNGBjcyPsovCHvlHg+Y4/Jiko8pL5/jxKKfpzizh3nas3rjOZ5IxHOecvXeIv/uW/wldeeJ4LFy/dhU/k7kAoTefoUVx1GfKymcakcTi+lSoHqXooKk8qwJhGjL9pZwkEsTTEyhLFt6QcvBeHgmVFVVA3ti3dXg+cxxgb2jiAKQo8DhVFeGepiwJvHLYKxG8dK6I4Ju51iDotZBwDgTPjG4llIQhVXykCL+u2hDb8+f30x0PCsrWWLMvYHozYHObs55bMQuU8xofjPdKuyVsWvGJhcZWz5x5jfnEFKSWjwQGDgx0GB7tEcUyn0w1rkQLpBUjNyomTvHLldZZaMUpEYSRceoRvXKjtLZsGgNoY8rJuNn+Cufk+cZJQ1QVKhQphZ34O2etQj4Zh0ssHwrcl/Nkclv3dXfoLC+ztbHPsxElaSdK0IadmCpAkcaPe7RrStgwisnkWvLm+AdMqztsJwU5EEumIKIqJoqkmU91YtngGg70wut8oBhdFUHwuy5LRZBSSc25vb/4pIATGGNIkmMSmSQvPkOFwSFUZqtKwd7DPk0+9g/WtLfb39+/4V98XyY1QgrmHz+AmYzb/8A+pRuaWYKcImbnxTYbuYX8ASQesC95TALG0tGRFqgytxBMpRV1Z6iohEjT9dUFd5qwXNZUxrCwfJVKKKFaUWUadDSnGBywefYik3SHb36MSExARneWU3lKPuNNC97roXhudpKCjwPiXgRQotDy8YKTSoS5xqELKbcJdgUBYlRU3Njb54vlNvnh5l/MHJZnzeFTIpoGKkoGx7NQCoVLWFteYDA6QXjG/uML5l77G+vVrPPb4O7l8+RWuXn6dubkF4jht3J4VeMGpc+cY0GI7q5hveUxZEkW60fAoMWV5qDrppWJvvM32yDR6HoJer4tWLdJIEydpkF5fkrTn59m5eIOugNgLRnhaCGofqjcb167zB7/3u3gDx04dx9VlcyNxjdusI441Sij6/T55UZCkLYwfkY8nFJV5wxv0g+lJ/c0hJVR1ze7uLnlekGUZdV2RTXLyrCQvDM5Zkjim3ekAlrKoKcuSurZvSgVLICiLEoDeXBchFFmeURvDcHTQ3BhLbmxtMz+/yF//7/4Gv/Gbv8Unf/vX34R3v/sQQpAsLOCrism1a9jqtqqTD9XEYL8TRA6LEnTcjE8znTZzRMKipUMrmmkqj7UKKWi0c8BZw7gssc7S7nTDSLny2LrG1iW2Lmh1+6gops5zLBUOSdrWxK0EFWtkEqPiKIx7S4l3thGHCcFxujkQctoyu+1gbvs5tIUso/GE63tjbhzk7OaG2jf2oVOrAwyl8+ROgNB0W13qskB4SavVYW97k/FowNLyGgcHOwwO9kiSVqMlQ5OsePqLixQiYlJZUh0+C+ll8/m6wBXyjVO1kOR1xqRqxCYRxEkcRA+lPNSpkUiiNCXbHxI3Mb304dGJcD8YD4dcvXoFZz29/hzemsMR9GAgClKFGJ2maRgVjzQuK3FV4Iy8Ed4uLakphBBY58iynCg2RHWFdcEzzdSW2oR2p1IqVFVwwfvO2Dvi7d0pjDHgQ8IpkNR1MOUsyiKIDdaW4SQjTVt87wc+zGvnX+f8xdfu6HffF8kNCNorR5CPQ7G/z85XX8IXwf+2GUDE4Q7FtwZDyVLbo5RH155IGlqqJFEGrR1REph3zkoUHt2okCrpibRmLA2VNVTWEsUxmhinDIUVdPorxK0WzlrKwYBWv0fa6ZC2O8GXJNaIToKMk2DeRrhgfHNRKBnIuhzya6ZmYoTqsHN4ITB1zdbODl94cYPffX3IhdGYyhvSOOWkJkiV65p0VbG1KWnLlLEvkQdDdtvXyYuKGxs3OTsa8OILL7O5fhXjanqL82xtrjMcDlhaign6F4AL5eL5lSNcG+xwdtERSY3QiqqssKZGiAglPaYqqeqCjd099nOPJgQgJLS7PZZWOzgXqgO9/hyPv+u9fOKZF0AIVluKM/MtVudbxLHGK8/u+qu8sDfiB3/ix4jjlLLx0XLeIV2oMQtr0bam3+9y9erVoKwLmMrcsRjUg4wgc+CpakeW1eyKCUrJMGZp/NcFlCwvyfLyrqwjlKodrSQOlbRiwv7+HhCYba1WgnOwsX2TP/zCF/n5/+o/58Mf+cgDk9wgIGp3EMtrmDwn29zBm6aFM61ucIs7UJSCdgRSeKTwKCy6SWxkw7cJ3nfiUKcrTKNAJCWlcFgXvqRWQfxBCoyHKGmjdODf2LJEJwm6FwezzWY0WUQaVLBUOIwjtwmmhWpNSHBun+mZVm28EHhrmeQZ17bGXN4r2SsrrLdopZmTIfFw0qA7gslYEAlNhYGyIsuG1LVlNB6xWJVsbW0zHg9Ckt1uMRmPKMuCVqvdvH+oyERJQtrpMiwzFtshKRRSNqTiwBGSgqDA7C3jLKOoOWwVgiCKE9qd6JAAmyQpy2tHefXmJiDoaEk/1XQS3Rh8evLxLpt5ydlz59BKYxoNFo8PXEeCJpl0liSJGAwGQaWXIHL5IMkafDewLhip1rUjz+uQmApxW8U3wBiLMfldWcO0Uqq1aippNXkR3msqtusdTCYjrl27zve872lOnDr1oCU3IJQkPbLCynvfh68MN7/2GsIH7RtB6IEHwpKnqhR5ptHOEauSiJpYOZLYEscOHYdgJZxF+SgkNggUnkglzKceKxvFYVMz3t9juLNBd36JzuIC1hpG61tAxMKRY2HawRgsNZHSwd02qN81o9512BFoHUrOYuqRIptJhvBH9IT3HA7HvHBxl8+95nj5AJxOOXfuJKuLSyTpHMXuFm54jYPqgIc/muDcIoP1Ja5eeoUbe3uMb2zxk3/px9nb2+fff+pXGQ4m6DhlZ3Od7b1tlJSMRiMWFpexjTqqtTXWWbr9OW5euRoUcI2lrsYIGZRDnfcgNF4UlGXG9n5OUQd3diEE21tX2dm+wdHjDyOEwJgaZz1nH38C4pizPcfH3nmClcU+zltGoyEXtvc5v1Pxs3/nb7Czt0dZ1LR781hjiKKEaVxWUiJrh5KQ5xk7BwU97xFG3NqM/ocET5iWeYvfVmtFt5vy6ENnOXpkjf2DA+b7XW6ubyN8FM59H2Qbrl2/xs0bm8wv9N/iVX6XkBLdbdM5egzvHOPNXbC3pu+auioIsFZS1xKJR4uguqVk2FhNv8Ll7UKV9rByI5BC0dLgRNNK8o4qzymzEXHaJmq1cN5RjSeApNVYCjjngq+PvqVtczjh4oJejJDyVqtFiGle0SQ5zQSUd5RFyfZ+xqVdz3YBTigWF5fotNponWDyCb4cUtiCxVMK71uU4zYH+zuM8pzaTzj35CPkRc7l11+mLCqk1GSTMVmeIaSgLEtarfZhu8k1JPY4SRgdDBrzUIEty8NWufchWQ5JRU1WGIxrjCoFZNmAbDKkN7cYPpNGgHBxZRmUYiH2nF7r0W6l4IPJ4n6Wszu2vOf7P0yWFxhjieKkGWW+VcUSQoQER4hQGS0MsSeIsf4HGWxuTVC9lZBSEMcRi/0Fer0uRVGQJjGjUQbI4DkYVsdgOGA0mpC27pz9dEfJjRDiMjAiVOeM9/59QohF4F8Dp4HLwF/23u83r//bwM81r//vvfef+la/33uPcTVxJ2XtsafQXnGws425tosWDdcGf+gaLhEURURXBDt2cCjliOPwJSOHdzXeJoe7rWAhLRBY2lFKLcFby2B3h+H6zSAnvSCosiyMcpcFi0ePBw0GnRDFCpnETTnVBVn06SimdUilUVofVprCRRuE8II7rqTIMy5d2+DzFzxf3Y5ZH1/l6Ikj/LX/5e9z6pEzPPOZz/PyK8/z4sE261nF7qDgmX89RMttEu9Z7KZ0Wl22hxm7gwPi7hyPnvkgy0tw8cqrbNw8z/kL53nokUc5feaxw4mM2tSYqsKaCp3EDHMX9HB03AxU+FAZq0PbwznHOJuwP7ZUXjTjkI69yxts3dym3VnEOde4e1v6S3M8+ehjLAzO02snVNmY7Z0tru1kPDsR/PCTJ1nqRNxcn/Dicxf54Pd9mLLIgi+OD2OF1nomxRgpBVUVJL0NktS/vcYw73dY59gfDNnbHXLk2Bpxu8Xa0ik2FgdhVJTQ4jj90ClwJcPhgFY7ftPe/62INd5bVKzpLK0ikRSTDDvMkQ23LxhrHg5IY4wixhzWc6S4ldgIRWgVed3Epqa3RUgAtVS4RgW8zDPK0ShUIlOCVYkzOGNo9XoNB0UhI4HUOmiGTEkNYeynIcfK2wTWbv1NmplyvA88hoPBiGt7sJEpRtWAbq/Dh7//R+kvLXDz4jV2d7bYKjNGtSUvDTdfKJEyQ/td0lgTRTGTsiYvS1RRsNQ/QbsF+4NdxqNd9vb36C8s0p9fYmqmaBvbCNcoKBd1YMqHanaoroQbabBcoHG/zivfyH4EF6/8YMxklBHFIWmq67KRSUhYWVomLXaJI41tVLyHWc3NCs6uzNGONaNRzdbGPiceOtnwSMLE2lR1t66rMKhi/SExecoZnOGtgfeevCjIs4Jur4uKIjqtOcat4lZi4z3z8/3AjS2L4M12h/hOKjc/4L3fue3nXwA+673/h0KIX2h+/ltCiCeBnwGeAo4BnxFCPOqnkohvfJggJK10jnarQ1XkLL3rKarxl6j3K2rvw/TCtOeNoK4SbFqTakc38nRanjh2qCgYEToHkXZoZcnrMAJe1544BSE87bSHRTDe38OWNZ1+jzTtUk/GlPsHdBbnENMP0hpkuw3SoeIW3gpMlaOTGLwPxGHV+HAI+XWkNGeDVsXB/pDPv3iTL++scnEwYVSf59HHn+SHf+Ivs7R2HJEItifbfO4PPs2FKxfYKwuyhmMk8cwrSeUy5noJ3lj+4HOf5Sf+wn/CI+9+N3GkeO5Ln+XLX/ojrly7FiZA/kyT83oXjBTLEmdqiixvxJZMGDkgWEQ4PK7ppxrvGE0m7IwEmbfkHo70FuioDgfX9vn8+qeZTIbk2SQQoTe3WD19muIrl9k/2KXIx2xs1zw7gY89doL3n1hkc+Mqc0sL7G3v86XPf4GnP/QBdJRA4vE6wjpDNspoL3TC6KgXpCKY173N5IjvayipiHTE7mCf9c1NPvihD3Hy5EPkZsTm+hZxFGOdI1KaXruDqx1Vbb79L/7OcBdjDYBA64QojbG2pr22iq1u4AqLJXhG3brLCaxVeG1REmLpiCOPUiBkeJ33YVJISoexqnF0nk5VQaRiPIIqz3HGEiUxURRjqwqTF8StJBCuRLhepY6A4BmHb/gqqBD/bmtDiSm5uFnptHJSliXXtkbczNrsFzWl3WVxaYWHzz1Fu9tHaEluci5fu8juwR65qWmUdxBAKoIuT5JovPNcuXyRc4+/g8Ujayit2Lx5ifUb1zkYDPAeTp0+nJRoquEG74Iq+1RoNMR40dg/3KpAOTxVXZOVUHuPATpxSixiimHBtclF6qoMlg3WMhlP6MzPY9YPKIq8MTK1rFfw0PIcJ+ZaTMYDknZKnuXcuHqNoyeOB35go7DrcVRVTdSKmiTRohoOzyy5eesgRNjYZmXBeDzm+ImT9Of6GF8zHo1RUgVelpQkcYy3vhEJvDN8N22pnwI+1nz/S8DngL/VPP+vvPclcEkI8TrwAeAL3+qXJUmLOEnwQqK6KYvnnsCMMm7+8VeoJxYhfCOe1fBnnEQ6jYpKUKEwI5UPqsNaBdEh5ZDKNW1qQVkZYqeI4i6RTnBlhs3Cji1O4yCu5Ty9pSXa8318JNHtVtBjcBYhI6SIUKnClFMzvAihghNvGLX1h3oRrjbk2YSrN7f41PNbvFafZXu0jU4rnn7XR3j40XcgpeSzv/kJPv3rv8KLV86zORkHIzOmuwmBRFG7hImJiCpIY8/+zg6XXn2BX//4L3HjymX+8POfY3tnG2RFmRd0Oh1AUJuaMiso8gxTTtjb2WVZS0SjnCzktI8fDEe98Fjn2BsaJmXgCLSFpzPc52u/85sIr/iVz3+W7dEAgaQTRXS7LZ44+yQra49y4fpzxNLxYiV56uQyHzy9EiZPy4Kku8z7PvJBzr/wCp/5d5/i+/7sD/HQ6dPYJiEcjyasHl0i0hpH4Pq0EKxKuG7vngv4DLfgnCOONEkas7W1w8Fgn163T6wU3/Oe9zDJJ3wqfLfSAAAcNklEQVT6d36P/eE+r1x4lR/3njwf3e1lvamxRmkdSPZCIOOI1tIyrqoY3djA1Yd6vRwaa/qpl1Ig83oEQriQj0yl/aVvrAnCFswYg4oEUgZirLM1rq5DZUKrwzHupN0mSkNyIyN9S0G4aW9LFarDUxXfQ35N0+72zabPN+3nwSjjwuaYHbtAVmUIZThy9BRLy6tIKbh84TUuvPoSWwe7jOsKc5s2STjm4OVXOYU0nkhBkWUc7Gzx2ktfYzQ44OrVS0wmE4RwmNoQR6Fy53zTAm/a4NkkpyVFM7btDlv5tya4PM5BVjpqE+pmEZ64LNm4fB4QvHztEllZAIJYSqI4YmVhhU53if1hkA7ZtoKVuTYn5jsh1hiDilscO3mC3a1tLr52gYfOnqE/P4/z4fOtyppOrx2GJwiJqEbQEZ6hn+U4bwWmiYvWiskkpyxz4jhBCcGxI0eoTc2FS1coioKd3R0egcYz785wp8mNB35bCOGB/8t7/4vAmvd+vVnkuhBitXntceCPbvu/15vnvimEkERxgorCCLJXgvbqEv3Hz7G/eZ3xqzeQRhA1PeZIBOdwbRNcVBMnjn5PEWuNdRWVC8JcEQ4dG+TEYJ2gyqFoG3Ti0bGmnIyxmaXVjml150hbbVR/Dt1OEFqDa3ZPDefE+2m/2CCkpMpz8DVRmuCFRwmNJziqVnnG3s4uz1y4wacuFmTpE+T1LitHF3j4kSfCSPV4wPPPXeMzn/kNrh7sMnKmSWpCWVshSUWLtpijoxfpJAt04wQrd0mSHaK25JO/9nG6c32MN7TbEVXlOX3mHCtra4CgqkqqOqfMhkz2d9hc3+TRlYQoCZNUYbdnw4imtXhq8mLM+rZhZByR9Ly7G/HYsuSyixCJ4pHTj6I3LrGwMEeaaASepCO5tD1AbYLsaZQSvG+1TSQUDkkiJS4OolAf/ZGPsfrCGnVeYJzBm3DSDg8GnIgjVpb67GyPsM2J1wYWhGDnPxCy372EtZaiKijLmo2tTW7evMpDpx4NhGcbiKghF3aNdovh8tUbb+YS7mqsQTQSDUo1hFuIOm3S5SWKyZBqZwRNKxa4Za7pFF5alII0CTtO5y12eiP0HqkcorlhWyOojSPRHqkltqrwdSOOFqeBNJwmTUIjm+J14xSuILi/TycrwZlQU1KNCeeUi+Ocw9Y1eZ6zvj/k9T1DrVeoXU67m7KwtEKcJJRVyWRjyMWL5xkUGVWzgTr8WBBoNJFIiWWLSKXESuFFjtQZKpa8+soLJEkS+DSRwliYX1ik0w2j4NZYnDWYuqIuMibjMUttFYyEp0TtaXLjPR6HsRXjiaP0gbC9FiuW24IDL0EJFueXkKN90lYSbEEAHQv2sxIxBpmEz+x4N3ArPSKINKoQq089fIbOdhdTmcYGwwWrgaKgrxZpt1Mmk5LGeooIQYrn7lBoZ7gdzgUxV2Ms42zMcDRgvr8EBOHMqaq69x6pgg3JwfDNHwX/iPf+ZhNUPi2EeOVbvPaNKBJ/4q4khPh54OcBVpaWD8eWjakbnosmXlyg/9hj5IMRbn2MtYFgPPWEkd4jTYxKcjodhfSevAzif6JyOCVptxzZqKZ2ImhaGIu1JvB29kcoBP21JYxQXNnc5sjxFVo2wZdVM9po0HEIhkIH5eA6q3GVb0zrPHWRIbzHSk1d1EzGA85fu8lnz+/yhR3Lwsr7QGR86KMf5dTZJxiN9qnqjPXrF/mjL/8RF/e2qPxtPkkiXGmaiER00XTwXjLK95mUjnbS4+j8kzgTMR5PaM+16XVTep02x46d5sf/o5+m150jzyeUkwn1JMeXJTtXrzPYG/DwY6cRzgb3c0KJ3VmJkoqqyhgdZFzYtyx0BD91boFOarHSU/hl5lb7HCsX2dx6ncn+LuuDMVVZ81X3Kn2lSKRiwQg+LGAxaRFLxci5RshMBbnvKOb0I49QW4Ota5xx1LVhuD8A7+jPz6EUjI0nIeyoGoWP2Y7qLuPs6ZMYX7O9PWRkMjZubnLi+GmknE4BOZQMUvp143b/pT/+4pu5hLsaa9qtVmMAGITkvPehatJKSZaWqYsKP6oawmuo3IjGEVt4hdSGKFZhM2AE1nuw4LUniqCubiU83gdyrfRQFyXCQ9Jt44RgMMno9NpEDpi2sYVr2tsSoYLIp6st3vhm1Ntjbd24eUucsVRVyd5wxKXdjKuZo9U+BqLi+MmTzC+uUJYFztWMh3tcv3mdvXyC/RPXURiz1sRIwnRSaQoq44l0TC9dwVsZWjlJRBxriCJ6vT6PPPYESdx4mDVu394YssGQIi9YWJoPZrhCTTtTeATSS6yrKYuavcKRRoLHFlvE2uEFGNqk3ZQ5WzGZ7FLneRirN44Nv0MqJVoIUic4oSBVGiUkVSO3IRteklKShcXFphUfhA+tDURrvCNN4yDB4Gj0i+6jKZu3ORbm5/A4JpOSsqoZjyb0e/O3CS6GSUTX/M28c9y8cecbqTv6O3rvbzaPW0KIXyWUfjeFEEebndRRYKt5+XXg5G3//QRw8w1+5y8Cvwjw6NmHvVQS4wxVmVMWGVk+osbRPrbG2rvfgTdfxW9NEB60aEYzAV9rtvY0kSpY7GikFkjvoQ7+JUlHkbZrzDimqhWptxjvsFmOL2uWTq5QR5KvvrjOxfWS7/9gzdryGso3xUrlEcI1OypF2mphiyCvm7Y6CCmYDDLqyRBjPFvbO3zp6j6/fS1jvZasLD1FuxPzgz/553n4iacZHOwwHO/wB5/5BC9du8CeazR9OJwWBwRKaGK6tPRyKDl7TyTbpHEbKSU7GzntecvJh07Tn59n+Yn38PDDj/P+j3yE4ydOUdcVeTahyMaYfIytCl74yrMsRILTC70w9UJgrOObalTQmsc7w/FU8c6HezxyepnKOsZFwWK8yAu/90leubrD1Z2MViem15/jzMNr7O3usX1pE2s8j9gItZCSJC28UNRNudEnSRN4BDIK8u+1LfBIqskAJhkmK+l122ilOKgtKZ6eCJvbLoKRnaU3dwuRFpx5aJ60u8j6+jZlabi5uR3InD4InsVRzHy/j8dj6pLR5IBnvvzlN20NdzvWLC0setH4LJlmWtLUJQ6Iel06R1bBbcAkyLZNh2wE4K1kkkukNLSjMBYlEGDDyLWKBDqyuEphrUT7sPt0xoBxpP02Tgk2t8fsjQwPHbd0O90Qr5B42YwiNJUZFekwpu5FIFIKiSlrXFXiHEyyjBuDnAuDmpEVtNsrRLHizLnHWFw5RllMqKqcqxdfZXuwR+5vsYluxZpwDIoYLZuJJw9SaHRj6ptNDNHI0e/3SdKU9vIRFhaWOH7qFHP9+cNqjakrXF3irWFrY51UwnwrviUuGPregYMjfCMoZOlpwdpCwuJ8G+s9lTG0VJutK6+xM8g4mNREsSJOEuYXOkED6mCMc54Fr5AqTHtOq+ZKKbwOQ/lhBF0gnAjJohfYuoC6xtaWOI6QUlA4j/aeuJk8i4FqFmruGqSEhX6KTtqMRhnWukPLGN8IaiqpSJOkaV9ayrrkxvqfuLy/Kb5tciOE6ADSez9qvv8R4O8DnwB+FviHzeOvNf/lE8C/FEL8IwLJ7xzwpW/zJmHcurJkkzGTyYhsPMKYkrjXJXnkHMqD+OJXyPerRpIiTEk5r5hkXbYGI9qpQwHWK6SsMRZ05Ei7nklmqWuwBYg5SeShf2wV39JcvrbNFy9aTq+G6Yedg22EtRRVzcEoZ3dYczD2eCd57KE2T547RSttU1c5ZZ6xt7nB7u4Ou4OaT1+reXZUY5VkbfVdzM3N8zM/91f5c3/lp7l+cYc//v1LfOrX/gUvr19h7N2hpcBhwBESTUSbPnP6KN30FB5HpBPmWvP0uh0irSiKIWY4Yf7UCg+fPMsP/OT38sjjDxPFMWWRMx6NGO5tUw6HuKJgf2udZ7/8Aj/2yCr9TooSGmtNICt5i3cGa6ugF4Hlvac1p04t4JWkrA37kwPqzQ3spqUoPN1ewpETS8RpC6mD+/r8XIt2baiVxmlBaWukr4m0RrU61FI16qo2jGPiwPkwMTIZsVBXFAcDut02MtaYwnCAIALSGCIhoGSW4NwFxDrm7JlVtrZv8PjyMqdOrHDp8gaDwZBXXn4JY2sW+osIFRR4260WS4sLvPTq81y+cvVNWcNbE2vCg7OOuq6oqrKZxLHBmmFhCemBG+vU+e0sr8ClqeqYSVES61DNcT7wb7wL/Ssde+raYy04AyIRKA9pr42PFPuDjBv7jn7bI6QgKyYI5zHWUVQ1WekoqzDxtNSPWFnsB/VYazCmJh+PyLOcvLRcGDrWS4sTgk5nlSRp8dR738lj73yS4V7GzWsHvP7q19geHlBxqzLsb/swJJKIlER2iXVIWpXUJDolTiKUlJi6xBYV6VyHhf4CZ86dZHFlEamCbk1ZVZR5hi1LvLEUkzHrN7d4eLFDGulGEsM2rakwEu+dbci8nqN9Sb/fwjfCckVVYKsxbuwwNcSJojvXDtOoCqJIhGku53AiJIXGB7dxKSUyirGNWKqfTpoRdpDeOXxVkVqLKUriOEIohTOGgjCppVVoRWJnCc7dgBSShfkOk2zEcqdDf67N/sGYsizZ2dnGOUuatMLmQQT/qXYrZWd3i4ODwR2/z51UbtaAX23cfzXwL733vyWE+GPg40KInwOuAn8JwHv/ohDi48BLBJX8/+bbTi94gmhekTGZHJBPRpR1icSjtKaztkgStXFlxY0vPocvAuPdekHpFRMrGB+kzLUzVuZl49kCUjqKSiAjT5QYTKWYDDXdeUHv2DJKOK7dvMZLlwoGRrI0L9jcPeDGRs7WyLOeOUaVQ6NZijUPL0oSrZhkGdY4yqpgb2uTwWDA/qTmUzc8z2cWqRUri++m11/jh/7cD/Ljf/E/Jk0TyoMb/Ot/9o958eZlRjQjkd/wR49I6bBIV63QSY8QRylRFNNSbdI0RcsWSdpiYXGVKFGYA8lzv7/N1pXf4L/+u/8p/YU5dna22d3cZLy3SzHYx2QZf/jvf595X/P9j58kbXVCud2J4DjsBUrGGGvRUcT84jKtoymGitpY4jjGesGxbpeo1WXfxozzCXGrjXGBNI3wdI4EN/EbRclyCqW3dFWMTCKcjnG1CSqtTc99quLsbEWxf8CSgNbeHvLsCXq9hK1hEdp1CehIgIV5BdILBlPfneYkm+FPD4Hgve98F0++6zRf+MN/zysvvUB/rstCL0LrmM2tDaSUHDvyEELAyvIiZ04+QjYe8Hu///uUxZumFf2WxBrvPcbU1FURWinWhuqMlsRJC60ivLWMrm/gTfhPHtF43kFVaNLI0E4bbRAfiL3GBo8pqRzOSupSEqeCuNdGCM9wNGDnwFI4wZEUJnnOcGSYVDCuHaUNAwQtJVlsSZQUVCZ4TBlnyCcTyqKgqC2vD2GzDglSuxU8mM6eO8O5p55Ea40tR7zw7BfYGh5QHqqFfH21JjSiWsSiTaR7KKlRSqNFhNYKSYRWmjTtoLTAlZLNqxmTg/O8/2PvJE0Tsiwjm0yosgxTFDhTc+3KVRJvOb28FOQeIBh0eovwQf/H+KA9k7ba6K7GEUxepVI4BHNxjJ6PKbyiNBVaxzhvMXUNeKJu8CIaGktbh/ZgLBQ6Curqjf0406TmUPAQi80L2gKiPEcuzJHEiklpsARfPK3AO0hlGCgtp/xnZkTjNwNH19ZYWVvg+rXL7GxtkiYJrVgipWIyGQGSXreP8IJ2q8VCf5G6Krh85QrW3PlYybdNbrz3F4F3v8Hzu8APfpP/8w+Af3DHqxCBUJrlY7LJkLIM/VCpJFIrdJIilzSLjz6BGU3Yf/EC1BaPwnhJ4R1Zpbm2H9OfMxgESgoiB3EsMdaRtBzeSkytKDOLiCQ7uzts7Y55fajJnOWLlw0HpWe7DMHuZEvzrqWEsystTq31WV7sk3ZaDCdDtjauMJlkbG7m7OeCzw/g+dyilGBu7hydzhrnHj/FR3/0J6lKx42Xn+N//5//J569+irDb5hQCEVp1SQ2C7TlIkm8hCBCoEhUi1arQ7vTI0kT4iRFRQpTl2yuv87W1le5cL7gQz/xOCfPnmC0v08+GFAOB9hiwqsvfo0vfeHL/JdPn2ShleKNwTRBWSgVPG/KHGstta2DLoeKmvZeMArdH1a0u/Nk3TaMa6IkQUqF9A6akdWdgxEHB2PwDhtJTrc2+cC5lM78EkaIENya0ruzBuE8Cg3ao8oJT54QaLHLzegcRxd79OJltva26dTj4NfTRJeehLwxHI0bHaTijk+2Gb4R3U6bD3zwPUSpoD+/zMb6DbwviWJFpGO8c83NwTbS6DmD8QGmznj9woU3bR1vVayx1mLqULExpnF1bG5+UmlES4YJqrIm394Lrr0+GGwa76mdZFAoksTiaPjAvjE9xaGj4NHkrMTWDqQgzzMmWcVeqaic4+aBo7CesQ1J+pyWrLYkix1Nv5PSbifoKKKsS8bjAXVdMxnXFEZwtYBN45ECkniROOqyuDzHqUcexVrYu7nJ73/2t1g/2Pm6xGb6GNpQmogWkWihVXs6F4ZqBD3jKA5TZTr44zlnmIz3mIw32N01nDi3TH9xjirPqcsSW5Y4U7G7vcX1azf4niN9Uq3BuYYYKhqLh3Dte+cOlYO8VAgPwjukFxRlEN+r4ggqFzhSQjQkawHeU5QVRVGB96wrwbwec3xJEyetMJThb029eX/LYFRIibAVyz2BImOkFum2EmLVZpJnxK5EIrCNVUMiwDSbUE0Yl59tpv70iKOI48ePoCJBkrYZj0ZQZkgtUaIZ/Q7GYQQftJqyCryxvUYp/U5xf3CnvKcqS7LRsLFRN+AdImoFUzNX44SjfXSNY+/9AKIqGb1yidIpcuepnMN6z+YoZXEwIUqhZYDI44RH6Zg4qbC1BQeToeX1K69R5CXrO4KXq5w9Z9D7YQrruNZ88IjmPWcXWZ7v0213iZMIgaSsc/Z31znY3SOfwOUDyW8ODDvWEkmBV336C2ep3CaPPPXTDAcT1osL/OP/7a/z+688y4FzuMM9VHiUKFLRoyfXaEdLtKJF0mSOVLdI4xY6UnS7fdrdbhDdk54sG7G7dY3rm88wKS6zujzPi88/y9bOVSIPylqkq9m8fpl/+29/i+8/0uaplS7e1FgpQvIoNUhFUWRYU4WAUldIJK0oZlxU1FVFUeZs1C2y7jF2JyOG+xOSbgvvKoS3oQITaeYXu+zuj8kzR+09X7i8x9FljclLjhsLKWgVysWHgUYZpFR0ZElvtUdhJxzYirWVRQb7G0hrqE2YIJEEDnRtoSUFExdK7UlgKVI8YPsqHSlMfW8H3KUQnHvoBEtLi4wmA+a6c2zrbfLxiCiK6Xa7gV9j6nDueU+WT3j+xRf54Pvfx+rqEteub9zTY/iO4MOocGhH1aFZ432QdBDB5sULT9Tt0jt6DKyh2jnAeHGot+WASakZlQ6pfCAFK0B4pFAo5XAqyO1WpWNvsIupLeNMsG1rMufYLQJ3sCcUx7uCIwst2mlKEsVNa1hgXU2RjcnzHFN5DgrJ+dKReUegyqWk7QWsm7C48gRlWTPe2+OPPvcpruysU7wBAT9MRSXEokOs2mjZQusELRuOjZTEcUIUxw1PxlObknwyZDi+SWX2abdTtrfWyfIBcpqUOMd4dMDLL5/noU7EWicGb3FTQUMRegym0cAJFVuDQBBJSWVMSDq9YWw1VTxHXpUURYWOI/A2tLGRDfcxJs+r0AKsPdcOCnrtEa429BpBQyEb2ebDyk043yNhme/EGF9ROEu302KnGCOcw9nGjNSLMPnmw02yCr/pcIruQUtwpBRvqifUnwYCWOz3aLdblHVJEidkMqOuS6SceljRyB6Eu2Ntaja3tjh+/DidTpvhcHzn73c/eGkIIbaBCbDz7V57n2KZ2drvBWZrvzd4o7U/5L1fuReL+U4ghBgBr97rdfwp8XY7Zx4UzNZ+b/DN1n5Hsea+SG4AhBDPeO/fd6/X8afBbO33BrO13xvM1n5vMFv7vcFs7fcG3+3a5bd/yQwzzDDDDDPMMMODg1lyM8MMM8wwwwwzvK1wPyU3v3ivF/BdYLb2e4PZ2u8NZmu/N5it/d5gtvZ7g+9q7fcN52aGGWaYYYYZZpjhzcD9VLmZYYYZZphhhhlm+K5xz5MbIcSPCSFeFUK8LoT4hXu9nm+EEOKfCyG2hBAv3PbcohDi00KI883jwm3/9rebY3lVCPGj92bVh2s5KYT4XSHEy0KIF4UQ/0Pz/H2/fiFEKoT4khDiq83a/96DsvZmLUoI8RUhxCebnx+IdTfruSyEeF4I8ZwQ4pnmuQdm/d8Ms1hzdzCLM/cWD2qsuetxxnt/z74ImkgXgLMEr7KvAk/eyzW9wRq/H3gaeOG25/5P4Bea738B+D+a759sjiEBzjTHpu7h2o8CTzff94DXmjXe9+snaD51m+8j4IvAhx6EtTfr+WvAvwQ++SCdM82aLgPL3/DcA7P+b3JMs1hz99Y9izP39rx5IGPN3Y4z97py8wHgde/9Re99Bfwr4Kfu8Zq+Dt773wO+Uff5p4Bfar7/JeAv3Pb8v/Lel977S8DrhGO8J/Der3vvn22+HwEvA8d5ANbvA6ZylFHz5XkA1i6EOAH8JPBPb3v6vl/3t8GDvv5ZrLlLmMWZe3e+vw1jzZu29nud3BwHrt328/Xmufsda977dQgXNrDaPH/fHo8Q4jTwXsLO5IFYf1NufQ7YAj7tvX9Q1v5PgL8Jh0bM8GCsewoP/LYQ4stCiJ9vnnuQ1v9GeFDW+Y14oD73WZx5y/FPeHBjzV2NM/faW0q8wXMP8vjWfXk8Qogu8MvA/+i9HwrxRssML32D5+7Z+n1weH6PEGKe4Bb9jm/x8vti7UKIPwdsee+/LIT42J38lzd47l6fMx/x3t8UQqwCnxZCvPItXns/rv+N8KCs805x3x3PLM68tXgbxJq7GmfudeXmOnDytp9PADfv0Vq+E2wKIY4CNI9bzfP33fEIISJCwPkX3vtfaZ5+YNYP4L0/AD4H/Bj3/9o/Avx5IcRlQuvjzwoh/l/u/3Ufwnt/s3ncAn6VUP59YNb/TfCgrPMb8UB87rM4c0/wQMeaux1n7nVy88fAOSHEGSFEDPwM8Il7vKY7wSeAn22+/1ng1257/meEEIkQ4gxwDvjSPVgfACJsnf4Z8LL3/h/d9k/3/fqFECvNTgohRAv4IeAV7vO1e+//tvf+hPf+NOF8/h3v/V/lPl/3FEKIjhCiN/0e+BHgBR6Q9X8LzGLNXcIsztybtT/IseYtiTNvFTP6m30BP0Fg118A/s69Xs8brO//A9aBmpA9/hywBHwWON88Lt72+r/THMurwI/f47V/lFC6+xrwXPP1Ew/C+oF3AV9p1v4C8Heb5+/7td+2no9xa4LhgVg3YZroq83Xi9Nr8kFZ/7c5tlmsuTvrnsWZe3/uPFCx5q2IMzOF4hlmmGGGGWaY4W2Fe92WmmGGGWaYYYYZZnhTMUtuZphhhhlmmGGGtxVmyc0MM8wwwwwzzPC2wiy5mWGGGWaYYYYZ3laYJTczzDDDDDPMMMPbCrPkZoYZZphhhhlmeFthltzMMMMMM8wwwwxvK8ySmxlmmGGGGWaY4W2F/x8jqZZ2TD1YCAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, axes = plt.subplots(1, 2, figsize=(8, 4))\n", - "ax = axes.ravel()\n", - "\n", - "k = 2\n", - "ax[0].imshow(original)\n", - "ax[0].set_title(\"Original\")\n", - "ax[1].imshow(original //k)\n", - "ax[1].set_title(\"Modificada\")\n", - "\n", - "fig.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAEgCAYAAABIE1IQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebBlWXbeh/323ufc8d035ZxVmVnV1VXdDaAJgABBNETSMkgGSVsIRjhkWZItkfKgsB2mwzbtCEu2ZDFk2WEHRctBhRyWHJSDpCmKkxRBh0gGLYINNkmQAHpATzVnVlYOL99853uGvbf/WGufc152NbuqiVZXgW8D1S/fffeee84++6z17W99ay0TY+RyXI7LcTkux+W4HJfjN8uwP+wTuByX43JcjstxOS7H5fiNHJfg5nJcjstxOS7H5bgcv6nGJbi5HJfjclyOy3E5LsdvqnEJbi7H5bgcl+NyXI7L8ZtqXIKby3E5LsfluByX43L8phqX4OZyXI7LcTkux+W4HL+pxiW4uRz/2MMY868bY/5fv9Hv/RDHisaYT/9GHOtyXI7L8fEcxpiX9FnP9Pe/Zoz5Q52//x+NMcfGmANjzF1jzMIY436Dz+HfMsb82d/IY16OH+zIftgncDk+fsMY84eBPwq8AsyA/wz412KM5x/0/hjj/+nDHvujvPdyXI7L8ckbxpgHwG3gdozxuPP6V4EfB16OMT74fo8fY/wDnWPeQWzVvRjjob689f0e+3L85hmXzM3luDCMMX8U+L8A/xtgB/hZ4B7wN40xvQ94/yVAvhyX43I8P+4D/0L6xRjzeWD4A/iee8BJB9hcjssBXIKby9EZxpht4I8BfyTG+NdjjJXusP45xIj895Se/UvGmD9rjJkBf/h5ytYY8y8bY94zxpwYY/4NY8wDY8zv0b817+3QzX/IGPNQqeX/Xec4P2OM+fvGmHNjzFNjzL//QQDrclyOy/GxG38G+Jc7v/8h4E+nX4wxO8aYP22MOVJb8b83xlj9mzPG/HG1B+8C/83ugY0xf9sY8z9Um/I3gdsaivp/f0AIa98Y8x8bY54YY86MMf+5vr5njPn/6vef6b9f7HzHy8aYLxpj5saYvwlcfe4c/qKGwabGmF8yxvzob+TkXY5//HEJbi5Hd/wcMAD+SvfFGOMC+GvA79WX/iDwl4Bd4P/Tfa8x5keA/wD47wK3EPbnhe/xvb8D+Azwu4F/0xjzOX3dA/9LxLB8Qf/+P/3ol3U5Lsfl+K94/DKwbYz5nOpf/jtAV7PyJxHb8Cngv4YAoX9F//Y/Av4Z4CeBnwb+2Q/6ghjj/w/4A8CTGONWjPEPf8Db/gwwAn4UuA783/R1C/zHyKbtLrAG/v3O5/4c8GuI7fm3EXDWHX8NeFWP+WWes4OX44c/LsHN5eiOq8BxjLH+gL89pd29/P0Y438eYwwxxvVz7/tngb8aY/xSjLEE/k3gezUw+2MxxnWM8WvA15C4PDHGX4sx/nKMsVYG6f+JGMLLcTkux8d/JPbm9wKvA4/19QR2/rUY41yf7X8X+Jf07/8c8O/FGN+PMZ4C/+fv58uNMbcQ8PM/jjGeKRP9RYAY40mM8S/HGFcxxjnw76C2xRhzF/htwL8RYyxijL8E/NXusWOMf0rPvQD+LeDHjTE73895Xo4fzLjUS1yO7jgGrhpjsg8AOLf07wDv/yOOcbv79xjjyhhz8j2+96Dz7xUqCDTGvAb8CWT3NkLW6699r4u4HJfjcnwsxp8Bfgl4mU5ICtkk9YD3Oq+9R8vwXrAhz73vo4w7wGmM8ez5PxhjRgiL8/uBPX15oizTbeAsxrh87hzu6GcdAob+28A1IHSua/p9nuvl+A0el8zN5eiOvw8UwH+r+6IxZozsgP5LfekfxcQ8Bbqx6yFw5fs8n/8HsuN7Nca4DfzrgPk+j3U5Lsfl+K9wxBjfQ4TF/w0uhrqPgQoJCaVxl5bZeYoCic7fvp/xPrBvjNn9gL/9USQU/tvVtvwufd3o9++p3fugc/gXkdD870FCay91Pns5PibjEtxcjmbEGKeIoPhPGmN+vzEmN8a8BPxF4BGyE/te4y8Bv2CM+TkV//4xvv+HfoKkoi+MMZ8F/iff53Eux+W4HD+c8T8Afv45FsQDfwH4d4wxE2PMPeB/RavJ+QvA/9wY86IxZg/4334/XxxjfIpoY/4DFRDnxpgEYiaIzubcGLMP/B86n3sP+FXgjxljesaY3wH8QufQE2QTeIIwypflLT6G4xLcXI4LI8b4f0UYkj+OAIt/gOyAfrfGl7/X578J/BHgzyM7oDlwiBiDjzr+18guaQ78R8B/+n0c43JcjsvxQxoxxndijL/6AX/6I8ASeBf4EiLg/VP6t/8I+BuI/u7LPJfg8BHHv4SwRK8jduh/oa//e0hq+jEifv7rz33uXwR+O3CKAJ9uWO1PI2Gqx8C39POX42M2TIzfS+t5OS7H9z+MMVvAORJauv9DPp3LcTkux+W4HP8EjEvm5nL8hg9jzC8YY0Yas/7jwNeBBz/cs7ocl+NyXI7L8U/K+IGBG9VsvGGMedsY833FTC/HJ3b8QeCJ/vcq8M/HS4rwcvwAxqWduRyX43J80PiBhKU0Ve5NpL7BI+BXgH8hxvit3/AvuxyX43L8Ezku7czluByX47uNHxRz8zPA2zHGd7WQ259HdvOX43JcjsvxGzUu7czluByX4wPHDwrcvMDFIkyP+N4l+C/H5bgcl+OjjEs7czkux+X4wPGDqlD8QXVNLsS/jDH/KvCvAvR6vZ+aTPbo5ZZeLyP4wGKxYjZf4UMJgCXDmAzTHCjinKPfd0QCm3WFdY7tyYjRsI91DozREzEXzyidSfc1Y0jvli+JYEz764Wf7fsuXmh6R9T/j8QY9dX43Du7xzBpTjDGtO8w3VM1zTHS6bUz0bku0x7nO8/z4iTECx/+ziEhy+4bzMXv616L6fxs5i19cZqP7lE6Zx913pr79dyVPX8KH3jO3evRT8eLH2nnVl/t3r/03c2UmYsf1slNcyI/It2w7oW/dS+4e5Yx6OEi3nuqckVVLYihbl4PIVJ78B5c3mc83qHf62OtvXALu/e9XV+d+ezMjImmmdN0zml9Nr9fON/vvj4urGX97oNnR8cxxmvf+e4f6PiedgYu2hp6vZ9iaw96FnoZ+ACLFcxXoLYGMrjQ7D6Cc9B3QIB1BdbC9hiGfflb57n9MLaGC+srdj7/XS7xO/580dbIz84a+K7HSP823/2cn3/IPmghJIPYHOf58/yASfhHKSC+i635ztE51w+8hg9+7poT6Nia7/jb8+fYnYYLU9J973e5tg+wNd/xt+fn6jlb08yJ2poLD2j3b9/tmpv3RDEm5QqqBYS6/XuIUnXIA3kfxjvQ68v6/q5P1/O25h/xWndNdq/hOVvzna8997fud39IW/ODAjePuFhh8kVEXNqMGON/CPyHAD/yuc/G//uf+BP0e5YQSn79K9/mP/1PfolvfPMtVvEpgZKe2WGUX8eZHiHWGGOZ7Az4p37HXcZjwz/8lfc4eLri577wWf6pL/wkV67u4/IMrMVYp98phthiwVgah2qCACcrRJaxFhshEvT5sQ34MTYBEYu1FgsY0z6YBkMIkRgrgq8IoSb4ACbqsxcx1mKwWAPWOTKXY4wly/o4Z+T7CHK05gGOGNI5A8EQ8HhfE4I41hjAOUOW52SZI8tyuRZjsa5D0kXwvpbP+EgItSzmaOSaMUQ8MQaCl6uKjTXTiTQOjMUYg7UOYx3OOayzOCtzY4hYYwkxEGOAIAAj6tyGUDeFy2Na/MbouSYgJZ/V2RdHbCNEBzHo3/W4oSZGSwiVgIfgMcYRY8BZub+WjGgCxrgGiKX7YC04a3XO5LoSrAzRE0PE+4D3Nd4HgveEqmoAgg8Voa6Jwei5RaIxmGiJtcfHirquiAE2xZrDp2/x8O1fZH7+LYiGEBy196zXnsU8cDaPrEvDZz//W/ipn/pdXLt1S6Ydq/dD7omst0iMcs+Icr4YiN6ACcQQ1LbIv0PwVHWND56qDtR1TQiBEPXIUYxUjIEQ0+stSIohEqKsUaLn3/7jf/K979NW/OOM72ln4KKtMZ/7bOTf/RPQtwJmvvpt+E9+Cb7xFsSnQAlmB/LrYHoQa7EVO334HfdgbOBX34MnK/jCZ+ALvxWu7oPaGtTWiDkIgLtgazBBgJPaGnnu9L0GeW8CCzY5Pdu+v2NrwIhzijX4UpyW2hq9cP2cOirnwOVyvKwPzui56X3s2BqeszXgwevzGqNemoE8h8xBlqtDtBcdY0Q+FyP4KOeotqb5XjzEIA62Gd9pazBG5tc6vRb9LpvO1cpx1Na0u8Mg39tMXWtr6Nga0M+i8/+crZG/63FDDdGC2hqCl/OMAWy6v5neb9cBgnofLO25p+tK6CZ6BR163nUQcFJVLUAIFdS13JsY2vUVLdRe/u4rmYdiDU/fhnd+Ec7E1hCcHHPtYRFgFqE08PnfAj/1u+DWLekAltZBsv8hgRS9Z+nfBlBbIw4JvQ9B5qau9WfQf4cO0FFAlO5dA8r0voTY3pfo4UPamh8UuPkV4FVjzMtIoaN/HimK9IEjz3Nee+VTrFYL7t9/h9ffeMzBkyUWhzU9QizxqBNJTj5C7T2ul3P99havvlZycnyfo+NzVus1V63BOQc2w1ojxjmC7L4D1hldp+qkMVhr1JFCNIqGbabA2yrQiMqKgCFgrCMGr2vXEIhgYnOuEHEuI0bfYQ70GAaMNQKSTCbPTAwKvpR9MU7eTzpfS8RjnDhqMBgL3pc4l2FMwFknzjz9nxpLZy0RCL4SBxlqcdoxEnyFNfqAGdM4UGMDMdj22TEGjNMjKxCwVsGBgIKLe7aoNruzwyISo8FEI044GgIBQ8QYS/DhIosVYrPhCnp/kiWMIci5Rq/HDnodaNBVzhdrFLQkQ4kAzc6/2w2SOKUYvB4rYHF4vN4ziwlyn01mwQdijDgyTGaIIcrn8UQsJlqClVOOgPeecrPk/PR9lov7xFgpuCkJQda3s+IzCCXvvvsNbty8y9b2DsOtAVgFoSY5rlpWhzXE2mA7O8Vg1VFZ0/iqaMSgOyf3xxkIzqlxrokKYLw6BBOtGKZgBezoakxsYvyurMMPfHwkOwOIM/70p2C1gAfvwBuP4fEKASE9iCVQtQZWbQ0+CNNzewKvlXD0AI6msFrL3KqtkXlOO2l1di6BlAR0FLhERfbP2Rr0+cfEdpdPEAcYFAEkEGKS4dfzdZk6mw66SE7VGnWm+j0xdL5Ln5PuJsboonXqqDHyTPlSvsfoOVn9WxcgJTDmK/mOUMt5EeW1jq1pHKgN4nQTeGvOSd+TwIBzLSi4MPRzz9kacZxG5q4BVQqGfOhcP+JIE75L9yehrqDz1bE1fBdbI+d30dbIv59jL9TWNOAoAWJ8B+zqOamtkc9nkBkBjEbfjxVwo7cNYwRYFis4ewjz+7K+oxFgH3R9G/3KUMK7X4ebd2F7B9TWyHW2tga1NdTm4j14zta0a8goUIotuFNb0wKYBD5bW9MCzdj+/Ai25gcCbmKMtTHmf4ZUmXTAn9LKtR84DPKMFOWGJ08OeeP1U4LvybGIsjvH40OBc3mzg/d1oPaB7e0dXn7FcHg8w2QVtV8LKDdyo401WCxBDUNUqZEx8pA0IZzoscYS1Wgb41qkrovfGAmDoWAjxtA44YZ9UCRqjRVHEoOwQsowJHAjD52VZ8bJuVmTwJQArQaQGXEpGNcAIYzFWkcMEWvFUVuT42z7QMjz6smw6qwk7OG7wCadso0NwIuxEwQzEYsh6nm1351jTMQ6q06fxiAnW5HYEbAyb1EWfgyeGIXdiQYBEcoSGDW4ibEhGmLwep6RWHuMNRjSjkgNmEFYNN2VGZvJc0gkKoBtTkqBFHpOATAeMAFLRjARjIIsq3Ng5f1ye4385wQwmuCIxjf3WdZtToOYvAJdMuq6YrE4Znb2NqFeYzENuxW9zLrNIMug52B+fszbb3+Da9dvc3t0B2ODrK0Yxa9ap1/jMc50WDKHjV62A7reYrREI+vXxUAkl+erttTGE4PTXZXBGSfPGfI9gUA0FkuQe0EKz/1wwM1HtTPNcEC5gSdH8PoZ+DwdEXEuHkIhLEfawdcB6ihG/1MGjmbgSggr+ajaGnEGtgUhSdZoug7ZKABJrIE6qOdsTevsdH5juAhaOrZGHKnufBMb1ACgZGuM+s4EkJL5V6CltgaTmBzXAiGjrFRQNsNYMImtic0piuNPYCbK94VKXk+/R+QYNjEtsT2PzrPcGDBjwebyN2cbrNOAvy6WacBSa2sE1HSYqMSwdMFdDFwEQeh993pPv9PW0LE1qK1pQNNztoaOrRGAh85zpteh91ZtDTa9n/YaE/senBgra1vQ8AG2BhzUJSyO4fQdqFedex30fXIKZPpcnJ/A29+A67dgdFcAp7F63+kwk15Ae8OSuRb0dXxbs5ZikHMkQG3l/Du2Rj4f23vUAKrQzutHtDU/sK7gMcb/AvgvPsx7Q4xUVYmPNS5zjLZ62MzhbI71me7Ma4I6m/Qs1KGk8oFeb8ALLw75GRuZzaZkPXlgXObAxoa5sDYjhPTgWoLuNoxxGN3xG2VdAkbDVGkBN2dLplRvSLHLzvNlEfZG/jdiTUagRt14Z4JQ54qCK4tJjr/ZlafPyH/C2kRhR4xtWVdrsa4n1wIaMhPgFY0wAT4IOxDxBB+IPmhowRNixOIU+AhbIesp7TACEadTEcBKyEY2UsLYGGsxtstqpTAGyDLT3WSXimyQeMvIGQX/CbVLOEhATQi+ZdaixVqPwQrbYYKCHTEQ8n+JeYn6zEjoRuxTG35J68NYAZHRCBiwxoJLc52uLROAZeW6QmzXZAgoa6O/R0/wXq7NgsFhgbraMJs+Zr14jFSGlwURg26mCAJaDFgXMTHw8OHb3Hv5M1y9do3x1lgYIRNx1uo5IEBZWQBnrNiXKMY+RE/EN+tKVl6u8Xddhx6sMXjj1b4bgvXCUkWEAfW6Fpo13oL7H8b4KHZGPwBVqcbZwljDKi5XkGORUJQ6m/TI+lJo/F4fXrwhznl2Dj1dx2pr2pBSpjv9BvXTAIa042928aYNrTxna5qwUsfWtCPtajVkYjKg7ryerpmOw1Xnnxy/UQff0hW0zjiBB9sxcFZBXwJttn1e08OrtkZCWUHDK7EFOGprCDUN89GxNaitQW2NsEPoz8TgpLmmPefvaWvSnCUGhgu2RsJB+v6gYRcQJ20TaFMg0rE1cszEvKTzSNcLF8KE3ZBjWmNpjlOYsGHsMvmM2poG3Da3XNdORL7LKzNmQVEPVBuYPobFY10bOhcJZDbhUMBF+Y6Hb8PLn4Fr12FrLNfdBaNqa1pSJf07rS0V8TTrHp63NQ2zZLyCrAxsresEmR8f2vc3a/xjAG4+6shcznAw5O7dm3zhC3c4PT5lPnfYOtP14gmhwjgHNtAbZFy7vcfNm3uMt4YMhn3yzHBy6gi1pyjWbG1NcJlTGt6KE7eyG43GSQhEBb8pJAJph94gBw33Jq2MLihjyJzsAGS6ZQGHmIwLGNVBNBuLJmTjCESsolOjTI6xFmeMMoVpkSQQFEC1IhFhWIw64NgApcQsqELGuOb5FibI471qR4L8jOnBVmfvTKa6DTm3GDwhoKAPjFKPSf9jrITFbNIkKRCQK+gIhDu7pKiL1EQBtsJieZ0RCQGJhkR1K8HrNYXmPDEygxHffEvUuI8hEpsQWQpHBmK0AuCiUqBq7KIRYBuDxZgeId1rm+693rsobI3od7wGnWQeYohYJ6xY2r16r+cSouhwrPx7uZoyO3+P4JcK1EIDtJqpx+BsxFnILcznMx7cf4uX7n6GrckE52SuBOw6uQZ62FjjgxqjqKGjEFQXJbs7X9dybcZInDx6tdMGU3co92QAjSFgCCHIvY4tDZ7c4SdquBwGA7h7E75wB45PYZ6ochDmptLwRxAh8e1duLkHWyMREWcGTp3s7Is1bE0E4JiO7bDqxFN4oiuuTODhOVvTMBLd0Ioxci5NmCQ5y9bWNNqHNBon0HEOXcCSdDGJaUox046taZy17Tjg5j1pV50MjOssBN2pe9WOBH9RN5GcvVGHHRM7oOCiCdMl9GHb87Dp2jpAoPHOaXrS9+g6ToAgvTXZohQCiuncEqhR9NCcZ3q/73yPb0FMw8glYBPE+cco96hja5p5DRZMj4alseneP3d9NlNg1SAxmUsXW8CI1ciZvqa2hhBhNYOz98Av9PwSYIsNXhCwFdupnk/h/ptw9zMwmShjlEJ5yhCierT0XQmkhxSqVCaprtv5UVvTXON32BrXXnsIermdkNtHHB8LcGMwVKWn2gTG4zGfee0Oxz97yunJCcvHRzQ31QRGuz1u39nizr097t67ykv3bjLZ3iIS6ff7xGB4dnREL99lb/8que3pJsVioyH4Tjxaaf1oLCYGBQxp14CEHbonGlGnEJMiRUCFiqgknGKJsoUXpkW1GUnIHJvdmmgXnEyAgARjME6ZjCix6qj8kmzrbaPRQZkAmcDE9NAwEfINXoG8gaihDwUrYpckFGJNuhrbsD0xijNrwlMaIovBYF1s7ls7V2IA5PKSUYgK3hKYUSYqoiG7Sm+FhJhEPwMxyKIPwYtoNSizk0JVxqqJCS2g0lBaYtvEBoqBifog+6DxZgU9QZ0+EbypsSYjOo8NXRYqhS1pwnjEqIAusUYCkIgWo6BLLjOCyUS0TY3DsFmvmZ0/Yzl9CKFoNkGxih2QbPQ+0mGqA+8/us/B4SOu3bjKYGso918BTKLKo7E45F4bF0W/pDuu2DAJMufRWdJMyi5QQK+LEK3BxxoTNWSrjsRgCCboWgsNaP7kDANVgCLAeAyfuQNHp3ByAs/ZGnZ78OIW3NuDe1fgpZuwvSV/7/fFsB8dQb4L+1fB9nRulRl5ztbI86BUvDUtIFAAeWHE5sanN+g9CK32w9hEF9KEDpr3J8cPujtpLr8BKy6xRZUswiYEILam0Y50mQCTQFK6puedva7F6FuwErgIYtL5JbYnqjPrsjcRmV+XLHAXoHSYlwQoTAKMCczYzt8s2Ko9P/QegIYPTcvU6HPQhKrStTaiaz3vRqydbF0CMwk0tLZGQIc6/QiYWoCdU22JTejHtvOZQFZibpr7qwCpCfl05sFkyoIo6N2sYXoAM7E16NKk6oBsDA1bmP6LER49gMNHcOMqbA1pQGDH1rRAPsh98qFld56zNReE22mOU/jPGlr9zXOg1SQw1mHXPuT4WIAb7z3ffv1dHr1/RK9X4mzNjWsTXnnlKkfHR5SrKT4W9PqWl17a5sd/4kVeuHOV/as7bG1tYTOH9zU2M9jMMl9MOTk94V5xh8FwoOEcK+EiZ9qHKDkRjRUKiIjKiBhiNETVNqQbLyxm3bBBolFR1icgGSfBS3gHSIJaAN8wMUa/xwlYck6Fue0KE/ajpeXEUcbWloSotlFBU/OQqbFIv+o/0zklHU9MuxPSV8o5eYKGVhCGJwZCHQl1zXI+49HDd1jMjxkPR1y/cYVr128x3rkiesv+GJePZJ5012qchjDSg676naDCPROj6k2EYUkaqxRbtTiiqfUeyuvGJMfvdG59Y0daH6GMT4iS1RQCAa+MWMO/CZAytOwYkWijgkp9oKCZM2GRdNqsVQ5OhOXEiImutTVAMJq5pGG1slgynz6m2pw2D25ir0NaG/qtiXl3RtibxeyM9x+9w72XP8VgayQ6GmWyTEygTsIjaf2KzY0QHSaEToYTAmbxGOvUflqCC3hjiLUYdtH1GQF7HglzNmnlYoSax+mTMLyH19+F94+gV4rTu7YNn74Kx0ewmkIsJJvqpW348Rfh7lW4sgOTLWFnfC3MTWZhMRVgdOcODAe0rEZUTcLzzjkBnuR4ddHG5Dg7jgY0dKPHTGJltTVNJkqj7+nciOQEdI00mh+XBK8db/acrWmBWDqH2NF2dB36RVvTvt93wjrq/D7A1ojBjO13xCC6Jl/DfA4P34X5EQyG4mSv34KdK/Le/hb0hno8dbwuhYVaWyPAJXaAkAKT9HvH1kioKd2f0AFN+h2ygDpAIH0utuyU9+rYk8C3A1pDRyScmBCr52BaWyPrJF4EfEmDk4Tl+kxfuO0m0mqbvAiJp09gfaKgFME9aXQBdTKIirGYnsGjd+DlTwlb2cwnLXCkE4qNjXOU80qgO617rMxt0uxYC06BqNoaIdOMHNN31hfp85HuEv9e42MBbqq65hf/y6/xa7/2lF6vYG/PMRxElosaZ3KMyTGU1HXFdLbk8HAOxrBZV1y9VrN3ZYd+P8cMR+zt7rG7e0pVbVivVuzt7cnGQHUJTsM44vBR8NI6MqdxT7kvksUjf5FATNDdqhXPSMoqijEqeJHFKqBCQYoyD0oTyeddhrWWzGU46yQkYE270Wtsgay6JnvIRIyNWJsrME5hIL33SXdBbB5icdQSZpHsAGjjxqF5jzDbohEJIbKczTh6+pD57Jiz8wNm8xN6uWU07GHHE8r1jMP377M9vcJwfIVZsKzWJcPhVca719maXKWf9eXaYnKCjmglM8rjiF6NcDKojRaADqqX3Yk1DpyGBk3sbJx0Tq1VPizDGqN6okDtK2GFjAWraeDI/U0ZPybNQfAizk5xf2h0NEHDZCAp7hgwLjmzNOQGStaT3D+JShiKomKzEnBThyVOWTG5xJapaVh09UEui7jKEH3No8fvcX52ypVr18l7IoQNTSZee44mqbxEfCUhQIze7tiwOdY6AeLWEVwkI4e6FobY5niJrYmvzA14yVKUsghiy63pXv/HfNQ1/K2vwa8+gV4BuxkMAyxqMLn8Rwl1BbMlHM1l17mu4HoN+zvQz2E4gr092D2Feg2rlfyudqFxYskYh/R7cvRWAEMCKsmhNiOBAtMeMwGLJgSVHKO+X20NHVsDRjKbrNWfGiKzaVedvjY9cJ1FaNT5qq25wAZF5Ll8ztY015ZsDeh7UjhDryXSakRCFDDz9CFMj+H8AGZHguiHPRhOBHS+/w5Mr8L4ijAe6wpGV2DnBmxflfT2dBlJ22MVROD0+3jO1pj2M2nOIgJmErNlYgfT6Zza9KFMH1gFc75SpkxsDR1b03xRmqfgFdx0QnqNjqahvGg0Ld/F1jQAEQWh1kBZwXIpepuwpBFMN7um9lKaQxkgi1AZAZiPHsDZqWhv1Na04DydYwfwphT/NE9B57rR6iQhtFNGLpPQlEPWWK1AvmNr5J6ZTlTww9uajwW4KYqSb379MefHFaVf8eCdJTEWbDZz6irgTB8f12yqFQ/eOeLoaclw6NjdH/LZz9/iZ7/wOW7e2gcM1mRc3d1jua7YFGtCXeHyXBgW4/BK0YYQiEYydgCMdRJSiOLunBWxaNqBp/BJ49jSGlRHgtHdMrXs4oOKYSMYk2m4QsIuUkPFSl0YzTawNmVXBfBBnz3Z4VhriTGlosvCUhcKIDtrYxqdisIq0oqQv1UNQIhqeKWGCZTFhtnZOWW5ZjAasCk2PH38Po/e+yaL+RHbWxNe+fQrfO5zLzAcDphs7dIb9KiKkrIoKIqS45NDVss1Ze1Zr77NpoxsbV/n1c/+DLfuvEKe90CzgURHg4hT1bA32h/Vf6QNWBvOU4eqmiO5V60dRjU5ovmR2jYxBHxd4b3UVXAuU+BjO/FcTR2PNOBR7LNm6alILuq9jFE0QQI4BVymDDMBVBLSsyaAc7IeAKfrbLk8Zb14hotWN+Kermqr8Q/6S9o4Wt34nBw94+DZAS/efYn+oCemJWTKpqQ5MrohdVhlawIiPvZEXDQaosqJxmOdFBR0TvVtDn1GDMYFjPeiMaqDJliImD4ERGQcPkHgpijh1x/BUQV+BW8vIRZQzCVcZfoQ11Ct4J0jeFrC0MH+ED5/C372c3BbbA0mh719WJUSAqgrSTVPIadEzccgN0/XgACMxBhE0VU02UpcdIQdW9M4kkZwWsuxQnKuINlNXaYkIeSUraXAJ4W4fGiPH4Oei+08WJ3dlkG+KzEvjXNrbY38rWoBQgPy9HuKDZxOoVqLdqko4Mn78OCbMDsUduzTn4bP3RYmbGsXBj25b0UhP08OYbkWx7f8tty3yXX47G+HO58CtTVN1lDDcul8dEMchtbpN/Obsn6UCTKdOVJbI3NraTKvQpD7r7YGpylIz9mai1lxra1pGaTOXCVxdQK4DXsXOvfAyPk5R0PLpHW2PIX5M1rxb1czpCM+9x/treT4EA4O4O5Lcg8AQkYjFk9AONCu97QmmtpDRp+DXObVRa1OqtllLh1DQbj3YL2wOWprSPXQrBFQ+yHHxwLcrNcFj5+ek5kJ1shusVxvqINvam1AJMSSyhdsViWbFZyfrsFmvPrqTa5d3WF2Ouf+OwfM5wt6uaGuNwTvGfT7BGvwMeAsze5bNj1RmLCUVo0KgI0CEbqiYwUOSgu2xeWE3rfGIBk0JRgjTjME2VmjdWA6osEkVE0AJ+KVJQgCeKKKoSPK6qR0ZjF8SSMDKaSTFn2aMom9JuBg0XWvtFBdVTx7/JDDo6fMp+cU6zOWy3OqckGWO3a2h3zq3ivcvPECV65dp9frkff6qmsxOJPRH24xqGvy/pJgT6hmcylyVxccP3uD42fvcOPmK9y8/Wl29q+zf+02xmSdMBmigyIqm6xMWmKqlImw3fTWJG6OEaOixKQ5EpBT6z/TPTT4RiSc5lsZNxTUpAdRd71GgY2JTjVIYKJtWR8NITf3rwEVEroK1mCjwZiM6KTqdqhrVsszquqsQSwmSLq2J9KksdOCmrRUnW7018slB08eslp9nu3dfV2rta4H13wmmiSMlDCSs1aF02l+LYSU1+ewMYqtdz2cCZgYBNxEjzHpv5pU1ybqzlIKIiar+AkY6wKenoOZCDjxHtYbDSu0toZYgi8EuKyA07UAh0/fhGs7cLqAd57CbCG7zHojx+r3Wwdk9VhBnVizU7JKz6fQUQpJmNZxNmGLruD1ORBBJudpOmAqCUxtpj/ToXV9J4CDhlGScDZ2BNVJk9OxNS3r1GEeEsUIja1pz5M2TAFSgO7J+3D4VEIe6zNYTqGcC0OzPYK7r8DN23DtBvR6baVcjMz9cCw7/f4C7CnM5sKUVAU8ewOevQM3X4Hbr8L+Nbh2W+YhaCZRly3qgq6GLu045i4ASUxQEkB3NUcNoEism2mP0dS76YbyTOenAs0EbGIngy4qcII29JPuXwMqorI/RkFOpgAhCAuyPIXqVI9hITgaxq/5Hjr3kAbfAcL8PH0Plp+H3X0975Rx1QmJdWyN0M0KnJv5tS3QT9odD7geTfmCBNBN+k+/p7kvQY/54W3NxwPcrCrWbsloPNDsFNs8XNZmmNDSuyFWCCsou/P1qmS9KdmsNxw8PeNLX3qL5bzkhReG7EyucPdWgd0aaealVscNEa9siY9GnaTcnFQAzWiBIxP9hcSFlDIdYxDAgQAkME1oQxgczZSySAZURDU1kmHkUjjK2jYZwdBoIkSkKs7TQOvsAUlV99imSqyeHJI5YzCEUIsDauhu0azEAHVdMz894e03vsr7730T63Lm8znBb7BZzdZoyJ0Xb3Pt2lUmkwnD4YiqWBN8TVkVjLd2yPs9sjynrjyZNfS2tyHWRO/ZLJdaQHHE2ekJD+9/jfcefJ1r117mhbuvcf3Wy2xt72OsI4RK179mnjU7xkAjlk06lGSkU4jLCFuR5oQohRiTg5e6P4FoLQadb2dJafSCajMEHKquBL0fVos6quGJ1mBC1I2rac6z8QFomMpEojJ1TRkMDHWM1HXBcnFAqFYdJjAt7djYFFmJUcW8Hd8E+Mrz5OkjZrMZN24GXG4JUSs3hxZsg6R0S+KGAmmdyxBRoGMI1mJCwNoeHinsJZlhFmccjfAcK/XCrAA+o6DGmQx/IZD/MR+rCtwSxgMaoWbjODLZGTbGvtLJ1935uoRNKWDo4Ay+9BbMSnhhCJMrcLsQfYKDtsaKOpIm5KG/JyrA0AlF+AYXNDv1BGzSQkif6wIMonzWos7AtE6zG45KGVLpv25WkeGi473gwLvZTunkIk2BvVC3IKHR7ihT4j2cnsIbXxF2JssVlKzBVTAawQt34foVmGxLuK9YCwNSFbC1Df2BMGK1l8/YHfk+H8QBq63h9ATufw0efB2ufQruvQY3X4LtfWW4tGKv2hqeszUtmEtz1HH+xtCA0cSYJMcQ0zrS+U4Vip0Cm+dsjQAIRREGWg1UaI+bigl2Y9XNGrDt+SWmrgEpusbqEhbPhIG0zYKiPeHn/t3VBqU/Vx6ePoLZFG69ICA0reEGrCSw5VsWKtm2BH6bGj4KcmwP1NbIexTIhbQm9Rl0CfCF9lo/gq35WICbsqzxviREif07l5MyY6yROjcGofhDrAixRqoXOzbrmvWy5PxkzoMHh7z/7pyyqJmer7ly9ZDXPr1iz+xKKAhZYziDDZLGmgWDT+XrG8GLZvUYKednTSZODq2i29lVG03lRjNoCOqQdVceosfpLsqk4mkuF92Ms5oFqDt/i7I1inGtZFfZRqSYjEdsHFqqS5NOKGjbBNDnldhUJq6qivOTM779jS/z9NHrbI0deVZDXHHvzh55b5/RcMxwMMZlGaGOLGYrinXN1mTMeDLC5lJJt1jXhLKgqivq2mNdRrmes1qcg4po6yKws71LMShZLeccHb7FbPqUJ4/f4vrNT/HC3dcYjraRys4+wbMm5V5qEmlhQbSKsVY0TkYixNAwSaTUToA0b87pc5ZjnWsYsHaHJjsL0R7GBrAIgNG2FQk8dGn6xtao4Lx5UeLKCmOxGgr1saYolmyWZwrCehhyYV1ZYmNGzAzW1xifNFtR7JieU/JdZyfHnE/PqKsal/cBizVRme/Y2mo1MFZr9IQQSGxTorUb8BgNxuRgKvlMNPKsRCv1oai1DpTBUGq0Q+6LrO9PyCi1VUFMsf+chjo3ynagFH+sEEZCWY1VBasCTubw4BDencOmhvM1XD2EV1YiPG50FoiDa0Sz6rS6WUZpLSfAYzLauCTpRtI4krRDVlsDyWnorjwxNimTxuXicJyyOCn1O4VKkk9rivElWwONx2wcmoeOrWnaJqRf0zMFUNUCar75VXj4bRhbyCqIC3hxH3p7AmwGYwE8NTBbw7qGyRgmI2HEQiUtAspCwj61hjTWc1ic0QC7IsD2HgwKWM7h8E0R0z6+DTdegbuvwXhyEaQkbRDJWScmJQGNi7ZG2LgPtjU0tiaCyVvh9gfYGjq2pgUwVp257ayPDtBK5/sBtubC7yHImt0sYXWmYKkHamtgCTGT73Lddh2xNTBdgH1yLPWcqlp6T6WwaMfWNKAqMV3N85SOZy6Cx2hkjtTWtLqnxDim+kcGaYdCOx8fwdZ8fKySPkDWZNg8lwwOK2guARypU1wSQo3JBhiTURWBo2dznDe8+fox5VrCGMv5hvceHnF6dsqtW9fo5wMJL8WIj7UUnosWr2svqqGWzZaEQYJmNNGoIiAVa5Lf5QFP6cF1qNX4iyOwzmrtI6ehDnGuVneLqfhdU+smGqJFggvG4JrPtQtEBPQGqQujBeTwhJDaPESdK0HLvq4hs5SbDYdPHvPrX/tl3rv/TYZ96OU73Lx5ncn2DoPBAF9KrLzcrFlWCyJSCHFvdxdCj2I9pxeH9PKMLM+IboCtHWGxZL2ag3FcvXabzWbN6ckJ82LGpoLVekmW9cFY5osTFqspB0/f4P5bX+HVz/0M127cZTDexuU9MI6IlGdviygKuyYLXCtEp90Smh4eJeSUdi7WGJUOSK8ro0XTUso9IBlGRu53u2NLBl1/aJjc6AMsrEV6UKOk9iNskBR/6/bhMvjoZd16z3I1ZbM6V0apR5bt4eMGU1VYY5ns3GO1OuP8+LGEgdRPNL4EASar9YrTsxPKqmRgBmSmJ6xc9CKAN7GVESDrz0bJhAoxaFcAh1cQZqxQwDZaoumJHk0nQJjl2JAQMXqt3pzCuKGp/P2JGQ2DkqlGxilrU3QATkR2lzVkA3m9DPBsAeEQXj+GlVr2+QYeHsH5Kdy+Jn2mUhpv1CabqSx+wwIkcJMcX2JCEjui4KHJ0tHfdSMlWVSGxhE4dZpqM0RMq04z7Zq7IZKU3ZJsS/O5jjNK1WOjp2WJlMVxeo2JpTFGQiGZhc0Gnj6Br/0y3P+mFDrMd+DmdanwPBiI4DUaYWkWKzlWZmB3D2JPwEscylzmGbgB1E6YmvVcruPabdE6nZxAMZPQ13opwmJrYXEiQuQnb8BbX4bP/QzcvAejiehyjAO1NXRsDR1bw3O2RvQwtp2r9N7EAtpeazCa8B60upfvbmtEd0ILFlKYigQadL4bW9MsKH2/rg/v5bpXZ3r/c8j2IBYyR8bCzj1YncLxYxrBdPN86E9jYL2Gs2MoS2E7TY8G+KWQpul81jq5VqfhJgdNRWUAtTUyH70WVF4A7Okl3wJHq/fiI9iajwW4EeZVQYJqI2yWQZVoeaWtotR/8bFERKkVVZHx1uvHvN8/5+GDMxHJKuA4OZxycjqlrisGZiD1P0zEREuMLVsgafUdMGN9S/EbtFaN1cCBNmdIC0nXXDRBW8jEJuwh1XE7PZesVkA2sqNPwtZUT4UYJRSg/aGEwTDqMOXrpIpvy9wYNZby3AQBTFgISUgcqMqSs7Mj/tbf+qs8efQ6ztTEOmdnnFOvFzAaNn1CVssFxWbNfDmnLjfs7V7hPEaK9Zqt7W0GWyMmkwlxtWa1mBOIWCep+MEXZHkfE2spPpcb0Poty5UcryhXDPpbRAPLxVPe/NYv8vjhFcZbN/nUZ36Cnf3rAuqMaQTVwqKhc548fqrNA9JSIDVEbTcDRE2NbuK1ChTVwKQmoU38SBejMESBGEoB2z4FHrUqdENLJ82T7JhNRwzoFeiGKLVmqqpitZpSVnMMhry/z9bkUxTFGX62Yefqy/zoT/8znM8O+fLf/XPMipOG0dbLl403kbKqOZ+eUVQbMLukTCmC0017qwuwqaq3EWBvAR9Do100IKAGQx28gGwDES2maKTwpfGxuRcmiUpp7fAnZkRoaogYxKllWVsoumNrhLkp5UOhgiITUPPgHO6fyb1Gj3U4VaFsJULYZl0plZ/YAgvt7ry1NSQqMHTZkw7CTk42QpPWi77XoI46hZ4UrDTsgKMRthq98en7m/5QKbyQnDHt+5LDb4AZtCyGVUZHHX9ZiTP8W38V3v+2XN8gk0rQ6+UFW8NqLs5zMZd2GHtX5DvWa9jehvFQQlWsYTGTc3BOnLcvhElI4Ti1NYAct9xIF+zBlszP4il86xfh4VWY3ITXfkJ0OWprWnZB18Vztqbx+E2GWJp3WtDynK25AH5SWYnnbI3c1yDryzia3XY6fsfW0LE1dIXHCejGKExMVcF6KnomDPT2YftTUJzDbANX78FP/YKk2f/dPwfFyUWyrjuqCs7PpNKx2W2vS20NHVvTVlzuXmNojVeaP4yClASMlAUzUe6Hj+296Nga+Q4+9PhYgBuDGNMQ606qdSaMh5GmktK4UDthx5IQKxUfBx49PAfAl0LFGkSPM5uVHB6es1yuGI1HDQq2JmvStqXrlLA5xmRakyQ9x6Z9pgGh8dNuPfE8vrE5URkDrFOhJQLUnDaaTOEFq7oPBPGnsFdynsZkJAGyrPMEYqzupENT/8oaaSlhNIRGjFpkTc7dZo7ZdMbB06e8+dZbnJ0dszvJ6fV2eXp4xNnZMTuTxxgnyQhbW1vs7e1x5co1MicMzXg4YHtvj63tHfav3iDLHC7vEUPN9PyUxWzK9OwU5yzrxZLVakmWOUbDAXbSp9d3HB0dUVvoDwb4uqQOkVCdsV4esFrc4Cg/pqwLPv8Tv4PxZFvbSejiN6ZN5b6wulMrjtBct23oUTDkQNRwckr6TscRoxO07o/8apSlEBBtgsH6IE1KjRT2Q1eMiJpTk1MJjzkEJCTdVAp3hhCoqg3FeoGvNhibc/PeT/Jzv+9f4cHbX+Erf/vPcuPFz/Ljv/W/zunsiHfe+CLzk5OWIdZLbkLzdWAxPaUsKtHDaKO6qGsUuWqdi5RlJyBQWoYkHVdnip2G0Dxa/dQhjJnFasjVugwXgjTj9IjQOmgNo0/UUOq+yR7ppkhncu0oIImlgByTi+NQW0OZnJ/qN6YlHJ5JSvhWa2tEhJrSthM7ULevd3fJXcfSLEp1gEQuFDBrGIMUToKmjk3nGWjZmsQupLBX+pw2FerYmoapSM4rba6NtpTopn83vYMQkDibwcFTePMtATmTXIocHh7B6TFsTwQDFMDWlqTPX70mTFCeCTDc2xOG5+oNqSuU98SBn5+K/uPsVGsMLWG1lPcMBzDpCZA6PJRzHwygLsRZVmewPJC6RMdH4qx/8ndKZennbE3rsJ9f1wrgutfdPKQ5zQ1MDxbpOLEFf8lZNLoaBdHBaBaR3q8Lhf0SwE27ndCChKSbSuHOEESrtJ7LNdoc7v0E/L7/Prz9Vfjin4Xbn4Wf+nlJt3/ji8J8mfYSm58mSrhweipZajHIead12oTI0lq37XxEK/csHTBNCWiGlFNRcWtrGtAv9S9UnxPbmjdBgd6HHB8LcJMsuNaNxRhLlvcoNrTrBcmzj9Gr7kazNGIkVKk7MaR8fmsyNuuKJ09OOD+fceXKVWzqzquCYNkUeYxx2pahCxLbB7hpdqm7KBF7Sl0bo4vNNinlyXE4zcBSx2iQUJsxjZM22ssqIXRrXbMLb5jLpmmbFgqM4I2X8KzRqr5Gq5rENkQQY6SuSxbzGQ8fvMWv/cqXODx6xvx8TawDL15z3HnxNi7LsER6A4e1hr3dfcbjHd3FW6wzZL0ey8UC72vWyxnDrS36/TEx1FiXsTXZJe8PmU9nhLgkEFkv1wwGQ+oyUq43bE1GZLljtVoxGGVYm7EunGjUQsGN/S3q8ph33/oHvPTSjzLZu43LBsK06XzGjlgxVTpOguIL4etGkC4PnbRN6Cw2/UVAjBQtNCnkpWBJWvmoLsrkwrahbRIspNq+wgTqijEa4korKEZltDx1VVOVa6KvcK7Pb/nZ38dPfOHnufva53j3219iPLnKlau3MXlGf7CN6/WwdQXrSNrUN4CEyHyxoCgKYjTKsATNlAyE2uuaM83OLyqNLOy2GM1gRJznrCNGR2ZEJB+8hKyixtSDDVIawUa8zbA2CHALlc5j4BMzGrSou2ljJTOnoHU8dGp6xIpmJxGj1AC54KwUwKwreHIC51O4chU6tqbdYWuYqalUm06qCxZM5/fQvt6IjZNjo6MPSQ5Rfxo6jIQyRw2To+eU/p4WV3O89D4FO8Yn9Etb6VivPYUIGgHrDB68Db/yJTh6JlqkOsA1By/eEm0NEQaq29m7AqMdGpbEGbkXi7kIipczAUD9sXyXczDZkeJ90xn4pRxvuYbhEMoorM/WEHInQHOUCWDdZEqsFHBlC8pjePOX4aUfhb3bGnpMziaFBzXkhjrVpjFkZy09Z2su/D2BvuTZY+iIaHUNNCUAogIb1YClZ8o2/0MjcA6d+9gsoShz5r2wLcVaMslcH37298PP/W747I/C61+C7Wtw5ZZ0uR/uyJz71tZcfFYiLBYSlord9RHBBtFApTmI3XlKQC6tTxUCW0cjErYGvIaskn7HJiYxyH2zOmchUasf3tZ8PMCNshohSPdqozfUZT2c71GHDW1vn0BQxbTR/5N/W2FzkiYDQ/SGg8Mzzs5nVHVB3/WJMeBjpSFx0wAXlOJV9YvwMZGLKBwJRwWvqbcmCU1pimKGGDTUmlK30zOgugwjTlWqy0q8XJyW3IrE/jTsQkODIsAqrT8jAmtMWyHZGIMPnqJYURYblvMZTx+/x/0Hb/Lew/vMZwWbDRwcFvjyMf088NLLn2J7Z0/qoBgYD7cZDyfkA0fe7+FcRm8wwNoMaw21jzx58ozzs7fo93IGvQFXrl7B1zXz+ZTlfMFsekJdBVarJWVVMtndZTQYs709pqyGLGYrer0BvX6P2fkp0/Nz5rMpu/vXyV3g9W+esn/tFV58+fMMRhOZC2fabDej91tDb41x0NmWDWhqLNp2sk73OwYJy5i0+8E0jF3aMSeHHYLsXoKtpcAdkm2UGrK2LJyEewzC/gSito8QgFPXJVVVKgHbYzNbSq+7qiJUAWf7upYj4HDZiCxfIqI7OU3xXVIYslivKDeb5lkPMbQCbDV8ojGzjS8MWgVX1puRejeqHxAfbHBRQzLB4k0lmX0xkwaaJj1zAsqNsQTjib4bsP+4j/SgppRp5GfWA9+DsFFDbcXoNtkZ6UnW98eKJgyBkZ33szM4nwtb4PrquKrWyD9na9pjfrCtkQXSTYmN7UfSRs7QamvS6IIcdCdsOk0qUzfwBKY+0NY0SE8/1wl9JGeWquAWGwEkj9+TnkQP35XwxwY4LKB8DHmQarc7e3o9EYbbon8ZOHGwWSaZUakmjweePIOzt9rU8KtXtYLxVAr/nZ9InZvVUhqi7u5KKGoHqEZSiLE3gH5PmJ+zc2F/9q8La/DNM7j2Crz8eRht0Qp7TQeAdkNvnXWU1kPS0zRMTWjvd2K6OraG52xN+xAjomlbA6kjPTSp4E0PKwWXibEhtqFWXwvQrEo9z57MQUBEwVVUXZCCVyxkI8gu2ppGfG6i6Jo2644cLIVSOyAr6jU24afOmkw6gaRVisjz0rE1mEr/pr20mk1IB2wbr2G7Dzc+JuAG1UZ0di/dmh/dpmwxEthQhw2ZVSGlLjqjqNlqESofao6P5hydnLHZbOj1e6DwRfR0Vqu7Ok0HN42eqSkxr3RYTHSkipKlw3Kuhf6kEmzTGNNokTqnztckABY6LII8OTH6jnFJbR/0e0DrlYAU3ZPrj2l30PRBCdR1QbUp2BQr6qrk4Oljzo4PqKqC8XjIarWmrlIIxlB4eHK0YnvnCGsig+EYnOPk7JyA4drWdSyG1XTKej6nNxyRDfpgHJPdbUaTMc5aitWSd9/+Fl//9a9zPi+4srfPYODIXGRrssN4OGjsr1Tt9bx490Xe/NZbrNcb9vf32d27xmqzYDTe4vTsnMX8IQ/uv8fTJ0/57b/zD9AfjvWmpNYLuVYSlpCA3LKW+pfquTZ9BKuAJIWQoqUBAkYdXNtEFFIGSFTnEY3BBIPXVgUxVLjoWqbNpP5byimZti9X8LW0fqgDdV1KbR9q3vn6V9jZ+VscPP02y/NjynLFer1kOZ9SVRVZNsDaAkMl86d2IdW8qquSqiqIMZD1c2zM2KxWmpBhJJoQEACYdtwm2QlZY6JtAglgWaDGB6mAncrnR2XJjBHxu03NRIPej+Ca+frkjK6tsRdsTdsAMr22EcBjVUjZODh9BlPBu1DD0QKOz0RQq7amcQBYtJBQa+Mam6ZOsqHeW1sj5+DB5O3rjZNLn0H6FHVsTeNgrV5LcqpdQXGz207X3tqa9vXvtDXUhaTEF0thCQ4ew/FT0bmMB8KkVJ2duwcOV7BzqKBGbA1n53L8retyTbMZ2Lm0WxgM5D7tTISJsU40O+98C7726zAvpIDiIBPx6mRHtU50zreGuy/Ct9+G1Rr292HvGmwW0lfs7Bzm78H9B/DkCfzOPyDnBq0PMrk8C7a7zrthRgUd6Xu7bI0xaviUyUhguil2x8WfCVgEI99hHdKjKoVNOwA5rdEEoBKwCUHr3FT6vTV84yuw94vw9HU4P4JyLXM5n8r9ywZgSxrhWRd3G4S1qQpZP/2hnM9KwY41aCKxfF/H1sgU6RpTW6OoSc4rRAFuTasOBXqJhUx9zdTW8BFtzccG3EhhsRTrlvi+dTkitXUakhGrGomquwm4pg1BylJpdznW9FjOSw4OT1gslmxvT+T4unuVt4rDE1Ch7RSiVwYw9TnS5zxUysKIh5TifLrIE0WNhaDl7YMwTTHW8n4t592wS6lHRxPnjrq7RgScySEZ09lQRQXu8oDF6Ck2Iu4t1ivW6wWLxZSqKtje2aL2A87OTun3HMOBw7lIiDAe9cmzMZsyx3uLs4bt3QmD8YRyU3Hw5EBLNRjGk21MXdKjhyHgoqfarFmtF8znc46PDskGY0b0mK1WHJ0uGY1ysrzH1njEajFlOQOsod/PeXz+DifnZzx9espoe4+97RHWZdRlSV3XjMdjitJzdPQuj957g5de/TGyvKd2W5xDMGDJCMZD9BhyUgsNscNaCFCfUGvlvkQ1OtKrCtqQTetsQpCUfxrgIvcnhrph9oOJ2NTJPAo8iCYQg2myjYzLqcqSUNX4UOvnPZ4Np0f3+dUv/hVWq2PqcsF6MePpowccnTyiWK4kVVzBsujsIg5DFsA6Q+1rqqrCZpadnSvU3rNaLwne45ru1JJREdJzEVINoFRbSfqaSWVraekhrGYKBSYeU+ZI7I9ocyRjKoXCmu3sJ2M8r6lwmaRMNzvF1tbIjU96g9SGIFnu1tZADxYlHJ6IFqRja4AWNMjE0tbzSLobNexpM58Yn6b9SHKo5jtsDWprpN6J2JqmdUDQEMAH2Jompa5jay6CrrTYU/KElx38Yi4/V3PRsFQFbI/BD0QP03PCxjj9rmEf8jEUPdl5OwO7E0nN3lTw5KBlCibb4pjpq+7ECzO0Xsj3Hj6T9HF6EnY6XcIoF13OeCShsVmUY/VzOH9HBLFPTiRVfHsk97sspfDieCz6qcN34L034NUf00wqaArOGZBqw17vQ07D2KmtaRiVBHaaXTKdNaAAM933tBY7tqYBLk1ByXSv0ucS4AxyzxOwcbmCEA1NNZqyDRzdh7/9l2F1AuVC5ujxAzh5DMsVTcPXtKydfkdA7pWvFAQ52LmqhS+X8vM5W0PH1sg123YOXBLqR3mWYtUB1pa2H5dX8tLQZJ4lEf1HsDUfE3Aj+hNhUWTn7bI+WTbA2RXelkj1VUkTjngVH3tc1CwVEjgBjCE1RPQlPHl8ymy25MYNT5Y5wOqGpwa0JYCBVN+maY7Y7KDS8QIpUyZpHxI9GEn3KXZCSvJaUK2D9XLDo40ktBJNxHhlH6Jma2nmjzGSrSIhJ81UaYBUpK5KivWK2fyM+dkpR8/eJ0bPeDKh389xNiMPGet+j92dCdPdczZFyZXdCXnu+Nmf/TEePXrC4ckxi4Wjrgpu3RmQOejlPbyvyTJLnufkWY+yKHG9nN5gQL/fI4QCMwv0eiN+4re+RqxFC3J2fsp8NmW5Ktne3iXYiLE5zuZMl+cQHJPtEU8PT/jlX/51fvzzr3D9xj7YSFEsqRZnLDcVxvT4+te+xNVrL7B3/XYTBjROGQOEUREBeTM7Mq8KVBs9QgRsUBbHNg9JTP1vkA7pydGnDWtjwIzcnxAKRFIcCGTSh8laohU2QFpaRPJ8gHN9NkXJsphR15UAqygVlMvinMX0CUU1o66XnB2/z9uvf4Wjk4esF0cYO4SmVYbY/sxFcmck6zd4QqjpD4ZsbU3YlAUxQlmXjLJRk+UUozTBDLpcxTdGjMvEH8ZIozEwQQXVIob2XsFaEt9bg3GRmNZrAn/xwxucH/4w7S48AZysL7tXt5KdMpp5REVb78bLjjVta9MOsht6KBEnOl3CDS+i16ZvkIaXtFdXUz8ldUbu2BrU1nRisLS2JrFO+lrH1shrCpB8Am5pZ4acY1rv6b43mT9d+j8drLU1VNpiYnYqYOHZ++KAJxPpO+Qy+b3fE+Cyey4i1N2JFH/77T8Gj59I3ZSFE0d8ZyCXk/fFgWZWUvOzXD7by4XB6fdEKzML0BvBT74qfnC+kFDT/FzqD23vCvNjc3H2amuYjMAdwy//Onz+FVBbQ7GUWjmbCkwPvvp34NoLcP12C1qdMgYYddiuBRhpPSWg+pytIdHEySF3bM0Fdi4d6jlbI528E3UhtkbYDA0vpiaZ+UDCoGUpKfF12a6PWEmW1PQJVDOol3D8Pnz7K3DyvmRMqa1Jp9CsG2dapinUwtpsTeR7QBi8bJx2X7JW63TdCRhHWRvpmjq2pqnTFHRdpirFKDh1nfX6fBbWhxgfE3Ajzl6uPxXukx22dTl4o5V3ZZFJTY+aEGsiOQntNWEEjWVaJCPh8NmU45Mz7t57AesyBUmqoUnZMUGKxEnvoyBxQG2GlkBL8Kn6sG8AjrRm8I2DleJzKZOiltetwRknDsZEYkgp3pp91UDm9L/SSwnjtVVAElrLz+ArQoiUmzVnp4ccP3vEs4OHeF8w2d4lc5ZBb4BzGev1ivn5OXW1ZntnSJxFdne2+Inf8lluXL/G7Rdu8/TJI5aLGUcnR5yenzEYjun1h4zHYywRfGSyu81gPMZZx2J6SlXWFIWnP9zi5U9fJcscdVnTz7cY5IYr+3s451ivNuzt3sT7msPjQwh9NsWKolxw68Ye5+OC88WMK1evMOj3Wa9zqvUc8GyKgjdf/zVevPs5furKdXq9vrIq0vAiNHOmDJciAQGgaNPcoDqoFHpBQ1UWH6WbeAw1IUSp6hwgEqTSsck6xsZDtO0mLEZtHyFVoVMnddnQWfJ8RNbrky1nFOWGzWYt6y0K2+b9hqKcUVdLQiiYnT3m/ptfZjZ7QllMybOs9Xlo+NsZCcejBQ6tZTjaptfvU3kpw1/VHu8jzllpORGDZPdp6QOLlkHQ9F5jZNvgI3gf8V6OnZjiJAuQudMQbhY0rdzJ+v9EMTftxkIATgZqa4SZ0d1i6umTGIuYdBCtXWgMNhHU1nAwg9MzKF/Q/kKGJowRkrbCAEF7HyVbE7jA4vjEBvgW4KQQVeNgY6sdQosNpr5WoGBGwVgDWFpbI0O1DMZ3wl2h/ekrcT7FGk4PBdQcPBTHtr0jDNFgIOLP9RqmUwl77AxhGoXR+fHPSVfvF2/D40fSduH4UPQywy3R2Yy39HqAnW1hVJyTTJ3KS5G+4RheuSpi4bKGfAt6Bq7syXmsC9i9KeGZ40OIfdisJCX6xh6MC5jP4OoVaZOxziWrCC9FAt/4Mtz7EbhyXfQ9TRXe2JmzdC9016G2puma3tSf6YaqUkgSAQkh0vRLIrT37Dlb09mptZoa41pWKCLvy0dyvqu5XMdGM3EiGqbaQDmDaimA6fyJ1P2ZPYViqkLvi5eIMyo3iy3TOZrIvPlS3lR7WcMuhXaTvkjXDlb+faF2kAI4H1tQk0jJZpqVxbEOsmSEdM1/0pgbkwRHGLKesBahclhFfFKNWABPCj81DRU1918ye1pUnZyZx3J2uuLg8IT1asOgPyRS02R4mA6ITjoJAk3noRjxoRYmJaph0c+ltPVW3S5pwJZ0GtptWsv2Oyd0cowe6RkljQ7bgmuJmlPWQR8c6etDU0G5rEoBNmfPeHT/dc5PDwApuFdXJdPzc1brNXmeU1U1la/I84y9nW2GvYzd7T5379xjOj3hzt0XuHHzFiFcpaw9i/NzrIM877G7v0eWD1kt5zx9422yfs7OzhXWqyXBVwyHQ3JnqNY1VZTUdx8ChhobPVVVMtkZs7+/x/HhEaPVktOzU1arKSFWmAhXtgeECGen53zqU3cwwGq5IlZTTBSdyj/8e3+De6/8CLfvvILLrAAJG7BRW5Eqo5ZCfW3qc0r9Ts02ZfXYpnutwMoQHDFW4tRDqiidKhUDuhaM6WpxtAUG2YUwsFTstbg8J8sysqxHHWrWmxXBR4kO+CAZf2FDoCDGirKcMTs/YLM5k6OYnrQe0c2gyWQXldXgnAiAs96A4XCEy3OMy8lcRlXX1L4mywYCbEgMDlrpWhusGulFFYKE2GKIUv9GWZtgAiEJ843RUhs5IRYiMM6S4/StM/0kjMbWALkyFZVrd5c42kJ+XceWdugpsyfZGjrvt3C6ktDUaiM7XSqaEEYyEw1qjZ0X9PdQ04YtOrvpJCDt2JrvqA4cocmkUVvT6Gyez/Tp2Bo6tqbNjtI3VmULbB68DidPxYE5JyGQ83NhdLJcfq8rSene2Zbw1E4f7twTIHPvRbh1C/wVYbDOp7I7z/qwvwf5UKoLv/GWsDZ7V2G5EIA1GonD3Sxgk0Cigr3otXnmCK7sw9ExrBYCMlcziIXMxbZqck7P4VN35N/LNdTn4sDrEv7u34BXfgTuvCJMktqaC+GgdN+aBqO0wLNptqlrp2Nr5Jwdkvqt99p2wHVi6Ihc6KBuEqjNaES9CWA5K/OdZSKKD5UAugBNGYFYQ9gAhXx3OYWzA9ic6nflch5Gl4XaGsHLeh29vtyDTFkxlym40SKXSTPTZAImhjNtJlx7To2uTFkbE1ogmebB5nLfbCadyr8PW/OxADcAvVGP2y9NePHmNtPzyONHkSItEIOwNiksgSXP+ownI9lY1KbZXYa0u0wIEctmVXHwVEJTO9sTrZ8jEy8ZNMrO6PdZdZDR1/p96hBAKeOOPbG2DV/HRCFaYgiaBu4U5GhNEBKw9crICOMQELFsd3OVsq8AUh2b2nvWqznTk2c8ffw209MDNusltQ8MRmNi3LDZFMQZjMY77OxsMRrk3H3hRcBTVQXDQc6zgyfkecaTh4+58/JLmCynrgI72/vkvQxnLM5ZNsWa3mDErTs7bFYLyvUGX5es1wX3332T9fKMne09hqNdJjv75L2crJcxmUwYj8fkvT7nJ1OKoubKtetEIqvFuVTMVRA6GA3Ic8PsfMrs7JDFfMF8Mac/GjLZ3ub07Alf/ZUvcvP2PdHeOIR98EhX6kaArWsEeYCi0UKMqUBMMGDSvRE2zSBVhI0XcJ0acEroyeq9luMETeU0KWU8GoINukZCs/vK8oF0fHcOl4njW282lGUpa0Q1FD5UeL8mxpLooSxmVNUaQiRQdda+LDbnMqzzslFyhuFoi/5gJCUHsGRZTgiesizIe5kIgHGiIcMoQwgmOgKe6Ctdx2J4G/ttQMojqC31unMzQQFOwEVhNIyxbTX7T8oY9eDeBG7uCLvwSEGOzje09kEQZV8cZ2WkAF13d5l0gum1dQVPTyVDZXvSCkGbEJNScYlN6QqS0w1oHGHKGpFTaxs6Ip9LwERZvCazJMaLmo+U6QO0qbkXbU0LoKBJ9a29sAGnh/DoLTg5UK1FFEcX16KHmQHjbRH/DjJ44QUaNmTYg4Mnknb88BG8/JICoQDbV+R1oxqhYgWDEdzZFj3Nai2AY13Au2/C8gwmezDehZ19AUC9TNLFt8bCAJ2cS5jp2g25qOU5RHXcxoroODfCMJ0dScbVYi7FBbe3hdX4lS/C7XuivXE6Z55WHJvWRVozyUGjdqZja+TemM46CZoBp+dDWkuqTekC15AYCz2HBmS1tkZCUpmATSeSCzZrTd12LcANlfTzipXcv2IO9Vq/o7U1zWJzmYjUrV73aCL3JmXi5Sq0Lgu5B2n9NbWj0npzsha8ipXT2o6dtxnXslQdW4Pt0YTeEkj/CLbmYwFusp7jd/3eT/PqK1cwNXz7W+c8fVxoFd8Mo/VijFfQgmFra8Tdl3apKsOjB1Ni3ckyMlF2utFgaoje8PTZKefn59y6dZUsCXQN4rSUEbLNmgr4mGqgaMn6FDxSOthERdwhxVshWq8av1qrvgaiqTHBEJ3VDB+roRWndqWrWdBdWVMKXPgjknMNNav1ksMn93n84Nss5qesNmvKckPmZMewqhesyyWj8TZXr95gPOyT37yODRVVXbA1mjDZ2ebhew/o9frM50veeuNNrl+/Tt7r431gNZtR12uGwzF7V6+xNxxSVxXW1Vg7Jsuu473n2u3rbNZr5mdT8l6Pfn9EqAOxqvHrDbOiBJthXcbO7h7n0xNqTVE8Oz+m3+tTbgws+5QbYXyMzblz92XWdUVZbcgwlOWaX//qF/nJ3/ZPc/flzxARPYhksRpI3dODhiY7dh1EM2KDVZZH21s04QRJvbdWM6xC+3qIsdN7Re+1kXtm0v3xNcZmch+NZHBleR/nMmGJXEaW51S+oiyl9HmMAU9UgOCImqvt/Qbv19oxvRQBMmpPnBGWVm3gYDBgZ/cqWZarzsdjnYSc1sWG4XBMlltw4KKKp3VGQmhr8wiTGHStBQ2zWbCBEEWbYo2TkK3OiYAfaf7a1gj6hIzcwe95RcIbHvjWFB4XalDV0VrXhnMwUpTvpT0BN/enomdpnFwUZxmN7HS9gYNTYTRuXaUR6Bra4yWqNkDD4KT0tiZrhPb4H2BrUFvTCIgJYGpxqk6ehaZRYWKASOecwi0XbQ10/hZqATJP35MWCvNTCXeUa3WiQfQb5UKAzdUbIhy+eV0caVWIYHhnG967Lzv/+RLeeBOuXxcgUnvJkKrXEnK6ek3q1VSVZn8NIb8uLM/ta9Kw9GwqaeH9keg7qhpsIc7cZuKU9/ZEi1MVctnnR9ph3MByAIVmEZHDvZeFbao2MrflGr76Rfht/zS8/Bm9zxqCVFuD2ho6tkZGAhIpFJheS2xMbI/znK3hu9ia9u9WQFFqvmk0bJP3NPypgCTP5X1l6tvUOX7MaMJpfq3gxkPQNiPo8nJGlkwCHIMB7F6VYocpfJoqWhcbuXd5CqOlD6lNCAqi0zWorWmYStEIKBBT0NaUQtA5MEY1XbEF6R9ifCzAzZX9MX/wF34Owoavf+0dnjxZEiqLtbmyMFbBgPwEi3GG27cnjIZ9yqLm2WPZUbhext7VIbs7Q+bTirMTS1VGTo6WnJ1PKYqCLO/RPNzKuMREl4FShr4FHg3jkpCz3BwJd0CqlRNBK1Bb6cQcaSvr6sKW+yWaH+GErO6qabQRrZ6nFocbIYSazWbN+/df58mjb7Ocn1IUJXmeE0NFMLDZrFgXKwb9Eft7VxgOcjJn6Y23uXfPUdeeytfUZcloOGKxWNDLHGVV8vD998icoygKnOvRH8oD01v0qYoNVS0NzEbb20QfyHNHf2cPvzVhb3eP6APFumKz2VDVNVSVNESN2p+ISO0D+1duUZWexWJD6Wv6NsfXJefnC4bjLSbbfQb9Abduv8SDd1+nKJb0BmNWqxnf/Nrf48W7n8blmQKa1FeqzVCKCYDoDsJ0as9I+MoQVbEjrSoQUW0Cr6R+YlEz0mh3uWqwmjYhsVOPSEOJ1jopeKc7dWcs/d6IPO9jbCYgInqcyRhuXaMq51TVKRhDfzgh2kBRzvF1QfC1hL6dsM7GRrIM8p7h9p077F+9TiRQ1RK0dk4afRabgqoO5D2pmNzUAlJEY1XnkVLiDVbS3ZPtsFbWsY3gpewBxmlmqzBdVun0aMNHCYP/8MeVMfzCzwEFfO0deLKEyqreJll03YUmC2+B2xNx3kUNamvIM7g2hJ0BTGs4sVJI7ngpIZdNIVVzO7amEZg2uokozjs5oIZxuWhrmp26TVQLjb6ryYBK2ogmpQ8u1OJpQm1Ax9bIedUtMxS8hDYevC4tFOanIvDNcwEuBmEHiqWAjL0rMMgFVI234a7TgnJB2ZuxFILLnIS53n9PnFWxEVZsoKGcRV9eU1vD9rYco+cg34etWnpP+SDszLoQkW1ZigYnRvWtChSu3JJMqMVGgUEuWqGzuQCv7b5oSG6/BO++DsVC2InVDL769+Dup+UeN0xeCqWo800ApMm2TMBQmZzEkiUQmbBMg4giTRjru9iaJqzT1I1JAFRBuM1pWEFrRXDd0/5W0dFUw966Jtqj6kSOO5wIE1TOtYpzLa83yz4KOugZuPOigFcTBJDG2NYi2mwEZPaUgeSirSFpyhqgbS8CfutoKxFHGjY0gZrU4BarzNWHe8zhYwJutrZG3L1zi7fefIs33jzi+LAkKh1nlc5LLRmSZqUsSvqDHvdevgrW8CvlAWUVeOnVCa++fBV84I1vn3J2siQEz/nZmsdPD/nMbMVwOJKWCM2OSmZMFBq1gIxOuedUyTYhTRMjUbO6UhPMtHJTaCQ1epS+SKHZnacsjWiidCaPXpnpVigWY03UfjApO6ssK95/8DZPH72BL1f0+0OsySiLBZvNjBgMm01N3nfsbO8SQslqMcNXK6wx9PKMYrnGB89sPuX89JDT40Ou3bzB9tYuWEtZFfQGfQaDnoQ4yJien9LLDcPhBJflLKYz6lAzyHuE6Ik+UBWeKpSURUFZVKIJKgu2tifyWrXBWUfeGzCbnTKbLlmvC5arNdPzWvQjecb5bMNyM+Szn9liujggy0ecHByxvdOjLAveeP0r/NTP/h5u3r6ruhqLjVK4MFVyTpWajdGK04iQVsTdEmcJJmJsuLDxkmcpZaMpo9KkfopTkHCi3vOgbThsUMZUnIhosJzoa4KA036vz2C4RZYawrqc8fYtPvdjv591cco3v3ZC9HDn5d/Kcj3l3TdPKNdLoq9k06L+KDOGLDeMtzJee/XHuH7tJi5zJMjiXI8scyzrkrIqGZtxU18o7XiMsWonM91Yiig61l7BjTI5ifcyuo9K2Q82gW9hHn2z2/yEjPEI7t6Gt96GN4+kyFyjbUkiYqPOQY1rWYrzfklsDeWBOM1PbysDFOD1UzhZipM6W8PTQ/j0UrUiHbFo17GlDKoLpeV1x5p2tTHStk+4aGsuhM+aEH7aGdPYGjm+VUehTrIBV1rcr6ltYwSAvPcOvP+G9GfqD8VBFgvYzIQd2tTQd5KhFEpNCV/R9OpaFsIGLKZwegTHz+DmDVBbQ1XAoC+ZUHkOZMK25EYcb5ZLFeJQCzsRvYKlAL6QXjGbSoBQWUgIsCy0B5KVKsYzDQ+uSwlznWt6dZ5Js9PNED4zgcWBiHIPjmC3J8d+48tw9Hvg9l2UIqbJZEuVnJvdqmsBCYkVsq3GxIZWK9PQygpc1dbwnK1BbU1zr9JxPDRNJNG/ewVHxglYG2xpQ1grbMvkJvzY74PiDL52Iu9/6bfC5hzePNVQY6eAXwIWuYFxJunx128KOAU5R5fL73Ul68WM9Zw77EpTLVthhlFgVKtwvimJkN6fpuiircGo4Pkj2pqPBbix1lIWNQ8fHPHWmzO8H7StC6wKiY3DkusuUxoRFlVg78ouWztb9IY9jLXcu3OF8TDn/jvPOD1bKyCOFBvP0ydnTGcL9q/ut8Y+GXRdfRal4HXHH1LnZDJClIcjdZZ2zqkOz0iJfq2tkoyNs5LKLUC2rSIclXpu+hoF0WwYvXHimKMImI2Es54+us+7b32FUK/Y3tmhXG9YlnM26wXFZkVZ1vT7Y/Z3b9CzIvYqNyvKdUXwHl9XFJsCYyKbzZrZ9Cmr5Rlnx4GqWLO/fwtHzmK+olgXDHoZ/V6JtYYqsxhyJrsDhoMhxWZDXVXSGdxArGp6+YDJ9g6199jMMT2fU5YFWR/OTk8oq4LlYkVRV5RlpAoZB8/k39Ya1dFU9LeWbIqSXp5jjGW+rNiUU4iB/sET3n3zW1y/cbtlVxCBsMUSraQuk0Aj4sxd0Ay3ZEyg2QkF7eQt7TIkC09AbsAErcKbQEsUVidY36yBRuAeRI/iXJ9evyfsUggYm+GyPr28h9WYvYlDcrvFINvBYnG2T94fsLf3Ir3BhKw/oa7mOBeIxhMCZBhsZnExsjve55VXf4y9/SsMhiN8XTXPS573qX1FUWzwIZDl8oiHGNRIGJyzknFngxjQiBbClPkRZgtSpW+rxlSysBLoRsGba+z1J2I4K+zL/SN4Yya1WZJquxF3OkCL8BkNfZQBru7A7pboSIyBu1fk3+88E0Cjtoa1hydnMFtIZk6jd4FGEByhYVUasXASFGQCOhJTYwxN+i9q7FNtlYbad63hT4xPirM3gAmajK1uq4GupiF4ePQA3vyyhJ12diUcVM5VzLsSlqQ/ht3rMme1FyZnPVfGppbPJIZn+hSWp3AcRJy8fwvIYb4S9qWXQ79qHSo57A6kmN9mIyGWngKwshIHvr0t35tlAoLKQq7v5ESA03LV3rfg4Fml1XmNttqoYLxQRqonQGCpYtsYRSf05rfgxm2Z2xTeSc1C07OTQCPI6zEBnO+0NaitaRqWpjYFqL4mVTdOoazUWLXpLq4ANgRhbFxfwm25boytk9fyXkcfNAC7BdmurBunqfX7L8B6Av0tmRcXZP0FXWOZnv9oT8DN/j4MR1pBWZmYlMK/2cg55anydWtrcFbe07E1dGxNG8bS607AzSs7lFLrQw0f0dZ8LMBNjJFVseDZyTmLRYWJYlgads46rM1wRlMx0X1PrMh7fW7cvMq163uEGBnkOU8ePeP+g3NOjlYCEkxGqA2Pn55wdHbGreI6fdsnM46ANhikBcvRRC1epJk1iDG3UYo3ybuleiumWxBNYopWX4uEJqwUVfEetctp0Pi60QciILSgS5k9iSmIgfVmxXvvfgvvV+zsSxGl9WbJZj2V7CxnsQ56/QyXB9abKePRkGg8dblhsZiRWUOoA85ZiBWDfp+wNaKu1jx7uhAW94qEsqpqw6asKcoVhppeb4xxGcbmlIWKVfWBtBYy22YS3bh1k63dfVzW49nBAdPTU3qDMe+/9zZhOaeqC9XhRHb2BhwcrDmf1uzsGvb2Mq5d22M6PceaQF2tGA0di2WN94GDJ0/51rd+jR//6S8wGAwFLBhoxZHqiGPUVg1BIwFW2QfT7IpTzRxpyForixGxmTruKFqrqAUZU/XiqPodE42E1q1tdhzRRLJeLnWB8p50Bi9LnDXkvb7oY0wNrJjPH/Ktb/916nrFenlKmQ15+uRNVuszytWKLNuhznOIJ42NsC4ji4brL3yaF+98muGoj7PS6T6q8ZNQfmC9WVLVAjSj6tBiQ5VH3RxaEdOjPaWIDQsu7UO0tg3S6sOm0AlSkyqQ2ll8ghTFMQoDcXIGiwpiqiQMDU1uM9oMqPS5ShzJzW24tifrqNeDx8/gvXM4WqlDykR38+REKuAWN8D2acIPz+9SO7amcZwRiKlQHPLTJEofGgFuw8zoexrBcVRHpU6x0fJYZXU0BNE9J7U1bFbwzjfBr2D/qpzXZgXrmRzHWcFk/UyyzTZTEeMaL3qVxUymrY56jqU4060RVGt4upDLuqKhrGojYKlcynn1xjL/NhcGpZfLtQcn35uy6zFw+7aEqbK+gJHTMynw997bknVVb1QYG2FvAAdrCR/uGdjL4No+TM/l+OUKhg6WGk57cgDf/FX46S8IyPoAW9OAnmRXoMOatbam1b44mnYeJkpWUtKaJAFx0/0bGv1OqjTdsTUQhJ3p5QIygobnnJV1mvWQfk5rWLwP3/4bck8XpzJfT94S5ma1gmxHjqW2RqKyqs954dNw9zUYDWjaMSR2yeqaKZYKNHU+UtG9jq1pNgop9R2dxzSXJnYYMWU005x1MwU/gq35WIAbY2Aw6PPyy9d45dUjHr4jyM4EcVAOhzcOYzKMyehnhnsv73Lr5jZ53zIc9djZ2aIOgfPTGU8fz3jnzRN8EUX7YhzO9Dg5nPPs4Ijly3fp9XKCSyJKq7v3oHMuWgrrEgjRZ98EQrACKNSQpEaXEdF+tKGq9ualEGPUnX9M5bg15NU9ng81xrkmPBKJzM5POD56SL/viLVns5njfYnL+sRqQ783YDic0Mt7ECyTrT1Goy3yrAexZrw1YbI1pi4KCIGy7jMaDqm3r7BczDg4eI+jg8fU1ZLJ1j55ljEcjhltjen1M6pyRa/Xw2UGX1fkvR694YiqLFkvlqw3C6wz7PUGHB2eSLuE4Hjxzj1clrGcL+n1x1ib0+9nLObnTM/n+NKzt28YbWVYY+lnUK7OmU4t21tjrDVMtscU9Qrna/K+4ejwIVW5od/vE6P260q6EvR+RK8RgLadRQgWr5oECZnLzZGmo1osMekrYtSEEa19pJlYEU/KmG00oTF13zYYm5PlQ5zLcZkjVEEbNTvyvIfLemAyYoSqnnN+ep/gK2KUon5P3vsqZV0S6gLX36Ktrixp/s5YyCy3Xvgs+1du0OsNRDvqcpyR/mvWOiyW1XpDWRYMhn2C0erfKQUaAeA+pNYOOb6utDq2E5/nPcY5EcYHtNUEhGiwqeQ/iQBoLO7HfxgkHPLyNXj1CN5RBxOSg3K6s1aAkxl4aVdATd9JptXOljj6sxk8mcMbJ7CJohswDkwPjuYS5njpjha50115kz4c2hNK/YxCN06qWoUEYBrWJzE/pv2s6ToK/Xza+XdsjRi3rrambjNsEjMxPYGjh3KtdRC2xhfiLKsgfZqGE+3UbWFrT3oyqa1hayKZS5uNnHvdE5Hw9hUBPgfvSbuGaglb+xJ+Go402ykTkNHrybzXpfx7OBHHPV/K+TgjDvzwWPQ8wcGdl+VYi5UAHJvL8ebnMJ1LGHHfwJaC1gxYncPUyndbIzV56pUwTz0Dhw8FsPX7et9SyCgBVNOyNt12FsG2+qeOrZHPJYattTWNQUkiWzTDqFkLnXuavt/15F64XMOeoQVAeU+rLGudrnoOp+8KgxIr0TU9/KqEk+pC2JsUj7KxrTqcWXjhM1r3Z6Cgpwe2aMEdTuoblYVo0oyG6ZqTTvOQWjvkwv6k6sNqa+QadL5Sq4aooCdAWwzzw9uajwW4iRG2xhNee/VlltMNf9c/5b0HUgnWuR7eFbggYQqDZXvS55V7+1zZ7+HrFetNj16eY4GyLDk9X7GaaXwvaJ2P4FivCp4enLKYL5hsj1tNkxXHFrHEUGOjoQ6ViCaNlurXgm2k9GIj7RecGv10LwCtdWOba0ti04iRsEcEEx0+ejDCEJhgdN1aFcVqxV1jOXj8gLrakGcDqWFic7J8QF5vWC0WWOcYD8f4usTXa8bj61RFKY7XZgyHPXa2d4leOhyHCMvlnKqoGA63qeuS2WxK7jJivWa+WFOsh8zPcya7O+xfuUreHzA7n7Ozu0s/3yLr59R1TdbPGJgR5WbNarlkZ/8K999+ixu3XmS1XkBds7UzZG+1x3Q65ej9+yxXK8qNlN7Oe5nMizcEHyFW1NWaorQ4YxmNRuxFx/npGePhgO3tEVkmYmfTWUBGdwNNuQhMYxyMQRgrVH+SKu6SstGMaKBcRtNuI6QGm8r0kIoGyvfIUghSnVhfs9bhXKbp32CV+ZDWM9p4Mmo4UqMFqfhjCJ66XuF92YQ6MUYrVAtoc1baX0y2dxkMhjjdSTXZdlEL8BEpyw11LaENaxLbKdfSZDzpLISoqcLq/5oshaQBQ0OqpBo5EpazCGB0LoVMPgEjImLSV1+G6Qb8U3iglWBdD1wBIacpxDbpSabUfl8c3yZpRJCQxtkSOrZGBJJOKuYenEgrhp2t9vtt2vlacaLRiOFXW9Nm4ujuF6NgxLdGHzoOTxmZdG1JbIqhCW1FJ583iSFILERywslpWml+WW2kdknKzskHwoIsFuKEUniiXsP4usxDjPLeYU90OGPtph4RFqWopFFmXUrjSpfJ5xensB7CeQ67O9JRvTcQ0e/eLvS2JNW4rgWsmJG2gFhKE82334RbL0p7Bu+lls3+ngi6378vzMRay/z3lPbxypTFStik0sncDnPYc8IAjQawM2o7mTfrJzEMsb0HHVuDQYEsqqNSsbggGZ3nqBlOKVSowLYRkXeRqoKfJt1fX7NOdS8pzR05L7U1zbk2rQyg0QYFL/oonyoZm5Y9Mfp76qW2syei8cTadCsrR2ViykJCgFHXVFqX6X0X5ukfbWtkXtP6jUhWmJH5C0HB+IcbHwtwU5UVB4+PidFz7+4+658sKIpjHr1fYZyW09MQjjFG0pVXK+bzGZPlmMGoz9ZoTJbljIY5L97Z4d6ru7z1rUNiHYle4sl1HSUlfDrjxs3rWBOk3ofJ1NxYrbekDRJJu3sNQkVxiLaTYifF6IRVIiT6X3RBz1eLDlroTjJUFMjEqCEsL6EUrG4MpK8PMXJ0/IDaFzg7weCpfcFwOKAqe+zt3yCEwGg4ZjY9YjgaQV0yXy7YFGuGgzFXrl6lWq/JMkO/P6KuA5ktcT1Z7FeuvUiW93BZn62tHbYmgdViymDYYzjYItSRvVtX2d2/xtOH77BZrRhNdhmOJwxHY6L1zM6m5HmfdbEhmJx33nydK9evs1rOCb5mb3+f0+NTHgbDclHiMsdm4+n7wDA3nC0j4/GQECPHx8fMp+dEk5H1t6jLDXUNmMjJ8WPms1NG4wnGpnR6Le9oTNvIFC0JQMqU6gKBqH3JZP4j0iPM2YwYvWhsVE+FcUQr7zdNgUBDNJ5oM1KBQNs8ra19Et1U0q2YxgZKJ/FWZGpNH0+lz7wlUkMMEgrSz8imXcBqnucYa/BBtGF1HajqqvkdRGQdVEdhU+goxovaU5PRVPZWniiaBOGs2pfQ6MRSeEv6aEFAAKhPaaSfhFFW8PgE8HB3H36ygM0xPKpo+jElwGDUCa403LIcwagPo7EyDj14cQde3YVvHUooRm0NdZQu4dOZpEebIN+ZOnKnEFOTDZJ299AIjJvMkrSgKgEqJqXFqiNoCr51rrNxGolisx1H42nr3ei5pDDA0QNhauxE3ucLqQ1T5rB3Q853uAXTIwE5vhSgUawl0+jqVdnJZ0acog/gStHMRODaHU1f7kuzy0kQdmXYEyFsHSWF/uo1ETWvVjDZFUZotAW2lnTwvC8gx+Tw5uuSXr5Uzc/+PhyfCmhYaE+kjYabcgPLCOOhXO/xsYamMtWfFBIVMRGOn4goeTy5qHlKYOBCCW99mBtbQ+e+pZBhpCnHazMazU0jOHcCflO6tEmgwyv47YY204Ym/ZdCj6YNoYECYtsBXz2g7Nx3BaEpVJleJsp5ZblKw/T4dRCgmUoXYDTbT9d9Ch0lRiqdqtqaiwLi0H6hSWtWGazQmdN0rsbCR7A1Hwtwc3a24D/7y/+A3b2MnW1LrD17kx4Hbq0x/yT4lBYM0/mKb377Eb3+FuPxLnt7OtfeMxwPeenla6xXG9brgkfvTPFeKhibmHNyNOPkbMqmXLOVj3Dkauil5484EJTFEZQZ0p5dhZQ+emzMiMYSfMRaLWqm2Qxy6+wFYXKbLijeKqZdme6GU1XdNo1fDJGvKxbzGRGDjzV1uSFGKUy3v3+VGCO+rjBEtrd3MNGwXs84OT3DxApfLBj1HNs9S6wc68Waqi6pq1r0GrUnI2eyc4VyXWKCFKHb3etTlWtCHQgZHLz/kOF4zPUXXmK1WDKfzpmfL+iP+kx2JvT7fWbTMzBQVobVpmLz6AmDfp/57IThaMz29jZ7+1vMZguqKrCz36cuYTwc8NprN7h+7SoHB+9z+Owpla/J8oza16zWG/avbLG13ef87JD7b32dW7c/BQjoJKbEhGTwTVs+JEpKP0HAaYw0DIyPysZFACdO3mhjSF8r858S9fVuNZS0rMfE/DQhAwVYUvHXKEAygGtATYi2jSrgsHaIsWvSjtsY0fSYpocZeo4ea3NNw466MUrCdAU2Ea3b4zDGaSE/CMaR+pOFIFqyqGtMmM0WDMqUatFKDethNDtM0ZEBrFVxfMpm+CSM8wX8lX8gmouJEYe304On61a4aTQ0hRPR67cfieMb78Iesth8kA7YL1+TasTrAt6ZqqG3EHM4nIojLtaSjaO2Roy22JqmNkhTaC+0O+AITU+rlBWTCrl1O4NjLzq352wNHVvThDYSCQA0oKquBcRhBEhVWtnXGNi/ps5N9RCTHXnfag6np/L+Yi4gpmehymChRfgqDYXVNZDBzhXJYAoIK7R/Q8I/dRCP9P5Dab/wwksCnKZzuW+jPuxuS5hoeibnVSFZU4+eSO2c2YlkxG1vw/5ERN1VgP2x9P4aDuC1G3DtqrSReHYg59XL5N6t1rC/JWniZ4fw1tfhhU+1960hGFpb0zAjiaUJidnQuU33pGNrGkduXJuG3WTC6ejYmov6qHTjFGClTLuOrREWR0M9DUBwYIfQsTUNm9OWydfjeAkhpUynqNec6tzEzjp1en5Nd/QUeoutjiitMesuApdmjrgI5Du2Rpa4Uebmw9uajwW4WSxKvvR33ifLYDiOTLZ6rJcZtW8n0Gh4yJARQuDZ8ZRf/8b73Lx9i9sv1JydTikKKWud5YYXX7zCj31+yXJWcnq4JoQaYyyz6ZrjozOKTcnWcNI0LRWD7XCENtRntdR/jLTF4cSpeMSARC0lbay2XTBSmVbWakSKtOl7Sf2ZpXUEUZkGuvVSojJU8msIXgrFRag2c54cv8dovMvtFz/FeDgSHVBVEXxFnsNmseDk7JjVakMMgf7OFpmx5MayWs6ZL2fqsJxUuiUj+Ei/N4Kek+7VRaTf7+PrktXiHGdzRttj1usVtY+qH7EUxZrF0ZTF+Rl7N3ZZr5dUVU2WD/EVFNWGzXrD0bMnEFcMRztEX5LnjsXSM97qsbuzxdUr19ka5RSbktFgzGR7xPn5mv6gjw9w9eou460tLDXVZs23v/Er/MRP/zyjrYkwLwEV1iI6GTX0srnQsFI0BK1E3TC/KewSfAe+BL1XRu+17OJjJ03T2tSbzDZrJwFUk7JfjDgced1KGMdkLQjCYm1P7YpW1TaZbBBV6I5NrQ+iAg6v1ZFyLW6ZrkXP3gj4GvSHhGA0i0yNihFhtAlBhe9iQCSDL9klXa+ENgFEEI6sSTzROAV7oWnM2TYE/ASMeQm/9FDaRI0ibPVglck1NGyGkfuHZLxxfA5ffx9u34QXborWplDnnBl48Qp8fgWzEg7Xsrs0FmZrODqV9462Wn1yckBN7Rtoiro1DgT0poPamqZsvU1sjGtperU1bYXYdE+iXFNX9GpbW9PumhGAVWs38s0Cjh8KoHvxU8LSmCAF9nwlnmO5gLNjAXchSPgtZZ6tZlL51yJhOovMp49ai8XJPBVRwEpdwuJcHOr2GNYrrSXUE+1HsYajqTTtvLErf68qAY0VEkpbb+DwMcQ1jHYgFJJJtPSw1YedsehHRj0BRMMJbM/gfC06rBDg6q5UPKYWZujr/xB++ueFOYq6i0rMSGqrEIO8njp0dytRP2drWkFsa2uaG9BkD3VSwq1r73/DGEWazKok8m7Ey1bPL+t8xmqYCQEtRpXZTsEN6ZpMB8Apq2Ry2pID6SHS6zdWAOXzAMbo7825JSBok+kj2RoIbdXhmOZF56ABdEHmwX40W/OxADchROrKU9WR5brm9LjGuT5eU+esdVibk9sBmelTISm8s+mKs9M1q0XB2eGcr3/jMVUB166PmGz1sN4y3upzdrLBRIcNGeWm4PB4ymq5YX8vdjQzutul6SoF3hBM3SJI3YnH1AQtii4mpA2YkfRvuY9pobabJaMAx2m6uYAa3emjOp0I0QRsdAp8LHk24Hh+nxUFEch7I1I8Nfqa/rCPswPyNRw/e8xiueDgYEG/73jh5g0m2xOsMeS9HtXpmhgNWTakCiXD8Q79TIRnGy+xaZM7yk2BdSPyPAcD68Ua13ecHp7g61oyszIIdcF8E3D9nDwbcX7ylNHEUZQ1y0VBjGvWmw1Hzw4ZDw4oApgoPZyePJkyHm1Yzufs7uyymJ9TB0+WRbKeIXOW4XhMlg8wJuP87ITpfMPjJ4+Yzc7oDYeSfQZIw1VkXg2gmhmD0wariYqnYVx8rEXflKr0mlbEF4KklXs1+tIAVe6x4O3GUzW+QdZGMlZpfUBVV6yWBfNVQVk5bBRWIGlZwBBigTVbHSY36NH1UMaQikY210PSHal1MBbnMrYm2xpmzLQeU2zAsvRcS4yXlB+I1mBCWo8SVsXUWjPMgg+SsdihkVIosBt2/USMEKURYx0lM+a4lhBJrNudpc3BDsD0EWBQw2wFJ2tYFCIW/sZjSSm+NoatXEIgW3042YjRDpkU8TuaSRG5PWizXUwnXKAT6A08Z2saNkBtDdA6mCZbh46Oh2Zz3zpPdSBdx5h0ORF1wp2MlGwI8/vIxSH1YqKG1OpaRKO2Dxvg6LEAnIOFCJBvXJd6M8YIKClWch3ZSIDGeEc0IhHRGQUEZG4KcCPRMhmE8eln0qMraW0yRPy6CdDP5ZgnT2DiJNtqUQioWW/g2TMYPFV8FwRQPDmH0VraLezsSigseOlb1DNagHAsTJLJ4OxEauE8eQyzMxFFh/Rcq43p2JqmEnSsoWNrGgcdNZSTQGbH1miDNwVPehy1NaBrsgFBnXXcZXHS+qhr0XutSqn+qbZGgIcCplBI09Em8ShcOHTDKGH0uQg0YDnW7bGcg8m2AlBlFxPASaxOWpQx0GRENaFSfY+pNTIqtqbVljUH0nPhI42PBbgBNB3XqHOHVDQvRt+EbFLIwKhRKKuK+XTD+emco2czvvIrj5ifl/QHOVvbOf1ezvRsQ6zTztYSvePo6JzNusT7QJZlSJaJalys3mWfOjhrB2btGt6t5hp0QUVkh20QMbCxRo0/mvmUNBRGHJvumFNswmGbUFNEBaAGZHcfGI6G1MUKl0lqea/n2KzOKFaGfm/AaDxha7JFqEqWqyXL+YrT0w23Xtgms32uXLkOvmCys0vwNWcnRzgbmC+m5NmQ3sCR9TLKdWRTloR6g3EZsYzYOILBgBgjm/kGX21YzqdsXEaMkaouqMolq8WcW3dfI4TA9GxGAM7PjoihZDGbsliUONdntdkwm9cQYLLlMM6xXJVM5wf4umYyydi/cpW63mCcI88zqqqirFbMl0thzpcLNusNMSgwjFIrRx4Do4AlErx2XY8QTMRGg3WZdG03qUaNrrkkrDTC1tW+bjLlQvSy7qI88LJWFCSk+iCNLkXWhY0CSMqy4snjp/zDX/syr3/zG5Rnp1wde65YyDPJ1ivKgrII+LxQm9hrdoXNRj6KwbSd8BZokchUNkErpvZ6fbxXtjCiBQYlfBrVsMg3y67Oqs21VovyIb23CMIgZZkwNCY5yuAbx+zT8/mJGjUXrHkjfvQtAGnCUwpAqgqmBZzO4XAG//ARnJcw6MG29jg63whoAvmcd3B0DptSjHbKQml2uWrXfGJsYuvoEgBpUy25sHtPAkvbcXpO02ib8JRrd8wN6NZ/JzvXsTXYIGndxUq6MVsr17U6h9VUMpTGWzDZkvlYLiVsd7qRCs6uL8xIXQiA8DWcHIH1UswvG0o14l4G66jZOmsR15YR4kjSrmMUYFFtYD7VtOSoxfuWwgjde02u/1zDaGdH4rTnU1iUci6bDaitYUtZrlUBcw1FTTIRMNcbcah5JtdVreTaakTHs9rQZNPFjo/osmm+Az5TRWGXtc9K10F3bA0hyjylTLmojIXamqY8AOlvaU3Ezo5K12tVw+On8GtfgW98A85OYezl45muubKQDuuh0Pve61yHLruYwFknPNtSjHIuqTpzr6+hWL22pB+zoQUxTTjNtmSVRVkYXcNBP5e59rufszWNGPlDjo8NuBEwYwjBSzNEatFLhFYEanT3mt5f1xVnZ3MOD8548uScxazA14HVPLCcr7W6sab4agzQmZzTkwXHp+fcufcCuWYPGFJND6s7eSnmRoiSOYM0vkRDFcZIrRdxHsLIBDyOTG2HOs/QwBzVLgidGJVybm2XtCdwzikTJMbOmozR1i7D0YQYNwz6UgJ9Pj1h0B+R91MdCJhPp5yezCkqmGxnDPo96hgYb20xGV0n1DWj/pDMGhbzFcP+kLpek9WW/mjAtb2rrMsNVbEBmxGoMdEzOzlQ1sDSH/bZ3dulLgpWqwXTkyf4EJmfn2OMZbNZUAaLD7BenbNazCk2BbNZSaTH9t4Ec3pCXUeGwO5OzsnJmtWqJHeQ2Yyq3LBYLtkaB4b9MVVZMp1OsS6T6AGB85Nn3HzhHqldQpsxBN7X8pzWtTA6VjN9TFCnL7Ag9dNJIloBOTUxRIIP8p824AxI6Ms68CbVMtLqwDH1HUt9yGR47zk6PuGLX/pF/uJf+gucnp4ycoGXrlleM3NctkdVLjg7PaGqCwbDDGMjddjQ72cE34YtRBtklRnqgn/9TzVF3nvqqqYsK3q9QBKlS2iuedrUHtqmCK8wQlF1ksmxxnZHaNA2FXQ2UYm1+oSBG7U1bbXZWiYhpJ1zAh5p9xokbHI2h4MzeDqFWSEakflGHHxDobe2BpPDyVxq6tx7AWLWHj9lgETT7oZDVGCj/252vJ3MmqYwnwdSpow6zu5u/kJRuOQA0/VHFfqm9Fq9zyaDrR1pkhg3wpCESnQsvZGktKPnOJvCyUIKwE0yCevEKCGd0XVlXLQ+zFyrHNcrqK3oXvauSqipLNrQS/DaddzJ3Az7kjFVFNLl+/iJXNf5uVzbZqmsiYHVmWRzbTYSHoy5aG5OTwRwRmAnh5NaWA0N/1JupODfOEgKeVmKCNxlLfNz+gxevKf31LXPRISmIWQCKCmjyQR1+nqM1LurK/4OtYKboGHRhC70PjvQPig04aMG5AYu1HzxHo5O4O/+bfhLf17WnPNwzYKZQ7YnfcBOTwR8DjMNGW5owoUJv6itacoHpBT1BoDrT++FBS0r6Pl2HTXaonShukaN6YSg9Pu+i6258O8L//iEgZtU1TfqRUWCpuKm9GsxBElU3IQOYsnxyTnvvjvm6GjKpljhzAAIDbVvmkJCAlx89CznFQfPjlkulgyaGhQWcKReUBIu8Coi1u7gWpemQedGKxWn0JYxHfsTNJU8BbmsAv5IjJak+jaqccAk3Y2cb9TCacZEtic7jEZjiDnr5ZlUDTZS1t/iWM1nrOcznh2+z2K5IB/02d0dEmPFaDRhMBgyGm8zGAxErH3lGo8fv8fifJeqFvbKWsew1+dqPsBaR11X1KFkOT8H26OsS9GMECiKDVlPuIt5L2e1XOKs4/TgIbbXZ12ULFYrYsw5PV7iQ2Cx8JTlXNo4OIuzGhKMhjsv3mBdFGA8L9y6w3o9ZbVaY0yGj5FNseH8fMVg0KeuAqdH5zx++Daf+bGfhNRGgKRxEcfl60JSufWBMziM6/TGNgZjo9iaiABVxMGH4PE+SFp18HIvXY41QVKfEcMT9L6mEKRRRs+qRqwoKh48eJdf+jtf5OnTQ2nZY8CayHi4xpoT6uKY1WKNzS3WlUCkDhVQYKLHe900GgE4Lu20mywsEQ0bExt92Gq9YLVaMRxM9PzQnZbs5mNymhEF9Rbjg5rMdh0awFmnejUFhCCtQUJa18kAfkJGV7SZnElQoNOxNY2IM11arMRh3B9LqKlcAWJrmhBFx9bIevQwD/DsRBzvc7am7QWVNAYaAku6jedsTROK6oYskoNQW0MC7Y2uobU1jcah0RSluVDGx0QRCqutYXkmxqyykp1knAiOF3N49khYjUEf9oYyP8MtYV7G29JssfZw5ZpUPD7fld9TW4DeAPKbcj11BaGUUJHNBUiSy5yUhYSNMDJ/i6WAsoOHwhoU2loh9uB4IXOx8OLIR0arX0YFcgZevCFgyXi4dQfWUxERo+xQsYHzpVxXFeB4Cg/fArU1MhQ0JpBcFy1ojTqfrrPOjJFzCOmlxKxFWXdeWY7gaUSzJjEfCnIScO6GIBMbYoxU3X54H/7O34Ynh61MhwjDFZhTKI9hvpYml04aGBNKoJBr8Wmt6bPxnK2RtadAJIHv9QJWS8l0Q9ddx9bQsTUC6m1HN9Ndh8jxQ92eN8iaaxqMfjRb87EAN6lBZUyKfw/BtsYaI52bgxFnaE0Pw5oQa06Pp9RrWG3W+JDhbGJKoOkxRMCZHtFEXOxRbtacnsxYr9dE9kAzSyTslWt2lDAvKfSUNDKAVKzVM7eNIFNTxK3GsC0d0CLZKIllMCFiXS5C0aB0f/qekIBYwOIwLrJ3ZYfJzi6EkrKYs1mv2N27iXU9is0Sg6csNpyenoje0FgWizXDYZ/JeEye5WRZxmAwIs97WHudnf1rTE9PpKN43qOuKur1isn2FXrjCXW1oSxX1JuCAJR1RV1WWOeoqpLVYs5yds7AWZ4dPqXfGzBbr6lCRaw31IW0WyiLmqIyVDVUZc3Z6VIYDm/IXE5ZeVgstYs7HDx5QlltWC1LjO1hsjWGmizPOT9bgolUdck7D17n5zYF43Gfht5XSiFEKbYnWW0isItpXSh90WhFYupqLWElATRRkwK0BhFWmbUahyNitBecfF80VoJUUdZyiAEbLOezGW+98ybzxYLReMhyviZEmK8jT04WMvexoG8jw3GkriusMVQ+kFW1MDFKKhAgUEGs0Z7k7X8xEnQzEGKkKAs25ZqIxxpJYUfXt4mRGEWknKIgKSybmMmkK9K9prZfEOMibGbKzoqy8fwkCYobVqS1NU0jy0b4qKxNtMK+JN3NyVTQ6WYNPqPpGJoKsKWOxqanO9GesBOnUwlt7KuD0Hshx052xXQWZWtrmgwUOs4mZUp1bE0LWrrOQO+by9UhGXktfU/TByjI6y7ClR0JKYVSsp9WK9i/KTWANksawHF6rKdpRSMz0JBVprVXBiNtA3BdMq1OT2Quej0Jn6xXUthvvKVVileSQWUQsFNWAkiqUsDU9FwAw7OnwgKt1gKo6o2AlcVKHHxlJJxU1nC6lGvzRuagqgUcqa3h6RNlbkoR3OYboBYApraGuoT7r4su6HlbAzS0Z/QKKhXIdGxNC5DTfCv7FoKydShzoyxGjMIEpXCQhbYmRAcMNMDBwnwGb78hmqLRQHReESkuebKE8hHEjZzbWK8rZeBVCqg9MlcBUFvzHUxJ1HWUzr3UTvF4mr5maX034moF6QGa7IWOrbkwOrYGtTVt2JhPnqA4aW1kh20JtVTpTXU9YvDSfTh4LWQmtKUxnk21pJ4KkMnsgIYBShMU0Jo1AnRMdATvmE7XLFcb7d6sAuIQpChoFAcVQtQCialKrW6h5aSl71Wi9kPUDZPDmkzq3KSYuSLWVAtFQuEqdrXSsLDG67mmYmleou6hotfL2BqPOD46J++PyXxNCJHNekYMfaIvOTk7pK49m3XE5Y712rO/N2Zvb5c8l0aY1jj6vRFZ1qeXj+jlY0IIZJnsplazU/r9EePJLv3xDnW9YrOcUxQrqkoaT1pnZIPhK8rVgsX8jKOjA9bLFTWGZ4ePWa0WPDp4wmZ1ROYcpzOvz3Lk7KRgOHYsFp7NBm7dmrD2K9abkrL0DIaWnd0xWe7wdYWvPdZk7O5uEQlMzzdAZLFYkXqCNc0gI00Is0mRNO0aS/cvwdWkaQjeq28zmm0lFKtsnpMuR1kcIpJFo1WsLcIOpkJ5mgZe+pLp9JTgAz/7M7+Lg8PHvP/wAU8OnlKuNpwvPctFzaQXubVniF61Xcbqv31j9wIQogjXQy33PhnBoOxmTKBEQ1QWJ13Cm5ThxCpYDZUKY2BTdlhQTY5PrSlQ0Kdd1fXaUF1RJKjcwHec8idhtLYGrIRP1NZgVSNhdRftctHNRCs7/WoFU3VMdkCTFZfASICmN07STXgnxQJXGxrKHpRt0fNo0nmhCQE8Z2uEmVFw06TSahVl067lZnfc3eVGBS82iVg9TdZPYphAQlC9TIS1R+fSPyrT0Ml6BqEv7zl9JizMOko20trD7gj2d1Vcqh3WeyMp9Z+PIB/LNautYXYqf9/eFaFxvRJWqFhryrht21L4WoTLizM4PFCmBsmMWi+l9cLqUO7jzKcHBk4K0dosvAigb00grAVElTUMLOyN5RrqSq7JZtI/jCAaKqIApwQCGzYjraHvtDUtWE0vdO6PT2BI/57Sx9XWtMBHX1dbI1otfU9T5E6/ty6lsnTt4Wd+Jzx7DA8fwMGB1BxaeljU0IvSesJHLSuggCaFtxoQps9IraLvLsuUrjmxO8kWOduC7o6taes1dZ+TKM+YV3AT6YDsBBoTcEvPBJ3v/3DjYwFuwEjRNB/wdSUGM9TYTNottOJPuTBrbAcMVsL8mNTrSSsKI2EkaewnFWGtM1ibETxMz2bMF3P5vjyT3bYRUBEV2KR7Z3C4RsCpDRlV6yBp4Gg9EUWsFkAdriL45FwbJiCxQFoTwEVDpG5YLKl1ErFNMxVHVVXaXXtIiDVlscQ52GzWVGVkNl1hM8NisZJjh8jWeAtrLI6MzPWI0VBWNXW5xriM0XhIng3BwGg0weLoDUa44Yge2wzGe1SbJVVZkGV9sv5AasB4T6grNusp1194mfnsHJf1WawWnJ8e8+LxAQ/fe4s333kE5oSiLFmtApsyQpRqveui5MH7pwyHlsxZnJNmpAZD5vpAwXI1JXrLeGuPydYYZw1FETg4eMJyMWc0luqvVmn8kGrXINWd5VFsQ1FNc1Nic69jrJt08FQssmH29ZmLoPVlhM0zIWK1ijTWq89MAEhCVv1en8989sd49bUfwRpYrha8+84bfO3rX+bdd17n5MkRrCM7o8igb8hCgFRSINkP9XUhRHwdqWIlWhySLbIkzQ+6qTT6P6llglWBe9r8WGsIQQxr4oCaTE8L+FSKIIE8ZaWiIfiAD0lAmPRwnyTmxogT9EGNt9gayfbopurHzoToiBVN35zG0Sm/FZWVSWnBzoij9Ahzs5jJ9+UZTY2TVPukEZNCK+I0XKw0q8beok4ku2Br2gWQdr2mDXs1CF9BXDQ0PY6asgURyNtrqiq5nt4QYi1CXoc2sowwXQkDsli35zjWVHAyYXqi0eaVKhoeD0VUbBBdD1YYnuEY2IbxnrBDZSGgqK9Vkr2mqK+n8MLLMDuXv68WwiAd//+p+6+gXZItPQ97MrOqPvN7s71p708fb8ZjMBYYARjYEaEQBJGIIBWhCN2SuhGvGMErXumCwQgpKIESKAAEgwgRGiAkAaMBZjSWmHPmnDa7T9vt9/7958pkpi7Wyqz6d/eZ6TMxHHVXx+7f1VcmK2utN9/1rrXuwfvvwLtia2gaWAS5zjPNNqsb+OgQJuqInenT6NXWsDgGb6UtRGrJUAcBT7NTuT+gDxkmZ9svbjJCMKZ/znnfIGOZ2R4FPYMoU36VUhPXGOSazACgJsMQBvOjGsHLr8GLr8rfFzP4/lvwnd+H778JamuYRhjpcWMKpek5U9gsRNUpdb1YmPQupPtL12x0Hqr+Kwnc0zGtEXCWKzXH84fzCSwmkGfybhKu620NP6St+UyAG4PBuZLoVYei4CSGKA8TQMW+1hZY7Tga1UGlG/Y0RO0rZDJS1OrBiW6OHmcjwXu6Vqq7gjhAr8r3oA84BNFY9IInSDRaLttPAibqONSh2pQRkZ6nSfDGqLMVjYiEPNCdpIZISkcPJhC6yHweaFrRnpTVmMoVxLalC6LJaNqO+aJhuZIYcNN61qYj1tfWWV/bxPuOQJBMqof3OTs5IgbPxtYFtnYvMJkExpMp1XhNwmtlJdfnCqyBamIhGtxoTDlaw9cLgm2JoWM83qCspoynW4QY2di5yMbWDvtXbvD0M6/ywit3ePedt3nn+2/x7rt3WJ14Wi+Lw7iAzguILCpHWcJoLNV3m0bStEfTElMUNM2Mrm3Z39vhdLaiKBzW9fHfiKZ+q3DWJPozJnij4m+0Jg0aBg2GqAWsolaOLqxkCUVr8cHrAqQHs+llCxpzN0ESu0OKkSNF8tY3drh8scO6yN7+HoVzPPv0s+zu7lBYy++f/jbLozmL2rDZRbouUpSJ9dXaO4pIfAg0bYMniZjltYgmqNBewYYaD+sYMDf0K64c9hSGRsB7yDZKSlQII0Z0YtuUrTEpw0NZG7kGXf1/bjajjIw69wROnrA14nQKpKJrWqqnTCSAhsx4DGwNQ1uD19WxF/1Glz6r50vH8gpwfoCt0R/IICrfio77E7YmA7TUJkBtDSn9GzgngEYBmw+yym8R7Uk1FtDXKAj0CMhYNJKSncDLdCQAZW1TxzUIu/LogdSlCR62Lkh4ahpk39EauQ+S2hoMAj6iEWAzWpPMLdsKAB1vCNsz3ZL5vH1R2gNcvgHPvAav3Ibvvy3/3r0DJ14w3BRY6jhHpMZOibRbsFbuwQepf1M46YDetrC3A3PNpBrYmgw6huM9sDV5NZScMshcSeI56J99zi6yyhpyHsym0GIW86b509sarJUeX5c6mW/7ewLcnn5WWlE4B6e/JaG2lRGA00UZA0MPktIcCkHCgcPyAkAuBplLCihQcWbA3PAxW3MOtCSNWp6aafXotHizjt3A1vTA/4ezNZ8JcJNZFiPdl2Pns2bF2YqUapo7dOvLniuMmH4SBaQmCXEoJka+Dx3WBKZbE559/ipbW+uimyD2TJCyNmKorFZy1YloLDZY+qq4ormxrtAFjzwFeXY2A1iL0xCDdJ+WUKwGqdQxmSBF0YTZUQ1ENITYUa9W3L79LmfHpxTlKe2yoijk36rpWNUrjk6OsZXFxMBkWlCVBXu7e1hraZqOB3c+omk7RpM1NvcusrG9T1M3HB085O7ZO/iuZjSecPnaM+xdus5ouo7pajFu1mVmLbStCHW1KJWxBSYaXAVdvRS7NNmUUK4P7O5eoL3pGU0mXLx4kUeHR9RtTfBLvv3GAWezyKwObDQte7tjrLEcH85kVhgoSstkbYRzhrW1MWsbu/h4zGSyQzUaUVhHFz3ETlkYr0Am6jum3dWDzhoLxICPHTm1WQGxNamWTcRFfe5GDZKu0DIwAg0BeQ2JGYwNWbfTdoHVasnJ2RGjUcW+ucioGrG1tcXe7j4bm1tUozFncc68hro1jDoIVuysLLAFRIiuJdIFaQ2RdVnGYKIlxBRG0iyTNC8N0vdpYIu7KLWMUvVtUNBCUGBjhdVJ72VqEBu0H1YeEwV7n7s0cAUIWmQRtTUQRHeR7ien4CZgkdiPgcPCk6vNDmwNamswATYn8Pw12NogU++5c7SGFRimiPe2RtrOq2FKds6Vyt5ki0/P3EDfYDAxM/r3dO1Gry2xTCTHbASYLGv46F1JsS5PYVkJS1KUEsqpV6J/qaw4wammUO/uy3GaDu5+JF8nU/n99r4wJ48fwNktSekeT+D6M3DxuhQ4HNgaYda8AIw8RpA7VVdI+Moa6VcFci37FwVATqZw8YL0iGpqCCt44wBmUZiYpoXdsYyx2hoMUHawVomzXhvDxg7EExhvS6FB6wSk5Jo1urBOlGiq8puuV22NaFd6WyPPIgnDo86Hj9uac2HMFBZK88sq8xIUNK9WUo9nVIG5KEzO1rYAyo0tAYtxLlWaky4pTbcIKeNWGBM9FynclgCNzpOo15+Bsc59tTWZXFFbw8DWYAbgz1py7aAE0hK4SlmDZjAOP6St+WPBjTHm/wj8JeBhjPEL+rtd4P8GPA28D/xKjPFI//a/Bf4e8ub/b2KM//yPPQcGZ0u8a/VdFj1KWk2HzmdBrrUWZyosJV5DRIkJkVTcjsKMkvuRYYuS9URs2Nwuee0rT/H668+yt7cPOEkmcOjnpTx9iLUIek2qaaJskonCDlipMmyUqXGpKFeqEJkBmIAgY8AENULW9rFMGTOsLRUISYHCZICNlWN2baDzQOw4azzjSSSGGuMWdF3AFSXjomLhl7iqoGs69i/sk6qubuxcYGN7l42tfSaTdcbTDYwr8E3Szhzy6P6H3PvwLU6PH3Dh8jOMJxPKUYmrJvpcOny7pG0WRAtd19A1nsMHdzg7PWaxnINxNG3NbH5K00UODw84PDpgVS8pyglXLk1puyXz+TFra6ccntTUbeT4yLNsV3jvWJsajBbQcxpmc8YyXQ80zSGnx3Oee/4rjEdjwIgeNEAIWtMir3z0MQSJBafsJ5PiN/qSDXuKBSPzSRi4/lnaCDEBnixCFkZFvu+IxuC9p2laFqs5q9WSwklbh7PTE1YLw+HBY05OTlguGwVehmUTWbWGcRso1Ki10eNDxCf7rnag84G2rRUEJ4gsTirGBNQVOAcvwEUzH0Rro++DTavImIGRLWwO2wkTBtApu6YQP2cRmj7s+qekufmzsDXizEtQW9MzLqij8GRaylpE9KuZO0BarmSnZUYMlpbkWiSxge0SvvwUvP6MrKaNg87oYjzFG4FYkwEOA1CVnl3KkMlMzSfbmnx9Bp3zfMzWCMuQSthbuYcE9pJmolWWJnby/TgiYtSFrPiLQgCPX4pGp+7gYm9r2L4A27uwtS8ZVNMNAWVNI+GSs0O49wG8/xYcPYDLz0iRvFGpYTAj49gtRWhs0DYOHh7cFXC1nMk4NDXMTyUl/fAAjg/6dheX17VmzTGsnUqdojbCkRcRs3eSURXUYRdG9DXWwnqAg2M4mcHXviwsVhrDqGPj+QG2RufS0KlnNmcQhjHpeekzT88y0gOeoVNPWUipD5TQ9rBayD+nGXinJ7AwcHAAJyeiMUptNJoo4KbtGehcBqHV1yFFMn3UFhxp7ve2JlMvQ53QwNZkgBe93Ncw+w8ndXdy2M7oHO36mk8M7jvb6x/O1nwa5ua/BP73wP958Lv/CPh/xRj/U2PMf6Q//4fGmFeBfwd4DbgK/D+NMS/GmEfnB27WOozXcEwM2CiAx1gr4uKQlNsGZ0qsGRFiTcTj4xJnJsTo8bHBmA11WOkBdhgT2LlY8aWvPMcXvvg8V65coKwKfPB0nZf0XkArg4hxz/ZgwBKhK2SD7GnAIb2A8iQPSNG4tMZPTkQfkEnhA9vriFIacVQRtbBNELBM1jYZT9aZzU45OlIh7VFNWUBZWlwphfysMdTzFleMsMaxvb1LNFI7ZzzdoByNIHqatqY5aemamnq1xLcLnC3Z3N1nc2eHZlVzfPKQtXaDjc1tjC2wTiqLNvWcplniQ2S1WrA6OWOxmoN1rG/vM9nYpBxN6EIDxrFa1Ty8f5t33vo2t97+Q1Z1zcbGNpPxBtvba9y5X1NEMB4Wq8ByaVifFkQb8G3g+FAAZVkZzuYNy+UJk/GIq1efpnAO3zUiCPYd3nd5JZAypowxg/R+eUbynosYN3UTj2pkBuUXM3jINYlUuxJS5WNdosQQlFGVv8UYGY/XuH5tnevXr+O7hrZrWS7m8lytlUKCKjKsfWRVQ5jqi24i1kmFZt/4rP0KIRJ9oG0a0T2RMvCE4ZNwUaDzLWC0QCVgXBYDG51rxGFYVzRe0qpBCvYFPF0QbYBNgm0VrlobtaRHFBbvh1tQ/VHbf8mfga2RYkWJFVHWxWqI4glbgykFwMQaqTy7BDMRox0bMOuIsLe3NZgAFyr46rPw+vNw9aKAgOAFPGUgMgAm+VcDxwECiLITBAEk521Nr7Ppbc15ZxAHIEjPEfVz1vU/Y0XcO1kXjcmRCmljLY6/NFLBd7oh7Ma8EZBjHOzsyn07J39XW0Nbw4n2qVotpQu3LaQx5t6uMEUnD6HdEHGxLZShsaq/WcrkXy3g9ExBjRU2aH1TGCCvmT91DffvwFvfhrf+UIDPxraEs7bX4H4t9+mRsNrSwLQQFqQNcKRjVRmYt1K4cFzBlacF0HWtaoD0X65YrBoaY3qdU2IcjI5zrqmEPLQUDh2ygvkZ0mtXUsXiRIekwngpYylGaVB6bQ2uX5dwktcCi7kisNI0xgg4rRFQl5xMCis1SQtEoosFkHqtw5SAWNTwbAwQtM5P7k6eGEGlgRIbhYKozNBE3deQaxxFyILtJJLPGYm6gv0hbM0fC25ijP8fY8zTT/z6l4Gf1u//T8C/Av5D/f1/HWOsgfeMMe8A3wR+8488iUH1DKqXiOKQggkUrsBaq85DBszZEdaUPYjTb6R3k3TqlqwlpRFNx/6lTb76zed4/YvPcfnKPrZwBB/xXUdjDZWT1gtyHDFAqaZOJIDVom0ZPUcspTJ2lqg1cTBotWLNXFF0arXoX6pom0StAnY0g0dfCGNSwT+wrmBze4+qKljM5iyWXtO9oS0kFDJZ69jYmrCYzXCVJcTI+sY6GxsbWiXb0HUt9XLJwcOHPLj3kAcPH3EyOxOWIrTsbm+zvbHB7s4O61sbWOeoV3NG0wmFrzBW0qPbbsWyXrBcLqjnC2aHx3RqXF2IYGdgLEU1wjpLsV5hL18Rv1FUvP/em8TocK5ifW1CUch7NHaQ+1hYS+HgbCZVgqtKEuNXq8CqDqyvj7h85RoxSPq0953Wpmkl20mfIkYqQkvqc1CYouJuo2AlBg3vSlg0BGFg+rdcYY6TCscRQ+4YH/o5F4OA1hA8pSuYrE0pXF/noe1altM1nC04PT3h0sWLFFVFURjalTYtRpiqgKEoNNtp5Rm662g8dS2d1vsCfnrHSSCszlAqGRtZIHRSpFJWZCZXgcfaweLTaiG/qIsL6YxuQyBaqwLsiLEuSwMCYP+UmJs/K1tzfrWdHFLQkI/eSy62NxKA84StycY7l6N3SDpsBxc34ZvPwhefg6sXRMfho2QBSayQXjugYCfX1AnKoLheV2EiIvaFczVxBKnKPpF+JZyL/qX9BiBqmIEFch3JCbsCdvaknsx8LllQaaFeGLnktQ62xlL4rtK08vU1ARoWcZRdK20QHj2Cew/h4SNtyIk43u1tqXK8syv9qJwTIDOdgK/INWG6lWhulgtJ/T444lxlX6fsTTWS85YjuKzGsajg3TeRFPcK1ifi7SKKFXpbg0MqGcegNXUsrLwAoPURXL1GzkrynThi3/ZjmVkGJ6DDDFiMBFxT8cUEgqzV0OV5W4PamsyIJE1OCgkT6Vs1eBVqT3VOKVjvWqlV5Aqp2HzxkqTgF0ayxjRiSaHnKFRTtPKDlgzIfTRnAsiz5iftEDi35fIEVgCUMZrtpvNHbU1/q2ne6b2mViKpEGISa6fw3cfevz9++5Nqbi7FGO/JueI9Y8xF/f014P872O+2/u6P3AyWUVURw4oayNVXjSEEhzEG5ypiDDgqbFfnDuGSvSQ6C1BnExEHFD3Qsbe/xle//ixf/uLzXLl2kWI0IvhARwtRRKPRO0HwSbhsrLZB0MmuK3nnpDZFEqFK3R1DtMLeWBIgQhxpFE5InCtYUxAQ4at8XjO7klNKcVvIrMN4tEaIFaenHT6KGLTrwBCxhYCu+eyMs5NTxtM1xuMRl/YvMx2NGI0mQKSplzy89xG/+Ru/we2DUyZbF7j9/tvCJnSBV15+hVdffIFmsWT9bJNLly8RihLftkDElVPa5Zyua1ks5xwfPub40SHL1YrlfM7sbEY1XmO+FCFaUVaMpmO2tjbY2d0mBtja3OXK1ec4ePyAtmtYn0y111GgHCSwjEYVha3Z3S3ldQ6AsayvS/uGazee4eqVmzTNSjKHYiB4L89RJ7/RNh3RpFh2GlOZJQlUZro/SrZdD3B1HyPzM4c5o8l+QYS4ulIxooUJWil4tWqp2zMKa5lOJmAszjnKqmR9fYONjQ3Go4qyqjhbLVnUka6zPRODgpa0OAwIa+Qjq+WcpmnIQnR1bjFqaEptizV65dEjjTMRzZjxSgJI+M8YcnaxaM8iIRppV2E8Huk55Vyhc1/KHsRgQRmw/xG3P1VbA1YMfVjJjyk8ZAwEZTFcpZOuEi1ILkHv9V8y7Ek7oIsoOuk19fVn4IsvwPWLwmD4AGprxDH2tibPvydsDSBgi9DbhBRaSE4i62vStWj2T6qCm0HOwLbITev99rYmsw6VFvA77foVd6efcQq6ZjOp4jtdk/o2+5flayW2hnoJ92/Dv/kNqQ20uS+F8GZzGYuXX4YXXxTAcrYJly9DoRobooSUlnMxBqu59Hl6dCCAaTGXTt/jNWl+iYKa6ViA0u62TObNXbj2nOh8ukYbf2qoJxEhLaJRcTXslXkYMVZAzWoluqArN4UF8prxFLx+n4xKChOetzUMbA1DW0NIK4v+eWT2LnnyyHlKNCgAlnc5C9BjhLqVooXWSHjPKANZlSLy3lAmraqEPaujVIrOoOwJVsTrfPBRxrtt9J4imTkM/WX25FPsr8+iIbqBSD/Ntzj4l+4zGlkYZDZJQ8GZobRqnD69rfnTFhR/Emn0iVDLGPPvA/8+wGS8yZe/foH7dwNvvXGE94rMo7InBsDncIF1Ja6rsBR4TZ9OwUJpkKjggY6N7YovffVpXv/ic1y8fEFWxNYqqAjaIBF8DJRGBWsm5jChUQBijVD1osdQZsaggmTVPqSCW4OHFnNuvzzYGIOuoPUpp4UZGvrSYk1GVeTGOYpqhCt3wFm21yrapqGtvdrlSNsETk8OGY+dMnuRq5evUhYFVVVQFCX1bMbjB/eZzWd88Uvf4PVv/gx//z//33Hz5gu8eettrr/wOpdffIHDt34PZxqOCss2e6xtbeM1jdG3K9q2YXk25+j+Iw4OHrGoV4yqEdPNbd75/vu88fZbPHx8xKXLl9jeu4gJHVcv7vLMM8/QdTWFLRiP12jnjTp3Q92IJnHsDNEagimYro0ou4Zl02GtgMKyKljfnPKTP/XzTKdTATRKDwcvoEIAipG6SDFqiNumSQfGYNWAiDiY9AB0/GVMnS1IKeUo2xN0XxsLBU1RV5BFFha3TcPx6YzHR6e88+4ttjZ3efHZp9nb3ZD2DdZSFCXj8YTJdIv1jYbF4i6rNrCqI+vBiB3wuhgLyuJF8GpM69WKtpU2EVnsl96OJBLGqM+UlPCgc92kuR0N1iaGURpjEnwGkzG2GGtwKn41QVpXWM1k9MN4+f9/RMV/IlvDeBO+dgHuBnjzSMJTamsY2JpssV0JXSVAIbE0WZjg+9U4nZT3/8pT8KXn4cq+rIitJesnQpCPhtCLYxOiTA4iJpAzSI0drv7TrX+CreEJW5Mp3uRQsxg6sQLqiFPGilMWpNpV3UklYYlGGRwiNEFq1IwSkIpw+aqEJUaFCI9nM7h/TyoYf/Fr8K2fg//8P4abL8Lbb8Hzrwu4eev3wDRazXdfBLApZbpdCdg5m8P9h9KjarUSILO5De9+IMd6dASXL0olZO/h0h4887SAUlsICJo34tgrI4LaAjlnYrmmI6i09o1FflcVsDmFn/w5Se0chqKyLkTH2yrIsMATtiaDlQyEBsgn0Z+2GDyX9FX3jRryzLam7LU8TQunczi6B+/dEgH0c0/DzoY8U2u1oOIYppuwUcPiroTg6tjPE9XFZ0YIes3MSp9DtjX95eefM+g25DpPuX+W/j2niAfZJy2IAhBbnYtaAiEEeZa5zMLA1nzia//J258U3DwwxlzRldQV4KH+/jZwY7DfdeDuJx0gxvhfAP8FwFM3n4k/8WPP8G9/3/PO2/cI3Vwq+GoYx2qJfaPaFsm01BYJaXWB3HaInmhaTCxZ2yz54us3+dLrL3D16mWqkcNak+dgYRwdJvcQClq7RP4sjBFGHBIx4lLFyEgueY+udFMjxSQ4jSnV2yAaooR41bH01yzxV5NoOhkdAVCmJEZxKF/+2o/w4fvfwcYFbqPg7GTOahFpusjR8YJRZWlaw3Y1ggi729uU1YiqGmXG6dKVK/zY2ibWjCkXxzxz4xneffdNru0WXLpwkZtPPcfyzjtUhWFzd52ycITOE9qWdjXDtzWr2QlnR0ecnp1xNluxf/ECpXFs3XyF9+8fcuXZ1/jg4W+wubfLT/3cX+LtW9/ljT/4Le7fv8OLL70EMTAaV5zNIlXlGE8KZnMxntFGurqjqQOj/R2quGCxPMMWBdYYFrOand0dnr75rBTDDEGL7gVCbAWEoS0QUDYNbWiqpelNyp5SdZXUk0pAU56hJYUFU8hQjFhy7CatsFJNGgPRyup+uaj54P6H/P4ffpd33nmPixef5tHBEa++cJ2Le/uAgLWyLKnKklFZURSOpg6sNOPWODFkxoqoN3rV/Sjgbtoly+UpXdfiCpcNY9BCgzIjhQ0UABP7MhwyG0itKYz2nzB40XupIYppTKwA5pjqQCW7m4asb1j1P9b2p2przM1nIj/2DPwPHm7dg24+YEg850rs5xWlCj7p31s5sAfTCtOxUcLrN+H1F+DKJXH0CYxYyLVrUg+hXIgPRLOTHESyA72tySXvs91ID1OPlQTOCdAMbE0PenT/dC8DWyPnLsmNCb/2LXjv2xAXsFnAyRwWUcINxwvJlOqMAKEIbO8oeNC0eVfClSvCGpiRaFduPA3vvgE7BVy4CE89D3fekdDI3oawQp2yN6uZaHRmx3B0JFqbs6V8zjq48TLcP4RnX4P7/0bYmp/7y/D2d+HbvwX3P4KXXpaxGFeSJVUV0k9JbQ02avZXgP0dudflmWZsGekyvrsNTz3XA9KsdWqVQdDnMwSbKZU/AU61NSQ6f2BrZHsCcCbAlBz7wNak3VFbw6KGBx/CH34Xbr0LF56W0N0LN2BvD9AwaFVJ1eVSU93rIKyVR0JgIfZA15v+vAbRSC3OhEVLtiaxfMOifugxiP30VFvT92tLdI/v53NidNTWyJQMPXhKh4kM3pdPt/1Jwc0/Bf4u8J/q1/9u8Pv/qzHmP0NEfi8Av/3HHWxtbczm1haPD2vaVh5sVOOedCzWlQQvXbELN8H5CusrDKt8HAkKOaBjshZ57fUbfPWrL3DjxhXGk7HMExexzpHKrbuoK37NErGqSwiEnqEZOjRD/0AV2AD936OkSacqrzGV+9dwQ49G0XTvqCyQZlRlsad8b42jMJZrN17guRe/wne//etMxo7WW5ZNR9OIA1uuAtOpo20aJpMRZVFQlgWT8RSMY1RusL65x8XLct8xWn7qJ36Rb/3IT7Oan7K1MWX+4Vvs72xRTUvWtrfJWWI+4n1L42uWyyWz+RltiFy5fh3alqtPvczO9ae4dOUit279Kk/d2Oba9WfZHlc8feki7fUbzBan1Ms5a+vrrG1ss1rN6LqOzbWKg4Na7DrgrKVrVpTliBA8i8Uh7WmN7yTzZ29vyubWjjqCoDoYJCQYbAYoxmpYkdQ4w2SwqtZK9CVYgoakHMjzMX0Ljx7IoG0M1BCpA4pWnqsP0g9t1TacnB1RsOKZGztU04IPbt/j8OiIF56+wvXLu8Qg/bwinla78zYBVm2k8wKardUFounnEAjY6RppWtp2ncxlxFGmApDCYHbaEkSvHaPx9KTxKPBRwFmyuxEkKzFKh3qxp8KmxRCJWpE5RC9ZfXgt4fDpV1N/gu1P1dawNobtLThsJGsk6TcSw2HQOjga+y/G4EeiBRnYGp2tQCfl7F+/Dl97EW5eEe0IiOMY2Jr+X+hXusn5DYXEP8DWZJAiE5xcAn8oEAZ6wNLbmh40mX5FncWe+n0Kr9x4AV78Cnz710UM560AgUbHaaWr76aR5palE+c5XpNjlBvSWuGyOk4M/MQvwo/8tGQ2bazBR2/CzqbUltne1vG0Mu6+E5HwciksUIhw7YY42KdehutPw5WL8Pavws0tuPGcgJjLF+HoBsxPJKy1vi6C4tUM/LGEmg5SN2wdk1rZoOBhcSgNUb2yZrtTyfpSW5OBYjQaJrH9cXKto/R+nbc150DoMN0/2ZP8CllldD5ua7BDYGEkXHR6JMDsxraAt9v3BBA+fQUu7/a6HAK5E3hAssa8niNFwhjOIaP7NQpuOgE3w5hSuic6DVnqtX+Crcl1fYb4JDGmVs+V2MQQ6bU2mniBJzNEn3L7NKng/wD4aWDfGHMb+I8RQ/MPjTF/D/gQ+FsAMcbvGmP+IfA9uWP+158me8EYy0cfnfD+uzMphBbBh4bCjiAG6fdkO5k/HaTid+mFSE7YUWGBcVXw0iuX+fKXnuPGzStMJiOcFYOd2hugPXesBeN9FmUKJYA2iUSyrjQskZCpKBnkOlLYQ7pBe4hO7YUIjEOUMEASCadXQBhik+euMHyiscnZUoA0Cw2sr23wjR/9WW5/9B737rxLs/QsVhFnjejHJgLDmmbJ3t42o9GIohQRYlVWuMlIbi+CKyvKsuLSjZKu6zg7ekg7P8U3LVWxS1EVlEVF51sVEovDa9uGtm2oVwuKqmJza4e9C/uUtqA9vsfXX/8yl7d3OHj8gFExJZwdMe4a1scl08kupStY31hjPB0xP1tjcbZgZ3OdO9WM0EWqSgxv23Z0XcP62homwulJS9tEXGHYu3CJ0Wgi0gicilq9ZNvhyAWLID83o9RmNBYTVMuVnYbQnxKGNGpPbP68PAddtav/SRWPU24VxuCsJRjL5uYGX7xwmW985Qt0vuNsNuc7b9ziD773Pk29YH1SMB45iqKgqipcaZmuT2jqjmUTqVeBYorUsgnatsKne4BopQrzcjmjaWqqqiJq+YIYwHfyujltDSKlBLz6UyM1mQzSHT2vqAS4xdiR9EfWSJXmkBtKupwdJfcdxACn8MmfwvZnYWswFm6fwHtn5MrAoQEzom8P0GWb3RdLs0/8q+S+qwJevgxffk6AzWSs9HxazRtyzx2LOM4nbA1mwBalsMSwAB9kW5MdZNRYgtqaXGU4g5bBM8krX5MPL84rkCvLgoKbINlOP/qz8NF7cOddERavFNi0wEQP2CyF3ajG2nIhCjugtoaI/FxWcKMUB3n0UABO08LWnoxfUYlAd9hcsq1FK7Oai3Zkewcu7Mv1Ht+D178sBfwOHoCbwNmR7D8qYbwnDn1jTUJOZ2uS4r25DtWZMFBqa7TpnYiiI5LZ1URhlPYvSX0YWRXrNPc9c5JsTQaWwzCKHQDP87amf0b0AGkIage2ZoA6yKApganNDdE7feU1Yb3mc3jjFnzvfRFiTwoJHxaFjGFpRVhdK1BdBSlwqLZGRNwGigSII8ROwGFTCwOUWMeIZv7p/M2lBHzv4FJhxidsjQj2eluTQdHA1uT6HgmN/QlszafJlvrbP+BPP/sD9v9PgP/kU18B0LWeW28+YD4TJyWpsEKd+7bDuRHGFYS4JL2JFpdX16gQ1OGoCnjm2X2++MVnePrpa6yvb2jWCjAAKVaFvNIjyGh9m04yQXQCGp20PYGY1D1pRus+MSg7aXIsMaSkckuffZPCGul4Or+FKUghj0EmlYlEZBIUVcXNmy/yy3/z7/FP/8nf57133sS6mhgDo0p0Gs7AqCxZG08l0wZH4QpGowllOaYo5UUNrceHlq49pWtbbPSU1ZiiGoNxlJWBWOOQfljGWbrQ0TWdZAKN16nPZrRtjTWGshrjnGUUAs/cuMy1y3sELF3rwTVcbK7QBs/6ZMLexT3asGJ9Y5ujo1M21yeMSsOyizgHzka8DyyXK/Z2t6nKEmtqfICdzS2+9c2f0jChLqRMpHCl9GIy6ekoODEpXKijHgWYSEhGnigx4vKqWWaWPN1UE8bo88mIiWEDzsQGGQzWjNjc2efCxX3WN6d0ref05JTVasGt927jFFjEGFibrvPC889z5dIVHj9+wHe+829pzuasWph4AXKohixFIwIREwwhoKLimhjX9d6iCKqRdHTnEhAHayq8kVYTKWMMnWtS9FD2DdpQUoTJQfuuGW0DAsEaTNDKzBiMCaTMsz+N7c/C1tB5ePOBlOW3Cg6cisK7TlKbXQEDW5NDRECvt3FiPZ/Zhy89DU9fE6ZgYGsySInq9ILpnV0qpJec3TnmJX0+fU1zL/Yr4IGtyYjA6u/V1pxzBAObkp3wMJPKRFBbQ1WJPuZv/j34J38f3nlTRLcpmyi9LmUpqdiFEYfkSmlqWY7ln0Fq04QW2lMtytcJGFJbg9qaDOKclbFpOgEy43U40zCVMfI5q07x5mW4siefVVtDc0XGZTKBi3sQVqJFOToVx14aATeO3oGuVrC3LQDA1DKcG5vwrZ8iZ/Gorek1L3EwFzg/riTDnhw0nFvFDmzNuWedNFgDW8PA1gz1dZgRbO/BpQuiDWq9iLxXS3jvdl9QLwbRDD3/PFy6DI8fwnf+rWiZWoQeLhJ49wMWR+drQFiwutb2EzpfUluGEOi7loM0jVXd1JDlMZYcykMBUmLBkqg/FzCkZ3BSoclcHZlPvX0mKhSHGHh0MBc6HKvjIfVN0mrEGKuZRvICOlPiTCWhAoUczhgu7m3w+hee5emnr7O+sa6hJdQpyb7WOIIxSP0bizOF1gmJuMELn0JiIQaMkZzlBFRMEi8j4YUQPSZlKyDXK7SOAC+jRY5yNVvkPPJ9lkrLhepLkLQ8VldlRVHyzLMv8VM/80sUZcn33/wOi+WKsjRUFipnGJUVk1EpK3cLZTmmdCWFdThrcMWI6CK+7bCmYDS2rG/uyzUDMXQ0ixPmp/O8yg8hEnxLCB3WFbjSYQnE1lMWJVVVqEMtmKytUUW0dUHAjgqqtSnL1YqqKFlbX2NVF7jimLIomIxLRpWlbSKFM5SVpSgM3jc0bc1oBG0joZ+vfeMbPPPcqxhbkGqRmPx8lF8xpYKBtBIyOq903xAySxZiUGYDadCaHH9Enm0wA2ZOywOQCv4F9V1aD8c6bDVmPB5TFCWS4ecYVRWX9vd5/aWnKKxhOp3StUsm4zFP3XiWplmwtbnB+x9+n0fHc5oWfDD6Ypr+/8lm6vT03lPXK2FgIvquIMAtBmJMDGUKu6UK4JGo816oCQ2f6iop9VWTujpBRdpqVELU1gxWKhyTQGIy0p+DLQR4PCcLiFOoyAy+Gier0eTsc62b3tZgDOyuwxeegaduSEZKWoVH+n1zh2Q9li0k7BKfBBcJ5AQ597B0fXI8FPI1CkOctyxcTXqbJ8ScamtyejHAE7YmnycxQEUJz74EP/NLAmLe/I5kK5VGsZ0RxmVcyvXaKIDGlQIIrFGgGAXUmEIaVaqtkWfRiR7nVAvQGXVoXtstuEJCXgRhWAoV+oYgY7GmbIu18rtRAdOpCo8LAZt1AcWJCmtL0Qs1Ua6/suLYu1rAU4X8zRj4xjfg+dfoxa9m8Hx0DFN/r4GtyWNsdK7l32uY0yBzIDn9iDxTtTXy/BIIGM4J+vOm9PfJRBkzo2LwSopFvnRTzjWdimZmPIYbz0pBxK0t+PBdONZqxblC8AA1ZDCnv++CdP/2GhpK1507die2yQ7AiM6jNO/V1uTPpTEJw2PFwdhFcjZhqpac5+2n2z4T4KZwjldfv8xHHx2wWBbS3DIV9UEcicVpmwNL7GRwrJHGmpGOGDuqouHZK1s8dW2Pzc2pCrSF9rJGO4PjpMJwFA2BsVIwjWikt5Sxwh6l+iVR0n0jHVLePuiKXiZ5VL0GWktFSvepUzIRo800xblIbZxo0+yJOUwmLkSNk4HcLygtAqw6UVfw+pe+wWS6TuEsj+/dJtYP8HVgXFqmk5K1jW1559XJp/fCWoezDlM4CuMYlRWBDmulyYgxhnp+xGIlhQKdLeh8iwst7WpB6Dq894SuY1RVtM0K3zQUa+vYUo5RUuBVx1TXLZPxFLfnqOsVbb2ibWp8q8XkXMmoGlFYeV+dsUxKS+cDTeNZLufaKRtu3rzOX/nlv836xpYAEwtGmQpZVElZAKNOPdge6UsT1EggaEq+U7lD/6x6XZWCWgpSzFvabYgzkFnh+88q+DHGMh5NKIqSxbJh1SgYJLK1ucnrr7xAvVpRFAWnJyvhl5yhKCtcWeCKQnQ3TaTzhgr6BpkBzZ4j20TftdSrBU27ErCWQxJyv8ZGeQ7By/yNmkWmId0E1owa4cziRJP9nTRvDT3DaKNWyY4K7BzBdH9qzM2fyeYcvH4ZPjqApSN3Ao/Z2ABGHKu12g/KnAc8sYOigSvbcG0ftqY69kqxp/AOQ/BkBQDkRoLpdykvWVepRnU8Jv2e3qGmDJ2YVrLqVGAAypJzjUCq26MO6Vy38GRrBiAr4x79xhXwpW9IewRn4d5tqB+IILUw0ptpfTtNln4MxVDJv8LJdZUjuS+1NRgjjSpXi97hJ1CzmguL5r18rSpxrk0rXb7LUseg6Me3bqUJ574THU29klBKq2PrSjmOkm5gJUzjg+yzXPQg5cZV+Kt/W9oWYJDeVglwoMAyAUwjepyhU07PKc0Bw/lnRQJDiWHrbQ0DWyP/fP/ZBH6M1Y7rBaw0yytIEU82t+DlF+X+iwJOtRu9MxoiLOT3WXejL7faGpkWQ6ATRf+0WkgG2xDMZRCiczcVMEwAJ4vbB+Aw76NAKQOpBMrTHIx9BWhxFmC6cxjsj9s+E+CmLB3f+OZz3L//mH/9L09ZLgzBd6SWCmkuWKV8U7XgnD2FNGPYNjN23YKpjcKUgGa9DJA1KbhkSDnzqfngOeW3ClMFxKj2IYMdXbmmSRu1iF8SnGnfDQFHHS6WpDYNiRnIRgVpkGmCAStdybU+ux7PZLAjfa5gurbJy698mdnJEe/f+g733+twsSPGlul4g/39S1hTCKDrgqzm20AwDbgxzlZ4F4lNDdqvKPqALUraZoFvVwLkilJYI+8pjKYKdw1tUxMNTMYVXSOApSwKaUFBpCyk2qtzjqqqWK0WxK4lOof3Hd5LZpNJZeWRsEfbegpnaYPoblbLM+plze7eBv+zv/N3uXbjaQGMSdBnDdF4EcZpp2tZAEvYMRijoE7GPOhqXfyKZj+lDJEIaQUbVWgc9eVN2puU9ZayjJx1xBBl8ROE/Vm1kfn8lPmyZlRYttcriqJge3OLRVmwWtVSeLDr8EH+AdpXTGx02/QL+Ag5mSCi4fEY8DFQ10vaekU1GpFrQ2ntleA9XacdxHWxExQMZoGygZS5lwsC0o8D6fsYVNfTr64kNT7IwqBPxfrsb6WDbz4H9x/DvzyVMvVeK7jmtG4G4aU0FrZnQfBgZuAW5B4/AJ9ga7L1zj2FhkCltzXyebE1eZGatRvJ1iTHl1bQva2Rv3UQy8Hz+LitkR5CRsNlva05xzgkXQdIxtMrX5aWB7e+De91SLZQJ5WM9y8jztkJEAwKFkwDbgS2UvamVgday35lKZ3Gu5Vcm9oMvAK74EVD06gIdjTqQUvqQUXsP5eYi9VChMfOqTBZM5sGtgbQMJaVF6rtYHkq1ZJ31+F//nfhxjPkjB61NQxsTc+0GDKdmoXH0DODkMXqqeVCCk8m5iwxNKnth9Fnn56NCcogxX4/V0hYaa7XXVhJ3S+cCOYXBaxqAYedgp+gjKHT6EiLsDdTetAwePXlPhJ4XMrYj0bkMFKaqKlru0/jzIDtGgDeOLjnDIQ/bmskbDtkcnSu/5C25jMBbiJw9coFvvWt57j70SP+4PcP8LWUlO9Aatq4AmMczhV0KXQQpceNjZZNE9gJNTy8w+LRbfzFC8SRvlzR9saBgKEgGll9EwOFLfC0ua+UvNcKnoyj7yKtIQANg5wDTpp1IP/XVTFGmCVFshYDLgyybuh/b1OPH832ScbRRGFb9OURLY1lMlnj9S9/i+2tHd6IczYnI46OHhFCYGNjE1dVRN8Rg6erV9gS0UhUniS0DTEQukayhqIAhdB1FNWIaJyyNB6fmU+HM46iKvCNxxmDr1f4dsXIrWFCVAZBCoAVpgDTURUlVVVSr5Z0TYPvWnzTYYIwOr4T1qTroPERZ2G5WHHqOjpf8At/4S/x1W/8pBRuVONhjdVUcJvnkNOwiwybyeyM9AQDh3xmaIscJQIJEiNn8rNMhinpBm2miYUB8REFpQLEO98Ru5qmaQlthzeFZvgJk9W1HavlguVqSdM2BK8NSKMIgD1SqbjuyCVRUug6WnlmaVEVQqCpV7RdhytKIhIGs8bhYyfp7VF6X0ljUBmn1JaCNMdi0t4kHY2cNGE9ixwjqONP2YFZvzPUgXxetisX4FvPwUeP4PcPoDbirEFq2jh11k7DB0kXYJIjC6C2hkd34JIW67MVffpvMv6FOMUEnmyBFPRTA56cNMr4ZNDTqXMZgKEnbI1siVEw9Fkp+rPTkMEwA0ZtjTxge/73w3YMxogTxEgX7y9/U7Ka4lwEw0cPxclubAqoSJV766W04iJIQcBceydI+CdpKxIrU1TK2njRQ5UkYyPjURVSZ8caca7tCtxar8dQW4PaGoqyL1bXtOJ0G2VZ6lqr5+qw+SgTfLEC10Hn4Bd/SbQ2xvVAJWWmxYFjHQq48zNX8JsWvSH0hI0BublITutOICh9n9Kx0c+bwdxLqxyrQLzrZDybVsCZcZrhF5WV6YSNWi61JYOGgDDk3mKd/kuvb+inYj8tdJ7WK31eyryl55NaT6RK3zm7if5v6X4SWM+hK3rbkaZ0DnWlQdHfZVD06W3NZwLczOcr3nv3PrGLXNyfMqoK6rk+CJDGmaUwJkRxXFGtvomGCYEdu2IDQ32w4Oz9j6gv32A0GVO4sg8+RLSlgpSmT+E+Azhb0nYNPkTKNNImGXEtpKTGXVJhnQg8tWJwj1KtMrz6MEzS1CTHmMr/p5x+fWY6w5yt9N0QkaOExNDUZtF8GCfhpd39yxRlSbF4DN2CZ59/gXsfvs/ISsgJnDBgpQiKpTGix1ZTFQbKy2i7lq5b0q28ZmuN6LwntJ3O7YgrCgpbAQsmo3XmZw85az3jckpoO+KoVXZJQopd14ITMOFsQWEKbIx0TUOzEtFe6DpmZ6cSRlE70ykD3HYeouUr3/xz/Pxf+JuMxmMdRR0PY/HIPtbKuKb+SSkMGNQBE7W5ZowYpxlsKZ5LYiJ0vNNCO2ebaHhQKVMJ8gndGqNogaRgnsOYkqJwbK8V+GlF6RxVKce1jcc4MQzWFhSuwmBzRCSqTapbATddF7Gl2hv1dylXQPaPtF1DU68oy7F8Pia9DTrvdIWW5pcZtAQJKF+W+lNZjFFjZB0mBi3vEUh97kVgDKlkQsSKBrEY6D8+69t8Be/dF8d2YSrOc2Br6DookxFWoJu7P+uzt5oSfriADz6CKzfE4buS3rDTg5VcUVg3WworEejPmw19b2vkwT3JrgxszXDRdk6s2tsa2be3NXJcdRC20q8qqE77pVL6KCNinTA0ZQXzx1Ib6PkX4MP3e8YEZUpKFRQXylRUa6JlScfrWmFrVrU4LTfS1hQq5A1RmRmxNYzW4eyhMC3lRJz2qFXkrSHFxNQEL79LjElTS9gmRHmuZ6e9xiPSN4rsvLAzX/8J+Iu/IiJp8Qr6bBLrYtVkqJPN+hu1DxkI6z5OAdATtoZhJ/n8nHQSDGwNA1tz7vkaDacWDtYcTJSxUVtD43UuGo33V3LtKcyTTteiACcqIKW/9jQvkwHqak2bH9PX+1HAZK1e42B+meE+DO4/yrUMbE3PfA6AebpOY/rx82g6+qfbPhPg5vBgzj/8r3+b0Shy5/YJTdOpsQWiIQTpHVQUhTouWbGbGBlj2Deei8YyMQVNYzj4/gfsX73KZGOTohxjikpCGQYsBikor7n/5omigAH6TBldpQ4bZES0foqmIqficEBKRTa2lwgbUA2HAJW+1opMoJhazZte8CmtI4K2JjA5JCUf1f0QB72+uc3151/FNUcUlWN7YxusNF0MXSuhBJCwkEnUpsFONzBFQegesjx9zPzsgHa1pJysYyjo2lr6JNlCbF2I0LZUpmBERbtqWHYLCDAeVYxGFaP1NQxW+zlJtkMk0jUtvhV9jm86mqah8y1d8DT1ksrKe1Y4CU2t6siVq/t8/Ue+xS//tb/Lzu4+Of0eo2BGHFCqHxRj4qOsLqiMaG1yyEnj68ZglPHL4E5r3iR7o6eRTWu+9L8brFT0GAaDsxWjkQiKjREWpygKCicrFR8k1Oq7jlW9YjQa42NH57W0ua6u2yghdC8TT/s2iZNN/gxlTIL3tG2DDx0mh43k3mP0hGS91VDGGDScmkKzkaQhQzVeETVYGg5JRQF1F8D1zGVaCYbUrOZzsB3M4R/8NoyBj05ksLOY14iDDL5vBJjSUHP4IKXzFtAYeOd9uHpVGIxyIkzEuZV8EgIng49+3qrRV0+THdx5W9OzK5p6nD2Tpsumyq8ZJFlyuOoJW8PA1mTmIQMbpRhSSMoM9kPPs7kFz78KzZH0lVJbg3O6KlEn1bXk3ljGSGp5WYJ/CKcHcPZYmJXJuoxNp7VlbCE+MIWKTAFUAlDU1jAaScuE9TV5HtEholUn191ok86mlmM0tWp5vKRHp+EsEMBUR7i6B9/8JvyN/6VUOh5SF8nW5GaPZuD8E2g12a4+aWtyYcSh6DutZD7B1vDH2BowAlZGE0lTT6G8olAwFQSoeQ1H1SvZL2jtoASa0xfteHEO1CSAlqObQbVJda/tyZrYBP7P2xqtYTGYf2Jr5N7SvZy3Nbm+UL7/NDdNzzr9ELbmMwFu2tbz/beOiMGzqBfnFzTJ6IAabqcIv6Ygsm4a9mzHtpnoLpHFQcPRW28z3dmlXJsSR4I2DUa1HjJIctSAtY4iQmcMPrSE6HA2ZSyk61DEnShFPZt5YlVmFECBajp0tW91hZUYm+wcImAjFpcNU9QjKOpSpxIwthKQY+WYESiKgs2LNzFnFmMC0xsTlosz5vMlHis1XUyg8UsqOyaGQFicEOo57fyMs0cfcfzoHrOTI6YbuxjrGY0KnBOxnLMlJkrn16KqKFtpzmisYzQu6NqWxw8eUo4c5XhCaR3WFlQjSYs1IeCF8pDmlsHT1CuapqFua6Jvcyg4AL6LrK1N+emf/QV+9hf/Knt7l8Qpm9hr7hTEGBPPAT0pfphGL2JcSS6SmD4bIVLo8zT6MxhCXmmd6yWloADbA01AgYQYOkmnDlhncYX0tPKhy+eVJpedhPWcCndDB5lpSS1ERK7QNpHQWalCjrLnermyuJVVooS6Wrq2FSAeoupqpP6Rc04ZlgTUo9rmIGLgqIUjEdG01bo4wUhDWVn4Ob1XZS+SyNiqziwJBD8vW+vhraPe2WHyO57mB6SvamtiI78wtYQF1NZAhIMW3npbmkCuTcWRJP1K1HBKNsgpDIUIOUMrzvkJW8MPsDUfY4AygDI9QMv3E8lMTHIOamsY2JrswdTWZEBnq/MgB8SBXrwJZxqauzGG+Ux6ROUqyxH8EuxYzrk4lXFenMKjj+DRfTg+hI1dsF4rOTt17CWoraEqBZyA/H1cSNbVg4dSu2U8kd/bAkbaJDJn4URyCf96JWGZJulPBs+4i5JR9Od/Hv7iX4O9y+RMs4GtEVCbmC19GYcsGlGYkgwOhnOp6EFJfnZByw8MWLn0oQSkEtAE+urI+h6mfUp9jrmLPZqJ18nxE3uWPpMBR8yXkYv5pamWrj3NxQywZHEr6fxia/rmsojtzEkPiaGBzAimEF4amFwXJ6KNEpV9O29r+vHw8EPams8EuCFG0R9JHXtlLMSBS/YL4APGaQXh6LHUbLNizzbsmZLSFHgCbezw3nL47kMmu28y2dxmNJpSuU1MKRPEoCI8G7FRQzfG4Iw02wwhUliQjsmSqSVZJ6lTckDErFLgLrMAEewgdSQYEaAalPbXGZNDHqlWSoRcCl8nhLWy2stZK8ZhTMSmODiSiRWJ2NEasdmhjKeMqgnrGxvYg2PmZwfU9ZKyKDBFibMlzWpG1y3wTctqNufk4AGP7t3DVI7ttTWcZpYVpQPrscaxtnuFohqxnB1iyjF2cSrvc5QX8/6ju0TnKUYTtre2KSuL7zoKt4Z1BdF3+NjhQ6Dtalrv8cqqTCYTNqY1pg3MVoGdjTX+2q/8T/mFv/zvMB5Nc+gHTC89MFprxaRsNQEkGAk7CgjpDbdk3hlt1SCrCYMCFD1GYsWCguC0ApORtqQwT848MkbDw0HtnF6jfkLE5B7ptG3yM4ugi7eomrmYwz0RATN1B00bGXtI2Us57G7BRwGJIQSapqbTGiDShiJk1sxao/Y49v9CDwLzTM1GKDEU0oMqpvg3YKzNmiWftE1Rfh8y6/A52GJUel5sTXYg6M8YWaU6XUVHj9RhWYFtkLRwZWJiJw/k3Yew+6YwGaMpuE1Jmc6iUKs6Fw3dYMh6hWF36rR/WvEmVsUqaBj2EosMrh16oKKOIz3dJ2xNXrkPbA02MUsKiIyyRANbk0HQaA2aXYinwlRtbMLhsTAy9VIAUFHKMeuZMC5NKwXmHj+QnlOFFSBorNyv2hqMg50rws7MDiUEorYGtTU8ugvOC7jZ3NZWEJ2AC6fanaj6n05FzF7HbTKG6VIc+ioI+/O3fgX+yt+WTKtzoR+9bRMH70box8JAbqkxsDWyUkshTc85gDIMOZl0T72tkW0QEsxNeQ255kwGsL1NEePh+/OmBx3Rz8UeoAzDUiBgrx2+E/RAx6LHVRFg0/T1hvI5tR6RNYrTPm5rzp3wE2xN1vWk8FQKc4XBfjG9I5/e1nw2wA2G4KWAn8VJanKiQ9Pq2EuPo9h22LBk3azYNQv2TUVhCsXX8sA9UNeWx2++z3Rnn/H6JrYsKNwE46zUozFK30XNclJNSxuiZJgUhuhV3W5kVWttCh2hFL66q4Gx6Rdf7pzzEICjYG1AFTvNgBLH3IevUmZUqs9itc5POvc5R2uB9QssD+aUBtY3Nllf95wcP6KtW9qylRU2hiLWRKBZLVjMznj84B7zZc31q89TFg6/XEoZiPGYruvwtJSrOW29oqlbVsuG48PjrBWrV3O6znN4dIx97/u4p59hbX0DW5QEFoRo6JoWgqFZNXStZm+FyKiacO3qTSbjCe/dOeTVl5/iS69/gZ/9pV9hOt4gpS3nFwKAQSZTTjlM77wZAMOCwlgRCqekg4hkUUW5BlmU9m0aUugrgw3NbMn1hxK4wim7L88+pnovEVKPsNylKloFWgDSViTqXQAEH/A+5NsLCLnQdgJsCClE2tutGNTREem6lrZpsEWlfwOiAPXCOipb4mOQ9hBaEDCk8DdauC/rwgaZhDoWzkpVZ2MCXgVC1oCPqfSfBPY+P5vREIhD2JGP2xq811VqB2EFZglmgRQoK/rjpDe8tvDG+7Czp+GpQqrmOg2bDGwNamsym+K9VuhN4ELBSQoPnQMx521Nf0suX0rP2gzBmz7TlAFl4Fz46lxfJP1bStV70tFaYH0fDs5k341NWAtw+EgEY6U6QizUjY7PAmZn8OCesDzPPS8gaLmUc4zHAlBoJYOqWQnCXzVwdKIxWjRF3Et7gXe/D08/A+sbKnLVYzWNjPGqERo0KfOrCVy9KaDozqHUgnn9C/A/+RWYbJDTltPLltmUof0xvZ9OQEVtTZ5DQyImpjBRCsdYPsaYZbARzmtzMiZI7FsCXqH/XL6e9DllmNKzzPehX7yGl4aEoEfZLJ2Pad80n3zsY+RdK+NbpErFeo+ppIEtB/fr+8tKxjHXbhoCs7STzs+gwDtXK073mrbPG3MDBLyk1So8tcbhuwbjCox1hLaj6xbQnrLNjItmwY4tKXDUmmYpOFiqxfgIy8OWx9/9Q6ZbWxTjClsUuNGIEOW4GDRLSAx74Rxd6LKAmZh0CEYaaqZqtdaoqFkAWcrGMaB0fyAZDqOrACnqVmbWJ1VGluJz0nHcapEvo57Y4CSEZo0+f8m+MtnRyn3HCMaV2J0bHDz6gOPDD5jNT2malrpoKJZLQunouhbTClBczGc8vvchp4uaZ1//Chtra1gCvoDT+RHv/+5bxAh7V66yvLDCWMNyvuDB/Tvcv3uHxWLOZG0trzqjscyXC+7f/ZArV29SjiaYoqXtRGPTrho672maWrqadx3j0YjNyVXKsuLFl77MxYtXePHrP8Pm9gVtD0BmGII+KwwyR0z/zlhdzSZtlLS8MLk+lUWyrEywuTCm0MIZnurMydJwUrPNnBGXWTd9KYOA1GACIXaSWu7kxYv5mHqB+aDy3EIIhBxftiLaVbAQovSZajuk7pIeIqeDB7RVgr43yuLgW60wnGyBrJqC6ecxSDdzEzVlHIt1SWTsE0QjGVo5j89+VPycxQdpZhvwWmvo87YpY5KcjHEi8HUaImk76JbQngFnAmxsiWgA/OA46aEARy189w+ls/W40i7ZI4iNZpboqjrrJrQQZRdEwByhZ1xi/zWFQGICZAnJ0wOOnBKuRsgYDZP0tuacZiO1a0jF5FJ13SdsjQC55GD0viNy7J2b8PB9OPxA0pFbdXzLhTAxXSuMQAgCbO59BPMlvP4VKa5HEO+zOIbffUsm7ZWrcGEl1zBfwIM7cOcOLOZSHdfGflW/XMDdDwWwjMZQtJpu2cBS05KbWn7uWnkWk6vimF/8Ely8Al//Gdi5qO0B0s1BzlIy0OtI0mNJ46jaqMT2mDw4Ek4MCkyfsDU9YByA05wZdd7WMLA1cg5lC3P37QHYgR4oJVsD5NYK6Tw5xZr++jo+DmzS34bFIqOXOeuHQEjnTqqunOd4EsYP3jOn4xUH2poE6iKcq3OjtkYqeWvxyjB89/747TMBbvpieWbAtkWC7wQ8+EhoWwwN6/6Eq/aYyxYsFXMtpR8ilEZyaaQiqzA0s9szHn3vO1SbGxTjCbYoMGWpgCKen2dGnGIXW7xXfYtRpsX0+6afbXQ9kE/hEyOr3aix24hUN05izWiEYYq5y6s4HocTPY6J+Z2xGvM2RleXRovnmyRglrFLVZXdaEp17SWa5SnF8SO49wbBRVbtkq4zOGugCSzPZjy4+z6dgRe+9HW2d7Zw0eDbFlOVTJzh5hdegujo2sCj+/eol0tOz05ZrJYEY7Hjijq0FLZgVFWMJhPWNjZYtTXHh4dsXbwAoSUEQ9PUnM1OWCxntL7J97i+NmVzusmF/SsY57j83GtcuvGcAkh9y3TVY5OgOAGSYVwXp0XpkgZHG2TkFy5BGNGapHGEFPICAdTK4iYGOXFnJoEWo+Ekj3VS9NFEKY7nhnNF907Hj2nOxHT9YIyAmqDhpTBgpppopGq9LnbC4IhEabMQopd6N8Er65nmabr42Iuk0To1mRLXgn6aARQJGCvx7lyRGBQA6Sgk44u0qxBgr6Ltz1UqeEKIaTWi9+U7cRgerajbgD8Ge6KLxapfgWcg0o8J0cHtGXzvO9LzZzwRgFOmDKpBOAIGz6kFn/QtCYTEft/08zknM3CoKZyV2gGkqrlDEJRqj2THrIAup5ZDbkUxsDU98BmMXfrbaArXX5b6MMeP4d73tJ7NUvoTqa3hbA733pdr/NLXpRdVNDLGVSkO7wsvyv01XsJWy6VkNq2Wcr5xBaERJ1eVopPZ2JAQyeEhXLwgTjAYATSzE1jORECbwm9rU5huwv4VARvPvgo3xdbwhK05x6oMn7HamuycMwvDwLmnCaKAMzNn+szkQfTPN4ea9BqG6flRgYlTMJHYo9Rb6glbk+fEOVuj4COo9iYMmCQUjPj+EOe2GDXMlj7rNd08vT8x25qsw0njNbA1+UZztqEyNMOsLEJ/AWY45sp4nmvH8Om2zwS4kU11KUEyeqTHkyN2nTjuuGDDn3DRHHHZwpZz1NGwGII9Y3BYuujposx13zmO37nLdOd7VNMNaRq5LkyDfCgKwDRenVjMz8eow7BqeIwJunIXwCFlzDySJSWp6iaJWk2hIMT1EzmSM6mkunICLEFbLMiDk8q3ybCIsbJWqjOnTuJEcUguOej8ojkmG7sE37F4VGKdU12gACVvAydnB4y2t3jhhdeYrk2lpYIKCG0ssG3N9toUYyu6rqMqLaePDmh9gx1buhioVyUhRmkAWY4ZjaYUxYjR2hp113B2fMRkfYOAY7lcMl/MWDU1PgZpVWEceEPrW4pqyjOvfZMbz39R0opjgCjMSbBewkQhvcupnYJmRxnR0fS6psGaILYSHkovoBqt5NgzS68rNGnF4XC54JespCX9XzUoKCsUDM4GfDTYKFqsFKiUbu69s7I2pYsrHI2JoYwEBNx0vmdAuhhpOiNM/cBeRtIlxWy7Qgh0XSNFALXRJkR8kJIFcQAEU1ZZDq0S0yhmh22MJxfsU8NokOJ/zhUKyCR0GmK61yet4md9U6MZnKq1Nd2568QYxwV0J2AOpVaMK8QwD+1qAgkpPmuAroBbd2Hne7C2oRVxUygCeZ8D5Iyr9FAj/X4Z5CRngAAOlOpXW5OZIKICmgjnbE3swxzJPqSwRmZ8kJ2fsDWiobC9xiGGAWt03tawsSvMxyNtu+Agh3JskMyozQ144QuwrlV1jY5LLASgTKfCBnVesrAeHQgwGatTrlWs65z0lhpNpbXD2powbsdHsL4p510uYXkmx00CXOMEcPlWdEKvfgNe+JKkZ6qtkevVUEgGHKYf42xHhsBmOKXawT69rcmOffhjEsumBpE4+pMmoBD68Q6G3JU8GgWiQ0AzAMbpmefGqwq0oAcow4yjGGVshkLrNJ8zGFcQFIKMd2pJkQBIFgEPQYlJTnQAmvTAUd8f48/fK5bMiKUeXiHN13Svn97WfCbAjZp8vQGlsvR9C2HJyDm24xkXzBG71rNuHZUJdNFpSE/YjOSOImKz0nRp546D796i3NymmE6Zlo7SFhofNbmgXwIyXeu1X5HVSeklOySSHRV4ojGqg1FJq3HSvDHSMwM62RIrlVLEJTuln3wxOgX02qIxmD48rx2GjXUCcJAXwqqBTXqe3OJTRbadb7B2HVdYSldKmjLQ1i3j9TW6tmW5qCVTsNTMGeso7ITReIPR+ibBe9bGm2xduMTF1YJmtWRZrzibndA0rVbBlaqly3rGqoHN6RrL2QxTWiKGxeqU5WpGXS/UuRasb23x/OtfoyxKLl1/gc3tS2rvPakXVDTpPgdzRJthxpBqHWnxPk1zzUyuon/RORlhHvTFErukvaisZF3FKOHPtJqIFmwsBITEmENimb62QIwKNjXEqOyNwIaOxA/1iyoFPTrXQwyqOey1WugpGh/xweRFd3pRvJHGmJL8IMfx3vc6IdUTSRaWdrs3kAr1GWWtUrjVGTv4bAqo+YGdDbow03HA5GMl/U0Y6j8+F9vQ1tDb/7DUEMKpABuroSATQN/PPnRw/nB5Wzj47i1Jm55MxYEObE0u6Jc0Na2uik2VbU12nDnNO6UTF3l+ZuYlTTCeBDNwflU1uNF0L2nWBd3f6jlt0lAka5oAWtKDGPqCduqYfANuXcTCrhQdDYgOZ31NQkOLWlLwy6jnc2An0hxzbUuc2XgTLlySSsMrrYo7O+kL8qmtoZ5pdd11mM2klQIGVqfS6HGV2ikUsLkJr39NWLTrL8L2JXqxrI7RuVYJDMbMyvjkCtOWPqVehyeHlBR8DGwNdjDOKTsopgwx3c/q71Ka+A+wNQIIByAmhzEHyCRdT2KBssDXK25IoHiw+aj3eP7XAqx8T2cnhjOFvxILlEBkEsKnhXpm/9JX1382s0q+H/OQ3sfQj006VtLf/BC25jMBbuReBaDE5H28J8YVRViwS8sNO2PdRgpKrDE4OslDMJpNopMr9QrvkN460VhMhNVBx+H33mC0uYUbV7iiwtqxzNVoMuMnLQRacRwGnHEKiiVN9pzwMpLDTVY1GjbHT+XByO9TXx9yKYPkzoxJfa+QC1CqL3itAJsLA0o7g9TiIM3+BHDSwROLYzXOG0OHK9apRmPKcUXpKi5cu4F1Bc2y5qNbb3N2OufClctsbu0wWdugKkYEZ4mNZTTdpNpdJ7Qt9eKUxWKGPTnGRMvCLpkvpV1D17WEZY0nMJ6MWJ9MsNbiiTRNTdN5XFniu44QO3b3r/Dql38K5wqxAUb0HV6zg0QbJ8AkUfqpGrUPKbtNeyRplksv8g49G6ozzDBgdQzSTgIBPcIAyYuVWLr8OELqteS1+KcEvYxm2wiIsZlVylktBKDQ38d8zKj7pcJ5oKLegW2KGpZqW1nIpoUODHwUmvatwDqkNhokJqvAWXsue9jkkJOsvNP5ZZ6hjKnBRCfVp41mTSm4lykfsr0WxsdyPmX5c7ANBaPJgMeVgBsasDNdUWtpbtJKVx1hcmR5giXnpoN90MH33pRsnnGlVXjH6qRM7xjV1uSfkzA4sz0DcJIngeoXkuMd2BqyoDStjtMlpsmjbEG6lxRW8IklGACZVLxvYGsY2prEUmAF0IQojECxLhqYcSUg59oNOdayhVtvSZjqymXY2tX6N5X8vbUw3ZL2B10rWVLzGZye6Bxb9v2NuhaWDeClgN100gOxVlO+y1K+xk4KEH7lz2nFaR2HYW8jC31mTwqn6NwOnTpsJ8dKGU7ZyQ6ATpoLQ9Freq5pvBOQisPnrI47JFDgz4PWlNmHVifOz1TnndqazLJkYzGYo+k8mSVJl2s0FEvWLg+ndQYiw3YIuZFlAn0qqH6yJ9XA1vS90tK9KhiPGrrLoVVPb7TC4Hp+eFvzmQA3gAiKY8RR4KKlo6OMDZvmlCum5qI1gKOLZPSadEjDdpVG0bOPkTbbBEMMjrMPj6m2v8d4c4tiPKay4KoRJhp88Dgr/ZhMNHRdS4xjQgwUrpDqwFnNLaBEbI7JDGASoYqOwehdgc2Fz2wPcKyIg9UV67UnPYj07IlYjBVGIRXvw9DfZ2q4pnNV5kyQhrzFSBkFi3FWHXjBaDRlMt6kbWvGozW2dvb4V//sn7N14TIvPPUsu5cvMzIVk8kW49GYSts44ApWixWrrmY2P+Ps7IjjkyMWszMOjh7y1rsfcHF3i5/9y7/A1RvXWR2fsb69y2x+SjmagDVEL5WOw6pla+8iRdGXxYwmpUTLSyHvUtKGDI3JQCcVFGomI0vSIvXfgwAWG8kFF0XTk3qHJZ1X6qKtY6svlNV4rw8KfACihJNS7aT0mfQxCUcODBP01xnRysmSIZgqBif2JgHn1huaoO9/zKaMSMzMjLA/0PmGMpQaIkrXr/Jgk0ZQHGCuNWYtIUraqlGHHRFw44h0etKYs8iGRjFNOO0S/jnDNllkYAoxmLGD2IA5BaOCVhRV5gJq6bMKLoC8Uo/KhghKl3DXh8ew/V1hcMYKbKoRuVBgrqRrxFnHsRzHpdCQJXeVTudJL3+Ec8CmX+bTFz6zPS6xhiwOzs4u6UGCaDpIbI3+PtfN0fM/YWsAsq7CjfXabJ8+bpykjY+3BHCMAuzuwz/7VbhwBZ56Fi5dBjuCyaYAotTGwRXSEqGrBeCcHcHJoQiTjx/Bu+/D9ib8lV+EGzfg+Ay2d0XYXImtwUdtLNnC3iXNqIIM4ga2RqZ2RpjnbE0GiEHHaGBrZBt+T++YB7Ymx78TI5OAazp2Ol/UZ+EZfEYdfgpJpf3znEx2prc1+VnEwX15f/7ntB9RBcL9j4MHPDi/AjLfQqh0jqZrGczTNMfOzb/0jul9p8VFcpzJwOV365NtjbxbfOrtMwFuVIWCiREXDEW0YDxTc8ZlM2PfWUbW0aRVfcqoIko5it7y4BDdTRsDXYw5PGUN+MZxcus20923KTc2seUY60oFjpFopKCfVH+VZpLGWc0SjMSgdXas/s4ECQpFpw7NKuOjPEF6jgBGsngEqFjF9/2LZGzvxE1qnGmMpMcn1ki1HCY5UyQ0I7VNop5bnFRZTSlG6xhjKV1FjCn7CIrxCFuUNPM5N55/gV/663+V20dnPPXal9m7tEV9/5BqZ5ez9+5AVbF4cCD9oEYVJ4eHRGtpm5pqzXHv3mO+/eabrK9t8CM/+S1uPv8MZVkyvrTBeG2NxXIuoMUWGNNpkTnY3b+smo0EMmT8AgkSirYmgUJ5bwSUWH05ookUpiTiicGAZv5I1KAPA8p7L86gtw19OE82eW7G2J5ZJhKdwQRpeyFak4jTGRdyvFyYJ5FUpJdbnEyM2jA1sSbJnnRB0sC7TkS5GC1HIdfYRajbSKWgJ9mutKBLjS5D6PCdoytagteMp2STCMpgW63pE/Nn0y0nAy4hM5376XurXcJ9hPQcINe1kVsZTvLPw6bOKapRT72izBnSDNOQi8oNbE12dANb0x8r9GOQDHrj4O07sPu2iF/LsTAZMoDkZogx9im6zqqxiqqzsApyoGdkkt4iLbSeBD0oGIoKVGx/rWmup3CXURCXVvs2rcBTaMsOnFYCcXqvYQASRlNpk2CsVM+NGsoAGI8EWMznkgL+1/+6pHe/9hW4tAX3D6UA4nt3hMU5OhDKclzB4YFcS7OUNgP3D+CNNyQU9ZPfguefEYbm0rpkUy3nCjC1z1Sqort/mcysAec1MSnryfSgML1wQwbBRET7pPeWM3/S2OrXiB5jsOLM7Mx5W9OfS3/nTP/c0/uarnNgazADQ5BsDaodyvc3mKqdCoG7tgd0+fP6pR1cX5rDUY+VsIbX/ltF22tu0j4ZCA6uPQ6uZWBrevs4uH6rAE5tzflnlbYfztZ8JsANgIkGGyJFDGxOYXNSsn5cs95YJsZSAE2+LwknJJWJ1XWyRE37Mmpe15sSupTPNKdw8N23qbZ3KNfWcFWJqUYkPYGIgaWScYwRa5K2RScdkiKbK1ZGMMnZ4ntnaZIT0aNmcCoxddGUkNkY8nkE6BARQKOx79zfKIIxTsJfqq3pvZm2pcDgiorxdJOmeYz3Y8qyJGracowB6wqK0Yiuabj58sts3LnH2cFDuosb7L/2EuVkk+3L19i4+RJH73yH2HaM9ne5/85buOk6J48f8PDhRxQP7vLTP/4TvPjy86zvb4C1FOMJG1u7rGYnhBBZLWs5Z1HiFzXVaMrO/lWMhvxk+CwhdOqwY574CeiJ01enaq0wu1ZBbix04ayZOxZSzNfkVbYIcpxx/YojHS9PKyNiYSJGjZNV42Wtw2O0XowCoSBZQxl8mf5YJod9EiC1Hy8noGIiWYCFfixQW+QlU7hgcOwIXZBCk2HQENN7+V3UjCeDxRnbj5mCJGsN3nv9XuZvrm2TRXuQkLDFEJ3qnxKoyRoUI+G61Ijv87Klmh4xwASpfntSSzuFbFTTzgnpxv5neOL74d/Jz5gz4Ltvw/aOON+qVPZm4D2METAQIz2bkq5jCL4Sk5TO5XtnlJxxOma6lOA5zxL0tuYc0Imc19kMbM25ruPJyiaHn+rouFJCSs0j8GMBMyltObFRo7FkMr38Mty5CwcP4eIGvPaSMDeXr8HNl+Cd74i+5sIe3HpThNmPH0iD0gd34cd+HF5+Hi5syrWOJxLimp3IM12u5JxFKRqf0QT2r5JDfmpr+rLocTB2bnCfsR+foOndGIiFZIUBPGFreMLW8Am2pp86pv/9uQKLCq4xHxcVp/5WHzteGDxn+wRo0ntI1abTiYZ/DzKdMisynOJB0zbTuUFYIB/7UFVMIDqBqsHc8qpVUlvDH2FrQEHjwNYwsDUYDz+ErfnsgJsgDmFrz/HiK09xYXyF+t2W4z94G9sAiNahT4LW93Tw/2x+dHCDghtDCgdKptH8/oLDN99kvL1FMZlSOXWySPViYwyx8/i2JVbjnvmNUpo+dYc2tiSXitbJGI3VirjpOgY6ECOC4IjHoM3mlPYn3YVV0alNzQxlIkR1QjKfOlof6NqWpm3pWk9bN6DO19qIc47OjKGL2vwQUjNJ71vFaar9sI61/W3MvQNWb73PYuXYvLmOrUrC/Izp7h62qLCmZG33IljDg9kpHJzwxedepZqOiSOwo5Eca30Xg6NpGpq6xvsO4yy+qWnblq1L15mubynbJGMXomTheB/OCVxt0jNhNNMs2SeTXwh51+XNNIXRqtGOvkZNhFhoYcS+ZYMh5j5hSXwXo9fmqian3AdSBRgFP7o6SbViEiATvyMvZxLIS4aSXiMq2o5ZcUWfph3PLXK6qKVDVHuYK5vr/4M6rpTZ1PkO77vM2IQE7ZP/M4YYOwXZQYy0XpOIhnV+RpsXlRaDjzK2hqigyegVpJoTgxXf52ULAB52HbzyFEyuwLst/MHbIlLNzq23NbI9+TODe4/nd0vs0P0FvPEmbG+JwNgl0aosxTBWa8K0kglkBp8X1KEG7OO2RlbJKVtreG0KhlLZ+oGt6RkLQxal2tg7zcxG6FffaV8hLWrYeS3Op9dgo5beF1tzro1EDBLGsOS5hrWwvw33DuCt92Hl4OYGjEpYzCR0VZRgSti/JPt/cAseH8Fzr8J0DCMEJFoH67tyr00j/4KX62lqueaL12Bji6wbQYFbULbsHPugzwTO60cGtoZsayIUCpJzNk9va7IGKDv99D3Z1uRMrp4q5hzCSC9iSEt02wMyzOBzsQcLn1SfJ2+hH4chNopocz9SsbjB36Lqjmz/Wd/1Ya4EtIfnM0aBbTpnKk+QmL8E1tPc1vuNg7HNgBP6Ko58wj394O0zA26KCLv7FV/90Zu8+toN1lzDg+0IJ0fMv/9QmFsgIV1hbSxOV9udGmBnLFYrjXqSqFgcewIcoXMcf/8u471bVJvbmLIglpWCDw09aUVWWR0Lmra6+onWkARcwsCIA0srHmdMZrVTwbTU3VtsitPwrfam0hCTFCwU950aeYYQCI1ncVYzO51xenbKyfExs9mSerlkuVxKr6a2o2tqTbMGomdzzfHlF7bY2BgL2Cla2jZSuFLb5nhCkA67blRR7m7SPp5x9sb34ahmtLNNVx7SLOfYqqSdLZgdH9F2DfHhY4raULuGZd2wPtnCuJJqtIY1jno2Y346YzZf0Aa5pq7zNG3kys2XsLZnatKzyVq3mMBBIKau6AqAErsl9lzE2JC7cYmjtpFUFE9+F/Gmyy+ZCR5jHTFroKKwb8YQg4iLxc4rqLFGGocmSBRTerUAaGf6bDjZkhZIjpEArGRUiVNJVZKJVsNz/WrRIGPRaCG/YFNXc/mjZKfJ7tFI3RvjpfIyObvJZ8ZIrqPPdPK6YjLIM8gWJkZCbEl8V67HlbRbRrVBWuJYauL8UPbms7FFYG8EP3oTXrsuNLvaGr7/cBDXHzisnIVkegOcMk8Sm5Lp2fTyG6Hx370Le7dEYFwWEn4xilgtsrJL9UTSyl1tDQNbkx3ewNb0q990Y+o4dPeePYg9K4PRgoWmv4/kRFsPsxpOZ1Jr5vgEZgupLLxawmolIKdt1Okh55w6eGETNlaSIeY7Ef+qrRHhrXbzHlWwuwmPZ/DGO3C0gp1tKA8ltFSVMFtKD6quhYePoTbgGqhrmGwLABqtyf2dzeR6Z/NeANx5CbXcfEnGMzE16dkMbA1qa3qxte3HNm1ZjD2Y8VHB3TBUEiMMbI3oq3R8oz6HBESC+JkeMCngTAXyEsORjz8AoQNbc+56suB8AF4TmEsNYG2aK7oF+kJ+uaCeHjaljadrD156UeV+VQmkDRmj2M/jmLKhTG/AcgJM219/rrmk15zqQKXwZmYsLZ92+0yAGwOsrRW89tVrfPWbr3L50g7LxQH18lmarx5zf/4bLO6eJJchw2E8qe+UIyXDiVEuSBlNA3cxWGAGoJ1bDr93i8nuLuV0Srm3hymkqqdRABIUGJGPZ7QIXKE6mHQDHTaKRifQ5XkjbJBMmBhFz2Os06/aQ0ur2hrjsM6Qekh1XWQ5rzl4fMTho0POTs9YzM9omhV1vaRpPcG3dG1DXTe0XUvXdQTfZv3KyZHhwkZkc1MK7XVtQ2EjPrSDsLzE8GNnKCZjJje2cLVl88J1RvuXaB4/Ivia1b3HNLMFriioFx1117GIK9rgmVTrFFVBUVSMRhNC07E4mTOfz5jPZ0QiXRdYNQ3jtW2uPv0KPq2ikDFKvYrSPAdUJ9Ovp4yx50S9AjajLsiSpHxgPBQQYbT4nnBXuq+W9TMxhzXT5wREuXweaZmgc0FZjrzFoIziYJWtky1fRs5iSc03BWSLbfWaPafZW+RAI12IeG/wTpjwqKOFjlc/Zqm4YF+AL+mXUjgqKmuUv8ZI1MrKIXUKjzLGIeYyiMq2C/gz6hCcLWUOxXSewcrq87CtFfDVq/DNV+DyLiwOYfksfPUEFv8G7pxwzmmYlJE33Ez/9RxzZfI8zj/PLbzxNuzuSk2XvT1xzhmcpJV/Om4y+GJrlEbTw2mox6tHGvhBeaEV9CRxcA412T40YZzS/6rf8RHOGnh8KAzJySnMzwScrJYCeHyrDSjbnmnyKQXZyPE2AmwWfX0fGxXQ6G5qa+iM9Hm6sSWtKy7ckPTvR4/A18LqzOYCkhZaeTiuxLGW6wIQC+2M3XZwMhfh8XwuY+C9sDhrW/DMqz1jA2T7kJ5RHr9h2AZAxwv6Z5PrFNn+wwNbk59ndsQD7Qj6+QxE9HNDUJX0LQlUJ5YjbedYjfO2pp8/va3J2p8catVQZhxcf9pCFA2aG/469gBwYGvOsUckADVwsCSgkoBbJFdWTunikf5zwyyqBBYT+LSVzKGo9xY/va35zICbG89s8oWvvMi1G5exzrNaWcbbW+y+8DLNyRGLk9+Bs6ACYmFtrAkUKu/MJsEgqeLGEhJzkylBeaAy3pbV4xUH33uDcmOL7dEUV42T+9H+RJoJUiiwsSXY5GBTqf6+KaaxEbwjGCmwJ65KG3VaqYOSPm+VNk7F3mSeRzrfcXay4NHDYw4fPuL07ITVckHXtrS+YTFfMJ+fcnx6wvHxAScnR5wt5qyamrZuZCVuoLSGSVWyvfmj3Lg6YXN9HVs42s5SNDV2pBWREQbBOkPsHEU1wVWGVXPE7L37hMUK4yZ0JuIrRywMvguwXhLrCmdgbW2DoiixhcNHz3xxwmx+wtnslKbriNFQ1yvaJvDy177BdG1TdR9W9S2puJzTcI8ZjJ0lKW4ADY0kWy97Oas6neyMlF3Rpx2V8ZHPKrOW9CNoD6/ECGlRtlRkL6YU6zg4prYlCF5i61Fj7FFjxzEfPwEYBU+JZtZmijFGLd43bN0gWwC6YOhaCfknnWGH3EfQYohJVEyMWu24I2VWiO0zCsqkvlDQEuZ99lSn5RQGrFTwwjgmsImD2EpH8zDUiiXN1zmv8Nnfnt6Ar7wEN69IE8aVkbDRCy9JVs6x2JrsPLLDeIKzTwYnaughObXMAOjP0cLjWsSwm5siwK3G/bFsIedQWwOGnE2VOkSn4yU7prYmC5NlmS3XmGvV2AGwGehpDOrMOjhZwsNjARanJ5pu3UixtsVSMpBOT+D4AE6OBUQ0tfwLmnVmjQCajW/B1Ym0VygcdFaYlrEji15DECDUOclsqgw0R/DufdHIuIncU+X0GAHWSmikd1ruJVUoKzA/kWucn6pg1gi71AT46jdgbVN1H5YMNpK+KYMeg6Yo0a+w4Bwjk8DAkEIlPf8BwsyZaslhD/9u+89A76gTZZ1SrOPgM0norLbmfMXf4flNv38+h5H5kMBE0r+4ND8HWzB9Ong2sHrPSXOTQlRRrzWFRBP+ioNxMwV9u4QEgLrz15uOMwSbFEjLEkuuv5SYnCFD8Sm2zwS4cYXhtS/e4ObNK0ymE5p6BiZSjEasXbzA7suvMX/wgO4P3tdKzBFjPCFKinZhLCZ6DXtqcTZ9MJ4oXZnTuJPSdwPRF8w+eMDx7huUm5u4SUVh1mV1asRZ+RApjbAt52y4Zkf1TTBRgxS00aDRq1BjpBPGWYdxMoOsS7VzLL4LzM9aHj444PHDh5ydnbJarlit5iyXSx49fsCHdz7k9t0POTg+ZLFcaNgsnhvLxGw5A5PK0rZzQoTZfCl1cjB0ZUUZI/gWZ0ti0Uk2qG9p2xnBOkxwdHS0RY0JLY1bYNYKOt/gR+BChQsl1aikKAyuEJq7bVvms2MOTx8xXy7ovKdul9Srho3dyzz94pflKpPP0JVBYkNs6oQM50NOptfH5HDP0KgQc80bCWkpWDEisk52wNqCrIfR5zKsaZWTuJWODTEVxDPkgnYZgojzkvBPzNeTXVFM1+HzFJEMOGVoQsgLHps6PwsKErYrSL0b7yEUyY6IFUgapeA9rnBZsxMjpGKCcnUiik/6Iash0+D70G4SSEsBQM1UMzqX1GEXVkxFm/vCpDGUIoKfm60w8MUb8NQVqY+itobRCC5dgJdfgwcP4A/e10SaiDA3RQ9OU1XiYeptZgT0OZ5jYAL4Aj54IN3DN7ekPovamqxHSPqNnI6dDp9elo/bmvPNCM/bGqkYrN7K2R4odRHOWnhwMAA1K+nXtFzCwQO486H0bjo6EMDjn2AR8n3rl9JCu5DLmy/785baZNG3ohsqNJTlW2hnch/BAh0UNYQG3ELYNd+IviZUEEvR5RRGmBtrhD2ancDZQ1gstOHpUppm7lwCtTUJn2bQkO5jYGvOpcoP2Q4DfIKtyV24h+DeaOgHfaapTtCQ1Tjnm/XacugnaVIU0Jwz7Qk4q9F8wu7zCbYmh6aI54/3hK0RAGNkvmvZmnzOaMhtG7xXUKmfFeq/n1fp55wppnPR67Un8JgYK7U1Mib6O4KCfeAJWwOxB2ifYvtMgJvxuOCFV55hZ2+LojB0tcGZQtKgRxVrV66w9/prLB49YvbRHPJKWj7v1Igkp5N0GQJslOFKdgcG/4u0S8vRW+9Sbe1QTCdMLhlsNcZYm4GD1ZXVsJJs1lCghQINEL1WtZWy9zaJ+DQ7wdpBIcCUjhmhbTtOj1s++vA2B48fErpAXa84OzvhnXff4Nvf+zZ3H95j1dSZcfhBWxqDQB9m2NnbYXYyYzIeKYiWJp7isDpcUWAxFOOCtqmlqagagXI0pl0tMAX4eqn2Y05bL5iOK0bTilFZQTSE1nN69JizkyNmywWdFwdcLxuiK/nCN36OyWQ925MYNKMooiJtEVvnEEkUXZDTTsxSuVjDO9bqO3Te8EQCPiotC6CsiUlMSkDZsqhlQmRiJK1SqvpLAjNADNJoQ7LT7ID1UWenz9HobzOQyU9FVh65u7gaxJTOj5E5m4JSqUqSJ9J5g/fJyKDvdwpLifjaxQT20tipzguVO8QkytbLDUHq0zwZYtObkM8V+NhhU6YOgDG4KAJma8BrLmJinT4X27iAV5+FvS0pPlcbMNo6oKrg6hV4/TVx+mpr+rRw6EHLwIADgx3O+buhrWFp4a13YWtHgNUlIwxOanMAPYtzboU6ADZZ16CAKzcGOm9rMmtDcnB6D62HkxY+uCNZSF2QKsBnJ/DuW/C9P4CHd4Vx+WNszcCLkp3W3g6czCQFPIEsVwqwoZPaMxh5Dk3dN5WMQTKqVgvxSs1Sbm01l67i4wqmlYIlI/dx/BiOjxXYKNBbNXKub/ycFAlM0zsJsGMaT0vOOEuvJJ7c9T0V9EvhqU+wNVkgO7A18lUnQAphpXCWHYAFgzIi9GCGwffpuPn9PG9r8iT72CMahKXSH7N4Tl/uDIZjvw9RwlJP2Jo+Iyp9BQa2Jl9n1swMxkNtTQ6VfoKtka1AWJ0hqFSwlGo9pbznH8LWfCbAzWQ65trNK4zGFTG0upIM+gwM5foa28+8wOpLBzRHv0VcgKgCXF74SJ0OfXhRV/vqvPrnrw6O/pG6CO1RzcH33sRtbeEmU6odh3MVIXR0XUMk4lxqTKidugdbUgIFVCAcg+g0dDLn/lTWYkwh4SsrS/Gus8yOG9558xaz2Rk+elbLJbduvclv/t6v88GdD+l+yG6oyBDgNVQxmU4Bw+lszoadYp3FLs+oijGFK3DOUZQjgm8xdowUFwwYa/F1g3PaILG0OBOophXlxgjjLMYGQhdpmhVd7Fgslsznp/jgWdVL5os588WCp179Ma5ce1ZDKqBvftafmGTgTWJeUKGvw8eAQ4XeKVPNiLsO6RnHpIvRfSJ9qAXphC395xSYWIOPARsdSUBsopQAkBdRMuOiTjATnWpTgto3PY46HZlnmnU0CEn2c0TZqfRZzagyRkJmZpCqqdAHEE1kp5mXRTpS9ALC1EAl/U3nW9HRZF+jINCKUDoSIVg6pNZQSPdmgCBiYWe1CWmUTLWcRZbeF31MMtcVnHWfI+ZmOoYbV8RZxhYZKN8b/bU1eOYF+NIBHP0WLKBXfdGDlYGtyU7mXFuGIcIZ/Oqw1urFW5I9teOkNkzopGgdUQY5aXGesDXnwFVqmhli7ziHwMYU8nu1NXQGjht485YUxIteNDXvvAW/++tw+4NBKOGH2KIOUfCiKcKIZsZO5V6WZ1CMRcTsHJQjZXLGCiaCXG/d9E0iCw0jTSpYH+mY6L02K3GGKWwWPNRL6R4+X8ArPwLXn+udcXoPkxh3YGtQWyMrncTkJECYNEpP7qceZGBr+uetICDPDQbOXcOIhh7kqK05z6Q41aYM7AX0ADezGU+GJAcPJNuaoPMykEW67kl9kf4Q6LFy+v05llLvPTFxsRvg/BQGNSoCjsrI+X6O5JCoXkcSHCfdTdbg6JbxWewB+g9haz4T4GY0rtjY2MgrX8lYctl4GmOZbO+z+8IrzO/cZfaH3wdND7YoA6vPRxQNBmdMBsyZsRsYhpSeG42B4FjcPeLk1tuMt3cxownGFhLq7IQyzBWCdZL3TS/VEen5xOYoxWmQcyEZVcY4OV+qcxMti+MVb37vTWZnM9qu4ezsmH/9W/+K3//277GsVx8H5n/Elu5OQnWG0lq6piWGwO7+Pvc+usvZ2YKUem4pKYuJhPqcUKjORGwxphxP8F1LU57R1ZamdkQcPkbKZiVpx0aK0C2bOa3vqFcrFrM5na8hGupVzXy2JJiCS1efBaNBOiMp6zIGse/XZSOGQmrxIC0Osk7OCehxgkKyfUirjCFTmwTCWaisKzBh8GNeraUO4omuTmUGYhLJBgE8vcTXaZp5Ak5yPJvqDuUwpRjIOKSoQbRWqoGIakQjFmcdhSv6xb6B8diK+HsV6TTkbge6Q3EohsRMye/7K82GKBsfrwsAtbUYjFVdKmlXo0y2MHfeiA4q6Oot5NCcsk4xYYInHfBneBtX0sgR0FLh9Ln2ujre3ocXXpF6LGprznkDfa/zD8PVf8Y0AxAyrEwbC7h7BO+8LcXrRhMNzSBsBNBrs5JDHTI5T5zvCVvTfz6FtvQ6goGTBt54C07PRFNzdgK//Wvw7d+RsNSfZEvncFbEvSHA/j58dBfOFuRVPCUUE+39qeEaEwX0jCfaMuEUGivp4Sij06xEG2SC7LOcy8+rlQAotTWsapit5L6vPdePlzGqaVHHmZ6zjWTGID2jIYJP4CW3TBjs079k6WH3Tj+nbAMDW6OUabY1A2sNamsygFBbk9Pqk2EzsX+uqcZQKg3whK3BWhVw2x5AYXuAObz8sZXxWMVMkORWDFHPn9tTpN8P5n+65oGtIbNEuo/efj5m/rtGCdK9ZaYoAcLBfB/e36fYPhPgpiicsBl5UwBg5IFEwIws4/0L7LzyGu3jx3R3z7Ltdgb6PJPBfFIRqU8AIzk30hj19UZCU3By60Oq3V2KtU1cVcoiwdR0TUNZVmpXREeTGg+SXF9M6cfyRK0r9H2KWa9jbUHqZdR1nokb8fbbf8DZ2Sneew4OHvLP/sV/y60P3wV6oe2n3fJ7l8JpIdK0Dd63GAJXblzh+7feoa5X7Gxt4UxFVUywwRIrDYU0jWhU3AhrHY6CLkjV5xDEkTrrhKUwluV8RdM2rNqO09kZPnRYa1nMZ5ydzWi8Z7S+ztbufj/RY6+n6SsRRVIncHkkybCrbklp3ZTbFKJkywko8com6Cgkca8eN4EogGAUNAWwLsGAtI+EoXwM5Eyk9DktCZDHNwOHoHPLE3OM2PQ27xw8TY08+5o2SZNlc5PESOEse/s7GOM5eXBC00XR7xVy7jD4lwS9YXDNMQi9bowAvYAAOekSnkCd3JtohWTlGDMFbHTRajDR4JyyVl5ZJtNffwznLP1nfyscfTfS5ABTmEIdxMjChQvwymvw+DHcPTuHZT4OdOD8qjoZoPjEZ9S6NwXc+hB2d0TwWpW6fy1ZPmprMjNwLozAwJHq79XW9JoHVJOj+3Ta8+nt7wig8QEOH8G/+G/hg++THfkPYWvylj7jo1y7b+U+b1yFW7ck5LW1BaaCYiqMRKWfaRqZe26kIbRCQiMJjIEiemV25isVO3tJUw+d/n4u6eC+k+7guxfO2Zo+hfu8renReW9rGNiaPtykrQNi5JymJYGifnmh5xzaMKNg4cl9cmwenrA1uSRAPkdva/JnP8HW8IStyV/SVEmga2BrcBb2d8B4eHAieqyku0nzLD5xoDgAIKFDhFH015x0aen7NE8GtoZztkavJxoBXmprMrhMt/VD2prPBLhJYZsEPgScpMEJOlYGNx6zfvMm7etf4PHZ7xBOpLO2i4nHSe4nMVoRP0hUTa6shzQQo/aGIlKfRE7eusV07yLF5pRYjSF4QtdiiBhtEhaNhHsMIjSOecKLITJW3KXVVMwMgXRF1rU1O5u7/O5v/AGnpyeEGDg8esx/96v/iHc//IDEIXzax2hM3+AzxkDhDCNnGZUOZw2hbYXNqcY8/fTTfPDhhzx8fEDo5Dxro3WKtqK0Ba4YYcsRpigxJuKKirKc4MwYHzx+udA+W47las5sccairjk5PWG5WlFVI5bNkpPTI+qmo5yMGE82qEZT6d4NAjwsEJ12XzdIdeeid5xR6xOFqABRum+nsFBqUGoAG4UZs0iPMFDHr/qZDD6NpDN7EyhseU6bYrXmDTHI8aLD5zo85GMm2kTqFsnLLsUVhQYOIci1BrnPxBzldgkKoHKhyehF9GxT80157mvrW5Sl5fTwjG7paT0UmtARI3Rdq2GosZaxCFqhGHomSuacM1GzVPUNMSGtF8XOJO1NHIqSC4zTgpY+vS0aesVm4bF1lr4ux+dgy2EJeueWbU3UhbQR/cfNm/D663D223ASB4Y2eYsnnckwNDDcL/2YHFGU4735Duxegk3NngpeMn6I9A0Jo4aKVGj8hK0RJ2zIad/pvIn9aWqp4Pub35ZspxBEq/Kr/xg+eO+Je/iU27CKsTPiIEsnq/1Wa9mUI3j6afjwQ3h8IE4TpE1DqxqcYiQp3UUp91lUUE7A6FgsF+TwxWoBizPRAp2divC5Gkm6+smhFIWajGC8IVlYOQW7tzV97RrV1gypfQO5WnHuvh0GY53AgunBZsoWi4Gcwp1ASk4bD3KvcTA/kvYni4eHdXjScQb/ztXXUWAAqmdJYbHQnyN/NvRzIeqcMvqZIQGyvinP7/AMlr4XFie2pVPQGsfK7Gh4MLNNg/Pk+9YxMoN3Imt3hoAOAeJOGakAGbSjADMJj39IW/OZADcYqcobEM2EsQanZZblNgVABAPj7T12X3iV5uCAw397C9NKCCoVcZN1vrRQIM/ZFEJIR5QtIiXxXe7abVndP+H03bcot3cpLu5jpxPaVoS81hWiqYhJy2D1jK5nnrVOjTUWW5T0VVTURYbA+nSNex8+4vHBId5Hlssl/+9f+1Xe/egDelf68U1CCmK0rDUUzlAVBeNxIXcdPd57nBalKwuHK6RBIwYK59ja3uHZquDOh7e5/+ixtGHYHTFqPeW0ohqvY8sR1pX4eknwHlOU2s/JUVYG41c09YzVsmO1ajk5nXE2nxOJdI3n+PSYJnRUVYkxls2di1TVSATVAhMFtKizsEZCRlZzgSSjx0hKMn0vrZzinBYIQN9eQViREEyuoRM1XToVoUtAxSIOXcKZjqTtElbNaXHBkPV+EvJKqennV+UhasXqaFTDkqogSz8qCTNbFd/KdVgtAZDCVIVzFK4cLHKkvMDa+ibluKReehER68TwqVYECmqMV3umdWlItbwFCRkNHRjdP78nxuCNwcSgICfdE9iUJqshRFm50htgg4K4oO/B52QbhnyyPmXQVBEFEAbY2YMXXoWDx/Bvb0GbHFu6X9MfJ/ulfnzOe5DEFAzCCA9ORMS7swsX90Vk3KqQ1xXkcMJQHIwb2H3NTDFWG0MmkYJeQwiiIfrokQAMHyWc82u/Ch/+McDGDMbKIo6lKEQIjK7MvSfH4p2TfdLvCidtJ6oCPrwNjx7LPe2MoA0wtTBe63tu1UvNxklAwEmauF9JRtuylSaYZzOYzeScjZdML99KJpWxsHNBgGkeL0PfB4seWGSgoc80qDdP96225twjHNga+YzhXNXj1Gn8Se1Izshy/fFtRGo8aN2iAa7pAcN5WyPHVOCVHZqCnlynRxFJ1mwpK5nmkCtU4K3nC3rM9U0YlwpuYn8tA1sjbEvS4OiYZo1RqtVkzu+fJlOaS+le4/Acva2ROPnQ1ugzSPqyH8LWfCbAjdSKidke5BonOiDRdD10KS2TSxfZfeULrB4dMvvgEIPV2jY9J5Pq1aRXPegkSfxO7rkDAgaQxUVsLPP3PqLYu8jGeMSoKiVl10elFtVRJPBkc1CD3BjRWKWFxa2luKIxUK9WjNyYW2+9Q1s3RA/f/sPf4TtvfecHhqCctRTWsrO3yXPPPU1RFDy4/5Cjg8cEH+hqFWGrI2u8VFdem4BvGxEKA1Uhwryxb7n21HXu2tvcvn8fayQ9OrJNnDjKEOlY0jUrQtMSjSGElrapia7Ad7BYrDg8esjh8SHHZzOatqWtG+bLJa4qmEwmWOeI0bC7f5WqqLSDtGYg7dBO4gABAABJREFU6QsbNXZso8thHekGHilMIaAgxpzNZNXJJv+UiOb0f+ck/BL0pVUIQIidOHsjLIvLVWABDf95hBWSNGuZOZmB0cyuQJBsq1xzQrZcHVirfArQSjZVjiXvvVYN1rpH1ljRdSnYkjEBYmBzY4uNzXVWJ6vca8q5QYVkNQASlpPVkx+kVyb202i8P7W6kPFINWqCNN/02sAzCivltUFgCu1KDZ2QvzepXXkwOPuZMCOfcktGmYHjSs7AgklVd42IWi9dgFdelwJ37x+SwcVQA5P/9ac4nw4+eK+zo0L0Je9/BPsXJbuoKpWSP29rMnhKLE1eJXPO1jCwNRgEyBRjePP7Itb1wB/+Lrz5nfPOd7glJ7i3Cc8+LWnX9x8KwPMB6sQsxd4ZBS89uvIK3wgL45z8/NR1sLfh/n0yY8I2TJxijKVoaxod+9BqJlUh17xYwdEjqVh8dqZ9SbQOT1XAZKJZVwb2r8m5bQIesX9WSacSVciaWBciWdicGQ56QJ8wY/8Q5YtTkJcAQppLsSOD2RD6UGEGTonBgCwIT8Ys1QJKGp1PsDWZ/QjIfSbGI61+0sVmcGp6kKO25jxqi7CxDZvrcLLqhcXO9CAjgw3fj1kChNZwPgwVesCSM8oUCIVOwoeJJTO6mAimH5vge+1N8Hr8KIL4z2VvKUW/uZgb6hSMQIcQAz52mAjVdMzk2jW2XnmJ5dHvEo66HJaC82EnLcHWP/fBIitt6WyJ9akPVxy/ewu3u0e5uU7XrQihJQarmTCSEpz6M6WZK7YmMQFRfUwSjwZC54GWux894PjklK7tODp6xL/5nX9N+wn5+4W1uUFsMPD6669w+dJlzs7OuPvRHXzrabtOukvryp0olW0BJqO+em8MAeMcZTUiVUu+eOkinfe8d/sDTs9OubB1xsbaFqPJRHUhkRjECQc8nW+pZycsFnMeHzzm0eERB8ePWSyXNG1LEz3j8ZSqdFhrcNbS+Ui0VR78lE1mrbQLkPEBYyIhiLEwetOaeA0JOqYVjXUypob8rIngo6SNS8ioU6evWUznwIVJH9HaOTpHNCU8KJgSkOVy/D8GrzZMQA6aqumjx+q5ks9JKdb94kNWglELX8mxpQzAyekxy+VZfu4xRrwPrE3X2du/wOGDA7ouZhZaenB1OZSEhuAkNOXxWv8megGKXinzLDgOyH7e53dO7G3S8jQQjYbKZC6lZ0VMjJDev5X38nO1JZFpNq7o+6oPK6iDikh21bVr0vDx8HfgaFCVN39NW/YwH//TuW3wx8MVvHsLdvdgY10ypkILwfZ6E5Q9GdgaoA8P5fBaei6KhGMDHz6EkxMR+x4fwG//ulYWfmKztg9DGOD1l+HSFWFKbt8RsXPn1fHQO7wUJhillUZaYRfaJFSd+6WLAoRuvw9nu7B1JhWEJ1NymCJVqsQLKJqdSJr34SM4OITjRxKOaltxpuOphFOS8/YR7Kgf37zaN/18TcBTbU02sBkU6HMd2BrU1jCwNQKAtNAinVxzDj3FHngOBbDJ8afjp0yhlDU1sDUMbA0DWyMgwvcAFuj1O/TXGRO4G/y97eD0CJbKfKHP0XuYrsGFi1L7qIv5lLm+zcDW9KEpnQ+dITeiVVuTwXPQezl3DJ03EZmjSdifgX+63ziY0xZckHfjU26fEXBjSD1wbEqRVacXgwpdtROyU8Aw2tli6/mXWB0esPydt7AhTUsZIIvoMiI+Cy9TldvcNlFXHxaDsQGrDid6OLt9QHXlI6YXLhL3LxE1rUQcpMQHExySVGZHEmpa2/NH4tgCMRhOjg7Y2dnlw/feoO0CPgTe/fB7zOYn50fDGCZlgQ8hg55nbl7jytVLPHr0kJOTM+azBU3b0XS9cyJKRWbJCpIwycmsBmNU2xEpyjEpfXl9c5vL0WDNA+7cucOd23fYnqyxf2GP0WhMUZSiwTGGtmtpm5bFYsbjx494fHTA4ckhy3pBEz3laMJktMGoLLHOKUsjRei++4e3mS9HfPGLL7G2PsUiqalZgxNFzGqtofNdBiw2gUMjKdoGCCbiZFkhAEFr40QVy7axFRYlgymTbc2wMJeAXSsVrBUYimlKK3h5sVI2V19+X5iS3OzUpIwuWWFFzi/qjbWD65SXOHULd9ZhiPimxYRAUTiaVsbBGFibTrl+/RkePbjH/P4xXQfGpiadJtsSEzjH5lhjFaYnR2i1pURBp6BNWBgJsYbg1dZICDMCmChz3nQkET1Gw6LOKDbQFW6mnz8Pm4wHaQGSaMBA76jTajwBhp1NqV58+Bh+960c0Ti/TFKnHIdOkv77xHRgwKbVrHyE2wdw5SNxLu2lPoXNwLlO4Vln4/q5nFPFU1hCV0JHBxLuev9NdVYBPvwuzI+fGA4j7EyqWAwiBr6q7RBOTiXrqe2kJs5wFZ++T8yS2hoBDVFCTil0srmtTswJWLpzV8DJhT0Yj5XpqWT/TntXzefw+JFohE4OJW09dqKpmWxAWQpjk9KPfYTvfgSrEXzxJVifgtqac8LWVHvFp75q9M86XT9pfqjeKSY2xfd/jy0MbE3fYHNwvjwN7GDsEoIc2JpUEPAJWyNsXDpWOr6yOcPjQw/mcsq7Hp80Z6K2zQgCCtvQG6vpFK49Dffvwv1jwWupGvMQxAbOg5Qsxk8Xk66h6EFb0PkeLbmqMaafbyaqgFgrGA/Dg87oOdOYP0lN/ODtMwJuAGVpkkjTaAwxhQJ8lJWqcdJx1Y0q1q9epn3tC5zcuc/8gxNpbovJTGLP33Auwy2m8+WZIa7AKQQKGNoZnLz3PutXrrFx+YoWhguEYDBaNyJlQSXjb53LR83pscpEtW3D29/+Lt/6yZ/h6GSGbxuabsV77986NwplUbC1NmW5nNN5EQdfv3GB/9V/8O/y9ttvsVotODk9YrlaSlPFmFoPyPxLc9Dpu/PhvcecLWsuYIhdh+9aimpEFYWtmK5NuXD5EsWo4v333uPte7f57vu3qIoRpXNUZSlNIw10PnB2dspsOafxDZFANZmyNplSlBWFq7A2UhSi52hWDcvGEZuOd79/m0cPHvPVr73G9evXMC4oE6NPS/uOWOOwUcI2EjqRrCinTsgqou+LFeoKWxvOiTiWhEIh9k0rE8hAgZ81MbOjESuOPWUdkVgLBcv6AvcQmf56nK6eczVQBeuxE82PzJw+9IoAmKIsGI9Kdnd2GE1f5upTT3N6doazFTdvXOfF51/EB89sfsx3Zr9Ns+rAQ9dFCSMpUMEUai8ktVwWbjEbCqMrqU41WflfEFCYU719L3wWpkv0R9JHLWCi1ngyRueEwftA233OmBu1NbINjWmi1JW6d6pZGFVw5RK89gW4ex/eP+kN9LntB1E1520NmSVQJzcD3nsfrlyDy5fJ3b+DIdeoyaENvd6UTo3pHVRiotoGvv1d+KmfgeMz0fH4Gp6wNRQFrE01vTrIPL6+D//Bvwe33pLieadHAirSi5IBIANHrv/uPoZlLT90nYSpEntDlHNduijht/feg7u35ZqKkdxPVfVAOQQRDi/mUqmYICzPZEOyyVwlzrfQ+1810DjR4Xz/Njx4DF9/TVg3F+ATbE3uTJ2ZHd+DjJQ9F4c3et7W5NDSwNb0AGkAMiJkzU8EcOeZDCznGnBmsDBw5Ol6sq3Rv+dGk6nxKpxjEBNgKgvRJW3vSO2gm0/J+NoKblyH51+UMZ+fwOy3YNUpIaWgN4XCUpHDcyAk9D8n1iZpstK/oKxTYkxzR/a0wFD9kbEK/l0fckv0tw8quP9022cE3ETpz6Mx/iSKNIpcQwx4L3+3xuE0f79YK9i4/hS7X3iVs8PfwZ+JAxmKTuVIsTcvSWBJevwGa6LWhhGHT4QQDIt7J8w++oDmmecJbUsMa9giQSYZdLE36lBiUFZHj2ykQFwIkQ/evcvjxyfMT2vq1QofBCi8++FHLGvp71MUjquXLnJ0eEDrA+sTy7WnLvK/+Dv/HuvTDe7df8hyNaOra+q6w/uQi+L1WT3ouSHEyId3D/jN3/seN6/fIHQe39QURcF4siFhixEQIq4scc6yNr3PwfERjw8OOXl0xHx2Stc00nnaQmELylHF2tomm+ubjKaj3H1asqhE+xQ0rPTGm2/xwaO3+PM/8RcI4RK/9q9+l5deOeBLX3yZ0ahUMKrxb+XaMGCCiMwH8KKfLdngyFO12JySLEMvMm4BFI7UjVuK8Ell42C8tOXAqM2O2V4BmEHYSxhTWWElsJIK3kl7BwEVqR2GLOAEeA4rHEQsRCnk6GxJURRMN9ZZX19nb+8im9vbcgwPa2trXL5ynbKqGE/GHB085M7b36frIp0PdKHLofqYDaXMbwlX9ZVfo7afEBY54jvwXd/VO2jvHblmLUCJlKU0xhDwuGgxha5g1VF43xF9yMDv87FFMca5bw30ziCtNKP+PWVxWGkHcP0p+MKrcJB6TyXn8sTx87cJYKZNHZMx5F45ETnX3RP46H145jmtF2O1z5R+buj4DOpohqXutUBciPDePXh0DKeN6G5CEK3KBx9BravjQkNFRwfiNCYGbl6Ev/Pvirj0/kMpvlfXUPuBM+KTV88xSsPL3/0uXL8hIaymFoHwZEOcpNoaYVwsTO/D0ZGEnB4dwexUtDQpJGMLAZZrm3JNkxFZHJuZCdOHld56Cx6+BT/xFyBchn/5u/DKAXzpFdHmSAyADHISpRsSw5E2e/6+BrYGLP2Lx+D36XmYAXhKYTAVGifKOIdm0jkGYS8LfVG/xCAl5iW9e3YQVtVrSMcc3kO0ck22FCC7vg5r67B3QapkR9V3Tdfg6g0Bl5ORtN94+/vyty6BfT3+E7YmMzLD79Fh9lEAUjcwrLnPV+zftTx++nyi1TYPer9RAZYPTzynP3r7TICbNC5Gi5uZaCDYHJoKvtOMn5hZEmOkQupka5fd515mdv8+B3/wPsGLPsOZwUI6T0IdVGBokQwWZyKFCbQxgjbjDCvD8s596uMTbf9hkB4zZMeLkZovUvgsjb2kyCZNxOms4Tu//XtMtioOD49p25ZoIqcnhyzrGmNgVDpuXr/B4eFDVnXD2tTx8mvP8st/9W/y3M0X+L/81/8Vq8WSrm5ZrTpa7wl5jp0HNgCFlXDbqvH84//7r7NY1Pztv/GXuHZtgmtbSuMYTae0XU1VTjAuUu5XjKoxu7NL3Lyx4uzslKPjE45Pjnn88D7L1ZzNjR3W1teZTCaMy7EIqoMwE05LwJsgIY2u67j76Jj/4bu3uX33Hj/3536RV156ne98+xaPHx7yYz/+Vba2NiCm1GLJEgr5ZU8TP+r4Bk3HFuAiQy2CV0zq2C7sQ4hRAAqp/QKZaQlGnrHYLTmfNNXUjCfVsEi/p2RD5LzOFMImadMPAnQxSHFDHxgPjJhk4KlDyysUMcjWWopixGgkzVr39i9w6dIVWaB4T1EU7O3tU03WePHlL/CVr/w4Z6fHHN1+TNMEYXeDx/tOx2w4zxNoCzJOUSpMe9/RdR1d5wneK9gToCbh/MTcKL8UO2EnQfQ4nRo54/SdDXTB48PniLlJTiVnbhhygTMQI9r5HoQkYag1klL97Mtw7772nlIDk0BSRuI/2Nb0q90UwtIKs7WB2/fh+FQcwsDW9GEJ1eCYoj8Fpi8bHSPMGvid34O1Cg6ONTU7wsmB1JwBCUlcvwGHD4XxmDh47Wn45b8Fz7wM/+C/Em1L08LKqwA0jd8nAJtEEzce/vt/LVlNf+MvSRPNtpXrnk5FT1RORCy9X0n6+/4luLkSFuH4WP49vC9tFzZ3YX1NGJty1MtPMgevztEHYYoenkhY6u49+Om/AC9+Ab59Cx4ewo9/FdTW5BTuNAeesDWYlKmm4HWYWZUAawKTOTyXQk06RolpUVuD2pqerRkAHU1CyHMoMzKpvYbqwoYhodRIMx1H6NqBrdHrTSGpYiRZZBjYvwCXrirW8wIk9vZhsgYvvw5f+XE4PYbbjyV01aHaG60rdG6e63mDvljpe++VvUvMjYawk/jZD8cXpGt4us+owmexNfLOKvPzSXqxH7B9JsCNbDI4WQhqvWbUWHwnzfkiAadFuKTMfYGtCtauXOTiF77I6uFjTj6ayxyJfa+evNjIVLR8TZVa0ZV+6icGyvxEQ31wyPLxA+rljLWdHTV0VoXqfWwwErW7smZ56aTvusiHHzzi1ltv8SM/803aWqrvEgKL1QLvPeOy4OKFPUpnOJ0t2Nyq+Oo3XucXfuGX+OqXvsl/89/8I+7cf0AINUdHR5ye1IPKsh8HNqU1FIXN+xyfLvmn/+I3ufXeXf7WX/15Xnv5RfZ2dtnY2mE0WQcWxLalLCtcWbC20dG2DXW94lK9oqkbDg8ecXBwAKagrAqpjk7E+0joAl30ypZautjgCcwXK+48OiHEyIPDx/yTf/aP+ZEHd/jxH/kp7twN/D/++b/kx370a1y/dlXrzEQJM2GyTZHhNQMdjdarkREHPMZqvaE09oALVhmVxN6IYYmQa7SkeSDZUOl7MjMUQ8BZo1Wljc5PcXgGAQI+wKqLUGoVavmk2pxIqsUjUAcNJWnml5Hu8z60tF60LdFEyeRCwoCmbXDO8cILr3Bw+JDfPvs1Fm1D3dR4n5p6CmUcNZspaqjSGCfXGIOCGWFAg4KiBIZkf/l9wBCHYCXo+KtuTN4N7Uau5/5cNc4ENZqBLAQ1Cmai1SJmGhZKBf+yQLaQ8NQXviipzR/O9XhDdKNfnrA1eWU+/Dk5JbU1HBxJv6flDAa2RvYf6BASSI6hd7gxyrV/+FiqEP/5rwtLo7ZGml96uYf9PWGFZgvYrOAbr8Ev/BJ8+Ufgn/xjyWoKNRwewUn9RwMbaySrLO1zuoR//hvw7h34a78AL78o2p+tHVBbQ9tKaKksYKOTsFldC/iqGzh4BAcH4tgqTVtOIKAL4ghTOKbVkNVyBY9OZL/Dx/Df/yN4cBu+9VNwN8Cv/kv4sa/DtSv0qdpdP/7p+nN4KS1GkidXvU2qJ5RAUQLH2WANqgIDPGFrMiAbzsX0jBITZdIFKbhOWVwBecZlmgc6vxI4OxdqjWTNSwLqtoDQCnBIQvTUvsF7GUtnpTr34UM4+zXtAN+QG6eGoPcwAHYh9mMaQw9mUiad7wagTe81jUuyNfmW9Ru1NXkRkM79eWucmejw1DIhyX+JEgbwyty4ItV46F9uYw3ldMr6latsv/Qci8Nv083BmNgfxyToRAY8smkKcLQY0+FsVN2OZvEAfhZZPnpAvVioLRJEbqx2TjYG44oBQy3/HT1+jHORzo84Pb5DMYaqkPOmMKz3HmsMO1ub3Lx+nT/87htMpwXf+NZX+Pmf/4u8/tqXmZ2ecXQ8p7Alx2eH1HXHqk4dqz9ubEpnGRU5h4gYI6vWM+oC3337fW79Z/8HdjbX2dnZ4vrVK1y7cpH9vW02NzbZ2Fxna3OTtfUp48mE0WSdSVcTQmB7Z5ud/x91f/ZsW3add2K/Oddau9+nb++5fZv3ZiYSiUwAiY4C0ZAgQFISKVFSVMlll229VITDEX6x/wBH+MWOcIRdjpBVoSbMCtnFKrFRgCJFgugSSGTe7JDt7dtz7ul336xuTj+MOdfe5yIBJmSKzlzAyXPublcz15jf/MY3vrGwxGA4JEsTlLFkruVCkqXFNclMTpxmtFpdXn37Ntv7/WLfRnHMD37yffb2d/jG134LpRf47nd+wnOffpJLF887bylXH+VvGHz6RIKFnGPtvIbAU8FKaRSBMEgacSJGoVQkn6cCkZfnuFShTGBesC73lBslUyso61YiucpcybMCK57X1irGmSEjpFFvUilXi2owuTF9/Z0HTs7lx4nwtPbNVzVZJuXYYRSR2ZRQRURhSBBERKUKswuLPHnlU3S6He7eeZ9uv8doPKJWb6CtADFjcue+LCxLliXgx7E1GAdsvJhYqrec+Z+dlHn7yjKtNFYZxx67KimlUc5I0eTSRdx+rATFPhLoyXxT0PouEOeZAJvHYg1aiRfNsWNw6TwcvAkDpiZAP9H4bXpS8yDE6SO0dU+5fQEYGNjbkQohmKz+/ape4fxvmAJLygEBA7YMrU2oWAjdZOf3RwY+zM7AiQ149xpUQ/jsM/D1b8JTz0plVLsvaYz+oYCj2Hes/gBgE0ynztxrkhxKBq7fg//zv4DZBszPyjk7tgoLc9L+otkUJqVeE8ag1nTaIAPzc7CwJOchdeDKt1zI0snxm9xVgXXh7TuwP6k4JI7hpe8LWPzqb4Oeh+/8GD79NFw8x6QSicnkXND8nqlxr7HaiThd2klpCuYoYJJaUc5p2ncDz5HrYryGagrYfkCsKVgPlQkQcbGmeC4zYEM5V+XqRECMB0QfwBb6/S36PunJGI8ipL9aJOnDIBI2bWERrnxK2Jvb70sfsvFIUlrT4OQIS5NMzqc1E2BTiIkVhflfwYpNV305rY3xY007QO/SE9Of9yG3jwS4EeCaF2Zgck+63jXOsMj6UjkLBEpaBPgSX60Img1mz1xgtLdH651N8kwXa+zpeDPtb+MfMU4EplGE2pDmk3Jym8Nwe4e42ybPMoJShDd7Ux5ZO1pRhpYlTRN+9Fd/xnOf/TTHjx/jYD6lPqvodVusr2pCHZHbBK0sq4uzzM3ViQIFKuX5z3ySr3/9m1w8/wRRGPLdq1fJ8oA0i+n3euSpIknSDwQ2YaAohwodKCIduEkNkiwjSTURmixX9Hf32do/5L2b9wBhCoJIESqpcqqUyizMzzC/MMfy8iIb6+scO7ZMtRRIN/FAHHjzwYAsyxknCUkS0+0POThsce3mQ96/s0d7kIhWamrLcsM719+n2+vyW9/4XZYWlvjhD19lNBzw9CeuEAaBMGCua7UxXuTtjBERs0KlNYGWSirftFIr7VgPS6ilWsifJa0Uxoq+xzrBb25SLKkzqJ0Y3037xjgXGTRK/Gi0t2VUxHlGYkLqs0vMN+colUsFeFFkFM0y3W8vaFYFXSxByVhDkozFgDEIClG01gGNep2lhWXG8Zg0TXnu2c+B1fT7A3q9Lo1GE60qhcYq9waEKBdjcmFejN8XiuMSVU1Obg15lmKNIrcZYeCYLhALCpeqymwmx+5cSHObFemsj81mcZqOadGmmmJfgMdijaStzIRJaTTgzHnY3YV3NiHzzsDq6Hf9DKfq4sV01VRuJ+/LlbAmnbasrkuRY5gi95pgksLwn5+m8Fd/Bp9+TkDLYgqzSoTA61qAik3k7QszMFd3eoYYPvMMfP1bcP4Jmdyufl+OJYtFo5MpSU39vFRUqOR30fQMV+nkQFmuRNi7dwg3JNagA4gURVPQclmq0RbmYXkJ1tfg2AqUtOxTqOX+HAxkEk0SYRj6Q2GWbj2EW7swSCZVZn7LDVx7H7pd+MY/EMD0w6siUv7E5YkrrhcUF/b+HuxoinLx6bJ7jAMMDsR4w0B/KZUfT/mEYTIpTMWaI2zQNFPkP8TFmgLA5hmYAGYXYWZetEjFfnoAZCa/Pas3HWtwxxnHci6DYMIw6UAMHxeWhUFLUnj28zL2BwNp29FogqpMQH+hxfHAzAHoafHi9DH5Y81SYWZsNtG04Q/DfZb1rJpbBJhsks76kNtHAtwUBnRu0vDUv8FiMI7Klxva2BxrZALybSutBcKA+vo6S09+gtFei3hriKzlg+kvkuvsgYsL8cbibPM9XCmgDcpqksM2ceuQPB5L2SKWoq28cYPEMw5Iq4ByJSSMpOP21asvM06GdPodSuWQJIlRGJr1KufPnqRUCTnYbfP8p5/mW9/6LS6cv8jC3BJpmrK3f0h/0KXXbdPvp2jXvNJvClBaEWphbHDAEOtaETgQnWTS+Vpr5VbhYJRBo8jyhMCExFbSDV01Zq/VJb9xTypqcgjCgHq1wsryAsfXl1hbWSDQil5/xGG7w+372zzcPqQ/SklyUwDyopfSY9f7/qNN/oc/+n2++bVvcfz4GV7+yVuMhmM+85lPUiqVMXijRCcMLiYg6yp2cM1I3Xc4zY1PZeIrpPCMg9x0gQowxpkCotAqRGmhPHMlQUIDxq3WjTVSEelcn8UiQ5PmOakNqTXnWZibpV6tkltneOdZJitaJN+tftIZ3AD5EfF8EIgRm3WvkQVXQBSWWJhflBJ1k5Nnopu5f/8Oh60WzZlZoihy7SmM84PKsV5LZHK0DsQFWquisEFrXVRHGTPl7YPBGF+Jk7t7E1eJ59MgamLol2cFq/bx2Pzq3Ad7v+Kdot0LHUDOpLOxD7pWwMHaOjz5CRHubg0owEfxHUyxK+6xgkI2UwBl6nmr4bAtZnVFrOEDY03xHq2gFEi6KQzh6stS5dTvQDl0jsdG/HrOnZLH9tvw/FPwm78tVTLzyzLh7B9Kl+1eG3pOK/M4sFFqwthYJufQl/j61JGCwnytOAYllU/Glwlb6Rd12BWmx+RyqsMAqhVYXoBjy7C6IN87GEGrA/e3YfsAhq6s2U7t288AMQuPNuGP/l/wtW/B8TPwk5+KAeBnnhURrR8L0+kgz6YUrNn0bwfOpmJNkS6cijVSAeQYChTSpd2BKOXMEIv99gwHFLoZiwAn31iuuQBzs2JaaKFgmYq2IGZqPz3AMEcf9+lWv78+vaa1lOPPL8q+mly8hrJM3KxbbSnnj6IJYyQrGwrQZFzazhsHFpk1PdHYFOksz2ZNYk1x31gm4MyzQ15U/EvEmr8W3CilTgD/Blhzn/zPrbX/V6XUAvD/Bk4Dd4Hfs9a23Hv+D8D/0u3x/8Za+2e/8Eusd0ad/D2pwAFrM8THJHCP+4FEoYJQSlNqNJg7dYb+Ew/pH76FHriFBZ79c2DGrcR92MpdtYu81vj1Fb5/kemNGO5vEw/6VJozMgnloLQhCISiLPqD64AoKnP89AUe3rvBzqN73L/3kPEopxRtowOFsVJaNzu7xPLyMuVyid3dLZ559ldYWVqiVqmitKHbaxOVSnQ6+2xvHxCFJTo9yfOHWlOKNKUwnBrkkmYzOcSkstp2rrNxkhNohS6Es+71SqFsQObAnS+DtmpipmexxEnKaJyws9/ljffuFIAhc+Zx+ZRmpbiswKSZ6M+u/lrtQ/79n/0R3/jab3Lq+FneePM6WZrxxV95gSgKMTZAK1eCbEST48V6WsuEpHUIrjcTRTxQxf5J/HVgB7faQBx2tVVYozHauOosCQCG3I07N2qsZ/sEwGa5ZZwrKo0Z5uYWaNTqaB0IS2VBIcZeEjL9pCbnVbvVnn8u0AFScu3YImtRTDpxK6UoRRGL8wuYPCNz2hmlNAf7OxweHhKFEdVqBWvd9XOpKYuUcUtrE9H0CHADa1I81+gnfOsmfWOMA/25vNc4JgNvO+Duozwnz42zSfj/ffvbijUF8i5E3p4CR1aM1ok41fSkxeS3cuzNqTPwxCYc/tSlp4ojYYJu7PQTEzDlJ5pic9eiN4b9RzDoS+pGKTkybRxDMLVY04EIbc9ehHs34dEDuPNALPSjHdeLx5Xxzi6Kj045gt1N+NSXpDlotSaf3e2IDqZ7IFVPYcl19Ua+N9ICnqZijUw4AM6VOHc3YJJPARvFERbBBhNwV6QfHDviq56SVITO+1147w5Fai63k9TGz7u2PyfW0D6EP/sj+PpvwsZZePO6iF2/9FnR/tiAogTZ6Klx4lgbjKSKfG8m/xXaX09/jd1Ymoo1cqxKPtenXgqw4YS2vlS9AGc+tWWFAWs0RbdUq8t192CBgKKz+XSssY5Z8iDNs2a+87aZer+vTFFKwMv8gktduTSQUrC/C4eHrvqtMgH64K6H1/Hoyd+4zzTp5Hi8fshfq+n2FUXlWzA5F/51eT7R/XzITf/1LyED/nfW2svAC8B/o5S6Avzvgb+01l4A/tL9G/fcPwaeBL4B/LfKWw7/wm2yktGOOxGzNw2E+GZmPk2h/O5b0RMorQhLZaoL88ydvUTzxDyRtkjXJbciVhPA606zS0JojFWTfj/KEipcfyqFiXP6Ww8ZHB6QZ7mbgBybUJQai88NLh1SjiKyzLC4sMKp08dYXFxg59EO/X6bSrkGVlEq1QnDEpVymZOnjnN8Y41SOSQqRXS7bXZ3Dzi2doxHm1uMRlLlEmjN/GydhdkatVKEDqT8WjuzJq1DojBAWe/qLKxJZrz4V37nRliGNMtJ88z9SIoiyzOyzGByW+jFrFvZGDemk9wwTnN5nV/B/QwtL9vPSp7lfq9XFN1Bjz/9j/+eB1t30YHmrbdv8sMfvORSNKGkzJxgWGktzRxdSkGAjUbr0HmxaALtrrj27I0I5ryOZELVWkSrY92fGm1dGw8diB5GaydGDiVlg8FYzTiFqNJgbm6RZr0p1gQo1GPHLykoV21UVE4IwAmCiEBHclyesRFkRJ4740nnm6F0QCkqsbSwwsaxUxw7tsHGiZMsLa8yHI44ODxgOBqRppk7Zjk/1niQM0lDWeWNBp0nk9JoHREEIVpNRPgmNzJOch8LLZnJnaYvJ0lj0ixxzN7fGHPztxxrplfdPtYERayZpCnca60LwlqJf8vCPJy7BCfnj6YQ3HWEqbcX/3CfU5Q02wkjgJKy662HcHgwMc3zIEhPpVG8Bw9KJucsh8UVOHUMFhdgewd6h+BiDaW6TEyVsrRDOL7mGJ9IgM3uvvjsbG5KH6fMTcqzdZityet8Ceq0MVwYTM7L9GSXWyfOthRBI5vSNPmS4tyZA3pg5NODfvK3OOo5d+fDX78PjjUfCGwUUFEw6MGf/wls3RXg99YN+MFLLkUTUoiFtTu3xTnGARs99dv9jQc/monh4tQ1nRaAH+lv5cad/y7t3x/K+fIl0SlQrsPskpTDB+FkrBw5Rgdc/Fj1Pcd0IFqaIKJo01EAVByA8SyPe31UkrF07BQcOw4nTsHyqrBdhwfOJTqb3D/YgiA6ArKKY3dgRbk06ZFjsHJ9cyNA2bjx41k8kwv7mDmLgF8i1vy14MZa+8ha+5r7uwe8B2wAfxf41+5l/xr4e+7vvwv8W2ttbK29A9wEPvOLv8Sdc/8/ZVynZP+kP2GTFZR11KGyduoRA6GmurLE0uUr1BdDlxZ2J9L6e2MyMBwZRu7HnwNDSin8tEiu6D/Yorf3iHQ8xL9KO22Cn3CF7peJ8fi5y7QOWrz+xss0GzOsLK8y6I945+3XmZ+bFf2O0jTqTeqNOk89/RTLS8ucPXOBZmOW7UePuHf3Np1Om1a7x8xMnfmZBktzTeqVSO6JMCAKAik7R4CfMTmZyQkCGVzT8SYzssrOrCEzUsnlm7tiJU1hcveYkddnxpI60alnZyQFxBHWvWBDf27QOboZC52hIckM7V6XP//LP2F3dxMdBrz11nVeeukq1mToQKMCSxBoAu19kOTL/L3rAYJn+1C6AAp+fPmVijXSxsFXCOXTVVjaj0GZ/LWvwlIWHUrwiHNDWK0zN7/EbGOGKAzdIsO3DlEFkwjqiDZK0mAW33BVu+MJdCi9y4r71gorYgzGCH2tFJRKIUuLy6ytnWBtbYPVtXVmZufp9we0Dg8ZjYfkWQrIceWuOgzrgDpImb7xaTMH0PGAHXyTzdyI2DrLExkTRto5ZHlKmuXil5Mb8iz/GzMo/tuKNTIuPGhwP78g1vjYcVRHILGG5SW4fAWWfNn2JNYAR2LNz+7D1ETun8gV3N+CvUdS4eR55CCcHvAUdL/WcPYyHHTgtZ/IBLiyKimct16HuTlXHaPFL6Zeh6efksnrzEVozMKjLbh7W7Q+rR4069JnaK4pzRQDBMT45pg44OeFpS7WHDllhZDUMS2ZnXrepSk8oDFMGBmT+xzo5PxN1r1Hf3/IWIMFhkbAUa8Hf/knwl6FAbx1HV66iuTetZSpB44pKlJQcgkImADMgu1zk/t0rPFAz9gJw+HPh9/8eAOZ/D2o8k1HlWNnKk4H02w65oxJmqZgR9w1OZKSc8AhmBpjCgE4ZupaYCegwcUaFAKYF5dh7YQzlzwmzFF/IAzOeOgM9abSTf6Q/H6Z6cd9jiqf7Kc/v/7a58kUsLGSFkv938a1//hwl7w4xR92U0qdBp4FfgKsWmsfgQQlYMW9bAN4MPW2h+6xX/zZDlR4Gso3FxQmxVVR2dyttGWgeO2FBoJQu+urKDdnWDhzjoXzpyiFvj+RmRCW/tzikhVWYax2QlN5gcJK9ZZD2cOdNu17dxl3uzLunRBKO3ZB65AgKKGd0BUsu4cDLly4TLvdQQfQ63V46ccvMr8wh7QcAE2ZaqVGpTzL3Nwa87OLNOqzzMzM82hrk9u3r/H0Jy7z9V//MhcunyMKQzLXT0omm5wkkQkny3LSNHcWCJrQU+3gWBpL7gXajg5UAEaRG+uqYG0Rm7JMxNVZbgUM5W7BZSn0Iv6+9yd0Ohb97DU+uvn7y1jLQbvDd777bYbDDkEQ8dqr7/H66z8F6wTProN24HpWBYFjPdBTN451105PuR9LILAyTqeAiN8JnxKVUn7lOpdrPWlwGQQBSgfiVh5WmJ1dZG5mjlKpVHjkTIMp39pjkpJz57mYxLxWKCgey/OcLM+KFFieS6PS3HjHZAFO5VKZ1aU1jq2fYH3jBIvLq1Sqdbq9Hp32IaPhgCwVcz2ciNhBN/lbWZfuDVzWxQEy5cG6nC/t0gbKOtGxa6yZ5zlZlkhpeW4cCPvwrqEfdvvPF2s8spjEmkIj4EWjFpnspmLNBM0joEYhE1dzBk6fh3OnpUKpmK2nvm5yVBwpHS5All9ZuRX9Tgfu3RUhrGKiYwicqaAOXKuCKaDT6sPFK+IToxHfmB+/CAuzU7tUgkoVKrMwvwpzi9LfaWYBtjalQ/nTT8Cvfxkun5PJNMskGORu0kmcd0mWy8RjmJro/TF7MKMmQKcIRGoyufru04YJe5M7UJAzWXl+UFBR/OxjH2azFtod+O63YdgVRuPVd+E1iTVHmBQ/JoJIHv+AWFMwcVOxxgWbKaAz9d3WMCV8k8+aNiX019cgTU/nFqWppXd6nmZdCuBtJ2P58dWmH2dTsaZg0HwQzF2j0iLV5cZjqQxLawJwNo4Le1OtC0BsH8LIteUoPGumwH9Rgu4YKQ0TA0vHinltkU9R+n5bvrGmr8LyKak855fpLfWhwY1SqgH8j8D/1lrb/UUv/YDH7M+8SKl/ppS6qpS62mq3Cn2dCBhz0cQ4nw5rTHHujC/bU2DcBbKAthM9jopCagsrLJ69RG2xKu7Hwus4psJO7ZTIIXO0a0wYFKvvyYs0dpjTunWdzt4j8iRzdL4uJilVTFgKpQJe/uF3eeuNN4gqTWqVKpVKhUqpzPVr7zMed6hUa+R5xkxtgTCMKJXLhEFArz8kTRPm5pboDTPCqMHx4xtopTlx8jhzizN4H5M4TUlTqVjJjHULIeWsJwJ0cDRVYhygsg7M+JV3ZkRIjJHPNbn0qLJGfiSNNYlHnq1X+PtfvjPQfhL/4IFhgSgICIPwZx43Fvb29/ne9/8UY1J0EPHjH73BtWs3ZLJFERYgRxW2AZMbfHKDWVeq7WlT4zxprAMKwnLlhT4FphcTdhIjNOBSS0lusSqiObfE7Mwc5VKZouGkpWCCrLFMHKr9Z/tVm+tHVujGBHDnRpqSGuf9YBFAmaYJeeZLtR3YAKIoZGlplfX1U6wf22BxeYVyuUqn26Pb6zIajUiyRO4VF2iLGGt9VyzrmowKmJN5crKYEJ2iKmKdB8TWNfbzFVSKQNyb/wa3/5yxhnabIzd3UUobTAK0BwNeFKo4OhnYKT1OFMgK99xFWKxSCGeLPZneHf+3djnxqQmneFqLZubWdWFvkmwqbYHsj9fsaLffL34PXn8DKg3R0FQqklq4/j6MOyJAzTOoLYqWplyRyaXvPGfml2CUQVgXK34dwMnjsDQjO5Vb14k7m7Aq1p1+D748Q1Aci3Xn0IGZYnJyqyP/Obn92X9PE2T+x19tDzL9hPGLAE4QCCB8fLPA/j58/9syWQYl+NHrcO36BCQUIEdNAO8HxJqiVLtI0UwxGYWuJJ9M3tPD4EisURMgkFtQEcwtiYi3XJ4CS0wAo6GINcU4moo1k9YMbr/AMWNOiO1BWmakAs0tiI7oaaJQjBbXT8GxDafbqkK3J+nM0ciljKZAnW/+6Y8XizQZdWAu4OhiwnjQ//jx+c/x5y6AXyLWfKhXKqUiJNj8vrX2f3IP7yil1t3z68Cue/whcGLq7ceBrcc/01r7z621z1trn5+fnwfv+Ots0XUQonWINzY7QvMZ5VbFMpkrHTjNqBuIShHWyjTX15k5vU4Q5u6VAmxybFEx5DG3TNrGgRNhbjS+VYOITwcPd+g8ekg8GsrnKe3YA+vuc+eqbAxv/OT7hGbM3tZdpznLCcOA0bDHm2++zNLiguyDKmFyTZ5ldLod9vf32d7ZYTwas7q8zMMH9zg8aNPv9zjYb7GyvkQYabJMDNmSLCfORGTqz4lWWtI4wVH5gSyMvG+M+PRkFnA6DFOcC+/yC8Yol9KS9+Hf70+eTxM5tuKI/vIDNq0D1peXKUVHW9fn1pIYy8OtLV5540XCMCA3iu9992Uebe0Wk7DWmkAFEz7EXTfjJqVJawbwrAzoQntisM5R17EqDpzK+NNYG7jz4bRfSsuiEkWtOcfc7BzVStUdb+7Oh+/PBEUZuUt9WTdOlA4Lo0B/iry3jbGGLM9Js9QJdqV7eDwekaZJkfIyrkpJAdVymeWFRTaOn+bYxkkWllYplat0+0P6/SFJHJPnqTP2c2koB+gm11cqEWXRqJ0OR+4fqfpy/jcmK0z+fCm9D0bigfwLLvgvuf3njjW4WAMUsUYYEa8D4LFYwyTQF5MeR9MW1bLQ9qePQegnO5igwsfOj4WJyHYqohcpLQUPtkV742LNZKXvwbObTK0RPxczFi2JizWEAQz78MZPYHFR9kFFkGthY7odmeB3dmSCWlqBB/fE1bjfg/0WrC0JS5WZSVogy6cmbtwq3K3Ef+YY/bG782w4CuZgCii46+FXOnbqZyrWTM6RndxIP2/TgUzGj8Wa4vpubcHrL8q5Mgr+6hXY3J1Mwl4H46+9v24eAD8Wa3Cx5khJufFiXzXFoPhrF0yOxwuRjfuu5hzMzgnThuJIB/Gi+aTTLRVgxFIwfN57x1+MbErnlOWTFJAHa/FIAE5xPdQkpVQui/fN8dNw/KSAnXJVwPFgOPEfKlJvdgrQPQYEFRMQhweO7j3WyPkqTP5cKb0HPsUM9eG2vxbcKJm5/jvgPWvt/2XqqT8G/iv3938F/NHU4/9YKVVWSp0BLgAv/8LvcPyCtRarnA9JEKL0hA2Re95RXTovBoomlFSCFmARaKmwCqKQ0uwMM6fO0Fipod17DbYQ2U4DaGO1TN5GdAhSOaXdfSUpi7Q9on3/LqNeV9I67gZXOnCVNgZtUuz+Pcz+Ju29Td558ya15gy9XpdavYYOAr7/g+/SnKlIV+zcQBZRiqq02m0OW4fs7R3Q7Q04vnGcL3z+S5w/dxGbalqtNnmmqM9UXJWhLZpnWjmRsj8BMkEbe3RhOPV6P/FLhZS/FR3St2rSJyoUdO3TK9OVeXqK4fLX6a8bekma0um1ObayInqV6edyQ5ymXL/xHrfvvkOpHNHvx/zld35Ed9AtRqvyfTUcXJHWCDjmgyJYTqS0uVsMWBcDvOWAAxJKmqEqHaAC7YB1gNYRBkVqLOVKk5mZOWqVqowjmx0ZQ5Pfju3wHYVt7rxnJM3hq6VwZdppmspiz1gXDzygMKRpTJblk7jpVomeMapWKqwsrXFs/Thr6+ssLi4TRWV6QzH4y9J8osPKEzkX1n3e1HJYadFtCRkhJeRee2QdeLTWi5zBBxmlKMrN/ya2v41YU9wk1iLup0yATTGJAh8Qa4rCBi8g9WxKFIoh3akzsFqbvPfnAhtNsbr3k950ebdS0B5LCW6vS1HN4hkmb25mUti/D/sPYW8T3rwJzVlJGzRqAjh+8D2YdT2ZcgNpJC0QWm1oHYrTcm8gDSY//yU4e0F8alpt8bmZqbriFTu58adOIy7WCMs1fZz2Z0HKdNfsqVhTpGRcrCkuwuQ2PwqK1GP//nlbmkKvBSsrkmKb3nIjz998D+68I1Vkgxj+6kUph/eXQ0/vhJ+EcZMvE2BWvMY9XjAZ00tof6xOvBzoKSGz8zIyFipNYWxcrJFqqA/Y/KQ/FWukOs6lVL1gHQcW0mQC1jO/70bGVxoL6ClwmS/NdsdRqUiKav04rK8LWxmVRaQ9HrseVA7UmMS9N586N+7C+eN2rHiRvipOoZkCckzOuXLP/RKx5sMwN18A/inwFaXUG+7nm8D/Cfi6UuoG8HX3b6y17wD/H+Bd4D8A/4219hfukUw8zj01Ext5KVt1Gggn2vK6AWkKKAeulJUS/WBSUROFZXQQEFbKNNbWWLhwnrDiVqN22pVjopWwgLGFLZ9jY7xeR2pIdKro3r9Pv7Uv+6g9Y+HWrsZSuvsq5i//Jc/pPsPDQ/7kD/+Qu3cece29m0SlAGUMWw8fcP362ywuLQKgjMakMsGlSUqcJAShZn19jbNnzvEb3/i7fOu3f5eoVCNOUmZmFmjOVdyCRDxutIJAaYJQEbpOwlLd8jjc8MfrJklvc+2esphC8AqglZUWBJYj6brphZP/u1io/qKLrWAwHNPtdji5vn4U4FgYJTnxeMzrb7zMaNwlqpR5tL3PD198iSwTwZu105MHR4OLdfyMdSkitwqRR51WSwUFW4MOHDgV/Y5yVQdKB1glLSyCUoVGc4Z6re70bwIQTG6d9iR3bLSdSpUZQLv9EL2KVpJWU9ozRe7cuZNnXJdu34gyjsckyXjipgxOoKydzwxUymWWl9fY2DjJ6voGS8trhEGJ8UiqmYzJxYvG+IaYYM2EaVKu0qXohu7+dqsNrFs9GQcHceDIX3BdaA7+Rrb/7LEGmKwMMxfY/YSqpwSifiU5FWuKbsxeF6H1pKN1pQJrq3D+glTmFIjUb+4zixtIHX2uYHDcXZUpuH9fWgnkhsKErUgvWLj3GvzFvwTVF5HnH/47uLMF792QSihjYPMBXHtbhM8ARoPrWECSiileoMQ87/RZ+I2/B7/9uxDV5PmZeZiriI9gcY6Q8xS6idpP9j8n1hST5GOxBsxEdwIUPbweBzOPn8ap0/kLNwUMx8JSra8fBTgWqcAaj+HNl2HclUqy7QP44UtOLGunJt8PjjUU/kiTWFPc/9ZQVDEVYnBf1aQnz3lNlQGiiui4anV3uR1AyO0krXeETZzEmoL5yO3U57rv8pOcvx6+V5NnMeMxJGMKN2X8d+gJuC6XYWkdNk6KyHh5TVJ64/FUNVM+SW/h9r9oguhYmiNszvR35VPnbwocFZPLLxdr/lpwY639obVWWWs/Ya39pPv5trX2wFr7VWvtBff7cOo9/0dr7Tlr7SVr7Z/+9bthybIUa3Jym1L43IQBWkWFE61cE79qnCqfxZUDByE60PKjA4IwotycZeb4SWrLDQxGbMmmgo5fwxuc3421TtJjXFoKAmULsXy802K4v0seZ0W5sJikQdDdQ19/kfvX3qfcb/PJmQr99gFvvPoax9Y3KFcqLC8ts7g4z1/8xz9lbrZBGAaYPGfUHZMlCVmWkKUJWMvq6iorK8uUSxGfevbT/M7f/z20LhEEZebnV2nOV6jWNEGgXAkzhKFohnCi2Z8JN56V8XoQTMFoKFdd5YW3wjL66h8nstaTIWPce4qKIPWz3/f45odupz9gOOxx+vgGpTAo9sdYGI5T+v0hr1x9kVJZEQQh77x1m2vXb7orNQG6ClXsr4AFi++xJOkiSeeAb6ypHAOsUS716YWZOghROpQmnUr6h2VWUak2qNcahIGklowxjMYxB4dtWq0Oo/6AeDgkTzN8TzMKDxkvWBfhbZaJg7BSqtB3YX1ZflqwPhZLmqbE45HrIeX1PapIwwmo1DQaM6ysHOfEybMcO3ac5aU1lBbheZYmE7d0914BV+BTk8azTUjs0DoQfZO7j5TWhZ3CxGNowov9XN+RX3L724o1QqHnYH3bEO0qVKKjouKiweL06l3LhB6EbuXtJq0wFNbk+AlYaTBZ5X8AwPGpJ+vA0vTqVE29frct/iLTuht37ejtw7UX4fp70G/BTEVEnldfk9V1uSINEhfn4c+/DTPOmdjk4qWTJjIhpYns0uoqrC5Lyfezn4bf+UegSxCURXw8X4GanlRGaSZmcNOi2SOn2r22ACoeBDA5x0UKhInGwoOJqVgzec8k1nzorT+AYU8cnAsDO/eZ41TSK1dfhLKS6/r2bbh+c3JdiuvoQavfJx8k3UTsU5kFw+bOk/YMzSTWTP7ttSjufNUa8hOEk88fx45p6wjLNnRC3oIVmsSaQpRrUhEK+9VTMa4dO5S76+7PdZq4/mNTacIjYAT5nkYTVo7DybNSJr68JseRpo4Zsk4I7t7rx2vBUE5NEooJ4PP3UeH27O5Ln4r1P79ErPmbVQL+p27GYFx/ImsUxmQoLW0KtBLtgxiu+WslCM4HV9FGgC1cZwNX5RIRlkuU5+ZpnFwjrBg3Ucvgnk6iiOGdYyis7xDl7yH5V4DCdEcMtrdIRyNZeDiEHmYxM49+SiXP0MDdBz0uL4ScOb7Kw3t3iUdjep0+x46vkmc53U6LV1/5CSvLS1hjSUYxe9v7tNqHWGvp9nqUKxUqlTJpJmmVr331G3ztq7+OtZFMarUF1tZWWF6fo1qNCMOAUIdYa0mylInd/tSptk40bJmwB0z1VwJJZzn/D9EFTYCHBzd+sVtAJHsUNP78TV5TKZcZxDGBMmysrxG4lakC4jQXw8DtXR7ev0OlIrqkF3/wKr3OQFKCuQcvuZv4FTh9kLWB6EuKNJR34p2qalJusscDNLAuF6x0JOAgl1V9pVylFJXAp/VyS6fb4/rNm1x/7122792j9WiLYbdDniUFK+JZPX/cBXNikQ7cbvIUV2Ul1W5Z4l6uGI2GdDoHdDtdur0Bg+GQOIkZx8nUgkfy6I16k5WlNTaOn2JtfYO5+SWy3JCmIhrPTYbvPYXN3WLIV3RZciMNMKdTVt7kL0DJ/eRA/KRlketj9Tdk4ve3shnj+hNZmUyNBw6Rm4iDyWTrBZnTq3FcsC5cZwNcHlws8efm4cQ6VNw5KSb2qXvDMtGXTMRr7smpf3dHsLMpuhsDBRuQJbD1U4qmg/d7sBDC8VWpshqPodOXf2e59Ah65SUx7TPAKIZH+5KWwkoaq1KRH5+a+Oqvy4+NAA21BVhbgfU5qEauqaibgLOUDzRXK1JTTCZwfx4KvOMmZQ9cpoFH0TR06vUeaPwSsYZyWVoOYISh0lMfmOZiGLi9C/duQ6UkuqQfXIXOgKJSzGYcEQYX1y+YsFYu1hTHPRVrCsbBg7qiiiiSn9yxpeWqiMGtnVSPdXtw4xa89y7cuyel+92OY0umUpbT1UpHBL4+nWMpKpYyV4mE27fRCDqH0Ok6ADWSCqo4KYicohFnvSkpquOnYG1DBOnGuA7iLjXme095InX6mvkGmHbqGk0DNF81pqae9im7v2ETv//smzVCp8kElE0Ejlo5sbfrSuyP1OVBtDt6eb0zQ1OgAkUYltBBJKxCOaJ5/DTN4wuEOi/SxOCnUzmpBn1EaPx42NHKopOc4e42yaCLshL4S+mQxp2XKO9eJ9CwujKPLgXMXfkk/8X/6p/yiafP8eDODe7fvUur06ZeK5Mbw+tvvoxSikq5hs0g7aZ02ofEyYB4PGZvb5d6rUZ/MGAwGKK05h//3j/lcy98gTQBpUKWltc4d+4Cp8+dohSVnIbGTCwGfiYIuFJva6VtikPSE/0OhYbLgxa5T+Qs5Na47ueTj9ZOa1OwPr9wkzOepClzc0129vdYW15kYX6Wckm+I9CK3nDAaDzi3ffeIAylG/zefovXXn1DjON8kJmKdTmeqbEFwPe9naTnk+/Y7oCUq3jxFUyyezIerPP4UTokDEX/JZO4fJ4GVBKTtNoM93YZHOwSDweYLMOYjCxPSNNYgEWeSRYklxSRcdVR1um7olCaZBrfhNIq8jyl3+9y/8FtNjfv8ujRJjvbm+zv7XB4uMdoNMCXm3sLg0ZzhoWFFRYWl5mbXSQISnJP+bSZ6wXjBcHWrciMMahCJKmmKjYtgRY2NNCyYBAtlnYCblda/ksto///vLlYI0HfgQPPijiNIxNHsiLWFFFA2cmqXOF6LJXEIM8i2o3jp+DEguh1pt7KVKyRyo/pif6x+0ZZSZvsbIvA1zMH6QjuvgS710BbWJ6HcgCXn4H/9f8MPnEObl8XkNNpQ60sx/zGyxLty1XRW/RSmczigYChvV2o1cQZeTiU8/GP/im88AWIEYZheVU0OedOyQTsezJ53PcBsaY4h7k70GLCtZNT4Y+/YEWKVdYUw+PPyxT4+RCxBhBGYa4J+3uwvCiNPF2sQSvpNTUewXtvQmgEuO234dU3jgKaKQIBPKCxk32b8swqyr0LJmdKT/RYrCnAkTe48+d1WkCbjIW92d2Fg13p95RlLg3lGDhf4m1w6SFfxu9+o1y/rnAqXaSE4el34cFt2Lwr7Sq2H0oT19YejAaTIOtLy5szsLAi2pvZJUlPWetSZziAMzWZFOMkn/xdaIaQsazDKQZHTRinQozsX/zhto9EbymTJoKsgwjlavglsEbiHRMEhFqTZlkR0DVqwlA5a3JtZNAESov7q0olbQFUFhdZuHSJ8cFV0pZMgJLeFV2NKDIkhaC0KRYSroYLL0EOjGW0vcO43UIlY2qHN6hsvU3Q3cVaGWjzC3PUahXCzgF3vvvn7N55QKsXU52tszDf4PjGcV6/+i6tw13eePM1Pv38Z9l6MCTPcuJWSjqfUq9WaLVa1Gp16pWQTueQRqPBysoq/4v/+p+RZClvv/0mc7MzRJEmDEt0Wx16nb5LzYg3zREqF5nmAz0ZIMqlqKSqRxWxXKpoHHjECK5+bMEkr7OT2Hz0qz5ws7iFE+KCe/zEGg8ePuSpy5d59/23aXeGmNwSBpruoE+1Xebu/VucOvEEeZbz2pvvc/nKJRYXFv0B4PUiEhdF54IKXNyR1fYRyFpMVi5XjZWAY5w42XnBWGucr474Tsihyesb1TJnTp1kNN9FmVyEyC6nb60liVMGwwFRGFEqlxxwyciylDSVRoYGMasMdEQUlvEduuWe1qR5yqDboladZcYod3365DYHqymVy2Iy6ComAhVSqzWo1RuEURkVBCJ8ts5gzgaTucNdKK9NslY6gJs8d4tAlxoOhEnFAVfr2ChFIGPEaszPEzx+FDcfa8IIvF+IcoFVl9zkoifuwEU6wr3ft0EwhbrdsT5T/huLi3DxEuxfhZadAkh+ZvTAScnnFZud+u0AwPYOtFsyuR3egkdvQWcHbCYr78U56RvVPYTv/rm0X+jFkoaarYs/ydV3obULr78Kn3kB7g9lImylMJ+InX6rJTqPSiSgp9EQM8D/+p9JyuHtN6SvUaQF2LQ6wg55oPIBsUbO19RkVKSo/Gv94eaTx4tzM3U6itNjJ8+pD3j+gzb/9ZkRRu3hQ7hyGd57CzojYUYCLaCuU4Z7t+DkE3J+3ngfrlySSiG//4XXDEwEsVO6rAIhf1CsCeS3izUUTIr7HM9YFEPCxaZqGU6dhPkuRdPXKJyckzgVAOLZQ+PYkywVoTA4sGVkrIblqWuGfF6eSrPV6qywUkqB7cu1WVHCfumAojpLhZI+qzdEWByEMianYk1x7ovr5tOSThDvO9Ubd04C5RYe/j0e5AWTx36JWPORADd5HBPv76NWJaWiggBNBMr5ySipZIFMVDOKQoODm8itMoXfRjHmlVRGmdwQVSvMnT5DfLDP3qu3IPMNOmWCV1aRW0sGlJBxVmjbrLA2MsNpkt19hnuPUA8iKvtvoMdDVBhIY0UstVqdC6ea1NIW43YL2+pigwq//s2vEyqFLtXZ3mzTah9w9dUXKZWrXDxzmr29LeJuTHenQ+VEFQg5ODigVq3S7Y2olutEYUSt1uB3f+f3qJSrPHxwj073UPQguXcZzklzr6V5LAJYyM1EO2Nd3l/MDG0x74mOJyDPjMR5NTGm82ksL8Au4pD96yOO3OsCqDqdHk9eucjBXov24SEXzp3jxq1btNtDtJKGnqPRmGvvv8+F85fRQcB4kPDSy1f5jV//NVkMFfsjpdzTKz/rV4MgVUD4xZQubihlcxlLxgFalPssYb9sZkmTjCRIHfCRQRGEEc35eWrNWTAi9tVhQFgKsRZarUMebN5nbm6RY2trVKoltLLE8YhKuUy1UqFcKpPEqVvwpGR5JAZ8ZdCBFkYnKlEqVWg0muT+vGfi3JznHpgLKDVAqVSlVpshCCMy3z4hlypE/OuMpDnzLMU3qRXNm9cyTaqi1FTqyTjfI2le619nnA7uY7LFsZRAe01DEICLNTKgXPUKri+QYoo98BOCxIGjmxtruRGwcPoMHOyDizUT5sevZB9bJajJxzAVa9g7gL0teFiC/TdkEgs962MFkJxqQtoSENTqik7mW1+Xzyw1YLMF7QN47UdQqcGZ0/KZ3Rh2unCiBoRwcCCeOL2RWP5HJag24Xf/kWh4Ht4XEBW6kvLCNt9PWo/HGuUYCa8psS5XMHX8FqfjCZzA258jOzlG/1mPf/aHQTceUHV78ORF6VB+cADnzsOtW9AeyvN5AqMxXHsPLriO4cMEXr4Kv/5rFKs7udPlZyrWMBVrJswMEyCj9ATEGTMFejTFyimzoq8KMo74JYURzM+Lpsvfa2EgzVItAkw378PcAqytQbUkYygeCSiplMWQL07l9XkKWSS6nTKuEWokDGRUFl2NZ82yjKKX1bQwGaBUhdqsGw/WGS9acLGmYGrACbTd8WbpJG1XMF/ueH3qqfBTejzl9+FjzUcC3KTDAfs332c5KqNnZtBh5MaHVLYErquxdQetigAgUUE5FbVxlR4qDI4EjNwaKlFEpd5g7vw5Rju7DO4NMFYRFisqCeW5EVSjsQTkEt6V71geEKgM2xtg9u9TanRJevuUKyV0qSSTtonQYcjG2hp5t8eFdc3TW0N+sB9zuHvA57/4OXa397j85Fnu35rl1t13+f73/5TZmX9EszFDt9OivX1AVC0zMz/HOB6jtObwYJf9vUNe/EFKrV7lhS98lq995Td4sHmff/2v/h8opYjHY2fA53twfcDix01eWkkFDNYDGwBVONMWFIuSaqzMTKp1HFxw//Ul1XyIlNRk00qR54Z2u8uZc6e5ee02n/n0Zzm2PqZa6bC3d0A5LDEaDun1Oty7d5P19fNkScr16/d47tkdVldWCkamcAkmkNJu68rgHbNhrUGrcLKvSlYhrgZImB58OwJAKUaDPrt7h+xsPqLWqBKFEWFUIgql23sQBIRhiTAIiaKISrVGpVxmOBywu7/De+++wdraMeZmmzQaNXn9eEAUhVQqVarVGsNRTJamZHlGmsQkSUolk4aXtWqVMIxoNpvMzy8QRr6DsbRwCLTGIMBDbg2DVgGVSgMdhsRJSpKkRFEJa50I2BhxPcY3wRRDQy8q988BRX8yYw25kSaZKIlXaSaCxtzkxes/FttwADfflyA+MyOBWeNWtY618SvpInUyiTVFxYYPtEWscePGGvFVqTfgwjnxkbk35KgjMfJZRgsdLzOOPFZ8VyCAqzeQcu/NHvT2RBPiYg3GpRjW16DdgzUNm0PYS6RX1Bc/D9t78OQ5uDUHd9+F730bZv6xtGnotKQ6qFqGhTmpmNFa0h77LfjhVWGFvvBZ+No3pfLqX/63cn7G40n7hJ9737vJy7MyHgz43x8Qa4pzz/Tnqqnf9rHnPsSmlEzO7a44Sb9/Gz77WVgfQ6UjADIsSTqu15UmpOvnpVrs+j14dkfKyf0YKECOF1RbNzSCybhQ4WRfXayZAFzH4EwD3oG7zluPoF4TZiZyTGLoxetlGW9hJGaN5bKA3YMdeO8NWF0XSwJvAzAeyudUqwJqhy59lWfC6CSp/K20vCaI5J6Yn5fv9vvnhex44AEFY1VxPcuSRD4vKjng78CJZ6i8tmpan+Sfg6P3lG8HoZDbwsWaIkX4IbePBLjJxzEPXnmRoFJj4dwlSqWyo77FjTUIgokbsAWU9PUGsMqSkxFSwlN7SgeuM3TgYo5MzEGpRPPYCZIrLdLWq6Qd/zkWb4yVu8/VKhdvHCdc1oBSOWhYPd7gU0sJC6UhdqaBNVIBY7OkWN0try7TilPqtRpfOdPCRgEqmaVRn2PUHLG+lrGztUepVCGOR3zvr/4D3/qt36VSqTIadNm9+xCUJapWCIOQar3G61ev8c47N7h48RQXLp0hSTO0CqjVamw+uk+lWaY/7JPluXj5/JyBIMJgRYC4/Xr/EosVJkSBsrowmPOfI0yWBB9VfNaEyfmwk5yaWpXdu/eQL3zpc9y+eYe7d+9y/uI5kuQWNjf0e0MIDKPxkDu3b3Hm7CWCIGI4HPHeu9dZWloQF2uQEm7ElA4cK2e1AzASYC05xjrzPRUwqfeRvdfeQt6KqeA4Sbl37yZ7B/tu/lIEgSIMI6IoIgpKlMoVqrU6p0+d5/LlKzRrVUajITs7m5gsYzzq0+/1WF1aIQxDwiCUlKhW6EBSPFmeEBCQZjm9fpc0Fyp5NBpiMkvrcJ9mc5FqDcRET45rCOSOqZNhJ+xKr9Nj2B+Qh8aVg1eKK+OBnsQVASeFhsm/xuXKDSL6y40hz0STlRvX+sOxDx7wfmy2cQyvvCjB/vylKVt7jvZP8vOo8itWXIxw3K5PIxT6APcen1MolWD9hKRAWq9CZzoF6lf/Diyp3LFBU5O3cqzRRh2WEigNpd+T7/LtRbzGwuqKVP00anCmJceRzEJ9HpojWMvg0R6UKrKa/6s/hd/6B+KjMuiCizXFBFevwdVr8O4NuHAKLp1x/akC6U21eQ+aZTEJLBov/pwx4IEL+iiYKYAPcp/m7riK40feM71Sn2ZyPiygnmaA7j2EL30Obt6B23fg0nlIbslE6mIN46EwOmcvybkYjuCd67C0QGHo5xtBelH5VKzBs7u+rNnkE2CAB652wu74fUwSuHtTWEUPlgMlwCEqCfgqlSUVdOo8XL4MtaoIgbc3JXU47Is4fGlFQE0QTMBl4JijPAECSbv1u+7fVkTruRXrgeYi1B3Y8NfAs5ZeCOwZlW5fgFngBMqmMnVcHqwwORePA5Siwsx9rrHCYBnr9ETuviiYvo8ZuLHGsP3664TNGSqNBlGtitGOcNfaiYMVyuqiskTcZSfVKMbksnIlLFbioFz/KT9R55RmZ1m88ASj3V0O37iHyhWuZqZIteTGlYEDjtcAlaMVrJyc41e+8RyLjSraGFStAlGIGY3Ih7KaUUpTqVQYjUeUNcyUAz4xO+Ktwx6vv/QaTzx7kVb7kItXTvBoewebZ7Q62/zw+9/hV/7OV0jHA8ajIft3t6itzqEImJ9fYmllhvzNEYNBj+1Hj0iShFq9Rrlc5dixDRbmZnjx+y8yGvenGJaf3YQRlTRToMNiEBpXHWKNEV0H3nFYg2dCAO9ITMGWOGD+IRLhPrYJrFT0BwM2H+xx7vw5rr13nYsXztNsNmjUmmymmxgjHai7vR79XgsdBugg4vr1e3zq+aep1eoIcyM3omiHhK1RCpmIlXZCa+eRgzvOImUFE8Gf0LFKKRrNWS5feYZLWU6a58TxmHg8YhwPGY9HHLYOSTttgjBkpjlHkuYMxmMebt3j8GCXmZkZdKAZ9NuMk5h6WC24xuJKWEuSZOggI8syDg/3ODjcpz8YkMQxWZZRqzU4cfw8zZk5cEyZtXbSjyrPsOiCgen1OuzubXL+9AnOnjjmmB1THLM1AvBMUV3mrqGxhXC/eA+uHYfJyXLjvL206HDc6fo4ETcYA6+/LivURkMmdF9uqrVMItpNVtOMjddbwEQU6cOnd1v1ICd3Rmqzs3DhCRGBvnEPcn/CPMujjq5eC/DjgM3JWfjGc9CsyetcrGE0kkk3d5NkuewcZpWIi+dGcNiHl16FZy9Kifjlk/BoR/atswPf+w58+SsymY8GcHcLVudkH+aXYGUG3hzKBLi9Lem8el0A0rENmJ+B778I4/5fP+EUAsZJrJF53nnxeMO4qVgzKZ55nC3xv/76WDN52l3HwQAe7MH5c/Dedbh4AZoNqDUh3ZR9Scci4O45kBhEcOMefPppSQEWOhB/rRwro3BswzSIcztg9OTvx2ONH1vNWbj8CecGnQmLNh5B7ByAWwdS3RaGwrolF+TxzXvC3MzMCBjqt6XKKaxOxm5xGuwk7ZVl0NoXMDMYyPXNMgFPx8+LiWAxTu1EoJyncuyegel1pAnp6Q04ccyBGZ+Gs6LfsTmT6jJ/TixF8PDvkVUlRTWVizX8J8aajwS4wVri1ojNV35Mc2mZcqNBeWkdG0pKKgxDoiBCBy7P6SheYXdktjSe1rWIC6y1WCc+UoimIc8zyuUq4dIK8xefIN7dY/TQ2Zv7SQNZiYYBaKflsUC1HnH6yjrPfP4KczMVZ8lgUfEYnQZoNLZSIx/IakZhiaIQ8pxKFLBQT5jvvsPe9uc48WiL02cvcP/hHZaXm7RbHXQYsfnwBq9erfP0U1dIkiHj/sClK3KajVlWlhd44fPPsrW1Rbu9z+LyOpeeuMyVG09y7/5NqtUSC8sL7B92f+6plh5YAgp9x2sfw5VbpRuHQLQKQBsRv1tbaJB8R/bp7KfEr79+5BVMiYVQi1x789E+v/Kl57h18xa3bt/k/PkL3LpzmzNnT3P3zl3QOePxkL39HZaWThKPYXf/gJ3tPc6cqYHyLiwSLKzTlFifv8f1fZrilqx3EvXByvtA4ES3WlOr1ZmbXaBerRHoQNIzuZRVJ3FMp9clSzOiSHRQ5XKJg8MW9+/fI0tTZhozRKUSxmbSJyovu3gt5pRaiVg3TUYEYYBRAXv7e1x9/WV6nR4q1IXm9e1332J1ZYOZmXnCUNJrWZZSKlWksacDbOL7k6NVSJ5lJEkq3jbg2ihItZSdAqZKTfk75V5ULmxelufSVDXPXAxyTUcd26cKyf3HZLMWWiN4+cdS6dFoiDFZ6Pw2wlAqPx6LNcWq3AJTsQYXa4qSV5AJIM+kMmlpFS49Abt7MBVrJhO1dTpTS+FxUwvhyjp8/grMVinSWfEI0lDeX3GVTbn73jCSySkKoJ5A9x3Y/py0GDh7AR7eEcDS6shrN2/AK3V4+gokA/GCyTOZ/BqzsLwAn/8UbG5KxczSGjxxGW4+BfduiK5jeQF+QawBJqDQd7wuDt8BO7/acbGmOCfgV2E/O6Gpqdf84os9dZ0cU7K1D7/yPNy8BbdvwoULcOs2nD0Nd+5KmnA8hP1tWDoFYyRttb0HLtb45Rk+zYL/p7uuRwCrz634Yzkaa8DtW60OswuSbvLprTyXsZQkAiLSXFKetYboaFoteHBXWJvGjLCF1qWcTFn2ofC4ccxNMpp0Hd/bg9dflvLvYAqAvfMmLG/I/oShHFyaisYm8PvufptcPjvNpGx8egHgq7GmgemkUkfAvnXXyTJhAXNxbZ+Y//n77nGd2y/ePhrgBjBWM3jUYeuVl6jPzLOgNcHcIioIMcoU3bZ9INZWek5Zo1BKbhKDdPL2pcrGdTxGKVeSa9FBiC1rGhsbLD/zDLvDV0gOE/GrQZgbq2QyCJTCqpyl9Saf/fVnOHnxFNrIykrpiDxOMeMhyjnXaqWhXidrdbDWsLi6yt7DR6ysnOBwNGbN7nC484CtzTInP7lEVK/xxmtvMx52qTXnWDu5zsxine2DNqvzc3TbB8SDIcMkJogC1tfXOXPmBNVamTRJmZ+bZWZ2hlIppFIu0+31SNMxk9YCRzc5JjdEXCmwNaCsJnMCUUn9ycSXmxxp8ghh4NNXromm9czW9BeoDxV0PECKSpr6TJV4PCaKZjl56ji7W7uUy2WUspw+dZpWq8VwNCDPDQf7e2ysnaenNMpo3nv3OqdOnUQr8YqxxaThBcZe7OrMoazopyZCY/9vf3Z8cLJoZQnD0LXMycUUMgipUEJpTV7PqVQraB1SLlXkPreWg8N99g92CQNZ+QdukkzTVJgPI5VQUVhycVeR5xIsdRQShWVOnTjL8ieWqDVrSOPSnEq5yqmTF9k4eZ5yuUKWJSRJTKlUo1QuobAYK6kOYzI6nRbt/QfCxuQytoVZzoEQ69JOygv7MHJPeZG2df41FklT5VNmiXYy31prxKX447RZDY868MqPoTkvY2Nu0bVh8OkmPRnP1iF/o+R5H6y9WNWCZ/wKD5HcyueVtTAdzzwDw1fg0NsD4z7X/a0UkMF6A77xSbh4ygGeXCpc4lQm3ZpvFSGxhlZHJpTVFXjwCFZOiDDW7sDOA9gqwbNL8trX3oZhR475xBos1aWX1PycCI4HQ1n1R6E4+p45IaXkcSKvmZ2FcihMUb/nKnF+AYNS6JDcpG4A9KRZZgFS7GSS9EHKMx/Gv+YDPvtDpygUlDQ0K8KGRDNw6gRsbUuqR1tpndFqCYuV59KWYv2CAwUa3rkmFUvKg9BJrClEwY/FmqMtOPy/3f5MxRqUFRChAXLngB2CKoGqy7mpVuSxUmVy3g72xeQx0DKOPCBPMyfOduM4LE+ApYs1RKGwlMdPwyeWoVml6PxeqsGpi3DyvFzrzHUNL1UFQGEpqsJMJtqt/QeO4fFjGwf4Q4q001SskUpBNy6sZVIq7u6zQkTM1OdNpYg/xPaRADcWyGyIyg3DOw/Yfu0lbBgwf/4yujmLyo3r9aNcgz9dBFoFWEfPiiZNufJY68whQ7TWZGla6CYsUJqZZfHCZfJem/1X3saOAYwkobRClRTVAE48eYJnvvgkc3NNlMogCDBJisrGBGEFW2uS9bsE5ZJUeWUS9GySUa3XiUoRKog4dewM7fFNlg6u8fDBOvdv3uKJTz3Hr//Wt7h9+z5Kl7ny1BU63R53718jzc5yYmWZbmuPPE7Zu/eAIFAsLi9z7NgyrcM+WZrw6tWXuHXnHvVKmcPD2+zuto8yoMJtOfA1+XduLSEyYWUmI8tktaGmhMaipXBMjppoK2Tis0x3Qv9lxMQAs/MNFpZqnNg4w727uySJ4uLFCxzs7NJudVhZWSW3hstPXOGtt94kjELiUUwYgrIGHUTs7OyTpxk6Co5cW2tdesWL2LQVwzzPUFgBrSL6c4yHmjQANSoHNFpLS4RxPCJJYlAQOt8XDORZBoFFSq1DBoMRW1sP6PfazM7MkqYJpVJUNMVMs1SYMddmQ1kBjqNxTDweMjszSzmKWF1Z5cypMywuLmLyjDTLUTrg5ImznDx1jlqjSZqmjMYjorBEqVTC5Lk0N82spCurFUISyjp2qTjZZ+uYB+sDjPJmlYEr5HALBTP58Q0/fbWceAU5lyn1MauWArChBOE7D+H1HwvbceGyMBa5ZxkcgPD0uh/ePhUkA27C3ABFz6DElYX7yX1mVj6/14ZX3hY2wK/8tYJIQRW4chy++KSkfJBYQ5JCNoawIumTflfKfYNAtAlKCdtSb7jHQzh2BsY34eB9eLAON27C88/Db/8m3L4vk+bTT0oF0YPrkJ4Rd+LWnoCoew8EYCwvw7FlOOgLkHntJbh1VwTIh7fFQfnIba8mv9TUv/3kbq1Mhtm0NsVPYn7SmwY9TEAOanLOf1mN11wdlmuwcQbu7kGs4OJ5EXu32lLybnN44gq89aYwW+PY9dQykpra2RfQEHndzfSxmYlgVnugNg2Mj8aaSUm8ew49eV/szPOUG09B4HQoEmtwsYbBWBqr9tqS0kpTKLnmmFk6ceE2Vpgfz7SMYwHJM7PCAq2uCbBbWMCZcckYPnEGTp2TyqnUAeuwLODGMyyZleeqVSABHU8ASEFe5TAVa4rBoWDiN/XYjx8PXi/kKxOVB5AfbvtIgBsDpFZT0QaVpHSuXScvlaBUoXnyNCjpy6MDKbM1JpOKJuW0N1pW6cpZwwdBJBOPEtGmz6fIhGdIsxhdCmiuH8M+9UnSdovuuw8hF4rdGJhZafDUF5/g+OkNaYybppBYVJYTqBAdlbBpjC5XUc0meaeNiiJ0FBFUK2TJmMBaFlaW2L59l9VTJ7iU5uwf3OLh/Xc4uD3HvcpbDMY9nvnkFXq9lFF/yPbmA9rdDt1um2rlS6wurHGw/4h4lPLo5j3yLObY8VPMzFbotvd5/8YNbt28xmjQZzBskyYJ5ZIiTibnVzlIo5UiUAJIQq1ddaOs0AMNIqg24mKrJukLz9j4CqzJJjd0oV2B4qb+ReHn3LnT/JN/8nu88ebrgCYqtRiOYs6cXmJuYY5Op8Xps2fo9Xt84vIzPHzwAKOk23alOullc7jfYtDrMLe4PLVS8s0PJJDkrhOtBnIXdCYO3iIs1oXNuxNhuxJxkWLI600uvWYyG6O0dp40pkiB6iBid/cRm5t3pCGqNSRJTBRFjMcj4jgpQKKYLE66cXd7Xe4/vMvpE6do1OskSUyajImCgFz7swxxMiT3lurWEI/HjMyQgJBxPGI4HjLs9+n12/R7XWolqC3OgXVOTjYTRssatJJKK2/Cp5SAPo0mV3Kf+C7i0kgTBwoVWEXuXY6NX7l+jDbrJpMkhWs3ZDVcqsDJ0/K4cukpiwRgPRWYtVule2v4wKWDvGizGEouEGex9HlaPwZPfVLKtV2scSsGadfwxSfgzHF5v4s1ZDI+iUoCLspVaDbFnC8MZaKpVsQDxxpYWYTbd4WVSHPYvwX334E7c1B7G0Zd+OQV6KYwGMHWA/msTguqX4KFNdh/BKMUbt6TfT9+SnpLtQ/g5k24eU2Eq4OOW80r6VVVbA6w+AlccbQU3Bp3jtx59PetT18UjM3jEWQKIBVf9SGAzpmT8F/8Y3jzdTmXpZZM8KeXpEKs3YZzZ0SIe+WT8OCBAA6bw1Ss4aAlqaHpWFOwdg60+K7XPl1VPA8+1jAVa3Cxpjgn3tQu932tYnm9cWPJA+kggr1HsHlH3o9xjFskeqw4mYBEzGS/lJLjfHgHTpwSQJzEMn7CiCPl9snItW9w120cgxkJsIrHIkAe9KDfkQqzyMLiLEWllM0oxMg+lVfoH9yxoieAZbqLOEzA0LTL8S8Zaz4S4EYqkkATEGIwvSH7b7yBrjYhjCgtLaOQVbMxOXmeEyCdm3NrjoxvHbh+PQVAFL8Wg7R4SNMUkxvCoERUqzJ74jTZM8+Tt7sMH7apNyOefP48T3zyLLVKmdDmcu/loKwlLAtN6Kv58uEQXamgaw3yYR8VRJhRTBCEWJNRrtZo1CokoyGnTp4kznLu/fg2b722wub9a3z2N36Np554ku//xXcZqYDBsI+ylkazxs2bb9F45nOsHTvJztYDRsOYnZvbKEJWj61jbczSwgJf+NyX0GHAv/+Tf0e13qdajWgfjhmPM7GZcOk5z7RoLSmJolkk1pXbK8gzN+lplDIFUP5gZnja3xl8YPtF4WZ2dobf+we/S7VcZaY5x95+i0ZjgV63S6CPcez4MXY3D6mWqjxoPWB2ZoaTx0+yd7hDGAbUGzW8k3XcH9B+6Ts0P/erhAtr4l/jSr5l4ZAT6NB1gXfl/C54Ki8CdS0oZLzITaiskUlca8cKWpS7ngpF0S5EKWxmiI1hnBge3L9Np31AtVKRUmky4mTMaDxifmGFmdl5V0EZoXVY6G/yPKHTOWQwv0ytUmM4HNHudFhcHApAy1OiKCQe9em1D8mzlFb7kBs3rtPrdkmzMaPRkF6vTbfXZjDoo5Th+WeeY21pXg7Orai8Nse6dIDcJl6gnElDzkx+e42Ndy02CMCUsWAdkyzX4mOzFQHcBcneEN54HaoNCfBLy+5p5+Ka57JaDnyZ79Rn+dSVnzgUboVuZGJIU1znValsOXEanvm0lG0/bEEjgufPw7PnRENRVKUggbxUl8DjK4eHQ2mRUG/KxBKWpJVCEAoIq9ZEdDwawsmTAo5+fBteW4H71+A3fg2uPA1//h15z6Avx9Oswc2fwjOfh2MnBfQMY7i5DYRwbF0m2oV5+NwXBVj9yb+Dek8AwGEMY2e+5id9P4n5VEvRwNFOmLE8k38XXc79NfqA6+aZkskDP+eFU9tME/7hPxR9UnNOXIfrC9Dtgj4Gx4/B5qGAxgcP5PUnTopANwyl+syzTf0hvPQd+PyvwvzaBJQoP4XmFO0oPCtXsA/e2M8zEEwmfC9G1i5dp+zkerpYg4s1RaPXxMD929A5cGkjiTUkToS8sAKz87IbOqJobqo1mERMGueWXXn4SADu4pLsU5460XpfhOhZJr9vXodOB/JYUne9toC9fk+u3Seeg8dijYwBXwbvr5U7J9PuyT5lWWh03Pks7jd3T+CuxYfcPhrgBohkzSgdkLOA8UGPB6+8gqpWWb7yNLpRx8FI8lwMx1TJA0tnRaZ10YYB63pO4f+N9O6Jx8JKKIMKNKVmnbnTZ4kPdrCjl3nm0+d4+rlLhDZH++BGCZsk6FoVVS1h4wSbpigCyFLyfp+gVgcTkHTbROU6dmzJxiOCUFGfn6f1cJPx3iHHF2b51SfX+YOfvsVu+EnefvkNTJ5y995NKvs7zC+uE8yVpc2BDrh9520+/dwXuXDxMrduvk9/OOThtTvE4zEbp05Rr5dpNs9x/NQZAq344z/5tzSaDUpRi0ebLbLMHIm9oXaNNrX2dAaBVk7gb9w9OTFoA8/uHA0kauoPPQVt5LYWQ8THt3K5zN/7u7+J0oafvv1TVpdXabVHrCwv8WjrEajjnD59mr1HByilSbOENEs5e+4s/UGXUqlMGASuLxOYPKd/510S24HLLxCcvoKKyvJl7iYQjYmeHBNOHK3DIg0lDumyKlK+zYcbU8pVPlhjJufEgm/cirVkac7h/iFbW/cxeUZuckxiyfOEVruNDgLWVo+zvHwMpe1RalXJcSRxQqfbIgxDNrc26Q+6JEmC1prl5SVOHtugUS2RjA8Zjw64fusmP3n5J3TbbWwgwmJlYBzHpFlKOYrkPClL0fEbYS/FtNLFESNaNYVof6xRIokwVrrK5wZUgO+ELkydME+y0PJVVR+nTSMaAIk1HPTglZeFBbnyCZiKNSJutFOMjBvXvstzsTrXiN7CvTXLZYWrrDABgRbX4DNn4PBJGP0Enj8Lzz8xYXlyV2aeJAKGaiVZhaepfHaWQr8v4lMbSM+och3GVia1UIlHyYNNCA5hYRaeXIef/hTCZ+Enr8tx37sJ+zuwuA7z5QkrcOdteP6LcPGyeAENh3DtjlTlnDol+pvT5yWNESj4o38r5elRS4wCM68f8qdZO5HfJNa43PhkUi/YmqlV1M9jY1Txn6MPftDryyX4u78JoZVU08oqtEfCbm1KrOHMaXh0INcuTeT8njsrqb+SS/3lbuLNc7j9Lpg2XPkcnL4iXkkwmXBtRtFWYzqtpn1KygNgn8p0k36R1lQT1mpah1Kk7xybt9+Crfuyv1EoLJ9JRTMUBLB6HFaOCQs57a+DleNIEqkGK0WwtSl2AEkqY3RpCY4dEz+l8SGMDuD2LXj5JUnh6dTZJyipsEpTMRM03s7ATF0PM2FflJ3oi6xy+h7lzq1l4m0TUHRC90DJdwf3DNaH3D4S4EYruS8NiiyX1ElmNONHLXbfeJWoWqFy4iS2pLE6kPJenRPaEFWo1+XE6aLjsVudB65ztwrIs4Q4HhFF0pBTKdBhSHlhnsVLl1mqZjxxdg49HJCOY8JamahexaQimkxbXbCKsFaDLMHmFmtzTCw5zaBRId3tk+kxOggJyiXy8YhSpYYONGEUoYdDPnFihdzC79++xfbsczxxbpHjxza4++A+g0GPhaVVVtZPMk5j4nTI1Tde5IXnvsAnnv4Mb73zCoedNg+u3WbYH7J++gRRmHGwu8PnPv8V9va2eOXqSzRnZkiTlP3dnsQuJd42YRg4d2IrFTWBkdQyztRNyT2RuqoaMXH72eChpldSU4soR5J+4Lrq+LFVFBmvvvoqQVhme3ufMGzglfXG5jRmZ6jWK0TlgCBQxPGYU6dPcffeTcJAk8Tiy2KMlHgnSYo93Cb5ybexD96n8vSvoOYXsTrEIsZ8sovO5JFARMQWCBzAcZobCSDK6W+8d4x1++ZvXJ+uMU54rRgNB2xu3aHTPSCKIvI8xeSWJBmTpjkmSdnf3+X48R7lapU8l+qp0WhIlmWM44T9gxadTo9a9Q77B21A8e677xNGAd/41S9z6dQZmvU6VkEap5hUdDWVaIWwFFCKQtI8ZzgcksQJInq3AnDkguEby3qQZsG1cpAJWv5tpDrKgTlfWYdPTVopDReQ6Cezxyecj/DmSAVQUq2hFBgNj9rwxqvi/XLypAhQvTOrduzNdKzxvXA89e/TVL4hYpaIfiKKKDxNghDmF+DSZaikcGZOWJbRWIBDreoAghanYavEcyZLnAg3F7CDhnoVdvugx064XBZdRKUOoZbvHQ7hxIrs8u2bMPM8nF+Qbs4P7gn7s7QK6ycl7ZUO4fUX4bkvwNOfgXdekVX9tdvCXJw+AWEGuzvwua/A7hZcfUnKkJMUdnuTm1+qECjK7FUomhF//gqXXii8To5MjNPX7INjzS/cjq3KZHv1qmhFdvYhqDOp4sllv+sVKZ8PlQDE06fFb0ZriL0vi7u+aQqtHfjJt+HB+/D0r0jZvA6Y0GtuJz174cFvOCUEn4o18pj3jnHnZSrWTHoxWfncwQAe3YHOvlzjPJWxkcSSioxTERkf74kWJs/l2o6GrsQ8kRRbpweVu3DYkv14933RE/3ql+HUaWGtFBC76qtKRTRYpVAAVZ7L+IoTCifv3AN/f/w8BlynSsKBiROxOz41NQb8j//M/4RY85EAN36zWBF4K6n30cYyuveAg5mfUleG0voKYb2BNUpWjpRQGHSgnaW8sDWSbpEVk0IqrVCqaE1gXNmbtTlKa8qRZmWlzNrsBqU8JRuOMKECrTCZpCSCckTaGxEftIQ5rFVRWYq2Fptk5OMRKtCE9RrJoE8URphxIs0/LcxtHGewd0AQBWSDLs+cWGY33uIvN6/RW/sMf//3fo9/9d/9C7q9LuN+lwd33qfanKXSmGEw6PLiy9/lmcvP8sILf4fXXvsxm9tbbN6+x6DXY+PMSeIkpVyp8Rvf/B12dx9x++4NmvMzWAzd1pg8M0ShphRpQItviRW6U2nD3OIs1UqDNI3RNuTgoE2703fX5YM3L+B2yws37j54JaWAdnufV66+TLlcRakyMzMLrK+d4d69LZpzDTHhVJpGo04pKhOGJfIsY2V5jaWFRZIsZTgculJvcc19lORcSBMio+DBNfo799Abl6g88Rn0wjLKdUkvhLAKxFlUJhyrBfx6lkqBmAyCiJCNkfYb1hbMKIg2xVhpgnnY2mN79yF5nhFFIaPRmPFoRKlUZePYedrtQ+7cvUW5XGVmZoFu54BO55DcCeqMSRmNUg5HA5TqFKev1x9TLkcMBkO38BM37kBpKtUKKyvL5LkhDMWVKYkToqhEPI7JTYbSDtx5LZLT3vhzoVw5rnHl/7lxImwXR7UKyKzkwi0UoNIjIYXX6EyVQX9sNusvtvxtrAhpm2+CNrC+IpoE79NBCTCyuvUdlnFAxsUaMJNUVW5kAvCVP7hqoEjBchlmNmRiGjrGRaupCqtIWiActORratVJJ/Mkk0k40AJ8Bv2JANav/DeOS/lyFMiq/MQyxFuweQ3WPgP/6PfgX/w/RSvR78Kd90WU2piR17/8Xbj8LLzwd+DVH8POFty+JwLksycFyFRq8M3fgd1tuHNdmlFioDUWgBZp+fGeKC7WoI0wStWGK1kOpGKrO/jFl8sDJj84f0GsAUQjdPUnUuGjy1IhtnEO7m3CfANXbSIsXVSWFF+WSXPQhSUHCEZT4MII2EkTGRP3r8HOPdi4BE98RlJBeoq1KUTDegKKta+kmmIf/P4XoGvqMc9eoIUVMkZE37sPBahEoQDj0UiO89h5SSHdvSWptpkF6B7IY4V4N4Wh60WlOpPg3h8LcBkMJyAMB9grVVhZljEdunRTnIgWbBw7XZrXornr4w0pC9CiJsyLB3Ee1BZsVv6z58Ovuvx5+CVizUcE3Chyq1x7QzlwaXkANs7ovn+dcWCZD5+lUa6SI8Jhf+JEO+X0EgFiTOdLxnUwYUItGJOjrBNP5YbQZqz0bjEb7xMkMVZHhNUq5BE2zTHkBOUAVS4TNevEB/skh5pKWEKFCl0pQ26xozEmTggqFeLdXShHVGbniA9b2DCn1Ghgspze/iG6VMOOB3zl4gadN2/zvR9+jzPnlrn05BV++P3vYw2M4hh29lk/dYra7DztziHf/fFfsre/zde+/Gu8+9ZrvP3em+w9eMTh7j4b506g0GycvMA3v/l7/Kt/9X9nMOoyOz/H3DzEg5z2YRvvhQKgQkt9psrS0goLC8sErlVBuVxmbneHO7dvs78//Bl0o6BgvgLEAnGyIvbj/GhqygKd7gil9zmxcRICy9NPPcvOdp+ZZkPsFKz0Xmo0aoSBIgwCcptRr9VoNpv0h0OGg1jAijFkacpDXecgjlmrgcotatiFG68x3LqJOvMJak9/EVuuuAo7UEzSMPjx5hccwu+4dJN/hEk6ylhsnmOs87G2lvF4yM7uNt1OhyCMiEdDdvd26PY6nDl1hWqlwdZok5ev/oBXrv6ESqVOf9hjeXGZTz79HJVKnUq5Jm0v+NlYLV29JRdtTF4AyCAIKZUqmDyT+cMYwiAgCgIolUgyB9DQst8FAydLa2Fg8iKeGuOAv5UKMeXOlEZjlJH3WflEJ9dxi5G8AIYfj20q8BYMgjvpcS4C4xBJ45SrMO2seyQFZd0E6Rgd6yavqQyATIyTWIPNoHcb4j1ZaevIra4jWXWTC4tQLkOzLqW+B9p1HVeiy8mtTGhxIqvpvV2ZlGbnZRUe5lLhkuWwfwjlmugnLm3AG7fhh9+F88vw1JPwve/JcEgk1nDqlHxO5xB+/Jfi9fLlX4O3XpOO2Q8fSYn0uRNyDk5ehG/9HvzL/5uIlefnYA4Y5gJYlJsIQdJDzaqs/gsgkEvPqr0d8Zr5gFgjl2wKzPhf/jy7WPMzN053BGpfhLPWwtOfgu2BmPaFCMAYj1yrAuWqklLRLTUbMFDQjyfMQ5II8xPHUEMm5mEXrr8GWzfhzCfg6S/K8Shd3CsFGPODothNxSQtNXVs/vsKN+B88vh4CHvbIoIOI9n/vW3oduDUFag0YLwFr3wfXn1ZWLxBT/Q0Tz8nz5erFM1MHz/X1k7ScCafsGSBK0F3sQZj5HyFEmukas9djIJ9msQa+dx8Qmx5kz5r3ULBnwunvZqKNcUp9AuIXyLWfCTAjbGQYQn9pGPBOs8OhSYfjGm9dw3VaBI16uhGA6JyEWSVUkXLAG/WVugpHBUv94e0FzAmx+QJKgtZjjdZTNsEVmGMIEM1UyfIcgE345i438ckCUGpRBCVyYcD0l5IaXYGlEJXInQak2cpKi1RnpljdLhHVCoTzTRI+j0UGdWFWfq9Pm+/9ZBnnjmBzjK+8cQGd350gwc3rrG+vkacKQ66PaqBIgxg+8E9jmlNUC2jdYnb92/zB3/yB/zGV3+DhYVFXnzpRfb29rn22nt09rtkaczSyjG++tVf44//+H9CEbC8vMrqk6tcu/Yeu9u76FAxU6/TbM7SaMwRhhFZGkAgk1x/cMAoHks39lCJtsvdCGGkqJQjAUJGXIbTLCXJJI0h8mS5K1xCpLiHpO1DGR2V+PwLXybQFep16A86LC81pYSfFBVAmmYM+n3R2UQldKiJogrdzkDChdXk2Zj2MKUVwlKkCMIQayxhpFCjLvk7LzIcdKh89ptQrrsxoYvVuvsXOD8c5W9EO9GRKMRPSWhzccqU9hFyXN1Ol539bYyxBECn12Fz+z7j0ZjTJ5+k0+1w+85N7ty+TavVldhhLE9euczTVz5FuVylVBYt0Qdu1jrGJMPT2MaVcud5IrHHq57c3JtbqXLKjSlaK4jzjwM1Dqz59JI3brRWAI0AKZcv1xZtFNZKAFJojE2xxoEx9XETFBf/oThh1k/CWkps37smAKFRF5O/qDw1T/mVkuaIs+6RVIT7Dh+88wSyEJItaXBplaTCyKVzd5YLuBnHoqlJEpk0Itc7qBvCnMQaKpGwClkKaUmEsoeutcJMQwSepMKO9Prw1kN45oSUMT9xHH50Ha69L/2oMiVsTKAkq/LgnjBClbIAr/u34U/+B/jqt6Qz9ksvSnuA196D/a6wGCvr8LVfhz/8H2WyW16F1VX5ju0dAWX1OjRnoDEvk7KLNVgLgwPRJgUuNZRPXZ5Iia+ODilKrb1I26dpihn4sZnaIL2YghA+92XQFagDgzYsNZwOJpH9SHM572XXYDIMIKpK13OQa5XF0pspdPsVun2KlAC7d16Uz/7sN6HcmGJtHt83rxuZxJqJjkTBY7EGOwWIuh3RSvlKsm4HHj1wAvInhYm7cxNu35a0pkFee/kJuPIpAV7limsW+3PuDeMAVVG67UC38SVxU6Joy4Rt8RVPZuq6TOupfHqpMG50gMYzOj4YGzV5Dg02lcdQAnw+joJiEJCiwQVS57pKhkaTtXIO3nmP0swczbPnCEsVjJEePTiWBw1ZlmBy301c4WkFpRQ2z7HGoDAom7E83GIu3pbv0SGqFGGxZL2hTJJhCV0pEzYamCwh6w/RJQduOl10WCJsCMWpSxEmzzDxmGq9TmdrmzTLKIdlTJyhoxBlDXPLSyxW7pMPhlCuEBnF//y50/x0fEhSP878bJOZ5gK9w33qNmWUZmzdu0N9bo7GzBzN2VmGgz7/5vf/FZ95/nN842u/xcs/+SHv3HiP2+/fZGdrh0tPP8HG6RP89rd+m62dbZIkZjQeMTM/R71Zp1Qqs752gkq5QRxnDEdj9g/2GYwT0nTMeNxnOOoSj1NyYwsdWKmkmJmrMjMzR70uoktjc7LEMBqPsSanFFXBwv7hIZ3uAOMGdRiEXH7iCX71K7/G2dOniMcBO9sHhFEGZsjMzCJRqClXasw0B8Rxyige06jWEU8ZS7Vco7U3LMqwlcqYnZkhyPfJU0k/oSw2yzBZRhhFBNvX4foy+onPYcpVUNJTq1iFuy7Pyt200jNp6uZUWsCMAqVDTJ4X4ykdjdjZ36HT7aGDgN6wy8HhHoN+n1p1lkplhsGgz8HBIVnu3YFFx3NwsM/29iPyLGE8GvLzasysFSG8pGElUCgHZoTBwlUMitmfcTlrScHKKswUFLE0VM2dg7O8Vhgtm5tJCwu/mrJusaEgCCKMNWR5Kvejkvy5dWDtY7cVi2mJNbhYI3qXHN55Tyzoz54T4CBlhxOWRyMAwzce9GXJCpeW8rS6Y2yGWxA/ku/RoYg5sVKtZa1UVFXKAqayRDQupbI0+ux2JQXQaMg+lEoTi/56Q8zoskzAUOzSFdbAyhKU70uqoVKRWPjcGYgPoXZSmiw2F8SC36YCgO7egbk5mJkX077hAH7/X8Lzn4Ov/Rb85Idw4z14/yZs7cDTT4gW5zd/G7YfCeAZjyRN1azJvq6ekAk/ziZd2ceJtDoY9wUcjJ1w22OBkoK5qvix1BvyoM2lUmg0knMbuT5GBy1Ja/lxGASia/rK10U0PA6kQWiUQz6EmeMCYCpVaA6dQeJYUmW5lZ9KDfaGUyLWVPYl2xOXaBdryDJ37iPYvgHXr8Llz0maqAA4R2NNARA+INYUY0g7XQsOZIxHwtJ1uq5jeRcOdwWUVWbkZ9CXjudFvy/k8w4P5NrkiQChnys0QIC2B+3TVU/GOqLJTJiY4m8HXoy/nxx4MZ6Z8e9zjFZxTn2KV012SSGl7tZQtHpwsaYAax9y+0iAG4/1NNYBG4W1gUtNiTmfJmSwOWDvnTfQjSphpYKKQoJAo/ElzQqTpWTJWAKz9UFLPHCUq5rBwHzaY5F9SmFAUCpDoEh6Y0CTp5mkJ4wiy1OiuiJUAVk5IjcJSgWo1JIctNFBiI4idKmMjsfkSYpNNDOLi3T39plfCSjPzmKzlLTbJqzVOPfcFYbtQ9658ZDNNnz1hZNc0hHvxEOalQrz65eYeTqg8/or9Ic99rRi0O3QbR+idUCpWqU5v8K3/+KPefvYaX79y7/B6upxfvjjv2Jvf4+ffP+Q1ZvHuPT0k1y68BSNeoMsH/PqGz9hHMf82td/my998WuUynWGox6vvXaVH3zvL7l2/QZZaul0BrQ7XdI4xTdIVAqiKKIU1alUGtSqM0SRJs0T8txSa6RoramW65TLJZpzNW7evE23m4AVh+NSWEIZONhrkeYlur0OeZ5w/vxJwkAThAHVSpVmY5b79x6QJQn12gzdnvRvigeGJEnIM0sax6SjLkFWoxEFrgdZhFGyisizDB0oImVRd16FuA9PfQVbnwVXwu5LVmWEyE2jtOi3lPa6LFddRESuUrzjtTE53V6Hnd0dVy6e0++0GQ4HlEo1Tpw4y2xzjlt3b9If9LAmn8Rerdg/OOCvvv8XLC8t8vDhA4bDmGCqiemR+8OaYrHq52RlJd2UGynpt7ktKpdyO+kNJSxlLgyLT1VZHNCyGJu6O0+5+8PdkV6DZHHAS9pvBEFIrgw6s65X4MeqJ/jU5lePCqzTzfiJhBA2B/DOG9CoCjCIQmE18CXNyjm3jt1K1MWawtfDU/RA2gf2HY0vsQYXa0hdKWyuJJjXFahAdDcmkb9TK2meIJRJtFRyZm8pJBqWFsVKfyWA2RkBPt22aHKevyKai+sPoQ28cBJ0CRIHeNYuwdMBvPYKjHoCnrodeY8OJG02vwJ/8cdw7DR8+Zuwdhx+9B3Y34PvH8LNY/CJJ+HS09IaIB/D6z8R8PX134IvfV3Azagn3/O978C164IlOwOZsGPvqSKnURpG1qHchOqM6HdyJ6xu1GU/y3VhW+brcOM2uFhDoF1Xaw17LchLUrZsEjh/Up4PAwEwjVm4/1DYsNqM+LYEAQxcKiqzkrYbdyGriY5Ja9k/F2vIvBeSgalYQ32WQkxeGNi5sQeuNDt3Ohx3zykFRKCcRkkpeU2vI/omF2vodAR4lqpiuNeckyq4fs/pa9xXaQX7B/D9v4DlJXh4X8r8jzQxndoKLYz7t2clPVBRAUX/p4KF8ayNqy5WVs6bP9Si+suBFe9x81isOZLKU0wcwzPrWJ1fLtJ8JMANeJZLYVwe0iJCXI1CW6e5y0O6t/cpLVyjXJ8jiEqYIEITuHycJgeSNCZQoaPyZXLSSpM59N8kZqO/R6mk0KGUtdkkIwgjVBiiA0VQrWHzjHDkdBhBSFCJMEmCDSwkGTZLSFoR5cUFlIag2sSaPtYaKrMz7D64Sz1tUq3VMeMcpRVJq0NlfoFOq8OtB4ZhZmnt7bO2foy7b77IxfU5Xrpxk08+83nO/Oqv0Xn9x8zs7XDdGAhC8iwnHgzI0k0WV4/T6h3w+3/4b3jumc/yK7/6G7z9zuvcunmdB3fusbe9w6nzFzl/+TJnzp/nH/79/5Jao8GTTz5DqVJnPE5Jc8szn3yBM2cucevWNX7wve/wox99l4XZJa5ceYrReMTDhw8YDPrUahVKpSphWMPYiDgxoEpShaUrUmIehFgbMD+3wvLSgF7vIdZa0jSj02nzaHMTsxYyGLXZ391hYaFGs7lAmo5Jk5w0S8jSnEebj6iEZcIg5MHDB7QPB6SxIssz8jSj3z8kT/uYJEaH0unap8XyXJqchoE4AAcmRe3dJn4zhSu/gp5bQelIUpYKN9Zc+wZlnN5EUjQe+Bibu5WH0KJ5mrGzt0WrfYhWik6/RbvTBqNo1GZYWlqm3qhiVUa5XCYqldE6plops7K0Rqff5ubtu9y8dZfcGOq1MqdOHGf/8JCd3VZxX1gseWaxuaSGjJJzkGWpq+SS+BlEIVkuJn0acfFO84wscyXbLoD4vmEStMT91DhxvcUzncIMZU57A5rcpqACtLtDwyAkzw3W+SV97LaC+i5OBkXAVUAewu19WLgG9TmZLIMIpmINIJOidr4kPpVXeJjkQAz9PdEjhxX53jSTyTGMBOhUawJIRm7VG2gpxU0SqTBKMmFzWhEsLkigrzbB9GVimJmB+3chnZEy8XEuk9dhR6qz2h14YAQk7e5JO4g3fgjrc3DjBnzyC/CVX4PXfuzSHhJryHKpzkk3BdD0DuAP/zU88wL86jfhndfF1O/OPUlBXbgkKZBz5+F3/kthXJ56RrQfY1fV88nPwZkn4Nb78N3vwI8OYGYRnnxKGJmHD8QksFoVfUhYBRsJY6NcU9OgIoAgCARUzq7A0gB6D2USTTMxJtzchNWTMG6LG/FCTUS26RiS3KX2jJSGBxW5Hg8fwuFAXIzzTD6r1xKAmiQQmglj4Rk6hQhtlRLdzt5teDODJ38FZpclxTdt8OdTasqlpwrNiZqMm6lYQ5bB3pYATqWkOWanJWxGbUa6gDeqiGarLAyejuXvpTV5/e274i5tjDhMn9iQ0vGpWDNhYRwAUUrGQObFyEiVYBQ62wIH4pV2zsi+6stMPu+xWONoYnnQxRpgSnvjUlHeSA5kLOaGiV/Sh9s+MuBGAN503x9dpLcDpSgrRaw045Gm9d5dKnNLhPUaUbmCURpLRhCEkAUYlaECcWS1SjqL60ChM4iwHBvuYvMOqrqAyTNsmkirCx2QDYboKIA8E0PAWpV8PIReDEoTVevYmZx4/xCtQrJuFxWFRM0aSmuCaoU8SVFYarOzdHb3qJ6qEzbr5PuiLM8GffY2W5g44thMTLNew3YP+eLZFWZ6I27vGN5+8yWef+Gr1J/5EuM3f8j63iMeZLmssbWkSg53Nqk3Z1leWeONt14hyQxPP/UCzzy/yq3rb7J/sMu1t99g6949dp66wpe+8mU2jm/Q77ZRwxFKh+TGkOUZUanEk089x8ryBufPXaDT6VOr1hgM+jz7yc+ysLREEFo2H95nc+sRcZzQ6rQZ9gfE8QilDFFYBqUJoxKVcknAD6C1TJFxMuLh5kMWFjcYDDrML4Qsr9TwaN3YnOFgSOuwy8PNB5w/cwGrNHs7+6RjSLMMk+ekaULn4AELS2UaKqOkhZHTYYjNY6zJ0da5Vxtx49WA3rpO3t4lvPQ57OlPYEtlClM6X2I4RedaI5N+Qe/aTECAtXS7bbZ3pDM71tBq7TMajahWGiwsLnP61DnW146hooDZ2RU2t+5x8+a75Jnh5MY5Ov0Wr7/5Mi3XeHDj2BovPPdZbt69zf7By+RT/aDSNCU3mZSYZ/LdvWGP3BiCQFOtNdFKkxtLEos3jrWKXr9Pu9OiVCkThSWnW5R+YcYHGKWBzOlt/GrLa5CsA0aSg/cNSYuu8G4OVx9HcONXiC7WTCgxNQEoIw3v3YG5JWFBvFiUzE3+AajM2eJnsmLVWsBJ5r5juAdZG5YWXFlu38XwQNJFkZaJIgikKmo8hO5YPqdahxknDFahS0+Fku7R2rkTOzfbuTkBLifrIkbej+VzB33YbEMcwUwsAtruIZxdlZTYjoU3XoIXvgrPfgle/6G4FGcuNaGFIWR7UyqqVtbh7ZcFKD31WXh+Fa69CQe78NbrcPeutHb41S/D8Q1hkIYjBwCN7FOpBE89DyvH4fxFKUuu1mVfn31BmKjACsuw9UiOsd123atHAgrCEoV7c6UkIKW4fgij9vABLBwTNmY+kBYMxXV3wK3Vhc37cOq8XNudPWmPkWXueqVw8AAWS0A6qXYKQzG0m/Zk8d2wAbauSff1i5+D059w3jAGPjDW+L+PxppCz9LtwM4j10bBQntfgGClIZVdp86KA3YUCJjavAs335NruHFOtEBvvjxpcnpsFZ57QTRVBy9T9IMCp2nKJiXm3baIko2RcV2bkWM0VkTtOhAg1O8L4KqUHWuGLAK8c/NUrJkI+mGiOfLnwul9fDrLA0IXaz6+4IZgYrrmTP1E66adRZYiJCA+SNi79h7lxSWqjSa6qshtJoLUwJLlCVaFjno30nZAy2fO5X3C1ia2XsUkMTYNJJWVJYRhRBrHBKEmLJUJq1V0FBJUa1DOsZkFowgqNQg6ZHFMWIpI2x2CUkRQKUkLBsAaRW2mwdajRyRpTJRHAATVKnmSEpUDTq0lNEs51VIZS0Zvf5snF9f4Jxdm+Ocv3ubqD/8Dpy5+Gr1ylmZQYn57k4NkjAoCZut1siyjfbBLu7VPVK5hgoCXXv4zZudWOX7sPPOL62w/ukO3f8hrL7/Irevv8KnnP8unv/B51tY3sEoThGXCcoNKtcygN2Tn0SZaR6ysrNDvD8hNztLKMufOX+DY8ePoIMDkGe3WIbdu3eD6tXe5ffsGeZqR5RndXh9sThKPSdOEeq1COdQMR2PGowH9XhetExbmLOVSGZwORWlFGCriYcb777/LaDTizKkLdLt9Wod9xnEi/ZPShIODTUaDfRYuPcOJyFCJSrKIiscCArKMSqnkYrNMVhqIwoC8s0vw/vcx/QPslS9hyw0ZgMqDF0ktiAuyQVlhcpRL+RhrSJMxO3uP2D88wBpLr9+j0+0AAdVqlUsXL3P69Dlm5xaoNeZYXDjG+XOXOHvqHJtbD6jXGsz1Z2i3dzDxe+gg4PKFC5w4cZKDTgutVdHsGaxoapCqtOF4yEHrkE6nI6Je6ZtBboTNEbAqLt67B/vUalVq9QZzs3NuMRZIX62cgu2y1tVGOdrXWOOIDY21+ZQI2bWnKHbNCqhSU8HxY7O5ah2/+vReHYVbn5LXHKRw7T2pOGk0oapk4tGBTMB5IsDDTKUVtFuB5n1oPRRPmjQWMJSnwsIEkWNmlEx81aoAFxdrcLEGF2uIY9HptDvyu1KSFBXI65p16QCexWAiCai1qgCDkobVBEq5rOpVLgBmcQ0uzMCLt+GH/wEufhpWzwpw2N4UgBAEkgbKcwEwrX3ZJx3Ay38Gc6uwcUE6q2/dgf6B6HKuvQ2ffgG+8HlY33D0Ykkm5GpZNEWPNuU8rKxKV3KTSzXV+QuwcUJSR3kGh4dw6zpcexdu3xA2Jc9EMG1z0cskibgzh9qVRw9EYKtTmLMT3ZSFwlhtmMP77wr4OnUBegM47MmknRvRDx1uwmAPLj0DJSMTt0JSbsbpbUolR7yoCXAJQ2jvwvvfl3Ny5UuSmoMi1hzx9vH+Nh4k+X8nsbRaODiQ/e/3xHvIOs3Qxctw+hzML0JjTsDcuYtitrh1X9KE/VnZl/hduZ4XLoiXU6/tLAjckD+SGkP0Oe1D+b6pWCPHnVJUPeW5VPbVqsLWzc45QsqxnDmT4/TAxkyBGxdrCjA3/cPUvnkn6w+5fSTAjWvtKF5EBunyjEUrASZgnVZJkG+WKw7u7tNYv8HM4iJohY5Kcj4toCYW8jLBSV+qUmBZ6x+gsphyWMdkRkBolpB1x2S2T56m2NQQVELKs3NEtTJBrYaulMCOyYcj8mFMqd4kVUPyZIy2KWmvj9Kz6Eg5Y0FDuTFDUK4w2Gszt7JKeW6W8cEh1qacubDBifPHaO3sMOh3WFxZYdDvMT7c5YXVNfQzy/z3b24yPnyH5vITqNUrnFvdIH3zVQ4HffbjA3QkzpcmN8S9HpXZWYajIXFyj4f3bzM7t8KxlQ3m5lZotbYZtNt8/y/+nNdefonT589x8cmnOXnmHDMzM0TlCoeHHfb2NlEqIEsF8M3Nz7Nx/DRLS8tUq2JHnoclFpfL1GoNZpqznDv7BPPzC8wvLpFlCXfv3OTB/bscHl5id+cRd+9cJ893KUUhCws1BsNtwiBEUSGMFDqwlMtVsjThnXfe5tadmyw05qnXZrh79wG9bt+ldBP6/Tb7WzdpzlVZm2uyQQuFIc8zAZV5jrK2aOxsc1NURGkN5Bn5qEf48E0SpdBPfhkVll3Fj8aaDOMAjThmm0J3hDPuGw6G7OzuEscxaZpx2N4jzzPmmvOcP3uBC+cuMtNsYk1OEFgajRJhOEearjKOuwwHI6JQMzs7S3OuSRho1tc2aNSbhFE0CS4gccCnjoyR1gy9NqPxUNgWVWY8Gokp4FhMAfNc/GoGgyG7u3usr2zQaMwShs6t24Suk3ouXcANwnJ6xgonNi5WVw78WPBu4FapggEyJufjszmeXFZTFNUsygVZf8w+iOYK7u7D+g1wsaZYmbpYQ+ZSUuBAjzOsGxwK2Ajr4v2ikZVxdwy277o351IRNDvnjPxqAlzsWCbdYSztFtTQ6XtSmdT1rFTq+N5CjRlXVt2ClTUR9B4cSprkwgacOybme4OOAxM9EaSursEzy/DGJhy+A8uXYfUKrG7AT1+VFXl8IMALJZN+tyf7OxpCcg8e3Ia5FVjZEH3OoStX/o9/Bj/5MVw4D08+DWfOStVUpSops90tXBWIAL65eWlRsbQi58FaAVorZZk0Z+bh3GVxYV5cEvBx56ak5A4uwu4juHsD8l0BRvNVGD6S60FFzpe2ku5KE3j3TQFL9TnRx9x5AN2+jIssFsZn8wbMVmCuCbRw1Q1ubEwJ4QImYwAj35NnMOzBwzflnn7yy2Io6GINTjbh8qBM2g/YCRgYDOS6xbGMlfaefG5zHs6eFyAz0xRgEFholCCch3QV4q70EAsDEYfPNSUorm1AfcYZTE7FGnBAxH3/cCTMzXjo0lRlYYzSRB7z7JZBWMjdPRkDjVn5ThdrCpduN1QF2DEBL4/FmgmL4+9FNWGAfolY85EANziVg0WRExSrQ+2Ee1L6GhUrTIsiGUH7xm0W1tcJ61Uq5ZLL/Tv9hJX+PwpNEJYIg5gVNWZm1CFqzriGr8YZ0ck3x8MRoVZkcUw6zLC5xcQVojQjMg10OUJFMWGtIpUzWULSiwl1SLy/CzogaogbsVIQBAGVWoNRd0BjKaakpJRcBYq426a6tELp5Cn2Hzxgf3uXRqPBwcEOw4NdPn/hFBvzDa62Et4d3CJqnGVkVygvHiMb3SaPE6oAgTOUA0adDosbG8RJTD/pce/+DXbu32Z1cYW142dZWtmg39mhP+jx3ltvcOP9d1laXeX0uSc4ceYsKlAoFWONJU0yMBmVcp1yFBJo0ZnkJifLMrqdNg8fPKDXabNx8hRraxuUqzWMhWPHTpB8JiEZJ7zz1lX+9Nt/wKkT68wtLFKr1tEqBBsIw2BSICIIAl6/+javvfYaWWw4fuk8+wc9sjyXFgFZxmjQZ/fOu4T9NkuXnqLe3caGCbluoKyUPZs8QQXS2DQIJW9rjS0M+aIgwGYZKs8xN64ShzUqlz4LWmFM6lIwxulvlCuCyd2kb7C5odfr0u52MHlOt7vPeDSkWm5w5vQZnrz0FCtLK2gt47RaqRKEIXmeEQSgrGE8GqAJqFdrnDlzjplmk6WVBcIoEKf6o9hGUlTWYNFFZVQQhIzjGIUi1wFpmpKlOVkmDs4+f93rD2l3DllYmEcHFbQNkSaarvQd0EphVYDSmbBBvoGmcxS1NhODP3evWozEeJNS+HZ9bDZPibsZqVgdOpEwORBNJhkUjIAbt2B9XViYcmnyej8RZClYLZNxEIvmYdiWRpdA4RuinHZgOJILPY5hkMnXxmUBPKYhguIoFsCjI2GIek7f42KNeLS4lFoQCADoDmEpFtFw5MTL3bYAhpOnpIfS9o5UXh3sCBtz4ZQY27USGNyA5jkwK8ICDG9TdOENHCMFsprf2BBmoduDezfg3m1YXIETZwUctXdkcv/p6/DeO1Iifv4JOH3W7fdYVvAu1lCui2ePxp2HXCbydltSTO22MA5rx4XhssDGSZls4xR++gp8+w/g+LoA0WpdWDUbuEk4ARUJq/Lq6/DaVYiNdAg/6E2qjLJMxLq33xG9zcWnoLsDYQK6MZlkjUvLRCWZzDET4a0xE+bJ5HDjKgQ1eEJiDSZ1TIUDN4XFgGMv5AYT9qnTkX3r7AsjVW6Ii/Clp2F5xV0SJaAxdHoY5xsm1VFamMHT58TDZ2XBOXAzScf6rXBI1hOAFYQCrlByvGkq5fPZNNjQwr51DqUHWVABG8q9Nt0CQilhdHTGpOzbAxf1GIBR7pwi52sKA32Y7SMCbmT1ZFBkNiLAECjRl4DC2IDMepGnW3TZgOFOzMHNG1SXVqk3ZgX4KN8cETCGQGuX5LIs9ncISxGRCskTg7YxhBpDSlSvkccJYRBis5zMZKSDHjZL5fO0IqJOUGmQMyLvJ2ilCVUoq9gkJ9nbQakVgnIFHcjgKFdLHO7tkQ9i8pomrFfJkoDSLGStNuHiIgtra+zcvcegN2SmMUOn2yEKI86srbM4M2Tx5l3+wzt32C+vsHHsKRrVRe4/fI9hv0NkLWgp+7UKWo8eYVRAd5CQ5oaGNvT2t+i3tplfWGZ54yxrKyuMRm0Ggw7bDx+ws7nF1R/9gJmFZY6fPsvy2hqlcoVKLcTkMZv336d9sEmt3qRUrmJR7G7vcHh4wOzcAvVqlXJZctLpeEiaxIxGfbrdFsoO+OQzz9But1GEhKHkTE2eEgZKbCbGKa++fJWrr75OFFT41Cc/zdLCCuPxSFiT3DAa9Nh7eI1sf4uTawvMtQ4Zbz7i3nxEdPYSFR0SRRFKB8JeIpBZea2IRZgXZVEW4sGINI7pvvRtVLlJePIiOPMocbdW0r8MO2ErDJg8Z9DvMx6NieMxvf4QbSNObpzgyYtXWF9bJwoDjDEEgcKiSUcxrcN9th/dZ3PzHlvbW5TCKvValRee/SwnTp5gfm6eJM4IgwDt8/ZuM3mONcJA1utNjh07SzxO2N/fod/rkMRjxvGYLEtJ8xTfyyWKBMikaUaWWVfcIMBH+Way1guooWiEasXKUP7v2i04DRJWBNbKSvf4wq/rY7P5CKLARgg686WvHvA4TVHxlgB2EmkeuLgqq/ySe8lUrClaDWChtyPpI+3EsDZx7q6p6HfiRIBK5CbwQReysnyeVkBdUjiMoJ/Ifiln4Z/kYt6mVp1viZuIKmXY3YXBEtS0ALEkgFlEPLq4BGtrcPee6G0aM6LnCCNYW4eZIdy8C2/fhfIKHHsKaovw4D1hMTzDlTuW69EjmaiGiWOmDOxvQWsbFpZh4yysrgjIG3QEoGxuwYs/lO7ap87CmjuGWggmhnvvw/6msFWVqkyy29tSzjy34NJ2Tv8SDyUdNXJ6DzuATz4jPZAIHeBwDErgruk4hVdehauvgS7DM8/LNR2PKHoeDbvw4Locy+qCgKqtLZiP4OylSSm/CqZWIm6i9hocz0ZYhD0Zx/DSt6HSFPPDaaM6pVyaZioVYxBA0x+4tFssf9tQ2mdcelK8ikKnZfLAcxTLudp6AFt3YXtLRNnVKjz7WekYPzsv4FFrJl3K3dDNMtkXHcg1WD/jWjrsSMVWPJafLJUUq+8bFYXy/jRzKVWYaG0c8Hsc5MBRpgY7YcPM1GPWMVofT3AzWU8Zawm0JVCWUIufiHF9cGwRmOT1aaI4vLnJzMY9GnMLBGEkZd1oDDlKKUItgTtKe5SzMbVajTxOnUZDLk4ex+jIEIYRgQ4xYYg1ZfI0JhuOxDMnCNG6hAojgnKFrD9ARQHlxXnycUySZdj+AB11YEFBOcLmlubcHOVKlQBDno1QpQa6VEIHEkTtOKFUrzO/vsbe/fsEYYVaVKF/eEAQhswtrvClKxdZKN/jj69vc+tuh9X1y1y++Hn2WnfZeniT/ngk9mpKEaYxg8wysJLK66JYDTUNDTO9Q4JrbdJaAzu3SrOxSmITBv0O3U6X/b02N69fY2FxhZn5OdaPn2Zj4wQLi/OkWUa32yJLdzEY0iRF65hW6z7vvn3AzOwcpVKFMNBS1h2EaGOpVutUqzOkiUW5Jo5ZGpOZhFKlwXA44o3Xf8z2zgFnTjzB+spxSqWyM47V5FlCr9eiff997OEeA2Upz89QerjP0BqSWSXeRpEiMTFREDhPKIsKZLIxeYpKLTaXGzfLDQetfUxuyIDhOy8ys3YSGwoYUFZhyUAFrspIxM7WWLI8ZTjo0+v3GAxG5GnG6vIyT196mlPHT1KtlkUdY8EkIw7ah9y6e4f7D+/xaGuTm7fe5eHmA8ax5dyZM3z62Wc5dfw05UqJ3b0dlFLisI2slqWAwbhmn5p6tUm9Nk+S5iRJQru1z3A0oN/rEScJcRIThhHNxgxrKyvUqzXm5xecM7zFr7yNyWSxYIQLlXYSkCvngmwVSoUFMDS+5NtVQuRO/Dhxc/4YbtZK+kA5QKHVVGphEmsASBTc3IJj96QCKYpEK1PoddRkokv7kI0ktRK7kl4Xa4hjiIyrlArF3K9UFk3OcCwTQRAK8xJGMvH3ByI8XpyXSTLLRbMyFWvILczNCsAB+f5S8//L3p/F2ram53nY8zejmf3qd79P31WdKrLYiWoM9bCAyJEdILIQBNGFEQGBgdzaucqVgdwFCWIg8J3uHCJAYDWWbTkSJVJmUS5RolTtaeqc3a+9+jW70f1NLr5/zLnOYVFkMSR1ijyDXHX2Xns2Y44x5ve/4/3e731FD2ITYKsbMdS7cwceP5LprayUxdBaWeS/8jYUj+CDY/j0Gu68B2//abj8BJ5+JCCgZxq6RhayDbpVAuA0sLiAH1yJ5mPnNoxvCcBbXgsTcXopRn/7R9Jmuv8K3H8Iezvy+eaXwioRRDekG7h8DN8+l5ZYnkCd0XK8QhSmppzCMJ3TmHQzoRWgWNXwP/0aHJ/B/XclYDIv0qKpk7/QFTz+vry3irA3hadn8lpTJY/JlIiJjWGTyZJqjaTBR2Gi+tyky7NtqOi3/xncfkiyZE+Lu9+2F4mJvUivtV7AYiHnu3OSWv/u14SxGpRsQFJbwdUlPPoEnnwqYOzj74kou4ni9/PTPw33X5W25+lJuma3tUYu+/R6WstE3nBXWJq2lc9RrWR/2lbOv8lFi3Z4KJN6u7tbg8bNJJSTayP0q7xO9xeJzYwq6dZ8DwK2+wJshNY/Zq35goCb/j47ZUrhsTpilO5J8M0dZ9+480gYLpeey+9/wGz/iGKQWkIbjxJZEFQITJs5k+mILCtQTsz8IqCzAk2G71pMVqA1ZJSYssDXGa5t8E1LN18m+j1ghwPseER9doVBybVpLTqztFdnqNxCHMsipyS8UA9LQl3jmoasGBJjxJZDyaQKMNrdo63WXJ+eMhmOscGxurxAoRgeHPHT77zFnb0Z/+QHj/gHn3wLNbrN/uGbTN+9y8nFx3z09BGrriPdG9IfrTpEzkOk0ZpMKQ5LwzRWLM+fEK6e4csh5eiQ8eEu67bien7O5fk5Z+cnPP70U6bDPSazGdO9CUd377K7u8twNMRkhrIcS2tDGdZrh+taiiJDlRpjtQwzZCVFWVK0DV1b0zUdq2qJbwMnx0+4vpqT2ylfefshWRIGk/QlTdNxdfaM9sVH5OsFj33g7uGUwfWCetGiC5UMNR06y9FEnHdorXHOo4Nob6KXMedtbEPL9fUFRhm6GHAf/Sb5mz/D4PWvpKstgaLgNg1TetOuGOm6hqvLc9ZVxXAw4P233+ONV15jPBqkBqE8q65XvHj+CY8/+ZD5fEFTrfCuw7Udi3nL4yfPOD1/SV2/TpYZgpPRa2sNWqlNYGnnJGjTda0ADlq6pmG1vGa5qrm4uuT4+DGXlxdUVYc1GV9//6f5yptf4fDWLUbDAcaaxLS4rb2Fkv/pnYlDGn3H2M0UTuhbdCgJ/UUl8z+1FST/RAmKe1amBy8+AZyedQEZwc3YigSQ838Z4Ps/kBbPILWENh4lMU0WBWiuJQE8KxJ1n14jKwArtH6WxprLQn6q5DzctKL7SLWG4UAEvWdXst8eWVQzK1MzuQXGshCoKCBnWMrdflOL+LeL8t+6ko+zuyuL1Mlpys9ycHkhr39wC955Sxb1HzyGT74F49tw8Ca8exfOP4Znj1JS+ee2kO64+3yt0kCs4PwxXGk5ZsNDONyVxXh+Jh4s5ydiHjjaE+PE/QncvSNMzSh5y5RjNizA2gloKTJ5D5vE3XnyJGob0Sc1nXjrtAGOn4oY20zh7YdbYXDPEjQtnD+H5x/KKLr3cDCVltuihSIxB94lzVXcGji6BEYUW+O9XiTctWmE28g5+vhfwZvfgDe+mq6tdN31rsX9Ap5qjYCKixSKOhBzwoevpdHvG0xIvYQXPxQN0XwpbFbXyvd43sLj53DxEuqVHE+fALlJ2pgeoLoEZLoklKcVQL6ci3v31RUcPxImsGoFgH/1p+HN96TtOBxuwfQmLZ1NrdlaMKTvxKbWpHPRfz9D//heh5SA30+ioFgrj0s26DIZFRNjlnQPmymGVPCjFOIsGBaPzrk4+DbFZMYku4cuS2kpKIWOkYlbc29QMDRHGKXJyxlojTbixirmZV5qg3dE7wiuAR/w9RrftEStiDojdIHgIqYcYgc13cUSOyjQucVZQ5h7uqtLtM3QeY7SFm0NKjNoldPNVxhr0cnQTg8KfL3GjEZM9g5omorl9YpxWdJ2Fc1yQVaUFLM9Hjx8yH+0s8NbR4/5u9875oc/PKXcfY1bh29Tljs8Pf6Yi+WC2DlxZCZiFbSt57LzzLXjufccWc2R8hwEzaFu8c0VS5Vznc84OHxAGIxZN2sWyyvapuH0/CVn56d8+vGn2CwnLwuGZcl4NmM0HjMYDsjzgqIsyYuMzBq0UcQQWK5WLJcruqalbRrqpqWpuiRBKJiOj1BYMmulNoRA3dbU62vWx58wvj4h1h0ftB5TZBzOJvhnl3QxMDSR8ahEEWnbNZoxRgtzpGJEeYeyBrRJrR0nTEz6cW2Hzi3t9SXr3/zHDO69is4H9CPRG2gd+n6whGiqqLienxMj/PRXfp63Xn+LyUR0P64TJ2LnOhbzBdVKAgHzPGc8HHGwv4/3jt3dhsFgSNPUXFyc4bzjer6kbmqsSmnlCaBfLea8PD1hOBpjE/17cXXG+cUZ0WsIhuViycnLK9a17Pv+3hN+7qe+waAUTxDnAzF08m3b3P0EYm9kuLFhgBA6SYP3Lgmqwwb8EHrB8Q36/SeqLxXZ+tSo7e963cKPMlvr7yCDgUcXcPBvRBib3U/Ov3G7QLi1TAOZI1nkU63ZBm72UyGkkVsn4tVJkAWsaVK7IOVNuQRMBo1M8gwKATR1Gg2/upAFJs/lLtwm4KNyce21VnRAAXluvRb2Zu9AxqqvV2mkvBKRcVHCbE/0OTu7cPQYvncMPzyF3dfg8G0Y7MCLj2XBc2mRJC3urZf91klsarUc76BBt+I5o3LId+DwobgCN2thTJoGzo8F7Hz0SRrzLmW/pzPRCQ0H4t9SlBJF0SeP96Pdy3QM6wQUqy6JZDMYHyHtqrTshSAgaD2H4x/C9Ym0rVovbaedCTy7lPOvoySIE8UAkbG8b5bArXdpX3p9TxILhwgEAVq5Fa3Sb/5juP+agLENFZEW/Ru1ZvNP8zQp9dM/B6+9lQTEIemSorSI5gth+ED2fTgS3ZHvYLcRYNnU4kbtnTy+Thqu/tqNUa6ps5MUO5JctC/PJOLDazmPiyW8vEzsArD7GL7+DQFfWktrKdWaTdtqY27Jtl7EmB4XtqL82AOfsAWMv8da84UAN318giYBEoVoZVTS2MTkMJxSjcXpOT1HaWIt3jf5bIdsUDA4OBQdDIFZU/Fg/oyyrWQ6M9UxpSEa+fgheHBuA3TQGqMMQWlMMUEPNCq3mDxHZ0WK3AjYwQhfVITo03mLkJeEpqK7uiKb7aAHA7SCbt2QD+ROzq1WZEOFMgqDJRiHr5Zkowmz/X1eLisWq4bpdIB3nm61wOQFJh8wGk/4ufff5dXb+3zzB4/47z/8kKeXjxnvvsrbr/wJFvVLXp4+5nJ+Rev85uZEAc5H5lXHQiueaMXUaG61mltGc5DX5E3FenmC39klH+6yf3SLYrpLUIbLiwsury5o2prVomU1X3B2diYtO23RRqOVuAyj5LwopeTftAUFRhuUVhhlhdnByKKqgni4eEfoGvzFc2bXz9ldr/io8jzqAq1SvHM0ozq94lnd8jDXHE4CBo/Rsjh7L2ZTEtwZBFRqYXaCd+DlOooOrIrU3ZJBuUsxHDBcnRGefUj2+tfx/UJPYifSNUoErTV5bsis5v7RQ958+DrDsmS5muOdo3UdrnM0XcOqqlmt15R5RqYNhTEMyoK7h/fQWpPlOZPxiPn8mnW95uLyktVijTE5Rlt8ynM5Oz3ju9/7Lm3nmO3sUxQDVqsGgmFQlrTdiOFwRF5o6sbjArx4ecrHjz6mKAcMRgNA4X3AuRbvQ5pwUhudDUrAnFJ2426MCvh+xDmmqAUkBmITPJq+iz8x20b9nACJYss0gBRSZRP46Smu/jkaGg3f/1QW/kEpbQKVFqamgvlzAQr6s0/D9AuqT4U8AR2t5a5e6eTGO5NFsM+W0kjRGoygWMv+aeT98kLe8/JKfG4GA/k861rYGzeXBX+okibDgnHCTIwmsvitagmInA6Sad9CXjcfSLvh/Xfh9j784BF8+IG0hnZfhVf/BNQv4fSxCJad3xxWSPtcddt2n9Hipmw05LVEUSxfynEc7srU1nRXjsnFBVyeC5O1aGGOBHYqLYux0fLnVGs28RfapsUaARk6tTtsOsYx3fn75OXSNXD5HK5eyDGpvPjlKAVHMzi9kpiIXMM0ICyf2oKZmBaTXjys2QJWn64vlxjCbgnlroCz9Tk8/QDe+PqN66tnJ9jUGrSWa8EqAYKvvCHneDXfxj64Ljko1yIezrM0sWeEETy8K3/PsyQ4vxaAe3kpYMgkUNxnR52dwve+K8BpZ18my1KtEW3USFqNxZkEzQYkdPXxx7JvqdZsWCsJ00vfg5sERTpfG0CT2KueVo7pu7ihfW4Aot/l9oUANyrR+Fqp5G3jU+q0SR4bbLw2gE1UhzxXnl9dRs6+8wGDnT1sUWJGI0wMTC9fwPkLfApEi74Da5LfRzJl6trkrphaVXlOcE4od+dRRQHOEZqGaNZy59o0kGvsdET14hSDlkVpMqANDr+ao6whyzQ6M/jOo7MMOyoIVYPrKvLBGO8CJi9x9Qq/WlFOpkz3dnn+0SPGaQosdi1+tSY2XWJmNQezHf7iz4yY2A/4x4/n/Kurj7m+esztO+/y5ms/z6p6wenpU66u51SdfBEVKcDVR1ofqVzgyml+qGGnMxxpzSh0lO0ZQZ3y4pMPWOqM0c4e9155nYdfeZfReIYLkbPTMy6vL2malrbt6FwrepZG4im89mitReuoghQFG9FBDBV950E1WKXQBExbMVycMVqckDVrnqw9/6byXPhIq+Ar9w/YtQa/aLlvMw6yAF5RFENi8PggN3KRiO8alpdnaCLFdAhK47tO2j5GQwCbDfDugq5akGWBQu8Tn32f8OBdVGbpR6L7NllI3hNaw97OLt/42s8wygcoo3hx+py6aWi7jtZ1eOdxocP5QF01uKalbhu8d1hlsKMx1mTY3KCVYb5cECNcXF6wrtZiOHlD6LeuGp6/OGY82YFQMJnlGFWyMzvEdR1aKe7cekjXdQwG1zRtR54bXrw8ZjKbsTvbI8st3kfqZk1dNSxXKxYLeaxRZjNtaTDJckEWfhXTYpFac0qr5B2VvrmfYTp+EraeZUhah14v0y9+cjfFpsJsPlrcUuuXCr7zA1mY81LaRjHIInn2fBu+mGqNgJdUa1wrzEa/kOX51gHWeWElnBP2wazlManWMB3B8akAL5MLILlywjxkRliEzMjrWwujQgSmXSULkguyv/VKQM9kCnsr+PDRdgqsa2WsN9UajBbg9DNjyH4Aj+Zw9RFcPYY778JrvwDVczh9KjEKqdb0h2yT1eQCuKTH6RLbEjpoz0CdwicfCFu1sydTPe9/RcaVQxRgc3Upx6F1MjnWt5KUAe0T24WAl1RrCFpAXao1GxDa1bA4hfkpNCvxu6k8m3DH+/sCKo5T2yXVGophYlaQriUxAaQz+XOqNXSdnEuTtCXZANy5tMiyAHpfTP4evpeEuP21lgBO73OjEX3R+9+AfCif5eyFMDBdt32f0AmIqBJb1SYDR5VEwSaDPLFKy4W818UlrNdsPDP6bd3Ci2OJcwgFzHJQpZgDdp18plsP5Dopr+R8ZxpeHsu4+WxPjl2IAqLqVuwEFtdy7jZAlM+2goEtHIk3vqPxxndQ/1il5gsBbmST3r9JNxlGWwEgocVF8LHvDfbC8v7D9/VIs3y25Pw7/4ZyMmNy/wETt2Zw+QK6jmgyaQdnMnUQuxaMJfoW5QU5KiUj3NEl/4lkMR1WK5mYKfKNijsYhSkH2CIj35lQn88pS/G/0MMBAKFa44sMPZrgmxXBD9CDodzkzddoZVFKY/ISZQztaonykcneAcPpGfP5gjv379Jbu/t6JZ49RY5qWkZlwc++8yqt/pTi2vBrj0/5+NG3GBY7HBy9ySv3f4q7d+ecnj7h/OKSVdNJKno6aD5CEwOdglUXOTaQKUXZeQ6NplSR2Dquz16wuDpOsoKcw9u3eeOtd3nrp7+OzXOaxtG0LZEo+hAn0zl1VeG9x3tHiFHykGIgRodu1qjlJXZ9TV5dkbcrOhc4bgMfVYHnXaBJLeXb45LXJgPcD8+Y6JwMRRXg4cGQ3cmEZnFBORhLC0kpLJboO7rViqzI0IXoJ0L0mAgSsRBQWqHJscaQW0N7/gx/fYbev02fQybXWgpeTaLRvb193nntHeaLOWeXZ9RNKwncXtqBIQTx3+pazi/OOb+4YLVe0DlhBiWjq2AwGDIdTynLIcpomqqjazuMUmgdN/cruTWUeQEhUDdzzCpQlkNhN3PDeDLk/r0H7O3tUVcNTbfE6IzRcEL00DRN8smJib3xzBdrPvjwQ54+fyGZU6kjo9L4e98OVoifjd5gGNX/f3ps7+v0k7T1dDlSZLWVhSC0qZiIpQSwvYu8WVSjTtlT3xbX3uyhCHgvjtMCkEz0Uq0R236bGINeO5AK9edqDauV1LYbtQaDtKaK1Co5m4soVCFMAMhde5HJYtaswA+kFRGQ8XBl5T3zlAq9WkoB2D2A6Zm0KW7UGuqVLIZFLu2LsoS3XwX1KVwbeHwKj74FxQyO3oIHPwV353D6RIIs2+6zIKdvKyhEA2SQC65LIEBFWfzOXsDVcWIucpnuevtd+Jmvp2DQLmk0UlvGJZakWm8N5WJkO8rspO21upKprfUVtCsBW22AKghb08tXxgXMhvDxmbx/r//YH8pY/+JSWLRUayCd1+VSjn+qNZ8RwQrlC+TyX2vg/JmMdu/fTo+PbEzuejNArYRde/1dEfFengl46Z2eVWJIAgI2Ls/F22i9SO1CLS3JLJdrYTxNppA6BZcmsbu+ATAyk4JZQ/LJCRKfoZWAlvFADBZ394Qt6lYCSofjtKA0bHRMPp2jxRo++lBiLvqcKPjspNmGPk7/2LOqm69sOh4/Rq35AoGbdE+VWhpaWSKB3hZ+S07F1JGLGEme2oo+nWX+8Qmjg+8yHI2YdtfoqkJnVmh2o4mdI+LkQHmX2JooHl5Gg1YSnhhBG0n69nUNSuHdWq7VwqLyASYTBsgOS8y6olqtycsCtEYNBtDU+GWFGUzEGK+usUVO27Q06xXZQMCOURpCi8kzfFVhjGH31iEvP3lCXbVMd2cb7ZkZlKAVvnW4tqHISt7aHeLtGj+6x298fMJ8fcmjJ/8zZTZiZ+cOd4/e4c7tjvPL55ydn7NcrWl8SEGN4FIbxjtoiKwVLELEGkWmFRmKAo2NUBqDW895/uh7NL6i856PP/wYs1wyGw4xkwl2MGQy3SHPCoLrsFG8WkLXUq/muPNTptWKnA4XIi88nLrIy9Zz7QJNiDiEjd0pLK/tDhk/u6D2imUMOBN55U7Ow3u7+NU1bb1mOJqKf46K5NmAqDXRdfi6QecWtMa7gI5swiQVGSo4iiKjGJQYFVldPEfv34Gkw4LeDaZ36A2J9YucXZxxfXWJ0VYEu0ZadPJoaKqGs4szHj/5hOVyRdu2OO9RGKy1TCdTXn3lTe7euUeeG6w1GK3QKpJpaBJ4n4xk4mk6mmBUpGtrvE+2BVr2cDadMJ1MCTHgQ4eKCq2N6LuUlmxG74leoTHoqGjbhtWyou2t6/+4bRuwZpGpkxv0N9z4c4BNcnh6jLPw8Qnsf1fofnctC2zWj+ZqKew3aw2Jdg8kMTICICICiLyTBUMp0e7EKItlPpC7Y2WkFTaoRVsyKNJUi9QalhUMJ/K4uhZg0rTbrKZBYhZCKwtYtRagc+tQDOyqVsz/ep1rWcqdZuuEDchL2B2CXcPonnz+9RU8+Z8l5HL3Dhy9A7c7afecnwsL5BMLsfEOitt4CoUshCYtXj3ijOnYrK/h0+8JePRB/IaWCxEaT9JiPZ3J1JdP4NQFadesrqXNUq2ALi24pDBML4/rJ3MUsnjvjeDZhTA1vdbmdgb3dmVf6lUyVUzmdFmvM3ECAlOtwSXNTA9ESOe3nMh5U1EATqo1W5vgdH31/kkY2YeLU2GvtJVrTKe2Tv/4qhGX4CefSLup70ZgBFhPptLWun1vyyz2KfeaDVHAcJjcjicJcNZyXI3d6tKmE3m9mLQ1Ucm5sglABxLQVGysFZpWrs8/xFrzhQE3Miel6POJUZrofRqDNSRFwI3Hy5dkAwITzHErOP/Ohxzt7DAYGxlJNqL1UKmHHkEubgX4Dp1nKGPFEC8vIErkg9Dvmlh4XCuJ30prYZhLh9YeyNDaYgcF68s5WW7J8lxGpYuCULXEpsXYjG65wpYlrvPiL6K1tJsGDqMtWhuCyWmWF4xnO9S3aq4urxjt7FCMR8TocW0l3xVrQFt807I32+N9YxlcX7AYBz4KBZVztHHN87OPyE9/yGSwx2T3iKM37lB1cy6uzrm+XrBa1/gQcbG3ghB2zIdI5yOtUVgdaYJnUJQMB1NGO7uUgxHzyzWX82uIijzPiVXNerGkiYFFPmAyGWLynBgVdV1RJW8YvOelUiyd4rpz1D7Q+iAMNvLdKJVmN7c8OByTX1S8qH2SLgR+6m7Ge/dLdL1gvVpItpfJiMFt9Ty6xNcrQtuAFwDZOgdOojpcW6NVYDo7YDQcCQMfI2pxKdorLZoh6VR4uZuPgdhFlosFz18854cffZfL8xcYZSnLCbYYkeUFNivRRtHUDV3tBEwoRfCRpqpo20AIkaapuHXrNgqP0ZosM2gTALe91hUUZc50OmYyGQkzq3rAL0UwRIUORjK8tEWhkiAY2rbGe8+6XlNVNfPFgsvrc05OTjg/P8f3VPwfu62nvJN+w6eppqjht7ibfZ6+SYvwCvjuhzJ9NE56D9N7n/SFhhT6GOUOP8/kMX3sQkTerxdcFl4WlLZvmTsoHehet2BhkMPltTgbF4UsHEUpo851K3fry5WAExe2YGu1hoFL2pTU2lpeSOvjVr3V7oxHwjy0lRgYplpD00rbwVi4PodxlNZF5yCu4fQjOPkhDPZg70hckbtruDqHq4XsX89G3ag1Ajp6gBOl9VOUMJwlbdMQLteiF4kIE7Gqk5twEF3IZCiALWqZCqsqAXz9VJBTKbYhJC+Vm5eCkvNyOIbLSlpUACbAvQweDKBZCCNijQDR4NjoeXRq9aVaI+BGag3RyflUQTLKhiP58DEKC9Sngm+As9vUGroojM3zF5IVdZ58hQYTyEcCNvNCrremhdohfkhKAFxVybUXomizjm6ntp0WIKKl1nCj1jDIYTqWOI8N6EnXf88sBbMFVz175Nm2w5q1gK35XK6T0xOZivtDrjVfGHAjbSHxtzFa5lRQihAVPm7unRNzI9BGb6jzBEIB0IR5x6ytyMOQvMiEWs8tsa4JTYPqrfSNRSlZsLRV2MGo3xVUnoHrksYgR7W1REFojTIWW2YCxbyInrS2FOMh62XFZDKS7yiiUQh1gx6VVOuKwnsZV0cRO4/NMnzTEkpNdDKplRcjuq5h7+iQF+uGi5fH7N+6BQrqtmNxvWS9bGi6Gp3BYDQgL0rePbzFTn7JP/r4km9dKKpoaVWgCYHz9oyL5+fkxyUHu0c8vPU6+Wslq3rO2ekJpxeXrNYVnQsbrYlo5SIuRFRQhK7mfPkct76i6zrMZIrOM5plh84s5WgkoEQbrJLzSetom47LpubJakHTiWeLd5JZ1MXtjaICSgXDomCoDDtji75a4eogmrqh4hv3Mh4cFBShpasqms4xG01FfJ5Yi15UHK1Q+yqKW3RExsu1NngX8HXD+voMqzwqHmALS5i/RIdAwN3IUyK10zxt23B5dc6zJ4949ugHXJ6+IHiSP1IGdkhejCjKEdaWdK6jMLvY8ZQiW6DVOdEvab3DtY7F1Zyrq0uGXcf8ek61WtG1ot/pE7ydc/i2oW1rAf3IVFYXguRJeYX33cY9um0dzjnqtqGqKtbrNatqzWq1ZrVeUzftJi38j+0mY29sjPd67VDsAUy88QNb6pzPagCuOwEBYSiiLxJ93xuv9YJsY2Vh6aJY8A8G27dJtUbYjTwthiQAYtPrJgAGsqiMh8LeTMZpFxOAqRuZ6llX8vje3K31Mv3StFCmxdc7cQXuGjg6EiHyy2MZ6VUIYzNfiOC4rcW4cDQUQHV4G/JL+PgSLhTE9PlCEB3Ns3N4UUocw+034LUCqrlM4lxcyv713i/98exHyYNKuphnsL4UFmIyk+O06kQHMxknYGrSuQzyGZt6O/nVJabM9a2qz18DbKfMJhauVlCn1tlAwf0MDgphuqpKwNFgkp7YsxaJ+bA32ojayP7UnQBZF+W8XJ8ik3oHAkznJ58dHd9ovkICl41Mwz19BI9/IHEVPp1/mwtrlI+FvbKlnFOzJ+2nbAHqHPxSznPrxF/o6lKuteuFaG7aRtpT/Xt3SaDcSa0RkJWAv0uTZ94JuOtf1yVmr6rF2Xm9lp/VWq63Pi38D3n7woCbfv4ChGaPNyjiPjTw5r1TTI/cCB/T/0Fk92CXO7MhmdUyCuwDYb0m1A2xk8TuqC3KtaAC2mliFtB5kaIYpAeqtJURcWvQwyF0jtDJHZVKFJxSWlogIWC0geCplitJKw8RazNi16IZEn0gtC3aaoKT1ogZ5BgtSeKh69DKoHJDRNFVS47u3+bq5Uuq9YpytsOT73zE1cs56ypj7gtaFcnyFdNpZP8gZ3c65j/8ym3eeHHJP/xkwQunscbSBk9nInWseXL+Kcfnz5gWI/b2D3l4eIe33nqLVdNwcnrC2cUVV5dXuCR0jAgpf6ATq9vUBKVZr5awDoTG0zWeVsFUawZKY6zod2IUi6jT6Fi6SNXF5B4iZ7APAbAaptZgTQbOs6M9r6wiZVBkpeX1w8Abt3LGuYEQ6KqWzjuyomAwnAjsVRKuGnwkK61MYvlAbFvUoMBqw7KbS9ijq8mHI0ajqUR3IInai+tPGK7/JdnwfVTMUj5ZnxAeiL6jqdes19esl0tcK/oiTUdLTRMqIlfkeUkxmDIopuisIEQNUWOVIdOaNsJ61fHpp59wcXVKWRa0rePk5JLrZUPt/KYeXFxe8+3vf5unL57ig6fzHV3raLvtj/eOznm8D3gfbwRohhQgG/94g5nPbOqzf/6MS+pv19Pf1prPtKcOdkWjYZOWwkcp7HWTIhmiLEap1uC0iErz1Jrox6q0lQXNGmkNdE4Wmv4uu2eYeqNBbWQxXa6E5QhRGIWuBTUUdqJtBfD0WpRBLixDm8SoyojQVClpXd2/I9EM65WwOd/9CI7n4sHj0/7mK5hGOMilPfGV2/DiAj5ZymczyYzNRIg1nH8q7ZdiJK7ER3ckuLGp4fRU9DlX11tRNbApOCCPU1o0QusgEzqN34I/pWUVuzllEp0Aim7zi8+ed82WgXEeaGGZQFVp4TDArVyOTQjSrvNO2nyjKduJOyXnu0yiYB9kMR8Wcmy7uRwTV8s5HSWARhTt0NUPofpXMHwfYnZjWigmNqTb6oUWiwQkIuJkVkNYA1fC4AwmUEwF5CC1RsTWqcW36uDRp6LzKUt5/9NLAa79pBvA1Ry+/20JNQ0+mRKmuIVN7ILbXlOu31efJqNugLR/x9sXAtxEUg1QnkyJs7AYNmrx1vhMQ+rG+HticdQmqEHcjR++ss8wF/2CCgFfV8SuI9RrorKoEEE7vG8xWosOIs8gasxoiNERSYg20q4iYgYFKsuIjUYPDTo3IjBNpkI+eLqmxWQ5TbWmGI0wdgwJUMWuIytygpf0cqXA+w4bSlBgbCbjudYSO09wgSwf0bYrpns7oDN8hGJSYOcWnOFgTzM7HDCcDgh4dG6puxq3XvDu3piDMvKtp2u+O1dc6ZxV12F1xBlNUJ6z9prTp1fkT0SzsXd0m9fu3uHdN99kVa25vLrk4nLOermg8J5ZjNRdx5qAHY64vJzTOs/QqFSiFWMlZoEmsSe1hyd4ztpIFfqR/8S6acUwNwzT3eW89Zi64adyw/uTjMxmTCfw6p5iVhi06vBtQ3QRFzwexXS8R1EOyIoMozNym1LZ0WiTERE2TMecLLM0rkGjaJuKwg5FQ4OW82Izhm1gcnFGO3tKu7qFIpfR6AgxejJrOdo95J033iW2FR9/+B1OT84JMZIpTTQGrQcMhhPG4yMGwx1MPqDtWpZL0DToNGJdt47FYs1ysU7XUKRy0H0OiCwrxw9++Bylnsv3Jcr0YExfni9AHfnJ2iJyB638DYpSIPdngQ83Dm7P4ujt33WEh3spp0dtJ0Q6J22KPi1cpwkfnYBGJrWG0VBeY5MyLrWGskgsi4aB3gKQ3sAseFlE80yA1GgEqdbInXeXpq66xCIgi1SqNWSZvIa1adEK0uZoV3CwAyoJoscFDKTWsKvhcACzAeCFneqSR8z+BErg6RrmSoS4XSefzWg5zu01PL2CJwqmUwnvvHtXEsCrlRjVXc6T0NnJqXCtHI/hEC6TSNbeoM/6yZuePfHI/3Txcy2QdI5zk5yEjQCFupHfjTM5JmNgDwErKjEYPqaxfQXjPQGSRS4iWpul19cClEiTSzEXXYxLeUzNGuwwtR5N8sTJpWV0fgqzp7C6BeRs/G1iOj87B/DGu8JGffgdODlnM0xjDOiBeAVNbsFwR/RZXQNLgCaxaTGxcGv5Afmd47cCkcrBD5+DfnGDSboBOn+Cti8EuAFQKpJp0R6Y5NDaJdO1vqSkmabUgpK7p034X/pbUWhuH4ww0RO9tD9i5wXYJDFx1ILIFYrg5T2UA9+1sFJQZEm03aHKgRSdGCF22FGJGSYXZCP0owqiz3Bdi7Vyt+9ch3YyTmm0IrYNxmTExqFzsc3umoZsMBC7fZ0AThvwviW0NaYsKfIRrmsIJhJ9zd1XHnBw6zZtFzDWY7IMbXO6rqMLgXVjWQMuePCGt8qMW7rhRch54gZ8clXRukieK7pc0QGti5wsFzy7uib7+EOmoxFHh/scHhxw783XCcbg0XRdQ1PV7LiA8x2zW46mqfFtiw0K07XEGGlVpO1dpJWi7loGixVZiIyKXM5agBgVXddwWTtq3zEC/tTE8hceFLx6a8KgGBB9S9euiF2LazpUSH15pSjyjNFgiFXS0iunE3Gkdg58h9IivFPBy/WV50Qf6JxMGBRFTlGUaK2lXRlgJx/C4xXt3jOqTlPmh3KBxh48K3Z2p7z/3tfYGc/oHDw/+TXWq4bMeJQVjUyWZYzGY2azA4y1tG2DVi1dGShySwTsqqbr2k2KN4BRER/VhrPsl1SXgGHalS+3/382FdmMD/cOrZuE5s888HNMzecYn0LD0TjdtXtZfDsvwGYjJjbbdkVMomJPGrlWslAaqS18rtYwLGGkt/vZN3CVkufbbNsuSLUGrWRRNjaZ0SWL/qaRVliqNdhMFlffSsupLAXgdI3sj68lh+jWbQE/JgEaWwhwCQGaG9493kj7TDcQcnAD0a+ECLmSH5A7/eVcnG4//lCA2eGB/LydjA8xCTjVadTZwS0nWpquS22rJmHRxOn3LJhrZDrHx207L6Tz1bXSKvLJEXds4WEBRxM59r4VgNcHcfYGdCq1GsuhnE/npC1m0p99tz2uPumr+omjVGsocgFGWsu5CAib9XgNB88l3iM/kv3qv+Bawe4U3vuaJG174OTXxHfGBjCdTM3luZjuzQ4EELUNKAdlSA7WiEapa9mkePffg/gjqkrfHvwJ374Y4CZK4ylTYvSmlbSDYlDpPGyaUNw8CTdLTd+yOrw9ZjrMoW3omjoJyKQ/GIMHY5KWTYqFUmYjVA8uAC3RNeg8Q+cZNA3KZqLRKXN0AWaQI/bzaQkKQbKilEzixOhZL5dMRhMBT6lfrpPjo1IRnWW4rsHXrYwk58lFNDq0NcS8IEaPr1psXqIKCyYjRI/NM/KupasbovPYTFFMRjSNI7Oa3CrWzQq3K1+mycrwQGnexfIvreJ785aLZU1UMno/yzS+UPjS0LjAolqy+HTJh588EtO6TMwLy3LIdO8O5XCCNprxbsZEySimNkpu0pS04qq6wvuAdoH9piG7mrOaz6mbmqptqbsWHzxZBB8jYw3//mHGX31zxuFshDaKtlpQr9b4JlHWQRgfr8FYy97sgLLIZX3ShiLLhLUlmT6SxHNpLNMYjbGWenFB8C3EQOgcTiui96gcgvf482Pa0zlqdnez4MUUbBejx9qcyWSXcnjJ2kWeX3fUVcSqiDUBu56zaCJVp1hWDXkxpOs66uYarVtCcGgV0NrJIE1it13sW3Vfbn9gW4zIGC+yUPXtoPCjoOPvUOBvjWCYNDKbWpPGulOtARLD0N+1p+emWoNvUk5VlnKnpNZQ5lAgraSbU1wxbg3jgpfHLpcy3eLSOHnPDpGmfbIU7VC3smDeqDVYk4TNQUSgeSl6EJPJcclTq6tuZJ8zJWLTxqVWnJLR81RrWJr0eZP53HUrC2svjsy0COsw8nrVEj5dwiefyvOzZF5YjmDvjkyiGQ17GeASE0YSWQZhQOpq2yJpWmmtzK+TL06T8qX8jRYBcJDBm1PYGSWt0iK5G29rDSjxs7FWfF6KPK2YaVw61ZpNLtSNWoPRctwX5wJ+ekdhrdL5Qf57cQwnc5jd3oLrTYiml8832YXRlTAt1x1UCcyZIMxZG0W8XDfixdN1UM8T0PRynLRL18wNfc8f8e13BDdKqRL4p8hXzQL/7xjj/1kptQf8v4BXgU+Bvx5jvEzP+T8B/wnyVf4/xhj/+9/pfXLtya2ShQoRifkY8FEntmb7543nEXIdBSIauaO/fWeCDQFfrcE1ydl4i0SVNqllqgSUa6kdsW3xaJQdyLXdiGOushmq8wQVMTrHjnKij3LBROnzKqXQ1pIVBdV8Tp6XLOZXTKc7EAJR6ZSijOh0sgylNMHV+K4h00XSdMhFa5RBFwXNak408mV0qzV2NMYYiy0K8nKEGzR0rkMb0ZcYrTBZSZYVDPMhRVZh9RVtqdgZDHhvcsgb8wX/4vkZ3zxRPJp76qrDuZBa/5FcQ2E1GIULARcjvqtp25r1+prjs2MCGmVyTDbAZAWZybFZgU3aoxCSU6/r6LqWztV0roIQ0DFSAmMUA5U0PFbzVx+O+A/e3mM8KGmbFevrOc26om2kB2mMQluFyXJGgxKbZcymOwQd0UqTZQXGaIKPdAGsVYTgN3YieI+14hC88E0SGgeid5iswAyHckV1FdX1Av+kpCmekttDucqSy2YPsKt6xZPnj/n2Bx8xX/stCx5AdYHz6ppnFwts9imZMcn/xsuxxeFcwPtA6+KmVR1gY1T5o0rPH/Vy9IdVa9CpvWGAVGukHZBk7erGn3/LQU+3UTrCnWnSZEitkWLC9q63H/NW6rOq+baVv9iB/L5Jjrk2RS6oCCqHUS6ot681/WbSlNT1XIDJ9ZVkMvm00PatDWXkNZUR3UfXgC62uggV5d+KQlxvU61htU6gIr1POZL4h67bAjatZPw6K8RgLqtAXwlwGQxgcihi5OencKJg7sWx+EatEQZJas1Gb9LVKRLhWjxv0DLVlQ3kvUzv3GwSKPVp7LlL/61lbPwzcfU9A4ec94cjeHtfxuqbNVxfiMA51RqMksdluTzGWjm+OrFDeZG0TGldsSpNPaX38Ek7VeQCXnsXXu9k3/ta42oR9j4poXgK2dFWb3PzeqtX8PwxfPCRGA7eqDV0AaprOF9A9ukNJtKnFHonx9wHtmnd/Uv/0a4ovxvmpgH+QoxxqZTKgF9VSv0D4H8F/H9jjP8XpdR/DvznwH+mlPoK8DeArwJ3gf9RKfV2FNOQH70pKGyUsW2liQmh9wVfrpmQhL6bp9A3p4ySMe/dg5x79/eJdU10Ak60Upg0atm7zYqFttv0a1VkI9qLMRCNJjovfXgfoGtQmSXS4RudQjJT/zZIQVFWQIcLDmsseTEgKnnPzq3JdI7yXtxvkVgChcF3rbAC6Y5SpS+i7xyxEy8bSoUpcvHfaWp0McAMSvnctiQbjYhtQ1ivAI1vGwajEUVZklnDlZ2zXK8o2xUPbh1w92ift5884x89bVjaEfF8SXO1pg6Rq+BYN46GgCaSq4ThFHgUMVNiAaFafGiIrZyDpoLKJ4CWirtWiiJGRkBmFCOtua0VRTS8cJ4XwbNTGv7j9w75Mw93iK5ieXHK8npF2wlgiAHyQpENMjKTUeZDdma7uK4BPMNyiM4HhM6hrUXjZAIu3UHpCNhMTBgjFNkAomSKFeWIvCgwWGLbYYalOEgv57iXGv3GC2J8fyNuV8khM/rI1dUV3//oA54+O/lsS/qGSaIL/rNivS+332n7Q6k12Jiml1Lx79tGm21bdbarYvpvPxq7n4mTbVOnKZJUTzZj3fyIWiNP3QiEY5Aa8rlaQ2aBTjQ31oqx2o1ag7WJbfGAlVFold7TrUXz4n16naTNwKS2xLbWbLxNOic/qdZQZKl9UstrD0p5rC0E9LSNiI7R8ufRSNpa1oCdy7+1K7h1AEf78OQZPGnEC+d8CVfrhOadMCX9ivuZ7p8SlkgBqoXQSOsGZDy9/xwbnxq1XayNkv3XCqJJx9dDYeC9Q3hlRwDQ5Slcr0WPkg4JhUqZVclfaLYn5wQvbal8ICDPWrl2VNyyNanWbLQq2UCOUUjPLRJmb1PLcZiLc+9LDW+8YOMZ0wsxVPqcV9fw8Qfw9OXniMUbhefLWvNbtt8R3ETpvSzTX7P0E4G/Bvy59Pu/Dfwy8J+l3//XMcYG+EQp9RHwC8Cv/XbvIeaHGcqYJPBM+VExEiU/PenFbt7V9vBma/FntKarltTtijxGYWyUAh0wqbYoLXfQeIfSOi16KTgzKwmdI3qVnIsNKLlbMYUYfbmuFZbEBwE4qGQtoIW9yQqqqoGuoZovGE32cE2b2reyWiutMUUJ6xUuxQLoXMISVQhEa4jRYfIMrQz19RXZaCRTN4i7biQSO7lbMNoQjMXYDJPlaK3RBBrnGJQDIlBnBfN6ialydnf2+fq77zApn/LtRxdUX71Hp0r8sxOql+e0naOKEpXoI1y6gAviZnzSdbQWjo52GcymNO2ST59f4ILCGM2dUc7RYIiuasKyQqnI1CjulIqJ1qxrOK40Fzrwcwcj/vrXbvPKLGd5fcb8fM58HllXhvFEkeWK4Y4hKyzDYsx4NGW9npNlBdHX5MYwnO1wfX1NpjXKaJm0BLxzMr0WtXgcBWkLFEWJNoZQtbRdS03EWI0uMmHYjCYfDmjPVhTNGjdYY/QQhUZpQwwyZv3y9JjvffgBq3Wb6trWaPLL7fe2/WHUGgE3yWumz7Tp2xWp1qS96dEq27Mat3/XRpKY2zWbQL9UazYP1+kO2ju26eGpdZGVyXdFidbjRq0h1Rq6ls0UTp7M0AxbgGNzaSW5RliSyV6KJEifJ6ZWSV6K83GvuTDJn2Tzuk7aT8oICzQayf5t0ptjCsNkK3y2SYSrU0vGOdGtgLAT9RKqXPKJ3n0Hyqfw6QV89R6oUhbqlxdJm5SQRSSNb5PaOJ2sUIc7MJsKYHpxIa0VowUcDAbSjllWqVWjBKBpBbWCysg52R/C127DTiFBlGfXsIiwMjC1AqRmWoBNMZLJptVcPouv5XPPdmScus/K2rQYk7Yq9sLy1IIsBkmXk1gvlsKm5JmcQ6PFYfpsJXeHgzXo4fb6CmnM+uwYPvhAohE21+GX2++0/a40N0oEKv8CeBP4L2OMv66UuhVjfAEQY3yhlEpqKO4B37zx9Kfpd7/tZvICpQIhagHCWhOVlzDXno5VCSRvBMR68/xeVpxZEfXqcoBJ5kI6y1DREb0neifzVSpuMz2USRbyVvyJQhR9DgJGVBANTHAtigHRR0JXS05VLDCZmKaZLMeWBeVgxOr6GqsVWIsZ5mS+pKtrrBGaWsWAMoLQQ3C4uibLcql/CbCbPKddV9hiQLmzR3N1LkzwbFfM/FK0gYoK19REvJgJZhnRB2xq0aAM61AxHoxRSnG1XBBQ7M72ePutB+zNhnzw4YdchZL41uv4dx8wWB4zXlyQGUUMkatly9Ozlsu1YlBF1N6Ev/I3/iNmRw94+uRj/uE/+VXsaMzh4S2U73jj6DaHxZCnf//volZLVISqynjcKp51DY1t+fPvHfCX37lDbOa8ePyYelHTVpqmy7lzZ8DurSF1s2JQDtmZ7LFcLRiUI9arJavFBaO8ZDzdxXWe1fU5e3u3k4zCoq0idulKSREBBNHh2DwjL0vWyxrnFVXssHWDqztUIT3KcjiiO7sgu1b4yRWZmaJSO1QpTdu0vDw54dmLU9yNm/7+nuvL7fe+/UHXGvJ823aKpHHitErdqDVyIjco5eYeyn8ssmCV5Q2gkMzdes1NTOJS2881J/MzZeVlUq3ZgKuQNDCuBQZy155qjUzgJB+dLJeJquHoxmJrZLH3A9GgpFoj7FAqnsGL/06W9yOL22OyrmQx3tkTG38FzHYFiFVJ0xKVsDl40SrlRTLfSy0aZSBUMr2jVMoxUsJ+vPVARuY//BDCAN5+Hd57CIsXYmZn0jFYtnDawVpJ6vTuGP7j/xBuP4QnP4Rf/hWx+j86kuN1dEd0Jn//78qkVURG11uVxNENvHsA794RI77Hj2FRQ62hzeFOCbdHohsqhwIQlwsox/J6iwsBh7MdAV7zC9hJl59JuqJ+5LyPTegZtjwTEfGiFhAbu5RW3rFx7h2OxODuSsHkCsyUTTtUaWF5Tk7gxemXxeXH3H5X4CbRvD+tlNoB/j9Kqff/LQ//UTevv+W0KKX+FvC3AA4nE4rdHeqLK5QpQGl8aJNgV7yLNenLQ5+50/M32zHxycRQX1+Q3dmnHE0geHRhwQyIzhOaDm00WI2ejMF7EfQaTXV6Dm0gHw3RtsAUIuQLXUd0EVQUpidNVUQPMXiCT9NbxmKKknwgAKe6OidORZymlKJezcnzA7TzKGXQNkeZjOBaXFuTdUJbapsJm53nqCzDu5asGKJ3DqgvToghkO8fYfJMjFWbjubqQlKvY8QtjLBeeYGPHm0UVlsGRUnVVIxHI9puzYuTJbPxjJ3plFdffcDl5TnZ+jmtLTkZ7xFef5epazgKFdG3PDg94dnxCQfnkeKNt/ipn/9LjA5ucevVd1GjXRbLa27dvkfb1Jw+e8mrP/tn0Mcfcv6tb+IaTe0CRhnu7mb8+fcf8pWjMSfPnnN+coXrwBjLYFzw4NaY0WxE3a3Js4wyLxkNplR1xXx1hYod7ZXj6I3b6EHJ6uIc5xw2yxG5cYAgYm/RZ6W71xCIwWONpSgHwAWKTtoBIeCbDuU8uiiwWcakzJk/O2f64ILo70PvChxhva54cfyC60WVLu74+1J3NjEif4y3P+haw2QiLryXV5BqjWRK9axM+lGfY3E+z8tNkkvv7X0R8wafhLgDaQ80nSz6Vstkjffil2I1nF6kds5QWj2p1kgQYnovrbcTXB42XiKKpIUpxcZ/MBIH4FRrUEoYh/wg5QsZeQ+dCWhqa0i1RlooCEjJ0r8XQ8mbujiR99w/SknTJG+WCzaJ2IsEoIpS9tVoAT1FKUzEaATdGk6WMu0zm8KrDwQ8rZ+JJ8t0D954T/QnIVn9n53AixM4j/Dam/ALf1lMA199TxLEV9cSI9A28OQF/OyfgeMP4VvflFaeS8zJroWvPoDbE3j2HF5eCRDRRrxoXp/ALO1jlgmIGU4FHK4uBYxcOXjjljBEFxcCNvKCzfzuJlJCbZkyH7aC8nII8QJu1Bqajk1IapbJeXx+Dg/PIdWaDXO4ruD4xXaE+/etPvzRvxX7saalYoxXSqlfBv4K8FIpdSfdSd0BTtLDngIPbjztPvD8R7zWfwX8VwDvvPJq3PnqNzj/1q9D5/HBb6h+CFgVUgzG1uqvF9/3jSqtYFh4RmMR1Cqj0EWJHeXCkmhNbDtiaidpZQhKkY0trq5w1wtmB7u49hqdDbGDQRIjG1ztCLFDWSWGf8k7IoYgxnxKoRA3YzseMDvaJzRJoa8kq8ooTbVeMZyMUxRHupuLyGs4JxNTWnrjKsuxgyHt9SUurMhGYwaHd1ifPKOra/K9A8xwRCysvEaDOBy3HTEE6qrGuQ6Ho42R3FlyYxkUOYulA2tZrFZ457HWMh5PCV3g/sEhu9dXnH16xvLOa9T799iJjlujGcV4wK2jK5b7OYdHt5nducdgtsNiOeebv/4rfP/73yUGmM52MeWAvVffwn/8TfH1WVuKvOBPv3Wbsa/5/m/+kKaNHN7eYzabYDOwVhPxrNbXTEe72HHJfHGJ8y2Z1SyWC5p5B50hGw3wMbJaX2Nsjsky+rHNgMe7Vm5OdQpDVaCix5iMvByi8wzfODrl8cMxXdNi8xxdyLU2GQ85nS/xfklQHSoauRpDZD6/5NmLF9RN9/taHv64A5ub2x9UrVGvvBp5/6fhW/88Oa8m1kal1kivXYk3wIxi++deG1J48YHJC2FGiqShsKkl0jpZ5DIjC61SAoiaSoTAB7vi/ZINZeFUGqIRC/3Yyes4Lc/VJHDT62Q6eY/RQDQtTbOpNZtwwfUqufiShKWkfm1qIfW1pm2TcHYkwtqwEl3N4R04eSZMz96BAJVUa2hIrrRpJLxKuiMS6HE2AbAcUq1htUo+NZk46HYBDg6lDfbpGdx5DfbvSYtsNBNNytE17BUyjn7nvrAnyzn8+q/A978rHbPZjrTDXn0bPv6mfKa1lc/09h0BTL/5Q2GBbu/CzlRWvSyBk+pKANO4FAbJJQC6XMC8g1YLCCWKyNkmPU4/Ih5DYtpgE/qoEcbLZLJvhRVtkQrC1DQp26tI19poCNdLcRNWHcTkdxSinJMXzxPb8/u5/dGvNfp3eoBS6jDdRaGUGgB/Cfg+8HeAv5ke9jeB/yb9+e8Af0MpVSilXgPeAv75v3Un8pw7v/An2XvvPVAe5xt88Ij6Bozyyaav//6KSFinBOOIQhsYTUfs3rrL5N5DxnffZHznDcrD18imO5iy4NFHL/jBtz/GNy1GGzJrMUbhrpYMd3fIp2OU0fjOSdszt2AhGxsG+zNMkWOHBXZQCvOSBMiE3jsgCYuHJdNb+wQXaFdrCW+0OcF5vEt3YBGJYVBagl3TXZkyWsbVtRLRcF7KeHLbkI1GDI/uEn3H6vgxi5dP6JYrYlDoskSPhpjxEF2WZMMh+WiCLUpyrVksLmmqFW1VYZRhNpzguw6jwIUWYxXres7F5QWz8Zg7k4Kv2I43umtW15f8IOYs7r1L8eAtJtSYZo4GJuMRt+7cYzgcorRBZ5YQHKv1nNX8mkqPCK+9zb2vvcFffv8u6uqU48enHB7t8PWffYXJ3i5dcExn0xT4qhmXMwb5gDLPidExX1wQnGc4GHO9hOHODDMc0NQVbduS2ULciEOUcxDBO3F87tm/XnynjKbIBlgr7YnONVTrJa6uMFZ0S9oYhuWI7vQl548e4X2FD50k1Hc1l5eXvDw9xYX4RTHj/COx/WHUGvIcfv5PwXvvyWLjEzDYtKQ8mzOqYCMS3qQUK6ma0yEc3ZOE5Ltvwp034Og1maopS/j4GL79sSxkfaigUWLxvzOT/B5jRHOiSB4ywNjA3kyAwbCQRd7mbATIN2oN1sq/3zoQxqd3Rra5AIm+1gSSmZ5mE2qoUjupz8IalMJceL8VCR/dlTHm48dw/ETckKOSzzccSgREkf48msjztRaQUK2FAVFGXH27js1dmNXSIrq8EH+WSQG2kxyq60uIBdx/Dx68CdTyWJDMq7v35P20SSGlXsahF9eghvDqW/C1N+Br98WN99EJHMzg516Bgz35PDtTNkGexSxlNOUCrBYXcuwGY1F/7ewI+KyqBAQLNsCjH3Bx3TbCQG1rjYyDD4Q5U0HYqfVKjou16ZowMo129hIePQJfCZMYWmlJXl3C6dmPEL1/uf1O2++GubkD/O3UC9fAL8UY/55S6teAX1JK/SfAY+B/DRBj/I5S6peA7yKT+f/pv3V6AdDasPf2+/j5kvXLlyyfPaOXDyuihA5G/blzG1P2jzxmZ5bxztd+loPpPiZqCMmdWG4zaOcLXj45TeGxHWpmUFrTvDwluo7hwT4Q0daKEN916NEQXeSoLJn2aUV0sogqHQm+750GATlKo01BzCGfSC2ql9eMZvuYrsM3Fc1qTXGwKwGHyqTPJC2TmFxDVbJM13mBGY0FFLUdJnNk4wkjHVkdP6eeX9LWK/LxAfl4gh0UojEyBmIkC2A6jdUFqlly1cy5Ws8Z5gWd1hRFKTeXtqTzDR548fKUyWiMzUuaumJvOuPtoebl+TPW1ZCXZkg4fItPf/g99lTGZP+Q8XSX3emM6/mcEMTy//jFJ5xfLwgP3menXvDm2FGfnZCZgoev7XOxmPPDRyfs7e1z/7WH5JnBO4cKGlJauEaRZQVaW8pyyPWyYrVSHN3bJ0TFcrHA+yCRDVpaUDFNXYYQ6HyNNTrZR1iI4oqcZzlZpom+3WRnRWXRuRVvI63J8pzSR04fPeHwfkORDYgh4tqa+fyaq8Uy1ZsvK87v4/YHXmvQBt55HxZLePkSUq2Rrb8b//w9X1qwYvrzzMLXfxamB/LYkHQWqdYwX8LjU7kzb1uYGVn0X57K3w/3t1qciNz5j4YCaDK9nfRxaRHVMRnPJRF0H7JpCsl7miCgZX4tic5dJwzRai0MkbbyQysPDF721+ZgvQCaIk1COS+MTOak3aYjHD+H+aWMJI8P5PeD1FIxZrvw2rRPzRKaOVxcp2BHLSAoqtS2q+V4vjyV98xLcXaezcS08PQpVEOwI2Ftfvg9mQDbPxRNzHQmoYzBCxN1/Il427zyNWgXMPZwfiLPef0BLObw6Qns7cPrD5N7sEu5Wwn8Kb0dMS9HIlBeKbi3v9UP+cTG6MTYBNhGJdRpog2k1pDG5dM59S0bczxlZR/yPAm+08j/o6dwvxFAFKJohuZzEYv3196X2+96+91MS/1r4Bs/4vfnwF/8bZ7zXwD/xe96L5RicLDP3ntfY/XiCd38mvXVdZqkDElJETcaOJOUNhKcKQZy733tdXaHe2iviL1pX5kRWeNWFavnJ8znFa/vz0SMbBWrk1NcUzF+5S4AoW7RWUbsOjY0tNFgMpS+ISQMAejQym5ao70wOSpQQaMzQzEb4VxDs1yhjaEcTWjqJdGTomLEYyOESPDS4upFzmJsGDFFTigK/HqFa1ZkdkI2njE60nB+zGp9Te1f0LULysku2WCcAI6SKSAtIrcYSkaDjivf4lXEKM3QWJquoutELFsUJWVpWDRLxoMRPrTMz55RjqZMy5zbowG7l1c8/+RTPvnwN/jB7CHjd76Kzyf49YrxaEjnPArF6acfYh9/D44vucDwyY5lZ5hhc4dbLhlNRty+fchsZx8yQ7dasbg8Z2e6D1pR1wus6tgdzdBZweXqmh9+csl0WjKcTWiqBavVBSoG8iwJG20qOgpilOPaXynRiAGfipZ8UAqwq1Z0nSN3UYThRkbEVRqV3RtNOF7N8X5NyKZEIp1zLKslVVX/ri/vL7ff3faHVWs42BfX1xdPBBBcXSdJTeC3ahHU9kdFWbC+9hoM90Qk2k+0lBmwFsO65y/FJXd/BhhZ3F6eiqfKq1JrqFsBB23HhkBPtYYfUWtItUZ2yWyZpKCl9TUbJXfelQCO0UQmlnzaZ62TqDiyTcYOm1ojBSAXkLNeCZCxE9HKpFrD+hr8MXQL6HaF3cgy+d71uVdKQShh0MmC3puJGQtdBZ3a6nRKI0BoOJIx6NNn0rIa5NJyu7yE00/gg9+AnVfgna/KXWO1FjDYmxZ+8iE8+b5MUmFgx8Iwg9ylKbIh3NqXKIPMSIvs6hwm+3Lo64W0g0YzATjra/j0EiYl7EwkDXx1Ia2mz9eaXvzr+2tHJ8fpNPU1KFNie3KtdiGNzOvEGKZ26GgiLTe/hmwq12DnJPPry1rze9p+LM3NH9SmlMKWA4Z37rL/tZ9l8eIp9b/8FqprMaiU+CwtKk0S/yNC3hhhZ3fE2++9iwpe2JQYCV2FyjNCV9Fczzl/cc5i1ZGj8M5TnV/SLBbsvfsmCo2vKmLwmNEAaoPKLK6uUa2MB5uskFFjI71aZS3KKGJwqJgRe+MlpSRt3ARi12JNwerqkiwfkhuDtYnWjKB0YoQQ3Q0+yGj6ZkxV2iimyPFNncI2W0xuyXdnqNyiTi3rxRU+Lqh9IHpFPh5jrCFYafkZLfV1pKF1HeuqYhAcg6JEmyGhbah8h3My5n61XjEqh3Suw2hDU1W40BFdC8pxf2dGef2STz/6Na7OHlG/9fO4ELl1715yCAb/vGFxcs7RxHHvcI+96ZS93T1skeE6R905lHNoAs5F1ss5rnP4KFNtRheYfIjJcxaLBY8/veDlceBP/4l90Ib1qqZpGspigs0l8kJHLyaCXu5MQ+hkMs4YgcfRyzFXSlp9ztE0HaNhhzIp6iAqeZxSDIzB+pa2XZKXwiP6EKiahqb1SbT85fYTtSklOog79+BrPwsvnsK//JaMSZMW55uGeX0rqsc8u0P4ynvpbj1pTLoqOfkmPc2LC1gmjUTn4fxCgg/ffQMw0uIIXhZwo+Uuvq6hNWDqZFanUw5S2La0gmMTsNh/FmPFir9rpf1xeSVeLMYIMwOkYrPVhGzATbwxEk9iWPLktuwFnORW2mi5hVMLiytYLVLLS0lbyRpZSfIbU1gaaddUlex3UYIZprymTtiqGGXxLofydz0QAW1I/66cvPf1S/jwf4KTT+DtXxCAdu8e6S4GXrTw8gzGDo72YDKF3T3x63HJw8d1ciwdAiJaJ2DFO9DJiDDPhaH59AJeBPiFfTk+6yblUI2FiQlBnru5BrzopFKtEaGxT4BSJfdkJ7qZgWMTChqVPE4pOcehFeapvCWfLaQWYdeDoC+3H2f7QoCbjeh2OGD04AEH3/g5FidPWX/8SJyHEzhWn/sBhVaRV1+/zTiT3Cbn5UsTo0MHRze/Yn1yyrPHV+zvlZSDAlsWzJ8dU44K/LzGTAaYcoC2VoIydY2rGprrBSE4srLElCXZaIAthiirZZgiJEFYL2v2AYiodBejlUVbw2q+pm6W3Ll3hDWyb1GbrW+El8iGmESMSmlpd8SI1paYFeiixDdrfNuidIYuMrLxhLGx2LxkcX2Kr9e06poQGvLBFFuUxJwN/Z1rzdA5WuckuT5EgpfcJdet6bpK4i+M5XoxZ7a7y3q5Yn9vyGK5ZJCXDIoBbdsxzkfcPay5btb84OULahQ/+PQjfPD4xYLdiyXTFdiZoihzXF2RW2kxuehFE9PWVPO5THUR2T+8hTaaSIEPjqvlnHq95MWTBZ++KDnY0ewf7tJWFYvVNa71ZJMSbTJIY+vRe0IQw0e1sSdOnkZe7rZUEvx1bUezDrTDlmrdYuyKrCySYaKhKEsmoURFYaNQMonmvMeHsJnb+3L7CdpUYjGGA3j4EL7xc3DyFD5+xAbE/LbPjfDabVngGieLf4yi1QgO5leSdP34EvZK0aaUBTw9Fv3MvIHJQMCVTaJbbcWr5nohr1Gm540GMrlktSyGn6s1pFqzCY9UVr7n85VoVO4dsQnlVElXk2pNGvVMn1ezabsZK8CqSM69bStTVkUmrSiTJoquT6WNpK7FXG8wlefcqDVoLQu6c7K/Icp76wQGu2rrmbOYw+6uaHr2hhInkZcymt524jtzWEur7eSFgIJPP5LFf7mAiyWsgJmS2IqmSgDRinDZdTIlNp/LZyfC4a0EHgs57ssFVAt4soDnJexoONoVsLW8EjA0GSSPJLX9PCFKa/JGrZGJqQRcNEBq9a2DOD2vW8hWcm0USdhdFuDLtH/p9SJs0ra/rDU/9vaFADf9zVFUkWxnh/13vs769IT6/Aq3WKWFpP8yy7yUTv8ty4xXH9yim1/gkekYXIfZGeLaS5r5ivn5gstVyxt3J9isgAjVYgltjTE5eTPFjoYoowk+4KqWdrmiWa9o19egNYPxlLKeEcYe02tbFOKPE50YvOFlQQUgEpVCGc1wZ8rj33zEZFywd+soaT+QaSz5MGIuGL18zt43IkJUHlVkGFfIVJV3hK4RcGUMuiwYHN1GWcvq8pSuWkJwqGCSti3DlAUmKwg0jKZTlNG41gnIwBPQBN8RuhZlDIPxmK5bM7/oyHTG9cUpIXZcx0A5HFH5lmAsIXrcesksO+fwlXeo85x8NOXFr/9TsrZBG0XXaqKPKbG8QnspfuNyjB5P0cZivRRbHwJNW1O1K9bLK+rFiqvThpPzAWB54/UJxXDA1dU5q/UCk2XkJmXxKPlv8AHnHSEGLJYYtRRDZUAJMybg19M5R1tHqnXF5dkLgmsYDIbkRYkdDimKklETN63HmNifEEIymPyy2PxEbgoBKrMZvPN1OD2B80tpJYUAN2qNPD7dThUWHt4S/Uk/ru062BlCdyktofM5rFq4O5EFViH6nrYSJqWZSkvFGFm0qk4W9fVK2iFaSSuonol2pNe2KFJrKhnGkXrbkPYlgbadGfzmpzDO4dYtufZ1+gz9NFWvGflcrUH5xHYUbDL5ukbAlTECHI5uCzC7PJVcqOAh9J46WUo0L4BG0r+N3rIkeAECvk1RDl6Yn24FF518hy9O5TPGNFnkWzb5X+slZOfwyjvCsoym8Ov/VKbFtJLJpt5vqKvEGDFG8awZT7fHXER5AnjalYyWz1dwWkOqNbw+EQB8dSFtKZsLuLtRa2QSJDFCWPlsN2pNooLlGDknE1tVDefPwe/D4IYguxjIv2+0Nen8hF7g/mWt+XG3LwS4ASBC8BGVZQzu3GH//W9w9eQTzn7jN3BOxuNiulcWYCP/t3swYWg99fKYPDfYcojKoKvXEFuq5Zz5+QWjsWY8LLHGEpqGGDSZzajOzwmdR1+vJM27qenqCuclFsFkJcp7QlPTIuJU68U/pzcflEKYGIGkpdHaErR46AzHI/YOp5ydL8jLjHJntvnMQHJKTplZIW5aXMokr40Y0EWB6RyhjeJo7DzKyN2c1prB7j42K1hfvKRt17gYwLdYNwKUvJbJMJliOBjiVEPoHEFFQuyICPUZvbAU5XBE9IEyK4hEQhdwTUPd1HTOEdqWblXhlh3j1YfUu/t4Z3n9zTdpL14yyjMefPo9fuGt+0xGA2xm0o2nSkxdf5csURfRe9r1guv1nGY5x63XVNcty4XBecObdxWvvH6XtnMs6yVET5YPsVku9zS+JRqD89K8DMHLEhUEhOhk5qeU3K1Gp9BKY/NI07W09ZquHZFpg3JyR2amIyZql9r3IKlna36HO/wvty/2FlUa087gzh14/xvw5BP4jd8QsNKP4sIW2AAcTCELsHwhzr7FUDyU6zXQSuvp7ALGOk05WdHWBC2L4/m5tBiuV7I41nUKfUwj1VmaVmpq6NOsffLPydPETao12/aPkcVftQIkxkM4nErMQZnLZND2gwsAiiqtnXHb4rpRayiKFMcQ09SVl5BGhTx/d18AzMVLMb+LqYWVag2p1pApWcBVk6bCorRvSMyRT3z8cJzOR2rZd05ynpo6tZVaEfguO1h9ID48TsObb8o+5Dl88h14+4EAkry32bgB6FKtwSUB9XohU1bLhQDL61Z8e7wRWfvrd1MrSWqN5GelNp9vE1BKrI1PgvQ+8LIHkiqxZS4xMXlMIaSVtJu0SdEQEaYjUDvge5CUwNEmkOzL7cfdvjDgJoKkY1sDpmRw9x57X/sG8xdP6R49QykJGATSgHiaomoW1ItHjGYTslGOLhSKQAie5rpmdXZB6Bx3H+xQliWmzGlWNcVgQDYYEOYX+Lqmq2vapsL5Gte1xKixWYZVFrTCuzpRjzJlhRpAFG8bpYQ6FiGxJnSNIHZRDWOynIM7O3z4ncfs7FZpsrT/wtkEbsKmnhJBGStRFEptYgHIM3AdMYgGKXSdgBat0Zkl391BmQxz+ZJuvSLGFT4t5roo0XlM+qFSAIHR0Cpa18l+GE0IaiOqLYwFgvjIRJkq8DEVKa3JbUae1dgYsNfn7NpdfvXv/30Wiwv2cbyZB3Z2Z+SDAdE7gku+MEpL+z9R6pI/GqiamtXVCXSebu2pa4V3hju7ka9+/Q42M5xdnVKtVyhEv2R7HVRUuM7jffIuiUHudHXqHKj0fqhkvthRt57RToHWCmUV4FFoCAFXVahBwVBltFVia4S7QRuD3tw1f7n95G2J6Ui1hrv34GvfEP3No2dyfYcbj+3bP80CFo9gOpFQy0Kx0Vdc1wm8OLi/I62lIpO2RjmQceL5hSxsdWqx+DpFLOjEztg0JbWtNdyoNRsPG0MSEmthVvpa06dq39mB7zyG3Wr7HABsAjcJJMG2HRVDWpCT1ifVGrlDUNvQTJ00Qrs7AmAuXwo4iKttyy8vZSE3OsU4kBgcldpUNk0WJV1JSPtAmuCKBZvU8l6QbDPIatnPqzPIduG//fsyuo2DzMPuTI6z7zU2pOMCoG+AnCBsT6o1rL1ENTgDOxG+fkc+49WpuBST9Eu9DioqeZ672eKz285RX2t6vY1v5fGzIl13UmsEwEbRJQ0KIIMqMUL9ddcHYX65/djbFwbcQNxMJMUAelQyfPiQg2/8PG61YnlyDUQ0YXPTooCj/Yyd2YRyNsIOpLUUfSCsG5rFnHa+IhsW7B/s49aObDRg+eKELBefHKMUUSmCawnBEX0QvxMlE1JGSe5UcCJS9srgshxlDcqYpOuIiCtuwMcObQ3aZhLcqTU+BLz3nCwy8pM1D97xqEKej0rCVJVcdV0gZtvogIg4HCtjMcYQjSUqT1QyTUWMMkKuDERHNhqCuoXW5zTrJbFaAoqgQJkSpXOUEtGysRZQeNdhjIVAmkCTGmVSCJxzHV1by9H3Fb51dHVLVdcMyjFxsofa2ePrWjNQI/715Ut0UTDP4NNV4IGpsc4JQ6MQHZE1aaogppFMS9c1uLpFdVA3nq5T7M4Cb7y1x+Rgl6qqWK9X+ODJbEaRFwKGlRzfPhBTFi+Q8EwBdOKHJHRvDBHvIq4LmKxjMJlQDMYyVRUc2AzfrTHNiLKwsLyUEMz+fBgj7fovt5/QLW4nkgIwKuHhK/CNn5dJmlRrNginX1v2rfjT7IyEkehbOlUrupHrlWhrDvahcsKivDiBotfFJPDgWtF5+CQWVtkWhEQvI+Bd8ojJ8gTCTFowpdbInX2XxLwp9iE5cRM8LDJ4uYZ3nARGGittp97FOCKi4Cx9tt4VtxcpG719Tr/Q9i2WVGsYDUDdAn0uTEiqNYCARp2zEdlaizAnKXQypAOrELDWB066TlgNlHi+tE7Yr7qW9tJkV/Q52oAawcXx1ul3FSRuwXcpXT0xJ32tCdtaQ1fL63ZA42WKaxrgrV3xw6kraYMFn0I0y3QO0vENejvtlDR8AkZ67U1iwWKU89kG8fKZTmTKDC3nzGbikNwMBQwvL9kYMkJyff4D+Ar8Mdi+EOAm9v8bI1rpxJYG8r09jr7+DUK1Zv3L/xi76ohkKDQaxTCHt1/bYzgdko2GEmeQgES3qlhdXhBwTA/2GU9mXC3PMXlB29SMdkby5jYn+CBjw8puvK5UWoRVRJyIo4Hg8G0t+UVGo5RBlWlCIKQrMMifo05gTWuiClR1xycLix0oglIYbdFanJIloiGxtkRhcQCNFq4gpGZIlqEzaeFIC6wvmqIhiUH0f/lkhLaWeGXplld0qzk2AaiAsDw6yyBEbFaQ5S1FXlBnGt8FvI+EAM45fOjwbUd0cucYXaBbVjQ+snt4m9H+Ad87WzPavYU28PDejHB4D28szxfXvFh4Xlmu+WoeuF2YpC9yOCfeQMpobCH+EhJMKQxMDJGdseXwaMrurQOc9yzWS+pqgYqaLCvFvE9ZvI/4RoSLMfoEgRUqpkLcC/RSSymm5O6Yzm27rLDRYkc5WecwWqbfQt2QlQXh4hG8+nXQGUplZLbEWPtlF/wndotbtiMigGBvF77+DbmL/uV/BKsOWfnTnXoBvLYv+UijobAWveZitRZDOhzs74kPy+pcWklNLWPaIHf/PiRfFctn7tK03e4LRtiHtt4CDZU0Lz+i1mD6VoiWxbdysLBQkpiLxNj0Y98bbWpagCHtSGCTsp3l0oLzXsDHjVpDYnHJFExGAlauDCyvJfqhB1AklifVGrJcGKGsSKxTak0FUnumFeFtqjW4IO0oH+DgNuwfwPkadm8LSLk7gYO7AhDm17Bwol/KgwA6rUTA7JLOxmgBQtrIT0gMTIgwsnBrCrcOBVyslyIwjol9soUcRx9TkjlsxL9oAXv81lojx1Ntz+2ykrbnKBc2TKfrqG6E7etrjckE9NpSPh/V7+9X4I/B9oUANz3QFcdfCKHD+w5T5Ow+fJOwbrl49DGX3/shzktrINeKOwclt4/ErVaXpTAftSO0nma5xtVrskHGaDoT3QiiZ/Gtw2YloetwzuN9i/MNGoOxSliZmPoZWqOVJfiOGBW+rdBaQIeEMY7RZGL0F+X1Q9ugYybgJ1l0ex9pA1w3JB+ekOJshCZWqfBIe0qJ7kbr9CXcFiCVW3HoDpEYU+aWVlKAnbjoojNMUTLcP6JWlnpxQbe6JnhPFiJxINMaSgFGY4sBg7ZjVSxp60vaaolVCpUnIKkUyih868BHhrMZu7M98rKEwZjH3zlh13+fbDLk8E/8WR5khm9/+oxyZxet4GVwtFcv+UU3Z2+2I2tKRI6BDwSl0WWONRaCwrmAtYrpbMDenVvY4ZhVvWaxuMT7jqyYkmUDjNYisPZegBJS26OKqd2ebZktL6nrm4UtyiCKDgFfd6y7a0zQ2MkYrRSZMgTXYSOYy49pV59gx2+jtSIvLJn9Qnx1vtx+L5v0wNOC08lPkcPDN0Xg+/gj+O7HSROSvl/7JRzNhLEpS7mGaid3/cu1eK+UmcQBbFiOIMxDnhLAXWpR+AZpdaTW2I1ag7IyMhyViJD71O0QQI0Ry/T8xuvXENPETR8H4FOLu1VJz1Mk8iW1pDbeNlJr+G1qDbkVZiOkz/O5WkNoZREuSti/JYvx4kIEuv0kUao1pFojE1AOiiXUlwIglBJPmt4J2qgUXxFF9D3bk2M+GMN3T8B/X7xrfvHPyT5++kzYHIWwIdcvBWTNdhKrwnb8XWkBiSYTYOhS1MVsAHduialgvZYJKd+Jr042kM/tXZo2S8cokNpmUT47idnydsuE9R5CmgRikhNz0CkeI4FO52Q/Lz+G1ScwflveM88EIH65/djbF+SoJfM7ZVBJbBZixJiMbDBl/PBV9r/+s6zOzmmO10QiVitef3XGeDQAbQgu4LsW33S0a4kZiEpRjifkwwHeBfLxGN+1hNChtSEQCDFIOycrRZxqDdCLT6XHGtoGFTVdtULFSFcv0d6ho0Ibmzy1jEziKEXUovlRRqNsBjrDWkvQkdqHtBhH+bxaiptSpKRxiN6DMdJW8SE9RiVfHJXuhJy0ULT4KkSv0gCE3wxEKK0p9/bRecH68hhXLQi+Iw+7mPEMlRsiCqVysrykHE1ZL+dgwOSKYI2MhqscQo4pI9oMRJ9ic8xgSB09z84WlOMBmYbjf/aPub2/xyhA1dQopbFGc5WP+fj4U5T37O7ukuUyAaK0ktBPBHxEIp2HYWmY7c8oJ7t0vhXWpq5Q2pJnBVliTrq2ISRfGqMtKC2AzFg0auNtgwFcYm1iJLeGYZnTdR2tC1gdaesVjYXCFnJMg0x52CZy9uIfsPP6AyIKow32S3DzE7qlVohKE0exb1dkMtL84BXxvzk9h+M1mwX91ankDxkjTEDXSbTCei1sj1KyWA1K+ffJOLWfus13VPQZTpiAvt0E9No80aU0svD5VQJQy+Sl0reLSgFAPTui+1ZR0qXotBiqmHKkEhujElsRU9ukH9lOtYZUa0i1ZuOSnGqN+MGkz+FVYo28SEdy5PF7e8JWXR4LaPEdhF2Z/spNOva5PGY0Fb8ZA+QJ5Gkj/x5S7pIdJgCYC6gkwNkCxgMBC7/6j4QpCwhDpowAo2wMLx/JZ9vdFYCg2AKUXh9DkP0vjUReTHZkn9dLAavaJtYmtdTaht4klFRrILXvel+aG7VmAyBtYt26Ts6HjskkEWGESAxg9GJy/eIfiLPypq32Za35vWxfkKOWGlMqphsP8V4xWY7ODPl0yu5b77A6e8ny6puwgjJT3Lk9IxRDKIa4rsM3AVc1tKslTbUimojJC8xoSLvqyCcZ7WqNKYeYQUkxm1HszAiuEwABstgbQd0SjBmJRYHPa4w1NOsFrmvAO1y9SLoZjRkYtDVEJQVFRbC6RJkMZTRlmTHMFJ0P8h0wWtjh6GQk3PSCNKGNo9oCrBiimNFZhfIaZQSUhNRi2dDRWqGiFoaqqtA2Qw9LimyG1prq6oymWlBftgy0wdopMYmZsyJn4CeU4xmm80wGO+LWnFjjGEFHSUbXiVrWg4KLpyecXa+5XbeMygFFjLim4f70gI+qDm0C2mSoYsCnjSY/fkJZFhgzIjqPzTMZ3w8K13Z0baBpFQf7IyZ7R0RjWM4XzBdzfIQyG6KNIcRA6zsBNFGhkbvRTStf5wKUVdIhxARAVSC4ji54QvBk2uKVp3EB2zTkwxEuejSQKYVSBhMLrn7wFGZ/j2z4l2jqhqptPnMFb5j+L7cv+JbOUi8aDkm0anNxr51O4a13JOsn1RoyBXdm4rdSDBOwceJPs1qKoNZEabeMh7ByMM6E0SkS0zObyZi267Zti56l6JkZj7RN8loWxGohgmHvxEW3190Mko4k1RoioEsBaEanGAe1bYH1ArHeMO4ztaZvaaW2Vki/swq8TlNUqcXyuVojMRVRwJ3NZEIsSy2wqzPZ/8s+W2uaxMxR9s9PBPS0HgY7qfVy4xT171VkKdizgGencL0WrUw5kMc0jcRg1B3okJikAdQa1k9kNN2MhDXLe0G1knPYBmG39kaSfm6seBUtF7IP2TCBwHBjJB1ItUauI0RbhNvWGmAzDu66pNHxCRB5OWdNI6PufVpIz+DEHH7wFHb+Hgz+koC25kuH4t/L9gUBN6I1CSGJa6OXGyat0MqgMsPw8Ii9d7/K+dNPWH7nBaNxybPlgGffXXNwpyRvrjmcFQxsRhsDXb3GWEtZjrCjMc3ZCaPdAdXlJYPZWMCF1tjhEFRMxnmJSu2FzU7aHaEz6CxH5xJk2SykdeN8K34nSpNrTYyZtD6M0LYhE3SvtcFmBm08PkZ8VxPjKPnaRGGedWKMrBWhcMoxCWmCR/XBeVburCIapdLIakpRB9IXzBFCkDvHyqOznHw8xJZ3sfM59fwUt7zGZhm6LFExYq1lkJfMdm+xuj7DxcgwL4ghEqIwXBFxi9Z5TrCW1nU8+vgpulWslzVuf4diustqecVkZ5ej/RkeOJ9fcHl6zuXFmspEblU1uc3RMZKVBdpouuhYr66p6oA2loPbR2SjIXXXsWxWdF2NthnKZsmFROGjeGxoNGg5Dwo2mU8Rad9tLM437rMS4JFZC52itIrad7hOfIS8a5ITqZeb3BipnoLfrxi/ds3l/Jz1uvncFawSwPkS4vxEbBvre6k1GGRxyQwcHsG7X4Wnn8B3Xkj693II31nB3VLSvGdFEsF6aWNYK8naozGcncLuQEIgZ6MkCtXCPui0aH+u1sjkTYAuiYjzZNu/uBShbm8Y2E9FxWwLjly3BRXaiJ7FpNfvaoj9Ihq2ehMSyIFNrdlM8Hyu1sjv0jRTCGygfKo13Kg1ZLkAvPKu6GDmp6LFybLUzksi6ryE3VsSbinZL+mLm/QxPcOW53KcnYOPnwgYWdawtyMhpcsrmO3C7lQ+y+JSxvEvVmCj+MpkhexjmZyfgxPWqA4COG4fiY6q66BdJ08im44Jsi+p1pBqzWYCrdcukVqCPVvT15pe85dqjYDGLumNnERmZPl2nDxGeBphbw2vX8uE3Y+oNTfe/Mvtt9m+EOAmXRoYbXBBxL0RudNOWQuYIqe4dcjeu19jcXxBMTukfPgV8nLA6ckLHv+LjxnsjvnKu68yy2cwWWJ0IN/bQRc5bbtmokvaumF2dIDO0lheP8qNuNoGpK8qujmXWuEaVcq+KBVA76CUpq0WBO9o11egFDaOsFkuDLQC5VpMluNDRGvFqDAsVh2uTTRzjDJ6nFSFwh71y2NAhS4JkuGm70EkpFaLAd+JB4sCpeWuIQb5XD5EVOtQOhPQlBuK2S7GWOr5Od1qQaYtusjQUZHnljLmhPEOddsyaB02swSliF7hUJKGbi1RBV48ecT1+TV3bMa4a2hRFMGjYyS0La9+5XXe/YU/ycnxMf/tf/NLfPfb3+XYBcpnZ/zFe45JOaVIrFRTVSyvFzSd4uH9XWaHt/BRM19ds6prQohkuZwyo41kZymLijGdRpuypKQtJ8coGSOmO1NpBerkBC0FKJgInZyfugk064ouKyltLjdfVmOtZXf3NrN3/ioX64qzi1OqtvuR1/KXDM5Pwha3+pJeV6NMEu4qWWhvHUr+1PEFTA7h4VeELTg9hm99DDtj+MprkM9gupS79N1deW67FialauDwIIVHbnrFbIIv6TUcpHYJAlDKvu5JrUFpYUGcg1RriKMEwJUwLa7danG0EkHtqksGeol1ualgVkaeB2zaIjq1rD7jsZJYGpPJohzZMjcg76+VAJM2CWStlTbUbE+eNz+TyAZthYmJSliUmMN4R5yQW5faaUraXqR2lLXyfk8ew/m1AJ22kcclRpauha++Ab/wJ+HFMfydX4J/0whDUp7JcS6nW1aqqsURugPu7cLRkbBQq3mKi4iQazY+Qv2EFZGNmWJIwLhvb/XGiD0LthGs949Twu516fw0AVZVanvlqUWVWou7t+Hd/wDWNZyfpvyxL7cfd/tCgBvZ1GZliL2iPznaGC0eA2ZQMLp3n7333uDOvbfYuXsXd3nOgY1kD+9jM8Ozj59j7k4xehczKXF2CK2jrQUtO+fIihK54DJhiRIDsrn3Dn5rqhf7vwusUIMhKivQNodLRdesiV2LqxZoAmE42XwcbQyr1TUf/+BDpuOcaalZLCG4IDXC2ASuQFuT2lCIb4tSRGW2UQyALMiJ+ky1JSKFR+sgbbQ0WRWjRTmXbigCPnjxxSGSTyYE1+K9RxFRUUmrWGUMAlBGGhVo2gqrxxit5J5OGWLyuqhWV7x4/pw88zzci0z2xqy0oT6/oMgM66s5LK6wWvFTP/eL3Lr7kLt3X+PJB/OT9l0AAQAASURBVN/lybPHfPu64qshkhc5tiy4Pj9jOa/Y2R1x/9UHkGUsV2sWqyVt02JNjrYFxgzJszyNY2tMEjpGDFF5CBatA0oNJdYiRAF/WKATX7ToJKg0go9iLaCCwneRZt3hyoY4HKLtQFqAUTG79xZ2NGF9ds7Z2SWu20KYPudscz5+l5lT6sY1vymcUX3J/vyBbzeOu9xFsVGepigPBgXcvS95UHffgLt34fJczOwe3JfF+6PncHcMalfYnWwobZY6aSu6lKmUag19rVH97VzSy4jRE5tR6/56GAyFdUi1hmYtC3m1AALcqDWSgTSH738o7sQDDQtkP1ACEjaBnHoLZHpAp1LL60fWmp4pSGyPjmlSLD02WgFeitSCSW0fIkwmAry8k79vHJMzaZmVUcBLW4Eeb/dRma2vzuoanj8H62EvShtJG8nssgYu59JO0hp+/hfh/kO48wp88D14/gSuE2ApcmFvzs9gvpaR/tfuyzFerWScvUkiaVuCGaQYB7NtqfU0X6o16ACp1gjz1AOhBEj6kX+hkdPvlICcqpM4huEwvV/SQd17S4I0z87FOdvdrAdqS9z0rcIf95q/UWv+KN+KfWHAzQZIJNvpCKLvUCKiNTpDYSh2Ztz6yje4d/tVcC2jwlDsT5ngWD5/QdDwxsEe3k0Z3H9IMclZfPqI6d6Mrm7IByXa6m30ARroEuPq07UirIhSgegcEdGlKG0EgGcZmhGEiJ4runqFb9e0qRlibInS4JXm6aMXPHu8ZPKVHXLjCCHStB68TEbFVFxl/FyhTBo/RX7/mcUyItNUJk1WBaGZlVJJua9ROj1WJVdiIHhP6OQ9dRpPt4MRYXFF9EHYj/5uzkKMQwwa7x1NcGQYPBqvAuCJLnJy/JS2bhlNIjYL7L35gOXBO7z88AP0cErXdewd3GJ+fcGrb32VV19/k//t//7/QLW45pf/9v+D7/7zfwanc75mcszacvz0BYxv8fZf/5uMwor1yydcnF2ybh1RW3RWYmyGsUZMBbVGG7Utpih01IR0N6qVSkMofftBFjAlXvK0IVBkWiZO24DvwDslNcpJK0tnRo6x64hdRXCe+fU1l2eXm4nadKg3DvchCrl/8996alKl3/blZOMplv5nOzWaPI9+v75cX26f3XogIVBXfqdTO0YpYR8wopH56k/D7dekLVQYcSlWDp4dyyJ/sAduBvcfwKSAR4/ETK5qxPPG9q8LN2vNFsTorX9Kn3IdU/tIKWkxpVrDXIkQtV33H0IWRY28x+NjeLSAr+6CTqGe/dRRz3KYxCwoUttlW2s+s1j2i3GqNYQb+xQS8NFx+9xUa/BexqvlbkjA02AkgZt9WOeNWkMcyj64lM+1GadO58ZFOH4qo9KTKOPpb96Ho3fggw9gOBXwdHhLdD5vfQVeexP+1n8q7/m3/0tItQaTQ2Xh6QsYHcFf/99BWMPLJ9LKatwNEXFioGyeRMKfrTUizL7x+TUCXqX4puNqEssT5DwqROfTIYJjj3y+GIW1CkHYsbaWNuV8DmeXbA0luVFY+K245ObvPm/8d/N5qG275McCSD9Z2xcG3CjSQo5OrSCz+bPSCq0zUBqdZezfucd4PKK5rhnjCBFs19HFwGv3DymHJd55jG/ReYnSkd3b+5x/8pjJwS4AsXcG7ZXu/WKixb9G2Jog5nrpLiX6lr4YKAXZVO6cQgj4Zo1rO6KqyArR2fjouLpymCyjsANKMyfESNc6vHN479E6E8dbk6OKnM2VvOnpii5ne4GrTYFQif6MIelytJIIC7Md6YxaEbEyXZXqh7YBZQ2mlKIZ2hZshlKRzJg00m4IweFjIEaV3HkNBs16dc3l+TlaRUZljsotg719xm+9zdmzJxSHB7THL5mOd7h9/xUCEVuUjIgMB0P+vb/2N3j0G7/GB2uNPj1luFpRXdW89Rf+LJN/73/B1WLJOLe84RtWLx/Rnj0nLleEq2N0tUJ3LcoHYuik7aQDRmmCawVARBIQM0Sl8K7FxoFMY8k4WmKzI2Ht6NaRdQddMGJXgUNbi8nKzfF36zltXXN2fc7lfLEFKAmymFT/fAR1I1VabkTjJvqHeGPCOK17km4vx5jYT60q0XPFP8r3Vv+uNrVlayJJg9L/OYEbpWXK5s59GI/EgRgn38MuZSXdPxC7f+fT2PBAFow7+/DJY5nkga0L8Y1aA7D1nvHblkZMjMiNWoNCzN9AvtfNWloVqhKDQG0gOrjsRKOSDcDO5XWa5NbrvXyuPi38t6k1MmV14zhtwEhC7r23i04X+41aIxe71BpclAXc9tNCCaClWrMx94tRtCwh5Ult2IR0TtZzuDiTx5e5tLP2DuCtt+HpE2kfPj+W9taDV+X1ipIN8/XX/gb8xq/BWkuo6XoNFxX8hT8Df/Z/KblfuQVXwfEjOH0mLM7VsQjFXZeE2U6Oca+3cW06JiQgloCfayEO2LSmQmpdtVH8h9YRWuQzp1qDNcIQ9Tdi67mYFl6dw3zx2esWNp1FAaDqc/8ct9gq3vjRN5+Xntzj+5D29Y9YofnCgButwSe/EmkbJ2ZFhQQ8ZKpBGcM4G1BkimxcULQZXduybDuG0zGHB7OUDh3wizmuDFSnL8h2B/jOMZpO0vc0EF1MwwKy8igth0NM8qQYxd4CvD/zMYD3hBhRRUE+Hsn+XXg63xA6jaMSdiglfXfRgI4UxpMlFb1SIs6NRiallEnTUVqneAe1qS0qFZN++jN0HXFzpaqkYRPTQKXNprccjdnqS4JwYgoJl9Q2Q1uPDz45u2tMnouuKAZUVFhl6XyHC46g+++r5/rijLZzlJmlzAtCprDlkDtvv8O3/+F/x/XJMcPZDi+ff4ya5hwc3ZVR7SwnqI6jt77K7Xvv8fRXf4V/Pc24d7XmtftH6MGQdVXx//y//xLGFty+t8/R7QPuPfw6e2/sMBzljMsc062hXhK7GlYLVLPCX57TXp1BNSesl7j1Et+0BFdLC6rve5PAqHe41uFrRRcVqy4jeo1Po7umKNBFTgge7ztcfUl9dc756UtW6zodeWkjWgWFkdZeiFFa9jajKAqGo4LpZMqtW3fY3dmlczXr9ZqqrujalrZrqZuadVXTtA2uCzRtS9N2dE5JXe0vvbQo/hGrQX/4m+azfiU9s6J6ZqGPGDEy2p0pGQNvM1mcm1aygPZ3EhAJ4lBcBjh9LmLi1sFswkbD4uK2Baa1MASwHbE2VhZPPldr+niCohCQFSNcePHK6TRQCTvUO+T2jIL2iWlJRUOpreuwubkf21ojb623rSFI7aVtrZEFMbJJGe91LD1QuWkESEguzJm0lIIX1qIHjlpLmy8qYTh8l+6+0ttFLy2kXo+Tpymwcghvvwv/w38Hx8/Fz+b5xzDN4ehuuvPMQXXw9vtw/z34lV+BWQaXK7h3KJNKVQX/t1+Sx94/gFsH8Mo34J0dGObiW9RKraGrRRhdrwV0XJ1J0Gm1ktHxppU4De/ZcLf9Z3BOPkOlUksqk0m0XudUlHJ+YwLJ7YW8x9mx6HLkIt2cAkzPFKVrymQCVoeFtAGPbov+yzUC5uoqmSO2EvtRNaJb6kISUXcCRMP20vujwOZ8YcBNj0BjSqtVSqf8ntQqihKUmduc3eEYtV4yLkrKO3cIITI8OkCtrxmVFt+1FGWBtrA+eQyuIvqCPLfJrt+g8lLYDNi2DFI/WPX0NFrGu1GE2GyiTiT6IxLXDSrT5OMx0XWEqxO8b1N+mpj4lSW0nadzHueFSShH48QQCQDSSqFC/75s75ZiRMWQPHx8cg6WaYIQRRirjEGllGpl4lYArTVGKbQxoCBok4Y0/KYwRWT8OuLJNp4WAvasFZrU3RjPN0rTNjXXV5eoCMNBTlEM8EaR5Rn7d+4wPTxC7eywd/9NAgsuXj5J8RBKpp3SPr315/99/vX/8A+x2ZonwzEPhgPmL58zadeEWHBy3PDk8acE/zHFYERWZugsMh6V7O8N+IU//T4ms7R1TtModmZ3OHhrl93JgEFhMKHDuBouz+DkMfH4h8SrE0CAbehT1z3UnWbVWSwaFx3aRGxmUVYRncIBbn5O+P6vsTp9IcGlPbMPFEZzuL/LvTt3efPNd3jr7Td55ZVXufvgAXtHh0xne+zu7VMMSkLwuLahrSvapqFeLVmuV6yWK9brJdWy4unzJ/yL3/gNvvnr3+TZ8UvquhbLEq829Uw6Kz/5Bejfydbf7faTOb3PTD85FdMqYjPRtayXsvjcvi3/fnQAqysYZMLKFIWYGZ8+AbeGUEjYZao1pFoDpAVqW2uSSRagk++NgtjIXX2UXZK7+UZaG+OxLICXJ2mCCmRyyoiLcheS22963dFoSxH2o+BBbQHdjVojICw93yfQFoPsW7jB0sQo4tjIZwFSqjUykcVnag2oJIxNv8tS3IJSKY4hsB3PT+xQ00gqdwQGuYzVGyXA6PZtmWrbmcH9t0At4fgxm+gCm9g3Y+Av/BX47/8hZGsBNaMhvHwuDFjM4UUDjz4B/5EAp0EOWZRYjr0B/On3ZYquLqExsHsX3t6F6VC0V6EV8HN1Jv46L38ouVSRrTapZ0k6DV3yzemBXGblDsml625+Bt//Jpwcy7nYaLQQgLq3A7fvwptvw9tvwquvwYMHcHQIO/uwuyeMYvACYupKjuVqKdfyciV/Xlbw4okExn7zm3B8ImPnARF13ywvP4G15gsCblRS3KeJFpI5ntbEoJOSJWC0oQ0dNgUXxtWSNjOMbh0wHBryRsaalVWoGPHtNc35GePdGaFzlOMxQttF8bJJTsByA+eJyktLQfcQuXcMTpBWSX5UH60SfEt0AZOV2OGIrCqJTYX3DTKtYxiVmuAj3nt80OQWykEB9CxN/wVXbCa3ksuoD1FATRJy+KSdieRExoSgccEQQkDh0brDqA5tPco6HGCMxei4YRkk3gHQOl2vUkGD9ymNXCUAYlHGg9NoJaJjF1qW19fUVUtZZAwGA7IiQyFMRVaW3HnnXb79q7/M5YtjhvdmfPXunyJ4J60zY5MhIbz1J36R2e19Sk7IypwPLpbo5RNG5+eUZUGILU3XEKNCxygsy9qxuKr4xT/zNUazGccvrhgOB/yT//Ffcn6yQOlIWWiGo4LhsODgaIc7D/Z5/fV3+fo3/hxX//X/laKr8D6Il5aH2hmqzlC5jIERl+MsLzBpwiXGgHMtrlkyuXzMK25JoRXZeMSrDx/yja//FH/mz/5Zvv4zP839V19lOBoK8DFW9FNJJE5/qMkoipLheIxvazjYR9vsxs26sH3/m6ri7OyU73/vu/zKP/tlvvnNX+PDDz/h7HKO8/8/9v47yNLzvPIEf+/72WvTVmb5KlTBg4SlAQmQhEBSbBlSXhRlt6Vxu6NWa6ZjRuo/JiY2Yqe7oyN2p2Ond2PUZtVSi2oatURSooNIggREECAIwhZQAMrbzKy0137mNfvH897MIkRKajUhQlB/EUBmZd685jPPe77znOcc/y3+Q3/7ys73ctupNdsLexTGqN2Eyw/6Emd2vGWGA1ngFuehGUMZXIrj8DzVloyAT0/LXfpVtYZQa2ShIyzAQUh8Va3hFbVGNC8I0LFVyILKA+vQEBbBluH9ahERWy+gwmqp7s08fOagkbmq1my3xCZ+OLXZEY1NtDOkiOYnkv3jXHi9CpQRRiYOwC2KQydN7bRIJgDoqlojwrYgdJ747oRaI2OqCnwFG1viaZMlMqmWhdHsOPz7hhvhz74Ml5dh3xTc9TZhwpzdOaY+grfcDbvngJUgKB5A/4KwQnkmr1WXO6C3MjAysDkWYDMzDRc3RPj7ha/CSl/2ZaYFADUzca8+MAdHb4K7vg8+8r+HcFQX9icy5l9rMEkQIhPYqDBN552wLdUQNs6CGcjPW20BL7feBu96F9x5Bxw5LOeBDvs91BpeUWvIcjkXQ63ZGW9nhxUsxnLuvvA8/NmD8OjX4MRp2OjL+eSvfs6/PdtrBNz4nc5PqDcqMDXO2eBgq8Qgz3mqYkzH1tjaMLiySrmxxq6FKXxZyILhLMoZaGq01sRJRDUckSYRSsXo4CvgY1BGFl6vtIx+Ky2Fb7LQy7uT75WXKSpCDTAGV1fgFFGrSdqewVmPNwUeg7c1jWZMoqEsa5TydBoxaaq37+SkPaRDO0nuIq312Mpg61qch6MIM8oZjbv0R102xzlbhaY3NgxNLS0ja2gmitlWTDsumZ0ytBqrJGmfJJOB8yiKUMoTwrtI2i2iLMeWhezn2qDzNIxXCzOklcZrhzdQjMdsrq/j8ORpgzhOiKOMJIJUJygdcf3b70FFMb3BOoduv5NGM8cacVNWUQjSA+b2HmDfjTdz4Zsr6KTi3gN7OLVV8Scf/TDnLlf0+y2UbuLQGBtagTiUt0RZwksvXmLP3jnOnrzMTbcf5cuffwpTOKoKtjaHwIDTJzfgq6eYnW3x67/xYywvX+GaXIcbKoUpNEUVMa5jSp+QU6Njj44SdCR5OKayjMdjxmVB1znuOnItu9/6A7zpvT/ALXfeydTcfLASEOA48eiYmEK+AtnITbKTybYoa7CtqwjXgDyHp5mkHOx0OHDoGu5/7/vob/V44YXn+PKDX+QLX3qQZ59/gcFwvK3R/C8C5L/q9opive19pKTY20lLwe0UflvLwr+6KhNTC1Nyh1sXARjU0AoMRhqJ0VwSxKQTD5OYIJq1ApbsxPRtp9bIFt7LZJGfvE9jZQF2CBvTmg4sS9ACWSNMkkbiG5SHPBb3XxdENHESJqV2ag3Wy2Je13K3HmkBTqMOjKaErSi0LPamDoyMCa26GKISpgw0VyHph6R0AijcqTW0W7LQlkVoTxnR0Fw9Mq20LPoGaRmtr8vP04YwPVEWpDihpfX2e6S9N1yD2+6UIM86tLYmtUYhuqmbboFvrEBSwcE9sFXBR34Plg30WqDDtRhqDRNH6TyF5y9I2+rly3DHUfjcU+KRUwGbA6APJ9fhq6dgpgn/+MdhaRXyyXmlZB9WkbA2PpGWWeTDGHjIl6rsTmp8x8E1R+HN74Pv/wG48y6Y38VOwvtOreEvqDUCqJ0YG3L13xI+IwKwOh04dA28932wtQXPPwcPfhG+9CA8f1zS7Sdtq78lLM5rBNyAw8lkS9jURGznTEh6dmLW5uT8j5RkKyU47KBP6fv4JEaF4LUoT3Bjh/YGHSdYa0gaaTB1sxBrtNOoOMYZIz+PgFqiEwi6GxcSeJ014lbsZLpoIv5SeJypBaVHMXGWY12FcR5vLUma0mhGjAYFkdZ0GxFxmmyfJCqMYXonJ2ZdF9TFGJzGVg7jugzKo5y9HHFmy7HuI/ouhUZOe7bLysoARQyqwpUlelRDMWYujdibzXDd3CLz86u0WhvEcdD6RBpXW3SaEKUR3mpcYSTzyiXbE1yiQYuoncO4mvGoz3g0QkcRsVZEcUoSpUSRJtURURTTnprj5nfdR2/9CvuuvZnN1cvSwrO1TDqEyQLlPDe9852c+fqDDIuSKNLcMD/DdXe/i/j5Szzw6YcpzZD9B64DGlgLKvYSeDwYc/jaPezZs4u6KtjY6uPwGOdFH2QMSawxlSXLmgzHlsuX1ynqGhNFGGuoCk85SCisYmhjTACtWmmSvAlRLHpMaykaszSvu4H02tuYvfZmDu/eC3HEseeeRSlFmmakWUqj2STLGnQ6U7Q6HeIs3V6ygCBodgKZo+SqSSq1DephwvSEtqP2xFHEzPw8b7vnXbz5zXfz93/5v+Wxx7/GH/7H/8iDX36ItY1N6m0a+b+AnL94U4guZKfWbAt7J06yTFox4Vvld9o2gz74vrQSJiGPWQJjJ3TuxHAuT3cEuHFgheIwMn1VrdkGVMGlW3QqV084TWpNWFmMEYAQxQIWXCXPZ6y0x5qRmNxpLU7GaTpBv2yPfIdaI8nYUmvEVK4D1VG4FMOWBR+DC+Z7s11YGSJLRhXaHFJryCLIZmB+EeauQHtTtDQTnU9tpZWURsIoFQGMuWTn/AcggC4XIhBGozCGrQQERGkwRAwapak5uO8+WFuB626B1cuBHLqq1kwusne9Ex77okxdRRrmZ+Dud8Hzl+HTD0k7cf9RoCEsSxSo0f4YrtsNexaE/dgayPM5LyDKGDm+lZW22djBpXXRt9SRfM7SwyAR8GjjHTCttYCOidDcWshnRCx93e1w7c2wZ5+0K58/Jp8lzeTcagSw2JmSqI80fcVprnbAT5Rsk4PfWmtCG5EALrWX/T2/C+69T3yDfuW/g68/Av/xD+ArDwubdlWteS1vrxlwsz0t5T1aR4G5+da7F+cdXnnSZhM1cmg1Joo0Gk2MnI8qiVGZ2JBb00dHskjYysii4izOaAHAIbNDJ0HL4CM53mFSCuvxdRVE/Brv6gAAfPi7GOsqnC3xhSVuNokbbUw1xtkCh4NIMz0Vs7XZZ6YR04pzQOMJuVPOoxDhr6kkgdsZjSk14/IwZ1Z2cWIUsWRblM2MXfumuemWPTRaDRb2z/DZjz9PFBfc+74bWTrfZ9fuNo8+8AIbq32eXl/mpQvr3NjbzRt272Gqe4asOUbVhlhr0tjL1FTWFMbJ+dBiFxpZxynejmUi01QUwx7We1IdE8WZHDENUZyIB5AW4JRnTZiZQytF1miBlwRwsbqXKQilNAduuxPdaVGWFTrO8HWNLkccuf5Gph+7gtKen/+vfoQ4bbJ2ZZP2VIapFPOLU3S7bbRWOByzc1Okecx4XOFxkjVlFbFOidIGZdlnZWWLqUYLa8eUlWE8jKiNpnSKwiVYr/DKYzQsFWPOXVnisu6wlExhZg9g0wx35Qpm+Us4BAwbVwvoRclEXJKS5zntZpdWs8XC/B52797H3n0HmNu1SKvTJs0k5FBNCvr2Dbv6ln9ugxwvHj7KO1CWOM/YvXcv7//hH+W+d72bZ555io9+9D/w2c8/wKWlVazzf1turL5H26Syq6taJpO2EDtffdCANJswcqDGsihO7n49AnCy4ItjBmEcDmFCJkyQ0fInk3ygJLxuqDUyEh5YoqoMWtQgNrVmh9VJYgEytoTCyvtqtMUfxhaTOz6YimGzL62zKGN7TGbCDkyiA6qJkFRDqaC6BlYWYKjBtsXnZ9803LJbNCoHZuDjL4AewQ/cBOd6sKcDn39B8p42luD8OmztET1I9zQ0C2FotBa34DgSAGAn4ICdfRanEGoNppKJIe9AZzv5S5oQ0+CDGFnL883Oy/XTaAGT/TmpNUr25613CQgoK3m+upa23g03wWNXZGH/r39EWKLlTZjJoAD2zEC3HZyNnYC8PBZR7kS0ZxXoVP62HMDKlrwXM5ZzYRDJfnYqALoAYhUCVK8sge5IRMXsAQEwq1dg5Uvy/C4A54mXUBwiKfIcWlPSnprfA4v7xJJgflE+a5bu6KHgz9WanS20s7wP54fUGvJM/J3e/2Nw33vgmafgo78Pn/tTWF7d0RK9RrfXBLgJN6woybgGVMg8ssFwLehBQiaLN6F4ICPi3tU4a7GmJs5S8JooT/CbEkPgjcdVNRhLcWVF9HDNFkm7jUriIHQFiCVTzUWYshRGRmnJddLgY49KYqgn49keZR3O9HFFBUDS6hCnLaxxGFtBXTHVbXL5Yp+ZhmG6JSBCBd8ErSM8QVtjPKY01GWbK6vX8NxKyhmbMUy7HLx5kf6g4s3vvYHFA9NcPNen1y+Ic0Wj3WJ9fczMribtmQbv/pk76K2NGW0NOfb4OZ49dYmlM+u8ZfENzE+dptNZJos9UeKJlPT5lRbBoXdW9EJKE0UJsa6plcGEBHXvIYo0UeQkEwphn7QWzwwVilWr1UUpRZKklOMhabPFdo89aKjmDh0l27Wb6PIFAReuxvc3mbv2RpIkobaeU6dX+HsfuIe73nozxhryPOPZZ15gfW2LKytr7Nm7hyTTfOgX38f5c8sU45JHv/oc7XaD6647ynPPvchga8TS8gaLiwcw51+gKmuwwhZWTqbGkrxkS5f82djRW1rFjh3Z3CxJkuC21rDOYmxNZQp8CBZUgFeWJMlJ4pQ6a2EsjEYVWq1xeWWJE2dfpDs1TavRotueZn5uFwsLe1lY3MPU3CxJkkoY6mRhndxhwfadp5SiSIJYEfYwimK6U4q3v+0e3vjG2/jxH/9Jfvf3fpfPfO4BtnqDnSDn/7L9+W1ytzoBOuHcl4XK7rRsUDveMxP/GxvGqk0ti4fXAnCKLfm72gXQYOHKirxEsyW6hyQOQleY1BpcJCxIbaSNpSaLuJfH12EKatLeMX3RoYAYvWUtaU+FWsNUEy72oWmgRWCJAtAKDujUVqa3SgNlC9augeUMbAZJF25egH4F338jHJyBc30YlNBU0GzDxhgWWzDbhA/dAWtj2BzC4+fg9EU4swGLb4Sp09BZDp/Fy2fzbmd/T4Cd1sIu6Fp0PMaEcftwbLTbee8KOQ6TaS+8hHBOJqTGI3mP27UGwMGhIzJFdOmCPK+rJbrhupul5WU9nFqGH7kX3nqLAMs8g2dfEGfklVXYt0d0Nr/4/XB2WVigP3tO2mHXH4VjL8HWEJY3YOEAnHtBputceA8uTI3lJehSWluXV4XtmZuV999bC6DYSMvRc9VntzuOxllLgOCoAnVFBNKnj0uGWbMto/FzCzI9tntPCDVNdpib71BrZIsCkA/nXBTDlIK33QNvvA1+/Kfgd/+diLT7wx05yWtse02AG1Di8+FMmADxKO+DYFLvjPI7h3cWrSGJZQpBOYtyKehKQhgjTZTEkGmi0RaRVigni7cpSlw5xlYFpr+JGU6RdDtEjSZRmgfhH5iypNzc3GZy8UHoHCaOJMNIyVBA6vC2gbEDbDlERzFRlsG4FyarHHlT6NThuKLRCM7HxqDQOO8xRYEphQ0oqynOL13Hc70WS9kM6XSbt731CL2tMbe/cxcXzvT48udPsHZlA2uhDIXuuafP0u7k5HnC/GKHW990iKO37KM13eLcCwsce+IED29s8ebyBuYLxcz8JdzI0WikxGGKzDiPc55oMi5aGyYi6roq5XgoLdNdPgkXnSSHE0WE2MoAdiKcqdFxRFUMBSQ6u61PAUWat5i77kaG6+co6zHUFdXyBWbeMk2eJ5SDkse++gx7DyzwprtvJtIxvV6fLMtY3lhjdn6W2lnOvXyBa687zFvffhsbG5v84AfuI00TqmrMyv9xmdXlLS6c3+TNb9vH6MSTVFWJVQ6bKnSzAFNwCc9q7tlKNK7WzNCiLmqqwUWqqmA8GlGWBcbXJEkDtKfZyOl2d5FGMXOdBQ4fupYDBw4yP7/I1PQsrU6LvJETJZL2bmxNVRY8/8IzfO6Ln6Sdt7j2yE3cePOt7NqzmyT91jbWzgnIzh0ACqXFxViTorWl253inrffy4033sh73/Me/s/f+lc89cxzFKV5Ldac7/GmZHHzJqC/q1CgV9ukjrRHbAAaWhaVhg13w5V4o0SBEck1jLdC/QiLdVFKq7osxExuOCVeNY2mTE+FWiMTQZvhtQNT7X1ovbADsiKk1WIaYAdQDmXRSbPAcoT33Aitm1EFwe5lxxzQi56jDOxz1YWl66HXhGxWcrDuPgqbI3jnghgCPnASVtZlIZ2AqqfPQieX9sjuNtx1CN64D2Za8MICPHFC2hflDVAo2HVJ2K9G8KmJwwi5CwDuqloDbicocmICxU6tQcdh7Nxd9ZhIwGYcyWi20jvapgmAzVsCZFbPQag1LF+At07JyPeghEeehYML8LZbBGj2+tLqW1uDhVnZvy9fgOsOw9tvl+P2gfsENNQF/L+XYHkLzm3APfvhxJNyfHGifWoWwrJ5L87MiRZGh5bopAYXhb0bjaQF5iuIpdbQyKG7Sz7r9C44dBT2HxLzwulZYZfyTPan9wLCyxKOPwtf+gRkbTh6I9x8q4Cd9CphMXzHWiP73wOpTGB0p+Dt98KNN8L3fz/81m/BM8fknHqNba8RcEOoMWGqhzi0DB3eWrz1AfiExyQpeadL3p6i3FylHA3xxKQ33UjUauJOv4TdWBHBZhSD8uSdFvl0F+86+KKiHgwpexv4siSZnsU3HVEjB8AMR5hxIdNMwdDPWqEgvUYEp1p8ahQK1WiJzm40oOr3SKemyfIWtr+JswalY/I84eIVx9QMuNKgdIRXGhMmoJyDcpxzfukIT29lLDV2cf1b9nDjHYfESuKy4vOfeoHLF6/gaqEnVaRxTtp4vrJsbAwAWL68wblTqxy5YYHFPTP4TJG2WxRJwqO9dd7CDVg/Zm52BaUVDaWJ4wRrHMp5cDVKpXJuh5PcWoO1dbACqfHK46xDJQCRuAirOGgIRfexeekcncW9jPs9bF2LSDeE9SkdEcUZNx05zHPfVJR1JVRxb5VUQ6ud0R9WDIc1n/r4Q6wsrfGG229gfr5Nkmi63SZrV66Q5Q2mpqfw3tMfDFCRptURerrZnkbFOVmjw9rGGN/ex6A29MdDytzRrxUrI1jKPJcjR1GCtjGtrM3yygaD4WUGgzHVuALrxGxUKRIFjVbKNYeP8IH3fJC3vO1eDh49RN5qygi9Ujttp1ee5Ch6gx5/+qXPMOxv8c1nv07z8y1uOHozd955N9ff9Aa6MzPCik20Eldv2+0rFaYkIrSqSMiYn9vFB97/o9x5x138+9/7XT78+x/l0srafxkZf+XmYdsOmngHzNgwAu0M28LJJIFOVxKsN1fF2I0YbrxBRLJnXob15R3thPLQacF0F1xHAMFgCL0NWWymZ6HpZLECGI4k6+hq3U+oNeLwG4fJJnVV6wXRpPS3JDQynzgAG1n88wSuWJhRwXU3THxNJqAcMM5g+ShsptBYgDfvhjsPC7jKNfzxC3DhijBQ+NCWCaCrshBqDZfX4eQq3LgIu6flb9tN2W+9NeAG8GOYXWE7WytOhG0KtYZQa7aBp7XB8wbwQRxtnYzbTwCOineOEcClc9KWGfSkjkTxdq3Zzoc6chieQICNMfL+NBKdMazkv48/LMzL7dfDXFuA7XQTVq6IxmV6St73YCjHrN0GLLRnAgDuCLPVPiCArRhCw0ng5wgZ148tlIj+JmvDlQ04swT9EYRaQwzb00+tRJinH/0peNu9cO1hOfdCrfnzbabJSa4kUuLBT0uI6bNfh8814egtcNfdcNMbZLrvL6k1XFVrUJV8iLld8P4fhTvuhH//u/AfPgYra68puvg1Am686DIA5w2eCchRQWQsdzSTFG2Upx700LZCuRrvPcPhmMbGKtm6xW9dwbsalYpPjdaepN1E5wl2aLBViW5m5NEcZX+LqrdOGsyodJajI/HY8cagkmi7beucx1tDVVbbrZskzUgbLXTWxFuHKwaY8Yik2SIpS+qqJkoj2t0Gx84qrnVgjYXIY5E+rvcea2M2ejdybNDkUrbInfcfJW/mbKwP+MbXznD+1DJFWUoURaTxRHJtK/Dao1SCc3UA3Jqirpiba5PlEYeuX+Ct77mWolfxwuNnOf/cWdrVW1m+8gC7F0uU9zTaDTHxqyYjkX7bVNC6IPZ2XqZlA5tDCJ/0CvENCoGekZPFfbBymTiK8doGUbgwchO5g4o0MweOoBLNqByROI3trYEt6E7lLC33UQo213t8+pOP8MTjJ/mB97+JA4d30e/3ieMIrRWbmz3a7YylSwWzu+YZDgZUVcXJU5dYutzDAZubA1Z7lv7WmAsXtljdUqzjuRBblgtH4RTDGpLYsL6+xLgw0hFAdunk5tJ5h4s1rVbC299yPz/xwQ/SmZ0JeWCTR3+nLfzOe1aWLwGSxj4cDbiyvszjzzzCvoX9vOXOd/Lmu+9h1969OyBn+1J5ZfEIYaZaLAq01hw+dIh/+A9+nTvvuJN//v/6Fzz1zDHxR/ovG5NaI99OzGTCXerEodeF7ye6iEFP2j6ulv0/HAcjtyuwuSI/z7QwB5EPqdgJDI1cT80cojkBI711to3vslxAg9Ky2CYTnxjkMbYO12Nok6VZEJI2ZQEsBqEN0xLgVNUhsLIBZ5WAg1BrCLVG7upj6N8E/QZku+H+o/IeN4bwtdNwMvidKC1j40ymcQjj5EkAJchjqlKmhDIN1+6B7zsC/RoePwvPnYH6rXDlAVgs5fXbDRHAXlVrpM008dEJzFIgrbiq1qAQ5msy/u7C4r5yOQBBy3YIaag1gOzng9fIPi5HIqLurUnrZyqH5b48z3oPPvFV+PoJ+MCb4NAuYXDiSIDOZk/A0KVLEoo6HMh+P30ZLvfktbaGIsjeGsP5HmyF9xAbCcy0SswMYyPAuKivcoUOmwmfO1bQSuHN98GHPgSzM+GcmRyQ77RNag3SsvJewNCoL6/5zFdh8QDc+U64+x7Ys2cH5GxfKn++1kgchQtTaxoOHYZf+x9kmuv/+b/DM8/vXF/f4+01Am4CkAn5JwovbQzsts+M3xalepQ1+PGIpBGTdlrErZxNV1GsrpA0RDCnQpo4UYRXBuscKsuJ4xQzLrCDPtmuBVCKsrdK5RSJUiRRRJTmROmYejiWOAOdSOslNF50ZMXl1pThLs8Spw2iZlva9MWQ2DVJmy1qu471Ne12zKoaY6MG3tZU1uJ9jPIaay3D0SFeWM05bbqM/JjmdAZe88XPH2NrsInPHK2W5/0/8SaaTc/6+oiXnr9Eq9Vha7Pm8qUxedZifrHLkesW2H14luvffBDlI4598yJnXlxippVy+I17GO2f5vwXj7F/83bWNh4i3RURVZYsT4hJsFaKunIqZPpNAiiVXIROoYhQRGgVyah+KqfSBHxqFOVgk8Eli16Yoxz2SRut7VFnwqO7uw+gk5TS1igfY8p1zGCLfQcXOPbCBbxXGOtwzrG8sspH/8OX+cCPvY1dC03KwjK3q01dGqqywHrFxsmLfO2R45x++QK9rQLvIhQOVW7y7Ef+Db2Tp9kqoe8d55TjQs8xNJ5hCNJsaEemZMDBek8aNC9KSe0uvSLNM37g+3+En/v7/zWNRuOqG6e/qNjsbHVt2NxcJ01T8ryBDU7WRVXQH/Y4ff4UX3joT3jHW9/LO+9/L3OLi0HfxLcpOOHfOpgkAt4bpqamePe738v+/Qf5f/zTf8IXH3xINFN/vQv0dbQFIDPJWgq1ZkeIOplQCsyCNQIgGjF0muJU7GrR07SCOHeS16Qj0EEEnAVtxLiQCatQa+ithgksJXfCWQ7pWACT9WxHJEyO1ERQWu/UGtKG6CoUwgy4pgAcuy5MRysBtQk639EI+WAcZyyMDsKVHOyUsCrTOXgNn3seBhuQOWh6+PE75OvGGJ6/KIaGWzVcKkTzsdCB6xbg8Cy85RAQw5MXBRw1U7h1jwiRv/gcbN4B61+BhcD85AkQGBwF2+nmVxspWgSEhDw4VJg+SifLVgCJqBCuaWFhTlitZvAZuqrWsHgwjObXsj/KdWG8Di3ACxfldW04B1ZW4fe/DD/2dlhoioh7oSOTXmUh7+/0JXjkOLx0XuI5XIy01TbhI/8WTp6WQuK9gK6eE63TJEhz4nUzYaCubgvpsA+yDN79fvjl/xYajatKzF+t1mBq2FgXMJk32I54qApJQT93Er7yx3D3e+H+98LC4o7I+y+oNSLsRoDo1BS8+70iZv6n/wQefDgwft/b7TUCbrzcETsT7jA9OrQ2POLK65wssDEKNR7jbYGtNEnawBUFftDHo/A6QWU5bjTEUQnI0Qn1cBPTGBN3Gug8o9rcwFtD0ungqpq6HmFGW+g0RjebRM0cZwymGAPBJltHaOWJ0ibO1UQ6whlLPRrga0fSDAyOkSmaOG+RFEOsMTQSTaEqamcZ1kN8FIshX1VRmzZn1+Z4sUjoeY/1ni998XEWb4jZ9caCfRkkSYazhtvecYDYaZI85YY37qIz1WFzo8/SxYru7j0kMzkqjai2Sh76/Ani3LN3poFZ2uTkVsHq8oiqsJT9klztY7p3mGZ+VlyOq5jWVAeUkck0QoHxLvxbAI5TDmssNjFYawBHlDWvoolFP1WPBiwfe4JD7/8ZTF3IGLSfpJbL41qzu0haHarBkMh7NJ6NMyc4cOgIzUbE1HSXza0hReHJ8oxiVPLJjz3EtTft4Y233cC8lVbh2bPLvPzyMs8/f5m6cPQ2N0mynFarwVw2ZnHtKS68fJq+d/Qjx8uVY6X0ov8MF3EqpyLD0A5vR4o0VnjnxQ7EgUfxpjtu58c/9At0Z6apa4Mqa9AyMTVJef/2xUcYyK31dc6cPE1nqsvs7DxJGuOQoqO1pohGDMdDPvqp3+Grj32Rd9/3g7z9HfczPT/PJE9s5xn9ziLtHSgXpv8seRpzyy0388/+yf/GP/3n/5xPfuozlGX1dxzgeETcOZl6vGoBnNiPb/9Oi9+KLaDSYRqmFCanpYLtfS6tKlUGc7wkuBePodOQiZbNDVmUOx25y69HshinsUw9NXNhbl5Ra1Ae0qaAKR0FYDIQ0XIzMDimlsW60RagY4zoO1RgfOqgzaltEDo3YW0expOpIw9f+DrcEMMbC9HpxJm83/sOCcvQyODWXTDdkXbUhVLu9GcawdenhAdOiI5kpiGj0FslLI9ENNsvQe2F3jXQOCP7uIpgqgvKsD2yHGoNboetl0BRC0kYH1dOPvdVtQZnhEF57hvw/g+J/sW7neM6edzsLhFhD4Zs663OnIBD14onzcyUsC5jL/qVYQkf+wrctAduu0Heh1ZwbgVeXoJjl4WJ2diU86CpoDmGtafg5dPyHiInhaP0bLtuXn0qhtOMSMn5c7WbMQpuvw1+7heFsamNaHMmDs/fmrz7589zr2B9Q0DWVFemyrJ4B+BoDdFIdEqf/B149Itw3w/BO++HuTl4Ra3h29QaEi2AOo3hllvgn/wT+Of/HD71GZlM+x5urxFwA9ZJmCROQh1RCm8mjI0cDO8dmapJNWAqae+UNSqJaO9ZIDcD6sEGOs1QeRNbVrKIegUqwo1GuCxGJ+J+bKuSuNkl7U7jt2psXWPGFWmWoeOYuJFj6xJb1+As3tfSFkpEiaKjBIWS7KFqiFKOuNFGZS0xrYsTkryFK0tS5UlihUVhiUjTnDiPsVVOsXkdJzY8W3EXIpg/akl2rXL+Yk252aQaWmlDeUv/3Od4z9+7kf6oh6kMBw8fwtmK7lTN6MoS574+YnH/HIsHOrjBGNvzpN0G11+/n+Go4JnRBV46exlrKp5NNO9o3MLa2mnaTYiVRkUhXbu2sts0YfLL4JyIoV1tMGmJcgna1mA8Pk23fYp8MF20xYjNY09x6J0/iFrcj60rlE5Qk1649+SdGfLOLIONNVKdUpU19uzL7Puhu5nqNHnDG49yeWmVNG2w9+AivY0ex4+f4eSLF1m+uMbCvgXOnl6lrMYSl1Ib8DFlNWJmeoYbrsnhxUdYPXuajcKyphwvGcfQQaYVdUigj8NdU+E9iVLkmsBaKdJGxGBsqbznuiPX8APv/3GyZpPxuCRJUoqyxjlDs9kgzVMs0O/32NhYZzDoMRwMGI2GErcwHvPInz3ExkqPqnAMeyPiNKHZbpE3UpSWdmASj4l0xonyRS589Dx/9sgXue+dP8C9972HZqfNdgjopJ0SqGDnHd7u0MJxFHP40BH+7//L/8r83By//TsfZjwu/m4DHGt2DPVCrcGESZ5J4fcOVFhITCULW1lLW2PPgox+DzaC70hTpmK8FwZERSIKzWJ5vA6tm2ZXcpA2gz/OuJQ78zgWDU5dBhM6Swh8C6ngBGdZFVpVQ1lYGm1hUJyR3+ehPaW8jJzLH0obJ4+FMdm6FjacjB1HwBELi2twuYLNBgwcTJLJz31Wxr5HvbBQHZZ9MVVLG+jREeyfg4NTwjz1HHQbcP0BGBYwOg9nl+RvEg2NW2D1lExxqaCD8VqA14StMC6MwIfedW0gLWXSKNQa8e4JzIALU1XlCI49Ce/8AVjYJ7oaHe848noPnWnozIoRo07lM519GW59u+ik3ngUltbEMfjgbmlBHT8DL16EC2twYAFOrYpQvArvzceSPzU9DUea8NJjEuVQ2ADMPNtZXNtBpTvt6Ynv1zZIaUQwDufgNYfhAz8ZHKlLYZ2qYBHQbIigWynJNdvYENA9HEjwZ1WK8d4jD8NKT0BmbyRC4nZ7x/BRAXEhHkLnXoSPnodHvgDv+kF417tlpHwb5HxrrdkBopNTLRZt0P/yvwo4+ne/J8L679H2mgA3HrBWXGzRXoS6SihHFVT+3ksYZstb6QCHO6x6PMKnKfnCPElhqHoiQrajAaYcUI9GxFmCziOIQ9Bhp0PS7Qi4aTl0MyE2XfxwCHWJr5uoLEKnKXGjJZMu1VBa8hqUikMcTSRhm2mOrYbU4x5KaeK8gbcyQp40OjiVokdD2rFCpRlJnKONxitNVUScXW6x3t5LbR2z14+hu8XGqVlyZjl0YIrd+7vsOTzP8qUhF86cYWn5MpcuneP2O+4iThI6s3NURcHigT28I805d/wyLx5b5fSLK7ztnmtwHjpzOaOq4ta7DwKaY8+cY904LlQZc+Ui43KDJEkwtSOONcrrcPE6jNtJJp/4mTkEkBpTY61D5w2UCm2q8KC6HGOrEt/bRMb8ZdrNB9rTe0fabhN3phhUJXEKyjvawzW67QZzs22a7QZ79i7QaDZodXMazYTK1pw9tcKRaxd54onTdNo5N9x0GFM7RqOSc+fW6U51ufmmNlx4kksvHmersqxrx7HSUTpPK9GMrd+elNUKKifAphnY+4GDPHYkzjM2njxLeeMdt2OVZmnpEsbU9IddFHDh4nlWli9x+vTLnDt/hs3eFsPRgKouMaYO0501g/6A3uYmOkkxtaFvagA21zZJGxntboOsGQf355KoTiiqMU+/2OfE+Zd47OsP8aM/+rPcdOttxIlkdXkdy1XkLcpqGXO3QStlS9JYs3v3bv7Rr/8jsizlt/71bzMaF99yU6aQu8C/E+Jja2VRnMQRhFqDv0pYaQPQmYzDOiO+KEkq2VKFkcXcWllQ6mA6l6VBfxMWsE4Hul1ZEFttaCZQd2UBqitZ2LNgttdoSTGshsJiaEDFwaomCGnTXH4/7kkxyhtijKeciFlJpI0WKVmk41wyi5QWl9ylNrT3yvNfP4LuJpycBT8Le6fgQBcOz8OlEZw5I8GUF8/CnW+ShXFuVhas/Xvg72XwwhI8vwovrMC918j7n8tlEb77EBDBM2el5VanUOyGYl3aGrULoZ87tWZ7sfSv+M+ZnYTuvCHgSEU7DyjHsqBvbYY2Y2gv6clCbGVR70zL41Lk9YZrogGabcnXvbsEaE7l0t5zBk4sw3WL8M3TwrLdfFgYm3Ehk1HdDtzchYtPwYvPQ2nldcvQ2kz0ToxB6IqK7ioAmyDvIg6PN17OozvvEGC8fEkAzbAjn+3S+TD6/TKcOwO9TRj2BRyboN8xtSSeb27KOVuH/QewtilsXLchfkhxAlEhX6sxvNiH8y/BYw/Bj/0svPFWYYqUknOQcCNgdYgGCXouW8rx3L0bfv0fyTn9r39bJvS+pawExulVrjWvCXCjAGtryUhSMagI7w0Q7YjovUV5S2YqdJZCz28zi3Y4gHEDlabiIGwNupPh1nuST1UZ4iQhynNUItb6utHCjIbY8Yi40yVq5nhncabCFiPitCOPTVJ0YkTn42ucMWDH6DiG2KJVjFYKnbapRlsUw02yKCLOmqATooZCe0W1sc5UHNNtNoQZcRZrS8rqWpaqHD87y9HDloXb2sw07qT7jn3MHZ5GRxEnvnGJl05vMDfb5I63HWZhEWZmp6iqkl6/z/MvPsf87CKHbzzC9Pw0U7u67L1uN9fePM/W2oiqtPT6FXEc0Z1pce2Ni/S2Si5fXOWSS5hLruPK+hdptVoU44JGK8N7j9YxjhrnatHcKMSx2YknTawaaKUx3hNlzcB0ynSZczW2qKjrCru5Dji0ioMmh21aOIpSGjN7GPQtSW7p5lCuXubUE4/yIz/2FuJ8CmM1xipGo4IrKxu0Gy1mum2mpjvs3t2ltzXCGIOKYNdil7KsSZIBF154HF78JoO6Ztl7XgrAJlKKwjhqHyZ9A7BpJBGzeYQzhn7licK1O64EXJfjkkcff4Lu1Awbm+sUxZilpUucP3+KpeULWO+IYwlolXNYNGPGGJzx1HXFeDTe1jTVxoYQT9kfo1FNf3NA2ojpTnXI2zlp4sX6IK0xVc1jzzzCibMvct897+MHf/gnWNy3L0xmiQmmjhv4VOFHBSDCc+ssKoqYnZ3hH/z3v4bz8K/+zb9jNBpvX4NRHKNRVOZ7SyX/jWy2kmKsYsS0TGoNEM7NcHdal7LI9K5qFYRaQ5aGgm5kLPpSXxae2gR9Qx7GxVMZ/x4F8W+nKwuks8JoFCNIO7J4JOlO+8XXwi7ZsTA7sWM7ZDNtSyL1cDPodpoi8m2ElXNrQxipZlOAg3Ngh1BdC2UGs3NwyMDtDWjcDvfuh2tm5G8evwxn12Wxf/s1sOBhdkoYoX4fXnoeZhbghiOwaxp2TcH1u+GmOfG7qax45CSReO7cuCgtqourYBNIroP1L0iExLiAVhZaJDFgpAU3Eb+HWiMTUw22YxombSkdpsuckam0upKgTSbH1n/rIqoTmN0DfQu5lRbc2hI88Sj8xN2QTUkbziDvbXlTgFS3KS25xY6MyddGTpfFKZlGS4dw/HF48QkBdd7vABul2M7umpxfzsv+yaOQGB4KEcj3eGFqHn9CpuG21mX/L12Cc6dg+Zw8R5wKO6gmQmwnAMZ42RfjkG2lkLs1H96H8zCqJTqiEUt6fTsXLyINpEY+xzNfhbPH4d73wQ//pBj6KRWuFS1j6qmCUGvEYdrKOTk7A7/6a3Kc/u1vh8eELY5lR7zKteY1AW4EmDusc0SxKKy8U9vtKCH0PNRjomJE1O5gVy7hrEU5j8Jhexu4qRlQMXV/iEpq7KCPjjxuXJN0Gug0QUURaC9TUDrCjMdErSY6jcSfxoM3FluURHmOjsXbRkUxWGnVGF+i6xptUnzkw2M0SdaiGvYYbyyRdmag2cHomHE5YtDbYjbO6GQKFUWY0QB8g/XNjOjwbt79o7dAK2PoLN35JlWv4uE/fIbKFizsnsFsFRw7uUYx2uL9P32EA4ePoFBcWVvlYx/+9/zUh36FOE2w1qJjzcL+WXbtmWbYH3PmuTN85QsvUZdNrr3BsrCvxR1vPsDWRsX6sE8Zz3FlLWJx9xhTGfAtGs0G1jsxUPQa5dxOKnqYZtMuAmuJvCfOUrQSx2DvLHiFM2LA6NavgLXiHGwcWsvF4b20YDoLezGlZugq5lo5LVew/Jnf5vgYisYc2a5ddHYtsLBnL9ccOMQt1x0gue9GkkaLt77pBtZW+4zLkpXVTTY3+hw63OQLn3uYfeMVGmpMT8Op0jG5lGq/E1HgkJZ4GinaCYwrw8h4jBfwvD14Ef535tw5HvjSn2Jqw6C/gdaGJJG09yRJUGosrVR8ALHgXY1xHmvErDFNc0xtKKtqu/5tO/wD46Ji0Fuj1U7pTLfJ8pgoiUkSTWoy6rrkUw98lOeef4qf+alf5o63vJUkFRYHHRHlTVIU4+EI56G2igRhLWemp/m1/9uv4rzlX/+b32U8lqJjJnd1fxe2iWg0DjveTuj2yVkhtYZyDO0OrFwKotyAcHrrMDUrC2h/CEktC7/2wui0c2E5olh+FmoN47G4/aaRtKM8suiMCxGLxhHbQYg2tGp8aFWZVH4ehzZX1hbdzsYSdGak5WUjAUtbPYhy0ZFEkQArn8NWBod3w4/dEoTRFnY1JWfpD58RbdGeGQEjJ9fk+X/6CBw+AihYX4N//zvwM38/xEsE5mX/LOyZlqiC587AF16Csgk3zsC+Frz5AGxUwi4ks7AWwe7g3utb0mLxgQXzOrAX7Fx0KBEW27BAT9oxkxgNTwCCFkKtwVtpcYVas90CWtgLpQZXCbByBXzmt2EMNOZE+L2wS2IPDhyCGw/D990srNqbb5AWT1XClU0BB9e04HMPw+gK+LEcv8rtMBWTi3qyOUK7EQGC5qoL/5VWMefOwZe+EMbW10WsngSAmySgRsIeToQ7lqAXC+2w2grTV5vQNuUqAXN4jaKSqbF2CtOhXVVGwYMnE4D/+Y/Csafgp38F3vKWq1icSFqyKLE08AgYnTAz09Pwq/9AjsW/+V1hcGCHQXqVt9cEuMF7mbjxTjRSYcerEN7ovQLvSGxJ5C1RluJCYrNzlUywVRV2NCDudtEpOF9hRiOyToa1jjjLUToSIKKCk67SgakpiRtNdCqMhbMOFYqLTlOYuJmqCB3JNFFlayJfk6gGzoh7rE4ykmYHM9hksLbKaDQgShpUVUVRlLSTlEin2KoiUglON9gqW6wMO5z+7FeYOejQGwdQccbCvjb7DsyzfHaZrDDEzrF8boOiLvj6Vy9TVymbvRHLq8vsPnA/D31+i5eO/QH7DnR4w+2H2Hd4F412k850k9ZcRqM1pJnP8/lPHeMDP3Erh26YpfP4Msv9HkPVIC7n2RwsM7OrxagoyBs5NiRiOyvKlMlkpSL4DymPD9MOUd4I14tiEiBp61pkDINNGa13LrBw4Tm8FIH2wj4smtHQYOdS8jRmlx9SjTcwFy8wfF6xXCpejBRRHoFKSBstmjPTZFNTdHYtMLt/L/v2HQYX8+CffRM3XGUuHXLGOV6qHCNk+unbEaEeqKznyshyVWf8227GOk6fOksSKeJYEceaqhKxexRV4bwFrZSkuQOxVhjrMdZhLBTlGOd9GMyR/eoDQ42SwYq6hrosGQ5qmq2U9nSDLE+oqpo6FyH3S2ee5//4rX/G+178EX74x36C6dlZqSteEecNGlox2OxhawBDmqZEyjEzM8Ov/nf/gMHWgA9/5OOU1d8hYOO9LBb+qkkV2GEFQq3BhoDHLGM7sdlWYfGqBTB0u0GFXououJPJwprnUvjj4C8Tao0wNWUw8st22l+Tu+tX1BqiJPy+3mEvTCSjwEkm4tj+pqRbjwaQNGQRK0oBVzqVf6sEdBOKljgQf/YrcNDBxn5pW+1tw8Fd4rUyMgK4zm7IwvZnl+GtGfSGsLoCh74P/rQPL3wcDnbgtkNwzYK0dKaaMJ9DawiNefjEMfjJW+HGOfjGsmhDaEA5D4Nl2NWSBa+Rs52IbWvgKnCA2wF6JizkWWNy0OTf3gWtEtDfIPh2XHV8J3oqRI+DljH9uWAq6Icw2oAL5+GYkjiKSAmzohIBNrPT0J2GhQXYvxf2HQZi+LMnYbAK6UBeYwJs/qKWi/Mw+itME1kHp87siI0nGVbOQ6g126OcE98mjbTAJmnk5XhHRzABURM5lkIeUxOE8rWMnU83BORUNeSBSTzzPPyf/xSOfwB+7KeEmVHI9ZI35BrZ7MlzRbWc38oJwPm//gO5CfgPH5Pn/BvaXhPgxntPbUq2QwWDn4HH4ZQVca7TNMohmaspLxxH1T1ZYF0tWi0UvhLxkooUvrLYuiKOmzgNWssJ6714sHjncVYYBm9C/ECm0GSBWhSeUClQscaVFpTHKyXJ4srjXEVtSpRK0bWVOIM4IWu2Mb0N6lGfKjJYpXDe08wg1Z4oEj+LYhTRL3O2YotVWzzz4hm6vQ6DzQH33HctvdOrZNUK13QtN73lFk6dTOgv93j666sce2oDax2NWU86UzHuK158boNTL2xSFynLJ3ocf+kKVlfsWoyY7c6gXUxVWHSkeenZZbY2+6Bj1q3hYLbAuH+eqWYT5x0mmGhpLQGS1jqsU6gotAN1hKtLrJEeeJQ3CVdQsKbwWGOIdIQuxviqkEk4b4gSA0oFhgeaUzMoHVFWhlFR4HxNM0uZmYrwGKqxZ6qUY6cji61qTG9EsbbKwMOWV5yKc16e3sNGkuGrTd44W7O+XvBS4ek7v20s+B3PwVd8/U7bJAxB1hxPWdvtCaZIW7mhDKGjNhS4SCucV9ig8ZnoWq6uNZP6Azu1x2mox45xWTAclrS7Ga1OjjXhuZxGqQ3+5It/wKWlC/z0B3+BQ9ceZeIRFacNOtMw3OpTFiUKR95sAIr5uTl+/dd+nfOXLvHFLz6Ee414U7zqm/eyiE4mdCbeKThQVlpUTosDsK/hwnGoe0GnE7xdUHL3PllMaittgLgZ9DFhcZwo8uUCkn/XThLEMwVkAj7QOydCrEWzoSaUXjAGdJW8b53K6yVeNBLNthgEjvoQyXWFdwK6JkGIChhF0pKKLagtePE09DuweRHedS2cXYNiGboW7r4FTiWw3IPHV+HpDTnhZz3M1NBX8NwGvLAJ4xRO9ODlK6AqWIxE10IiLZtIw7NLsCG1RmINFqF/PrTN3I5hn44JvW9hAKJwgWgdjPesTCU1WkxqzfYxrU0wGAyu0BO/nFBrtkf8p2bC44yAQF8LgJ2KACOTUmU4dlGYMOuNBEB65OdxDtN7ZAEvt2C2ho1iZ+z7u6YlCZXAAXVgYibiXm13gM2k1UU497za0fhsT4xdfQ18m5fSSAxEWciUWDeTdqsJz+U0qA34wn+EpYvwwV+Aa4+yLSJKGzANbPWDiLgQRg4l4uJf+3W4dBG+8BB/Uz44rxlwY42RwEzFtrhRT/J7vMdjaJZbJGYTlkY4J86+6BxFA60aOGtEHNrKoH+F1swUURIT5ynWhB62ilG5lnFtUwebBAdKoTzoXOzLvXFgDF5F4fyI0bEkfTuliLzHeIf1Cu0qmZiqK5JmhzjLyVtTVOWY0tY4xGul1dZoRGEvn7lJFeUY78maEI2bDPsVpoZdTcsefyYAsBTSBqXxRGhMXeBI0FFEXTjauWKsPd54auNZWR5w2xsP0uxO84XPHcMMNUfftZsXjm1QGYe1jlMntxj2JeCz36pRdYvxqMBbR+0ddVETRwleKayzWBMWcKdCLp3FqgpnDWkyTdRsbdOdWoVYieGYdrOFryvccBCYNou1NVrFWCvAIOtOEWnN2CjGI4OpDVmakUSKZgPaDQUWqkpAiqvF5tF6L4MvLmJl8VpOvHSJVlyQlCUnlgsueseWFT3Nd6vceCYARe3o4vBoJTf6k7BLeaxsZVhIfVjB1PZzyf/8xKvjFX/nnNped0fWU1UF5djQmXXUtsJb0UVFcc6xk8/yb/7tv+QnfvRnufWuO4niCIUiSnNaXY/2ciPgnCUJHhX79x/kN/+n3+DKlVWeeeYY7u+CmHjC3OhoB6godrw9XOgPlD0wG7A0kgNbO9AZ0BAGxRr5u04unigzXbG+z9Oge5BaQ67Dv+sAYBzb+T6h1mxPCKlIFiZiyWOyVy1mkt4r7I+tZbFvdmSxb03JHbqtCcm/0NbyOfzEjr8hrSrvZWR53IReJU65DQv+lDjpukQYIBNaHXUBBO+dsYM9CGgy4b+lAbzxIHRn4HPPwUDBfXvg+c0dT5cTW9KysgW0aqhbMk1lHODExC4KrQ5noQ6f2QVGwjhQpeyj9pRMD13NuDlkMqjZFjAy7LMtTra1HAcbQE53So61UcJS1UZASqSggeiWDAImvJevk2vTAC6CxaMyCh6NhfFYDqPnFgEC372TdQdQqat+NmFcrqo1O3/iJr/gqj/a/lNeUWu2t0lSvEM+Q1XA2MBsYCytF/AZ53DiWfi3/1LExnfeKQwlSlpgXS9tKBem/iZ+OPsOwP/0m3KtPHPsuwgAv/P2mgA3E1QdRYm0ohBhsfYe5TXeO+KypFkNiXHoaiT8QFVSl5tUxpO1pmlMz6MbbVSicbUjbjRxtkKhcJUIXF1tUNE0trLUdU2aZRKGqXwQqBlUHKaglMYaaa8IU5zhfYnWiTCDIG2bME7sjSziNFrESYx1Oa4sqKoCpTztdobWseRmOYvXGSZu4NFkSU6exoydI84ylnqedM+t6LJgulGjshb7ds/SSDS9wYCqsjitZSprcj5ZRxwlrFzsMRjWTE81ue/7biLPExrNhPFonapyXFkaMh5XWCwq9dhmjeslFM6hAhCrjSGKY0xdybRP7dGRRzkl5n7e4H2KNY68OU2UZMKGORtYZY8rC6baLXxdijeRV3jrQr6URymNs5as2SWKYoyF4chR1DVZmpHFTeqoJosSUBqTGam51sjPdERtDEvJIsf7moUMXH/MUlFyTnnSdoPR1minDvKXMzN/lU0wnN+uMwA2BKDJuuWZOK/ulJjJ98F/e8Ko40Vv823emfLyWJTHOoWrwfQMZdVneqaJchFKDUjjBnVuWN5Y5iMf/x3W165w7/d9H1kjFwYna9CajShHA9GyoUiTHK0st77hTv7Hf/jr/M+/+Zssr6x+10Dga3ab3MFHcn1vi08nY9zeyYhwNZDfVSNASYum2JAFuzUN0/Myip1oWQAbLVkEULLAFlUQnk5Lq6IODEH6rbVGNDThvVgnoMUjid6+FBHs5KCYim1+z1Qibm60QmJ4LgtSWQAeOmlgQrwsMjoTAShafGyyWPZFnkHfw57b5O/zSkbKd89KK2Qw3En2tmF22CLvNUrgYk/EqVMt+L6bxJyvmcBoXT730kDAC4FtalbQTwJwi+TzGCMi07oKY/deWBunhDHwRm7wjIPmtAivJ2yYQz5vWYieaSKk9Sq0+8KFNomfaE7Ja1kk76oOLZS4Ke2UKJFpN2tkv9taROE6iH+TBUn5ThHAVoTR+3YDtkav0knrX8G8hKqjJr97ZWXzV31VVxU+v/P1z73EVY91SHupZ6Dqi/u0i0AN5BzKjbgcf+x3JL38/vvlPEJJy3A26Lwm+pskF1b0ljvg1/8H+I3fEJDzKm+vDXDjPbGOiOMYhYQ3AnikEHlnSIsNonos/g06xlsjgwNpAjkoN8YVa7i0xg8iBleWaHZbaO9wXqErixuX2LKCSBM3M5K8idaaOMuJshxvDG6iBNcE/Y3BWotD4W0tkQRE6DjFo4jROCtJ0bWpMcUQZ0qSvI2KE9IswxhHEmviKEEpCZRUJDgfUxmHwVEONPMLHZYuRowHNQ89eIY4U0SxZmqmwf15wb5rZvjlX72Ns59+gPP6Bh76+nnG5hy2LlDaS9sMz0ZvyGf/5Cne8vZrmW63QDuubIy5fHmN2fmc6dkm49LgHSRNj7U1VV0RIQJgpT3WG7z11HVNMS7lmFiFswodi6DYO0MUQd6dwuNlzNsLXeytpe5toJ3sUVWO8WF0fJLwLkyOI200iFLxDBoWnnFZ0G21yZIc1RDjP+8dWZRivKSRx2Ek8dKg4kW/gB5uQH+D1q4u7dEAvzVivV9Qh3MpjWOiSDP+LhtL+Vd8t3ND8srf7HyvAvvz7X7/5597pyApL6xZMfasmSFVZXDekyYZSRITRxGDaMDnH/w0q2tX+IH3/widqa40qaKEJMuxlRx3pwxxEpGTcP/9f48PfehJ/uX/97fEJ+j1vE3My7YdVif6jgB6nIFyQwTFodZsq8pDrcGNYbwKaQ3DCFYvi0/KhG2orUy7hFpDM5Oir4OQOAumfVfVGryXVokNt+S2ZnsyJU4J9JKwH14JE1QMpVWVt+XzpNnOeHWUCHgwNZCAi3eYkoGGXV24EInO4sEz0iaLtZjw5QUcnoFfvQ0+/aegb4CvX4D6rLR9Qq0BL1qKP34K3n6dODhHDjYLuLwmI+FzLfEHckATdiIlrHzWyAt4sT5kMZVBM6Lkvzgsui5MKHWn5FhMpoMIx2xrY+fiK0dsj45Poi4m7tONXASxqNCCCiP6SR6YKy/7KErlb1QzZFQ5GFTgF2VKrb8O812JwNgcQb/YaQ3FsRz3V83Ezn/Ll7/4ls3/xb/+To/1So7Z2IMZBvG3F61XEoTt8UByq9auSM7UVAdQO+aWlZHnUEEITQL3vw8+9E34//xWuAZeve01AW68s8Qo8UhxHmcsOlYo5M7eG0fcXxWBapSiVYS3lVy8MehIEWcZkY7w1RjnE2F/0hg3LtBJhHJIS6Ss8SuQzkwzdfQIvq7QiTAJPszjKR1JaCdQlxXe2u32gTMu6Co0HoVxDqciiCJU5sGNMcZih310mqGTBlFm0WWJ8g7Q6CiT69U6YaaMY7iacMPNu1g/WzIeObQegm5ibExRVJSVY1xWTEUF/hufo333z3HfexZIWjll6fni6ireRihlActoOOSJR57m4OFFtrbGrF6pGQ0K3v39b+DlF9dYXtpCeYVOayg1WvsdYaMHWxlsZBiXQ+qqwFsl+zDUWE2E8opG1qE5MwNKySh/SFA3VUnV66HaCWmzEVJu1Y5gWyP72Dk5jlGOB8pSMx7X1Kai2WiSBeGlc7VcJySgPFU8zYVNzdNrFxi2xvSuXGb/jUdoLXbZ+PozNJSmsjuivSzLGI3HvBa2vy474gLLo1DUNWxtlNh6a+cOSQQfOO/52hOP0Nva4id++oPMzO8CIEoyAa/KS91WmiyLmVIJv/QLf5+H/+xhnvjms69vrxsXDGQm47PGBk+awJwYLxEJdbhjV5EwMqHWEKkgMg76Dp+Eoh+LODaNwrhtYIBWgJlp0SdUFeJA6tme/Z3kKaHk8aHWoPxONIGYawWRbBTGv6XWCN3ZF2CTNCCz0ioJtYZQa6SXGlpgqwm8YRecLYW90ENZxG0soKzy8hxxCd/4DLzt5+Hdu8T3pVJwZVUms0KtYTCErz4FhxckhmC1kpTt994CL67D5S1ZLJNanIk1OyJhhyyCkYFyIHXCqh0BmgYZ11cyMh9qDWEiU0BhJcGQ7QRajZ3MqolgO2IHDKkoMFib4jo9NsIWXS3ydhPRayItvngatiJYuwDtQqbnbjgsk2Vff2aHFZpsWSbs0d/qbQJ0lLA4GyW8stb4cC4/8Yj4C/30h2B+Xv48CeJ6Ga+VfZTHoBL4hV+Ghx+GJ599VdtTrwlwY6sKPxpDIhM6AjM03lkxiasL0qKPrWp0Kw8p90pAh1J4rzFlhVNapk4iRTka0NGzOOuJmw28c0RpjqtqTFngNzZQ0RxxuynrubV4W0x6DqLpMRZTFthQfLwVxgEv486lKSntGJz4oCgidJLhTYUd1rhxjU5L4iymMzVH3GgKE6V0uIGsaWUxiUspNmt6ywWHbo54duUS77jvMDOz8zz71AWGA0+aOg4dmaUeDHA6IW7A3oM5R266hbzRph5/ic3VhMXdbWbnm+w/vJfxYJ3Z3TP01/pEjRaf/tjnePjRj7C1cgjlp3GqJpuqSc9GWDukkYSgzLqCJMN6x7AYUlYmTMEKbRnhiaOYRtqk1ezSnl6Q42Um3kOKejzEjmuy+RmiJMENB+Ik4kXIrZUkmjvvZH/EuUToeBgWlmExpNloEic5kYa6TqitIYoTemqeL5xvU156geXNTUbpiOvffhet2Q5PfvXr2I0xZaq5OklpMBq9Lhbtq9ll62AwqLB2Xcb1ibHWY52l0ah56oVvUn245mc+9HPM7hKAk6QN6nIsbUPriJKIJPEcueYI/9Uv/wovvviPGQxGf20A9prfqkr0GUm+c+ePlsXS1KIxKfrSWmrlYTRb7zApPtyRKy01PlIi5l2YEcahmQuQSINYuCzEPTaak0BNkKJvwlisR1iM2go4mgCdq2rNtidOqDVycHRgaioY1jCuxck3i2FqTkZ0fWjHeEBXwjz5VBySL4/h5lgW6ncdEmv+py7AwEPq4MictL1UIknWhxtww80yoTX+EqzEsKcDcw24Zi8M1mHPLKz1pVX28c/D1z8GywfBTwM1TFdwNgI3DFEVQSgcZ6EdOBQR8lW1BryAubQFjS5ML8hnN2E/eCXxAeMa5meElRkOwr4NrauJqDswxsTZjh65sCG5uynnhAbqRNi6OAE9B+e7cPEFMcRLh3D3ncJ8ffVxWB9dBVjDNhq9qov23+g2+RgO8S+y6wHUxEFo7KBRw/NPwocNfOjnJVAUQlzJWJ7EOgHyiYdrroFf+RX4jX8Mg1erlfefAG6UUhHwDeCi9/6HlVKzwEeBw8AZ4Ke99xvhsf8Y+BWks/lr3vvP/0XPbYoRg8sX6aY5Kk1DGnUkWVNGEL0brOOrEu+aMlUVRThbQUigRiucs6g4hdqJAalKMN6jYoUyiriR42ojF5R12LKGqBBn3UhBkkhrxdbSgiklI0raZBbl5T1prahtjXU1piypa3kcADoiTTNUnlCPSmxvQNpo0Jltkjc6WDy2HqN0SqSHTEeeVHvecNdR5q+JWC5PcOT2g5w/22TXrjY/80vvwivNs998mgvnt5hrHiX6gQ8yvbCITh2j/pgszrnnnbcys2ueJE3IWjmNdoNiuI/eeo/OVAeVwK59mg9//BPs2fU+FmfuIe9IRlTXp4zGV5jtptt3jUprhsWA0aiPqzzKgbUKnTniJCFLc1rtKdpZk6wzjcNj6jFaRSjvqUYjfG1odNuydlQFHrWdHeacCTdWAkHSVivoJhVF4aiqkvGoT9xJSXRGTYVHMXQt/vRyhzMnHmOPGVAqzQ333EV7/x6+8fCjrJ6/gvOefmW/pb68HoDNZPPCS24Pk4zHhuXLq5i6pizncNbR6RpazQZPH/8m/vcdP/tzv8jM7Kw4aCeZgHLAWycmgXHE+3/oh/mTz/wJn/70F/jr80v/edurWWcA8YG5fFHEj2nwS5noX0wt7MFgTe7+XZjmiQKrM0mgnqjHo6ADMV5AgPfS2jGh/XFVrSHUmu3YgTTZEbwaJb+3YcwXCz68J61kobWVsCl1vdMm01GIf0hgVEJvIH45s00RG+OlvaZTUENp8XgPdx6BIzGUJ+H2g3C2JaGQ/5f7ZPF/4ilY60HrKPzgz4j3S+JFY5I04R23ygKWJeIV02nCoJBE7W5bWlz7Ivj4H8Hce2H2HdB2gZVKxRNmcafWEGlp7wz7cnfjEPYmcwJW0hzaXYma6EzvfC4VyecZBWO9TjuM6hcINX5V28rDtvtxs70DoAoXogr6QaeUIdkKClwLLk3By4+CHQAa3n4XHNwLDz8mGVPey3j21ZfL66jWTBrp22Tj2MDlwGxWc3JudzsyGXX8m/D7LmRhzcq5lGQCyiEAHOQa+aH3w2c+LW3PV6nW/KcwN/8QeAHohn//JvBF7/0/U0r9Zvj3byilbgZ+BrgF2At8QSl1vZ8ED32bzYzGrJ88TtrpkM8vQprircO6mrIco4ZDqt4mubfbbK60NJSwKHiUj9E6QscJ3hga7SZKe3QINPTa4l1C2m3iTIKTKwgzKkGBjjQqjtGxRiU5Shu00xKGWI5DW8qhlEJHEREe42oxBazG2NpgnMUaQ51kpEkCicfUjqLXJ4oiVNJERRGZjkE54mhEWw/oJHM0OzmUKUvHY2YPlWxQ8sBnz/HS8VXe+e7DvOt97wQ8jz/8KONqxPvuuBdnLJ2ZLo12k5nd86SNjPGwoK4M1caA4VafhQMLPP/sM3zhc5/li5/9AvOzdzPTvY2k26e9Z4v151u0sRT1Klmeyj6xFlNX9McDimGFtwpv1HbtbuYp7e4M7UZXtCyttmSDWSNBpc5T9jfRWNI0Eoa4HOLCY6xxqFhhrcWGxO8kSUN2lWI01ozGNc24oJWXpM0OpU2pqxHPDRd55sSz3Kh7XLCa6++9i9nrDvLEQ49y4fhpEi9rzSR49fW6eS9hnihFpBVFYVhd2Qz71IoztJ0ib6R889gTRB+J+eAHP8j07BwKTRwnOGvEGsGLHmlubp6//4u/xFcfeYyNjd736qO9anUGkIXw5HGJRQi1RoCLket8NBQ7excoddgZTZ4wPT4Od6GJMC6tluhQtgMNrUwddZtgkvB3VgCIQhbzOJaLKcnFnM1paW2VQQM0maqaJIQ7Ld/XY1nInQ3sQhbcjb0Ag15fHpc05WuoNURj0ANI5sR2v0jgRQ2HHFDCZ8/Bi6tw/2H4e++SBfrhr4mg+o57BLDNdAXI7J4T+/5RKaBsfSAjwAcW4Nhz8PnPyqI1/VaYugM6A9i7Cc+HEe56NQhQg+6mroR9GVYC9MxVi2mWBJPCKdlnrbYcK2sEJDoPgy15rixMwJWDnccYJyyRtTueQmkSjqeCkRbWJy4gLwUU2lQ+92gRXn4OdE+M/+65E64/JMDmhVPbLP/36kbgb2zb9qwIwH5sYGUzMJDh+NkpaKRw7An4SAwf/KA4YRP0bdaEVmHQI83NwS/+Enz1UfHHeRW2vxK4UUrtB34I+N+A/zH8+EeA+8L3vwN8GfiN8POPeO9L4LRS6gTwFuBr3+n5nam59NRjxN0uC1lGOj2HihJsbanrAlUOseUIlTfQKrzlCQpXGh2CyJR36EhRFRVJkobHTASDGhVFqCxD6RhlZeTYm1IAURwTxzET9OSBuJnTzmLSZkpdVJSjoKcJbSgdLL6V0kSxRlmHdxHeOMY2BIZ5j7GWK6ub9Ixiz/59REmGNTU6KmjFq8zUu9lYHbKwt8vR/dfz6GNPsXjTJte+ZZoLxwecObXC1GyTo2+4nvf95Pu5fPYSs4u7KIZjrHOMBiN661ukWYbzFmscPvasrq/w5S8/wJ/84Z+wfFkxM/VOFq6ZozNX4tJ1eud30TE5TX+Zgg2ytIFzBlOVmDhha2udqrDbIb1RDHke0craNPMmeRYU8mkqo+HWoJVGWc9ofZNWo0GSZNL2KwtC8DUuCAid9SGbyhBHUagViqpWVIXHdxTNvEWWNxhXY9ZNk6+eusieaIUrY8/+O9/A4q03cPr4C5x7/iSx9+JJ5aXGBUP31+3mARtGT7WGqrJsrvfBK5zz1LZkZmYG14BHn/wqxlT83M/+AtPTM0Q6wto63Dy7YMOgedc73sX9972TP/yjP/kbL9mvdp0BRMT41GNiwJdlMD0nAkhjZCKqHIogNW/IpBJ8S63ZCT0MWo6yuirIcafWiC4m2xEk10HbEcc7/2177iPtrCyGZiqTVqNxCPcMbItK2F7x4wmTFIUx8p1ag7WwuikAYf8+uXM2gTWKV6HeDVeGsHcP7L8BHnsKbtqEt8zACwM4uSLMzy3Xw099AM5chN0LEoyJlzbCxlbQp1h5/QTYvAIPfwH+4FNwyUP3XrhmHuZKyNfh/DyYBvhl8OvSsnBGWJM4CREDVjg4j1y8eQR5R6a3skw+Y5rKgmpN0Lp4WN8U48QkPKYod57H10Gg7EPukgkCYYAApAoPbSWxDnlDtFSmAacuQbQsotrbb4HbboQXj8OxEzvszDbA+TuwTcbcNcJWhVoj510l2rIG8ORX5Vz/uV+UoFgdBZsC5LrRwdzyHe+E+98Jf/gnr8rb/asyN/8C+J+BzlU/W/TeXwbw3l9WSi2En+8DHr3qcRfCz77z5mD9+Esk01O0pudJG60QKjnCupo0lkVUhWwV78KIrLego9Ba9uhUvF90FJG2mqAUOk52lP1KaGVpcyuUj4iyCJ0kO6xNqDcqZCSBJmk2SfKMrJFSFyVlUVIVNjgdR+goxptJmrPFWyUMBQa8pgJGA089HjK325BQop1Ha00UXWJ3dZRTG0KdLiy0abKb048uke5aYm6/o7N7ntk98+SNHFOLUdzKxSXR+jhPsyvmYcvry5w58RLPPPU0Tz/1FCSOztRu9h25k+tvb5PlEUW1yaUzG4zOL0A/4WjmGK2fopUXNJszKKWoXc2w7DEcDMXN2yhUDGnD02l3aE/N0my2iKKYui5xcSxTabbGIgMQW8vLzM10JEFdxyIMDwGc1lYon2Ft0FRZS6wdkQpTs0ZhrRbGOkpRWuOU5vy4Szk4wZSz+P0HOfSmW1lbusSJx5+lKsTjaBRu1BpeUSrova4o4m+/ueBOKi0qi3N92a+uFo3XNLhGg8eeeow0yfjZD/08jWZOHCXUdYmKxZlb6Yhud4pf+Pmf44sPfoXNzf7f9Ef5F7yadQak5XH8JZieCuPcLWlvFGNwVZiSUWznOE2cX0OtEXzhd+IVokhErErJIv2KWgNIi8VHIVAzDZMmegfbTDKS0GJsl2dyF1yUosMpJu2wSF7ThOePbZgqMhBqDSC6mdEQdhvEHya0fqKLUB2FzTDFstACdsOjl2HXZdjvYc+8/NfMhZXSCkKtwXlhfbSCjRU4+TI8/TQ8+aQY3k0twuE74NaOpFtXm5JTdWIR+qm0mTZOyjRWcya092rxFBoMRLhqVAA2TjxtujPCjEWxgM84TC5tL5YKlpZgtitj+dt5UwHd2GDIat0OuNFuR8xslOxDEBZs4iY9noX+SXmefQfgLbdKEvrjz0rExuTvVXgPitdZO+o7bJPrASS93PXDfq0FuEwjrdGnHhNW8md/Xli+KAnHL4i2dSSTbz//8/Clr8CrUGv+UnCjlPphYMV7/4RS6r6/wnOqb/OzP3fUlVL/DfDfAExpTTVyrDz9PN3F/eTdKbLZBUw1Jo4ysuY0sc6I45hIEy6KIKd3MiYscQoqAEkxi/MuoESnxLSvqrenncTcT05KlSh0nKJUhMdha4O3RkTGXpLJvVegY5I8JoozkngcQE6CUTJx5WuInKOyBudqIi0CZ6UcTml645gST6JKMi2Bm418lfl6kzNXphgNFhmNHN3pJv3hNPWVJhev9PjqlRexo5Kbbnkj3dlpdh/cy2g4ZDQcURUVjzzyIJ/93KdYWdqk6Ock+hDN1l3EDYeJNJt1zXhUM+j1mG9P8f1vfRffeOgCK1tLzJkx61vHuPZARBornLUMez0MBWVhMEb2UZZ4ms2MztQMndYUcZohoZAOH6c4Y7DGkGi5oxtevszhuWmZKvMeV5TYqhCG3zqcM9JSdAQnY0ui5eZN4jYUSZri0XjnqVzC6Z5mli3W4jZ33Xsnw3LAy48/xeqV/p9zF3fA8O9AsfGw7fEmbv9KGJyN8fZdpfOOGeZxqeHBr/0ps9Mz/PAHPkAcxSg0xtRkabR9Hd3ztnt561vexOcfePBv7HO8WnUmPPd2rUFrQcBPPQ+L+6XAzi4IWxNlsuhGqSyiij9Xa+TOU+28+mTEeCKYnIxpV/XOtFMSS86TQpB3krHt8VKH9sl2dpWW59CxTJckGcTBT6VIQFXBWwe2gztdHRZlQjtLQxGH3VGG1pSCxhrUm3BlCgaLwlhMN2EwA1dacGULVl4Uh9o3vFHuxA/ulVbecCSTVI9+BT77SVjagF4G+hC07pAx6iiSzzOuJWqh2YU3vwsevgBbSzLGvnkM9mvZD8ZCrweqEMAQag2JFzH31Ay0pwNL5MJkW2BujBF9jLdw+bLEI0zE00UpuhvHTstxEhpprLQBNYHdUQJ+JtEXDmkp9iJgE6IW3HuntKm+/qRkS22faVct9H8Hag0QtEoEFwMlDM7GaIfB8g6Yl/DNrz0g8Qsf+EBgy6Lg9xSF60jD3ffAW98Mn//Sd/2t/lWYm3uADyilfhBxeegqpX4PWFZK7Ql3U3uQoUeQO6gDV/39fuDSK5/Ue/+vgH8FsC+OvfUx1caQ1WeeoDO3yLQCFSsaWYPEWZmQUi5Y+DtUrPFOiaYmTtCRaG4USiISogi0Fg2IRkBMpIiiKKSPK0BJuncS4b3CVAWuMti6xBmB5eFhyJOEn2lF0siJs5iNjXXKYkQSp+IBphSjkaGqFWnmSFNNmkdEpWezr+kNDPMLXbJEguvSXNEfH+OI3c3FE33edP9Brrtljs/+4ctcXtokthHjrRbrq+C8pz3T4ssPPEC72ebgNUfpTk/zxNe/ycljNbOdt9Fq7xImC01cZ9BvUm7WVB7SxPD2+2/h6I27OffygGRpiXrrJfJklYWFBeIoZjDqUbuC0ajGVArnFGniaTQUU+1ppttzZGksYbe1oahGkOVUZSHhp7rGViW6HNCZa4Xz3WGrigyPjiJJwnZ2eyzcWkMcO7LEMzKiJVERRHGK0grwFDbFDMdsVZ7r7r8L3Ug58+TTXDq9wsgLM+6BTgQKRWVf35qbV27ei9GfhJGCMY5Bv8CzgXUWrSI63Q5ZlvHJBz7B3Nw8d9/zNiIdY0yFsTFaK1Qc0+1M8SMf+ABfeegRiqL8m/oIr0qdgW+tNSqOPT6GzSE8/Q2YW9wBHVnjKvAidUZQoxaNhlZyBxrHATCEF4iiwKqE8WaF6EGiMOY9KSJRLKPiXsniW4VWVR28bb5NrRFQElpWG+siiE7SUNOC/qFSMgKeRtLKKT30NQyMCIWThjAQuYLRMbC7JTLh3Qfhljn4jy/C0paMd/fasIYs1nNt+MKfSrvmmqOyUH39CXiugM7boL1LPgsK6gwGTZnEAjHEe9ctcMseODUUdqX3MsRXJJ8pimHUA1eICWClZB8nXlyC29PQng2mh4Twx7Eco3IcQjHrYK44kBRzkONVVWz30SfTZt4HMFgLtTwR53lkoY5TOb44cKkAusrD990lLNZTT8PplZ1FfHKMUXx3XYn/FmwTPycf+v8G6BXARtCqRaJpyzN44BMwNw/3vC20aGtwAWzHMXSmBPx85ashtuG7t+m/7AHe+3/svd/vvT+MCPi+5L3/eeBTwC+Fh/0S8Mnw/aeAn1FKZUqpa4DrgK//xa+hwvSHp7ywzMqzT7B+9gSuLIm0lkRuHQGEHB9ZMJVXRFFKlOXEeUbcbKLSUKS1jIpHSYKKIcoS4kaGjiPiNJVWVJJgvaMaFozWNhiurjNYX2WwLl9HmxsMNzcZb/Up+j2K0ZiqLKhrg7UKH6UMR7C6UlCMx9SVoaxqBv2IUT8OwliPC22WtbLm9JW+LERlKanZtWWqs06rOok9eYGLZzcZ9Wvuefc1NBtCkRfDmG88NOYTH36SS6cu0dvY4I1vvovm9DRf/PxDXDg5z97596KZFmakUiiT4g3UZUE9Lkgiy7vfdyM33naYc6cGXH7pIocYsLXxNPt2p3Q6LbzW9PtDitJRFx7nFEniaTSg02kxPT1Fs9lCpynOOeraMq5KdLtDVYyxxuBMzbi/SYuaOKQhW2OpRmOsqUM7EWnbWSexFaYm1p4088RKhdBbRRTFxHGEIqLQLerxErPXHWH+8H7WLl7m3POn2aotyovfWmuyduDp4//CAMy/bdukw/GdNq3Ujku/A601Ve3obRYMtkZsbm0wGo0wtaE/6vORP/h9Tr18BmMNSmnKIri6ekR7c++9HDq0/2/mw/E3U2fkhcKC5D1cXIFnn4CzJ2USSWspwKHWbMckOCd/F6Wi7cgzaR+lSfib0BpKErldzGKh4mMtQCRJgnGcE1ZkfQNWN2BjDdbW5evmhniFbPVh0BPNTVkGZie89ljBSiG/q4KOpxdBP4ZxJNoQq8BqEfqu9AN5Uwbhp4XOOlQn4dRFOLslCeDvPiJtMK9gGMNDI/jwk3DiIqyuwVvukumXP30YXp6F+fcB08GjBkkst0gLbVyIoPr7b4I7roHTQzh+Qaa11p+CPSl0W7LfBkMRUBf+KmCDjMxPTclUU5rJ/q+tAMJ2WzxkTJhu622Br+TC15GYGI7GO8nTnsCM+Z1YjMiLT9AklylRO4nrRKCaMF6Ca6+BIwfg0mU4dmpnKipMQgdvC153opu/pNbsXBfhPx0mBDcLcWne2oBxmGAb9eEPPgwnzuzopMY7rDJaw733wqtQa/5zfG7+GfAxpdSvAOeAnwLw3h9TSn0MeB7BdP/9XzbBMNGPJUpBYVk79hwmi1lMU7r7DkoGUZyiA2Ah0rJvPZiykv2UpUS+RLmUuNmiGG2gtcK5Gk0SULYT7y4ricvVqKAc9hn3BxSDPlUQDEsgp0OCGiVBXCeKrClOukmakudtkjRHxzEb/Yw8q0lTRzGu8S5GaU81jsBb4sjhXUzpLVdWR1R1SZw1wEgoaBpHZPEzHCznOP7ll3jLT97KwaNzvOHWRZ59+jKjUYkxMBwoSlNy5NrrWFtf4xMf/lOOPV7gqmnqqgrW+rI5Z/BGo7QnTSPeef/1XHfLPk69sMzDf/w8+0ebXLnwKK18icVd80RKMSoGbG4OqCqDtZoo8jRank6zxXR3jnajTZRoWUC9Z1yNGNcVOmtQb22RJJlMRm5uMNcKURrGUY8LijSmaz0qibbHsp11mGBalmgxsYyVItaKSEuIqkJjrGFrLFlWR+94A4OtHuePn+TK5hiD5BC2YgHJpYWh9YxeZzTxX+njeAl2BbDOhWRyR39riI6Q6A8VkWUJl9Yu8vsf/T1+9Vd/jampKayzOO+JrEPFEfv3HuCet72Vl18+te0Y/j3avmt1ZmcLjEhhZbonT6QtsS8MIUzu4kOtQV5wx3E2S8GXcoffbEnUgNbSHlIhh4kgOHbIHem4kFHn3kD0JeORLNguTPGgAlDSAak3whh0Kg7EWUPudHsZZLV40YzDXbD2Am68FYdgF8v3ayNhNtKQheV80Ps8A+UcfPklSe0+OgO3LsLTl2UCygA9RIN07XXi7/LhB+CxEVQzwoy4q1ZAawAt7yPR8H3XwRv2wfEV+ONjMNqEC49Cfgl27Qr7fgAbg+DKrAVwtLzsz6n5nWiLiaC6Hsnr5k3Y2pJ2nUcW0rbEs2Cc7OckCI2TaOfCubr1p70cm8n0j5qIZwJIHSughDvvhq0eHD8Bm+NvBTZesZ0l9TqrNX8lrOb9zh3XhJ10DraGoWUVC4OTJbB2CT7y7+FXfx2mu4FJQ877OII9B+Dtd8PLp+C7WGv+k8CN9/7LyLQC3vs14N3f4XH/GzLx8FfeIu2ItYRXFusjrjz9DElnhqTRJMlT4ihFKcNWv0eWp6Reg7XoLJHWknN45yGN8WlCbS2+cvjhiCSIoJx12LKkGg4YbA0Zbq5RbA2oBmZ7KkiMPT3OyBSWihxoSxRrRtkQlCdpRDTaDZJmgyyHvQc7bK1uMBM54kgzNe2IdURZOkrjsdYTaxg7T2xqTFXishbKy0hnpDUzMwOq5Se4pv82vvGZ49TvuYE33XuQOE745mOn6Y9KstTz/BNP0pia4sP/vy+ztTJDNU6xrg7OszGJjoU11RFRrJjqpHz/D93EvmsWGPYrHv7MMywOBpjVJxlXz3DjkQ7dbpvajBmOxhR1iTGaKPE0ckW3lTM1NUO3M02WN4Q18w5jaopiSAWgNaYq0UQYXcFwk06rEcwVa8qyolTV9jQUeIx1YeJME6mYWCvSzJNFljj2pGlMGmcoNMNixJmzS+y64Sg+VqydPc+F05cpnCdV0IxAewF2tfeU+NfVlFQcRVjntkGhIjCYCEs1ocmV0hIK7MVMMY4UtfMUpUVvjMnTBv2kTxxNQex48oVv8IXPP8AHfuxH0VFEWY5pNJoo78nzBu9993v42Mc/wWD46hltfbvt1awzAKgglPWICdtTT0sbpNEI4scUlIFBX8ItXQA6WWhJOSdFOI3DKLkVxmAw2hFcOiegZjgUQLO5JoW/XwuoCsNVaILWRAkw0VYYn2woi3AeSW5RsyFtpUMdYX0iJ8BrOmh9SheCKsPC7XzwIgnxDCaMj2sNswNY+gb03w6fPg7vvQHuPSig7tFToq3JHDzxTZl2+XdfhuVZGGcC4KwFFVpzwLZ3TyeFH74JrlmQVtOnn5Z4hrWnoHgabuqID44J7FNdgtHC2ORKdDbdmZ1jMdFwmFpGxSGMBZZABLqCwaYAQa9F51SW7CxrUmuwYYpN6R39UealjRiF4xhn8pzFCM4uwQ3XysJ76jScviz7U8lDtrOd/OuQtZm0Uq8GbNu08U6t2TaxnAgdJ2P5pYWNsQDqpA/RFCQOnv8GfO5z8OM/Jq9RjsU40XthQ9/zHvjYH4m267u0/ecwN9/FTREBkYpQiPladUX0N1GzwfSBQ6TBsfibTxxjsDnmuhvn2bNrF3nZRA2GqCQiamQUS5cZDkv8qGZ2fpZ6fY2krEDBaLBFMegx2BhQ9SuqscM4ucOKWxFpEhFFEVEcksCd+LAo67GlA+uxtaMoDfVwSJSMINdMdXKyrM1grUcj0XSaMXkjoyotV9aGeK8ZOYXzsLthoaywbYX2Pvi7ePJEMdU9jVlL2Lv0Jp78nMPcf4Sb75xnYW+Hz3/yOaZmCp5+4jk2rsww7s0Gqwtx7QUtbKEFrSzzcx1uuX0vB4/MMzufc/rEKl974AUWez0aw+fZHH+NO29sc/2R/cSxZnO4xtraJsY4tPakqafVTGm3Oky1Z8jTBkpNkrhrirKgrkssWXBc9njlsHWJHvWJdYS3jqooGBUjTBRjjYSVqkRaVdYJS1ZWBRrIY00aO7HpiBOSQOUvra6xWXm6R/fR29jg/Etn2BoL7dyJFRqPwVM7GQP/2258/sot0uL/4wGUQoeoC60lBFNE7xPGxm+3qGrrt+Uew6JGra7jtCGJNa1mC7Tljz//R1x3/fXc/IZbsCH7K/JidXDnnW9m954FTpw48z389N/tbaJtiQTkgIxGP/OEAIiDh2DiWPz4c3LHfuO8MA5lUwBMogUELS0J0zEsYX4O1teCezHivTLsy7hsv5JEbeuk4jajQFPqoAuB7awlmwhQsV4M5gojACnUGjo5ZG0x2Us0NEMLrLSwNpRF3gbg1rSy2E/U9kki38cKumdgLYWlN8HnHNx/BO6cg71t+ORzMFvAE8/ByjT05gSMGRMyucLCZpF9ONeB2/fAkV2wqwEnV+GB48J6DI/D8BG4qSUtnljDcA3Wt4JuxkPqpS3W6oinTdbYaX2YWlye6xKJQwhsjHKSqzXuy89sAJPFSMCesQLukvC9C/u3KuUciDXEgV1L4p224dqa7P+j+6RV+NJZAWoQ2P8AaByvO1wDBNAfwMxk4s8FHdqknTvpWzm/c5ys39GMFTWsrotwO9bCxmnggT+CG26AN9zCtmmmD8zXHW+GPQvSvvouba8RcAM6NCEm7iTeRayfXqPOH8dHmoaDJNG0Gm2WT25x9qUlojxlpqtRxkKkqNY22by0ymhzk30HdtNfAzsYEhVDyqpitDGgHNZ460maGdNzKY1OizxvESUJkVYoF0wBowRTiUW6R2GqMeWoZLQ1oBrX1KWh6jsYG1RREXVSunNtBptj7KiS8WUDg1HCZhFxfORpRrAwFWOLAluMidI4THd5IgXdVoKzL6J7nmjtDp7+VJ9Ltx0gbbZpt2OuOXQdebSILtfZrAdUtcdFGmMt3amcRp7SnmpQ1Z4f+onb0EnMqF/yyJfOc+GFk1yPJ6tPsLL6Bd5wXYP9+3ahHZTjgv7WmPFoLPU29WRZRLvVod3u0GjkqDjCeA9WpqJqU1HWBhvl24JJZxxOedRY1PPj4YCl5Uusrl1h6sARvHMYY8jSmLo2IYJBWKBYaeJkMk4PWZoQxQl1XXFuuUfjxjdSmprVy5e4eGkdg4iHpSRJ0al8ADevI5pYtJQWpRRRJFeJxxPHO+09rRUuABkV/u29x1hPFKmJnp5ibCmGJf10QJJkJFnMxnCdT3zyDzh46BDNVoOiKGnk0o7dvWuRO++4/duCm8n7+Nu5TQp1jCROR3B6FbLHhQ2ZaAGabTi5BS8tCWszpWWhjIA1J06tG5twYDesK9GQFKF9stGXWATjxbtmLoN2S9oqaXrVFJYXkXKoNYB8PyphaxDEtgZCraGohCGZawvwGlVB86BglEARwSiwN1NRWPDHQZirhAlRSE6UfRF6HtbugE/24fYD0O5Ij/fgtRAtQrEuydCG4NRsoZtDI4Gphohuf/J20R/1CnjwHDx/EnBgTsLqA3BdA/btkv06LuRxw5EseKmX6Zl2R/5r5MKYeB/cm68SXet0R5w9AUYTRmc4gKVLEuK4/xrZt8bI566D1sM5ATwqsEVKyX5KEwFtpoblHtz4Bvn+0iW4uCbPH4XTZsIGTUib11GtAeT8Viq0Y8NnnRwPCO1av6PL0QHwWB/AX9jGVvLF0oG0ELMYhhvwiY/DoUPCthWlMHaRhl2LcOcd3x7cKPXX2s+vCXCj8CRaESklLUw0tY8Yl4ri+GWa3eNML3QgUxw5vI/LF1bp9RzLlwesnR9ycSBag3pYM5MYbrl2jjjLsKZkY22LXBtM5dHEzO3ZRXtmirzdJkoTmbDyHm89OGkZVWUB3kubTEcoFZEmMa32FN3ZWcpyzHhzwGhrSF3U2NrhhjVRWzM116a/PmRlqcB5zdqwy8tjy/l6yPWNlDxLsNaQeINXsbDYWhN5hcpiZqYilHqR8soqt7j7OPlYyVLUZtc1c8wuTLOwZ5a3vONattYLtPZUleXxh8/w7g/cwOryiLp2fOZjz3HsyYtsrdb01jboFDV3UbO1/Bgbva9xy7Up+3fPkCioTMmgGLKxcYW8YQRoRYpuq02nHca+oxhnxfTf46mtw9RGboaCLkaraHssX5djRoNNzp46zZkTKzSaivl9MuJqjMV7hTU16ARTGaqiRFvRiCjlSSNNokWz0xv0GORT6F1zjDaucPHEeQpjSRW0lGLLeJJIkSpF7T2j11FLSim5JpRWxDoSiYAWMAvhxjHUkziJsdZcJQZUxLGY+UmUiRUz196YOE5oNtporfE4nnz+mzz6yCPc9+7vAxyoFK0S4iTl7Xe/jT/8oz/GmG+Vs/ztBTY+6CzCHSdawE2p4MXL0D0Oi11IEZHj+VXYcrA8hIsj8ZBBCeiIDFw3JwZzdSVsiq5lwSeG3btgdkpATZqGUXEvd7w2GNiV46ADUaFlooVFaE+JiLcciwfI1kjuiGsnoKmthTFZH8BSIYzNsCuLSj0UNidLgzOskTbSBLR5FTKoItAvwsoquPvgsRKiNlwzC4szsHcO3nEtrI93jNseOg0/ciMsjwS4ffRZePIirBlplxUVYGDlMdh6BI4msHsmoPRScpzWV6Bh5HNHSlyHW9PQmhImy3q2qRE7GZf3bIc2hlojsRaFsGSnT8HLK5I8vjewD8aGr0b2bWWCwV/QiCgf/IZS2e+DLUi7sLALNlfg5Pmw2COPt35Hp/N6a0lNWBqt5DyVuyS+JRB0UluSOLQm3c4v4tCWmvgMeR/iOmLRT+kwAfjCk/DII3BVrUEFcHn32+APPyX7/OrtrwkgXxPgBoUUcaXwzki72Gsq74kLTe/FU/TSw9SNjPnZKW677TAnX1hh/cyIjSGcGDmU8ty6N+KNN+4mdVCs9XHGkadNZuZaxHmDvNUkbuZiujfxprCyZIOT1OU4xhceU5foyKMqOaGVVqgoJtIxrUaTVqNNPVcy7vUYrA0YFCPqtZKobWh3c4Y+4cz5mOPjmjN1n4RIXMDxGBy2GhEnDWE6nAUiudYimGqnKLXExeWPcUDdye70ei6+OOTPNgfMHZqn0Y6YXWzT6mY4r7jupnmSRsTJY8sMhjXe1Lz46BkWGzE36pK0OMP5c1+i27jCrTdMszg/TRw5jK0Z1zX93oBmIyfShsrU5HHM9NQc7WaXNG0AXlgXa2QoohpSmwpvK6LEhzFkAT7WVNj1VS4+f5ITL6+RKDhwoEWz2cTjqcoa25L2h9NgjDgiY50YK+LF2iNOcN6yvNmnPnADpa3YXF5iZbWP9dCJFFtOMUg65K4AXxMpKF8nd1IqxCrEcUQUabTSxJFGa01spPh4Jg7F4oIdRTHeWnSkQqyFx4bsqCgWIXhdw3BYkG5toLQnSSIMNX/82U9y+513MDM3jXMOq0TQ/aY776Lb7bC+vvk93iPfpW2yUCnFduaQ11JACw0vnYTsGgEHs1247TA8vyxTP0MlHjnKw14NN+2RNXitLwU5ySUVOcsF0DRzWaydZzs3aqIjIYgpCy+LfuSFsVFagESUyELRaMriMFeKJ8zaQNihtRLaRlgUn8D5WJiduodM/EwWXyceLUlDfhZqzfYIdCuFhSVY/iioN0F6Hbw4lFH5w/PQjmGxDd0wTXXzvLTCnl8JzFQNj54R0z5dQ3kGzn4R8itwwzTMT8tns7WcfL2hsDPaBsfmCKZmBdiEWrPt3wMC1EwlWp/U7/weLz9fX4UXTsBLa3Js97dlkg0vE2Ot8DraC8ipynAsAiuRIjoqbwVEHrheHJ+Xl+FK7yo9CRB1wUuteV2Z9k1ATRRapQQfIh1BqDVAEL4T2MtI2pKRCl5CAWxqgnUC4sU0LEX0rb20CKnhM58QlmZuOoiRg6D7zrskp+q7VGteE+BGEVp63uO8xxJTh2ygRHnMesHa2fOUMwdod1ocPrSfffNzbG32OXfuMvpEH4Pn5oM5U3mDJIlJ5maJsxjlFYTJG5RGWSsOxx5w8np4QZo6inGRJ85yvB+Ac1jnxMTPepypUd6DV2jtiOKMztwMjaku7f6QUX9EUZZ4qzhy3V7ODlY52dvEe0eqImI0xlT4vEE56tPs7MKoCOMqIiUMlgbSJGa22yVPS5ZWv8b65nMs6huZat7O1jNDLo0KXjQ1FodKY7JmzPEvRZT9Ee2owT0zCVNRTbH1MkuXH0PbM1y7N2H/vt208xSNwVlLaS2jUUGWJVjnKMs+WsFUZ4pOa4osTVA4jLHU1lJbqG1FbWR8GyZsd4StK7yKKHqbPPPYcS6f6DPdjLj+hl0sLsyTd+dQSlMUA7zrYIwIqeuqwpRFcIj1aK/IEkWSpJTFmDUfUXW7jLbWuXJ+iWFlycJN1FC1mZ7bTb1xgbKsqJSsFd/tc1MFOnq74+7h1eQupDWnydOEJIlJJ7byCB3sYh9aTzINZepa3o+HTMfUVvi0SOvtP5M/lUW93y9J04gkjelMdcB7zlw6yZcffJAf/Ykfl4lNLDqK2L/vAAcO7H39gBu4SggZGJbJIqU8rJdw9jzMHIBOS9ib+TlZ+M5dhpN9efyBXLQhSQxzs8KEhFrDZPJpMp3j2Jn68WFSJIrDSHIOvh9EygF4TMaWQ61BOxG8zs3AVFdEur2R6Gmsguv2SthnbyW0nSJAy6KeN0Io5LzcIbugCZqcvUksURRpCVcega1nQd8EzdvhmSEMizBW7eRibybw4PPy+lEDZhKIDWydgEuPgT0Ne2LYv3hVflSYVBoV0oJyGZR9eR+daWFt0qB5MXb7phNXhaBQOb+lNRQJS6YiGQN/9AU40RdwdcMuWJyH7pyAxGIArhMWYy3twqqQkXUb9m2qpG1SjsFpGUHfWofzS8JUTS561YH5PbBxfkdX9WoUgO3WV9j8Vcfq1dgmLagsCdqjb601xH6nFThp603acjowOJPzffJWJ5SyUtAvZUw/jSHUGi6fgi89CD/54yEfJ4ClfQfgwN7XH7iReuPxaKyXwh0rT67AO82VSyP61w2Ymemg0UQ6Ik1jGg1FOzE476mqkrzTIIslTqHu9/Hh7sxbi04idJKDEpbEK4/XSgpOUP1IdEOHKM2wtYx+eutx3uCsw1uDcQ7jKnxZoGthDBqtlGangVMS1Jk2OhzctUl6Tjy1IqXJtOQp4RV1bXF2RN6eYzC2GFMQa83/n73/CrI1O88zwWet9bvt0mceX75OoQAUPEmAMARFUhLFkMRow5Y6Qiaa3Qp1RPdEzKhjpBmpW5q+mpvpe3W0ZqZ7biSKRhRBJwIkSBGGBAhXMIUyx5v0mdv9dpm5+NbOfQCCYAF1iixA+iOy8lTmzm3+/e9vvev93vf9VAioEDBJyiBPuXJ+la31joPjP2T/7qep7A6PbDxLkq/hg8ZjMKVGaYXJHEfjm0wO73Bc7VEkYx7fLtjZ3mRYpOSpQnlLUJrGBU5Pj1Fas7a6wXQa8AH6eZ+10SZFnqO1wrpA6zyNdTRdjXUNdT2naz3OtiRaHDpdXWJMSjWf8+WbMx4ZKd7z1ktsbaxjTIrJU4KWNFzrOubzKf3+AO8drioFOEZmvsgMSgXGszGzzcepvaM8OOTkcI4nkCnFhJTB+jbzqsbYjiZqbl6lF/hVHVopeqkhTTTGSMu0cw7bedEovg7DORWQJpp+kVFkBXnRl7lbIZCkKUma0lQVedGjaRuqqqbf6zObzzFK09pWLN1GYa1FRdZRuiFeLvUA5awmzRKyrCDNDa2t+Ojv/Bof+MAH2D53DnBkumDQH/LM1Wf44he/+pBf6Z/z8WAacIgtCoUscPdKeHoG6yO5jTay+PaULOQhsi0rPQEpaSqJvAs63nnZpcZaI4tjbD3FWgMmjm4YScuqjWyAC9JGcpG9kOCqKKqNtxlkMIqi2zSF3gh2TsUoH4jsT3weQYtexVUw3JS2la1jeyoCriSVxe3CKmx0cPxpuPMpcDuw+WYo1uS8KANVzPXJHEy+AId3JBMmGcNWAdsbIg5OtTBji/lP42N5vmub4h4LCDgcbUiWjY63c1Er09Uyr6iexZksrbTiFLIRMomMmLg1k7lQz12UQY0mlXac1suxAPOpiFqDEwu+jeAkQRZeFeT923hUbnN4CIczOZkq3nB9S/RC1nK2uD/UQ8lzSbSwIYGYxOxjkvLrBHASLY7ArBA9mImt00U2U1XFeVuN/LvXF4G7iuB50Vq09oGWHQKyY61hVstrSwtx/9kKPv6r8MEPQKw16EJGoVx9EzykWvOGATcacX74IE0ipcJZFIELmlkNR+OSy+cdKhExowqeLElYX3XkhcMEza1rL7N9/iKD1TXynS1MkuHbGltWuLomBGl/oQEtgXHKZKgkk8GaWmg5HQqSppMFzLmz7yEEEmtp6jllPYcQRci2lSwoY3CupapKBqbkbasJf3TakUbmpmsa0T94S1NW9LcS+j6j8g6PRysv+TBBWm15akgSTa+XsrPjKOdTDo9+h5PTlrpTNB2Ax1tPZgJ56rm0WbB6sWBl5RyDXp9UG7Ry+OCxrqUJivF4Qr8oGK2t0bkOpSyJTthc32IwWAE0rbVUbUtZzynLMW3T0taNjGXoNG0dGCBhfF3bQqLoyopR6nj702usrPaZlifM53O8CzwaHM46vIe2bcmzQpisZo61Da0DVEAlgaocc9TC7PIGs/EJs71dTuuORClaIOQrpLlhMj9Fe0cbYP4QK45RipV+n5/56f8C6zteeull9k92qdsS23bMy4qybmg7/1DrnNKKxGiSJCFJJcSw1xucBVMmSUZiDL3ekLRu0EqTpjJ7zVlL5zqyLI2BrEIjLyavJ0bAu1bQtI6mbqjrCm0KlA7cuHeNT33yk/zUX/trOC1J0nlRcPXpqxijcQta+nv+iNupEF/PYvq3QsBAjWhczjuh54mMS5LAqoPCye2uvQznL0py7862WKnbWoZMNnUETctaI1biTMCESeJuV0MopIUSwpLtWXy3VnQq9VyeoPPLxdkYAQBVCaaE1UQSgpWR59c0xOFwYr3eSgWA+bhAL0Y1hNhqWzi4einsOAEFR78Nx3Fad0dctKKYN/WwWcCFHFZ2pB2kE1AxU8O18jwmY2Go1tYEbCgrgHF9GwYrcaG0wqzUcyjHAvaqGhoLrZYd4gL0NY04CcpK7NxPr8LqUPKG5mXU2kSQFJD7zQoBSM1cXFax1pCE+HjA5Q0JUtzdlQyhhQU6W42C2PGylfkwP/VKifX9r/2MtLxefgVOdmUCfNvJ66wb0Vs9zENH1iZJhLVJjAAMHUFKsmiNDuXxlY7MjloCxyyN3c/43JyXfy8SuhXCgNWtsGNJIdfOveuivflrfy1q0bxYwq8+HYXrr/21viHADYDC4KTRQojOKaMCPii6oKmdZ/+kxNlOtAWA0pr+YMCFnVVCkHyWcjrn+uRFer2M9XM7rJ+7SH91lSwr8F1LsA5tkjNRYQA5mR5C8IQ4K8Y7R9BCKes0EUYlTQgEQsiYzsZMpmOUMiglehOtDMornG9pbUtdN7xzM7BXptRWE4KmrgPWOhJjaMox7fSYfGUThaaazwg6wVuLUVru22gIjkSnGAX9bMDaSoH1DmsFVCijsa0nzVK0cuRZSp5my8wTX2MRBrB1gdm4ZHV1lcFwgAsesGiTsjIc0SsG2BAoqymTyRGTkzmzcUdVBuZNQmVTSltQOvBBsaoM7+8cruvE/eQ8j2wmrKwO2D/e4/RowtF+S08/zUUvgzLlPAestVKIm4rOVnRdiKGXjnEz47T3KFPvmR4dUB7OqWOLvAyGfn/I+maPk+OO2js6pP49jMMoRZFqPvhDH+Kf/LN/ysrakOPDU77y/Ff59Kf+gM9+7g+5fvsVjo73GE/n2Ic46iEzhn6vR6/fZ9Af0i8G9PpDFIEsz+X6c4F+v09ZzdEqkGU90iRhPD7BxIGPzkt7xMcwv4WV0zpPGocDNo2jrmuMUeR5SmVLPv57H+VDH/5RVtdWSF1CmmY89cQTJEmKW0yf/p4/DHF1W36p2KZYDFk8KeM07VgitZYBjjuroruwJraHXhSm4twOnLsobY2skAXVuQhi1HKhjLXmLEp6occxkXZMY5ssNXL7kInQdTqWz4qKepOFQNh1sljXDWwGcUzZCJrqsNRHlGOYHknLBi3uIp3EHXdkZWKtwaRyWrKBaHp8ZBDaNrZ3nCxqysv3NIvAUIGvly0bFyRxeWVVWnzBy3k3qYCaoi+3q2YwOYKTOUxamAdoErAp2ILlDKhEHtvGWVrOw1YCa0M43hVB90ELb3o8Wo1tPM8RJMZag63EVrnwszcz6D0itzs6gMP5ErsEI4Lnrb48xmIRf1gfeKUEQP/AB+B//mewNoKjE/jSV+FTn4bPfQbuvCIi7OmchzrqwZiY7dQTBrEYCMMFwqapyL70++JKOw0xvyYRm/zZcNnYil2E+S1s485zNoi0cdIONEpYQlvC730UPvyjEuznErmOnnhSGKOHUGveGOBGCRPjQ2y1nvUcFR5NGzw2wMFxR1nO48A/T5qmjPp9cr1NNZuSDQoKkzGbzpiNpxzeuk85mXL56lUG6zskSUZArIDBB7wVJia0Fu+DTAEP7mzHpY2RKeEqzqiKrirXid7ENo1MBlcG17Y0TUvXOgm5UwG8IjeKH1gz/NGxwXpF02g6a6FTGOepJmOy0TrFqEAbmE/HhMTEGX0dyhu8c2jt0XEwnNaQmQyfOFQvAxZZJ0S3k9CpKgScb3EEOutAJaigufToJZwLdK7GOUdVzcSabTSn8xnl3hGHhyXjsWVSppS2R+s1XVDYAODJjGej53hqW5EnGm8dTlls2xJcxc2bN5gcWqYzw6lNee78OeqmxvrYKsFgnSdLU5Igrp7GAgq64Gnmnsm5LaazCe3xCZNZiw2BVClanZO6lsPjA7xrJQH+IdG2WkEv0WyurvMz//nf5MIjF1BGM9xY5ZGnHuUn/upPcLh7wKd+99P8wr/5eX79o7/CeF4+lGJntKLIM/q9IXmeU+R9hisrDPpD0jQhMRmDQY/JdEqayqLZ7w+FgakqRivrEDx1055ZxZuukfdWS84SIRBiWnddW7KyJkmNzF1Tmhevf42XXniJd/7gO7HWYtKMy5cu0+/nNM33AbhRCyaGpTaAxffIYgTguJO2h0kALwW33we9LeMRBgWYHKYzWcBv3YfJFK5ehfUdYXFirfkGQXEbk4K/qdac7XLVoi0Ri2GsNTTNEoS0reg+WseZq8gr+bs1A8dG/r+JjEgXF5rJqeTIjAqp/JNxtPkijIE38jz1gtEhdtAymUAea82ZUyggoGxh1fWN/LyL2iGUaJZcAFfHLJqZvKZES3tj/xgOS5lUXqZge9ICi6NAZHfpoedgC/k764T9aVtpt926CYetjKGwKZw7Lwya6+L7GnNw0jQCsCA7PRXbcnMP57alNXV8ArPYblEKdC5M2dG+MFGEh9ciUvH1rK7Bz/yX8OhFAY+bq/DUY/BX/yLsHcDHPy0W6o99RJiph/HwWkn7rjcUbVTeg9GKgJssjQC0L+ckTeX2/cjgVJWELQYv12GSLFu1nX2gNRXOJgNQW9FcpUZ+pjRc/xq88CL84LvkOk0zuHRZBOcPYc7UGwLcyKIMEPDIEEtFrAVBduQuBE7HgfFsRj8fYJQiyRMSM6BIU4o0p3YVQWnWt3fY3Nqims9xGlzrsW0rdS1S9La1YL20wXyHNqnkiCQpSgVUmsoifCYIUgRncU2LbTqU0vQGIwiO4B1BZxitqGlpW4vqgrTLk8C5XscjeUHjNE1rqGYNPgXXaLJiQn9thhquYIwmTzJaJy0kF4K4x6wjSTQE0dZIbJ0M/9RaEbyKICvIzCavcciuRa45R17krG5tYpuGeT2n6hratmY+m1FOasraMq8MszphWms6m+FCToh5JkYFCu3JjWO9bzm3mXJ+Z8jqziqZVgLougZXN4z3LU0I1NZgisBbHl/juXdeZVw34GXyuIA0CU0M1kqchY3mkg5qPWKW9qiP97GnJXMn4K0OQKLprKOddJRdgwnwMJZdrSDViiJPeNMzb+cDP/Yjkn6t5NpEQ5qlXHjkIj/9N3+aq889zRe+9AdMb9zEvcaCp4AiS+kP+vT7PXr9AaPROqPhSGIIBj3azmGMZnNjHW00vV6fqirpupbeoE9VVQxHa4QwoWxmWNfFjYB8lowS5iZLUqq6BhWwdYfNWzodMEVO2c7597/3O7ztXW+lVYY0C2xubTEajTg5mTyEs/wGOM7aCoZl2uyDXwHGQcYk5ANZ5PIEzCBqEXJZVJWG7R1xSM1jonATGY5Ya2QBkFojTE0nC4fRQvurqG9YhBQtGBBnZeFoIkCKtUZShuNiQxtnTIUYzheg10kLyBlojWSNpAjQKaawNoPhiuyQkuwbRc+hk+cZa408RrTwLnbkXsV2WmRDQtTWLEBh42TR3N4SQFaXop9pG0l8ntbi6qqMTC6vtcymCvnixUd9kpeWU89KO217CNtrEfhFDU7dwH7UQNlEUocfW4V3X4WqXbJwAXnOxshzdgi4SZBWmxqKm+x4X1xiC3Yk1hqclyDGrnmIjA0RYCRw9W3w4x9eTqKPtYY8lans/+VPw9ufgS9/Bq7feDjgKovgpV8IaBmty9yuNJGfd1au0Y0N+V7043vZCsivKxGDh4kwX+4BljMQ9SRervGmlh9WHeTRuVbk0M7hd38H3vWcgPYsyGdpZQQn49f8Et8Q4AZgEQrqgkfUNuAJ2ACtl3ZF1SgOTiZsDNYkWM4TPwgJaWog6WGbDtt1DEZDstEAh0YpTTebCTtkPa5r8dahSTBpis5T0jxHGdAmBS2WW5SEygWlZNaUtXRNg+06tFb0ByO8swTbYnUlwlljSKqOLm1EdOsgqMDFouWVWUbVpcwmlt66JsEwn1QMx8ckeYEyhnxlSAG0TUdTzqV1kyhaW4NSGKT1E5TCJIU47roKbTTBecIZva4gWJK0YOv8JjpNmJdTTo8POR6fUM0s00lgXCpmTUrtcqzXLAqMUdIW1MrS055R0bE5CmyupaxvrNHvjwRoxVhkpWXOl52doDqoVGB13fP44+d45PIjjM6fZ7eqCUHoGZMaGayJJB63rj1LtG/aQLW9xcw56ukpdtZSx5kjDYr19RWOx1MSb+iFgIubsddySBkXFmq4MuRD7/9Rzl8+v9zYo5b/DgGdaE5Pj/B6yTO+psdXijzP6Pf69Icj1lbWGAxHDPoDBr0BWZGQmlTWYrH6YRZi7k52ml3X4nxH1svoXIZNHGmaMi89BIfWCb00xXkHWsBO3XhUWRK0CMhVgM9+4VMcH/4tNrc3sV3H2uo6a2tr3Lp19yG80jfAoYmtDg+x1pwxEYsLqVFwPBEnT6+QxV+FKCCWWkMT7c2jobRdiBT8LIpRbVyErQOi8DhPJRfHEO3eOlL3kSlY0PzWxsGZnSyCg5EAHtuCrpaahqqDtBHR7UJHUrQwy6BLYWJhPQqYxxWMjwT8GCOjEEBeRzmPCcRaBMcqAptFJkxSyG27aqmJUEFYoVhrSHM4f04WyHIKJ4cyl2rWwTSIlb5JweXCzpyBmdgWVE4s4kUHowBrqeQE9VeWOpB47dI0MDuJ4ARYd/DYDlx5FM5dEHbBRzt5agQ4EOLwzDgjLEF2z1vbAvKmp8LanBUTBesrwsz5KLRdtNxe86HkXI8G8P4flSDIP6HWkGh537RbMo+v6aFVFMj3pT24uibApj8UzU2RLFuTsdbIdYpcjyEs7fm9DHwWoxBSiUoITlqeabZ8D7SSa7QsQeVLQfsXPw0Hfxt2NuW+V9dFm3Xzzmt7jbxBwI3UlBBbUnEoJpIR1YZAh6Bv7zRH45bx+gkm2SQzCa6eSwaWNjLOIIm0V6oJxhA6T1dV2K6m62q0UiRpRpoVJFlKkueYPEVphU4SlElQCxucEnubUvGN0IokN9H40KdwGa6zBO/pbA9ra1znyQtPM6+oqXDe47rAeuEYVFD5jLrrwMD66gjXdZSnpxSjNbLRCuDwPpANcophj67tqOYltk6w3tFGQXJQgaZu0EaLPkfr2O5RmCShP1oh6/fwwTGdTti/vc/u3oSDk45ZmVDZHOul/SVaR2FnDGCUJdOOPPGsDizrI8P6eo+VUZ9e3sckCV4bnLW4psI1LWmWUY8nNKdT5s7RGzouX9nk4vmL5P0BDNdoxjN0avC+I0lTjNaEaLfvXIgiWKhbQ7u2Qzmf0U4qXOvOmBmT5gxHOXQNzawk13CCfJ5ey6FQJBqy3LC9fpH3f+hDpHn6J9xYtCzXbrwSAd5re2wQZ5aSJ0JiMopen+Ggz3A4ZDDok5iE/mBA2zTYzlL0Mo6OTwhek5qMlZWEpunQytC1LdpIovG8LLHOoxVY11G3njQ1Zy7jznl0HTBJJ+3ONGPv8B4vfOWrvO/D76dtG3pFztbWxmt/kW+UI0Qgg37gZywLeQCchnELGyeQbAqoqaMWQwso54FaQ2KkeNc1tHFukkIKfFbIYpJn0cmjZLE1ccGFpZX2gVpDvnBa9cFlspv2Xlo3thaBaeFFwEwVrbpBBM8Vsuh0nbzMtZH8+3QsO+7RKhBbZYNc5le1nYyXqKPAs2kETKgQ9RImtsYWi28Uow5XJHEWJ1k8t/cl6fekgyqBLo/ggCUzcSbitrJoJx76VmLH1wuZHJ735f51ZFzaWtisLJfRDqdTASUDB1c24cIlaausrEu6c6plAU4jU3aWbQZnE61bDWvbokGa1sI8LY40h1EumqZpubxcXrMlU0VmxsD6RfjQj8h18S1vGlt+N15ZMmav+eHV8j1MFiCnL9qiYXRMDYbLqfS9TNp1XgvoWVmJjKKR92MhTK7KCHoRJqdtltoxiG3JAEknAvg0g8N78JWvws775fZ5JtELD+F4Q4AbybfxAm6CwocgAxBDoImtlST2hyZTx3hyBN6xsbZFVgykPQO4psQSyJKMzgZoHfV8gm1KglKkeY88L0j7OWneRyVKEopjSNrZQqX1Awg9rlwKdJKQFjnKWBKb4mx7xgRpm2Bsgk08SeFJexl51aeelnR1S+gsW1nHQZuSpIE0T8kHPfr9TabHx5THRyRZgc5TVKalHZ8o0qIgLTIIAWcDznWykKuA61pU0GgTQwa1EaeVCtRty/7+fe7fP+TO/Zq9MczbBBdSDBqtPBqP0R6jnExlN44idfQzT7+AtVHK6uoK/dGAPM1Jkhyd5FjbUZUTmqaisY6d02N6ozUme/t0roXUMhgZRqvrJFmKLvrY/gB7fEq/kDCwNM3IkoK2FQDovRbNTQMuy+mKPvXJEd28prU+an1UBJ9QtS20FZ2StPnXcihkjcoSTa/ocfXJ53j2uTd9W9BSVxU3b92gnpfLbsJreA5FltLr9TEmWYb2JSlaK1KTMRj1xbad5hgNTV0zKPoor8VaX0rycJZZirzHZDrBO5nRpZRoylorom8RmQcCCqPBtp6utrjU4LSl8oHnv/Q87/3gD9PSkiYJ21s7r+HVvYGOEJYtlBAXjrMvv6TUUTBzInT1Dta2RHC5uCiaEgE4mezCOidanKaMbayegJp+LlZao+NXBAgL99SfUGtIEqHujY3C2vYBJiiRrySCm14GVV8W4LqVBSnroM2kVVWkohHqbcLJERwfizA0TyHTslgnStwqsdbIEM5uyQa1LZHuiy0qs2Sc2hYOdmUcxf0KToE2gZDK36iIJHQAIlgyDlIn080LYJRKDspwKOAlyYQtchbKSWyJWDg9FnC2tyei09TCihFAk6Vy3vsDyUrJ+/Iep/G+2iq2BpW8rgaxJ/cGsHsbZlVsH8Y3YdFmaaTWPLRDES3YPXjyLfD2Nz3A2nyLo6rg5nVpfT6MY8HamESuSRVblEaBjjEDWU/AnUaAbdEXcOOieytJIbMiRp5NYqBfCiyiErolUF8Mk9XEDYAV0KMjWP/Sl+BDPwy0wvptP5xa88YAN0rF8D6FQ2L02xBovBc2GHW2AOWDhLJuqZo9gvKc336EtNcD61D1HIXGdi1pkuHaBuUDeTEg7w9Iez1MkaGNRhlReivl0VqYm2VhCxEkiHtAoQmxqPlYA63tJICu62jaCm8dtrPYrpMYfGcBjco9ygf6g4RHdIs78gz6nkRDGywba2tk/SEnu/do5xOKbFM2NXoxuyfmYijQuUZ7HXVwHoqU4BVBeWznqNuW6WTM4eEpu3sz9o8dJ1VC7YSBMEpRKIfRHZkOpLojTwJ55smMYjDUDHopwyKnNygoegMSk5BmGUol0hps50zHJ8xmY6pZQ9NoLuzv0btwAaUCK6sFjz/ew6SQ5T1MkqJHq9isR2JSaZ/FZFxlvKRFJ5qmc4gMSmG21qgTqOZTZjMZhRGQMQKNdXSdo2kbhgHyYR/dNNB08p47i19YfF/95YfRkGUJw+E673nXu9nYWf+2f3N8dMitO9epmtduQJcNlCHPe4yGa/R6PfIip8hzsjSjP+yR5xlpkmB6Bh+tvJ3taLqOJJHRDE1T0TQVs/mcIi+kVeUcTdditEHFzxnOy+gF5UXb6gN17UhTK+uVCly7/hJN3ZIXGSQJ6+ur0qL9Xk9lPZtT8wAkXVCGcoPlt34SLax7skBvPyLF3LpozdYCNpJMdp3eCwDqDeIU71TATKw14GMrSsU216ItExeYRQbOAkCdUdhRPNt1ssg6L//u4uwlZwEjk7x9kNlQupX5VwMvi0pwsL4mO/LdezCfQLYZmagFulrWGnIdhb1IwStSAQXKC5DrWjiZwOEp7E3hyAlLE2uNMAMOdBfBTBdDC70U8oESy3kvj7qPgSy2WQYqak+aUvJxZhNJuq0V7O/BhQtynys9eLwXAVxPFtzhqizMJo2jFUIUsXoBjAtBcocEIG6tiiZpNpXAwoVYWi9u55Zam1E/6qBaEVkvtEbf0fUnp5jMwGAd3vke+FNqDUeHcOe6ALyHcaRagPdwTUBLkUurNI3AJs/lveiZZWyAjddbEoXvTSVfs3kMogzConWtAN/F5+zMMeWXbd/aCSjVCPtz/aU4ZyqX92h99YHP6Xd/vCHATQiirXFh0YqC2nsscuEkaFKlSZNAb6DpgkV7OBwfszraJMkyguuo2pYsSdFak+YZWZ6hRkNhZrJUdv1akKQioBMjwElp0TJoEGBjBFgoIGgJmrOerq6oZyXVeEI5mdK2MecmIIu40aQmJUsydCKKf8cKUzXB65pR7jFjTcj6bJ7fxrU1XVNTDFYYrG3SzCdk/aGImhf29CjkU4kE/IFoeNBanE71jJOTCffuH7N7WDGZBGYVdE7jgljmU+XJtaVnLL3UUaSeLAv0+4ZekdDr5RR5jyLPyLMMozUmSaRNpwyeQOcDZTVhfLTP9GRGW3usU6hEYSdjRk9cJUlSRitrhNU1rPckMe1Sre8wj62r+IaTmCw60Rw6H2A7JWNxOji3sU3VdJSzOSeVYxAgQeEwJCbFOUewlqDgeFbSeE+e9PnJD/6n/N7nfp3j8eF3dP0pFJnW5FnO+uom7/qB92Ay823/5t69u+zev4/t7LLL8V0eSgmTZdKEJM3oFX2KPKfXy8mLXH6XpJJ7k6Y0NSSJ5CFJO1GTmITBcEDdVPR6hUyL14bdg10BPm2LXrAFQOcsidaSwK2g6wJN2ZFlBpPC/tF95tMpabaO84HVlbXX8ArfQMfizVp8eSKwWSxSi51skNC4YOVX42MYbcri67oIaqJmZtFuGg0jSl7k2Cx2rbGFhYpAhlh5gxT3B2rNme26rqRFNJ7AdCr5LB65jyRd5pDkcceNBkagJqBrARFjDVlfnEBdXIwGqxKkN5+IxiJZtGzgTDSc6OXCEmsN3slzOJnA/WM4KGWYZ6mkhRfiUqK87MhNXMBSL0LRvhHxbD86c/J0Gd6XJFFMGz9zPghbc7wvs7NqL0DEGHF4PXlVnvfqmugzrJcEZ4CNndi6WtYaTBZruxN7exeZmw7Y2JaZXbM5lO4BBs0IQPIuDt5E3g/vRW/1gf8UPv8b8B3WGtmlannta5vwAz8gQsNvd9y7C/fvR73Ld/hwf+zhlZyrhYW/15fn0ssFXKSZvO4siWJghCFUD7RNTSIMW1OJHs1aeW/2d+U8te2SmQQB3zq2BRXSOi27GOwHHN0X12GWynv/kGrNGwLcQHRLYsT9GDyOsHTjKWEdksQTdEflHUOdULctx9MT+sUQ4oQoTEoIDp0qjMmBII4XPAFxBmiTSFqxTsTpFBMhA8SWu7ioXFvR1Q31fEJ5OmV6MsN3Vmy6wyFr585hUoO3js47umpOZ4W98bYhBI1ONL3VAX6Q0lUVO1stszohywdk/RG2qQm9IcVwSFPNaKuSdLCC8kLvKZNA4iRcUEk7wStFOZ9x69YuL9085c6hpaoVSVAkSoZPSsu+JTeOUWEZ9BxFFlO2M0O/P6DfG1IUPdIsPXPnCbjL0GlGCNC0NZ2zVNWU2fiY+bjEdYG8lzDKU/qjEXk9RSWG3miVrpzhkoJBb0iW90AlmEuPU3c1Smtc18iQ0oVF1gdU1mPcwGEXJKV5Z5PZ0SHTsuG089IyU9DK5EhOT8YY50iUYmUwYDyf89ZHf4D/6f/+T/g//4/3+N1Pf+xVswyK+Dk0AuguX3icq2955tv+jXOO27ducXR4jHP+NbMZxkgvPUtzcY+FQJqmKGXI8oIsy8iznCxNybIMby3OKnQEoVmekDSafn/AfFYyn88IwTOfz9Da0HUW7z0hKIwxcS0V3ZBS8jaoIELuog1oEzg6PeT05JTVjTVs17GzvYWOgPp7/pBCsWQlFh/+BZmjlIAb3UYBayL6g+kJxFojZqu4+KVKFlCIwlUPsdZgTKTgE7ntIn2WeLOFlbupZFGejUVLcjKTRTXPZE7Vzo5Q9jY6puq5/N52oivxejGYThKMqwq2GnEkFQPRxdQV9IIsTNVMNBKDleXuXEutOWuV+ViAyxnc2oUbp3BohUEJSsDIItnZtKKd6VmxbadIKFVmxF1TDONCmi7ZCwKoTBbUQLRvW6in0n6alFFDlAhzNBxBPZFzOlqV12AKyR8qpNZw6fFlAnPXyo55UWtCEGDVIPerFexswfGRTGFfhOQpYutQi2vHRSHvYCCtoSvvhn/8P8I/3YNP/tZ3xjIolk6584/CW799rcE5uH0LDo5jevVrRDcmthLTnLM04iyV9zLPBRTmuVxrWR5F7PFcJBGgNlre09lAtErBi4hem6UuLEQwugCLC2Cz2FS0kcUwAU6PRNOzsSYAbnubPza087s43hDgJgA2KJyXlpSD2FpQaBQp+iyt2IZAZy39JCFLC46mp6wNVukXPaxvodMUaSYMbwpKa8mv0fJvnRhhJNBn8fnKyowpbzvaqqKcTJgenVDNGrJeTr9XkKiEC49eolhdRWlNW5dMjo45uHbE+PAEug7tFUp7jFFggixaMeHUWYcKMFKalcIxOdxn59IVuraR1F7bYdKUZj5BJTGAz4OnFUdSbvDWUpUld/YnfPn6lDtHDuc0GkNfO/qJozCePLH08sDKAEYrGUmao7QhMZCmCf1sSK8/lOcZwPkOpYVOVjojoGjblqqrsV2LdS2z8TH1tMRow2A9Jc9zaff1hujJKV0zZ/3CFY7Kikd+7O/w5Pt+BH2yx+QzvwXnL+LLBuc8TTkTt1fwOCti4hbDzTEces+w3ycMh1S3buA6z8wHhkpJ7FqQ8+hsQ4IwHlm/hypLrlx5jIoZd+/fYjQc0u8V7B28ul2VWtxX0uNNV9/MxrlvTxM3dcX1Gy8zGZ/EwZXfneJmAcB0HJAZvMcYLWGMWmN0QpZKAqgxJgZGKuqmwfvA6uoaTdMSkEwmEO1a09YYZSj6PWZ1iYqp3Hma4YPnLFNZqShCDzJk00NVNigNUzVlf3+fK088SnCW1ZWVmFL8/QBulLRYFgtFrDUPrLqcZaBYGxNce+KmGaxG/YHUGtIshu+pb3TzLBaDJJH7XDyWXdxvJwBkOoXDY7FsF5m0s5SBRy7B2qosRnUpE7ev3ZPbdl20ZMcWjwlxwYxb5UUyr9IiLj7cl7k9KM4yF9JU2JskBvB5gDbqhYyAqLKU4ZHXJ3DohKHBRAGwi60eKxbsATDKIhtjxA2WJMKUDEZLUOc7sbKD6DtQy3Zb10qWzPhEAuuUkdlVeS7nvDeUBOFmDheviPbjL/wteN+HZYr3Z/4dnL8EVZz8XU7BnYs6gigmxogmyHs518Mh3L4hwGYB5iBm4TgRE0MENz05J1ceB13C/Ztxonkhk9Vf7bFwnz39LJz/U4T6dQ3XX4bJMWdhed8NfbMAYIsBmd4tWcbFJPA0WwJyFcMnF+3W1TUB3yC/X7Qx21rep360ii9ym9JsuXFYPP6iDeuDXG9lE1tTE9g/gCcfEzC1shIded8H4AbEJeViYF8bPGGhs0HYCE08D97RWM80lGylhqZrmcyn5HlBPx/hbYtfDJ1TioD0nEU4LB9kCe+zIgZ2lq4qmY8njI/HlNOGrChY3Vxl69IlimEfpU20kVvaumV6tMv+rfvs3pkDKcORJhsa8jQV19YCHcc6prQiYEjzjCRJSZIEnSrqrkQZRdlO8bW0Dep5RVrUWKPwVpKSW9cwnU25f1hx7dBy5yShcgqjFLkKjNKOzV7D6tCz2oc8TVldW6PopfgQmM+m9AthU/I8J9GJ6C0IoBLSZCB2+a6jsQ1t21I3M5xtsW0jrqjKUmQ5g7UVScENjtQkFFmPrCmpyzk673HhTe/hyb/wl1BpilYKff48++2EyXSf2WyKraZ4a/EqAaWjgNswCYGpDxSjEVZruqYmt56OwBzFKG4WV4ZDJpNSwI4P3D08xDrP5176JP/on9zlxp3roqlS6jsqAx5Pkqa89e1vI/lTaOKT42Nu3LzOfDbDvYZ0YmM03gXSCNSVCoTgMdpIa9AImJELX4BL3TYQNMNhQde1pKkhzwtOTyYEH+hsS57mlNWcyWx+JkwOgNYa6xzWulhrVDQJCUtqXSAEI8xy17G3twcIW7i5sSmsD913+WrfSEesJouU4DP+XC0Xt8CyRRRKYV+6VkYS5D3IR1Hku6w1xFoji3sEDdZJa8t6zsYgTCZwdCpDBfMCNlfg0iVxqiycWNaJDuFoD27dg1hrGCkYmLgo6QcWGpb6maAFKCWpfKVAVwrAaGdyv1qJy6qIqbHWy2LiYh7NUQUHFk4SaQkt7NpJB/1GtDwDZIe/ti76mRDkb4tc5l3lubBBKp5nk0IyENDVxWTlrpVgP9vKQmqt2NuzXIaEaqk10irpiw6nmouu5pl3w4/95WXI3Pnz0E5gti+gsZrGZOJk2Q7Uka3wQZggo+V8uMVC/EA7ZTgU9gjk9geHcrtXPgX/+B/CrWvx7xd/8CqP4GXxf/vb//SW1MmxiIlnc6Kr4rs7dGSvTCJ6GxWfhzbxek2WbRIVWLrltFyXtpXPQN6Dk6ncV9cKA1TPIxiNjNTi8ZyLgYs88LmKLKkLEGIbsrOwt8sZ8NnYiNf1a6s1bwhwI2GcCkvAxp1liFqCNAbpqZi4q/H00pR53VEkM1LT52B6yGgwIlhHkRYCRLzHdY6AkxgqFQihI3iHbVvqas58MufkaMzxSYUxORevbPL4Wx+jNyhE+ApgDN47bN0wH58y3tvn+O4B41nHzoVtHn3yCvmwoJxOcV2DCh6dJJgsE6CTaEwiwkKlxPocnMM7j3cdrqlxvsNpj/ZgraOs5wStcV1NVZUcn864se+5dpIztxkKATU9E9joN+xsejZWhWHSBIosZWV1jaapaJuS1dEK/d5InIQRVSdZjtc6Xs8ps+kpp+N9bHB0VY3vLCC7GRMgGwzpD0dkWUbXzFEoer0hvcEIFVrytubO/i7v/sm/hUoT5gdHjM5vM85T9u7c5/7dO1jbYJoa21m80YAEKjqTcGADMw+P72wxmU3wXUfaQUBRhsAQhfcdJ6e7uCBC876CJGZS3Lr7ErfvvSwtIiezq76T608rzWiwxlPPPPWn3v7u3dvs7t6nqdoICL67oqOVImgBOcYkcp2gSNIEpRWdbUU4jiQ4t21FmiUUvews/gA8dVOhjaKzTkL7TIL3nizJ0XpxLpSAPtuePV/vl8BG3MmaIs/pmgaXBO7fvXeml5zOpoyGI6qq/q5e6xvmCBDDgh7YWcbWxVmQ3gO/T1PRZCQzMH2YHAoTYZ04bQjRgu048wirgCT+OtEfVHNZJI/HcFyCzuHKBrz1UWEDTGSLFjvqupU04b09uHMgOTHnt+GpKzAsZOHuanl+SdROmAVTlC4dWX4BWLzohJo6Mic+CpVje0trub+qhNMZ7Hs4zaGLzIoKoh/qN7DlYTUXZ5UKcdrzutx3M5eU295oeR7TbKmtUYBKhQEb7wtoqWpZ3GKtISDi4tGKtEiauTyH3lDOO6081t59+Mm/LeDq4BDO7wigu7sLd++ICLiJ951EIOu8LOIuMgc7WwLGulZmS7Fg85S8f6e7LOePscy/ufsy3HslLlxEJ9l3cP0pBf1VeBW1hrt3YPd+ZKNeQ1tKR3CRRM1MrDXEpHO6dgn0fRAmLUvEiRfgTBvWxIwl66LbKolhfdFZFWtNtGEun69nCWxUfB55LgAq8XD33lL2NpvCaCTXxms43hjgBhmzsGCriKMEFqyNATQSLJfqlEwrdA7TzjLyHVWoOZ2dkCc9acEoTVuWaCt9b+8CXVfSNTWTyZSjwxl7xx1Np9jaWuOpZ57g/OUtycjROnJGCu887WyKrefMjo852TuiOinxecLTzz3J+cuXSAYDVJLQW18X/UxwMqohApnF65NaGRkppSWxmujcamo8iratGJclmW1J0oT5bM7BuOH6UcqdWY82yHkYmMBKYlnvd1y8ZNja3KA/WBXAUfRZGa0ynRwzLg8JrgXlSUKfXjFCqwJMoGyF4SqyAt1Pads55XiMMiJSTaLdU8L2crI8J0sKEm1Q3pFlBb3BKjo1hK4jPTmmLufU9ZxBkjA6tw1KkZicuuo42L9PL8+gnOJDiO3CQJYXJHlGFSQ0dLi1xtHRLt5rjAsSropcFyvALHhhlYEmXidn19F3CzK0InjYXN/kwqWdb+vKDCFw/do19vf3qNrmNYUHKq0xeJJEtAtaG5nh5B3BB8kT8sLm1HVDv9fDJIaqqiWj2gfqxhJCIMsyekWORuG7lpWVVSaTyZlgOE0TmqbBOn/G1ixkD/K6oLOe6awiTRUplpu3rtO2DXlRcP36DdwikOt7+oitp8X7dnbNPMDaEJkYExeAnNgK6sDXEh6XRKus0sLG2ChGdT4OPKxk+vXhFI462YRursPVx+Hy9nJRWbTDnJeiXs9Ff7B/KEAoS+CtT8DlS8IkJAmsRzARooZnAWQWryOwbGEoHat8FA43tfy8raTFYqP9djaHcQNHKcx68fxEUJNa6HdwycDmhizMSkmraLQK02MJ7Iu1htCH/ghUIdqlNjJcaQ6DVJJpx+MI6uK51lqeRxqdO0khjIJ3wjQMViN7ZoXNKOdyrpJE5nopBSYX1mfvvmiVyumCOpfvRSE/X2DarTU42o0W52/xQX7QCfXNteW1gIwArG3A5XPf/rYhwLVXRKjbtN9VN2r5uLKZFOAb5NwmUQfmg5z7hRW4bsQVmJgIMCKoWgx3zTJh54igaGVV2MiFriaNGrXF8Muz9i/L79aL9T5VgIOb14S5Kwq4fj06AF/b8YYAN/LxDnRBxMQeybVJlbReEgWZAqMdQWtyCpIMZi5gncOElNOqZGe1R+cdwUMZF9GmqZjPK05Oa/Ymnt2pwjjD1lrC25/b4bEnHiEvMuGKgtiNvQ90VUU9nXJ6sEd9PKaZNoBm/cI2249dYbQyQqUGjDivVJaSJgpnZWEKwUHwBK0ITuGDFTFw8GgENCgdMFqDMtggLbdk2OferRPSNHA4DdweF0y6NBLpgaHxXBrVrA8tayPNynBAlhoUjsTkjPojQDKDVkZbDHp9nKuw3jIdH1PkQ7wGaz2Doi82by0jL6xrMN6QxynUiUnJkhQTv1KdYrQiz3JMquP4GbHNc3CXc8+8h7Q3lHc0ZgZtnL/A+BMTqnKO9hZ3dID2Tpw+xkQNiMICOk0o+gX3b4qlH+cZKDj2MpQ4IYr3g8yYehipDwHofMA4x872BVYWqa1nW4wHbxyoypJXrr3M8eExTePOdFvfzaEQgCMA3ON9R/Ae70SL5GxH13XUVUV/METmhhl6RcF8NqftOtI0Y2W0ypE9wgeH8xZtEqqyZDqb4rywoNZa2TAlBt/K6I7Fq1wsMFrsa3gvQOt0MpZ5Ulrx1re8hV7WI01mWGe/xy3hcQd5titXD3wRv6KwlkKEsS5EDUAqoGCtFxcGZBEFaZnMKhjXMPEwUTIGYTWBt27DE4+IK4UgwETnsqBUtQCb/T3JZ4m1hvNb8Ngjkv8Saw0EaUklcffs430FLwuni4uFX7TcFoLmuKAps2y5Dftw6wTSIAnC40JSjRfnyHgY1jCyMIrtidTIuTGx9YQX/c9oUyzwLiYDj48hH8pu3noBQnnU4wQl7S9vllOoTbpsoyUpZyMmslysy2cCZA37d+GZ94hQmkUrBZkpNZsI8PFWhmA6J39jzDe2INNENDe37so5WYTPPdilhAdajg/p8EEea/u8vK+Lc/0tag1lKZPnD05kzMZr+cwFOAsBdD4C9XhNe7+0eleV6IgW2puiEJdY10ar+CrYI+R9t8LclKVcvwtnoI3AJNGSa/MN5y+ez1hrJEXWyAyrRSDgW94qrKhJXhPIeUOAGwhxkVBR7BgwaDKtSVUgVwLwFOCCw6tAYTKU1lhtSYyAk6aradtGtGQnJ8yOZ9w8ghtzuNcIqHh2NeFdT2dcubhNf9jD1TVWIdZtk9CVJeXJCZPjPeYnE5pZR5ZkrOxssHbhHKO1dYxWBG/BB7RX0tMO4kYJzuO9wzuLdwGlFS62oWR34GN4YILWhpAqEpeRxr8brq4QspqX7jXcaxI6b+jrQE97itSxMWjZ2QysDgb0egVZlpMkfYxJ6RdDgg+0TUNnO4aDEcPhEG02JNivmjIbn9LOS9ZWt+iNRmdsq0lyjEmxTUney8nzNYq0INEJJjGYVMLziEwAQFDLYZ3tyT47eY/++gZtOUcpTdbvYa3lzs2b2LbmaLzH/JWXqJqawUByU3DqbD3J8hyViKhVT0pcCIyU4hhPh4BcF2CkFAkSwto9hDXWB7G6t67i2vVXuPTIFfqDAclivhicfUCPDw955forHB2fiDHgtdSbAMmZU8/jbcA6K7lJfohzjraRVO3Qc3jvaZuWsizxPmBiSrS1HbbtqGsZ5JomGTM3I01TQtdSN5L9k2ixI6soJCYKkBXSljNGUXeOLCgy57l7/yYf/73f5t7uHi9+9Rp//+/8fQwJX3vpK/yrX/nXNN8JHf+GOWIB/gbrRnSDLJw/i6+wCJzL5PfaRi1NWM5L8kqYhOMZHAFzZL4UBlYSeCqDS9uSAByB4llroCxluvLRPpxOBNQkOWyvw4VzsL4hzEysNTxQawQgeAEpzsoHQ6sH2lBSa0iUaE60kSLqsuXfra5AVsO9RqZw+wUI8iIYHrYyaXwwkEUuyyHpCxAp4gJYNcL+DFaEWTIbch/lVFpr0xJWtqTNsDj9SS730ZQC9vJVEWzrRNiCNC5LCyYAOEs0DgFO9sUdtb4R4/yVABXn4OZNEblO9uHlF4WpGkamycY7U0TbsxJR67h8AMQsGK/FZfLAwvww8PxC7+MbuHEdHrks5zdJlo+1+H50BNdfgZMTYf5e0+MHuYYDgI8hjTa2Kq2cuyaO3ehFwNO0cn59BDo2uvNaK4B8Ef7nZ9K+7VqZo+YjQ7RgQx9s8wJnw2E7t7yO79+Cf//bsLsPX30Z/u5/CyTw0lfhV37uO2v9xeMNAm4AFXBBQI5GkSpxSKVKkWsLiLPEuo7GGAwpqc7JdIrSBqM0zjZUdUPTdewe1Ly4Cy/MLKV3DHXK2zcUH3rbOlfOXyQvMrz3mGRhZzQ085rTg3uMD3axjaU/XGHn0hbD9TWyIoMo9HOtw/QydCaWaQ8CaKzD2Q7XdWdZUM5KkjAukJgEU6SkmUGpWGCkRyBulQDKaM5dGnDzqGNeajSefmpZG7RsrgUGhWbQ75MlhqRISUxGohVFPsCkOc5ZWttijKaX9kRk2rXIbs6gTUHR1+RFX9pkSuORqdFZkdOVFcF68iInS3skJhHrvArgLV5S3gjKEDAx1NWjmhZ/9yYm0ahgYmsPsqKHt5bJ6SHjOzc5vHlAZ2NIYhR0OgUToF9kVFVFW1uKqqEOMIwM3jwEhnGy9QRYlVdE9VAqjoiTP/a7/47rP3uNZ9/8Nq6+6Skee/wxrly5wrnzF9jY2GDQ6/HKyy9x48Y1JuPyNQ/LDMHjfBS9x4JaNzW9rkdZ15LXlCQkWYbzokSrq4bhYMS8nFFXFdZ2TCYT5vMSay1N09DajiRLCBW4KJQ0RmOti21vYS587IGraM1bbLhQBu8Vd/fu8fO/+EvcuHmb6WTG8y98icsXL3F+4zwroxEHR0ev9bT/OR2RZl/oK84yPJQAmIX2wnWxSKfCsug0sh9RT1DXUuwPa9gFZnGR0CmsK3jbmowEKDIp+A/UGsoaDu7D/n1ZEAYrcOERCdrrxVrjnAyZ7MX8kUV2i49CzcVue5G0bIMsMD4IUChSsWJ/U60507YYDZcG0jYrY9sitTBoYS1AES2/iRHBsImjI/J+dIlZeTyjBZx45P/xESgV0NfS4vA+nmcr91HksZ3nBTilvajhMJFBidkoSkW9h+HMOt+2cPeGsEhhgUQRcba1Yi2+ewNu7ss5WbSl8EvQkmfi7qmtALQFkHnQVfTHPt4Pia30AX7vt+C/ugFvfhs8+xQ8/hhcuQLnL4igtteDV16SsQun89fG2gDLoMoHWm1NLaM86midT5KYNRP7dlUjOqdyLoyO60TvNZ/L9dc2sd2YQMlSlL0ISlxcb4vHD3BmA36g1uAV7N2DX/wluHFLMm9e+BJcvAzr50V/dfSd5gm9gcCND9CFgCeQKx3bUpDFMQEejfca5QNOB6ztMNqSpwNMXhBcSzkvGY9LXtr1vHKiuNO02ODZSXo8N1S89bGMnc1Nev1eFAwHlJEk4mZecXq8Sz0fMxxtsPL4NsP1FXGIeAhWWgYoSEZ9TC9HJSkemXLtmhZbt7imoZqOUSqQ5X2xmHtPlqakhcFkWnbiKHzwdJ2lbmuqrqbzHq8MvUHBk48WHM47GgsrvZbNjcBKP2UwGJEXPWnTBzBZQZKJKFGuJYcj0C9GKKNoqgblLS54dJKyub6NShX1fE5bzkmTDJWnJElGlg6Y+TE+JOTFkDztoVRABSdDOc/aTYmIvrXBKslLSTBRha9JshTvHN5akiwjTVIODu4zPRkzbRrqeYnzDs0iKVoLG7cy4vR0Rtd5Bq3FBUmHHwCTEJgHhQ6ivdJxAfJ/2oX1qq+/wHg+5+VXXmEynfP8V55nNBoyGIwYDQesrI3Y2d5m/+g+t27doulee0/YOkeCxlovekfrsJ0Mfq2rhjzN8QTaWoTFXdvR7w84HZ8IQ9dauq7DeU+appSlRMQXeUFVz2jaRoL7UDFbiNhOUss2LJzpIoU7VfF+ZVHY391nMp7QdJb79/e4e+8+ly9coGq+14XFcffxDULiRfHXosPwQVgI2wnoSQdx4nYrBX5Swq6HYxU1EV60OAMFj2cy4bi/EAwHzqLu5xUc70qmzWgDHtuSAZGx1kh2TbyyRwMBN0kCmLjb7kQX0bQwO5X7LgbyNz6KjAsTgU1c/IOPibu1fPkIsgYFPFbAvJMFp2hh3Ys2pr8ShcPyEDIjq7fclQcXHztavavIAgQftUFb0lKaz2WBTGLQVpKJRdyPIRhhgdKeAL8QmaezdlMij7FIvfXx/Uml1pClka1yAliSVOYVHY/l/MznAuzQS6G1CjJ5+nQmFvDWnhF4Z9fGAjAuzt/DAjaL+5/PpeU0ncNXvySs12AkQZBrI8l6OdqFW7ei4Po1Hi6eAxvF5M4tU66rWsAqYamraTsRdo9PosC4ky/nBGQfHkaQ2JOp4G2z1JDFWrM8f4uNBA+cxrixWEy1R8P9XQmt7Czc24O79+HCRRExfxfHGwLcKBXPN1FIHF1S0o4SfUDwGrxDO7CJJagEFS3NwTvaas7hUcUr9xWfnzgmUfy4ZXLeNjI8e9Fybr1P8I1kdSwi0ZXkxzRlSWpSRuceoRitkPZ70qJ0TuLutSzEJs/QueTGeOfp2oq2rOnKiq4qsW2JcqJZaLsZSZpQ9PsyJiAR663XBt85qnlDWU2pWoe1rbQOkhyTFOzsDHny9IT9w4aiFxiuDiiGG4y9YtxA4wO9JGG19axqSxEsoyyQBEjSgqLfg6AZrPRkX5MajNEE50SnpLMYKuokw0tB1uuj0CRJTp6mBNfgbSc7e52gjEFpgwVa54StQqHSDK8UrG6IjsZaTq7dprEdG1cuMhpuUJYtw7VzjA8nzOcTnLWSxKy1WJ9RDPs9jk4mpCYhixqRLshF6oBZzECSGhTwD7nmtNYznk2xtiPPU7K8kHRgI3oU661MVh/PX/MUckDYugjPrK3pbEauetR1Q9FrpUXVdGhdge5BApPJKd57RkNxv2kl0QPWOZLEYEzCZDqhqioSY+isFYYmFpilViac6W78A7vCMwVRgJVhn0cee4SqaciSAu8dk9mUm3fu0tmHUHD/PI6zaya+zm8GN0pFYOPlokuilVinSwaknsNRDfeBseNs8rHJZPDjBQvrfWk9fFOtOcuPMSmce0TC9fo9yYVxbslYGBOTj6NOxXkR4pa17KLLSv5/AVK6adSR9EUbkywYiETo/7KRML7OLp0xSRTubg/h4gkcNNAPsDoQDU1Qkua7AEydF5AXnKQOBwRkxFrDSk/OQxqf/wJ06CyuNE4AlCLqZbRod9JUNDi2i5krkcGJbVQ5L07+nWZyLlc3lq2Sa7flb69cErA4b2HtHBxOJMvHWnn+C+0NSlxqJ1NhixbX8oOf6W9gSh5ikVkc1kfXWxcnxRcipk6UnJdgJXZgMns4D+8jcwViwbc5qF4UD0fQ0nSgK/l5gqRBeyctxS5evyZew0m0j08nci0u3osHag0P1BphxPjW5zUggzsfe0yeTxL1bLMp3LmzfH++w+MNAW4CsQUYW1KJUmQR2GhEy+JQ4BPwigQZrJmpgEoT2rbidNZyb8/w4swz8cJebOqcdwwNb7rScn5rnWGxgnWepqnJ4/A65UVvkPcKBisrpL0CHQtDiL1ppQMqzWSEg9agDbZraOcV5XhCNRvj6gbX1ihnZeJ4r0+iNflwSNbLUakGnYorpW2ZjcdMphPQmhAkbTZBobXCeY1JMh653KO1FfQUXzr23LxzhB9scenJZzh36QpJv+Cgq7l9cki9f4stTnhqfcC50QBvFEXWO6vdKEXwDucdrpMiUvRGVLMxXVUTQqAoJNNnMByS5JKEG9I0ghqNRzOenXI0OSJgGI5W0UlG3XoYbLN1/rGYnaKo64bjgyM2H73C2vYOVV2TDQs6YyjrFrUY9okSJktBVqQcncwZJAJuIZw5GANSF3tK0QEzZGL8wz6sD8zqmraTfvPZyLEgv7PO4x4GsomH5MQ52qYjSWtUKRk9VVlSZDkznZAYTZ4JqO7inKjT02Nms5KyrKjKGh/za5x3ZFlKmqR01p6xM8LaKGm7nw3NlJNrv5VTBMWF8+c5OTnl3PZl1kZrvO255xiuDbh37w6/8G//DScnpw/tPPyZHmdFNu40FVHT4ZdtDh/p8kWhVpGN6CqYtrCrZfyAj+yFzmGYwOVWNDPFigCSJmoTHpwnVRQSVNYrliBkwbroIAv4YpK1NmJrLivR5czGot1pYppvlkdRrhbtRq+IAlwJf6TtJPhuOllm4Ogo5tQRyCUZXO6BraAHnAB3j6C/CU88JYF5g54wPieHcHAL1AmsD4RZMkoYHb04pSqKrSM7oJWIj2djYQlCEM2MNrJw5pmArjRai7XYJ5ifijAZLULWJBOBan8Lzj+2ZFXqVkLgHrkCW+dkgRxGhqnp5Plptby9QgDFaSktlAW7oL7pOvkGvc3rAHB8kJZQrDVnjx9YCo8fYq2RIhpBTFpLK1IpeewsZhLJkD0B1Ys5USfHIiouI6h2dgk4sygAPwM2LIGMjq9jca3Bt3algWQUnZzA9hV5r597DtaGcO82/NtfhtPT7/jlviHADcg5sGGZbZMqRaJEZ+Bi2E/w4L0mQ+ORHUHwmrqq2Tu03Jv3OHBTmQyO5pEs5VyvFWNCmqKThJXBgM46mrpCGU2a5QJE0gSTCTtxJiRUWtjQtEAnuQiavcO1Nc2spDwZU5czXDsX23LWJ89S8v5AJnxnGtPPUan0ql1QtPOayWTCbDohTRPyrEApg9Ya7zuc9bTKkQTNcNinv17xGzdrLr/tHfxXf/dnee6H38/K9hZpKrOZgvfYpqY8Oebu11/gq7/329z7+md5aliyOYTUpGAdOlr96ukU7xxJltNUFU3T0TZzhoMVYQGUJssLCBrT64llW2mc9Ryf7PPC9a/T2Y4LO5eorcUNNhg89wGa/pBk5yJBKVRiOP/sU5x705MkWcpwdRVjEnSW05qEsq5lFpeSHW1W5CTKMMoL7jYtripZDeEb8tQWAHiooI9iTFikijz0w/lA7d0Zs7G8Rh9+gQuEqKlz1HVFXhRY2+Gso2pKBoMeTdtgKo1zHu+trFlNR1lWwkIqybhRGpq2oW0EnDVtQ2utJEITJSVapsaLc+9Prtmj/oDRaMDde3d47tl38mMf/nEuPXYBrQ3vfNc7yPKUf/4v/kXU9HwPHguL8GLRU3EEwSJYzMeFHw2x1hC0LM6HFuY9cFPOqniWQq8VAJOmAoQGg5glU8VFI5cRBGkiFu8Haw1axMKLCdYgi0dbiwPr5FSYl3YuC0TWl8fpx1ZZpmVuUxrD/YKSYZOTiQCbdBHeJnEX+E7YA+XkdQ0HsFHBjRre+hz83Z+F938QtrdksdNEkWkti90LXxMB6Nc/C8MShggbZd3SVjybyaKX5cI2NZ2wXsMVzoL1Yq2h34saG3FJcnwA118QbdP2Zbmf/jo89wH5+3OX5H1LDDz7JLzpCXkP1lblZ1kmQKmqImsTGZsil38XBTT7MVX3WwCbBfZ92C2pbz58kPf5mx1Zr4sbMd6nj9dkUQjjZZ2ch35P2ktVfA9CbNc1XQQ18XkugvnaCLIfDGBc1APFUqS/0Hj9SS+pPxC28O4dePad8CM/Bo9fkr9/9ztEg/a//Yvlfb/K440BbgLY+MqNgkwpUuXQBDqMTAsPGk+g6QKJLtAqoJKUrqs5njQcneYcWUk3VsCqzllLQOtAqg153meRYZMkCZ21kn1jW0yWkvQKmeOkEQePMZg4+HHRm3fO4toO11l86zFJwmA0QusVTBAGKDEGkxl0r0AXBR7Ju3HO0cxL5rM5XduyOlqlN+jJZiqIWNpZjVUdSUhwRpMlOU9czvlLb32Kn/hv/juefOcPorL+N37mjMzOyrKUlY11nnj7O7j7yjW++Gu/wPGNz3Mx8/SSjNRmtE2Ntx29fh8fFHU1I8sLekUPjcc6T5KA1pKVErzC9PuEAJP5lJduXePu3YqtrYQKRfbUu6jWdvjYr/4Kk+MT/q/v+jC+6/DOkRZSoL33NFVN0RvKiACtKWdzsjRDmwRCYNAfMigy8iKja1tcWzOO2j/N0ijgEfYmBXIU5etYdGRz/zoWtcXjBOg6T/CttKCbBpn75LCuI01ylE4wRgubFITxwkOSJFjXoaI+wLYWhce5jq6zWCvwT2ktl7XzWL+EhP7b7AoHgwHj8SlN47h04QqPP/0oX3/hK2xvnyNJt3nnu97F+Y98hLv37r/ep+jhHg9S4wuWQUX2hYWWJGpk2gCjGNSXpMKgTFs4jY6jhftD51JJdZCCHGuNCPSinbWOmTJZKuzKA7UGY6RFpOITVFr+pu3iVGon9zMagV7hDKmaRHQ1vUJAwoPBffNSsmvaRnbCg16sGZEpshpUByHu1hMHlzJ485Pw9/47eOcPCYBanKdYa85Epxvr8I53wivX4Fd/AW5+Pk78zqTlsVj0+n15zGom4KroAT4Gv8XX0bUCJvt9eZzZFG5fg7sVbMUl6sl3wuZ5+I1flTlL7/hQdO+4mLmCvPaylsC/WGuYzWPIodQa+kMReBeZsEpNzZ8u3HudAQ68TmDmmx+DmLgttYamQVhKJ2LhNI+ibh1blwt2j+V1vLh+2rgZcF2ccRbrio7CpYUjb3F8OwZqMBBmprZw/jJcfQxe+IqwcOk2vOvdcP4josH5Do43BLhZ7Mo1MbiPQKIk78YHjQsmAj9F3WgsllwZrHNMpqccHBgmXUYdKiBQYLiUFvR0g8k1O5fOMxquxfdFgw6kWYbuFNZ1VLMJ2miyXooK0cZmtLQNI1Uc4qIbnPTls1GPtC9iNuUDyge8bSWZOElQRY+gtbR2OhdnIskk57XVNYp+hjZGAJML4EK0HQtrFVxG6h1J3qMuAke793mkrsmy/hLlqweo9SRFeU+SpGw/cpn3/62f5cVPf5LrH/vXPKIaetailWF1e5ugFF3VsLq5FY0EgbqcYduKtJcT2hq1soq3cjFXZcnNu7d46dqcaanpij7b7/5LPL9/jc/93M8x2S85/+RjpFmG7xy2aUmLghDgeHeXXBc8efEtvHLzeaztqOqSoldE7aClNxyysjqiPxhgW0uqoFIBg+TatEaBFSZH8i/D0q37Z3+5PvTDL5w0QdKElVL0en1s11KWc5LUUNc1K6MhaWJkQxWvgboWhsYHR1VVVHXNZDqJDjnJUQoxNNHHPvjC3v4ntde0Uqytjji3s8kPvPMHeNvb30JrG77whc/x7re9l7XNdYaDIU8+8fj3HriBBy6aRTsirm5BL5kbFLQLd0/Uj0xPYF9Dl4OvOANESQG6gVzDxfMwXIt3rZdtJpQsBLOJLB6LcQWx1gCyIOggbqC2jtkrSlosvSicjcNmBShlct0UkfWwVoCQdZGV0RKwNohDEheWcRceaNEosYd7J+LQXpAJ1M/WAm7+hFpzpsN55DL87Z+FT38SPvZzQBt39lpEsUqJ62Zza+mUKWcSItjLpc1nVmNbI7ZI7t2GazOYa3lt7/nLcHgDfv5fw14JTzwqr72zULUCbgKS6KwzuPBmuPllYSXqUsCfQ/RMw6HkywwG4lI7a0nGI9aaJZPz/VBhHjgeqDW0cZZYrx9bY3NxoNW1CJsTEzVS8WTUjYDl4IX5qSu5nlupNcTMrrPvD2YE/UngRilp0Z7bhHe8B97+FhHsf+Hz8LYfhK11yd154onvTXAD4AlxVpLUCE0QxgZ9FigZQqDtNK0Sa6trKiYTz7js0XiFQzQ7KzpjM/Fs9C3rm32CMdy4d5fV1RUGvRGZzkiURucppqtpmoZqOsN3nYxMSNM4ZLNBoUXPULcE79HGoJMUlXh0YjB5CpGdUU2Kzgw6ywlK4TqP76y4qay4CHr9nox3iMIxDRAcQYUHdhABrz26E2V7Mj3i1le+xONvfTs7ozVAL4sTyEwibVBJgklTTJdg0ownfuC9hDTh+V/+//LWomVztEZALNj5ICcEi/cKb1u6rqNtWoarW7RNSawGuLbh1r1bfOFre9w6VlTGcPVHf4rnr32Rr/zRHxCmDu/g9PiIO9de4OLVp0l6OcF7Tg/2+LWf+z+4ffsmP/zjP8r4I0fcOTygnJcYY7AhoLwmS3NWdnbAaFSQ8RSVl4wb8oSBhvmkQSNhsYpXsdn6njoC1npK3xAI9Io+XdehVBy7ULeQw3xekqUJIJb4sizJc4nBPz09oW0bgvMYk5Gkni4GYBkjk8El+Vs0Tt9eN6Som5qbt27x5qvPcu7CDrNyyng8Jh8meGfRJuPChQu82unrb6wjFt0FNXjWg9AP3CTIYMyFy6mpRGNT9pZaHJQspqmHvoXNvuxw792F1VVhEHQW2y+paFaaRqyutpP2yKKNlMTgPudEQ7KY+5OkEk+fGLkPIjvTRJt3Gu+/87LYOxeBgpc2w6BYilRh2QZ7oNagfRwciaQNf/V5eO4d8C1qzTek22YpdIk8hx98r7Sjfvn/A0UjAG8xv2uQS4vDI6Cs68TJtLoVnTBSa2gbuH8bvrYLR5HR+vBPwfUvwWc/DRMnNz0+hutfh2euCrDxXgL7fu7/kDlMP/Hj8JETODwQV9Ji+rXX8lxjrZHdVQSMsdZgkKTm79sjRMdUE7VPfXk/lIoaIKk1zMuYNxT1M2UZ2UHEQbVIIF5c/4uwPWPkOjyLWVB/um6orcUVdvVZuHhOwO94DMNU7tdkcOECZzb9V3m8IcBNiP9VBFItLSmlwHl9NgaEAA5F1Ukui/We+XzOZKxpbRaTQsRGvmoShqlluBro9Qz7h8fcuDlnbeOEdz13lV7SkxaMBpVmZASwFt8YghE9gtIK13phXTpJ1BW3hMZ3MsVbYdGJuKbsvKQ3HJKubOO9wrUNIcgIBx8pu7SXk2QpOkvkQx8CyqRopfHOorxHGX3mQgpxh53ZhpsvfZUXv/hZVnfOk482otNOovnPtCHR0ZWkGTpp0Sbhkbe+ndnkP+Hlj/8Cg15LCIY0T0SHEQtcW7dolZAVA0gt9bTB2hZjMg4nUz79/B5f3fccOse7fvh9TMyEV176Kjak9FJFrSzteMov/i//Dw7v3WLnyuP0kh6/9gv/G6Nzl3jrO97NV5//HF976QXmVU3Z1BI814kDIstyts6dB2VZW+kxPqyZes9IKzZ2dqjqOUwaFgO4CxQemPDqrODf4Wfiz/xYPDetBSgEJQtQ29XMYoS8UhqFgJQsy7DORvv3nLKssJ1HaYVXgSQx1C1kaU5nO2wUFvsgE8hlpMOffEKSRKNMYD5t6TqF85bdu7vcu7fHZz/7GX584y+SF5rV1VW0/l6cFB4FADq2pBSy8IUHfr1gblQECuUcxhpstrzRojWUWFgJ0DNwdAI3ZrBxAs9dFeeH84ItskVWVge1kTaPj8+jDdHJFFkP5WN7ILYMiGmwi5bTcAgr2wK02hjN7/yyPdDLBXw8UGsw6bLl5eP9L1xIixpiawlO++JnYOe8uI8g7sT98nbRWCEaoVZAzlvfDtP/DH7n50V/1BgBDN5z9uGtO9HbxFrDNIYAmkzcQ8/vwl5srb33vTLT68WvSPssjdqoyRT+X/9MgNCVxyVY8Of/V9HhvPM98Pzn4cWviT6qji6sWGvIckkyVhZWCsko8l7eg51tCRYcL3JvWPyH5cXxpxxvdDp58dz04olGsNvV3ziugghSsphnlKbyGSgraB1nAzYTI/R6mkf9zkK7Fq/rbyfsg+i6CnIdtAi7dncX7t2Hz3wGNv6i5C2trXE2jPNVHm8IcKO0wqDINBQqkCoZH2CDipZ5udJsCMwb6KxC65aqttR1Acg8pJSEkVKsaEOeNPT7GT54dvfnNI1GqYayKen3BjgvwXmpTsjyAdbWELyENdoGggxq9NaiUJisQAWPrS1tM8dWFb7tCE7aJysXz5Nvb+IxuK6WMQwBCA6lNUmiMWkqzM+ZQ0NLcnFMjFVGoWyAswxwGbo5KhTb3YQbX/gsl558iktPv4WmbTnav8/RwS69/pCLlx9hNFxFBzDakKYZXddhXMrT7/lBPnXrFe7c+iyXB4A3wlBpTds0WBcwOsFpi/KaNBtIC017dg+P+dJhzTVrGayv8/i73sytmy9w4Yl3YkxOd/c2/o++hlKB/a9/hf/3P/1H5P0B7/jwj1HZmv2vfpl3ffAvsL59jjv39vj9T/we5WxOXZUonYl2ymgund9m/2CXc+e2GR+NaYLDK9i6cJ77t29FzU2gjm3LDPXgPvvbHm9kYAOcOZMXmUh5L2W40osxHhoSizKevEgYDoYS3DdtaG2L9440TTFGkZqUtdVV7t+/z8pgSFXXBO+orTsTQ387nc3iSJIEa1s21jc4d/EcL730AikpH/6RD3Lj+k3Ge6fY5Jimrv+Y6PoNfyxYCI0UZ+Uj1lHLN4KIhhsk1dZ3EqYXa43cJibKagNpA/1MFv+9OTQaVBNbIoNlK0knkA+WQy8tYssN8TEWmoasiNS/lcGRVRUzRuJ7d+EcbG8iC1AdmRqEidA6ipfTB1Ji4UyouwiqW7RfHqg1JBkUSiZrf+GP4Mmn4em3CHg62JWv/gAuPSqi3sAS4HQduBTe84Nw8xW49RkJqPLR0q01tGUEeolYyr2WvBvrhD06PBawYa0sZu95C9z8Gjz+DtEk3b0Df/Q1Of8vfhX+p38oz+fDPy6tjK98GT74F2S0wf1d+P3fE81NVUYGLbZMLuxIgOK5HTiaRDYLuHAebt+JF8oC3ZyhnFd3vMFrDbBogwio66di4dcIeEysjN0oFoL4CEC7VoBwmsq1Y1JhJ+/fF6Bd15yFSy4K7qtxeiVGwPv6Blw6Dy+/ACGDH/kQXL8Je6eQnshn4DusNW8IcGPynNwoEgupsijl8SHBxh26id9t8LRtkJZu29DWisbKcDsN5Coh1wkj40gLT5ppJrOW8UkG2lPkURhe12RZBg5MajBZgskGONvh65amnmG7Dk+H0YYkyQmNJ3QtTTmjmc/xjSU1CflgyOqVS/Qv7KB0iusqgrPgLVonqCRBGS2tLK1QWktWVexJBg3BKWFdVIrCojqwvqbuWjrvsN6ypTRHuy/z0V/+1/Q3P07dttRNTVPXeAUXL1zmne95H48+9hRJkmESHRcpR1b0edP7f5RPfOUPWE9qkmxAkmlc52jaliTJUQrSJAftsLYDnWADHE8rbltHncJzb36KYjTine/7CVbWN1CJ5vYffZa7n/86g8TRdIGqavFlx+/80i/QKMXK1g7z6YSVzW2ee/u7+MTv/zZGB5y3GDTBSEjXpYsXOTo+QGnYPDeivT9BW2kJ1J3wM4usmxrYUFAo9brYwf88Dh88vos6mrYiazP6xYC86MXwyEDRy+j3c3q9dVbX1ijLGXXVsrd/SJJmrOU9jk4O6KxlOpuLs897fJypY4x+Ve6mXq9HWTb004D1DR/72G9ycjTlzc88y+H4mN2Du3zuS58nSRNJmf5eOnq57CgtsntXXliBswUsfg9eQpYcQpvXCmKtkZsl0TrrofDSS5+1cJKJbiaLbZi6jrtfRM+QJXFB76QFUM8EGNDFdk8u4xu6OE18Phe2wySykD9yScCNTkWv4m3MxkmkVWR0nM2kOIvbX+gfFgJmrUFl8pgd0qLommjfjjk7u6/AL/9r2PpdATd1Ja9FARcuw3veB489JYAoiW0qG3U7H/hR+OefhqSW4MN+ZKCaRvRJCnmdOrJSC9v6tJbbpcCbnxIB9Xt/AtY3pbX2hc/B578OqZP3pm6h7OCXfl5e7+Y2TMewuQNvf7e4uXSIOURaziEBLl6UkRcaODeE+1MBesZEhice3yw8/z6pNXJtx+u4raDNhEkr+gJ4VBCHUr+QpOS1NWkV1S3sHQqYzXtwciDgZxaDEs/mmSm5Dl+Nu6now7yGZAS+hY/+pgDOZ56VGIDDe/DFzwlY/w5rzRsC3KSDAes7O0xv7mJUwAVNFxRtRH5KyaalCQFvFY0NeOupG03rZXeSqMDIaAYa+klL3gNlFONTT90NGA3mcSJ7RZ2l5HlG3s8lldxbEpOSZBld3eI7i2tqCRVMFNa3dNUJzekc33m0VuR5zuqFHUaXLpGuruC9x9kW37nI3pq4sTPoNI+ZLjEiTWlhwoON75cCDMG2NHXHeHrC3skhR9M506qjsmB0IO/nPP/Kdexom43t84xW1hitrjHI+hztH/GFz/0BXdfx+OPPoLS4wpLEEnzCzuVHUBef5eu3Psvbzyl0WRBQDFdXBHgpjbcdVTUjMQatFdbDyayi8gFr4NEnHudN73gbK2vnSZIM61tO795j7A1952TOVicbMtsFWgL7Bycc3N9lZWObuql4+3NvY3NtTWb9KUQDgmJ75xx5luKsYzjskxU1btZwcHxE09RnDCfIunQcRJPzRmeBX+2x6E4YLRqvuqpJVMbUT1hf26LIeyg0WhnqumUynTAv59jWiROvbjipZxwfHdC0LW3XPbDhlH/4V2mlHA0GnExOGQ6HOO8Yjytu3dnj6Seucuvubf7tRz7Ch37ogxyXY7Q231t28P5ANBc3d6WIh2ib9g8sZAtAYCO7Yb2wMW7BhEQdjgZMCwWymx176AYwmMv9tJUU5TwTm/ZC1Griz5o2Lvq1PGiipMBXJxK5byPTkudwfhsuX5Z5UN5H7UrUoCgTS4iR9oB+4FOxGC2x0LzEWoNrBTRNTyS7ZjaXidoWeX39W+KEGm0LE7KyJuLkfCATyz/3BwLKnnhGnmMS23M+gctX4NKb4eZn4JyCqpBzvLIqO3+lI7ibSetq4ciZLeYYAU88Bu94G6ydj/OLWri/J0yQc7EdR7RTxjajO5HbbOzIOX3rczLOInakWAiid84tk42HA9EIzWo4Poq5RHxjUXlQGPv9cCzIqMUssqoWsOsnsLYpwAUt11XdxaC+ubSjnIvp2DPRNLVRQ/VNtWY5pf5POYZ9CQscDOWzMS7h9h48cRXu3oZf+RX4oQ9CNeEszPJVHm8IcGPygnPvehd+9nHC8QQbNF3QxPxbscYiOTidDYzngRUNdWWihDhQaEiUZqBrBlnLYCAtn6Y2hKBJtEcHzWk5pmzmONtx4fxlCI6manCJRwPV+AS8J+sN8bahOj3FNhY7k+fSG+T0Rn2GF8/RP7dJ0h8CopMJMTZcG6F9tUnQWkdgswT+IcSWldIoHQje07YN+weHfO3Wfb54+5hrJy1HDUytp/GONaN453bJ4XqHchlPPv1Wfuwn/zqPPfUsSZJw7/Z1blz/Oreuv0h/MGRn+wJKabTRkcUpePMPvY9/8/v/jqfX+mS9Hnm/h9YB5R0ej+1agndoI06Oqqk5mpYx8dxw6dFHGK6uMJufkGV9fLBsP3qZ9MI287t3z7SZjZO6gwJbt7zy0otcevxxXn7hBX7gvT/M+ooMzTQmzqBSitFoRJHnVI3FGMkcanzN8fERXdv+MQBjgfn3y04KUEoCHLM8pSgG9Pt9ev0+trNU9RyTgPeOm7deIc/7ZGmBc57T01Pmsznj6ZjdvV3atiUQzuZGQfjON5xaUVcNa6trGGNYXdnA+zvcunuH+bxiNq146fp1/rOf+S/4/Jef55Vr11+HM/I6HXkB73oXzD4Ox5MIbjTL9syCuQkCbOaR8agMZy0pjSzQuoG8hWHcpdZG7kt7+V6ORcNhO7G4BifOoSQW6FOpNfQGAlZOT+XDM4ur8SCHUV/aKOe3xMa8EBQvRhSYxVcMv3sw9RLkMcPi+cZWRNvA4RHcug+3j+C4jS24aN81CrZLWO/ESfXUW+An/zo8/aywQrevw7Wvw/UXZVHavrBshyVa2Jn3vg/+/W/AWh90L6Ywh6jx8cs2R6w1NI2Ms/DxuT76qAC5+YlY672FRy/BhW24e3f5GhdEi0LyWF78Ojz+BHzta/De98t9KPWNgxxHIwGMddQxZSn4CG7a7ltfN99HtUZ23UoYxaIvgL/fF41NU0oIZPBix896kkLtPZyMJbtoOoG9+0uX1AO15jveaWotn4nVNWEAVzYg3JEWZFkLm3f9GvzM34Dnn4dr1171Xb8hwI0yipUnH8fPZ+x98pO0U3umQ5LRDAEb5LsLco7zgXy+s2jjzLSjp1sKY+nlgdQYutbRtbm0EgGjFF1Tcb/uaK1le+sCqTGkmaEpS7pyQj07ZePCo+T9AeXJMa2ag0oZbBWMNkdkgx7JaEgy6pPkBSQpznZiDFABlWi00uK2MonwEhrhbDwyMDL6v4ILtE3L3d09/uClPf7gxhEvnTaUPhAwKCUW+JaGsXUcdgplCs5tnGM+PkUHw9rGNi999Uvcv3ObZ970HDduvMCtGy+zsrJOlhVx2rOBoHjk6acZ0+OgbFnrBWzTkKYSJuZcg20aQoj2YW04nh1wMLXIVCnFaDQkMT2KNCHLC7Q2JJua/toah9fuMlSQBcWUQA9FF4S92b19h9//vd8hWLj4yCV810SthpeQwODJsgSjDKurq1R1TV70sGFKNZtTt/Zb1pbvxZnU3+7QGtqu4+joiKqqKcuSrmsp5xVV2VDVFu8deZbRHwwAR1N3NE1D17mHwmApFE0tbpHRyhClDGVV0lnLZHqKc46ybLi7f8Da2gb/4L//H/i1X/8NPvLvfuUhPPqfwWEUPPk4zGfwyU/CdKFXIeKabyrUp0hAnYczy7h2oFswHeSxndE6aPLlDlYpcQLVE1nIt84vc2nKUsSbsxM4/4gAhJNjiLWGrRw2VsTptDISgBNrjYwoCFHMqSNoWbRc9NL9tQAJC6+pC8IU7e3DS7tw4whOmshYGdmlA9DEGVQKTAEb52RnHYwwIl97Hu7chmffBje+BjdehpX1s7lyxFrDU08DfShbsZc3TUwgNjJqoYlunYUweXYo74UIecSKbHqxlRfDBzcNrK3DtbuRXXlAE7OI/b91G37/4+L+evSStNtirYnx3NIaVEY0I3UNvQrCROY8LeZMfb8fWsm1dHQs4KIshYEpSxnVUVkBn1km7Fbw0pZqmuVQzNd8qJi1A6wM5T2pSml1TU7jqJIa9g7kff/v/wH82q/Db33kVd37GwLcgKK/fR79JqhPTjj84lcJdSDEPBNQeHxcZGE80Wz2A8YEki6QakvPNOTGkiSeNJfdlXcaQyBRCqMURgfSJGGmLa2ztM6RZhkJGd5YaqcYrG6T9Xp452jGY3qrI4rBgKI/QCuNzhLUIEdn+bKHG4isjYh5tRaqVfQ1sRm1+Ax6T1AK23XsHx7yqa/s8jsvT3hlOqMNliIruJJA19b4pKPYMezvafq6YBYa9OmEo/4dqrrl7u49npiO+cqXv8be/VtY3zHaWGN/7z6TyZjNTZnDImNFAoOVVda2z3N7fMgTG55UJ6jE0DYtznYolWJ0wLYNbVeze3TMSRVIULGIQn84YnNngPfCDoxWV3jT297Jv/3sl0EpdnqGx9d67Kz1yLKEYAJH97/Ol4+n/Nhf+ctkWUET52j54NE+gPIo50hcx+rqkFu3bkmyLmBbS3iYEeRv0ENiDgJt5ynLjiM1xxgtBgEbvkEIXFYNZfX62FXFseXp5ZkwafWck5NjQJRtvV6O97B7cI9PfuoP+Ht//7/mfe9///cOuEFJm+VNSNz7F74KzQLdxN+fhU8AUw2DIKxDF0QIaxowUXiZBQEbzsjfLAS7OkirRttlXH2WC/1vYt7M6pbsmJ0TALEyFHFmvy+FPkuEvfmmWnNGzeuFWHehr1HL2yiifkLJonV0BF/ZhZfGYkUPVlpYqRJNkelgx8CeAjOA0Mi4h/4dWfx270mmyfNfg/s3RQC9uQ67d+W5x1pDrDWMVsRtNT6EjSgiTpOle0mlMdOnEVH08RFU8YkvGKjhCHaiIDt48Gvw9nfCZ5+Xx+oZWO3BWi/auD3svwTHU/ipnxRQZFthr7xZCshd1PqsDeFLt5azi84szN/nRwjLcMiyE1C9aLPa8I1C4KqRr9fj0Equ0cUMtaqUzyTIetPL5PeH9+GTn4b/9u/B+9//vQZuQBlNcX6b7Xe+h9Ba7n3pRVSQ7BuFzJ3yQQBP2xqqMiHxnsw0pHRkxpNnjizzJJkUK+UdJqQCbFAYAqnJWSsCTsfEYdsxOzlmcrjLcG2TwcY6zlmm9/eBlPXzF2VqsrU4OlKTYLQhpt9Fq3cnbHWSoLWJtnEtLI1fQLJAQB5zMpnx5WtHfPxFz9dOwScFTz99hZ2NTfJihfpoHz+5zWl7ypMfyPF+g/H9TW5df4G7x8fM7u7zU//5T3J8fMLv/uYvMRnPSbKCw737HBwfYLRmOp2yvrGF8x7bdTjX4bxjuLrCvZu3JAHXOrp2htIJSZJKK0MlBFXTNCUHJxV1J9PZlVIc7N/i8OAuFy49iVIKazu8Czzxpmchy3hi5Pnwc5fZ3ljFB8d0OuGVgxNeOmz5O//4f+Dw+Jim7uiP1nDWkqb50ryhNbrzGA1VVXJ4WjMKAWXVd+JV+P45AjjrX7cRE3/SkSSG4bDg6qNPcOH8OU5OT1lbHXLv/gEqpHLtB4ltuH3nNvfu7rG2vvpn/Cxf42G0aFje+R7ZqX/pRZazplgKcAnQGiijndo0QBdBjYPMC3MDsssNaVzgI8gwORSRnbBOFvXTE3HqrG3CxoYAn90D0apcuBTbYS4+TiLgJdYasXpLrRHgFH9HZHC8X74GlNz3dA7XDuHrXlgok8NTl2BjC4pVON6HyW1oTuFDObgN2N2Ca1+TPJk7e/Azf1nGP/zGL8J4Lm2K/V0ZkaC1jHjY2JLH7zoBDt4JM3L9FjwaXTSTaRQ+x1aUSkHV4qI6qeJwxvgS9m/BwR249BRnkf/OQ6w1jDw8dwk21gS8TKfitjpo4R//A1kk606yeqyL87biqdFamB2lZEE9rZcaq/8Qj4C0JP+sj8RIAvijj4tT7fRUxjDcVyLyN2bJot6+I9fi5quvNa8K3CilbgBTpMNpQwjvUUptAP8KeAy4AfxMCOEk3v7/BvxsvP3/KYTwm9/u/kMIWN+RDQrOPfMWkmA4PTzA3j4iUVFrQzibGq5R1HXKUEUhHh5jPFkmXzr1BN8RXI5WAUMUoKFQOPppQachOMf46JDJ/Xt451HrirYsxcrd1GxcuIT3DpXkpJlB5xneWULwBOcJSD5NcB5tEkySnDFNAWL+hyjIvdfUVcn127t84pXAFw8y7s9uceHyef4v/+R/5pGnHuezH/0EX3vheb5yesD9suVoXPPZfzUh0QfkIbAxLBj0hhxMSo7Gp2TDFa4+/kNsbcK1m19n995LvPTKSzz61FUee/wZgpeMnc522LbF2ZYkz5hUXvJwkizqDYMwY520Pbz3zMo5JzNHGxQGMHiOb+yyf++A/mAD732c7u1Y3VzhzVefYX38EqN+TlvOODjc5/Zhyefmip948xU2Byn37s/5yheu8UMffB9NXZKkGSoojDY4F5jXM7RWtK2X7CA0ReA/THDz53Q47zkZTzg+mnD+4jmyfo9zm4+wuzHGGHkngg889ugj4BsmkzG9fvan3OurP17vWiMW2E4YkWfeIu2WwwPRnpwJ476JyalTYFlrBNzEr9TL/fmcbxy+iTyltIhaFyfsxL17whysK2kB2GgZv3BZbpPkwnAUMV8kLPQ1MePD+ZitkyyfH8T8j+hW8Vqss3d24eUABxnMbsPFbfgn/ws8/SR87BPw9S8Ls1J1MK7hX05AH0J4AYaFDLuczoWZOT2Fx34QNhXcfBHuvgjXXoInr8LjV6PIOQK4thXBcp5B5eJ4iWzZMsMLSyJuDsntmbrleQsebtyHu4cw3BQmYTaR+99cgavPwPglcfOUczjcg8MSZgrefAlGGeyW8IVr8MEflvObZnL/2ghrVk1FuNw+cH7/AyBt3lCH98IOHk4kvK/fh80rsDFepnb7AI9eESZxMobhq6813wlz86MhhMMH/v8fAR8LIfw/lVL/KP7/P1RKvRn4G8BbgIvAR5VSV0MI32YTGkBpesUK/d6Atq7YfNtbaGd/SHfS0oWAC4s2lbhrujbHFR1F4hmmgUEvkGUek8ogQu8hTTyJcWICcNB1Qdq3KtAvRjgUs5NjXNMxWB1RFEO6+Yzm5JTBxgoqjX1oZ9H9PmiPyXoEp7BtRZJnEIIIh41k1Uh2zfKleudxtuP0ZMInvnKPPzrc4dp4zrR7iatvejM/8Vd+hs1zl1C54mB+wMd//7d45eYrHDc1ZdQYaQJrRtP6kpVRTrCO3//4x/grP/03eertbydLDV/4w4/xR3/4aW7evk1A4X9EPqkheBmk2DR421GXldiDfbTBIiMiPAFvHd4HbPBM53MOp4oyOKoA50frDMyA09snfOL+bzGfT6jKuQih9/bZeewx6s/f4OT0iLqasXvQ8bk5fPiZy/zA5Q32dm+xsrnO8cEJf/iJT/Gu9/4gSZpDHghJivOWclrSXx+QJDIpvVCQAd9nccRv6MNoQ5qkHI1PuL+3xw+9971cufIolZ2yd3+fLM1w3pOahFF/gO88bWcf9tN43WsNxYokCNcVvO0tMP1DOG2/kbVZ0AhNDr1OhMBpEA1JFv+96GIlHoxb2sc7xEWlAhRDuZ/jo5jMO5SfzWfCiGyMRFsCAmhirSHriXW7rQQohBBn/0S6U+lvDDVbMDunU/jKXTjYEfdJ+yJcfTP81M/AhSvSzqmP4fd/C26+LLqTB7VGRkMoYRgZl9/5GPz034B3vENaZZ/5bfjMH0iqbFDwob8cT62PE8tjMF9VSSF+oNachbxZF/N/vJyHmVqKn0frkAzhzinsf1SATTkX/czuPjz+GHzuOoyPxKJ80MEMeOYSXN6C+7eE0Tk4gk98Et73g9KCy0McHeFkGOn6II4iUMsd1H+sNX92xyKBe3wCu3vwvvfBlcfAzeHu3nLMh1lk7vg40+rVHa+lLfXXgQ/Hf//vwMeBfxh//i9DCA1wXSn1MvCDwKe+3Z3leY8szwlKY4YFG08/i52W3PvM5+nmDqWCZDAR9TNeo32CSRswQsxoE0Rjlxic9QTj0cbHNrCiaS2ZN6TZkDTJ8U2JKys0iqzICN6CD4w2N+mvrRJSTdLvgZZBhkqnaJViCoNtpN2jTYoymqBUtNrG9lkQJqQq59y6t89vPr/Pi90THEwPSIqWd73t/Tx59a1orfnYr/9bfutXfpGv3HyJvfmMOvizrr9GoTF0PmduU9IWiixwcnjI9a9/mV/5uf+duzdv8MlPfJyDwwPQLU1VMxgMAEVnO5qypq5KbDPn+PCIrUSjYnKy0rGoeR81egHnPccTy7wxaDR9FRhMTvjSb/86Khh+8RMf42A6RqEZpCnDYY9nn3gz2+eu8sqdL5Bpz1dazVuubPFDj20TNPimJh9u8Z73/xAvffkFPvqrv8kH/8KP8+hjj+EiIJxN5+xc2CRNEjyi9emh2NFwx71+U8D/47E8vPdkaUJeZOzvH3I6PmE0XCUzhne/4x3Mqzm/9du/x8nkhBde+To/GQJVNX29n9ZDrTXkDwyaHPbEBTQt4TOfh3lMbA1w5q4JWtpGsdaIm1p0fTJ/J7I5Jq6MQUkR9gayoQhz21IWe5QAlVhr2NiA9VW5n0Ev6hCcZL+oFAoTc286cRYZTYxvZ+lUiUxIWcL9ffjSHnRPwPQA8gbe/X545jlhUH7zV+FXfkGcTvMp35gdopBimkGXiYMqC8JsvfBl+Pn/H9y8Ab//O3CwL6LqspKFByXtqLISpqSZC7hI9TI5+azWRIpkMTF6asVphhYQNDmF3/51YdU++TFpe6GErRr24Im3wLk3we3PCwhsNVzZhMd35P2paxhuwfvfKxqhj/wm/NiPw6OPxfadhckMLm5FBuwBIKtZhiX+x+P1PbxbspT7RzA5gcGqXOPveIdcR7/zu3I9vPx1uVa/g1rzasFNAP6dUioA/zyE8L8C50II9wFCCPeVUjvxtpeATz/wt3fiz/7EQylNmuWYVHqxwSj6O5usvulpTvbuMPv6XbRVpEoDogHJlCJxOT7tyHLP6siQJQnOt7Q+4IMixZNkFj23OK9oK6j7liQPJFlCM5/hSkevn9EbrlD0+pjVFZJ+jkoS8DJxm6g5CUGs1SFYlNa0VQWhIy1yggoYlRBQOGdpq5LjwyM++8pdfvNaTVk8S9UdsX1hnSefelYs1bMxz3/hNh/96K9x6/SIqbcR1EjP3qApVI++WmGQbDDI1xlmOU4fkeeHpH3NR3755xiurGKDpd9PadvAY48/zfa5c4CibRvarqIpJ8xPDtm7v8fV7Zw0FydVCAHvHCoEgnMEOqp6xv0Dy9R6Uh14+zDlmS3NDZ+icsNTj10l2b3O+voKRZ6gCOQDzfWDMWYP9CjBGMV7dvqkyuDR5Frjs4Q0TfnAX/wwO18+R1fVWG8JFrquZXI65nKWsr25yuHBFBcvvD6wrhSH/yGI/f6cD+ccdVvTNB27+3vcu3eLRx+5KoJn1+KCi1jYkyQJIVhu3Lr7MJ/C61prJPa5kLyVEGQx3NmEN12FvTvw9buivYi15izAzeWQdDL5ehRD63wbxa6RvskszK3stCqE7cmDiF3nMyidiCSHqzKscHVFQgVTqTWio0EeN0RrdYiherHWUMT2l4rBg94KoDg6hFfuwisVFG+G7ggurMFTb5bHmY3hi3fgo78KJ0cx2C4+1sKhpHqgViDZgHxdRJ76CLIDGBr4pX8pWTW+k2Tb1sNjT8s4g4XzpatgPoHTI7i3C9v5EkiGIEzT4jsd1FM4sAIQdYBBBtsRTGYaHn0G7l+D9RUoUjnPQwOHp7AHjOI5O9df6o+0FoYpTeEv/Sh8+TzMY+ChRdpmpxM575urcDD5pmtk4b76j8frejgvYvamk/Tru7fgkauR0WuXTJ7z8fPmJIbgVR6vFty8P4RwLxaV31JKvfBtbvutJBJ/7EpRSv094O8BbG9undmWre2iziUh21hn9ZlnqMZT/P0ZzonA2Chp1egQ0DbD5BWDgUGHQNVI+J9qPd5o+j1POe3ovJIJ49bhnBXdzskUg2L13CZWGW7uHXD+0jY9lxOaNjK/liRL0MagEkkO7soO3waUEQV+V5eoEHA6oas75rMxL92+x8deOuJTh4717feAKnnvBz7AI088y3R6QtuV3L9zjU//0ae5drxPGx6Yk6SkYCak5GpIwoAQNNPqhHnj6ecjLqy9GW9TZrM5/ZU+o2HBaNDn4sXH+Mm/+p8wGq5QVXOa+ZxuXhGahsNbdxgfj3nymcdQPvbCCRgTnWXa0LYl09OSV04c6wPFX396nUHhcDpQhy1Wdla52Gywt/8y85Mj7o9ntE3HF/3XWTWGXBvWreJ9CjbyHpk2TL3HGEOSGEwioyEee+opOmdxXYe3nq6zTE7GEDyraysYAzMbyIEERQbLEMT/eLxuxxOPXcGGjoODCVNbsntvj8uXHkPHrCalPEYrnLV0cdr9H37mDx7mU3hdaw2bW0vbso3C1/9/e+caI1la1vHfcy51r+7q6ttcei47PcPeYC+Iu8QlRIUI7iIQREUhIZFEY/wgamJAE2+JRv0gfCZiQgKoJIpsCCIryjLIZped2V12bgszOz3XvndXdd3rXF4/PG/PNOssO+vObHWN7y+pVPXp6qr/6Tr1nOc873MJAl3GuP12qDfgcpMrwxTFvmRqtOdLtgNFTaqmZ0+C/dRO+k6h0decF2MjFkmsMtca6vRMjWs4fnEZdk9qrk6rr+/jxXpS9n21zGlXq1n65sp3lW5b39MLNGG2tQHnL8EPV2Elgcmf0OqXhx6C2bu0SV/UgUtzcOQJ7cy79cQtm85ZAFICiqq9s64Ro2wZKndDFGqjv5GC5uMU87BzH7z3A1oZtdlNudVRJ+fCRe0jdPs+28/Gv+pMJrb8u9+GWgfWEigIHBqD/GaEZxJ2VCBqagVUbU0TkrsRpC/o63m+OqIh2gvHC+wyhm9nFtlcn4OHNKoURepExbEuB5oUxsqqKd6SY3Xtw8hxo9k3A8TqXMYduLwIu/dr9NKgUTnPJsZvTrt/FbbmupwbY8xle78kIl9GQ7+LIrLTXkntBJbs0y8Ce7b8+Qxw+Rqv+RngMwBvODBrPN8jTmP6vQ69bpt2p0FESmHXNNP3vhETP4dZaml7BwFPjLbUigKW1gJCv0u1GOAFgmcMRDp4Mlv0yRUi4maGfuSTMwmxSUnaHUwvYnzPJFHo8dzxeV6c7/H2ByOmJ6bxjQF88A0iqV7E+T65fJ6kq8lvuXwR8YRWvU3U2iCODUvLKzx1fp1vXGgzH3lMjt9NoZjhHY+8l9k730y9tsJGc4Xv/MejnLhwhrXU9vThanAUBF8CMpTIBxOYNCU2htArkMsU8DyPlYUOhUrCnn37Ga1UmLjzPmZn7+AnH3qI3TN7iaI+nXaLbrtJ3GmS9Lsce+YoY6Gwf6ysVS9o6S/GRqNs8qJJY3bnfN40W+bg/gn6SUqz26WaqXLs21/l1PkVzq+0yRczlEdHuG12mrXVNZbPLpLEhoNJiD+WI5vNY8Qn6nXIZLKYbFYbC4rghT6SpERJF4NHv1WHVpu43aNcKhD4PrUoIYehbKtDSwgNFzK+aYSBcNu+CrlSlfn5ZXq9mMuLy0RRT8v2xSMTZqiMjmIwxFGPRqvG00eO3DANN9vWyIFZg+fpCbdvl1A6TSDVpMZ73wjxc7DU2rJaYXNrogDWAvC7UAzUEBnUAIuo01OMoZGByNcrz9R2gO1FsHdSoxEn5uFyDx6MYGLaOhs+BMa+l3VmcnmwtoZ8Ud+n3laHJjawsgLn1uFCWyuNxu/WGVcPvxfu/gmorUBrDb75KJw/rZGL/+362ShQGQJb8WRSbbyXKdpRDB2oJNpYrzIGd9wLs7fDQ2+DPfu0j0+7ZVv0N/Vq/OgzenYZK6sTAporpPNmriZKm0iX3mbLsH9cl4S6XchU4fGvwvlVWGnpflXKcGCH9mY5u6j/gySESg7bkl57C2VsafFmSXnoqUOVdAFPo1jtjvZzKRa3jF2wn/Nm9MzZmptHILBvTAezzi9DL9Z8qqhnjz/RJPDRUcDo9k4dXoWteUXnRkSKgGeMadjHPwf8OfAo8FHgr+z9V+yfPAp8UUT+Fk3yOwQ89QpvopHKfkK71aTVatBuNojjHplyiezBQ/gG5Mln6Kz37TFogJTU+LTaJZbqDQq5VC8MjI/nRcQJBGFKrmRotROtUuyCjHiEBkZ3TWHyAXMXlnnyxYT9UwbxYaW2jCQJ3X5ErdFhdSOi1jSY1OP2fQXuOrSXfK5A1O/Q67RZW1xgdXWF1XrEYxcijjYiEt9jeuoeRkYqfOhjH+E9v/IBLr64wvcOn+Xfv/IFTs6fo2nSK8vPV5wb8QgIKTDKSLCTUm4vhpQwyDKSr1AuFQkDn253g3ijRWXvJLN7DvAzj/wUB++YJcxk6HU7NBsNNtaW6W1skHa7rC/Nc/TIMd59cIrRYg5fApLEhtBNgkljkqSPH/hAwv37A/buHcP4Hr0oZr1VI1pcIFlM6HYNpXKWHTPjZHJ5vECnr1dG8hSimMgPSAOhl0R4JiIMAvx8kcjztTQ+TXRQKCmkhjSNSVsNxqI+3VqdUqmAlwmIuzE1hBBdlg1FoIdzcG4CmSDDgdumWFq+xB0TE+ydmeTs3AL1+ganTp4gTiLGRquIL3gChXye8eoYJ154nrlz52+IhtfL1gCaE9Nsad5Jq6HGs1zSq3wDPPkMWFtzpcLH+NAuaXQnt5lf42lTvwRNMC4m0PI1obiLLmGlRiuV8iFcXIYXE5iwUYzasi7R9GPN+2lE0DR6Mt5XgEN7tYtsv6NLU4vzugRVj+BiBBuRRo2m7tFE3F//NfjVD2r593fm4Cufh8s1BvziAAAOk0lEQVRzesJ46ddGPDTsMQLBLsjtBRLtMJyrQNkm3HY3YKMFeyZhzwF4+Kfgzll1IrodLcNeW9HcmE5PlxiOfB8OTmojQgnsJHKbNJxGWk0VWAdwXwB7x9TJiPvQqsHiAiwm0DVa/TQzrv+HwGhCdDmvERjf1xNlEqmjFATWEfRtMnPClSZ+qVEHr9VQh6xW1/b/2UC7FW9GbTL2OOnhHJybgR9qftTyJZicgJkpODuv36uTJ/SzHK3axHmj862qY1rdN3fuut/meiI308CX7fTfAPiiMebrIvI94Esi8jHgPPBLAMaY4yLyJeAEusL52z++egGN+iYJvW6bVqtGp9WgF/XwMPhBQHG6SjYskPb6XHryWUwXDCmJEXrGp5UIzVqOkUKbyYouPZkUPC+l2xe80BBmY+K+T2sjoFQRyrsm8CXlwuULnDjbpR57jFeExdUalxY6LDUM8+2URj8lIGA8EzBb9cgGPq12myRO6fW7rC0tUq/XWW9F/Pslw/PtBC/wmazeS3l0mne+5x38/Ad/kVwuS692iX/67Kc4fnmOBuZq12qLJx4hOYpUKfmTFHM7yIQ5wjBD3i+Qy+UIvDzZXJ6x6hRh1ieueTx7eJmlc1/jt/74w4yOjbCysszq4iLNtVW69XXidpvvPn6Yiol4+x17yOWL2kE+FUwcYYzgexniJCEIQyrVCfI7c8T0ieKETCZDYoRdpRJhvsR6kqHZaZHJF4hTTZpGDMUdOk38UrfHRA56JqHkZ/CyIWmQIY1ifJvngzFXujinSZ/ueo1xgfzaGt6BGcrlLEsbXV2uy0IQCiRQ8cEzQj01m+mP3PBanf9nCML9b7qHu+7ZzxPffZxTJ44xOlJirBwSBBkWlxbwPI9dO/YhApMTVW7bc5B2s863Dx+m171hvaJfF1uj83E62tq/1dRGcticl+kqhAWtanryWXVQNsu7ja/VS7UcFNpQ8ezIAmxiq1EHJxtrf5yNACoClQlNlJ2/AC92IfJ0+2pNoyINA+1Ul7cIdGlqTPTE3W7bKpEuLC1qOWwzgstGk58DD8bugdFpePhn4Zc/CLkcbMzDZz8Fl85ytRJqC+Kh5VxV8Ccgt1PL1sMM+AV9DS+n0aPqlHZWrntweAXmvgZ/8mHNg1ldUUdkbUWrXjptePywOi933q6OBqhjE0e2HDujn0EYan+cnTmgb/vR2JLtUkmr2ZKMLnnlC+ogWVvDTtuivtPT3TAJ+BkdpRBmNcF6M8/HGHUA/UB1rdfUj1lbgwN7oJTVUnhj1LGxtgYffmTumOMGIPCme+DeA/DEt+DEMa0eHAl1CXFpQT+36b0aQZuowsxBaNXh8Le1S/J18orOjTHmReDea2xfBd7xMn/zF8BfXLcK0YTSdqdJu7VBr6ehKc/38AKfIJvDGw+ovuFO4kaL9eNnIEow+MTGo2tS2v2AC+sZRkdiYgTfE8IUMhmPOEnJ5lNM4hFHPr12goQeK6srLK02Ob0R0E4TnpyLqfUMy70EAfbkA+4Zz3JgMs/e6VEmqqPkink2WhssLZyj1WqzuNhhvSP8dx2e7yT4vjAycohicZpDd+zlbe96hH4v5dLJZ/nLP/xdjp5/gQ3zo7kjms7nW8dmjIJXJZsZRwgRfLJ+nny+SKFYJpvLksnm8EOfOOqxOH+apaXnOPPDLm99+A72HJihsb5Op16nt1En6bZ44fj3eeqJI/zmm/cwls9h4pjY6Fq7+HplGfc6JElClESaMuCHdnlPB4Wub/QplCq0SwVoRoTZLJ7n4xmb7GVgpdagVmuCSUlCj/35RR44lKNYGScWwZgE8TTqliYxkhp8AggMfq/FXTNCIKtcDg+xs1qmnJlgaW2ZYtTUkTk297HsQSfVAycj2gepe90Hm+OllIoFHnjwPsKcMFqZYGH+Esb0CDM+YZDBpKlG2kR7IHV7HerNGnHU5vSZMzdMx+tla3TidkOXd3pdGwb3NJKQzcJ4VacSN1pgbQ34dkklhX6g079HrFvtizo4GZtnk0818hL56oCEnpaBrzahYRMjz8XaGblvkybzgXb5nSzA1KgmuhbzqnHhvOazLHZ0OnkN2z9GoHwISjvh9hl49y/oa576Pnzy43Du1Mskxm5xbLwqhBNoBMfXkQf5IhTKmuyczWmZetzTSeFLz8EP2vDIHTA7o83y6nUbtWnpeIbvPg33z0A+p9EVa2uwtoZexw6/1LE1V+ZLRfZzaPShWNGoSjOyS0y+/ZzU1lBvwLraGkIP8gtwKAej4zYhOLnatC+xHaGtraHXgt0CrEDmEIyXITOuDlrUvFI4tZlnfWXgqOASjV8rhTy89T5dihydgPlLUO+p8xzYjsS+6MVCap36Vl1zcs6cflVvtT06FBtDv9ej3dig3WlpDxaTImEe8TziNCKVlMLOaXbd/wDS79E4dZZe6tNJDf00JTGGxUaOar1FmIN8DISGVAx+kCGT7ZNECaTQ2kg4fe4HdDs95leEk/0Oa2lMsK5VWLuDgAd3BNx3oMpEZZRSoUQmGyJ49KIO66vz1FbX6LRgrubxb/WYlSQh9ATjjzI6doB+usjBuz/ARr3FfPcMn/rT3+fwqaPUUh0jcfXbo6XeOSlT9qYphOPkwyq57Ai5IE8ukycIfUqlUQqlki0IMLTbDVaXLnBx8Wla3TmmJiocf/4oSyvnCQ34SYKXRixenONf//XrvH1HgbsnS5g4IvFEnUdPu5x2u22SuE+YydKP+nh45MMMzW6fqN+n2+uwEOVpl3ax2mqwsd4iW8pj0j5iEo3AhAGVaonV9SaddkpkDE/MrbFzIiDu9NgdJ5CDwNfZWoIdT+HHeJ5P0etRnirTTVrUkj7Tk1Xq6wt4SawXYb61g3Z5PO8JrVSTsLO27Xt3yJIAg9AnjgZb4O6JcGjfDOPjVRqtOiOlEZaDZTrNBmGYoVQqaX5NHOmxZwztTovnjx/nwZ98C1NT41y4uDDQfXhVbA5pbNiTsbU1hPmrZcKSwo5puP8BjeqcOqtl3Zt9WYyBRh7qTfURrK3RhMCMDtO0toZGok3vOn1YFj2xpzGsw5Vp2jsCmK1CZUSHY2YzaE+YLqwu6OiEFlDzoG5HOXgC3ghUZyFZgDe+X5eOzrwIf/r7cPKI7Vj8o7ZG50iVwZuCcFxv2REI8nZIog+lER19YG0N7QYsXYTFp6F7FiZG4fmjsHL+aiQsjeDSOfjy17VyaapsxyzYJSFra+i2dekpk1UnE0+jNd2+VjH1OtDPw/QuXT5ab2sC82b1jOdpldNYGdaaGvEyBubWYSLUSE6U2EntHldGgnuejr3wfPB6MF3WfipxHybGYW1enaBY/0Vg7xNseb61LZvLmsPm5ISbeUUDRESTiKtVaG/ocRYsQ7Ohx0CphObXRFcdyXYLjh2HB96iyfgXrt/WiNkGH5KILKNf35VXeu42ZQKnfRA47YPhWtr3GWMmByHm1SAiDeCFQev4P3KrHTPDgtM+GF5O+3XZmm3h3ACIyNPGmLcMWsf/Bad9MDjtg8FpHwxO+2Bw2gfDa9XuvfJTHA6Hw+FwOIYH59w4HA6Hw+G4pdhOzs1nBi3gNeC0DwanfTA47YPBaR8MTvtgeE3at03OjcPhcDgcDseNYDtFbhwOh8PhcDheMwN3bkTk3SLygoicFpFPDFrPSxGRvxeRJRE5tmVbVUQeE5Ef2vuxLb/7pN2XF0TkXYNRfUXLHhH5LxE5KSLHReR37PZtr19EciLylIg8Z7X/2bBot1p8EXlGRL5qfx4K3VbPnIg8LyLPisjTdtvQ6H85nK25OTg7M1iG1dbcdDtjjBnYDW2TdAY4gDa+fg64a5CarqHx7cCbgWNbtv0N8An7+BPAX9vHd9l9yAK32X3zB6h9J/Bm+7gM/MBq3Pb60TZOJfs4BJ4E3joM2q2e3wO+CHx1mI4Zq2kOmHjJtqHR/zL75GzNzdPt7Mxgj5uhtDU3284MOnLzAHDaGPOiMaYP/CPwvgFr+hGMMd8G1l6y+X3A5+zjzwHv37L9H40xPWPMWeA0uo8DwRgzb4w5ah83gJPAboZAv1Ga9sfQ3gxDoF1EZoBHgL/bsnnb634Fhl2/szU3CWdnBne834K25oZpH7Rzsxu4sOXni3bbdmfaGDMP+sUGpuz2bbs/IrIfuB+9MhkK/Tbc+iywBDxmjBkW7Z8G/gA7lcYyDLo3McA3ROSIiPyG3TZM+q/FsOh8KUP1f3d25nXn0wyvrbmpdmbQs6XkGtuGuXxrW+6PiJSAfwY+bozZELmWTH3qNbYNTL/RCc/3iUgFnRb9xh/z9G2hXUTeAywZY46IyE9fz59cY9ugj5mHjDGXRWQKeExETv2Y525H/ddiWHReL9tuf5ydeX25BWzNTbUzg47cXAT2bPl5Brg8IC2vhkUR2Qlg75fs9m23PyISogbnC8aYf7Gbh0Y/gDGmBnwLeDfbX/tDwHtFZA5d+vhZEfk821/3FYwxl+39EvBlNPw7NPpfhmHR+VKG4v/u7MxAGGpbc7PtzKCdm+8Bh0TkNhHJAB8CHh2wpuvhUeCj9vFHga9s2f4hEcmKyG3AIeCpAegDQPTS6bPASWPM32751bbXLyKT9koKEckD7wROsc21G2M+aYyZMcbsR4/n/zTGfIRtrnsTESmKSHnzMfBzwDGGRP+Pwdmam4SzM4PRPsy25nWxM69XZvTL3YCH0ez6M8AfDVrPNfT9AzAPRKj3+DFgHPgm8EN7X93y/D+y+/IC8PMD1v42NHT3feBZe3t4GPQD9wDPWO3HgD+227e99i16fpqrFQxDoRutJnrO3o5vfieHRf8r7JuzNTdHt7Mzgz92hsrWvB52xnUodjgcDofDcUsx6GUph8PhcDgcjhuKc24cDofD4XDcUjjnxuFwOBwOxy2Fc24cDofD4XDcUjjnxuFwOBwOxy2Fc24cDofD4XDcUjjnxuFwOBwOxy2Fc24cDofD4XDcUvwPO0PIQw46HXUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "Idata_m = Idata\n", - "\n", - "Idata_m[:,:,0 ]=0\n", - "\n", - "fig, axes = plt.subplots(1, 2, figsize=(8, 4))\n", - "ax = axes.ravel()\n", - "\n", - "ax[0].imshow(original)\n", - "ax[0].set_title(\"Original\")\n", - "ax[1].imshow(Idata_m)\n", - "ax[1].set_title(\"Modificada\")\n", - "\n", - "fig.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[[ 0, 147, 151],\n", - " [ 0, 103, 124],\n", - " [ 0, 58, 102],\n", - " ...,\n", - " [ 0, 120, 115],\n", - " [ 0, 117, 106],\n", - " [ 0, 119, 110]],\n", - "\n", - " [[ 0, 171, 171],\n", - " [ 0, 141, 143],\n", - " [ 0, 114, 124],\n", - " ...,\n", - " [ 0, 118, 112],\n", - " [ 0, 115, 108],\n", - " [ 0, 116, 105]],\n", - "\n", - " [[ 0, 194, 193],\n", - " [ 0, 178, 175],\n", - " [ 0, 165, 164],\n", - " ...,\n", - " [ 0, 120, 117],\n", - " [ 0, 116, 112],\n", - " [ 0, 114, 109]],\n", - "\n", - " ...,\n", - "\n", - " [[ 0, 170, 176],\n", - " [ 0, 170, 177],\n", - " [ 0, 168, 170],\n", - " ...,\n", - " [ 0, 0, 0],\n", - " [ 0, 0, 1],\n", - " [ 0, 0, 0]],\n", - "\n", - " [[ 0, 169, 170],\n", - " [ 0, 167, 171],\n", - " [ 0, 164, 176],\n", - " ...,\n", - " [ 0, 0, 1],\n", - " [ 0, 1, 1],\n", - " [ 0, 0, 0]],\n", - "\n", - " [[ 0, 167, 172],\n", - " [ 0, 165, 169],\n", - " [ 0, 162, 171],\n", - " ...,\n", - " [ 0, 0, 0],\n", - " [ 0, 1, 1],\n", - " [ 0, 0, 0]]], dtype=uint8)" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Idata" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAEgCAYAAABIE1IQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebB2WZbehf3W3ue8852/OTO/zKyszKrqruquHtTqbjWagBDYKIjAGANmDNuE7TCesB0GG4wCYwcOGeOAwGFwCAdgzCCGCDmQFIBES43UUqu6ulVdU2bl/M13vu98ztl7+4+19jnnyy5RWUUXndm6u+rLe+87nGHvffZ69rOetZaklLhu1+26Xbfrdt2u23X7ndLcb/cFXLfrdt2u23W7btftuv1Wtmtwc92u23W7btftul2331HtGtxct+t23a7bdbtu1+13VLsGN9ftul2363bdrtt1+x3VrsHNdbtu1+26Xbfrdt1+R7VrcHPdrtt1u27X7bpdt99R7RrcXLf/yk1E/gkR+X/9Vn/2YxwrichnfyuOdd2u23X7ZDYRecWe9cL+/pMi8g/23v8/isiJiDwRkfsishAR/1t8Df+0iPybv5XHvG4/3Fb8dl/AdfvkNRH5h4B/DHgNuAL+Q+AfTyldfLfPp5T+Tx/32N/PZ6/bdbtun74mIu8B94B7KaWT3uu/Bvw48GpK6b0f9Pgppb+1d8yX0LXq5ZTSM3t59oMe+7r9zmnXzM11e66JyD8G/HPA/xrYA34WeBn4T0Rk8F0+fw2Qr9t1u24fbe8Cf0/+Q0S+BIx/COd5GTjtAZvrdt2Aa3Bz3XpNRHaBPwL8oymlP5VSqm2H9Xehi8jfZ/TsHxeRf1NEroB/6KOUrYj8AyLyvoicisg/KSLvicjfZO+1n+3Rzf+giHxg1PL/rnecnxGRvygiFyLyWET+pe8GsK7bdbtun7j2bwD/QO/vfxD41/MfIrInIv+6iBzbWvG/FxFn73kR+aO2HrwD/Df7BxaR/1xE/vu2pvwnwD1zRf2/v4sL61BE/jUReSQi5yLyH9nrByLy/7Pzn9vvL/bO8aqI/KKIzEXkPwFufOQa/j1zg12KyJ8TkR/9rey86/ZfvV2Dm+vWbz8PjID/oP9iSmkB/Engb7aX/nbgjwP7wP+n/1kR+RHgXwb+u8BdlP154Xuc9xeAzwF/I/BPicgX7PUA/C/QheXn7P3/8fd/W9ftul23/5rbLwO7IvIF07/8d4C+ZuVfRNeGzwC/DwVC/7C99z8A/jbgJ4CfBv7O73aClNJ/CvytwKOU0iyl9A99l4/9G8AE+FHgFvB/s9cd8K+hm7b7wBr4l3rf+7eAr6Brzz+DgrN++5PA63bMX+Uj6+B1++1v1+DmuvXbDeAkpdR8l/ce0+1e/mJK6T9KKcWU0vojn/s7gT+RUvqllFIF/FPA9ypg9kdSSuuU0q8Dv4765UkpfSWl9MsppcYYpP8nuhBet+t23T75LbM3fzPwLeChvZ7Bzj+eUprbs/1/Bf5+e//vAv6FlNKHKaUz4P/8g5xcRO6i4Od/mFI6Nyb6FwFSSqcppX8/pbRKKc2BfxZbW0TkPvC7gH8ypbRNKf054E/0j51S+mN27VvgnwZ+XET2fpDrvG4/nHatl7hu/XYC3BCR4rsAnLv2PsCH/yXHuNd/P6W0EpHT73HeJ73fV5ggUETeAP55dPc2QefrV77XTVy363bdPhHt3wD+HPAqPZcUukkaAO/3XnufjuF9bg35yOe+n/YScJZSOv/oGyIyQVmcvwU4sJd3jGW6B5ynlJYfuYaX7LseBUP/beAmEHv3dfkDXut1+y1u18zNdeu3vwhsgb+j/6KITNEd0H9mL/2XMTGPgb7vegwc/YDX8/9Ad3yvp5R2gX8CkB/wWNftul23/xpbSul9VFj83+B5V/cJUKMuodzu0zE7jzEg0XvvB2kfAocisv9d3vvHUFf477a15ffa62LnP7B177tdw9+Luub/JtS19krvu9ftE9Kuwc11a1tK6RIVFP+LIvK3iEgpIq8A/x7wAN2Jfa/2x4E/LCI/b+LfP8IP/tDvoKHoCxH5PPA/+gGPc92u23X77Wn/PeAPfoQFCcC/C/yzIrIjIi8D/0s6Tc6/C/xPReRFETkA/rc/yIlTSo9Rbcy/bALiUkQyiNlBdTYXInII/B9633sf+CvAHxGRgYj8AvCHe4feQTeBpyijfJ3e4hPYrsHNdXuupZT+LyhD8kdRYPGX0B3Q32j+5e/1/a8D/yjwb6M7oDnwDF0Mvt/2v0J3SXPgXwX+nR/gGNftul2336aWUno7pfRXvstb/yiwBN4BfgkV8P4xe+9fBf40qr/7VT4S4PB9tr8fZYm+ha5D/3N7/V9AQ9NPUPHzn/rI9/5e4HcDZyjw6bvV/nXUTfUQ+IZ9/7p9wpqk9L20ntftuv3gTURmwAXqWnr3t/lyrtt1u27X7br9ddCumZvr9lveROQPi8jEfNZ/FPga8N5v71Vdt+t23a7bdfvrpf3QwI1pNr4tIt8RkR/IZ3rdPrXtbwce2b/Xgb87XVOE1+2H0K7Xmet23a7bd2s/FLeUhcq9ieY3eAD8CvD3pJS+8Vt+sut23a7bX5ftep25btftuv212g+LufkZ4DsppXcskdu/je7mr9t1u27X7beqXa8z1+26Xbfv2n5Y4OYFnk/C9IDvnYL/ul2363bdvp92vc5ct+t23b5r+2FlKP5ueU2e83+JyD8C/CMAg8Hgp3Z2DhiUjsGgIIbIYrHiar4ixAoAR4FIgbQHSnjvGQ49ichmXeO8Z3dnwmQ8xHkPInYh8vwV5SvpvyZC/rSeJIFI9+dzP7vPPX+j+RPJ/p9IKdmr6SOf7B9Dcp8gIt0npH+p0h4jX17XE737ku44v/k6n++E9NyXf3NTl2X/A/L8+fr3Ir2fbb/lE+f+6B+ld/XJ+q0dr4/c2Ucv4btec/9+7Nvp+a90fWuv9scvn7vtMnn+y9a5uU/0R6Lv1n3uvf4N968yRTtcIoRAXa2o6wUpNu3rMSaaACGAL4dMp3sMB0Occ88NYX/cu/nV689ez0iStk/zNef52f793PX+tefHc3PZzv3k6fFJSunmb/70D7V9z3UGnl9rpmXxU59/4TZUEeoGnIfZGHYn4AZ6yFSjqVjyU48OxiaAOBiVECPMV7DaQAz22H/01L3v599Tf5y+2y2l/9I/9fvd89J2g4j97J/zo8fJa5NAih+5hufH9DcfQp770f6Sol5T/7o+uiC1H/9rpLv66DF/03v9vuutCfnv79aP0u/3v8ax++MlH33/r7XQfHTRl4/c23d96H/zdfYfrt768tzp+8cWeb6fJF9zHvu/1vftNe9hMIHBDojvjuecUhweaDawvILtRuf3c/fA83303cbzu/Vhfk0AeuvXbzpW/4+PLPgfef8rDz/8WGvNDwvcPOD5DJMvouLStqWU/hXgXwH4kS98Pv3f//l/nuHAEWPFX/3qN/l3/r9/jt/4+lus0mMiFQPZY1LewsuAmBpEHDt7I37PL9xnOhX+8q+8z5PHK37+5z7P7/m5n+DoxiG+LMA5xHk7py7EDqeLVDaoEhU4OSWyxDlcgkTUOSCuBT/iMhBxOOdwgEj30AlCjImUamKoibEhhgiS7DlNiHMIDifgvKfwJSKOohjivej5iHo06SavkK8ZiEIkEEJDjGpYUwTvhaIsKQpPUZR6L+JwvkfSJQih0e+ERIyNTvIkes8IiUBKkRj0rlL/4UnJHhCHiOCcR5zHe4/zDu+0b4SEE0dMkZQiRAUYyfo2xqZNXJ5ILaDUa81ASr9rva+G2CVIHlK09+24sSElR4y1gocYEPGkFPFOx9dRkCQi4lsglsfBOfDOWZ/pfWVYGVMgxUQIkRAaQojEEIh13QKEEGti05Ci2LUlkgiSHKkJhFTTNDUpwma75tnjt/jgO3+W+cU3IAkxepoQWK8Di3nkfJ5YV8Lnv/Rj/NRP/V5u3r2r3Y6z8dAx0fmWSEnHjKTXi0AKAhJJMZoN0t9jDNRNQ4iBuok0TUOMkZjsyEmNYEqRmPLrHUhKMRGTzlFS4J/5o//i+z/gWvFfpX3PdQaeX2t+ejZLf+ULPwbbqGDmy1+Av+f3whdfh+IuMIB0CfUzSBVIoQb8cgu/9D4sE/z0y3BvAv/Ft+Ev/iqcnClQihF7YLrFnGBAwoxzcpCaznjE2H1WO7YzhjEbv9h9Pgntc0gCJ3qNfgCuAO/sM+i6ESMQ9dghQKj1eM0WQrJrs3XlOZCSrxl93vDgC2zBs1tLUNfQBGhqPVe+1j6m8IV+x4teY4wGwuy86FqCf27UuntIoeuXGPRfCBDsXDFfa9TjiBnslLq+dYUBArsosfEIsTtX3y5k8BgFxEBtNs4p2fEiuNL6w+t1ioOYx7ex8e6B3zwOke7a8321u1Ov4+rtugun4KS0c4noeYtCx0ZcN78kQuH1fV9qPwzHcPez8NofgIMf0fnigh5z7GHmYFdgsIWv/RJ85c/B48eK7/M8yKDDZaBlY5Z/T4C3+Z03YWK/O2/X6vVeisI+05unkrqxew6oY+fMts8j/5v/2cdaa35Y4OZXgNdF5FU00dHfjSZF+q6tLEveeO0zrFYL3n33bb717Yc8ebTE4XEyIKaKgBmRbOQTNCHgByW37s14/Y2K05N3OT65YLVec8MJ3ntwBc6JLs4JQBds58XAqBlpBOfEDCkksYloD4XgDGgkY0VAiIjzpBgMSAuRBJLaa4WE9wUphR5zYMcQECcKkqTQZylFA1/GvojXz5Ov15EIiFdDDYI4CKHC+wKRiHdejXn+n00W7xwJiKFWAxkbNdopEUONEzXmCuTUgIqLpOjaZz3ZZNYjGxBwzsCBgoI+0NbxogWF+SFJSZAkaoSTEIkICRFHDPF5FiumloyINj725JFi1GtNgbwo631gTtdusVDQkh9KFGj2fm/XnxQBHVc9VsThCQQbM4dEHWcpHIRISglPgRRCirpgJwIJhyRHzHYOCCFQbZZcnH3IcvEuKdUGbipi1Pntna5RxIp33vkNbt+5z2x3j/FsBM5AaLvgNjo7nJAawfV2O9GZEXHS4uJki6H3Oj5eIHpvi1RDMgATYqPfSc6MilOwY7Mxs4npN+3Y/mtr39c6A0BVw3fegckMXnkNPvcCvDBBB6cCGQBlt8Bi4MM7qBp4NIc3B3DzFbi5B5OxgpAQzKjZgyLoMcUpCIDOSGfgIrbhSPZ5628FI5lh6RneGNRAQAdCUl747XpDY+PYQxfZqMZkxtTOkzdRGdS0z1APVOENADR23SiQCma4o913ywrZvwzGfKnncIVeF6KvpdB9PhvQ6NTo9jdR+XP0gEwIHSh4rnXrhR2A1khK0r5rQZWBIe9690/7nLTGWW/ChsD6y9ZkBaQGZqOdL4VeP2dQhi2e0carx2aILQwZHGVAjO+BXbumxq5XRMejSQoYk32eqODGho2UFFgOJ3BwH3Ze1fktSYG9s/md7JRuAJ/5Ejz5AK4uYbGxvnQ2FyKkwsYqQZGeH4Nox4upHYp2voc8F9HxS0FBVgtgMviM2hcu9oCmdD+/jwCoHwq4SSk1IvI/QbNMeuCPWeba79oEvZ9tteHRo2d8+1tnxDDQY5F0d04gxC3el+0OPjSRJkR2d/d49TXh2ckVUtQ0YW0bBWdgXHA4ou2qkkmNRLwyO9mFkwJOHMkWbcmINKNl0e8kexjVGMbWCKf+w51EjyU6McRlgKADJWILU3K6Dni9NicZTCnQagGZqElBfAuEEIdznhQTzqmhdlLinbMH2tbMFChwZqzU7RH6wCZfskstwEup5wSThENsDZbeuUtEEs47M/rYeaVb3yXfs9N+swc1xUBKyu4kQUGEsQRi4C4zNiQhxWDXmUhNQJwgeHsgUmsgROxmRBBX6GaDRDIA216UASnsmiIgAZCIoyCK7oJEjK2TpG4hY4qSiP7zChglepKEdpx13pa0iCkY0KWgaWoWixOuzr9DbNY4pGW3khlCV+gGZ+BhfnHCd77zG9y8dY97k5cQF3VupWQbPG+nCYiXHkvmcSnodsDmW0qOJDp/fYokSn2+GkcjgRS9LcyCF6/PGXqeSCSJwxF1LMjuud8ecPP9rjNtC8BgBPduwucPwNf2hs5T8OCGynJkVF84KEQX/XcS3NyFMAA3sYsxoxLNEGcQ0lKTfYOcDIBk1sAMlIHs1tC2xs4WdHHPg5Z2XTKjmmznm9mgFgClnoEHQgZIuTZu3jXb7ykzOaEDQslYKSdqxFKEVLdzpWNqzMg6Y2scxm747m9BjxEz09Jt+vQ5tvsn9c6tGwBCbLFOC/76WKYFS90aqKCmx0RlhqUP7sTxPAjCxt3bmGb2pXd9GaikpAAvry3PufxS7zU7B2Lgw6HsjtoBPY71Qcyfp7vHYHPJBUj2nGbQQN1ds8/APEAxgNkNOHwNiklvrJ19Ti+Bxp6L/SP47Bfh2WNYfaCAM0Ubd3rMpNc1rWXJQgf62vkWu7kkTq8RB0XU63fBGByba3lDkaADVK7r17zWf8z2Q6sKnlL6j4H/+ON8NqZEXVeE1OALz2Q2wBUe70pcKGxn3hDN2OTnu4kVdYgMBiNeeHHMz7jE1dUlxUAnrC88uNQyF84VxExhiiPabkfEI7bjF2NdImJuqjxY7dVSON0xx2iLg3RvO5S90f8mnBREGsyM9zoIM64YuHJINvztrjx/R/8pa5OUHRHXaXKcw3nVC+j8duplSpEkygQEWxwSgRgiKURzLQRiSji8AR9lK/S5tOtNkWQ7iWQT3Tl14+hPZXDE9Vmt7MYAnWahWwjaY5vhyJ/F9dhqHSd1BymoiTF0zFpyOBcQnLIdEg3siLI0CEJmXnRxENR1o1ioc7/k+SFOQWQSBQPOFgDt63xvhQIsp/cVUzcnlZXXxUvXqUAMQe/NgeBxQFNvuLp8yHrxEH3gdUKkmDedUUGLgPMJSZEPPvgOL7/6OW7cvMl0NiWh1+Sds2sAklNQlhTY69qvBjumQCK080pnXmm7bpuHAZwIQYLJSITogrJUCWVAg82Fdo534P63o30/6wyg86Mc2OIcYWlulVAbyImoK8o9/9z7gdL41RYePFXjvLsPlS3ITTCjb/M6u3oVyZOf4RawGGPZ6iXadakHFHCdW8nZUv3c2p53tcbgpQZ91vLr+Z7pGVwz/tnwJzPwHV1BZ4wzeOi5mWI00JdBm4E6cXo/ZFdNQl1Zztwr0gGcvBa4gpb5aNkMYy5sA6UsSOgMa2Zv2r6mu2YBtdLGXPXdHq3RzAuMAcB87RlwOvu8M4YX1EjHDNoMiBA6MILda2a+WmNsIKnvJuy7HPMcy32c3YQtY9fod6Ldl/TmpMOYF/tbvM5P8uetX8sR7L0AsxdsblhfZJDZukOBoHaR+5+Fd78Nx89gsdT77oPRZH2Sp0zLTuW55a0/+i6/2uZwZvSw+/YGshqIhc0TtH+86z7fzvFPALj5flvhS8ajMffv3+Hnfu4lzk7OmM89rinMNgVirBGvlNVgVHDz3gF37hwwnY0ZjYeUhXB65olNYLtdM5vt4AtvNLxTI+50N5rEqwskpdYYi01y3aF3CFI3F1krYyMqQuF1AHXqaqfH1JAXFjEdRF5msuEHTyTh0MkixuSIc3jb3UiP8mwZBtOKJJRhETPAqQVKmVkwhYz4di4oExQIwbQjUX+mvIiZsfdS6Gvmv04x6JyWZBscXRyy/kecusVc1iQZENA76AmEWxSuLhVEkKTAVsyvrj2iLiDVkJhuJQa7p9heJ6I9mAjtWZLtroREal1k2R0ZSbaYxJaW155JosA2RYfIgJjH2rl2YymibrQkYvqdYE4n7YcUE84rK5YNWAh2LTGpDsfp78vVJVcX7xPD0oBabIFW2/UI3iW8g9LBfH7Fe+++xSv3P8dsZwfvta8U7Hq9Bwa41BCiU198MtdRjKaLUiYpNI3em4guaCkYJhSk6dx7nc0TIkKMUcc6eYzHbtfFT1ULNWw28MET+Isfwo1D2MlUOShzU5r7w8E2wKMLeHIOixWst+oSOAy6sx+OYTFXgJMXdEGNcV8z0oLAHniIvc+3fS7Pu1ZS0mtp3STZWGYgA632IbfWCPSMQx+wZF1MZpoyC5qf06wVwa4lG+D2M93zrOcL7WWRd+retCPOP6+byMY+mcGWzA4YuGjddBl9xO46Yr63HhD46Cxsz2NAJgOC/NFW05iBVL62DGoMPbTXmT/ve+fxHYhpGbkMbJwafxEdo3xeUtevLkKqaFma2Hve+vcXGwNWLRLTvgzSAUaiec7sNZe075zAZBcOXgY/s+vLgE1avKBgS7qu3tmDV9+AD74N87kxRtkmGkOI6dHyuTJId85AqDFJRdH1jzcAme+x6Ln3HCChu3fn6Oh035vHH799IsCNINRVoN5EptMpn3vjJU5+9oyz01OWD49pqVmJTPYH3HtpxksvH3D/5Ru88vIddnZnJBLD4ZAUhafHxwzKfQ4Ob1C6gbGmDpeEGDL9BRitn8QhKRpgyJ2Puh36F5owo5CyIsU0Gzo5xQRpyYR1Ik538qLMhMOZlkcXFOMabM6ZxsbrJElJKbxk/JJOdNdqdDAmQDswMz20TISeQY29QyCZ68PAirKx6gpxku/GtWxPSmrMWveUuchSFJxP7bh1faUPgN5eXnCTgbcMZoyJSpjLrrahUBeT6mcgRV1UYwwqWo3G7GRXlThbR2MHqMyVltk23YDpwpaSLooh2mJioCea0SdBkAYnBckHXOyzUNltSevGIyUDdJk1UoBEcoiBLr3NBFKoaJsGj7BZr7m6eMry8gOI23bznOrUA8li40gmopAU+fDBuzx59oCbt28wmo11/A3AZIOQxOHRsRafVL/k1Hiklh3QPk/ekXsy70BDDKYLFEJqkGQuW6PtBSFKtLkWW9D8qWqlg6GD5RK+/SHcPISjI3jhJq0BSQ4uKniwgPfP4f1TeO8JXC30/e1WF/abN6G+gLMTiJUZMWNGfE/70rqhjYrPILg1uh+BiJJ39z2rnIzmz9qPFI3W77kO2s9nww9G4+rvGdCkZEZLQEpdw1oXgFPjm7UjfSYgZZCU7+mjxj7Zc+87sOJ4HsTk68tsj5gx67M3gvZvaLdHvb7qMS95PrcRYBnM9OZ6ihDL7vqwMQBzH6aOqXF2kuyqyveabVArWs7ANNuSDGYyaDBtSwY92egLkAoFdsG0JTGjn9j1ZwZZmblpx9cAUuvy6fVDaowFMdA7GsPeHdi9D26ox41A2QPZJFq2MP8TgRdfgVsvwtMTWKxpQWAe32TXlIFsEGVaMrvTspbW533hdu7j7P6LiU5/8xHQmjIY67FrH7N9IsBNCIFvfusdHnx4zGBQ4V3D7Zs7vPbaDY5PjqlWl4S0ZTB0vPLKLj/+5Rd54aUbHN7YYzab4QpPCA2uEFzhmC8uOT075eXtS4zGI3PnOHUX+f4DaUbEdig695MxIkJKQjJtQ36wHGhUjjElqlEx1ieiEScxqHsHyIJagNAyMWLn8QqWvDdhbn56xdiPjJizoUzd5i8mA8EGmtodnC2I/TUV2mvKOp7U+qbzKfWaAtFcKyjDkyKxScSmYTm/4sEHb7OYnzAdT7h1+4ibt+4y3TsiRBgMp/hyYs+yGV5vLoxMwZt+J5roTFIyvUky17IxNLYwOzxJGhtDfV0kG35vfRtahr/zkBjjE5NGNcVIRN1YpJZ/UyAldOwYieSSgcpu8cp9piySdZtzxsGpsJyUkOTb51mAKBa5ZG61artkfvmQenNmCzBtMEXMc4Nubc8u9NLB4uqcDx+8zcuvfobRbKI6GmOyJGVQp67YPH8V3yVIHomxF+GEglkC4rzZH0f0kSBCanSRUpe7KNgLqJuzDStXwPN9MMW//c17+Pxn4KWbUA3U6B1fwXdO4MZNmOyBDDWa6r0r+PUH8MEJnF7CfKHsjC+UuWkizPYUGH34Iaw3dKyGmCbho8Y5A55seM0ASjacPUMD5rqxY2axcopmQJ0BiLzgS3ef2QikvB6YSydkwWvPmpnrslsPMhDL1yA9bUffoBsw6d2ift733Dpm/Gwda3ftmR3JgQaZ2SlE+3dnB+5/BnZuwmatRvbZY7g81c9uF1Ct7XhmeEN2C6XuvnUn1QNCmYrN9+PodBymZcmMTwua7Bw6gXpAoLMjLTvlvRn2LPDtPRyuJxLOTEi0a8jalHxZIs8DvqzBIYMkQVmN3rAnodM2eRUS792D8ZGBUp63+P0HN+OrvBDtHcCLr8G77yhb2fYnHXCk54qV1Ln4JGtp8vijB02eVrMTIwQDooWByEjHBPne/CJ/X+hP8e/VPhHgpm4a/ux/9ut85SuPGQy2HBx4xqPEctHgpUSkRKhomprLqyXPns1BhM265sbNhoOjPYbDEhlPONg/YH//jLresF6tODg4MJY3mqFwZH2WauGc7UB1wLzXB0BtgEbx6DvqiIm2W3W2I8hRRSklAy86O3SNMpBizEPeWQmC8wXOOQpf4J1Xl4CTjlRqcYcuhG30kCTEJZwrbX3MbqD8TJvugvyAY4Za3SwEQ/qSqejYfiYlSKYRiTGxvLri+PEHzK9OOL94wtX8lEHpmIwHuOkO1fqKZx++y+7lEePpEVfRsVpXjMc3mO7fYrZzg2Ex1HtL2Qh6ktPIqIAnhbwjzAu8LSb5Ycs+7oTqZ7y5BiW1mwMdHWW0lA8rcCKmJ4o0oVZWSHRHKnnhN1da1gYllNlyLhkrksdCLyiamww0xB0B8b2F20YMsKgnHT8N0BK225rNSsFNE5d4Y8X0FjumprVvYutlkfC1kELDg4fvc3F+xtHNW5SDUs/VRuJ11yhZ5WW7dl17xIY7tWyOc16BuPNEnygooWlIHsSVBPWt6dpeqpFrgroCNUpPGaxPTSs9/MEfh5++B9UQLhpYO5gVkGr9xwCKEnancHNHn5lxCc8KOLuEbQ3rFZyfw8UhFGOYTPTvBK0uIbtxIO+KeoY+WiodAyrZoLYtg4LUHTMDi9YFlQ2jfT5PGMSAkK0DwUKTQ6PGJYu7Uu/a+g9dqwMx4xtrWkaqNXDY2iG9a8oHMzdLTj+RzBD2d+FCpxFxomDm7n3YuwH7d2D3JtQR1hWs5wo6X3oN9k5geaqMx7iE1SlcPoWrEw1vz7eRtT3RQATBzkcH3rKAOH8n95mgEz4zW0l6mM76NOYvNbZ2GZjzpTFlyrS3oCi7W+j1k/MGbnouvVZH01JetJqWkIFzb46037FBCXYfgxKmU9XbuCmtYDphgKS7lfZQCWgEyqQA88VX4OBQtTeVaQNbcJ6vsQd4c4h/7idnfd1qdbIQOhgj16hrKqBzrDAg74E66U/bHHdewY/vnvpEgJvttuLrX3vIxUlNFVa89/aSlLZsNnOaOuJlSEhrNvWK994+5vhxxXjs2T8c8/kv3eVnf+4L3Ll7CAhOCm7sH7Bc12y2a2JT48tSGRbxBBWQqMtFNGIHQJxXl0JSc+edikXbDVeL9M2w2TxtQ9PFdss0uouPJoZNIFKYu0LdLppDxWleGFOLO5ejqyKEaHZeUbFzjpRyKLouJmZCAXRnLdLqVAxWkX3K+l7dAgRdjyysN0G13XB1fkFVrRlNRmy2Gx4//JAH73+dxfyY3dkOr332Nb7whRcYj0fszPYZjAbU24pqu2W7rTg5fcZquaZqAuvVN9lUidnuLV7//M9w96XXKMsBWDSQ6mhQcaqByFb7Y/qPvFZ37jwzqKY50rHqwACmyVHNj+a2STESmppgi7v3hQEfZwZFd1fOXJEZPOYdhAI+7cdkY5mSaoIUcCq4zBFmCqjUpeckgvc6HwBv82y5PGO9eIpPzljmQF+1lW1I/qMN+LAN0enxU548fcKL919hOBooOIqFsSm5j8TskMcZWxNR8XEg4ZOYi6okScB5TSjovenbPPaMCOIjEoJqjJpoUc0qpo8RFRnHTxG4GQzgx16EmyX4CXx2CjKE4Y7SY2kLMoZyAq/dhLsDWAc4W8PXHsMvfxMenaEdVcP5GUwG6gIoSs37kl1OGX2L0041pk4BRmYMRHUVbbQSzxvCVucCrSFpBaeFHstl4woa3dRnSswQt+HTBnyyi8u77vji7FpiB3BaNsHWPNNyPadTabf7WchbdgChBXl2nuEIDvegHKt2aTiEey/BKz8Ku7eUHfvOd+Cbj5QJW1zApoLhQD87HMDRLZiO1fBNv2CitGfwrb8EH74DdUUXDSQ9lsv6o+/iSHRGv+3fHIRgTFDq9VEiGwPrQ9NCOafj7y2HS7AQpFZw3ROS23qlYJSOvWkFuXa+LK7OALdl71xvDJJeXwi05jzPs+kh7NymE//2NUPW5CP/6IaSG7fgzh344D0dAwDX0IrFMxB2dPM9z4k291Cy56DWfg2i4xYsuizkYxgI9x6iVzZH7GKc5VeKSUHtx2yfCHCzXm95+PiCQnZworvFar2hiaHNtQGJmCrqsGWzqtis4OJsDa7g9dfvcPPGHldnc959+wnz+YJBKTTNhhgCo+GQ6ISQoqY1aNE3CMm0VxZWjQmAxYAIfdGxAQdzQXTJ5ZTedyJoBE0FImo0Y9SdNZYHphVP5Z26tAAnEYwlUATskomhE8bq5HBmfdKyRgayS6ejtbXLVNycgYPD1j1Dv01d8/ThBzw7fsz88oLt+pzl8oK6WlCUnr3dMZ95+TXu3H6Bo5u3GAwGlIOh6VoELwXD8YxR01AOl0R3Sn011yR3zZaTp9/m5Onb3L7zGnfufZa9w1sc3ryHSNFzk6E6KJK5loxJy0yVMRHOZUCpD7QSPQmxJGtZc6Qgp7Ff8xgKoRUJ5/42xg0DNaS2XzXayoBu8qZBAkmuY33sGW7HrwUV6rqKTnBJEClIXrNux6ZhtTynrs9bxCJRw7UDiTaMnec3QCQLOgHWyyVPHn3AavUldvcPba42Nh98+53UE+dJshxHkkPIrb9ijuvzuJQsmnOAl4ikqOAmBUTyv4ac1yaZq0QTIn5kwfwkt8kQ7u5Dmis48R7GI3MrmPgTARmAHypwmQCHY32evvMEji/hcAav3YXdme4yi5Eea7vtDFC0YzkzYuQdczR6PruOMgWZ5yB0bou+4PUjIIJGrzP1wFQWmMbGfuZDm6HJAAdzo2ThrPQE1VmTk41XC7LypLfry+56oBU3t9dJ56YATUB37yW4dVddHuMDmO5pxtw6wtUKPngbnjyC46dQVRqZlgXXqYH1Unf62xnEQ9jdUaakHMLtz8Ht1+DJ2/DoLTg7huNH2g/OIon6bFEfdLWuwZ5h7gOQvLvNAui+5qgFFBngp+4Ybb6bvisv9X4a0MzARnoRdGLACTrXTx6/FlSIsT+2C0qNAQSnLMj0EMpDO0YEl8O1pXceemNIi+8AZX7uvgzTr8HFmV13jrjqucRSFmHnzaEB57Z/Ywf0s3bHA6GiTV+QAXrK/+w87bg4O2a+2O/dPhngZlWz9ksm05G5RF3bWc4VSMzUK8RU23qhu/P1qmK9qdisNzx5fM4v/dJbLOcVL7wwZm/niPt3t7jZRDc2ybLjxkQwtiQkMSOpD3NOgCY26SSF51i/HDKdUlTAgQIkkNa1oQyORUo5NAIqYZoajTDy2R3lXJf0UWg1ESpSVeOpz1aX1E5D1QOuzRJrF4dGzghCjI0aIMmzVTUrKULTNMzPTvnOt3+ND9//Os6XzOdzYtjgiobZZMxLL97j5s0b7OzsMB5PqLdrYmio6i3T2R7lcEBRljR1oHDCYHcXUkMKgc1yaQkUJ5yfnfLBu7/O++99jZs3X+WF+29w6+6rzHYPEeeJsbZnwBtIke6as1g261AEsj89GdBJOZmfLUTOZe2UziMnkeQcgvW3d+QwekW1uiirPkUBo7r/Lamj7ZSTEyQmCwyQ9jrbZ9p89CKJZExdm3IHoUmJptmyXDwh1qseE5inds6+lM1cMjGvrTlmR0IdePT4AVdXV9y+E/GlIybL3Bw7sA0a0k2kc3lZX6pO1Zgm55AYcW5AoAITSEtyePG0wnOcpbVQwCcGarwUBHK+lE9BG5cwm8JyQyvUbA1HozvD9nnPeYpsdz4ewGigYOjOAfzC67A7gIdrmJ/Co6HqEwLdgGWRb+vysL8zFZDouSI6V2i7U8/ApiVR8mehBRiIfjdCp38wo9l3R+UIqZaByG4vu46+4X3OgPejnfLFCW2CPVd0IKHV7tgmzns4PITP/YSyM01toGQMoYTVCh5+AM9OYX6l7r7hWBmQcgiLKy0HUNfmwighXur5vFMDHALEFRwewas/Dq98CY7fgfffhCfvwdWZMVyWsTeG50FNG/WVen1AD9jkvum5tdo+zu+bQY8GLGO0nDzW587mVwaHORIsQaeBct1xczLB1kWYunHL30sGuDKz1C18lt/mtjKQsZ1QdBf8kd/7G5T8dunh7ouwuwePHyoIzXO4BSsZbPmOhUp0fSnQ5fAxkBMrwJIIZvF3CrTC8yySDhnwue5evw/I8okAN1XVEEJFTOr7974kR8Y40Tw3glL8MdXE1KDZiz2bdcN6WXFxOue9957x4Ttzqm3D5cWaoxvPeOOzKw5kX11B2JzygosaxlpEIeT09S3daFE9oun8nBRq5LAsuqk/j0wDkpKNixlk25XHFPCuADSSBkTvz2nyO80VYzt/h7E1tslwGl3l+v5Xm0zZoOW8NPmCopVNgPycpjYzcV3XXJye883f+FUeP/gWs6mnLBpIK15+6YBycMhkPGU8muKLgtgkFlcrtuuG2c6U6c4EV2om3e26IVZb6qamaQLOF1TrOavFBZiIttlG9nb32Y4qVss5x8/e4uryMY8evsWtO5/hhftvMJ7sopmdQ4Zn5JD7aLsUBRmWxTjnBzHDEFNsmaSOTwVyv9mOTaTEed8yYIY2292FeghSC1gUwFjZigwepF1B2jVK2bO8MJiRkXwvyt6FGAmpYbtdslmeGwgbIOhiG1niUkEqBBcaJGTNVrJ1V6/JoZdwfnrCxeU5Td3gyyHgcJLMy5YyLrTrEZzl6Im2I20BZB88JkGkBKn1O0ksiMNpfigaywMlCJVej+i4ePeJWEY+XhtYqQLJvn8t1aFzwdgOjOKXEmUkjNWYlMr8HO3AK7fgMzswKmB/DCe34O2JCo9bnQVq4FrRrBkt63uA1jWVAU/KeYfyPMuWxgxJnoORDhT1d+WZscmRNKHWRS8Yi5OZ4ewqyVO3TcYX6bbuvd14FqlmVxMGetrQYvtPzkxcFgpqfvTLcP8LsIzQlCAzeHAG1bkCm81SAU8B7I5hXMB8qXW76qSAZOxhMFS3T2EujfEOzA5on7mhg6tz2AxhugO33lAx7QuP4Onb8MGbsJw/D1KyNohsrA2EkoGG78ZH0HvNzAnZZUTXb8HWplR3wu1+yH9mMSR/pwcqUzRjHnvzowe08vX250PWsPT/dk7n7GgKkwMDSxVQ27BOQRo9V+iX65AOHPcB9tENzedUFlBvad2igY6RzMawFa/n5ykfL6+d+fekfZTK3t/ovUcDMK1+ddAD3hkgfrz2yVmVrFOcFLiy1AgOp7uRDHA0T3FFjA1SjBApqLeR46dzfBDe/NYJ1VrdGMv5hvc/OObs/Iy7d28yLEfqXkqJkBpNPJccIW9ebKFWIK1uEM3BojRvh3V1Een23F14cBMbW/zVEDivNaqcKekFNa7OmKmc/A4DSJJE3eBmcHz7vW5B1JQBumvKCdQ0B1Au85Csr/RBCE0DhaPabHj26CF/9dd/mfff/TrjIQzKPe7cucXO7h6j0YhQqS6n2qxZ1gsSmgjxYH8f4oDtes4gjRmUBUVZkPwI13jiYsl6NQfx3Lh5j81mzdnpKfPtFZsaVuslRTEEccwXpyxWlzx5/G3efeurvP6Fn+Hm7fuMprt4S66WqLWP23BCZdfyLjLlnYvRyClFdRn1wjidaF+KaK0rsYUqh9wDGmEkOt7totGKse1H7K1xZNYiL3hJQ/tRNkhp634dLiGkoPM2BJarSzarC2OUBhTFASFtkLrGiWNn72VWq3MuTh6qG6hvN7ItFGG1XnF2fkpVV4xkRCEDZeVSUAG8pOcCC5zzuKSRUNEEeyl6goEwcerWcsmRZKB6NOsAXY9Tu8FMKVj25uzGjW3m709FEzpjnRrTyARjbYY9gCPo7rLQgoKpgYGD2zNwt+DzN2BiK/vOCO7fhP1DeHSsdaZadbgV2cxp8VsWoB1Qez8zIa53ob4DSvnvvBa4glZ3k8Wvgt2LrkudtsYAUN9FkrVl2eC03+sZozbTuadjiYzFCXaPmaVJSV0hTYTRCO7egx//WXj1RzXRYX0JT55phufNRgWvkpSlmU30WE2Ci3OQSsGLrLUv6wbCBoqgTM14R+/j+JFqnY6OYLirrq/xVIXFMcLsSIXI9z4Hr/8kfPMvw5P3YTVXXY6q5GkjyfpALlkftlFTBmrE2VhaX+XPZhYw2nFbbVMe57xm9YBtK8a24XXJWD8bl+ymIoMG6+8UaWueZSYvM3+IbugmewpuUlQg0ZyDDLWPUoTL92FyCDdeoBVM958RbJ6Ox3BwQ7Vqyw2kihb4ZZdm6n03Br3XYO6mAG1GZYBo7iaJeqx2Y9oH7Pkl3wHHaGPRRgZ+7/aJADcKXA0kmDbCFQXUmZa3zkya/yWkChWl1tTbgre+dcKHwws+eO8crX2jxzp9dsnp2SVNUzOSkeb/kIQkR0odW6BC8h6YcaGj+AXLVePMcWDFGdraKAY8JVo269S6PZxlamxrLjnLgGx6nCxszflUSEldAVYfShkMMYOpp9Msvh1zI/bA6JoZrWClg5iFxJG6qjg/P+bP/Jk/waMH38JLQ2pK9qYlzXqh9XEaPc9quWC7WTNfzmmqDQf7R1ykxHa9Zra7y2g2YWdnh7Ras1rMiSSc11D8GLYU5RBJjSafKwUsf8typcfbVitGwxlJYLl4zJvf+LM8/OCI6ewOn/ncl9k7vKWgTqQVVCej4VN/8Zecmwe0pEAuiErH/CcLjSa2OyIx8KN9mkta9BahlIwhiqRYKdgO2fFoWaFbMWDWPAVwhY2hLmLBgG5MmmumrmtWq0uqeo4glMNDZjufYbs9J1xt2LvxKj/6038bF1fP+NX/4t/ianvaaUyTrX2oc7GqGy4uz9nWG5B9cqQUUalhybtEwOWs3qLA3gEhxTb6V9dULTnSxKAgWyBhyRRFE1+KCf8SCWmTdtFt4j81zRgIcxUTIzQNlPl9o8gzMBGrFO5KGDYKal7Zh1cPrI/tWLf2TChbqhA2GyQxKj+zBRG63XmwMcsgHqPqM3uSjZ8xt9kI5rBepJ1vaqiz68nASssO5AgpbJ73zt/Wh8ruhWyM6T6XDX4LzKBjMaIxOmb4B6Uawz/4h+GlL+j9bRrNBD2ewmrd1SSa7KjxnO1oOYzzUz3HeAxXV7Bcq6uKMcx29RqCRT35oTIJ2R1Xpy5/y8SON5jAZqH9M7sLP/IH4P4JzJ/Am7+mupxo2rQ+M5ug1S5BD0TY2LUgg+6fCC0Yym6YPvih26h1G6n8EDqdXymAz+fqgaGsY8nzLbNzbT6gort+XXhhvKd6JhJUZ3D1Dgz3YXcEJ+/DV/6Ehtn/nr8XhkfPk3X9Vpawf6CZjtNFd18uGBixNQ+6+37uHm2utse3eeZ62qfMgiXR8fDSjYXrzUl4Hkh9j/aJADeKPSMxNb1Q60IZD9Giklq40Cphp4qYahMfRx58cAFAqHQXIage5+qq4tmzC5bLFZPphEwxOinasG2tOqVsjkhhOUnyvMoVrLORMWBju3vJzA02x40xwHkTWqJAzVuhyexecKb7QBSMmtsrG0+RgixA1gUvgxhnO2nVzkjS78ao+ofsHovm/koJXOG5urziyePHvPnWW5yfn7C/UzIY7PP42THn5yfs7TxETAs5m804ODjg6OgmhVeGZjoesXtwwGx3j8MbtykKjy8HpNhweXHG4uqSy/MzvHesF0tWqyVF4ZmMR7idIYOh5/j4mMbBcDQiNBVNTMT6nPXyCavFbY7LE6pmy5e+/AtMd3atnIRZdZEulPu5py+X4ojtfbuMbgSEEkimQctB3/k4uhhEy/ujf4qxFAqiJQouRC1SKprYD5sxKmqOLaCKKeJRkJB1U9ndGWOkrjds1wtCvUFcyZ2Xf4Kf/0P/MO9956t89T//N7n94uf58Z/8A5xdHfP2t3+R+elpa0/yLTuxjU0TWVyeUW1r1cOYfz7ZHEXv2voiR9kpCIzm97du7brYmwstoJlEo+6aJDmcuVydL/AxajHOgAqto+Uw+lQ1o+7b6JF+iHSjCzcGSGSgICfVajju7+shBtn4mX5jbwC3DjQkfLGi23FbIctssBA9d369v0t+bmpnQ5thrfBcArOWMcjuJGjz2LQuAnpsTWYXstsrf8+KCmURbcwgJnbGKz92yUpK9MO/29pBKEjc3YU7d+GN1xXkzGtNcnjrJhzegKu5YoAhsFho+PzJsTJBdaPA8PxcGZ6Tp5pXqK7UgO8fqv7j4NByDE1hMtXPrDcwrxRI3bql177ZQDG0RFEHML2jeYlu3FRj/dU/r5mlQ0VraFuXSnY/9Vtmbnr33bpxatoBzDqovNlpN1Q9gNrqagxEu2RRRDZezyX2ywA3dmAgg4TWxW7j4ZxqlcY7eo+xhvd/Df70H4PPfhl+398Hj74FX/kzGm7/ud+nzFfqbrH9mUQRwt6hRqmJ0+vO87R1keW5Hrv+kNjqGdvj5Y8HA9wey7QcDEAbmI5J54NzPJfzxmr8fdz2iQA3eQW3vLGIOIpywNY2QPqubq1SCqa7sSiNlIh1rk4MObuhk4LNuubRo1MuLq44OrqB893kS7bjSTEg4q0sQ2+8Wr9Erj2UwYPlEUma10Zsh+PakPJsOLxFYJlhFNTVJtIaabFaVnlH5Jxvd+Ed8BV0kbVEgQmCBC0GK5bVVyyrSepcBCklmqZiMb/ig/fe4iu/8ks8O37K/GJNaiIv3vS89OI9fFHgSAxGHueEg/1DptM928U7nBeKwYDlYkEIDevlFePZjOFwSooNzhfMdvYph2Pml1fEtCSSWC/XjEZjmipRrTfMdiYUpWe1WjGaFDhXsN56jb6NW24fzmiqE9556y/xyis/ys7BPXwxUqbN+jNlChxzmyTIguIMBBQcus5yk8sm9Cab/aEgRpMWSnZ5GVhS167poqRUtg0rk+Ag5/ZVJtBmjJiLK8+glIzRCjR1Q12tSaHG+yE/9rN/iC//3B/k/htf4J1v/hLTnRsc3biHlAXD0S5+MMA1NayTAbXu/iAxXyzYbrekJMawaD2q6CKxCTbnpN1JKesVLbWHLrxR1H/tnSclTyEqko9BXVbJ9DvRRU2N4BLBFTgXFbjF2vqxz2l/wlvrErLddIoamTOk6+Rc70u8Gh5x3W60tFW6NVYGYMYl3DuC/T04PaGtBC7S22Gbm6nNVJsvqg8WUu9v173eio2zYaOnD8kG0X4meoyE7YJaJseuKb/fouJ8vPy5rA2x82Y9R7sT6LkIREzAuguvfBZ+1y/AzduqRSocHAd48Fi1NQhsTLdzfgqrS1qWJCQdi9mOCoqnuwqAtks9Vwgwv9TkfXu74Kd6vOkY1msYiLI+izXUQYHmqlHAOmqMWBnC6QIGN+CNn4X3vg7nj8z1mO1DZojzemNGtVenTj9HZ9DbAe29n0FftuzieiJamwMtPSsGbEwDlhnq2P6H1tfseuPYTiHRPvNe2ZbhWCPJwhZ++U/BX/jP4Ftfh8//Alwdw+ljrXK/vtQ+9yWM5Xk8l+y6ZjN1S0l/fghEpxqo3AfS76cM5PL8NKgRA61IOCbw5rLK+p2YmUSn4xatz1ymVh0ft30ywI2xGjFq9Wpl1B2+GODDgCZu6Gr7RKJFZ4j9T393yuZkTQZCCsKTZ+ecX1xRN1uGfkhKkZBqYyKlBS75gTX1i/Ix7QSyAULdUTFY6K1koWm39sUUDUTn0O08h02XIWpUNbus7t7UaOlQZPanZRfafBgosMrPi6jAGukyJIsIIQa22xXVdsNyfsXjh+/z7ntv8v4H7zK/2rLZwJNnW0L1kGEZeeXVz7C7d0Ak4QWm412m4x3KkaccDvC+YDAa4VyBc0ITEo8ePeXi/C2Gg5LRYMTRjSNC0zCfX7KcL7i6PKWpI6vVkqqu2NnfZzKasrs7parHLK5WDAYjBsMBVxdnXF5cML+6ZP/wFqWPfOvrZxzefI0XX/0So8mO9oWXLtpNbLzN9WaURe5pI7tyYdGuknUe7xSj5fDq/L2ZscuLdzbYMSbd2LtGE9whFthgmaxbFk7dPYKyP5Fk5SMU4DRNRV1XJnkesLlaqlSirol1xLuhzWVlDHwxoSiXqMBXL1PlWZoYcrteUW027boXU+wE2AaWVWPm2txp0XaAOt9E890kXTzUDgo+Z2iNjiC1RvalQgtoSn7mFJSLOKIEUvj4C85vf7Pdtssh0+jPpgJfgRvZQh110W2XyAwk7PNS0rohSLrzvn0A+zvKFoStGa6yW+T7wKVlBrLho/d+j6nx/ZBY6b6SoKP8DcTk1gc52E449YpU5mrgLfjNjFJ2udh7LRNhAuv2GmLXh8OJ5q6Z7cALL2tNovufUffHCLg1hMELUDvNdnt5Trtgrq9U/7IJamCbRiOjck4eD9y7DQevd6HhJyeWwXhPE//tH2mem8lUC6JeXKgr6hIoV5qIsdrAtlLm52Bf2Z+zZ8oa/OgBHL8N734NVgs6YW/edNp4t6633jxqd949RiUZIMrjnZku6Y13ZuzaPrbnx6Gi6VigANvOl0PBn6sq32NskM7V6gsFmuXArrPSPnCoKLgU0wUZeCVCs4Jmigp86cxdLv8xGuu//JhLdqX2QJbYPbbup96czKLhrFUS9HkRc/+6qOeOSW1izED+I2A7eXPbfbz2CQE3mDYiPY8AbRfc1nsCXbTZ0MQNhTMhpT30YouEUyUpITacHM85Pj1ns9kwGA7A4IvmT3KW3dVbOLh00X3JdC45w3AvZFSS5qQRKS3Rn2aCbQtjiiWp82Z8JQOw2GMRdCFLOcwUnUguA6ZkepIc0SDO5rUpTYSeqC3SNFvqzZbNdkVTVzx5/JDzkyfU9ZbpdMxqtaapswtGtBbg8YrdvWOcJEbjKXjP6fkFEeHm7BYOYXV5yXo+ZzCeUIyGIJ6d/V0mO1O8c2xXS975zjf42l/9GhfzLUcHh4xGnsInZjt7TMejdrOhWXsDL95/kTe/8Rbr9YbDw0P2D26y2iyYTGecnV+wmH/Ae+++z+NHj/ndf8PfynA8tUHJpRdKyySsuwYdsuxKUHefWO0YEX0lJloXkkZs6mIjFrLaFRGlfSiTLQBJBIlCsFIFKdb45DumTVL7LEZUU5XrcsXQaOmHJtI0leb2oeHtr32Vvb0/w5PH32R5cUJVrVivlyznl9R1TVGMcG6LUGv/2QYmu6ObuqKut6QUKYYlLhVsVisL/pKuFl8MpsHROaNaYJ1j3mq7qAPLAQ0hagbs7KZJxpKJqPjd5WKi0cYj+ucN6ye9tdoI6Rnq7hntCkDm10YKeKIJKVsDlzc/2dAXcHMGNw5UULutaN1Q2UCKMTcZVGRD2af+csh1azAEFRbX3eutkcvfQesUpW7NbA1stHvJRrUvKG7X2nzvZnRzCom8sUt0RjQ5BW+jAQynyhLceQFu3FWdy3KjTErZ27l74NYELm8ZqFkqgDnY1+Mvnuk97e5C3NFyC5uNjtPlXJmYGFSz89qPwI//GOwMNYHiplHx6vzStE70rreADx7AFz6rusKzMzg/htFM64od7MPOy/DqK3DvHvz5P6nXBrS7qFQrcMjh40Ar7M5h0DlCLC8C7fxI5n4yJiOD6TbZHc//zMDC6QZHw9cHZvB72qC8/mfQm8s05ASC3ilIcgbOv/gTcP4H4O7nYf8mDMbalzt7On7NBuKAVnjWx90JZW1KXfvZrvV6JgZ2dGG1f75j9zJOzyVDYo6yi/bPKoDHDMzyRtMAYr+YqLPxcP0x+N7tEwNuNLFYnjTq33e+RKW23lwyuqomkuluIr4tQ5CjVPLuIuFkwHJe8eTZKYvFkt3dHT2+7V71o/oQKqiwcgopWHRarnNkcyrWxsLoQ67J+dSgtoskSreJ+QuTRJLlIoheQUzLLmW/rcuTIdnuGhVwZoMk0q1/mSmKasxTCmw3Ku7drles1wsWi0vqesvu3owmjDg/P2M48IxHHu8TMcF0MqQspmyqkhAc3gm7+zuMpjtUm5onj57YcyJMd3aRpmLAACHiU6DerFmtF8znc06On1GMpkwYcLVacXy2ZDIpKcoBs+mE1eKS5RXghOGw5OHF25xenPP48RmT3QMOdic4X9BUFU3TMJ1O2VaB4+N3ePD+t3nl9S9SlANbg3URjwKOgmjJx4SSXEJDMZ8lArSdsrNihcmMltaqgs5lk42QAh/J80hM0Jwgxabd0EVJuFzJPCk8SBJJUdpoI/EldVUR64YQG/t+ILDh7Phd/sov/gesVic01YL14orHD97j+PQB2+VKQ8UNLEsC5xMeoYjgvNCEhrqucYVjb++IJgRW6yUxBHyRFwtNOhbzcxFzDqCcW0nrmmlmay3poaxmdgVmHlP7SMkG1eZE24mpKywb1E9B+26aitBoyHS7U4x0hQkF1d04ujIEeeXOIEWACmYDuHWkWpCrOTZp9BwZNNgGpcvnkXU3tnbkzXxmfKLteNu10b6b6X5nYMclWx8L/XwuHeBCu26C9DQ1GeCgiDkbpOdAlz0TWfwpXnfwsx39OdlRDUs5hKsl+I3qYaqgbEywc623UC9hWOnOOyS4mGto9qiEe3c6pmB+pYaZrelOvDJD45me99ZtDR+nUrfT4RRWtepylit1je2KHmtbw/5rKoi9d6Sh4lcrHe/BQBMvLpeqn7r1Grz8OXjrNyySCtqEcwk027C3cdCixi2QaXP85OfMxiVPlXYOGMDM4w49BsTAVAYubULJPFb5exlwOiwUV18LtYEQc021mrIR3HwVfv9/CyZHMJhpH73wChy9ANMJbcHXPK2DncOhY+VLA0EBLk8s8aVuhmnseaEfvSUG0KBltXKofAbNsbY5nvtJOe22b5z1V448yyL6mDvle7dPCLhR/YmyKLrz9sWQohjh3YrgKqXC0TDhRDDxccAni1IhgxNAhFwQMVTw6OEZV1dLbt8OFIWiaN3UqOo8hazXMe1OLo7YsjX5eJEcKZO1D3lA87qA7XLzjiclLPoGnFW4TS6R0UqShARjH5JFa1nkj4hGq6jLySJVWiCVaOqK7XrF1fyc+fkZx08/JKXAdGeH4bDEu4IyFqyHA/b3drjcv2CzrTja36EsPT/7s1/kwYNHPDs9YbHwNPWWuy+NKDwMygEhNBSFoyxLymJAta3wg5LBaMRwOCDGLXIVGQwmfPkn3yA1qgU5vzhjfnXJclWxu7tPdAlxJd6VXC4vIHp2dic8fnbKL//yX+XHv/Qat24fgktst0vqxTnLTY3IgK/9+i9x4+YLHNy617oBxRtjgDIqKiBve0f71YAqORohAS4ai+Pahy+FzDpohfRs6NvNUUu96vjEuEUlxZFIoXWYnCNZdWEtaZEoyxHeD9lsK5bbK5qmVmCVNINytb1gcfmIbX1F0yw5P/mQ73zrqxyffsB6cYy4MbSlMoyx9onSi6amiIEYG4ajMbPZDptqS0pQNRWTYtJGOaWkRTCjTVcFxgnxhdq51F9wowmqVQwdgoG1LL53gvhEyvM1g79+NMOnobVJ3AzgNFvdvYaJ7pSxyCNKunw3XneseVubd5B918MANaJ7U3jqVfTa1g0y95L37UZGBza7KFzbn+oC6f2tnW3nzKyTvdYyMdhrBpB8Bm59Zka6ek8ineHIEWIt/Z8PFrvrKq3ExO6hgoXbL6kBns+17lBo9O9tpcDlYl9FqBdzTf72l34DXrineVNmQQ3xhxu9nXqrBrSJGprf1PrdqlYGZ1upVmbXQbWCr76ldnBnpq6mnX3NP3R1ocxPrNXYT/cV3M1XEG7Az/4YfO1teHqmRnI41Vw5oxJSBV/+G+D4ITx71IHWYIxB3oT2q2Nrp3ZAtQ3TRrUixqq3Bjn3fV6TsqFvH5/U4lelnId01EWjofYx0hafzEUy6426QQcDDYkvBt38kFKjpPbuQbkLxRRuvARf+Ak4ekkjpuKa53Iz5XkTUsc0uUJZm8VczwPK4DVL2ignSaqxagkGaNMG5HvKeiZzh2u/2rzMWYoxcBp687XVI3zqwI0ae7UfOXGf3ojzJQSxzLt645rToyGmhkSJdlbo3AiGop3lgHj29JKT03Puv/wCzhcGknSRaqNjoiaJ09pHkbboWY6mQUN6NXFZaAGOlmYIrYHV5HPZF9/o607w4o0hTqSYQ7wt+oruYdH/ai0lJFipgCy01p8x1MSYqDZrzs+ecfL0AU+ffEAIW3Z29ym8YzQY4X3Ber1ifnFBU6/Z3RuTrhL7ezO+/GOf5/atm9x74R6PHz1gubji+PSYs4tzRuMpg+GY6XSKI0FI7OzvMppO8c6zuDyjrhq228BwPOPVz96gKDxN1TAsZ4xK4ejwAO8969WGg/07hNDw7OQZxCGb7YptteDu7QMuplsuFlcc3ThiNByyXpfU6zkQ2Gy3vPmtr/Di/S/wU0e3GAyGxqpowYvY9pku7mKLcrJdqKZWiKaDyq4XWzdwhBRsPW+IMWlW5wiJqJmOpegBG90BdzYtWfkIzQqdK6kreeQoywnFYEixvGJbbdhs1jrfkrJtIWzYVlc09ZIYt1ydP+TdN3+Vq6tHVNtLyqJoNzx5jRAvOBM6R8v2OZ7sMhgOqYOW/KibQAgJ752WnEhRo/ss9YHD0iBYmLCIbhtCghASIeixc/BQ6+K3cE0RjxTRwsq9zv9PE3MDdLoSh+pP8i7ExJw5rDoPvthOmJqObXHdgo2gLJmHO7tweACDh1ZfKNG6MVzWViTAWe0jp5oDcTzH4vjMBvgO4GQXVWtgpdMOYckGc12rfJ/ewFg/KzJ9A2FahuR77i7X/fSlTr7hGA5vKai5c18N29WlMkSbjYo/x2PY21O3x+Ua9kQZnV//plb1fvAIXnhRyy7cuKV6mfVCdTbLBS2Kv7xSRiUEjdQpvSbpWy/h7RMVCw8KqBdQJTg91+sYD+HiibpnbtwC2cJooiHRT89hOYSdXTg51dDQca1RRXhNEvi5n4T3vwGnz1Tf02bhlV6f5bHID4YBy2Dj1uaf6buqsksSBQlOaOslGdPf1ZzC5kFfv5JBsIGD53LBRKhXer2THb2P0YgW8DoHfgSDXSinCpj272nen927MNwzoffzt0hIhg6kYzpXc+23HMlaeJ3DIbt2DeRb7i+9b9vIt2J5A3BeOlCTScm2m43FiQEaA4F5zn/amBsVheqdFQNlLWLtcb6w+e5bwJPdT21BRcszopE95ndGWmMWcJyfrXjy7JT1asNoOCbR0EZ45M1KQoWmSfOctJWHUiLERpmUFOgy4NKGrWvnZ5dIbF2EWCRNsrT93uskSCmgNaO00GGXcC3vzIx1MCOtdX0gZ1Cu6kqBzflTHrz7LS7OngCacK+pKy4vLlit15RlSV031KGmLAsO9nYZDwr2d4fcf+llLi9Peen+C9y+c5cYb1A1gcXFBc5DWQ7YPzygKMeslnMef/s7FMOSvb0j1qslMdSMx2NKL9Trhjpp6HuIEaHBpUBdV+zsTTk8PODk2TGT1ZKz8zNWq0tiqpEER7sjYoLzsws+85mXEGC1XJHqSySpTuUv/4U/zcuv/Qj3XnoNXzgFEi7ikpUiNUYtu/q60Occ+p2LberscXmnbe6XGD0p1WrUY84onTMVAzYXRPpaHCuBQfGc5EQz9jp8WVIUBUUxoIkN682KGJJ6OkLUiL+4IbIlpZqquuLq4gmbzbkeRQZaeiRv8gpd+IsGvFcBcDEYMR5P8GWJ+JLCF9RNQxMaimKkwIbM4GCZrq3AqmgtqhjVxZZi0vw3xtpEicQszBextD4lMW1VYFwk1TpYUstPVcs+3toe/jJ0u0sCXSK/vmHLO/Qc2ZMBBr3PRzicqGtqMtKdbt58ZaOYpQVtRF9PayBm9Fq3RW833bLBqTveR7MDC7SRNMFcV1ln89FIn2xAWiNk32+jo+yD5aADNq98Ho7u6rMTgrpA9veV0Wlq/bsoNaT78krdU5db+PB9BTLvP4DHj8GfKoO1v6e782YLZ+dQrzW78OdeV9bm/ASmMwVYq5Ua3NEMRhkkGtgTb8UzV3B6BjdvwGSmIHOyCzLUvrgyTc7hPrzzof4+HUOxrwa8GMDv+UPw9jfgw7eVSVK/K8+5g/K4tQVG6YBn6+K2udNWyra54gIa+m1jHXvgOjN0CM9VUE8Z1DZ01LTN4xC1v5tGRfGuVEDnoEtmVYAbAUM992APDu7A6NDOVet1JJsWTerhZbuPaqtj0BgrFhoDN5bkMmtm2kjAzHBm2x66a2p1ZcbaJNcBydwPsdZxi43mYPOx178fr30iwA3AYDLg3is7vHhnl8uLxMMHiW2eUIKyNtktgaMshkx3JppdvJF2dxnz7jK7E3BsVjVPHqtram93x/Ln6ATUCBpjZ+x8zgxkCo2dzwwCtINnZI4KiTNjllOe40gxWhi4N5BjOUGwsbaCeDpHhYiKZTumwICqWc6cx6YJgfVqzuXpUx4//A6XZ0/YrJc0ITKaTElpw2azJV3BZLrH3t6Myajk/gsvAoG63jIelTx98oiyLHj0wUNeevUVpChp6sje7iHloMCLw3vHZrtmMJpw96U9NqsF1XpDaCrW6y3vvvMm6+U5e7sHjCf77OwdUg5KikHBzs4O0+mUcjDk4vSS7bbh6OYtEonV4kIz5hoIHU1GlKVwdXHJ1fkzFvMF88Wc4WTMzu4uZ+eP+LVf+UXu3HtZtTceZR8CWpW6FWDbHCGpvkYsEWNOEBP1odKxUTZN0CzCEnRRyQU41fXkbKz1ODFF1VPlkPEkRBdtjnS7s6IcacV37/GFlt5YbzZUVaVzJCmwDbEmhDUpVaQA1faKul5DTMRetIQui5qB2vmghZy9MJ7MGI4mmnIAR1GUxBioqi3loFABMF41ZIgxhCDJEwmkUNs8NgYsExUCmh7BNo8hMwvRAE7EG8MhOQvpp6mtKnh/Dk8ulV140UBO+2CbeDNvWpqtGs4yaQK6/u4yJ/PMr41LuHuoESpX804I2rqYzG2U2ZS+IFl6Dz6Ye8quWVF4uzaohsbWG+dM1GquJZHnNR850gfoQnOld6z8M9OSZpAKr2zA4S148XU4umNaC1FDJ2PVw+wCyysV/24aePiQlg1ZV3DnnoYd338R3n3PgJCDq1N9PZlGaDiBzQo+vFI9zWSsgGM8hM+8AdMDmJ/D8gIuzxQAVY2Giy+WygAd7aub6fip3tR0H8QMd4oqOq6TMkwHNzXiarajyQWvrpTV+F2/Dx69r9qbYH3m6cSxeV7kOZMNtK07KrJN+r7rMTMZkHozu+2uKLu04Dng6jJjYdfQgizzKgjmkmoUbAbdGDMaW+h26ACuK7Wel5Q6fsMdKMZ2jrI3922yhUZF6lkLtZrr2ORIvNqE1oOhjkGef23uqDzfjBDwJlbOc1t6H0uhY6m8sUTJqRYou94ySP8+9lGfCHBTDDy/92/+LK+/doQ08M1vXPD44day+BaI5YuRYKAFYTabcP+VfepaePDeJanpRRlJ0p1uEp3XQXj89IyLiwvu3r1BkQW6ghotY4RyctCYIiHlHCiWsj47j4xak1y1NOZFBpILxjI2lvU1kqRBopC8swgfZ64Vb+Pb1yzYQ9OiWOWPyMY1NqzWS549epeH732TxfyM1WZNVW0ovE6qVbNgXS2ZTHe5ceM20/GQ8s4tXKypmy2zyQ47e7t88P57DAZD5vMlb337TW7dukU5GBJCZHV1RdOsGY+nHNy4ycF4TFPXON/g3JSiuEUIgZv3brFZr5mfX1IOBgyHE2ITSXVDWG+42mryLecL9vYPuLg8pakrAM4vThgOhlQbgeWQaqOMj7iSl+6/yrqpqeoNBUJVrfmrv/aL/MTv+v3cf/VzJFQPIoKJu616ejTXZOp6E1Qz4qIzlsfKW/QEgE6s4GZeiOz1mGxnlCeLGRd1JNr4hAZxhY6jaARXUQ7xvlCWyBcUZUkdaqpKI15SigSSAQRPsl1aCBtCWFvF9EoFyJhm0AvOq0tbgNFoxN7+DYqiNJ1PwHl1Oa23G8bjKUWplK9PJp62Homxy82jTGK0uRbNzaaukph0QXHi1WVrfaLruxZ/7XIEfUpaFeA/fVvdGx74kT14YWgLqhnaGDp3DkmT8r13ruDm1T3Vs7RGTtRYStLV1Ce4c6iMxuMTWoFu3g1hn21ZnMzY2O61n6gyH9+qvuu6YFYgmuHJAmIcpEKNaohqeHKhwhZ95mvO7pYMigxk0XvPFQpk7r6sJRR2DtXdMRibEXWq3xjMFNicPFXh8JNnakjLoQqGL6/g5Vd1578zhc+9Ac+eKRApvEZIFWN1OZ0ca76asrTorzXUz5TleXSsBUsP9jQsfLvSh6EsIA7VmMdGjfL5uWpxyqHe9v5NqzCeYLqBoUcHq4b331W2qRxp3w7G8OXfB7/yn8O737ZxNhdkTGqsk/Vvm6Mmtwwksiswv5bZGOmO04qO8xhLr86TjXWfyZGooCgX30zmtqkrc38aIKlr/dwg123qHV8aWneaHxu48aozy/XhIsrWhG6qsdnAxYkKWLP7NGe0Ho507OrsRstfsgXG5d2Z3UMbamnzPhlLJFkHlyUdvX5PyTRded3+eO0TAW6ODqf87X/45yFu+Nqvv82jR0ti7XCuNBbGGRjQn+AQL9y7t8NkPKTaNjx9uISQ8IOCgxtj9vfGzC9rzk8ddZU4PV5yfnHJdrulKC2lOmqsxNL3t3HgMamhzMCjZVx6PunW3QE5V07eUIk4rcSc6DLrWpiNyoJU86OckLNdNa02otPzNGpwE8TYsNms+fDdb/HowTdZzs/YbivKsiTFmiiw2axYb1eMhhMOD44Yj0oK7xhMd3n5ZU/TBOrQ0FQVk/GExWLBoPBUdcUHH75P4T3b7RbvBwzHml1ysBhSbzfUTQUCk91dUoiUpWe4d0CY7XCwf0AKke26ZrPZUDf6kFVVQ0hWn4hEEyKHR3epq8BisaEKDUNXEpqKi4sF4+mMnd0ho+GIu/de4b13vsV2u2QwmrJaXfH1X/8LvHj/s/iyMECT60p1EUopAxCjh6WXe0bdV0IyxY6WqkBFtRm8kuuJJYtIozNGBo7aMiGpl4/IXInOeU14ZwI4L47hYEJZDhFXKIhIAS8F49lN6mpOXZ+BCMPxDslFttWc0GyJocELNF61hOISRQHlQLj30ksc3rhFIlI3uiv0Xgt9bjdb6iZSDjRjcpsLyBCNM01ZDokXnIa757XQOVuHEgRNe4B4IwSU6XLmuksu8qmS3Jwu4U/8BWAIP/4a3JtCGU1vk1d024XmFT4Cj+ZqvIcFvGDsRd3A8RouN7BXwFHURHI3pupyGQ01a24GEnmBiD1mRUSNdzZALeOSd+kZuNhOPWaqBcMhdryMgrMgOC9T/Vw8rasNWm1EyxYXHTPkvLo2Xvm8llDYOVSBb10rcEkoOzCcKsg4P4VNraBqeQUfBEso54y9WWoiuCaom+ull9VYDUfKim3MlTPb6muFFUu8utJjVAHqM1gUWnvKO2VnxkN9MAYD1eCI0Ia+e6eJ6gYeZiMDBrVqhQ52FHhdbVVD8ug9+MznYThTdmKyC1/+efjgOzrGLZOXXSlmfDMAyWxFP/dMm5/Mxi/3bTb02M/sxsoJEVuNQh4X6caqjUYykBuDuW/s/RhVcF1ZfSsJtNmwF8eqPSqP9LjruTJBgx3L4mz6wnbaCzSopunDBwpek1NAKtLlIhqNFGRW2TZmMJ/vUTdKHdCOzwN+pd/1fF5o2dAManKB26yD/T72UZ8IcDObTbj/0l3eevMtvv3mMSfPKhLe5olFxaBZh7NmpdpWDEcDXn71BjjhV6onVHXkldd3eP3VGxAi3/7mGeenS2IMXJyvefj4GZ+7WjEeT7QkQrtO6AOvCo1GQUYGOzmCqpeFUVIiWVRXLoKZd2XZNZILPWpdpNjuzi0RiUazRDV0uo75Flyl1JBMtJijs6qq5sP3vsPjB98mVCuGwzFOCqrtgs3mihSFzaahHHr2dveJsWK1uCLUK5wIg7Jgu1wTYuBqfsnF2TPOTp5x885tdmf74BxVvWUwGjIaDdTFQcHlxRmDUhiPd/BFyeLyiiY2jMoBMQVSiNTbQB0rqu2WalurJqjaMtvd0dfqDd55ysGIq6szri6XrNdblqs1lxeN6kfKgourDcvNmM9/bsbl4glFOeH0yTG7ewOqasu3v/VVfupn/ybu3LtvuhqHS5q4MGdyzpmaRSzjNCqkVXG3+lmiJMRFeiSPrjuSo9GMUbEw87yTUHeijXm0Mhwu6jpiwk7VYHnV10QFp8PBkNF4RpELwvqS6e5dvvDFv4X19oyv//opKcBLr/4ky/Ul77x5SrVekkKtts8e6EKEohSms4I3Xv8it27ewReeDFm8H1AUnmVTUdUVU5m2+YUyHSziTPtX2DqroujUBAM3xuRk3svsRY4gyynjxZJPhpbZ+pS05Qo+eASvfxbeuKlJ5lptSxYRJzMOtrgOBmq83zvRZ3RwR43md66MAXLw+UM4mqqROhjD3VvwnalpRXpi0b5hyxFUz6WWtx1r3tWK7Ygw45V9h9r7vc/Y623YN7QRYUnUwOQ1JsUeuLLkfm1um6QA5OXX4KXPaX2m7VoN5HAGo11lh0YFbINGKLmBhYRPaGt1TYfKBsz24PAm3LgNT57C4kI/Uw5hs9VIqLoGGmVb6qSGt6k1C7ErlJ0Qb2DJaV2p4VABTjFQAHU115/lSO+lWmtk1+4UxgN1c+1beHXdaLHT0Rq+PYfZHRXl3rkJF5Ue+3M/CTf/U3j0ga0HNs9dXqd7bqY2N1JC6UDTTWWNSXSdViaPf45SE1EQ0oaZ91gf1xurfBwPbRFJ7H1v4CgFBWubhRWEjcq2zJ/Ab/xpGB7Ajx/p59/7VRjtwxuH5mrsJfDLwKJOsGw0PP7ZEwWnoNcYav27KHW+pKVdc49dabNlW9LIZMCoMOF8mxIhfz53UY/hkgTJBM8ts/Xx2icC3DjnqLYNH7x3zFtvXhHCqCtd4ExILB5HabtMLUS4rSMHR/vM9mYMxgPEOV5+6YjpuOTdt59ydr62qLnEdhN4/Oicy6sFhzcOu8U+L+hGpzmMgrcdf8yVkymIqbH5LEbLe9M/iabot9wqecHxTkO5ddPcZRFOtli1dY2iajbEjIQa5qQCZlF31uMH7/LOW18lNit29/ao1huW1ZzNesF2s6KqGobDKYf7txm4AppAtVlRrWtiCISmZrvZIpLYbNZcXT5mtTzn/CRSb9ccHt7FU7KYr9iut4wGBcNBhXNCXTiEkp39EePRmO1mQ1PXWhlcINUNg3LEzu4eTQi4wnN5MaeqthRDOD87paq3LBcrtk1NVSXqWPDkqf7unJiOpmY4W7LZVgzKEhHHfFmzqS4hRYZPHvHOm9/g1u17HbuCCoQdjuQ0dJkMGlFj7qNFuLVRIJDV/dEqeWu5DI3CU5AbkWhZeDNosVD96EI7B1qBe1Q9ivdDBsOBsksxIq7AF0MG5QBnD76kMaWbMSr2cDi8G1IORxwcvMhgtEMx3KGp53gfSRKIEQoEVzh8SuxPD3nt9S9ycHjEaDwhNHX7vJTlkCbUbLcbQowUpT7iMUU0q67gvdOIO2e7/oQlwtT+UWYLcqZvZ8BNo7Ay6MbAW08X8mloMSr78upN+Nyu5mZJpiNoxZ0BsCR8yVwfAwcnl3CxUB1JSvDBqf7+2m0FNB5AYOzh3gHszjQyp9W7QMv8CrSsSisWzoKCRkFHZmpSog3/xRb7nFulpfZDt/Bnxidm45EBE7QRW/1SA31Ng/Pw4ivwxk+q2+nyQt1Bgx0T806UJdku4eKZ9lnhlckZ7xhjU+h3MsOzdxemh3DDqTj57DFQw85E2Zeqhm3ZGVRquNhoMr/RSF0slQGwQakG/OpKz9s0CoIGQ72/oyMFTtNJN24uwO3SsvMmK7VRwnJmjFSl82JqYlsR1Qm98SPw9BFZH0l2TWcWwaUONOrkMoBqIKXVl2RwZFmec8HSXKYA09fk7MbZlZULq7bVxQ3AOqeMTdiqu622CKoY9LW6otMHbSAuoLnQeRMstP7sIYznsF1ovwSn88/ZHGvs+lfnCm7OzmC9sgzKxsTkEP7RSK+pzpmvnQGSpGyeL7v+akFN7OYpdPedgZs3diiH1ruCVqz8MdsnAtyklFhtFzw9vWCxqJGkmYTzRkecx7kCLznyQIe5STXlYMjtOze4eeuAmBKjsuTRg6e8+94Fp8crBQlSEBvh4eNTjs/Pubu9xdANKcQTsQKD2Foi6I7cCwSLrEEXc5dKdHcOoNlbkX5CNN0pOXstEVu3UrK6HMkqKkcTZilTIEQaEPA5siczBSmy3qx4/51vEMKKvcMbEALrzZLN+lKjs7wzbVeBLyPrzSXTyZgkgabasFhcUTghNhHvdeKNhkPibEJTr3n6eEGIcHSkrqy63rCpGrbVCqFhMJgivkBcSbU1saotns5B4bpIott37zDbP8QXA54+ecLl2RmD0ZQP3/8OcTmnbramw0nsHYx48mTNxWXD3r5wcFBw8+YBl5cXOIk09YrJ2LNYNoQQefLoMd/4xlf48Z/+OUajsYIFgX6orDPxpKQu71FyztgHW0BSVzpDC7I2xmIkXGGGO6nWKllCxpy9OJl+R5JoKgvXUaVJEsWg1LxA5UArg1cV3gnlYKj6GGmAFfP5B3zjm3+KplmxXp5RFWMeP3qT1fqcarWiKPZoyhLSKZlld76gSMKtFz7Liy99lvFkiHda6T7Z4quyoch6s6RuFGgm06GlNr2+LjJaqDXaPBVV1aQO8ItYbhu01IcjL7KakyqSy1l8yhTFwxkcHcCsBMmZhKGlyWNDFwFlTUo1JE+u4PhcF/Cqghduw8v7cHNiBqlR3c29I82AO3wKcUvrfvjoLjWJJUrrGU4BJCeKQ3/mYIUErQC3ZWbsM63gWMxQ2Xi1Wp5orI65IPrXlNDPjCbw2o+Cn8DZiV7XaALjXT1OiIrJto1Gm432VIybvOpVZrvabYXYNQ7UmC5WUI7h7kxv69RcWeVIwdJgqtdVLbX/Y60MSlXrvbuAEbB2vwkePVI3VbNVMHJ4oAn+Xv6sRl0VIxPGCpxv4M5Y3YfnCc4bOD6DvX09/mAC6wBTc6fduwM/+tPwV/6igqxofdQKsVMHeiSDSHqsWfrNDByB1uQm0aikrDXJAuK2+je0+p2caTr2qGacsjNVrSDDmXsuRJ2nTYXWcxrD7CX4wh/SMZ0dan/de12Zm8kEmks9lpjLKqL9Jgkefgc+eBNWm9aT0bJL0ebMcGpA0/ojJ93LTGSCdqOQQ9/Ja7f1ZZIeI2aMZhsCnsF/6tx3H6N9IsCNCIxGQ1599SavvX7MB29r50hUA+XxBPGIFIgUDAvh5Vf3uXtnl3LoGE8G7O3NaGLk4uyKxw+vePvNU8I2qfZFPF4GnD6b8/TJMctX7zMYlESfRZTOdu/RnnPVUjifQUheMyIxOgUUBlpyocuEaj86V1V+GDqWLdnOP2Uform8+scLsUG8b90jicTVxSknxx8wHHpSE9hs5oRQ4Yshqd4wHIwYj3cYlAOIjp3ZAZPJjLIYQGqYznbYmU1ptluIkaoZMhmPaXaPWC6uePLkfY6fPKSpl+zMDimLgvF4ymQ2ZTAsqKsVg8EAXwihqSkHAwbjCXVVsV4sWW8WOC8cDEYcPzvVcgnR8+JLL+OLguV8yWA4xbmS4bBgMb/g8mJOqAIHh8JkVuDEMSygWl1weenYnU1xTtjZnbJtVvjQUA6F42cfUFcbhsMhKVm9rqwrwcYjBWOJu3IWMTqCLRyqhdPB0aKjliwRo49TMjmC5T6ySKxEaCMV8xqXsxMjgriSohzjfYkvPLGOmmbCe8pygC8GIIVuUJs5F2fvEkNNSprU79H7v0bVVMRmix/O6LIra5i/FweF4+4Ln+fw6DaDwQjvIPoSL1p/zTmPw7Fab6iqLaPxkCiW/buldBWAh5hLO5SEprbs2N6ikAPivQrjI1ZqAmISXJvW39av72c79Ulomy28ewxv3YTXzMC4bKDMFZkM4DQJ3rtQULMNGml1uVBDf7AL93bgc0cwEtsZBUgV3NxRN8d7H1qSO9uVt+HDGbjYrj6k54CyGvQegGlZn8z8pO67qW8o7Pt5559T/7cur762pugibDIzsXcEN+/rvRZO2Ro/VGNZOq3TtJ5bpe4Ii3OtydRUeuzFXCOXRiO99qJSkfDVqQKfOy9ruYZyCoszdT+tVxbt1CjIqCrt92Kgv6/narh3pno9IakBv3VD9TwuwIfv6rFmEwU4sdbj7ezD3o66Ec8SLAy0NsBkH/ainjsmzclTTJR5qhLcuq+Abbu1ccsuowxQU8fa9MtZuNjpnxxd3yYz3hkgRHsvb9CyyBaLMGrnQm9M8/lDpWMRanN7ug4A1ZVlWdYNM8UOHH5GGRQpVdd0/8vqTiqGyt5kYxWlyzrcRHj4bcv7Y3XsQgVx2IE7guY3GgxVk2aRoN1F537IpR1qZX9y9uGAas5C0D520JZqyBpUB23U2PdBE38iwE1KMJvu8Mbrr7K83PBfhMe8/55mgvV+QPBbfFQ3heDY3Rny2suHHB0OCM2K9WbAoCxxQFVVnF2sWF2ZPzpano/oWa+2PH5yxmK+YGd3mkk+nFPDlnCk2OCS0MRaRZNiqfotYRs5vFi0/IK3RT9vmADLdePae8PEpglRt0cCSZ6QdEBjioiJAsVClTXtvwKlJw/fo6k3lMVIc5i4kqIcUTYbVosFznum4ymhqQjNmun0FvW2UsPrCsbjAXu7+6RQQ4rEBMvlnHpbMx7v0jQVV1eXlL4gNWvmizXb9Zj5RcnO/h6HRzcohyOuLubs7e8zLGcUw5KmaSiGBSOZUG3WrJZL9g6PePc7b3H77ous1gtoGmZ7Yw5WB1xeXnL84bssVyuqjSZMKweF9ksQYkiQapp6zbZyeHFMJhMOkufi7JzpeMTu7oSiULGz9CaQWLbLPBbdjgHTbOp4xF5YppCj0UQ1UL6gLbcRc4FNY3rISQP1PDoVomYnttec83hfWPg3OGM+nD2cuskzd6Stkzn5Y4yBplkRQtW6OhGxDNUK2rzT8hc7u/uMRmO86TRSb7GNUeOaqmpD06gb1UlmO/Ve2ogn64XYuibomAFFbvY9c6mSc+SoW86hgNH77yM+85PQlnN4613YG4G/C69YJthQQRiCq2kTsc0rjZQ626rhG2WNCOrSOJjCrmkJsmvABc2Ye+dISzFcLrpzx7zzjWpEJenCHxtabUebqiJT9eb6aOvz0DN4xsiATfz8d6J1bYkKwnU3be6BPM4551MGSi+8rGxKs+mic+qNsiCzmRqh7J4oxrB8pv0gop9dV6rDWVo1dUFZlGGphTKLgRauDI1+f3YI4zXs13BxqRXVq42Kfs8voFpoqHFRKFhJKysBMdUimp99Ax4/0PIM3msum7NzFXS/9KoyE2NL818Z7eONKZNS2aRB0L5d13AelAFabeBy1VUyz00yw9CtL+3uN49LznqumTft+5H2AUtiEU7ZVWjAthWR95GqZCNFG6GEzbNQq1suY96YNx0ZcNn5XT6cAQTnVR/lcybj1LEnmRXLtdQuz1U0nlmbfmZlMSZmMFQXoNicyvMyf+65frK0BHkpbbPH5w6UDkSKoFFhRic5Z2D847VPBLipq5onD09IKfDy/UPWP7Fluz3hwYc14i2dnrlwRETDlVcr5vMrdpZTRpMhs8mUoiiZjEtefGmPl1/f561vPCM1iWTItmmShoRfXnH7zi2cRM33IYV5Pp3ldrMCieTdvTmhkhpE1wr4kiWjU1aJmOl/1QVlMJ9btER3GqFiQCYlc2EFdaXgzFWrdX1IieOT92jCFu92EAJN2DIej6irAQeHt4kxMhlPubo8ZjyZQFMxXy7YbNeMR1OObtygXq8pCmE4nNA0kcJV+IHqJY5uvkhRDvDFkNlsj9lOZLW4ZDQeMB7NiE3i4O4N9g9v8viDt9msVkx29hlPdxhPpiQXuDq/pCyHrLcbopS8/ea3OLp1i9VyTgwNB4eHnJ2c8UEUlosKX3g2m8AwRMalcL5MTKdjYkqcnJwwv7wgSUExnNFUG5oGkMTpyUPmV2dMpjuI862BFmNv2kKmWEoAcqRUHwgkq0um/Z/QGmHeFaQUVGNjeirEk5x+XtoEgUKSQHIFOUGg622b8wZbdVNZtyLteqiVxH37gDsZEqgNXzgSGpKcaNqcbGK7O+cKyrJEnBCiasOaJlI3dfs3qMg6mmbLZddRSh1DntA5mzN7G0+UJEM4Z5vN2OrEsnvLmcs0ogA0ZMHgp6ENSnjhCPDwwRl8dQijG/BiSVuPKQOGZEZwYu6W6QpWW1gtjXGo4MElvHUBP3JLXTHetCuFaJXwvV0Nj05Oz5krcmcXUxsNknf30AqM28gSe09KBSoph8WaIWgTvvXuszUaWWMTe4bG0+W7sWvJboCbryhTE+f6OT/U3DCDGs6f6vWuF7B3U0GOHyjQGI410ujkRHfyTVKj6B2EgWpmBDj+0MKXt1rscu6UXVlXKoQtREPoT45V1DyZwPxCGaHVAmKh4eD1VkFOquGNz2t4+dQ0P2dncONQQcPMaiKNzN1UJ5gKLNd6vzdumGuqMf3JUK1iErhxT0XJy/nzmqcMBqQHRtoQbukZ7zxu2WUotOl4o2W0xvUE54Gci6tj+JIZ+IbnXZvSjXkGCdl9k11oQJtqvAVfFTDojbuB0OyqzC8jel1NbdIwO37hFGjm1AUki/azeZ9dR/3NkqD9mzN75xO17GV+FhytJs31+jRfa4q0Iesfo30iwM35+YL/8N//S+wfFOztOlITONgZ8MSvzeefBZ9aguFyvuLr33zAYDhjOt3n4MA0TiEwno555dWbrFcb1ustD96+JATNYCyp5PT4itPzSzbVmlk5wVPaQq81f9SAYCyO7mhj3rObkDKkgEsFSRwxJJyzpGZWKkHnkXtOmNxlrhQD7xnJW2JCmwxZg5Z3A6GpWcyvSAghNTTVhpQ0Md3h4Q1SSoSmRkjs7u4hSVivrzg9O0dSTdgumAw8uwNHqj3rxZq6qWjqRvUaTaCgZGfviGpdIVGT0O0fDKmrNbGJxAKefPgB4+mUWy+8wmqxZH45Z36xYDgZsrO3w3A45OryHASqWlhtajYPHjEaDplfnTKeTNnd3eXgcMbV1YK6juwdDmkqmI5HvPHGbW7dvMGTJx/y7Olj6tBQlAVNaFitNxwezZjtDrk4f8a7b32Nu/c+AyjoxDYs0glG2ucsJg3pJyo4TYmWgQnJ2Dhb8JMZACeeGBpLmp0D9W20WpGgzsfM/HQLmbRanZDEAJIuahnUxOTabPiCx7kx4tbkLZaIanqkrWGGXWPAudLCsJOtfVmYbsAmYXl7PCLeEvlBFE+uTxajasmSzTFlNjswqF1qSSvNrYdYdJgZW91Mmjheyt/6ReGH1Q5m8Hf8btVczJMavMsK7o474WbKUXJBRa9feFEN3/ICztFh8k4rYL97rNmIx0N4bc8W+ghSw609NcTDsUbjUNNRvBr52eYGaRPtuW4HLNDWtMpRMTmRW78yuGn/WsPRhiYbo5AZoLwbzg9Mu/Ey0FMUCuJIOqalZfZNCc6OzbiZHmJ+qZ+b7MDhoX5+uKMgpopQNjCzJHwmrtfvNnB5qhFMDmWFzp6q+6dw6i566b6WX3j4ngKnvR3YnymwvLhSN9HegV5XiUZNvXhPc+fsHmlE3NUVnM1V1F06OFtq7a/1Bt58CscnWkbi9h29rqrRsZuM4WyhYeIHt+D1L8HDd7pxawmGvJanjhnJLI3LzIb1bR6T9rXQGfIUujDsNhLOWsvI5vmYjX0eOANYOdJO8ncCOZ2JaoDyGhcgriGOaSdAZnPadBf5NF5dSHnjYmthVyakN0+DXV9bHT273qTTEeU5FsPzwKXtI54H8jkZZb7XaPY11Hzc9okAN4tFxS/9+Q8pChhPEzuzAetlQRM6RCfmHhIKYow8Pbnkr/7Gh9y5d5d7LzScn12y3dYQE0UpvPjiEV/80pLlVcXZszUxNog4ri7XnByfs91UzMY7XcJQUeGkJ7ZpBaKzVP8p0SWHU6MSrIBdstBKcVZ2QTQzrc4FRd0550p2bOTSESRjGujnS0nGUOmfMQZNFJeg3sx5dPI+k+k+9178DNPxRHVAdU0MNWUJm8WC0/MTVqsNKUaGezMKcZTiWC3nzJdXZrC8ZrqlIIbEcDCBgdfq1dvEcDgkNBWrxQXelUx2p6zXK5qQTD/i2G7XLI4vWVycc3B7n/V6SV03FOWYUMO23rBZbzh++gjSivFkjxQqytKzWAamswH7ezNuHN1iNinZbiomoyk7uxMuLtYMR0NChBs39pnOZjga6s2ab/7Gr/Dln/6DTGY7yrxETFiL6mQs+kVF/eZWSkK0TNStdCG7XWLowZdoYyU21qqVSL2QcOdybTLXzp0MUCXvMEwroa87deNI0T28OJwb2EbdsmpLYQWYVeiOy6UPkq1PwbIjlZbcMt+LXb0o+BoNx8QoFkWW2sVLnENiNOG7Gj+N4MsbfJuvxC7LuSIcnZMEkngDe7EtzNnS8J+GNhvA772vZaJWAosKJo2ClZbN0Gda0907uLEPX3oJHj2Bh09UazM049wkeHAKX5vA7gBujXV3mSLsjuHmoX52tWi9R60BanPfQJvUrTUgQHZJYGAlp62PmY0JHU2fhNb9hIEkoJ3TfdFrNjb5vXwNzpseAtW23LivgO7BO8rSJKcJ9nypIGQ6g4MbCu6cU/dbjjyb7Grm34i66SLan14sF0vQfhqKgpViALN9NahXSxhPLJdQpdqP4Rhu7mnRzqcX+n5ZKmgsUVfaeAS3XgAZw+oS3FAjiaYeFlu4XKp+ZFUpIFrP4WoX9seqw3IOTi404zGFMkNf+hn4K39GmSMR8/plZiZ14+VoN7fPZaJuH3cz4K0gNo9RXozyBinSRlthACWPf8sYCW1kVRZ5t+LlaNfX9L4Tzc2EgpZkyuxg4IZ8T6kH4IxVSjVdyoH8ENn9p6iA8qMAJtnf7bVlIGhzLTNDkiOjelO1/UC+Tl0rVehvm5GP2T4R4CbGRFMH6iaxXDecnTR4PyRYmK5zHudKSjeikCE1GsJ7dbni/GzNarHl/Nmcr/3GQ+ot3Lw1YWc2wAXHdDbk/HSDJI+LBdVmy7OTS1bLDYcHqaeZsd0ubVUpCEKUpjehxIxjphFVFxMNvCMa/q3rSLfAZEAuBnC8hZsrqLGdPqbTSZAk4pI34OMoixEn83dZsSUB5WDSov4UGobjId6NKNdw8vQhi+WCJ08WDIeeF+7cZmd3BydCORhQn61JSSiKMXWsGE/3GBa6c9gE1cFI6ak2W5yfUJa62K0Xa/zQc/bslNA0GplVQGy2zDcRPywpiwkXp4+Z7Hi2VcNysSWlNevNhuOnz5iOnrCNIElrOD16dMl0smE5n7O/t89ifkETA0WRKAZC4R3j6ZSiHCFScHF+yuV8w8NHD7i6OmcwHmv0GaAFV9F+FcA0M4K3Aqt5N0HLuITUqL4pZ+mVTtMQo4aVB9ttaAFUHWPF253xMBxqcyOvZnl+QN3UrJZb5qstVe1xSWncrGUBIaYtTmYdi2uWsCVuRMhJI9v7IeuObIESh/cFs51dczMWlo8ptWBZa65lxkvTDyQnSMzzUd2qSGNEgC5Q4ry6Y/VqyK7Avtv1U9Gc00KMhWhkzI1CXSS5SGpOjBY3kLYoMChgdwJHY5gNVSz8xRc0pPh4CYtaXSCLLRyNdB65RpP43dzVJHLn0EW7pJ67wPrUJ0hFt1vNO/HWfWmfa4cg78zp6XhoN/ed8cygvGcYsy4nszo5YocEzRp2XkVvDs0XI+ZSKwoVjcYtjICbLyjAuTNTAfLTZ5pvJiUFJcOJ3kezUqCxvFSNiKA6I4eCzNEQwkq1TAllfLaN1ujKWpsGFb+OHGxrPebRPZgHjbaaDRXUjEdw+zZs7try6xRQ3NuH1VjLLVxeqCvMea1bVCVLQLhUJik1cHCkuXDuvQC7ByqKztkqs8svg9OsmSHoXGndfnQGWsyVk0Fm6gmGndNjtLsMA4Mta5EFur2HLVfUzp/J86MoVO81GUARDEBkr4EBJjfUoqOtVM49d+iWUSLZc2HaGrD7s2OFAPMrA6DGLmaAk1mdPCnF0UZEta5S+0wqbE8ZFby02rJuNaRleT5++0SAG8DCccWMO+SkeSmF1mWTXQZilF5V18wvN1yczTl+esVXf+UB84uK4ahktlsyHJRcnm9ITd7ZOlLwHB9fsFlXhBApigKNMjGNS0bYIVdwtgrMVjW8n8012sRK6A5bUDGwOLHFH4t8yhoKUcNmO+ZM3Xlc62pKmABUQHf3kfFkTLNd4QsNLR8MPJvVOduVMByMmEx3mO3MiHXFcrVkOV9xdrbh7gu7FG7I0dEtCFt29vaJoeH89BjvIvPFJWUxZjDyFIOCap3YVBWx2SC+IFUJlyYwGpFSYjPfEOoNy/klG1+QUqJuttTVktVizt37bxBj5PL8ighcnB+TYsXi6pLFosL7IavNhqt5AxF2Zh7xnuWq4nL+hNA07OwUHB7doGk2iPeUZUFd11T1ivlySdPAYrlgs96QogHDpLly9FEQAyyJGKzqeoIoCZcE5wut2i45R43NubbAnbJ1TWjaSLmYgs67pLSzzhUDCaZrodWl6LxwSQFJVdU8eviYv/yVX+VbX/8NqvMzbkwDRw7KQqP1ttWWahsJ5dbw1yA/BC2JkIzqdT33FliSyJw2waJgBoMhIRhbmLAEg+o+TUYd65l10XGK70yvF1FWRiAqg1QUytBI3lHGjlYP+fn8tDQBE1X0Xss7bt8BkNY9ZQCkLGFvCIc7cGsXfuZF2B/ApoIrq3G0P1LQBPo9H+DmPowGumjnKJR2l2s7YJ8ZG+kMXQYgeccsvUU+2e72uXIhGItTdEBFQrdjztFVmcXJ2dhbRjoqI7RaKyhpTCdSNRpVNNnTCKXlAuYL7Y/pVN12hyPN4By2yowUQwUQvoCjmxC9JvNr1pqNuGpgLBatM1Zx7UBAVhp2LaLAohzBzp6FJYsl75sqI/T+m3r/++ZGO7ipRntnT9m5sNWIrZ1Cu3JhLNdkCDvmipo3KmAuRjqn60bvq5zovRWojmcyoo2mawXFQJ9Ny5k2BVrqPzTmbsw+QBvLtnCvsXU+Ax8MzGZQkmjTA5Dfy3Ois4mtO6os4IW78FM/AV/8IhwcwtLr1xubc4OhVlh3Qxv3qncfNu0kg7Oee7ajGPVacnbmamuuWLu3rB+LrgMxGaDk6LGWnDHQFJOye4iFk9u5MzBtE0xm1+3Ha58YcJMspDHGoMUQaVQvETsRqNjuNX++aWrOz+c8e3LOo0cXLK62hCaymkeW87VlN7YQX3u4vZScnS44ObvgpZdfoEwKXISc00MnXk7mRkwaOYMWvsRcFSKa60WNhzIykYCnMD2gGc/YwhzTLuiilYzayxq/lLQ8gffemCBdxJwUTGb7jCc7pLRhNCwh1swvTxkNJ5TDUhFvhPnlJWenc7Y17OwWjIYDmhSZzmbsTG4Rm4bJcEzhhMV8xXg4pmnWFI1jOBlx8+AG62pDvd2AK4g0SApcnT4x1sAxHA/ZP9in2W5ZrRZcnj4ixMT84gIRx2azoIqOEGG9umC1mLPdbLm6qkgM2D3YQc5OaZrEGNjfKzk9XbNaVbqhdgV1tWGxXDKbRsbDKXVVcXl5ifMF6qmMXJw+5c4LL5PLJXQRQxBCo89P0yij4yzSR6IZfYUFWYuQRbT6/DWkmIgh6j8rwKnPotZ3CpJzGVl24JTrjuU6ZNpCCByfnPKLv/Rn+ff++L/L2dkZEx955abjDZnjiwPqasH52Sl1s2U0LhCXaOKG4bAghtitC0mvN6WOqSJ1ADyZpiiEQFM3VFXNYBDJonR1zbVPm5EBJqC3jVKOokq5XlpfES9YmQrazVnHWn2KwE0rBE102WYLXThd3jln4JF3r07dJgc7cOcA7u7B7lA1IjsjNfAthR7bTQuphqMdzanz/kOQpjt+jgCR1O2GnRiwsd/bHW8vsqZNzOeBHCljhrO/m38uKZy08wgwoOA6IWt2iaQGFpdaJFFGypC4UnUs1UpD2rFr3N2Do5kmgJs36tYRUZfO6pkxLpYfZseyHBcTKKLqXs5P1NU0GHauF+et6njQvllvNWJqONQq3zfu6X3t7+u9jabGmiSYHGg012ik7kGpVXNzeKSAU4DLGo4KZTUCep7BSBP+LZ2GkA8GKgIPTcf8HN6GB+/bmIaOJRG6gpAZoOSIpuTM6NsxssayL/52hYEbZ27RjC5snAP6+RRp3UctyHU8l/PFe7h5BL/n98Pf+XfrnAsejiOkHWjOtQ7Y4ZGCz3VjLsMRrbsw4xcRvd42hX8G/xmA20/vlQUdlFD5bh612qJ8o7RrUOeCsvO1JRmk69fE878/98unDNzkrL7JEGgiWihuDr/WDs6i4tZ1kCpOTi94550px8eXbLYrvGgBNJ0CmnsmowjBEVJgOa958vSE5WLJaFB2CBJPrgUllvNCRcRWHdzy0mjn2zGzK0r0PpR5wTLWaqhn3l0rKZRIybVCLTGNA5J1N3q9yRKniSR2d/aYTKaQStbLc80aLJrW3+FZza9Yz694+uxDFssF5WjI/v6YlGomkx1GozGT6S6j0UjF2kc3efjwfRYX+9SNslfOecaDITfKEc55mqamiRXL+QW4AVVTqWaEyHa7oRgodzEflKyWS7zznD35ADcYst5WLFYrUio5O1kSYmSxCFTVXMs4eId35hJMwksv3ma93YIEXrj7Euv1JavVGpGCkBKb7YaLixWj0ZCmjpwdX/Dwg+/wuS/+BOQyApZPIYPk0Gw1lNsWe8EjvlcbWwRxqdXbiemhYtKw7BCihlXHoGPpS5xEDX1GwJtrB9e6IMUYPWcase225r333uHP/flf5PHjZ8QAGwEniel4jZNTmu0Jq8UaVzqc111UE2tgi6SgJVzENnopaa4bgUwBO6eiYZHU6sNW6wWr1YrxaMeuD9pojWQiaNuxK6h3SIhmmrt5KIB33vRqBghBS4PEPK/7VvPT0PI10xkTZ0CnFTGZMWnT6gNSqsF4damupsEE2NBR+nkD1TuGeNhxcPtIDW+b7yYCga4WVNYYmAss6zZaUJLBVjK3GR3ozAYiNh2oss1O+3uOMMkah1ZTlPvCGJ8kKhReLRUcTA/UyJZRo5NSUMHxbAduv6isxmYL52vtn/VCmZfllRZbLDycHmvG4/0L/TuXBag2UD/R+ylKcAN1FcVagSS19slgqG4jkvbfbKqg7M59ZQ2GVlpBKrgx076YeTXkq6T9HcWAXIIHTxUsJQ+PP4TxnoqIMXZoOIL9qd5X6eDGHtx/HX7jq+2abaigA8nFsAOtYv0ZevNMqeMWZ7b0hYjOO28sh/O0otmUmQ8DORk4912Q7XOcNOv2/Vfhb/j9cO9WJ9NBYD2BdAiDG7Az1iKXYaCHcANgqPfi81yzZyOzem0UlomG22g+0RD8yVQj3XLuHmdzTLJLLnsiRL/f6mb68xA9viu66wadc22B0V6ffoz2iQA3uUBlyg96gOi6xRrRys1R1Bg6GSCsianh7OSSZg2rzZoQC7zLTAm0NYaIeBmQJOHTgGqz5uz0ivV6TeIALLJE3V6lRUcp85JdT1kjA2jGWrty1woyLUTcRXIa6w60aDRKZhkkJpwvVSgaje7P54kZiEUcHvGJg6M9dvb2IVZU2zmb9Yr9gzs4P2C7WSIEqu2Gs7NTYzodi8Wa8XjIznRKWZQURcFoNKEsBzh3i73Dm1yenWpF8XJAU9c06xU7u0cMpjs09YaqWtFstkSgamqaqsZ5T11XrBZzllcXjLzj6bPHDAcjrtZr6liTmg3NVsstVNuGbS3UDdRVw/nZUhmOIBS+pKoDLJZWxR2ePHpEVW9YLSvEDZBijdBQlCUX50uQRN1UvP3et/j5zZbpdNjbKegxYtJkexrV5sCJJnMkG43ONpAj1VC3kgKaZJsly0GEM2atweNJiLGuer4kTp1USedyTBEXHRdXV7z19pvMFwsm0zHL+ZqYYL5OPDpdaN+nLUOXGE8TTVPjRKhDpKgbZWJyBGiESA2pwWqSd/9SItpmIKbEttqyqdYkAk40hD1Ha0hKpKQi5ZQy5lFXW2Yms64oM8jO5ZXSwH3M0VlJN5ifJkFxy4q4bkHPhSz7ETCWg0oFlQY6jvZglFRo6hszNNAmYMui81TZTrRSduJwT10bZ2Ygkgk0U85C3PW7tvwatBEo9IxNjpSKppeJ9p183a0xMOMSajNISV/L52nrAJnOIwicXqpLyQ00+mkygbMnmgNoNKUFHIc37DKjamQ25rJqLPfKZmVlAJ5ppNXhkfZFVan7ZDzRxH7LhWUpnmgEVULBzqBUQFIOFEzt7StguH1XWaDJWAFVMVKwMpuogS+TWrVBAYdTvTeftA/KQsFRk7R77t4z5mYAsYJ6BBQKwA6m2mfFAF79vOqClltaV2IeHzHtjHgDlQZkdGFoh05/5v5OOvecM7YOY26MxRBRJii7gyLG2PE8GGiBQ4SdXfjs51RTtNqozkvQ5JJHUxi8CDLSa1vafeUIvNIAtUf7yoGGiH/EfZvvIWuMnGj/DcY6L3Jdszy/W3G1rc8O2kUnz9GPupnatAgGZHIIel7jP22C4qy10R22IzaapTfn9UgxaPXhGCyRmSq5RQKbeklzqUCmcCNaBih3TsRy1ijQkeSJwXN5uWa52lj1ZhMQx0h0ZiySGjlNxpqz1MpzE9a5oqP2Y1KwjcdJoXluMp2HToacC0VlNyZ2dVqwsDERmWQXSgoKgmPNYFAwm044Ob6gHE4pQkOMic36ihSHpFBxev6Mpgls1glfetbrwOHBlIODfcpSC2E68QwHE4piyKCcMCinxBgpihKcY3V1xnA4Ybqzz3C6R9Os2CznbLcr6loLTzovCuBDTbVasJifc3z8hPVyRYPw9NlDVqsFD548YrM6pvCes6tgUoPE+emW8dSzWAQ2G7h7d4d1WLHeVFRVYDR27O1PKUpPaGpCE3BSsL8/IxG5vNgAicViRa4J1haDTLQuzDZqQLo5lscvw9VMt8YQLFhALNpKF5Vku+ZkhiVapXgoFJSKM42gLTLoPEwxUYWKy8szYoj87M/8Xp48e8iHH7zHoyePqVYbLpaB5aJhZ5C4eyCkYNoucfZ7aHNy6dqmwvXY6NhnYxaN3UwZlJiLyuG1SniO4MgLhmmKxIy7y9Fh0TQ5IZemwECfVVW3e8N0RYloNRjDb16gPulNsD6J6j4Jpk2JppGItosOtepmxDYs5QT2zDDFDW324AxGHLS1cbJuwgdNFjgZ0VL2YGyLXUcbzgv014xWlIoxMwZu2lBay6LclmbIa16flYE283LMIlZPG/WTGSZQF1TVqLD25r7Wj2rMdTLeBbfVzxzeVhZmLBqNNPZwsYKzCxOXWoX1aqWp/usV1Eu958aYm91Dff/qQoXGxURZoeHYQsZjV5bCFypcnh3ArTvG1KCRUeOpll6Y3NJx3LV7cwJHQ9XazLwKoB/PwY0VRA0K2EQ4X+o9FKXeU2y0fhhONVSIAqcMAls2g+65yuPXPgYZwOQXeuPjMxiy93P4eLLXWuBjr9PQFtCM9pk2yZ2dtxhoZunCw1/+83D7Bbj/Cty5ozmHph5mBVSipSe8WFoBAzTZvdWCMFs3CxN991mmfM+Z3cn5mELsQHfuoKwpyhGk7XMi+ox5AzdCD2Rn0JiBW34m6J3/47VPBLgB0aRpIRKaWhfM2OAKLbfQiT/1xp24Niw/UivzI7nWk2UURt1IYoKkFMF5wbmCGODy/Ir5Yq7nKwvdbYuCimTARsWhIHh8K+C0goymddAwcCyfiHW++WoVsKrVzca1ZQIyC2TiLZ+ERNOyWJrrJOFynQ08dV1bde0xMTVU2yXew2azpq4SV5crXCEsFis9dkzMpjOcODwFhR+QklDVDU21RnzBZDqmLMYgMJns4PAMRhP8eMKAXf7/1P1ZsC1Jlp6Hfe4eEXvvMw93zntzHisrq6qrq6oxNQACZLMNAgWQAilCJoom0Yyimcz0SupFMj3QjE960oNEM1GkSIkkQIAiRIEABYIgAXSz567KGnIe7s3MO575nD1EhLvrYa3lESe7ujsb1gQzI+3mOWfvGN09fP3+r3+tNV3fpVte0LUrqmpCNZlKDpgYSX3HcnHCtaee4+z0mFBNOJ+fc3z4hNtPHnD343d55/1PwB2walvm88SyldWlc7BYtXx075DZzFMFTwhSjNThqMIEWHExPyFHz/rGLpsb6wTvWK0SDx58xsX5GWvrGzIm1P2YLHcNkt1ZXrXBFVWKm5JLX+fcl3BwSxYpQFWb3myKl75IOQv7plmk8VHfdwNA4rKaNBNeefXrvPTy1/AOLubnfPD+23z/zd/kg/ff4uCzx7DIbK9lphNHlRJYSoHRQk0WO5nYZ7rciRYHmwY8pvkxL4bT/1nJBK8Cd1t0eu9IWirAOCBzgcsi3lIRGMiTL3N2pJiItrqyd6DQ5F+BLWcxgsHr5B2ECu8NKIwmZweXns3VlLo5xdApo+uUlbGw4JjFUAaEudnYkut1PSXHieU+KWJSGEScmcuZZnWyT6gR0XtNeo/GJpgbXhdUl1b6ln/EKUCHAaA5B3TDM9W1PE+7kBX8ZF2IhOlUxL/ba8KAbMyGe7zQUHB6YXpc1uKVKhq+WIioOCO6HpIwPIsL4BQujoQdaiYCilaaJTloiPpsGz79ELZ25Pu1DWGQrtyEZ1+E529D3hfdzJqX+9xUGcOkgTt7sFBDHPMQRh9XwESE0yFJWQgryTDxAp42tuT5gMFlaMbWAAfWiRRtVx7v66UtC9ujoGfkZSoR/FbE1Xm5pzwCqJkRANK2b1fw1o/gnR/L92sb8MIr8Ma34YVX4dZVAaNzBys9r8kgDC+Y28w71SlVg1gYexfs+UbvU9axnqEI3O2cKQs4K5ma3eXTBQOLBvLy8C4Ee8Y8Whh8BZmbEGpyVB2KgpNcVNSAin29r/Ba3TirgbLREWnJWlfI2cBBswdbToIcCT6TYqTvJLsriAGMmrMmaSelJBqL4k83tKr72z2EPLgJzKB685daXzuDN06NrUwq4vJAd5IcIhaOnlwi9ZmLi0TbifakbqY0oSJ3HX0STUbb9VzMWxZL8Ye2XWR9bcLG+gYb61vE2JNIEkn16AFnJ0fkFNncvsr23lVms8R0tkYzXRf3Wt3I/YVKmMeZh+wIkyn1ZJ24mpN8R0490+kmdbPGdG2blDObu9fY3N7lys07PPvc13jptU/54L13eO/9t/ngg09ZnkRJPbEOeQ59FBBZNYG6hslUsu+2rYRpT9ZqXFXRtuf0XceV/V1Oz5dUVcBbbpIkLZpTwqlw1pnRyAZvVPyN5qRB3aDJiUjXoaHjUHmJEsreE1MUmzICs/YSJtX3uCSB3ankD5EkeRubu9y41uNDZv/KPlUIPP/s8+zt7VJ5z2+e/iqLowvmK8dWn+n7LEV3HQUkGSKJKdF2LRETMctrkZ2AtaJb04nFB0bMDYPRLm5PYWgEvKfBfmYDQ8JWxAjG1riSKyWNgnT+YBPO//BbVkZGpz7rT40OAwZGI/VIRlebOywSCaChMB5lVRoVdOgkTdDVcRD9RmXH6vXsXEHH6iVxJQyMmAEWAyaMrgsl+sqMwrivDZ0Xl4cdOxJAo4AteFnl14j2pF0K6GsUBAYEZKw1EpJt4GW+EoBycart6oVduXpd8tL4ACePxT0197Lv6oJSB4kk4Ccj4MNlATarC4ncSrUA0OWZsD3zE+mP40dSHuDBPfjwR/CT2/DCy/Lv+adgO4iFmwMzbWeH5NjpkHILKckzBC/5b/ooFdDrGg6OYF0jqeJYa2LgYNTeJQOxvg+OYdyAjBWfh/4rOYcsuigpa8hlMGuuxSLmtfFjLIcee34ED4VR5smBALePPpBSFDHC1s+Jq22aBeBUTtogM4AkG0PeiztwnF4AKMkgiw5WgUrMI+aG4bvi9hyBFtOolaGpiM5FTd5s85Ub3qsC/P9gC6kvBbgpLIuT6su5j5hmJfgGCzUtFbq1ZUqGkeLLhITkJCGPxcTI76nHu8Ta9oznX7zF9vaG6CbIAxOkrI3kKvCaydU62eOTZ8iKK5obHyoFwtJr0he+9L0nqIuhL4wk5qRSw+SSJEUTZkc1ENmRcs9queSTTz7g7PiUqj6lWzRUlfxbtj3L1ZKjk2N843E5MVuraOqK/b19vPe0bc/DT+/Rdj2T2Tpb+9fY3LlCu2o5OnjEZ2fvEfsVk+mMG089x/7120zWNnD9SlNth8Kspa4Toa6GQzpf4bIjNNCvFmQHk9kWMUMXE3t7V+mejkxmM65du8bjwyNW3YoUF/zgJwecnWfOV4nNtmN/b4p3nuPDcxkVDqraM1ufEIJjfX3K+uYeMR8zm+3STCZUPtBroUNhYaICmaxzvFZXT7kseMiJmHtKaLMCYu8sl00mZF+YwMFYjYARqAso6mLY4Xwqup2uTyyXC07OjphMGq64a0yaCdvb2+zvXWFza5tmMuUsX3CxglXnmPTC1kad37MTECG6lkyfpDRE0WU5h8uelM2NJO5abFw6pO6TzhMZ6LPkMrLs26CghaTAxgurY++lFYhNWg+rtImCvT8ATfyl2OwFzGrwqzBoVlI7AIoSgjtiQmA0sYPMxsrWjCsguyzGOHs4XcB7n8LJGYV6d8N8IsZyHCKuRi8Li1cMjhmI2Cl7U2Z8BuYGhgKDxszo93bvWe/NWCbMMGcBJrMJ3HleQqy7LZi1wpL0nbhyJlPRv7RJjOBcQ6gPn8h5mgpu3ZGfi7l8fvxEmJMr12HzJQnpXi7gkw/h0SeS4LCaCJBKGrIdggCM0kZQKlW3iPsqZalXBXIvTx4JgFzM4dFjqRHVTMBP4bV92HDCxDQ1HC6ljfc2hn7rKrhoxVhfLOHsCNw2LI8l0WCKAlJKzhp930wPYkbE7jdpHzvTz9gxCLhMKJDVfld96eCWdMNYM7eQja+kzItX0DydSj6eVQv5kTA5J8cCKM9OBCy6dcnSbLokG24OClXtULCtz1bKSWRKBJXT+y/AWMd+jGbw9J7r0X2X1RgFsKREyR1kIM3AlUUN5lE7/AHd378vuHHO/TvAnwce5Zy/rp/tAf8x8CzwEfAv5JyP9Lv/HfCvIL35v805/+3f9xo4gq+JoVOyQ/QotppOfSyCXO89wTV4aqK6iIwJkVDcnspNzPwACJvjPOSWrZ2a13/mGd5443n2968AQRjAgB4v6elTXomg11lOE2WTXBZ2wEuWYadMTfBGO9rLaABMQJBz4JIfOi/Jk2ub4X2t40ISFFqRMqeCqr5L9BHIPWdtZDrL5LTChTl9nwhVzbRqmMcFoano254rV6+UwbS5e5XNnT02t68wm20wXdvEhYrYmnbmkMcP7nL/7tucHj/k6o3nmM5m1JOa0My0X3pit6Br52QPfd/St5HDh59ydnrMfHEBLtB2K84vTmn7zOHhAYdHByxXC6p6xs3ra3T9gouLY9bXTzk8WbHqMsdHkUW3JMbA+prDaQK9oG624DxrG4m2PeT0+IIXXvwZphPxiXudn1PS8EZ7GW0IaMp6i35yxWCIURjXFEtOxpMwcENf+gzZAE8RIQujIr/3ZOeIMdK2HfPlBcvlgipIWYez0xOWc8fhwRNOTk5YLFoFXo5Fm1l2jmmXqPSF7nIkpozWOiV5tGBvoutWCoINIsskk7MBdQXOKQpwUYpctDb6PoxSoBsw8pUvbjthwgB6ZdcU4pcoQje4Xf+QNDf/OOYaAFIHsR5WktikrGDHxI4pIaLfDvJodWtMiKuQRH8joGG5SFwDxx389sfw5oeyms4RqqyLcTWKHnATCsApKivtH+coETKFqdF9TVdWAJjeX0aAUUYNCMP3Ocvzy4nkGQzsmWaiVpbGVfL70iFi1DVZ8fe9AJ4wE43OpIJHTygZno8fw/EhnDyRCKr5mYCyphF3yeYe3HwGnn0Fdq/Dgw8lSd6qUzdYlnasZiI0zmgZhwDXbwm4mm1IOzQTWN+SkPS9fdjZH8pdPDjXnDU7cLEleYpqB7tBRMwhSkSVV4PdZ9HXpATnHvZ3YHsDfuO3hcWyNnTaNoHB8NoQsHa36KfybhibM3LDZOsv7XPrS8cAeMZGvTDRGlEUggC16Zr8ixqBt7UNaxn292F7WzRGNg80TsBNrcDWOUoahFpfB/NkBqclOGzsG3KxidVxSSdUSiakAeBpZOWl6D+i5N0pbrusY7Qacj5dmld0Lh8zYV9g+yLMzb8L/J+B/8fos38D+K9yzv+Wc+7f0L//defc14B/EXgduAX8HefcyzmXZO6/6+Z9wEV1x+SEzwJ4nPciLk49NoKCq/FuQsorMpGYFwQ3I+dIzC3ObarBskmix7nE7rWGb/7MC3z9Gy9y8+ZV6qYipkjfRwnvBTQziEzuBTSPWCJQnQyyp4OA1AIqBjUhSeNsjW9GRFdgztwHftARWRhxVhG1jZuEZ7a+xXS2wfn5KUdHKqQ9WlFXUNeeUEsiP+8cq4uOUE3wLrCzs0d2kjtnurZJPZlAjrTdivako29XrJYLYjcn+JqtvSts7e7SLlccnzxivdtkc2sH5yu81j9pVxe07YKYMsvlnOXJGfPlBfjAxs4VZptb1JMZfWrBBZbLFY8efMJ7b/+Ad9/5IcvVis3NHWbTTXZ21vn0wYoqg4swXyYWC8fGWkX2idgljg8FUNaN4+yiZbE4YTadcOvWs1QhEPtWBMGxJ8YhgsUippxzo/B+ZRwcOCdiXKsmnvUFHaVfLOCh5CRS7UqyzMe6Is4pSVxDku9yzkyn69x+aoPbt28T+5au71jML6RfvZdEgjp5rWJmuYK0pi+1y/ggGZpjG4v2K6VMjomubUX3hEXgCcMn7qJEHyUfiSSoBFwoYmCnY408duuKxktKNUjCvkSk10yh3gTbOuF6nzW7ehYW74vPN7/f9u/y3/dck7MYxWCsiLk21UURNRzVJvDcCYBxE4TNnUFeyKTtGsjniLDXjIUyNo9b+M0P4M334LNHAgJ8EPDEaNK2eSWP7q98DiUJkYEWbPWshsJT5pfB2Ni+ZgzcCATpNZweZ4JwM7wXJwJINrZgV4W0biKGv8uSwXd+JuzGeiMgJ0c4OpTnjlG+X62kjeoJbGudqulMqnCnXgpjHhwKU7R9DeozERenXhmapPqbmRjK6RpsbSqoScIGnZ8KAxQ08mcygRtPwSvfgFe+LsDn7FjcWccXcGMizxkQt9osw1zp0trDrrZVm2G9lsSFyxbufySArqpVA6T/SsZi1dDkPOicjHHI2s4lpxIUvdbnWcHShwzaFctYbHSIJcaziCXnpEDppxfwySfiTgqaYLFkBFaaJmcBpxME1JltMrdSY1ogUNpXAGkw3acCF6fuWefBa56fUp3cGEGlgYyNQkFUYWic7pspOY5kRabnUZRVIhIdJXHgF9x+X3CTc/5vnXPPfu7jvwD8af393wP+HvCv6+f/Uc55BXzonHsP+B7wy7/nRRyqZ1C9RBaDlFyiChXeezUeAimDn+BdPQJ28ovUbpJK3RK1FLQBe65c3+Lb33uBN77xAjduXsFXgRQzse9pvaMJUnpBziN+TsupkxEK1jvJg2O0oadW4O7JmhNHFlyWml51HU7qCjlSyWhrolYBOxrBo8bXOUv4Bz5UbO3s0zQV8/ML5otYgHFXiStktt6zuT1jfn5OaDwpZzY2N9jc3BQ9WnD0fcdqseDg0SMe3n/Ew0ePOTk/E5Yidezt7LCzucne7i4b25v4EFgtL5iszahig/MSHt31SxarOYvFnNXFnPPDY3odvCFl8OfgPFUzwQdPtdHgb9zEewhVw0cfvkXOgRAaNtZnVJW8f9MApY6F91QBzs4lS3DTSGD8cplYrhIbGxNu3HyKnCR8OsZec9N0Eu2kvYiTjNAS+pwUpqi42ylYyUkTE4tbNCVhYMaTjsNBkAzHGUepGJ+GMZeTgNaUInWomK2vUZkYL0vV7sXaOsFXnJ6ecP3aNaqmoaoc3RKWvUxhoXIkHFWl0U7LyNhcZxdZraTS+pDAT5/YBMJOnl8yGTtZIPSSpBIHRDdyafsR0eU1kV/WxYVURvcpkb3U18o5SykGfe0S4P+QmJt/LHMNfG61bQbJq8tHJ9OSbG8lAMeNjpUd5PuSjj4i9G8Fj07hVz+AH7wPnz0WHUdwlMEeB51gSUhScup4ZVDioKvIDmGP4FJOnMwAhhzDSrgk/bP9RiBqHIEFDG5GBFQcHUg+mfV1iYKyhXqvnX1RwclSEt+16to8vxCgkRBDWdVSBuHqVbh5Da5d1YKciOE9PpYsx0eHUo8qRgEy8wWElpITppqK5ma2JqHf+7tcyuwblb1pV3LdbgUPvLRx38LzryIh7i2cL6SEg0OxgqOIsyOSydh5zamTZEKaeimp8dmnlKikUKn+qB7asrAMUUBHHrEYBlwt+aKBoJTUdWl9Y+MqS0i+MSKmyfGjMVdKNQQVas91TClYr2rJVRR7ydj86KGE4PdZosbM6vd6jV41RdMwKsmAPEezKYC8aH5sB8+lraQnSAKgctZoNx0/nsHtZEDaXP5FjK/vXUoUsba5737H+/f7b/+ompvrOef7ADnn+865a/r5U8B/N9rvE/3s99wcnknTkNOSFVCyrzpHSgHnHCE05JwINPh+VSqES/SS6CxAjU1GDJAWCNu/ss63v/M83/rGi9x86hrVZEKKiR5JlhRTJMcglKIJl53XMgi2PNKkZqEGUhGhSt4dR/bC3nhCGc+iJQq6SFI3gqtIiPBVjtfILpugTEwIhXWYTtZJueH0tCdmEYNKiZaMrwR0XZyfcXZyynRtnel0wvUrN1ibTJhMZkCmXS14dP8ev/xLv8QnB6fMtq/yyUfvCJvQJ1579TW+9vJLtPMFG2dbXL9xnVTVxE5UZ6Feo1tc0Pcd88UFx4dPOH58yGK5ZHFxwfnZOc10nYtFC3iqumGyNmV7e5PdvR1ygu2tPW7eeoGDJw/p+paN2ZrWOkrUQd6vvoPJpKHyK/b2amFI1Xe9sSHlG5668xy3bj5N2y4lcignUozSj2ponZbpyG40eWPvxgAq0ZBoskTbDQBX93EyPoubM7vhPUPSC8hqRrQwSTMFL5cdq+6MynvWZjNwnhACdVOzsbHJ5uYm00lD3TScLRfMV5m+9wMTg4IWW2wnhDWKmeXigrZtKUJ0XannrK4pm/uc3rmukJxHNGMuqh0V959zA3MssoFMyk7KVbhIRGpOhVDp2M+aOFVYD2Gh/nvb/lDnGnKWid5P5W97x3MGryxGbHX12YoWpKSgD/rPJnbTDqgWgwqeXMCvfwg/eBc+eSQMRvBI3pCkhjGqn1ENqbmYSuSZDtaoeXBKMEMeDIiDQV9j96L9YFlwC8hxw/Hy0Pq8eQA5xjq0msBvqxpW3JUeExV0bWxIFt/5heS3efJAfrYL2W8ygxu34Y//MckNdPpEEuFtrEtbvPUWvPOOAJbNU3jwAHrV2ODEpTRbFyM9XZc6T1f3BTCtrUul7+WFFL9EQc18KUDp8FiAyOkhfPq+6HyqRgt/qqvHiJAa0ajECRx0pRnJSUDNdCq6oPt3hQUKKj0Qtf5gaK1MRzbdjLWptlsBlWm4hxLwMtonw2DJ3ai/9MayjjOrlWLMzaSWpIUpi3svKwPZdiLyPlMmrW2FPZs4yRRdQNnnWJGg4yE4ae+60WdyFObQD7c5rAPdcH8JSs43oERNjbGcnbNMPMqYZqdj30CVncvYny+2/WELin8arPqpyzrn3L8K/KsAs+kW3/rOVR58lnj7J0fEqC9+VvZEX2RzF/hQE/oGT0XU8GlTR2X1XUuq+J7NnYZvfvtZ3vjGC1y7cVVWxN4rqEhaIBFiTtSuKkjSJAlOAYh3QtWLHkOZGYcKklX7MC4Ipp2UbbAmp2Mp6QraBr2NYXV9ab4Ep/kBXAhUzYRQ70Lw7Kw3dG1Lt4o6H2a6NnF6csh0KpE0zmdu3bhFXVU0TUVV1azOz3ny8AHnF+d845vf5Y3v/Rn+/f/L/56nn36Jt959h9svvcGNl1/i8O3fILiWo8qzwz7r2ztEfXljt6TrWhZnFxw9eMzBwWPmqyWTZsLa1g7vvf8RP3nnbR49OeL6jevs7F/DpZ5b1/Z47rnn6PsVla+YTtfpLlo17o6V5vWaBkf2juQq1tYn1H3Lou01X1RF3VRsbK3x83/yn2JtbU0AjbqiUhRQIQDFSV6knNX+eBt04Bxel6MiDqZMIk5XSDlngq/IoxWv1vuWsZErBU1ZxmmoirC4a1uOT895cnTKex+8y/bWHi8//yz7e5tSvsF7qqpmOp0xW9tmY7NlPv+MZZdYrjIbycmiUjWVEs0lk0JU4LZaLuk6KRMxiA717TCRME6ZYwkJTzrWnY3t7PDeGEYpjEmKBUzm3OG8I6ihdElKV3iNZIwlfNiu/499+0eaa56+tg2/8RhueXh1V9xTXl/C4gKy5WaWSbZqBSgYS1OECaazA6gkvf9vfgzffw/uP5EVcRLgC2qMlJks4tisE40ZCGcgZxQaO17922Nacr+xgTCapRgRm0f1+kUMbayAGmKLWInKgrSHqjtpxS3RKIODg8ZLjpqVASkHDz4Tt8Sql9XJxgbcuCkZjH/wG/Arfwf+tf8j3H0HXn4F3ntTwM0rPwu50Wy+T0QAayHT9VTAzuY63LgmNaqmUwEyp8fw/DNyrqu78OCRZEIOAR4ewIcfCShNvYCg9UYMe5tFUNsj1zSWa76CVnPfJOSztofTOfz9vyN5f8auqKIL0fZWTV8JywcKHWrzfwFCI+ST0OP6Ub/YT93XqcvTIrViN2h5mhq21mH3Jjz3kgig3/8Ijs7Mj60JFZcwP4WzCazdEhfcxA3jRHXxhRGCQTMz1X4owuLRm2Z/F9CdKXmeSv0shnlSDJvsYwyQB1ytY1FTIHgvfVnSLIy0OT/9Ff+p2z8quHnonLupK6mbwCP9/BPgzmi/28BnP+0EOed/G/i3AZ55+rn8J/7Yc/z2b0bee+c+qb+QDL7qxvGaYt+ptkVczloiIQ+DQd7TSHYdLtesb9V8442n+eYbL3Hr1g2aScB7Vxi+ygV6XKkhlDR3iXwtjBFODBI5E8qEQ0l5j650rZCiCU6zhXo7REOEUZUU4afcswirnE0+0joCoFxNzmJQvvWzf4S7H72Jz3PCZsXZyQXLeabtM0fHcyaNp+0cO40URNvb2aFuJjTNpDBO12/e5I+tb+HdlHp+zHN3nuODD97iqb2K61ev8fQzL7D49D2ayrG1t0FdBVIfSV1HtzwndiuW5yecHR1xenbG2fmSK9euUrvA9tOv8dGDQ24+/zofP/oltvb3+JP/5J/nnXd/xE++/ys8ePApL7/yCuTEZNpwdp5pmsB0VnF+IdRj9pl+1dOuEpMruzR5znxxhq8qvHPMz1fs7u3y7NPPiw1ISZPuJVLuBIShJRBQNg0taKo0r7PoKVVXpQzeMoo6r6bL3ILmMpSXzAy7vP+ekpPGQfayql/MV3z84C6/+cMf8d57H3Lt2rM8Pjjiay/d5tr+FUDAWl3XNHXNpG6oqkC7Siw7IwFkMnBeRL05qu5H7WDbLVgsTun7jlCZaFHbQSsIGxsoACYPEcwyGrDSFE7rTzii6L10Es3WJj7oPKZ5oHTOGwI6vvhk84+4/aHONd+5tp/5pQ/hZwK8dBOq9RFDYto+GLQtBg6MURlhKhcg1+A6OOvgzbvw5rtw/6EYegMjCUruGqshVATdIJodMxAGGnV/ByXlfan1Yyt+Y5aTGgAGRmDM9oyZJnuWAkjNaHWUwoS/8Svw3DfArcFpD9vrsObE3bCzJpFSVRYg5IDjIwUPGjYfO7h/X1iDvBLtyr2P4PnX4KiHx4/g4/fgqRfFNXJwJqxQpezNdEM0Ohs7sLsrWpvNmRyXItx7C27swQc/ght/XNiav/P/gZdfh2/8HNy4A2+/JW2xbCVKqu2lntK6ArXkNPrLw5MjedbZpkZsZakyfngMH78/ANKidaqVQdD+GYNNC+U3wJm13TEGQvuw5MX5HOA0wFRSTug502jhnJRJXJvA9afh66/DS8/D44/EdffuPTg4QJKNZumXrtMEi1GeuUZBjY5FA7ohD9fNiEZqbVNYtF7dkMbyjZP64QZdlz0amVJmBIeGosqFizsqD21iDLCN5RJhpYf9AcV9/6jg5m8A/zLwb+nP/2z0+f/LOfd/QkR+LwG/+vudbH19ytb2Nk8OV3SdILWsk7vpWHyoSVGqYldhRogNPjY4luU84hQKQM9sPfP6G3f49rdf4s6dm0xnUxmHIeODirtyJmRd8WuUiFddQiINDM3YoDkuraYGQbB+rxlqLctrtnT/6m4o4ZcZDffOygJpRFURe8rv3gUq53nqzku88PLP8KMf/H1m00AXPYu2p23FgC2WibW1QNe2zGYT6qqiritm0zVwgUm9ycbWPtduyHPn7PmTf+Kf5uf+yJ9meXHK9uYaF3ff5sruNs1azfrODiVKLGZi7GjjisViwfnFGV3K3Lx9G7qOW8+8yu7tZ7h+8xrvvvu3eObODk/dfp6dacOz16/R3b7D+fyU1eKC9Y0N1jd3WC7P6fuerfWGg4NVCRwJ3tO3S+p6QkqR+fyQ7nRF7CXyZ39/ja3tXTUQSXUwiEtQwyMdAj695WRBmYzCcsgEn7JmxFaXVABMYGrOpwHIgJQxsJdfljzZS7/GJPXQll3LydkRFUueu7NLs1bx8Sf3OTw64qVnb3L7xh45ST2vTKRLYiDaBMsu00cBzd7r4tINYwgE7PStFC3t+l7GstLelgBSGMxeS4LoveO0Ro355itiTiWQpqyLkpRncN5JJDLCpuWUpcyElwWE5DaOmsLhv1fm5g91rmG+hOMT2GskasT0G8ZwZDQPjvr++yWElWhBmI5OlMBqMl04ePMT+I134O590Y6AGI4YKaUdyj8/rHTN+I2FxGbQZBKgGEZGBi4nSgr8sUAYGABLGo4daQUHpkjBG/q7uVfuvQvv/BZ84+elindIAgQabaeprr6bRopbdlGM5/JCztGdSWmFB2o4yfAP/jb8d39PIpvOLuDOq3B0Krlljo+xd1KKSFYiEp7NhAXyDj69Jwb247fgk4/g/iN4+Rfh7gnce19AzINHsHsP1rfFrXV+LoLi6QaEHXE17Vs1bG2TibJBPsDanhREDbqIPZxL1FfOys4o+HBZ3SRpOE/JdWQaKv0nyOgyCC39aEAoD/dEUkZn9J2B3TQGFlncRVu7AszuHQt4u31TAOFH9+HB4aDLwVMqgXskaizoNcaaljGz5JFrrG2KXqzXucP+lbm0Upel3jtZtTvWFpq4ktF1YGBMTWtpbKJ3DFqbwMCSWpt+se2LhIL/h8CfBq445z4B/g/IRPNXnHP/CnAX+OcBcs4/cs79FeDHCPn3v/kikVLOee7dO+GjD84lEVqGmFoqP4GcpN6T76V9erDkdzZwzAgHGjwwbSpeee0G3/rmC9x5+iaz2YTgZcK28gZozR3vwcVYRJkyqMQNAkjUlbol7EUVJQM6wVAMpIRzBh0fIjBOOevcJmyAEdoCgF2Zh8S1KBqbEi0FSLHQxMb6Jt/9o3+WT+59yP1PP6BdRObLTPCOvoO1mcCwtl2wv7/DZDKhqiXctakbwmwij5ch1A113XD9Tk3f95wdPaK7OCW2HU21R9VU1FVDHzsVEovB67qWrmtZLedUTcPW9i77V69Q+4ru+D7feeNb3NjZ5eDJQybVGunsiGnfsjGtWZvtUYeKjc11pmsTLs7WmZ/N2d3a4NPmnNRnmkYGe9f19H3Lxvo6LsPpSUfXZkLl2L96nclkhnNInacMiSjRduUFkK4s4mFdCWXncUm1XAWgisBbFtJOsYsvx0s/jFZezs6rDI++5MF7kvNsbW3yjas3+O7PfJ0+9pydX/DmT97l+z/+iHY1Z2NWMZ0EqqqiaRpC7VnbmNGuehZtZrVMVGtILpukZSuiPQNkL1mYF4tz2nZF0zRIbSkRfMdeXregpUEklYCcxzknOZkcUh3d0vQ7AW7ZJqEsVc+zR5ignMGFEh0lz60aA2MY/hC2fxxzDTnB7W14bpOSGdg3wjCU8gBVmbOHZGnpc/9aGQxtD289gN9+X4DNYklJTjSuEG3FLEMYua9tsTRii8wtMU7AB5TsxCUMXX0JGYrAuETnmEG0Z7bT5nJ6jP63zLKg4MZLtNMv/1dw5zl46nkRFk8V2NTAQk/YzITdaJdacsEJO7BY6T0jf3ct3OvEQO5eE4DT1HByIO3XtyLQHReXrCeilZmui3bk+AgeP5H73bkJb/62JPDbvw5xAZu7sv+qg+WBGPSzC3E5bV5IiPfpObSbwkC1CvLqSgz4uUQysl0LiOszPHko+WEyDPqmMDAneZgTNJmW/GFZnwvwNDDwOSG4YwBIY1A7Xm0MqIMCmgxMnZ6J3um3fiSs1/o6vPYSfO1ZEWIvenEf9r20YZdEWD1RoDr1kuDQOwFBHmHkegPEsghiuqEFTFsK6+jQyD8dvyWVgInQ85CYsYx5fUaX5LyWa8pAUSleq0CuvHv6/pjn5AtuXyRa6i//Ll/92d9l/38T+De/8B0AfRd5962HXJyLkZJQWKHOY9cTwgQXKlJWwRrqNioPmgpr01Tw3PNX+MY3nuPZZ59iY2NTo1aAEUjxKuSVGkFO89v0EgmibJEYulxIXQvcTsPIU1F70nHoCrWWLKjcM0TfmFvDzmfj2Q1ZiUvIclmNi8Gpmoann36Zv/CX/hX+xl//9/nwvbfwYUXOiUkjOo3gYFLXrE/XJNKGQBUqJpMZdT2lqqWYWuoiMXX03Sl91+FzpG6mVM0UXKBuHOQVAamH5YKnTz1920sk0HSD1dk5XbfCO0fdTAnBM0mJ5+7c4Kkb+yQ8fRchtFxrb9KlyMZsxv61fbq0ZGNzh6OjU7Y2Zkxqx6LPhADBZ2JMLBZL9vd2aOoa71bEBLtb2/zc9/6kugl1PnGZKtRSi8lZ7yg4ceYu1FbPAkzEJSM9Ss6EQq3KyJLetZwwTvunICbGBTiNDXI4vJuwtXuFq9eusLG1Rt9FTk9OWS7nvPvhJwQFFjkn1tc2eOnFF7l5/SZPnjzkzTd/m/bsgmUHsyhAzjRktoBLZFxypISKilfkvKHPlkVQjYSjh2BAHLxriE5KTVjEGDrWJOmh7JtU4CrC5KR11yQKzAPJO1zSzMw4nEtY5NkfxvaPY66hquDV65KWX0PdpWK019XpSvUwIsSXbQzgbHkSBVJ9+AS+/xF89KkwBZbSfwxSLCWFz4Oxs0R6ZuyKgWR0vP3U3wvzi67gx5ErugI3nVgJNWbYH3fZCI8jqbJD8qckMWJ334H/5P8G/9y/BC++KqJbiyay6a/rJBS710VC7KSoZbeUfxnJTeNrqLc0KV8lYKhdyjFtRsLs1cjHJG3TVKqZOYdNdVPlLMdpDTbuPoD7B3JsHSA20NyXdlks4NEB+KloUXa3xLB3WcBNZDCg0ykcHAsAyBNpzrNT+JX/lhLFk7V/iubFjcYCl9tVFwzS52Y9sq1oR2NpBGyAosEqf+txNi4KG5QFjB8fwMPHog2qg4i8pzN47vaQUM950Qy99x48fABXrsEb3xItU40Yjd7AexixODpePcKCTSZafkLHizHG3jNULQcpGqu6qTHLkxPFlVeIAnP1KbNVEhgyMDjF0zF4PL7o9qXIUJxy4vHBhdDhDP62XBKQgXNeI43E2AdXE1wjrgKFHME5ru1v8sbXn+fZZ2+zsbmhriV0vMm+3gWSc0j+G09wleYJyYQSIZWLSyzlhHPivzSg4ky8jLgXUo64kuhL7tcQp2iFxA9estkqVSm/F6k0BZ27oUyDVxq7qmqee/4V/uSf+XNUdc37b73JfLGkrh2NhyY4JnXDbFLLyt1DXU+pQ03lA8E7QjUhh0zseryrmEw9G1tX5J6BnHra+QkXpxdllZ9SJsWOlHp8qAh1wJPIXaSuapqmUoNaMVtfp8lo6YKEn1Q062sslkuaqmZ9Y53lqiJUx9RVxWxaM2k8XZupgqNuPFXliLGl7VZMJtC14vr52e9+l+de+BrO68SHRfqoSxFEpzRepeJ0XOm+KRWWLOWkzAZSoNUMf0b6VleSwsxF7SFL+Jf0HdV8OD7gmynT6ZSqqpEIv8Ckabh+5QpvvPIMlXesra3Rdwtm0ynP3Hmetp2zvbXJR3ff5/HxBW0HMTl9Md3wf7NBOjxjjKxWS2FgMvquIMAtJ3I2htLcbpYBPJN13FtsbNbj5HfVn2VpKxFp20oua2kGT04SzixzjU3gX4HNO7iyThEQm6soj35qxuti7EuuG5v51Y10eA4//BA+vicRKbYKdwz7lgrJeq7Ui9vFfR5cGMjxcu1x6nozPGi2URcokVHAIFxVY2taRF2coTrAEl4MDCzD565jDFDfwQdvw9/9mwJiXn1DopW6TAn57ltYdnK/yQmgiSocS1mBohNQk3spVHn6ZNQXlehxtjQBXVaDFrTcQuzF5YUXhqVXoa/XsXuhbEtSF92qh/lchce9gM1JD/22Cms78f82Tu6/TWLYq4mApxb5Lmf4tV+D937EIH7No/6xhU4/gNWM7GNtnGGIQFIDbuUJRjnbChvk84iZMxAwHhMM17Xw98VCGbOsYvBWkkW+fVeuNZ+LZma5hHsfSELEkxN4+nnY0WzFJUPwCDUUMKefV16qf2sx63LfpWK3sU3mdsvDOLJxj0ZC2XHWJn58LjdqO0eJJrRsyWXcfrHtSwFuqhD42hs3uHfvgPmikuKWtqpCDIknaJkDT+7lxfROCmtmenLuaaqW529u88xT+2xtrWmiUWlw77QyOEEyDGfREDgvCdPITmpLOS/sEZq/JEu4b6bHqf/PYcZNjEFWEZkU7/SFUXIu4zScTYyL5MbJJqAiFzeZmBCdoByUekH23ng1oqHijW9+l9naBlXwPLn/CXn1kLhKTGvP2qxmfXOnjA80Isg5McDBB1wVqFxgUjckeryXEEznHKuLI+ZLSRQYfEUfO0Lq6JZzUt8TYyT1PZOmoWuXxLalWt/AaxhnTUVUHdNq1TGbrhH2A6vVkm61pGtXxE6TyYWaSTOh8jJ+g/PMak8fE20bWSwutFI2PP30bf7Hf+Evs7G5LcDEg1OmwgEuS1oAp0Y9jVLXSxHUTCJpSH7Qd2roq0FXpaCWIRQ2jVYOMiricKyCH+c808mMqqqZL1qWrYJBMttbW7zx2kuslkuqquL0ZCn8UnBUdUOoK0JVie6mzfTR0cBQIDOh0XOUSSf2HavlnLZb6qInl/kyJcmgHbMmKtQkfiUyagTWnBqHwuKUUg4C0J2K4mUMZs2SnRXYBZLr/9CYm38sW5/gzQdwZx9mkVIJ3B7CJtjYi4GobLIeAR5XQd/A/WP49AmczLVflGI39w5j8JQEAJRCgvaZxSXrKjWrjifb5wwG1SJ0nI1HNSowAmVmXB1geXt0vrlULVyPt7wx40gYE0LHHr7/a1IeISa4eRsm10WQ2mepzXR+TGEU3GiMpij/+ij31a3kuZIWNMpZClVO1waDb6Bmui4sWgjys23FuDa1VPnuOm2DfmjfSS1FOJ9E0dFMpuJKqbVtYyfnUdINkrhpgpd9ZmsDSLn3Gfy//0MpW0BGalsZ4ECBpQHMjIh9R0bZ+snGQOZyX5VJXduensuJGA1EO7mOHWvgJyetuN7DVKO8fCXXPD2Bt96R5+972NJq9DGri7CXz4vuRueNoGPNj/rf3ofQSD/V08tgroAQHbuWwNAAThG3j8Bh2UeBUgFSBsptDLohA3RGx3Z1CYP9ftuXAtzUdeC733uBBw+e8A/+61MWc0eKPVZSoQA+dS9ZtuASPYUUY9hx5+yFOWs+C1MCGvUyrOLBnEs6GQBWfPBSuJkKUwXEqPahgB1duTqwQZxVXDl0ppZryD0h11iZBmMGCh2HFMh0yYGXquQmxHJFdY+KneUca+tbvPratzg/OeKjd9/kwYc9Iffk3LE23eTKlet4Vwmg65Os5rtEci2EKcE3xJDJrdRLSSRyTPiqpmvnxG4pQK6qhTWKkcppqHDf0rUrsoPZtKFvBbDUVSUlKMjUVQ1e8ro0TcNyOSf3HTkEYuyJUSKbpBaXsmlA10Wq4OmS6G6WizNWixV7+5v8z/6lf5mn7jwrgDE7mVC8I7sIUX5PScOfEbdjck5BnbR50jwJOQtY8GrQywukhi2r0DgrW2HaG4t6syij4AM55ZId3/uKZZe5uDjlYrFiUnl2NhqqqmJna5t5XbFcriTxYN8Tk/wDtK6YSAa6lpIINDPYp4zJORIxJ1arBd1qSTOZUHJD6WovxUjfawVxnbeSgsEiUHZgkXslISBDO2C/56S6noFpkND4JAuDIRTry791Pfzq+3DjCvwTW5KmXvP3DGHdjNxLBgYShQUhQN6AuEap8QMMzI8dNyxihppCY6Ci/wrj4ymahfK3rlzNGJr2wMSt4xo/rgLXDeezFXbJ2Ojk+j6ru8xigB2XGAfTdYBEPP3kt6XkwUvfgOcqJFqokkzGTx4gxjkKEPQKFnIDcQWpVfZmogZ0Ivt1nVQar6Zyb71miA4K7HwQDY1Gf7JaDaDFalDhhuOMuZiuifA4RhUma2STvaTWwZZYyzthhWZbki358Bz+g38P7n1IiejxSdorBxHhGkBN2s8Wvl+ExzAwg1DE6lZywdyTxpwZQ2NlP7L2vfVN9soguWG/2ItbaV3vu08Sut9HEcyv9TCdCDisFPx4ZQyjLBipEfZmzgAa8tBEZVXsnOQumkw187SxLDpQrWp7sHZmxHaNAK8bPXMBwqML5jyc+xKTo2M95tHY/v23LwW4ycCtm1f5uZ97gc/uPeb7v3lAXElK+R4kp02ocC4QQkWvL6HUjBJDtuUSu2kFjz5l/vgT4rWr5MlExYI2acnk5KjITlbf5ETlKyJdqSslblIFTy4wVJFWF4C6QS4BJ+1E+b+uinHCLOnE4nEQ0ijqhuFzbzV+NNqn0JZZ2BYdEKKl8cxm67zxrZ9jZ3uXn+QLtmYTjo4ek1Jic3OL0DTk2JNTpF8t8TWikWgiJrRNOZH6VqKGsgCF1PdUzYTsgrI0UcrwOAghEFygaipiGwnOEVdLYrdkEtZxKSuDICuRylXgepqqpmlqVssFfdsS+47Y9rgkjE7shTXpe2hjJnhYzJechp4+VvzCL/55vv3dn5fEjVq7xTuvoeC+jKGgbhdpNlfYGakJJmUyckrFtSOi5BqBBMbIucsvpHdFo+xLtJwwIDGjoFSAeB97cr+ibTtS1xNdpRF+wmT1Xc9yMWexXNB2LSlqAdIsAuCIZCpeKWmQ0Hc5I1FZuKEmX0q0qyVd3xOqmoy4wbwLxNxLeHtGqtpnHetQylJgYyyb9kbGqMwnqWA9j5wj6SLDogOLfif/wSac/8E3B9x/DL/yPty5Ct/eh0kWYw2S0yaqsY7qPrCFSDZD5sFP4NpTcPUpeKjJ+lLLIGi3yb8Xo2jgKfVIQj+dwM1Io4xPAT2VGpcRGLrkarJtlJOnRKXo31FdBuMIGDKWc+tSOLIZIhOQ5yxGkCxVvH/7VyWqya2LYHj3mhjZs1MBFZa5dzKTatN4SQhornbvxf1j2gpjZfpWWZsgAtUOipslR3FDNRrdOpkKexAvBj1GVoY19/J73w3J6ppajG6jLMtkotlztdmCk5dsbQqxgirC3/6borXJcQAqFpnmRuN8LOAufa7gN4OudgbCJoM8nC7MbIiMFholHBs9Po/GnkMBlQLxqpL2bGoBZzlqhJ++tHUlbNRspiUZvFH5lNpilf4zMO2HoTgMCx2nk6n2lzJv1j+Wh84yfZfoJobv7HkMrI8ihgcNmd2DH57XDjYx8lhz9gW2LwW4ubhY8uEHD8h95tqVNSZNxepiQHSpj+RaGBOyGK6ss77LjhmJXb9kE8fqYM7ZR/dY3bjDZDalCvXgfMhoSQVJTW+RmA4IvqbrW2LK1NaozibxCouikuytEU8QgadmDB5WP141HblMSpZrRa2ngh5byelcogMi+EYJIVHWi0sMDW0WzYcL4l7au3KDqq6p5k+gn/P8iy9x/+5HTLy4nCAIA1aLoFgKI0Z8sya+ZUXfvu/o+wX9Mmq01oQ+RlLXS6ReyoSqovIC82eTDS7OHnHWRab1GqnryZNO2SVxKfa9hNPmlAi+onIVPmf6tqVdriBB6nvOz07FjZLVFKjLvuuF2v+Z7/0p/qlf/EtMplNtRW0P54nIPuLC1VIX5i5U8OZ00pbFasYFjWAzQZv23VBJ3vp9AJ/OXAhOIK/pG3IWLZAkzAs4V1NVgZ31irjWUIdAU8t5fRtxQVx33ldUocHhL9mShDA3qx76PuNrBo1oHmStsn+m61va1ZK6nsrx2fQ26LgzX72OLzcqCZJQvszqU3mcUwrdB1yWEPqUElbnPqnrwlImZLyksbCoia/CtjaF526IYXs8F+O5rpM+yATe2SRsixf1+RtbkjQkfG8NnrkD9++JwY8dw8TOAFZGmaYBMS5Vo0ZFr1sm+n60GHP8TnbFVrOuzEll4i/Ms2k1bN843JNMLnofrf5UQbXtVxg6ZURSFIama2H9iuQGeu9dePrZgTFBmZJOBcW9MhXthWhZ7HxVLWzNdKJi1JWWplAhr9dVTmqBNVidw+Y1YVq6hRjtVa0vjLoUjanxQT4zxqSZiNvGO+nXza1B42HMhUeLpSb49X8A/8VfEZE0WdsdBtZFVxxmZMfJ5UxAa4vdwpC4QTtifTeuJF/6SQeBsRcFLJlrZ9S/Wd2pfYSLCAtlbDo9bxN0LGbpu6hUsLl57HI1CnCcAlKGe7dx6fXvaqJh80uGfD8KmFLSexyNrzzeh9Hz61yaFfiU6vQ2/q09DYDnof0CGo7+xbYvBbg5PLjgr/xHv8pkkvn0kxPattfJFsiOlKR2UFVVarhkxe5yZorjiotcc56Zq2hbx8H7H3Pl1i1mm1tU9RRXNeLKcOBxSEJ5o6I/lxQwwRApo6tUm1wYWAPQUGRLDgdYKLLzg0RYxooMUCkJ4EaDR3Q69sKY4FNKRyQtTeCKS0oO1f0QA72xtcPtF79GaI+omsDO5g54KbqY+k5cCSBuoVKh1eHXNnFVReofsTh9wsXZAd1yQT3bwFHRdyupk+QrXbRk6DoaVzGhoVu2LPo5JJhOGiaThsnGOg6v9Zx6UJFu33bETvQ5se1p25Y+dvQp0q4WNF7erSqIa2q5yty8dYXv/JGf4y/8s/8yu3tXKOH3OAUzsgKw/EE5Gx/lVRLiRGtTVle+TDZOGb8C7lDh7HiRW+YbN+hdHBQfeklfLX0dfMNkIoJi54TFqaqKKoihjElcrbHvWa6WTCZTYu7pYzus/hC9ZtvrtJrRuk2yai9SC2VMUox0XUtMPa64jeTZc44k1Niqocw5qTvVXLMyacjXMs4ySrs7YRUsKaDuAoSBuSxJuyyU+SuwXVmHv/w9WAJ3tkWvUMS8WQykD0MhQAtDLe4DC+ftocnw4rPw2WfCYHQLYSIureRNCGwTPnq8uQttbNmAMyZmxBoAJfS4DEwVvFvm1wKSEsVdVaJrDOSooTG2zbkRsDGKMFOEr4WV0+ucnsB7P4ZmV+pKnR1TamWpKxqQ3602Vs4SWt51EK7B1j5sXhFmZXEubVNpbpnU67rBKRvRA60AlGpN7n21kpIJ5xfSHy4i/tso991okc5mIudoJqrlCRIebc3ZI4Bp4uCzA/jVX4W/9u9KpuMxdZGgiIENYJT5296tzOV8Q0mYkqzAuPSD9o1Ronm4jIwBM+T22YgVGUdKxVai0lbLwZXX9zq/eQFqQd1Rk6ns5zV30JgRMYBnw8qeywBa8W561SZNBm2PFbrEwL8iRRv3Tvcp488Wk4yeRcGRuV4tv1B5fhubeWCd/BeHLF8KcNN1kfffPiKnyHw1lzYdv/MjN4GzcLW0oiKz4Vr2fc+Om+kumflBy9Hb77C2u0e9vkaeTMU44FTrIROy8kJ4HzS83xFTR8qB4KtLNKGEZyvCL5sIgsvgxMatdKZVU86YOyEXxqYYhwz4jLdU7pgomYKQZd5LON8IyPFyzgxUVcXWtadxZx7nEmt3ZizmZ1xcLIh4yeniEm1c0PgpOSXS/IS0uqC7OOPs8T2OH9/n/OSItc09nI9MJhVBB1rwNS4LrK+ahrqT4ozOBybTir7rePLwEfUkUE9n1D7gfUUz2YAQJG2/UB5S3DJF2tWStm1ZdSty7GSxpfNI7DPr62v86T/7C/zZf/ovsr9/XYyyy8PCVUGMc/kS0JPkh9Z6GRdqSpLE8RxPpf3pKOwow4R0qZaUggL8ADQBBRIyoUk4dcIHT6ikplVMfbmuFLnsxa0XVLibJDeEMC1WQkQ0jl2bSb0vNf2ivdtOh74aInF1dfRdJ0A8ZdXVSP6jEIIyLAbUs87PScTAWRNHIqJpr3lxkpOCsjjRuSUr5KjUstMos0zEWVjuV2WrA7yyOxg7GwBg3S2bAVkPuEY+yBNxC+TFsNN+Da+8LEUgL+ZiSEy/YouJMiGbGwoRcvpajHOy6Ci7D13dp3G7ut/JABUAlQeAVp7HUZgYMw4O1UTEAQSNQ5mLqNgLczIGOSAG9NFd2FTX3L0lrG9IjaiSZdlBmEFayjXXtqSd17bg6h24egN29uDsEFJQH2xUw96B0yrTbSfgBOT7ZS9RV9evSe6W5UI+Tz2stEhkicJxlBT+k6m4ZRrTn4z6uHISUfRf///gv/hP4eABJdKskBcKSrIxWwr0xiwaTpiSAg7GY6kfQEnpO6/pB0asnB1kQMqAJjBkR1a3j+3TaT+WKvZoJF4l5zf2zI4pgMOV2yjJ/Gyo2b0Xm2YAy0n71+ZSdYO7KCHAyoDZaG4tjGCJSrDFWqJk3q5UXBjjyLU1cmGlJPdhYuQvuH0pwA05yzsveeyVsRADLtEvQEy4oBmEc8SzYocl+75l39XUriKS6HJPjJ7DDx4x23uL2dYOk8kaTdjC1dKozorf+YzP6rpxjuCk2GZKWYIkvGgRPEGjTqxSckLErJLgrrAAGfwodCQ5EaA6lPbX0V1cHpYrJUNJha/I32uZejm1V9Yn44M5RiUSK5Pxk3Vyu0udT5k0MzY2N/EHx1ycHbBaLairClfVBF/TLs/p+zmx7VieX3By8JDH9+/jmsDO+jpBI8uqOoCPeBdY37tJ1UxYnB/i6il+fgoZQpZV5oPHn5FDpJrM2NneoW48se+pwjo+VOTYE3NPTImuX9HFSFRWZTabsbm2wnWJ82Vid3Odf/Zf+J/yC//Mv8h0slZcP+BGCyfNteIsWk0ACU7cjgJCbPJGI+8k7D7pi+ZQgKLnMFYsKQi2F1Na2mNunhJ55Jzm0koa6KD3qEeImDwilbaHySuDzJU5K/ufi7tHTRqrHtouM41g0Utmu5KHmAUkppRo2xV9twJnZShSYc28dxqoMFr5pQEElpFqq81Cs0sNqlwyr4LzvmiWommbsnyeigvvK7CJ0EqNhblfQB5GjUrwgihNdOsmwBRSg4SFKxPjKlnsPH8NDl8VJmM1h3gqFFwRhSZpd6euGzJFrzCuTm3724rXWBWtszfU9zEDOm53AypqOMw6FeHmaLWOU2MNgw5IjXpWLUV2g+ZmvIxfXUBzCG5LmKqzU9jbEUZmMhMA1HdyzsmGMC5NLQnmrlyXmlN9EiCYkzxvFwXo5AhH94Wd2dgTF8jalhpXBQFXb0EMAm5Oj7UURCXgIqp2x6n+p1IRc9B2WyxhPhODPvXC/vzVvwJ/4z+USKtLrh997Oy4rBXRtshQSmqUyDUEaFjdOWNtYGCxSli3PZP1pRntkUswj5mLPGJ78nCfBoxcGK5rHe3Q49wAUMZuKRAEUI/fCQagk9DzVnL/TTPkGyrX1LQcKStOc8M/PwaBw2s2tKcbxp1pbWBwc/nRfs7ekfHN/97blwPc4EhREvh5goQmF9GRro6j1DjKXY9PCzbckj0354prqFylfSIdHYHVyvPkrY9Y273CdGMLX1dUYYYLXvLRuCSWImuUk2paupQlwqRy5Ki+WyerWu/NdYRS+GquiutjSCvoXLhkPATgKFgbuaWCRkCJYR7cVxYZZflZpEp5Va59ydB6YOMqi4MLagcbm1tsbEROjh/TrTq6upMVNo4qr8hAu5wzPz/jycP7XCxW3L71InUViIsFbYYwndL3PZGOenlBt1rSrjqWi5bjw+NSY3C1vKDvI4dHx/gP3yc8+xzrG5v4qiYxJ2VH30pIarts6TuN3kqZSTPjqVtPM5vO+PDTQ7726jN8842v82f/3L/A2nQTC1u+/PKPIplKBIjN2W4EDCsq50UorEy/y0gUVZZ7kPd9KNNgrq8CNtQdUfIPGbgiqCdR+l4CxG0XmYxKlarsFWgBSFmRrE8BkGIixlQeL6HZ7HsBNiRzkQ72KVsGXDJ939G1Lb5q9DsgC1CvfKDxNTEnKQ+hCQHTaJJM6qa0/0okobZF8JLV2blEVIGQdxCzpf4Tx95XaguBkmU2dcM4Mi1BCLpKrcBPIc8gryEJyswFN1reThK89iwcHah7qpesuVHdJlldBRb+apoWr9fqW2UNHZdCs42pGem/fiqwKQU/7ZZsPzOU2lMWAZXhkvvqUl0k/S73o+uMDG0Czp/A/qbse3YKFx72rko4dqeGkASTRttnDTY24fpNYXnef09A0Gwm11guBaBQSwRVM5UsutMGdrc1lT8aIh6kvMDzL8BHH8L5mYpc9VxNI208bSRqy4qVtgv47K6Aoqf2JBfMmz+E/+9fgcUZJWxZ5/ECGspnwxwgbZhHwLAfxtCYiHHmJjJ3TBravWizDGwoiGWY0wp7CMUOFuQxZomMXTKGyfqyPIf+COpeGr+uAWWzdDzavjaeggIfnIqzG3W9OmU19ZmSvkvlecNwWwaoS+6mMTCznXR8egXeJVuxPattXzXmBkhECavV1vAuEPsWFyqcD6Sup+/n0J2ywznX3JxdX1MRWCn9Ko4UyRYTMywOO5786IesbW9TTRt8VREmE1KW88p85iTtPo4qBPrUFwEz2XQITgpqWrZa71TULIDMonEcKN2vA01ZBJwAkhDqwvpYZmRJPicVx6UOUIVTS+wI4kLzNpAk+soVQyvPLa7dGr97h4PHH3N8+DHnF6e0bceqaqkWC1Id6PsO1wlQnF+c8+T+XU7nK55/42fYXF/Hk4gVnF4c8dGvv03OsH/zFourS5x3LC7mPHzwKQ8++5T5/ILZ+rrcl/dk57lYzHnw2V1u3nqaejLDVR1dLxqbbtnSx0jbrqSqed8znUzYmt2irhtefuVbXLt2k5e/82fY2rmq5QEoDEPSvhIWNJX3v7BlzmHaKCl54YaoRCTKyiU/zB8hlBdN3mMz7jY3SbHNEhFXWDczFAJSk0uk3EtoueaKyOWceoPlpNJvKSVSNC2LF9GugoWUZTHa9UjeJT1FCQdPIKUS9L1RFofYaYZhs3tiKJMbxjFINXOXNWQcjw8mMo4G0aSBvNPrxDK3yELLE5MUs01EzTX0VduUMTEjk6MIfKO6SOoKqhnUm8CmAJvUIRqAsXjaVrDAbg2vf10qWy9brZK9AtdoZImuqotuQtg1CYseA/jxpO8GF4gzQGYDnwFwlJBwHWs5q5tEDaaFHhfDYuJYjQazFBalbISeI/fD9ey5HXLuo7tw7VnYe0bCkWs1fLM1QedVLYyA9wJsbt6B9Rm8+VuSXA8vupe1HfjOKzK47n8Gj6dyD+trcP0peOopWFuX7LjJDav62RrceloAy2oJfS0AqWlgpmHJzUT+rmrpi8VnYpjf+T48ug+//nfh6JGWB7CHo8zz0s4j2UFZZWgbloWt7eso7kSfbI2gLig3jJXSD7ape8ZZX+h3Nu94BalZ2cJSfXsEdmAASplhJWSlFew6JcSa4f4qfiewse/GySJdkDEbxkBIx87IPsrzmTB+9J5FbS830tYYqHNwKc9NRsGOJWwNo+f4YtuXAtwMyfLcADZzJsVewEPMpK7D0bIRT7jlj7nhwdNwoan0U4baSSyNZGQVhub8k3Me//hNmq1NqukMX1W4ulZAkS+BW2FoHH3uiFH1LU6ZFjfsa3/7HIZxb+4TJ6vdrJNZRrIbm1gzO2GYsml3FOAEguhxnAEXpMyAA+eUyVIhqJQVsHE4ZFUOkzWap16hXZxSHT+G+z8hhcyyW9D3juAdtInF2TkPP/uI3sFL3/wOO7vbhOyIXYdrambB8fTXX4Ec6LvE4wf3WS0WnJ6dMl8uSM7jpw2r1FH5iknTMJnNWN/cZNmtOD48ZPvaVUgdKTnadsXZ+QnzxTldbMszbqyvsbW2xdUrN3EhcOOF17l+5wUFkDa5Szt5ExQbILnkxw6alM40OFogYzRJWeEM70JpRzCXFwigHuZPWTTIPThnoMWpOynigyR9dFmS44XxWNG97fzZxowZHsA5ATVJ3UtpxEy12QlTP7I1dkaylFlIOUq+mxSV9bRxajefB5E0mqdGI77Qsgkl+SQJ5wOMMxKDAiBthZFhDs6AvYq2v0qh4ECh+jOKmp24i1IUm1XXkBsIO5C2tQPaYQVegIgbGa0Itzfga29IzZ/lQgBOZxFUI3cEMOS7qSGYvsVAiBv2tb8vGZmRQTV3lpUDsKy5YxBkKH8sbDXXkxkyS5qalckaCdlHFx6+W83hk7ckP8zOFbj5Nc1nM5P6RClD4yXN/81n5R6//+tSi8plaeO2E4P3w3fk+ZogbqvZTCKbpjO53rIF34iRazvRyZydiYtkbw8ePRYj6LMAmo1tmG2IgNbcbxdzmJ/Ck/sCNj74Mdx9X57PVg6lVMKIVRn3cYYB4GpbFCbF+skGiALOsaB27AK1/i0s6mj1Yvs4BSYmujP2yNzFY0aP0Zgwdq8Yt6RMiOpWynPq/BiGU1zanFM3mx0bNNzc3h+9ZnFDjdqruN/sAT1DtKEu8IsHA22IMbi0Z1LG81I5hi+2fSnAjWyqS0nyIFLjKZB7yUIZ8pzNeMI1d8QND9shsMqOeRphE+cIePoc6bOM2dgHjt/7jLXdH9OsbUrRyA1hGuSgrKkgohoxNYYZyR7snIIM0XFky2fjaiSNWUSipCRU3Zmo1VUKQsIwcDIlkkqyKxtgSVpiQQa2ZL7VFRsSIea9ZGe2SuJkMUjBDLTRqgRmm3uk2DN/XOND0PqAApSiT5ycHTDZ2eall15nbX1NSir4RlxzucJ3K3bW13C+oe97mtpz+viALrb4qafPidWyJuUsBSDrKZPJGlU1YbK+zqpvOTs+YraxSSKwWCy4mJ+zbFfEnKRUhQsQHV3sqJo1nnv9e9x58RsSVpyFXs0uk3wUN1Fxt1o5BY2OcqKjGXRNozk9d+IeKr50X9o3kwZb5UDcgZ7gAqEkF5QXTsL/VYOCskLJEXwiZofPosUyR6VUc/flpffewsUVjmZjKDMJATd9HBiQPmfa3tH3ZTgOPz0KmlHPRaLvW0kCqIU2IROTpCzIIyBoUWXFtaoc0yWNkYuUhH06KTkk+V8IlQIycZ2mbM86XoV+FTadNH3UXCca7lxVutpcg2ob8p7kiok9JVeBbQYSLJdHBqoeXroFR1+DizPNiJvKe60rG0rEla3kHcN+BeSYMUAAB0r1a/qDwgThFNA4hkg+ZOwZTVlEWzquC+OD7JwMxJiy3xItpcFQFdbIDLCX650dCvNxVXM4RCiunOQlMur0DN79IZxrVt2s7eJ6ASjzubBBVZAorKv7AkyWapQnKtaNUWpLreZS2uHiQhi3nV04P5XrzmYw25TzmgA3RwFcoRad0I9/Dd79voQVO08JqU/qChm5bS+H3+fPAZvxkKpH+yigsPbFf26Fov1nBSKJDBc1oOCH9vaZUpXcZQWiY0AzAsbW56XwqgItGADKOOLIOWmbsdDaxnMB4wqCvJf2tpIUBkCKCHgMSrQdbEE1PrHT9yeHy8+q9gsypYaXt/Fqz/p5BPa7b18KcKNTPpf8xNaPacEkBHbyGVfdEXs+suEDjUv0OeiQEDbDzFFG9YB67u4icPCjd6m3dqjW1lirA7WvtB1dSehnQKbvotYrMv9klOiQTDFUEMnOqQ5GJa0uSPHGzMAMKP1trJSFiEt0io2eRNa4f3ONkNxIZyW/OB8E4JCBoOJlEyxr3hEAFdn2scX7DULlqUMtYcpAt+qYbqzTdx2L+YrJFFKtkTM+UPkZk+kmk40tUoysT7fYvnqda8s57XLBYrXk7PyEtu00C24PuWOxOmfZwtbaOovzc1ztyTjmy1MWy3NWq7ka14qN7W1efONnqaua67dfYmvnui5MIlYLSsLsrVSCtqlTzU2yXEeavE9D6ovXSJkG0Tk5YR7UiDuloD0GYDM5i/vTVlqSyLUSEJJzcYmh4MFCagVsqotR2RuBDT3GD9kiTECtAWhlGKOA8vErm5BkhjG5ofSLvijRSWFMcd/LeWKMg05I9UQShaXV7h1Yoj6nrJW5W4Pzo2PNoRZH83nSeVPbAVfOZfqb9AcQ+X05NgO8/vL872fqQtgSYJPUFZQ9WA6g4jq4fLqyrUV4/SUJm17MxYAmje13OqEb4EhJordcUIMPxWUEDGHeFk7cD6tdY14KU/B5MAMjpDMYQ0bPYnBaM3hrKJ4CG9Pi6KA3V3sxXGat1TCFBuK5iIVjJzoaEB3O+YW4htYmEoLfKZhOEdJCimNenIgxW57C44eSaXiqWXE3toeEfEEzJE82NLvuOWxsSJghGaZbUuhxauUUejg9hTd/Q1i0T96B44cMYllto0ulEhi1WdKFprpEdOE1xiKDS0mNlk1C4/kCKNFBziLEymQln1mY+JA1VPtVx10auTYt67Gg6mEQ2v0YC2Ssigtq7wwUj7Zgi+nLH4vBC/KdubOsLppjYIEMRNr8eSk4wY1+xuHYwiqFoc29vY9+aBs71+eY7y+yfSnAjdyzAJRs1idGcl5SpTl7dNzx52z4TEWNd45ALzFPTqNJFClarfAeqa2TncdlWB70HP74J0y2tgnThlA1eD/VXEquLKSkhEAnhsNBcEHHh4TJXhJeZoq7yatGwxv9pip7+dzq+lCCHsycOWd1r6AgZOcks62CNgFHUs7AShzYm2MAx05uLI5XTUlOPaHaoJlMqacNdWi4+tQdfKhoFyvuvfsOZ6cXXL15g63tXWbrmzTVhBQ8ufVM1rZo9jZIXcdqfsp8fo4/OcZlz9wvuFhIuYa+70iLFZHEdDZhYzbDe08k07Yr2j4S6prY96Tcs3flJl/71p8khEreYyf6jqjRQXhwSYAJmIGWbNQxWXSb1kjKMsEOIu80lGfREeYYsToOKSeBgB5hgGT1Zixd6Y5ktZaiZlwXp5fTyD4BMb6wSkOuigRU+nku58y6nyXOAxX15vG7IG6prhOm3mwqDHOxHBcLsE5WRgNjsiqC90PtPlCtjVnyVK4v4wxlTB0uB8k+7TRqSsG9DPlU5lxhfDyX0yN8BbYysbphAndTATc0kDZ0Ra1FCcs0qY1fmMDSslxape5X8LVXJZpn2WoW3qUaqTwYxhSBevjbhMGF7RmBE1vtFp2QG346M3RqeMvqmDJW5PaVLbBnMbeCRWCWc6YheV85kRkro1Dz8HevbgZfQX8uGphlKyDn03tyrlkNL70ibqr7D+DkUPPftPJ9nWB+IuUPqlqipNY3YGtbgFSaDfWNqhpmkqSURQvzxQDEag357jr56SpJQPhb/41mnNZ2GNc2SoyYcnOnKIDzlc6tUc5lEU7FyI6Ajo2FsejV+tXa24CUG/ezGm5voCBcBq0W2We52Uqf6rjDI6wbw5jGxsuo741lGaMYc0vVFO3yeFgXIDIuh1AKWRroU0H152tSFcSs7IsBYZnwZX+nrrviWg0MKQ/86H60DS6lR/i9ty8FuAFEUJwzgYqQPT09dW7ZcqfcdCuueXnwPlOQsqWGGJerdLqyijnTZTMMjpwCZ3ePaXZ+zHRrm2o6pfEQmgkuO2KKBC/1mFx29H1HzlNSTlShkuzA3mPiJ8uWXHLYZDARqugYnD4V+JL4zA8Ax4s4WE2x3rvpQaRmT8bjfKXZb1X7UYCvoxR31DEl9ilpQs6JMgoeF7wa8IrJZI3ZdIuuWzGdrLO9u8/f+5t/m+2rN3jpmefZu3GDiWuYzbaZTqY0WsaBULGcL1n2K84vzjg7O+L45Ij5+RkHR494+4OPuba3zZ/9Z36BW3duszw+Y2Nnj/OLU+rJDLwjR8l0nJYd2/vXqCrNaaEgLhVNgIZZZ9OG2Ess+w6uZIWa5QU3LdLwOwhg8ZmScFE0PVY7zHReVkVb21YnF58jeCdlaErUg7iTLHeSHWOHiTtSr2VuTLvPjGZOlghByxhs7I0B5y46WrUZ5kKXM+bCzAj7A31sqVOtLiK7f5UHO2tBAb3JbLP3pCyiP6cTYkbATSDT60VziSIzY8vw02mV8K8UttEJFIcwIUmNVgN5C7IKWo29KgnU7Hhz/0JZqTtlQxQg4iM8vQPHrwuDs1Rg064oiQJLJt0sxtot5TzRXEOJgkztOtiEBpeAzbDMZ0h8loZBkzJFHFyMnelBvNDcGFujn5e8OXp9K+44sotFVxGXem9pCB/PUcLGlycCOFYeDp/An/tFeHwfPv4AHj6AtILFqQAiK+MQe8kkXU0E4GzuwvaeCJN3rsLzz8LxKfyNvw337sHOJhwfirC5XcjzBqeFJWs4eKgRVdr/owScYqz1Wco7O7LupXm1jQzQlYa4tIoaDHNxGzlKNJrN1QZc7dx2Pad9ERgdo+PVXFK2fxmTBoBsLDD0hRs9VwiX/7b9cCoQHv4cdfDo+grIQg2+1TFq9zIapzbGLo0/e8f0uW0CN9eZsTLl3RoDMP2pkaN/kMDMLwW4URUKLmdCclRKA6+5M264c64Ez8QHWlvVW0QVWRi1UY8ERHfT5USfc3FPeQexDZy8+wlre+9Qb27h6yk+1LroymQnCf0k+6sUk3TBq4s5k5Pm2fH6mUviFMpBDZpXxkd5ghGIxkkUjwAVr9PRYLSdH4y4s8KZzkl4vLFGquVwZkwR14zkNsl6bTFSdbNGNdnAOU8dGnK26COophN8VdNeXHDnxZf4c//cX+STozOeef1b7F/fZvXgkGZ3j7MPP4WmYf7wQOpBTRpODg/J3tO1K5r1wP37T/jBW2+xsb7JH/n5n+PpF5+jrmum1zeZrq8zX1wIaPEVzvWaZA72rtxQzYaBDGk/WX/KilFyvKiWSXYSt5yuSLLLVK4mE8nJgUb+OH3pzRUkgFIYNVuIyHXHgmLpN+f8YDPI5OBwScpeiNYkE3TEJZ+xOFWvDGEqKypxL+SsBVONNdEXPvZJwsD7XkS5OC0HIvfYZ1h1mUZBT9Hv6a1aocuUemIf6KuOFDXiqczPkr/Hq3i5iKvLys6eW9rJax21ZL97rRKuBeusryyvjTzKeJB/FTY1Tk4ndasVlTeRYpiZklSurB61T629fse5LrN9ZKCJ8PJTcPiyiF+7pTAZGUq4q7kmLETXipwmpzqLpCAHBkbG9BYj5HsJ9EDROySN0rJ7tX4yd1dWEGd9mGwFbq6tNDJaBuL0Wf0IJKzmUiYhJ8me69SVAbBcCbBYX5cQ8L/+1yW8+0e/BQ9P4MaeJEB87ilhcXb3RWy8bGFvX+6lmUmZgRv78Npr4or6+78C730oDM3Dc4mmmq0rwNQ6U5ZF98kDCrMG2lfWLqM8EQYKs+4zZhCyQ7RP+mwl8sfaVn869BxmlPXvy8bgcvvqQkqEw3kEbEf3WbQ51r+jwWasiBs/32ioVioEruoB0JXj9Uc9uj8bwzZZGtYIWn+rrwfNje1TgODo3t3oXux6ZQIbueVyFBewU1A60p8Oi1pr30vo6/fcvhTgBsBlh0+ZKie21mBrVrNxvGKj9cycpwLaMq+IO8FUJl7XyQmKW0rI9Ix5ilHdRXsKBz96h2Znl3p9ndDUuEYSE9mq2TvJZJxzxjvTtrhC6UnhS6U2MzgztsTBWDozInpWG0+amEs0JRQ2hnIdAToyl4jOBouE0ZfBuSDuL9XWDBOVlqXAEaqG6doWbfuEGKfUdU3WsOWcEz5UVJMJfdvy9Kuvsvnpfc4OHtFf2+TK669Qz7bYufEUm0+/wtF7b5K7nsmVPR689zZhbYOTJw959Oge1cPP+NN//E/w8qsvsnFlE7ynms7Y3N5jeX5CSpnlYiXXrGrifEUzWWP3yi2cuvyk+Twp9Wqw7XkGoCdGX42q92qTFOTmSjSaaOSOB/M3W8FIKyAYnIZ9Ftp0tFhxTsTCZJyugrwCJe8DEaf5YhQIJYkaKuDLDedyxe1jgNT/znQCKiaS+TENbYHYuT4K418xOneGPkmiyTQqiBmjfJY14snhCc4PbaYgyXtHjFF/Dzovm/EeT9jqpsORg+qfDNS4hIkBnYuSl+qrtFlOD+dhgWS/3Z5IOYUyqdrO2mcDchidaGSsxkte6+dN4PWX4fhIjG/bKXszsh45yzziHAObYvcxBl/GJNm1wjBYzBgXYK334QOXWQIDK5FLQMdxWWdjbgKn+xZ2woEGJhRjmrOAtvkJNFchLAXMWNiysVGrpUQyvfUWPHUL9q/BozP40dvC3Dz4FO6+DS++Ifqaxwfw0qsizL5yXQqUXr8Fv/QP4a334PGp3OtyIS6ujW3p09lUrtl3ovFZLeDJZxSXn4PibjKQVtoujp7TDe3jNbybDK6XqDCg5P0p+hJj9EyaEAd2Yzw+0M+KFmUMABRckwcXUs6D7mccyVY2P+rn9DnQxKCjGtnPS997GU6FFRkPca9pE+zaICxQcIOryhmINlA1GltBtUopXgZkNtllG0t64WhzpJ1LWdGcZc6xop9fYPvygJskBmF7P/Dya89wdXqT1Qcdx99/B98CiNYhjwae/Db8v0w12jBJwY0DDcuXSKOLB3MO33qL6c421WyNJqiRRbIXO+fIfSR2HbmZDnNbltT0Vh3a+fryy58S2XnNiGv3MdKBuDCkrUd9xkr7Y0/hVXTqrZihDIKsRkjmnp4uJvquo+06+i7SrVpQ4+t9JoRA76bQZy1+CFZMMsZO3xvVfvjA+pUd3P0Dlm9/xHwZ2Hp6A9/UpIsz1vb28VWDdzXre1IN+OH5KRyc8I0XvkazNiVPwE8mcq6NPRyBtm1pVyti7HHBE9sVXdexff02axvbyjZJ26UsUTgxpksCV296JpxGmun8XNLVq1vJIs0qKWth1dwHOr/SxIhDyQZHLnXCbILKOWpxVVdC7hOWAUbBj/PS10qhGiATuyTgxQTyEqGk94iKtnNRXDGEaedLtqrPsihtq2F+se9A9DY4u3aijz0x9oWxSQbtbd50jpx7BdkJqaYs5xLRsI7PrMygF2AT1Sg6soImp3cwctD/AVZT/8NvWSfxAIcRfvIxLO7D8zV882URqZY5RsfO+NhLfzNM5GNjo32Ac3BjDV57FY5PRGAcTbTqKWUQKk1r3y5Hl7CZS41S6ihp6c3w5TSwE5c0QAqGLG09Wthy7FIjD6LUZAunMbjVn6HSukKa1LAKmpxP7yE5Tb2/lHIG4zISzosbo3g0ZY7kyTHc3IdXnoVphLtnUjF2bUNcV30HuYMnD2X/Z16CK7vw/o9hvoQVAhJThPNDedamkX8+yP00E7nnR5/C2YkCGQMoXn4Pfnje4trWcT3Wj5QyPGqMddFCryC5RPPYCqcfNEDF6NvvMAh9NZKriJBtXNi1tH+8H/rOABl5dJwbwMJPy89TNj+0w/iVdYjmptfHHx/nnOqO0nBsqAY3lwHt8fVyVmBr17T0BMb8GVi3sa3P60ZtO1p8Dlkc+SnP9LtvXxpwU2XYu9Lw7T/6NF97/Q7roeXhToaTIy7ef0RMNuykA4W18QRdbfc6AQfn8SqUi5ioWAy7AY7UB47f/4zp/rs0Wzu4uiLXjYIPdT1pRlZZHTvwQcP4vRhWNAkgkgQwF8V8kjwgBo6z5boJ5f32yh441X6gLiZJWCidaoU8U0qkNjI/W3F+es7p2Sknx8ecny9YLRYsFgup1dT19O1Kw6yBHNlaD3zrpW02N6cCdqqOrstUoRbdFpGUJMwyTBrqvS26J+ec/eR9OFox2d2hrw9pFxf4pqY7n3N+fETXt+RHT6hWjlVoWaxaNmbbuFDTTNbxLrA6P+fi9Jzzizldknvq+0jbZW4+/YpUZVemxvqmRB9nAweJbFXRFQAZuyWLVRFjQ6nGJYbaZywpnnyWiU6paudwKeJ8IBcNVBb2zTlyEnGxzBUKaryTwqEGibKFVwuADm6IhpPNtEByDgOwElElk5NlSSZ7dc8NxskhbdFqIr/kraq5fCnRabJ7dpL3xkXJvEyJboqFMZL7GCKdok7oDukDbEWeMyl3GN9VFlCm3XKqDdJVrOTEuTxPfuk3u+GDFfzyXfjRJ0KzHzvY3oUXro38+iODVaKQ8jABW+RJoe3MsOcBcFQRnr8FBy+JwLjrxf2SI0PCPE/JJ2IrdwWV0un9cN5iwHIB5JdW5EW8qc9a2AM3sDJkTViYh+cwI1oH2JjA1obkmtnZho01ySw8ncF0KiCnbtToIdecR3j3FM6mQjmGSsS/sdOJ24PXat6rFg5P4coGvPYi7E7h6Bi6PXEttR1szKQGVVXDtSswyRAbmExgcSwAaHUhz7e5Ife7sU4RAFdBXC1335b2NKbG+sZcLaXvRu1mrsaxu7WIsUdG1ym4G4N753SeUYOu+aMGDcoIiPjMpTIYBjhtJWMLh3L+EQgtt5Yv308RnI/Aq4E5y4GVbKzo5hkS+ZWEenpaCxu3e/dBalGVelUG0saMkRvGsbNoKHsuRTPOUcLnUZAmBpMSkWZtZO1q7+EX3L4U4MYB6+sVr3/7Kb79va9x4/oui/kBq8XztN8+5sHFLzH/7MRMho7JiNWdUr02WmGICotoGpmL0QIzAd2F5/DH7zLb26NeW6Pe38dVNeYesMKCFt1iskyv9TREB2MP0OOzaHRSmYhsrpNOzVn0PM4H/ak1tDSrrXMBHxxWQ6rvM4uLFQdPjjh8fMjZ6RnzizPadslqtaDtIil29F3LatXS9R1935NiV/QrJ0eOq5uZrS1JtNd3LZXPxNQN71cQX2fuHdVsyuzONmHl2bp6m8mV67RPHpPiiuX9J7Tnc0JVsZr3rPqeeV7Spcis2aBqKqqqYTKZkdqe+ckFFxfnXFyck8n0fWLZtkzXd7j17GvEEmYqbWS1inAM6T2UGrf1p3P+kqhXwGbWRZJJym3il5dhqEGVLZZI99W0fi4Xt6YdJyAqlOtIyQQdC8pylC0nZRRtZSJPJNe0MWf+cCu+KSBbcFzU6DmN3qI4GulTJkZHDCIPydpaaHsNbWbJBYcEfKZfMneUMFajnzmTNbNyskrhWdo45ZIGURe0Av6G0ku1jKFs14l8ZTYHXPTwm5/Br/4EHhzC2h7MPoDf3Ia1Pw5PbXPJaFi5lktbHn5e0hwZsBn9vZ7gtZfh8FByuhwciHEu4MRW/nZem/AjksMmjQgXdfUEtUgjOyiGS0GPiYOLqykNrokclf5X/U5wsNnAlT1hSLa3YH1TwMl0JoAn1FqAsh6YpmAhyFnOd+bhtB/y+ySngEZ3i3q9Kkudp3snUrri8T0J/756FcJEWJ2NdQFJa5p52E3FsHbnAhB7rYxdV7C9LsLj9XVpgxCExbk4gQ9/PDA2NgCMrRkj87GAGoB0WdSbYchTlIaDB7/60J/FEI+0I+jxl4yDHROHz7zeo0bbXkpad4nVsPt1wzWz3rfVujLtT3G1qivTje7fNu9kkonjj90AAEub6bUKUDEAZe1g96T3a+PSMitbuLjOpQNjpscYWDTwmVoZQ06f7VKG8N97+9KAmzvPbfH1n3mZp+7cwIfIcumZ7myz99KrtCdHzE9+Dc6SCoiFtfEuUam804aTtLuGCRtzYwNPR7T0kWf5ZMnBj39CvbnNzmSN0EzN/Gh9Io0EqRTY+Bq8GVhL1T8UxXQ+QwwkJwn2xFRpoU4veVDseK/ZIi3Zm5A+mT72nJ3MefzomMNHjzk9O2G5mNN3HV1smV/Mubg45fj0hOPjA05OjjibX7BsV3SrVlbiDmrvmDU1O1t/lDu3ZmxtbOCrQNd7qnaFn2hGZIRB8MGR+0DVzAiNY9kecf7hA9J8iQszepeJTSBXjtgn2KjJq4bgYH19k6qq8VUg5sjF/ITzixPOzk9p+56cHavVkq5NvPqz32VtfUt1H171LZZcLqi7x43azmOKG0BdI7a4lr2CV52OvZV6PjXPAiydCrpRZs30I2gNL2OE1DdvSfayhVjn0Tm1LEGKMnlk1fNknXByOb8BGAVP5u9RGjfnrMn7xqUbZEtAn5zUIAxqJzz0yHNIkUxLuCerRMl2rFEt5vrKTudUyS+UtCr1ED3VazqFESuVojCONn8TIHdS0TyNtWKm+RpNkl/2LQMfncFvvQ1370sRxmkWt9G7b0tUzs53YdNodjMk5rLIl89VjIUZHTcYK5uVXIIrExHDnp6KALddDudKvVzDg4aDUqKpCp2p5zPDmhwETYNwKRW/MUJp+JfTZT1NRo1ZBdszuLYjwGJrW8OtG0nWtjaTCKStbdjZh+0dARHNRP55jTpLWQDN2a/AZwspr9BHqJIwLctIEb16L0CoihLZ1GZoduH5G6KRiQt5pjbqOTxcdNC00gRWS6pXVmB9W+5xfUsFs1nYpcbDb/4aXJyq7kMWF4MhjiPQkzGJQEE9ZpQvdbbTF3EEUoYVDAPASYO9ufR9Go6BwVCbtsZCrN3oGBM6B/38Usbf8fXzsH+5RpbxYGDC9C/xpyxGfB7CwbPdqj6zaW7MReX0Xs0lWhb5o3bLPUO5BANA1eX7tfOMwSY9UrIkUfIvGZNj7fkFty8FuAmV4/Vv3OHpp28yW5vRrs7BZarJhPVrV9l79XUuHj6k//5HMiZdxrlIyhKiXTmPy1EZW03Opq0VySRVbhu0cTrh5Fhx/vFDjvd+Qr21RZg1VG4DMmIAScSUqZ2wLZfmcI2OcuOBpRVhnVUKxwh+VwZB8AEXZFLwwXLneGKfuDjrePTwgCePHnF2dspysWS5vGCxWPD4yUPufnqXTz67y8HxIfPFXN1mlzvbmK3gYNZ4uu6ClOH8YiF5cnD0dUOtQsDga3LVExwQO7runOQDLgV6erpqhUsdbZjj1iv62BInEFJDSDXNpKaqHKGqwDu6ruPi/JjD08dcLOb0MbLqFqyWLZt7N3j25W/JXdr7qQbC2BBfRJBcdjm5QR9T3D2X9A655LwRl5aCFScia3vnvK8oehjtl3FOthLEnSQnRsqWEM9REtqNV+1kdf/kcj9lqst2H7EMEYmAU4YmpWEh5N0wOSh/0yfJdxMjpMrmHJlwTKOUYiRUoWh2ZDEo7ii5OxHFm37Iq8s0xcG1awJpSQCokWpOx5JOkpXS053l7ChtKEkEvzJbzPCDe/DxfcmPMtmQPlqt4OFjeOtHcP06fPPZkuRTmBt1M5QcKQyGZLyKHydxK+3kIfTwzHWpHn56IvlZ8vlgoPCDfqOEY9vpDWCNgGTS2j2XihEq8LFfkw4esupi9PvKwWYN1/dHoGYq9ZpmM9i/Dk89LbWbdvcF8ITPsQjlufVHl6Bek9tbnw3X7bTIYqhFN9TrQA411BvyHD4BFfQT8A3ENWHXQiP6Gt+C60SX02dhblIW9mhjGzavwdqaFjydSdHMo4fwzm/LPWjzFdBgz2FV14FLofJjtiPDpWi40tfG5o2BjjG02qeWJ2jMalyarvXeiuvHNCkKaC6tGQw4KxvzeZ2bjT1GdspcU7qQKZ9blXk3eh6fZbybG8Su6TKlbEMICir1WOcG0GxgpWRPZhjDQe/dwKMxVpazLVtbqFtN596hBtVo4WAA7QtsXwpwM51WvPTac+zub1NVjn7lCK6SMOhJw/rNm+y/8Trzx485v3cBZSUtxwdtADM6pssQYMMQjm/9Wf6X6Raeo7c/oNnepVqbMbvu8M0U530BDsLi+ELxy9H2tyYKdECOmtVW0t57Ww0o6vV+lAjQ6nBk6Lqe0+OOe3c/4eDJI1KfWK2WnJ2d8N4HP+EHP/4Bnz26z7JdFcbhd9usDRKDm2F3f5fzk3Nm04mOcyniKQarJ1QVHkc1rejalRQV1Ym8nkzplnNcBXG1IEboFhd0qzlr04bJWsOkbiA7Uhc5PXrC2ckR54s5fRQDvFq05FDz9e/+k8xmGyNdnUYUZVSkLWLr4iLJogsKToapZC5W9473alsug5xMImZdpQEoa+KMSUkoW5bVDsnAMK2SZf3FwAyQkxTakOg0P2J9bKJ0ZZ6y38swkxEkoLeEFcu9WDi/LI6MrRLA4HT89tERLYJAD43R3FIivg7ZwJ61neq8UCleNlG23m5Kkp/m8y42fQg5riLmHm9RgQDOEbIImL2DqLGIxjp9JbZFDz/+AA5OJBRtkiFr6YC2hc/uw5s/EqN/Z51hJW0nGPpP/hwD7NGvY9xj+88SvPI8nBwJsHqYhcGxMgcwsDiX3vMRsCm6BgVcpTCQMiMWCZVGYMZCvx3iYtqu4ZmnJAqp8pIFeHMbnn8FvvZNuHZLGJfCHnzuwfL479Hz5QwHR7C9ISHgBrJiJ8CGilJTZNkL+2NFJZ2XiKrpmhjXZiaPNl2XquLLFuatgqUsz7FzBXZ2FNgo0Js2cq1f+zuSJNCGpgmwnbWnOruN1XDo32ZYFXCae8pBEeSWZzbAl0bHQGEmzIVl7qw0AgsZSup1AzOMfrfzFkCpwLpMNG70+3gbuaXsy7Lw0r4rYNgN++DELRXsHvWrEhFlP9Hfre3MBeYYTTDlVii54T4Pjt1oHPUIqzMGlQqWShZSBT7xK6a5ma1Neerpm0ymDTl1upJMCtYc9cY6O8+9xPKbB7RHv0Keg6gCQlmRS54Obfysq301XsM0oQaOoV1Dhu5oxcGP3yJsbxNmazS7gRAaUurp+5ZMJgQrTKiVukebKYESKhDOSXQakjmOUp/Ke5yrxH2lYry+95wft7z31rucn58Rc2S5WPDuu2/xy7/x9/n407v06Q++Ms4ZoroqZmtrgOP0/IJNv4YPHr84o6mmVKEihEBVT0ixw/kpklww4bwnrlpC0AKJtSe4RLPWUG9OcMHjfCL1mbZd0uee+XzBxcUpMUWWqwUX8wsu5nOe+dof4+ZTz6tLBezlM/2JtFtWgJNL37kciDkRUKG3Rao5MdfJ+jibLkb3yQyuFqQSdnAMOVq8I+aEzwETELssKQCMBk3OXDMOl4NqU5LaHT2PTmQyzjTqaOSSHMaIslNllaLONicuMzeKYFDoA0CXZbEUs72sEn6eixtu0N/0sRMdjc17lh/Ji1A6kyF5eiTXULJnc0ASsXDwWoQ0S6RaiSKz90W7Sca6grP+K8TczFdw774YS1cjk2wYJv2LC/jwXfj+Puz+HKxBcffA0H8jvVMxMpfKMowRzuijvYlmLz6R6KmjKLlhfCVJ63AygZsWJ33uHGNwZUUzreJrSc1v7qhePldXNVWGnQZefUkS4rkgmpoXX4Hv/DzcfmbkSnBlPP7Oh/gpz+WRY+dz+X5jHdJcnmW2Cf1SRMwxQrdSJmepYMLL/U6aoUhkrwuURQvnK20TfdZmKsbQ3GY+wGQm1cPX1+An/x188v5gjMtCJw3t48yQuqHvnDE5BghNo/T5/WxhqvuMwYYBoDI2GBl3dSNmBpCj7t3LTEpUbYofnZsB4BY24/MuyVGHFKbG67j0FJFu/Ly+SP8wj/kYyF9iKfXZjYlz1Qjnmxs0qwjYKSNnCyOGd8bmehMclzl7BPL1lOX5DaBXXzHmZjJt2NzcLCtfiVgKZfJ0zjPbucLeS69x8elnnP/wfdDwYMVzRWAu/eMIzunKn8LaDAMjY+G52TlIgflnR5y8+w7TnT3cZIbzleSk6gXJlwzBaniHopdqiPR6ZGN6DFWrgXUiFs6KgiW5nGd+vOStH7/F+dk5Xd9ydnbMP/iVv8dv/uA3WKyWn59Gfs+tgG3nqJyj9p6+7cgpsXflCvfvfcbZ2RwLPffU1NVMXH1BKMLgMr6aUk9nxL6jrc/oV552FcgEYs7U7VLCjp0koVu0F3SxZ7VcMj+/oI8ryI7VcsXF+YLkKq7feh6cOumchKxLG+ShXpfPOCrJxYOUOLCFFUFAT1D6tdgSXTGMvEJFIFyEysr2SH7FXCYfqyBuaegtzUA2kWwSwDNIfIOGmRtwkvN5yztU3JTyVuZsqzEZnN70Wk5rM+m1gg9UoRrWUA6mUy/i72WWcj1psDuDF8JhzJR8PtxpMcDFFkVdAKgnAycpSMYLJQWbXn3j0YkOKqlWIxXXnLJOtsD7PEX+Zd6WKynkCDJoSn4XW9kmOH4C7/5E8rF8/QWKu8e2DIMFGLXzML1wCYSMM9O6Hm7twosvS/K61UJdMwgbART3VzGoYybnc9ezaLfxPRkwMj8lanC2G3jtFdjaFE3N5jZ870/BN74rbim4bFzK8/4es5BdIyYR93oPT57AnVuwuUZZxdNBv9Dan+quyU5Az3KhJRO2oEkSHq4MLs1UtEHZyz6zdfl7OhUAFSbSvtMJbEzluT99f7jnnFXToobT+jk5CmNgfWSPHkfuk1IyYbSP/RsGw2D0S8g2ZV4pfXhJT1NeYiQxIAOAwMnzW1i99Ul2Q79ajiFjg8fuMJBxHXWhZgCKNADM8e0vk7TH1BWCpMQIOL1+KU9hn4/Gv91zATojd5O9CyMyvYC4DKVemj1bYYoMEI7G+/j5vsD2pQA3VRWEzSibAgD1wWXATTzTK1fZfe11uidP6D87G3RSDoY4kzFwFvFlNIBhxg3rmyHfSGorTt69S7O3R7W+RWhq0cm5FX3bUteNAlfR0VjhQcz0ZQs/lo72oRIwmnPR63hfYbWM+j4yCxPeeef7nJ2dEmPk4OARf/O//E959+4HwCC0/aKbjSU7xqdM27XE2OFI3Lxzk/fffY/Vasnu9jbBNTTVDJ88uVFXSNuKRiVM8D4QqOiTZH1OSQxp8EFYCudZXCxpu5Zl13N6fkZMPd575hfnnJ2d08bIZGOD7b0rAwrPg55myESUsUrg0iW5vNgOry+HOPsk54pEywkoicomaCuYuFfPayAKIDkFTQl8MBhg+4gbKuZEiUSy4zQlQGnf0aQlYyuSix7FlZdxzBtanxaxrowU+b+5KclUwbN/ZRfnIicPT2j7LPa3kmun0T8T9KbRPecUwUldK4/TqCmvVcIN1MmzORMpOs05ZH3kFexkRwjKWkVlmdxw/7kUd/yKbH1Uwwblvi2M1QzxKsHjx/CTH8GVK3Br8xKW+Z1ABy6vqm1suM8do7N708NLT8PhkQhe2073n0iUT9eOxp4ZsWI5RoZUP4+94mlHCSM3YTlZQEF/Di+/IYAmeNi7Cr/wz8IzL1AM+T8KSLVjgpN7D7U8573P4KWXxOV1cgK5hX4uCL3VY5pGjG5cqQutFyrdwBgoM6HMzvpUxc5BwtR9pZ+vSzh4qKQ6+OHjoc0dDCHc5hZ2FLYkaz+5UXubC6m4m7R0gHNc0rQYKBqWJXrNERhxWcHC5/exhc/Y3WP9q+CgXMMMmh+OLXqUPBqO4/5zw48CuPX9TqPxFBM8OYIc4Pq26LFMd2PjzH3uRG4EQHyFCKMY7tl0afa7jZM8avfibsojt2kW4OXDQBGPS36UOfKLbV8KcGNuGwMf0pcWHpc0Ws4RplM2nn6a7o2v8+Ts10gnUllbSmMMMTZgwzgTR4GqZsoGSAM5a20oMquTzMnb77K2f41qa43cTCFFUt/hyLgcgYrsxN3jEKFxLoJR6XTnxVx6VZQXCKSsTd+t2N3a49d/6fucnp6QcuLw6An/2d/6q3xw92OMQ/iiJsO5ocBnzokqOCbBM6kDwTtS1wmb00x59tln+fjuXR49OSD1cp31yQZV11D7ilBN8PUEV9U4lwlVQ13PCG5KTJG4mGudrcBiecH5/Iz5asXJ6QmL5ZKmmbBoF5ycHrFqe+rZhOlsk2ayJtW7QYCHB3LQ6usOye5cDYYza36ilBUgSvVtcwtZgVIH+CzMmEdqhIEaftXPFPDpJJw5ukTl60vaFK85b8hJzpcDseThoZzTDI3kLZIJQpIrCtWbUpJ7TfKcxhyVcgkKoEqiyRxF9Oz9MCcC6xvb1LXn9PCMfhHpogSYoO9833fqhppqlG/SDMUwMFEy5oLLyvjqG+JSWZy5TBFNk8ei5AoXNKFltLdFXa/4Ijz2wf8U18mXeCtuCQbjZtR5drqQzqL/uHsX3nwTNr8H2zY5w2AtPm9MPq89+txbPBKMs+3g1Rfh8CGcavSUDxLxg2MoSOiUslOhcTGu5mLRa1jYt13X2J9mIhl8/+g3JNrJe9Gq/OJfgmeeu/wMnwc3v9vCapzFOGYxkF2UAVVrLptuBR99BE8/DVf2xWiClGmoVYPTrySku+/kOfsWugVkbYvZGsV9MV2DtU3RAm1uifC5XUm4+vYeNBUsVrA8kyisoiXThZG5nHKmaGtMC2PgwbIVl1IlftTWBhaGOaBEi0nGS8qixgy5R86hucQuucccDOLhyJCHx84z+ncpv44CA1A9y+f1QH50rB/Ggkoq5H4+55Y6P5X+29uEWRiExca2VApa3VKZHXUPFrZpdJ3y3NpGefROFO3OGNAhQDwqI+WhgHYUYJrwOKbBRfMFti8FuMFJVt6EaCacdwRN6S7PLwAiOZju7LP30tdoDw44/O13cZ24oCyJm6zzpYSCAfeSbKxMTLJlJCV+KFW7PcsHJ5x+8Db1zh7VtSv4tRldJ0JeHyrRVGTTMni9YijznuWp8c7jq5ohi4qayJTYWFvn/t3HPDk4JMbMYrHg7/43f4sP7n3MYEp/5yYuBRkg3juq4Giqium0kqfOkRgjQZPS1VUgVFKgEQdVCGzv7PJ8U/Hp3U948PiJlGHYmzDpIvVaQzPdwNcTfKiJqwUpRlxVaz2nQN04XFzSrs5ZLnqWy46T03POLi7IZPo2cnx6TJt6mqbGOc/W7jWaZiKCaoGJAlp0svfOa020pHOMJkZMEi5uupwS4nxpUWIrIGFFUnIlh07WcGlLQmdAxSMGXdyZAdN2CasWNLlgwop1Vm+VUwABAABJREFUy3xmoelu+FDHlle/dtLVVVaGxtu941V8K/fhNQWAuamqEKhCPQRuZEkvsL6xRT2tWS2iiIh1YESrSYSCGhcVlGheGiyXt0zmTic7p/uX98Q5onO4nBTk2DOBtzxE6kK8XBwPnWO9iML9aAL7Kmzm8in6lFFRRRRAZODoAN79MexfgW+9BLUZNjOceThPsUsjhHrpLTamYORGuL4tIt6jQ3j0RETGtQp5Y09xJ4zFwbaQclAiU3LSwpDGVuo9eC8aojtXBWAEJ+6cP/WL8PRz/M7oJ4b+tb62HDsxiRh4qYJnFyRyxZIcRmH2ymd9lLITbQ9P34arV+SZjlZQe5gnWF4MNbcmM43GMSAQJUw8TCWibVZLEczNDdjYkGs2QSK9Qi2RVDnB0WMBpkNGUIY6WAzAogAN7VOv1tye2+URGB31IZTFAz5zKeuxVRr/vHakvNhxOH9y4A3U+NH4YQQY8gDCy9hS4OWsrxT0FD2fIpKi2VJW0sZQ7FXgrYd6Pef5KSw7BTejCdby0th4sorlNh8XjZHOSWUByADCyMNYsmcdT+LWhjlr/qY02kf7wPRllnvoC2xfCnAjuWJyWRSVHCdqyLPrB+hSe2bXr7H32tdZPj7k/ONDHF5z2wycjOWrMViR1CAZv1Nq7oCAASTKMLeeiw/vUe1fY3M6YdLUErIbs1KmaigMPPni1KAURnS+IHGPuAhQw7NaLpmEKe++/R7dqiVH+MEPf403337zd3VBBe+pvGd3f4sXXniWqqp4+OARRwdPSDHRr1SErYasjZJdeX0GsWtFKAw01QSCZxo7nnrmNp/5T/jkwQO8k/DozA55FqhTpmdB3y5JbUd2jpQ6unZFDhWxh/l8yeHRIw6PDzk+O6ftOrpVy8ViQWgqZrMZPgRyduxduUVTNVpBWiOQFBzkLC+Hz6G4daQaeKZylYCCnEs0k1cjW3R/UPocIARxv0jeG4O8UlPLKduTUiJYaL++RDkLy5eVyUiWkdgYGI3sSiSJtjKKVbeSHVgzjArQsvlRziUYQ7MGa94j77zouhRsSZsAObG1uc3m1gbLk2WpNRXCKEOyTpTilpPJPJbwUwr76TSCwUpdSHtYjpokxTejFvDMwkpFxH1jrl3JoZPK785CkJMj+C/FNPLFt0vuIhiMQYJsWXeziFofPoafvCkJ7p7do4CLsQZmtHgBRgZpvAL93LUdoi959g48eSRaoLZTSt6pG8OMgq3SRqv30v9JXVCy+Bg0DAiQ6Zfw6gsi1g3A178Dr75x2fgyeh4zggen8MFHEnZ945oAvOBhYsySG4yRD1Kjq6zws7AwMcrfH38C6TbcuEFhTDiGRVSMMRNtTaNt72uNpOrlntemsHtVMhZvbgo71GgenraHxUKjrjI8+VSunQx4uBEgN8ZJhazGuuAowubCcOj+avsvkXTW11FBngEEG0sakFHcLyXjtLZzYTCgCMJx2haeEtlVRLaZywyIsh+ySqMwHmXxbuPbwGkeQE5VDZNnGbIOzo7h9By2pxRhccwDyChgIwxtZoAwZS67ofwAWEpEmQIhX4n70FiyrIsJn4e20XqK5XctRk2V+WrWlkJWICWZG2oUnECHlBMx97gMzdqU2VNPsf3aKyyOfp101Be3FFx2O2kKtmEh5T4HxjFSOhfWZ3W45PiDdwl7+9RbG/T9kpQ6cvIaCSMhwVafyQaUjFVjArLaGBOPJlIfgY7P7j3k+OSUvus5OnrMP/y1f0D3U3KFVN4X5jE5eOON17hx/QZnZ2d8du9TYhfp+l6qS2eKwevVTTCbDNl7c0q4EKibCZYt+dr1a/Qx8uEnH3N6dsrV7TM217eZzGaqC8nkJEY4Eeljx+r8hPn8gicHT3h8eMTB8RPmiwVt19HmyHS6RlMHvHcE7+ljJvumNL5Fk3kv5QKkfcC5TEoecpR9UtJWluNMYGw0ZdYVWAnOzxCzhI2Ly6hXo69RTJfAhbNDNHeOjhENCU8KpgRkhaLRyCmWCSgxTD4xR7xey+YBC7G2xZWMb2GjxGaJO6zrek5Oj1kszkq/55yJMbG+tsH+lascPjyg73MpFiw1uPriSkJdcOKaikTNf5OjAEURDVtEmS3khOWzd07mQdPytJCduspkLFlfkY0RsklM3suv1JbzMHmWUgW2ErXvNPvvfAmffioFH/e+C7ujrLzlp23FwvzOry5toy/3pvD8S3B4AGfnEjHla/Bp0Jug7EnR3oyAiLkCbNVuuUKqAK6Bp6/B9raIfXf24Xs/L8ZlDG4Kg8UgS3nzLXh4X5iS20+J2LnSxG0275WVP7BS42yr89RrkVA17g8fCRC6/SxsHsLJpmQQXswpbgqriE0QULSxLWHee1dhfw92roo7qq7FmC7n4k4x4x0cpNXQvmW1b6uhkTvSKzCxl6qAAnth1TBbLpxiQGxXc22JVEGMvhvGgL1o4wVrSVGh57dIIYuaIlK0Rj4oXrJjjPUIw7Xs1EW/w3CfzsDd6Pu6gq1dmG2MxqkTxmx+AY8fSe6jypVLlvw2xZXkRq4pHQ9VphSi9XojNr68Psulc+i4ccgYNWF/Af72vG40phNEL+/GF9y+JODGYTVwvIXIqtHLSYWuWgk5KGCY7G6z/eIrLA8PWPza2zJWsVWytimSN8WEl5bltpRNVKTocTif8GpwcoSzTw5obt5j7eo18pXrZA0rkf6VwWVwSEKZAybU9N7AlVfDlsjJcXJ0wO7uHnc//Aldn4gp8cHdH3N+cXK5NZxjVlfElAroee7pp7h56zqPHz/i5OSMi/M5bdfT9oNxIktGZgG64iY5OZcqxKLtyFT1FAtf3tja4UZ2ePeQTz/9lE8/+ZSd2TpXru4zmUypqlo0OM7R9R1d2zGfn/PkyWOeHB1weHLIYjWnzZF6MmM22WRS1/gQlKWRJHQ/+uEnXCwmfOMbr7C+sYZHVmhFg5NFzOq9o499ASzewKGTEG1ZvGaCug6k2KNXECNi2S53wqIUMCWTgCxqhklA5gAvGawVGAqPYasqmdwsmmtYOQlTUoqdOovoEjYnM7IbDpz3o/uUlZxVCw8+4MjEtsOlRFUF2k7awTlYX1vj9u3nePzwPhcPjul7cN6KdLriMZAF6cDmeOcVptuE7bWkREWvoE1YGHGxphTVBScuzAzgsox512Miepy6RYNTuyruzj8IVfzl2Mz9oO2Tk04YNrnqatwAw9GpZC/euwLfeaV4NIqBsHMWAzdGNvq7MR1kSH4YiwG4vQ/374hxqR8qNa+nGFcKLzobjYKBkd7J3BJeDOTuvri7nn1VjZWHp1+H9Z3hlo0V6npKxmIQMfBnWg5he0uinupKcuKMV/EDkpefGxP9XRcE3XJA96fHasSigKWnbgk4eXwAy6UyPa3sX2ntqvV1uHJVNELbexK27irR1CzOpLJsVHDjs4Cb1+/AdAU/eBvO50hEFEN7OW2LlPV589DW1r6FhVCmAgM41scW3lwzsBKZocDm6HplGKRR2xmCVGalsMBOz2Hvk17/Uu4XvU+XL58fBjBXQt71/NiYcVo2wwsorP0AvuZz+PQjuHELbuwIMrBszGMQ67kMUooY327G7qEfQJtGiEo1dtOM5WG8ZacCYs2vNnYPxqzXtDYfv3O/9/YlATdgaNNEmk5pO3MFxCwrVRck3DBMGjZu3aB7/eucfPqAi49PJFoNZ2TYiL+RqUeHpo6HzDASxRQEhUAJR3cOJx9+xMbNp9i8cVMTwyVScjjNUWNRUDb5+xDKWUt4rDJRXdfyzg9+xM/9/J/h6OSc2LW0/ZIPP3r3UivUVcX2+hqLxQV9FHHw7TtX+df+1/9L3nnnbZbLOSenRyyWCymqmK30gC5gdKxaUsi7959wtlhxFUfue2LfUTUTmixsxdr6GldvXKeaNHz04Ye8c/8TfvTRuzTVhDoEmrqWopEO+pg4OzvlfHFBG1syiWa2xvpsjapuqEKD95mqEj1Hu2xZtIHc9nzw/ic8fviEb//s69y+/RQuJGVitLe8gyQVuX0Wt424TiQqKiCrL6/swZCsUGt5adE3EccyTL55KFppIAMFft7lwupmvBh2izrCWAsFy2qMBojMcD+W+MrSsqvGx+VeND8ycgbXKwJgqrpiOqnZ291lsvYqt555ltOzM4JvePrObV5+8WViipxfHPPm+a/SLnuI0PdZ3EgKVHCVAhIJLReSSA2qab5ypldNVvmXBBSWUO84CJ+F6RL9kdRRS7isOZ6c0zHhiDHR9V8h5saMbclJM55MjY1S6j6qZmHVwv2H8KMfwq0b8Oz2MEFfPvnvctEx2CkzBIUm2QCeexbufwoPHlCqf/tMyVFTXBt6vxZOrX0rl3EChuoGvvE6/Ld/F3Y2RccTJvDsS5fboe/hYq7h1V4MySdP4P/678BLr0jyvK1dARXmRigAkJEh13+3rsBsIn9UlbipjL3BybUePhL323PPwa3bck/9Sp6nbQe2wXsRDq+tS6ZivLA8izOJJoutGN9en3/aQBNFh/PCbbh+BX79R8K6RVusKBNQahxFMbiF2QkDyLDoOTd+UGXzrLiluZaK61AZBvvdQIaDQZQJEC8zGSg1X2zGGNww+ixpTTCnrI7OO+ZOLXWXRgyiAaauF13S8ZHkDrr7sbRvauHeJ/DeO9Lm69uw8XMwrZSQUtBrrjBjaS+BED/8bayNabLsn1fWyRjTUpHdFhiqP8pJwX8cXG6mvQleBfdfbPuSgJtMdqn4+E0UKTAliksqyvfeBYIOjGq9YvP2M+x9/WucHf4a8UwMyFh0KmfKZUoxXYpcFcDhXdbcMGLwhdF0zO+fcH7vY9rnXiR1HTmt4yuDTLISEyCjBiUnZXX0zE4SxKWU+fiDz3jy5ISL0xWr5ZKYBCh8cPcei5XU96mqwK3r1zg6PKCLiY2Z56lnrvG/+Jf+V2ysbXL/wSMWy3P61YrVqifGVJLiDVE96LUh5czdzw745d/4MU/fvkPqI7FdUVUV09mmuC0mQMqEuiYEz/raAw6Oj3hycMjJ4yMuzk/p21YqT3uofEU9aVhf32JrY4vJ2qRUn5YoKtE+JXUr/eStt/n48dv8E3/iF0npOv/N3/t1XnntgG9+41Umk1rB6JCIyivN4pKIzEfwYhgtl+h5Ee5aSLI0vci4BVAErBp3UorZZUguSlkOnC5y8rDQAdzI7eU9EnbucgErlvBOyjsIqLByGLLoF+A5znCQ8ZAlkWPwNVVVsba5wcbGBvv719ja2ZFzRFhfX+fGzdvUTcN0NuXo4BGfvvM+fZ/pY6JP/ZCaxfJZqPETd5UKAXMia/kJCajJoinsh6reKYr7Q+5ZE1AiaSmdcyQiIXtcFYaVJgKwckwF+H0lNudkMi51a2AwBrbSdPq9RXEkKQfwycfwwx/DvtWeMuNy6QKfu9b4SzVMOVNq5TjkWre24c6z8OH7mi8maZ0pPW5s+DJqaOIA0rT0CN7Bczfh6g5sNaK78V60Ks/cgYmujnt1Fe3ui9FYZLj7CP79/7uIS29ck+R7kwlMwsgY8dNXz85JwcvvvA6f3BMXVjMRgfDiTIzkCrm/rhO9yvwG7O6Ky+nqLmxsiZbGXDKpF2B5cSr3tFhRxLGFmciDW+mVV+DaK/AP/hb4B/BPfAd+sg/f/4loc8gMWeoMxGj7F0ABg37GntX+qQE3jYxj9Ln1Rx6BJ3MnmE3IQ/sZtsX6Uvu5ULFuACuFrTOQlkZuVb0HO+f4GVySe0qdANnzc7g4h4PHkiXbqb5rfgGf3RNwuVhJ+Y2XX5DvKgP7ev4Cyuw5lJEZ/442c3CCMCr9Dj2+gCA/LAhN92YAs1e2zBZpoVJ254uzxF8KcFOE1E4p/OwgKbWeIcVeI35yYUmckwyps+099l54lfMHDzj4/kekKPqM4IZ2yzZwikMZxiPB4QkuU7lEpw3scaSlY/HpA1bHJ1ruwilCphhenOR88Zqt0anP0QdfNBGn5y1v/upvMNtuODw8pus6ssucnhyyWK1wDiZ14Onbdzg8fMRy1bK+Fnj19ef5C3/xL/HC0y/x//yP/gOW8wX9qmO57OliHIr8fg7YAFRe3G3LNvKf/Od/n/l8xV/+n/x5nnpqRug6aheYrK3R9SuaeoYLmfpKw6SZsnd+nafvLDk7O+Xo+ITjk2OePHrAYnnB1uYu6xsbzGYzpvVUBNVJmImg8YMuiUuj73s+e3zMb/3oEz757D7/5J/6p3ntlTd48wfv8uTRIX/sj3+b7e1NyBZaLFFCqUQ0GCTN2r5Jw7EFuEhTi+AVZxXbhX1IOQtAwcovgDEtyUkfZ111JD2vaLtkQOak7ihniy+5bnCVsEla9IMEfU6S3DAmpsXVIcAoFwNok5tMRN57qmrCZCLFWvevXOX69ZvgIMZIVVXs71+hma3z8qtf52d+5o9zdnrM0SdPaNuknolIjL222XicG2hL0k5ZMkzH2NP3PX0fSTEq2BOglhPkwtzIu5FyL+wkiB6nV+GqC/rOJvoUiekrxNzAZW2Iy5QEZyCTaBUGEGLC0JQlpPqDt+DmDa09pW094OyRwUv2B5fRj7205sJSYD/JcPsG7GzprJyRelYME7oVn8z9cAmyClvVwG008N2fhYsW9nc0NNvB9r7knAFxSXxyD/auCeOxiPCjj+A/+6vw4Vvwl//nom1papgGFYDq7Y+BjYG3qA3QBPgf/QmJavpr/7kU0axrue/5XPRE3ULE0k9aCX9/8hDuToVF2NmRf9duSNmF00M4vxDGplsN8hM8pdyEVxagquDatrilbt2Ev/e34J0fwjdegmt78A9/E07OKK4RY2cKsDAj67R9DcyZ3YDCIuQ8gMninhvZFmWMy9hB3bcuDecdAx1lnYcVuM0ZVl4jDuPWjrdCmnYe9XxcqjtV3KBR2LGVFmt98hgefqZYLwiQOHgCiwt46034rX8IWztw+4q4ripUe6N5hS6Nc71uyR6vv4eg7J0xN6EsvkSwPG5fkKrh9pxOhc9O2tkxMD/hi0OWLwW4kU0mkiIE9VEjajyxl+J8mUSoRFktae4rfFOxfvMa177+DZaPnnBy70KZwqFWj7Xp5UJ35lZX44nku3E60GX8OVYHhyyePGS1OGd9dxcTaiXUVaEDNJO1urJGeSlV2feZux8/5t233+aP/Jnv0a0k+y4pMV/OiTEyrSuuXd2nDo7T8zlb2w3f/u4b/MIv/Dm+/c3v8df+2l/l0wcPSWnF0dERpyerUWbZ3wlsau+oKl/2OT5d8Df+y1/m3Q8/45//i/8Ur7/6Mvu7e2xu7zKZbQBzctdR1w2hrljf7Om6ltVqyfXVknbVcnjwmIODA3AVdVNReWnHGDOpT/Q5/v+p+69nW7IrvRf7zZmZy6+1vd/HuzqnvK+CawCNhuvbbJJNtsi4l0FRou6DrkKhiPsi/QGK0NON0IOkCEqUeCm1gqbZl+xuoi260QAKKHPKocyp4+32ZnmbmXPqYcyZa+1TBaBaZDOqsnCw9142c2bmHN/8xje+4fyqNIkdkWLo9gZs7DUx1rJzuM/vfe93eWlngy++9BU2Ng1/9Cd/yRdefpb1tVXnM2MlzYTrZO3vI6UmdDTOr0ZGHEhR2vkN+bEHAqMdo+LZG0H9EismfSNAqqH872TMkDWGQCvnKq3c9Sk3sUKAQGpgkFiInAu1vNPFPLnxZY9cKbYz+5M5TbrPpyYmTkXbYpWVSi4kDajiEUEQcO7cRQ4Od3m9/Vf04hHD0ZA09U09Je9tXTWTdalKpQLZR2scmBEG1DhQ5MGQvF4eNyjsJFgxbvydbkzuDdeN3H3356pxpl/lWk0mBLUOzCjjTMxcWsgb/mUC2UTSU+//TEqbj5fdR06iG/cjS3v5QMPR12S/+qBmYW5G+j0VK1CvO1Dlb/QJHUKGuPU44Col+358XlyI//KysDQoCQwF11hylMD+gbBClRK0RvDGB/Cn34N3XoW/+/ekqknnYXYGpvK/GNgYK1Vl/jW1InzrC3B6Df6nP4WPron2p1mHfgcoCeCJR5IqaYeSNsvnBXzlczC3AHNzEthGvmzZgYBQSyD06ZjIpayKBViYktfNzsOv/31YWofXfgirGr79NfjJZdjY8itpd/7teN0L43H1EdwvVryowfsJeVDkwbEHQb59i2cqvEdLBnQ9WzE5pmqsA/Iprmwh7hCdF/KGCmJ/Hbjry4OzI6lWRaZ58UDdJCLIDR17ZxVZ+4YgkLFMjbhzzy5C9VdcB/gcWeNUrd0xTAA7rcZjqvQYzPhKuiCcAG3uWP24+ErL7JDdL9rdU34R4L/789Y409PhvmWCl/9iJQ2QOuYmCJ0YKUPQBqUVUalEZWWV6Qtn6B3+jKQLStnx56jxZTLpZAyuBNhqlEoItHW6HVfFA6QdS39vh2Gv564hOblKu87JSqGCcAya3X/1/X2CwJKkeVqNDcIC5EL5Xs8mpmmKVoqZqRrH19d5/4MrlEohz7/4NL/2a9/h8UefotNqU290CXVEo33IcJgwGPqO1Q/DGogCTT7Maoiw1jKIU/KJ4YNrd7j+P/xzZmoVZmamWF9dYW1lkfm5aWrVGtVahalajXKlRKFYJF+sUEyGGGOYnplmZnaebq9HEo9QxpK4lgujJM7OSWJShnFCvd7izfdvsb3fyfatPxzyo9d+yN7+Dt/+xm+g9Cw/+IvXePb5R7lw/qzcL74+KsuD+/SJTPIyxtp5DYGvOFBKowiEQdIiPJZ2ApF8ngpEXp7iUoUpOFDjF1BZP5kM9zgWw1hSlbiSZ1lNWPfcIDEkhFTKVQr5YlYN5m9k5dI98mnO5cflr7X2zVc1SSLl2GEUkdiYUEVEYUgQRES5AlOzczx66RmarSZ3bn9Eq9OmP+hTKlfQTpBtTOrcl4VlSZIR+OvYGowDNl5MLNVbzvzPjsu8fWWZVhqrjKsmdVVSSqOckaJJpYu4/TwJihWQVZ9MPJjpBFypauL9ZCaAhLHiRbO5CVdvwNyTUGYiAPpA47fJoOZBiNNHGHV0XwDKGhaWpEIIxqt/v6q3OP8bJsCSdUBAgxrCzBoMFCQu2Pn9CVyastmC+xtw6YI0EX3tXfiz78H7b0tl1HRF0hiVWQFHeRciPLDxQcpa530zccBKCXsz0nD+BPz3/xSaHag3Zcw2d+CwIe0v2m1hUro9YQx6bacN0lBvwOG+jEPkwJVvuRBG4+PXgasCq8Fjp2C+Ot6XfB5e+oqAxe//Ppg6fP1leOM9uHaTcSUS4+Dsr4OMqXGvUUZemrW0MGTMUcpEisA5TfvFU4CcF+01VBPA1jMdD7M1Wrnrw6XRspJ164BdImM17I8FxHhA9Alsod/frO+TGV/jcYz0V4slfZjGwqYdHsCHbwl7c/oR6UNWKEpKaxKcHGFpcuPxVHoMbDIxsSUz/8tYscmqL6e10f5aMw7QOwJh8vM+5faZADdCZKSZGZhUUbveNe4GtV6pboFASYsAX+KrFUG1wtSpc/T39qh/sEGa6GyNPYGTmfS38Y8Yh4w1ilAb4nRcTm5T6G3vMGw1SJOEIBfhzd6U+wYvMJPLzBLHI37yl3/Csy8+z/r6KgczMeUpRbtVZ2VJE+qI1I7QyrI0N8X0dJkoUKBinnvhKX7t177L+bOPEIUhP7h8mSQNiJMhnXabNFaMRvEnApswUORDhQ4UkQ5cUINRkjCKNRGaJFV0dvfZ3D/kyo27gDAFQaQIlVQ5FXJ5ZmdqzMxOs7Awx9rKCqurCxRzgXQTD8SBN+12SZKUwWjEaDSk1elxcFjn6o0HfHR7j0Z3JFqpiS1JDR9c+4hWu8VvfPu3mJ+d58c/fpN+r8vjT1wiDAJhwFzXamO8yNsZIyJmhUprAi2VVL5ppVbasR6WUEu1kB8lrRTGir7HOsFvamIssWN9x8Z3k74xzkUGjRI/Gu1tGRXDNGFkQspT88xUp8nlcxl4USRkzTLdTy9oVtlqTSZTYw2j0UAMGIMgE0VrHVApl5mfXWAwHBDHMc8+/TJYTafTpd1uUalU0aqQaaxSb0CIpJpSkwrzYvy+kB2XqGpSUmtIkxhrFKlNCAPHdIEY47pUVWITOXZlnbYxydJZn59NOU2HGf/tGLYsIPiyXIXz+nCrZ8+kdDpw+wYsLsKja846mvH7J7/ryOYCUJYu0E75794XWGFNpqZldT2KHcMUu9ek4xSG//wogq99C954U0DLQQRNK0LgLSNAReXk7YctaHSdniEPr78Lf/Yf4cZHEtye+4ocS5gXjU5oJTWVARsfnK2MS+J++nSCwlU6OVAWWBH2LszCuRPyApNKN1jfFHQ4lGq0wzrs7cPWNmzuwsjIPiVGQEK5LEE0lxOGoVISZunMOpxZhHJuXGXm9zPQcOERqNXgj39XANOXnhOR8s+ujF1x/UIqs/f3YMeQlYtPlt3jFjAexHjDQH8qrb+eHACwRhgTIuc74pkhF9MmmSL/IaEDwB7ABiHoFJoH0KqLFinbTw+A9PinZ/Wya839VFqAXxA4byA3ZiYVw8fDPWHQchG8/RO59stladvRaYMdjEF/psXxwMwBaA9gsovCH4c71jASZkaFY00b/jDcZynPqrlFgA7H6axPuX0mwE1mQOeChqf+DRaDcVS+XLDGplgjAci3rbQWCAPKKyvMP/oE/b06w80espYPJr9I5jYPXNwULzYJrgSXSUBkUVYzOmwwrB+SDgeuwdzEhGfSjMZ2e4PWmnwhJIyk4/bly68zGPVodprk8iGj0RCFoVoucvb0cXKFkIPdBs89/zi//uu/wbmz55mdnieOY/b2D+l0W7RbDTqdGO2aV/pNAUorQi2MDQ4YYl0rAiMLrFFiHOhWbhUORhk0iiQdEZiQoZV0Q0sN2Ku3SK/flYqaFIIwoFwssLgwy/rKPMuLswRa0e70OWw0uXVvmwfbh3T6MaPUZEUCWS+lh873va0N/u1/+B2++41fZ339FK+/9h793oAXXniKXC6PwRslOmFwRrtaV7GDpIE8e+Y0Nz6Via+QwjMOEhQCFWCMMwVEoVWI0jJ5pUooWg0Yxwwaa6Roxbk+KwtGa+I0JbYhpeoMs9NTlItFUusM7zzLZEWL5LvVjzuDy8pvUjwfOO8R614jTGxAFOaYnZmTEnWTkiaim7l37zaH9TrV2hRRFLn2FMb5QaVYryUyKVoH4gKtVab901pn1VHGTHj7YDDGU+mpuzdxlXjuzVaNDf3SJGPVPhdblmL0k71f8U7Q7pkOIGDc2dhPukrAwfYWfPAzEe6ulsnAh7zxIXbFPeYDoE9B8NDzysDstJjV5QtSIg0O4DitSJoyFrw6oDNKJd2UJPDcC1LlVJmCYeIcj7X49dy8K4/NT8Pl9+EPf1+qZOp7EnDmZ6XLdnUaqk4rM5mK8sHSMzaK8Rj6El+fOrKQma9lx2Cl8kn7MmEl/aJma8L06ECGOkmhP4C9Q9jcg51D+d5yEWam4PgyLM9ByZU1q4n9y5g2NR6jlTX4zf8G/vw/woPb8OITYgD4+tsiovXXwmQ6yLMpGWs2+dOBM587zwCrGv+ulbxGO4YCi3RpdyDKOjPEbL89wwGZbkYhwEkHMmbtQ2g0xbRQuWvZg26F+93vpwcY+ujjPt3q99en14yRcvz6geyrDsRrKAzFzXpmWsr543jMGGW+Ox4curSd9SwR48/2GpssneXZLC8R8PcYPqiNQaKv1AtCxvnDX779UnCjlDoG/Etg2Z3Jf2at/T8rpWaBfw2cBO4Av22trbv3/B+A/yVyt/9vrbV/8gu/xHpn1PHv4wocsDZBfEwC9/h4teNVEEppcpUK0ydO0XnkAZ3D99BdWRh5XJyBGbcSd+szUlftIq81no/B9y8y7T69/W2G3Q6Fak2CUApKG4JAA0EGtJQOiKI86yfP8eDudXa27nLv7gMG/ZRctI0OFMaKI+3U1DwLCwvk8zl2dzd58umvsDg/T6lQRGlDq90gyuVoNvfZ3j4gCnM02105cVqTizQ5nz91ZYvWSpPFIbGstp3r7HCUEmiFzoSz7vVKoWxA4sCdL4O2amymZ7EMRzH9wYid/RbvXLmdAYbEmcelE5qV7LQC42aiD69qod445A//5D/w7W/8V5xYP807714jiRO+9JWXiKIQYwO0ciXIRjQ5fiLQrtOv1iG43kwuDjuQqh1YILvJFdbRveKwq63CGo3RxlVnyc1lSN11564aByZ9yixJLYNUUajUmJ6epVIqo3UgLJUF5TrPyX3qJhE3rtoxS/65QAdIybVji6xFMe7ErZQiF0XMzcxi0oTEaWeU0hzs73B4eEgURhSLBax158+lpixSxi2tTUTTI8ANrIlR2exjs/sOBLgI6E/lvd5YDW874O6jNCVNjbNJ+E/f/ovMNfKm8erTr36zKiRfUusr0HzQYvzTOvbm7m34aA1mn3DpKf8F/j2TP/1HuHvVB5pscymFagHmV6BckdSNtTL0RjuGYELfZFIR2t66BifOwsoxOHVMLPTjJdeLx5XxNg/ER2cYw+IavPUjaQ7a78ln16ZEB1Obk6qnZOS6eiPfGxsBT1lAdQAiAHCuxIELTrlgAthYjrAIKh2Duyz94NgRX/WUi0ToPF+Di6fIUnOBGqc2ft55ZeJ8+b8tAhi/9ZvwZ38IG7fgyfMidv3Ra6L9USlZCbL2+hF3bRi/kE3IejP5XfCp7GzB6RcvjtnAj4WVz/WplwxsuGyEL1XPQJlPbSlhwDpt0S31um5B7UCCd8CfZEh8+tMVDGTPmZSs87aeeL/2oMoKeKkfutSVSwNZC/OLMDvrqt8GY6AP7nx4HY8Z/477TB2Nj8cvNP25mWxfYf3f6Xgs/OuCYKz7+ZTbp3llAvz31tqLwEvAf6eUugT874HvW2vPAd93f+Oe+wfAo8C3gf+r8pbDv3AbTyDacSdi9qaB0A2yytIUyu++FT2B0oowl6c4O8P06QtUj80QaYt0XXIrYnUUhMsla0nRGKvG/X6UFd8rv0odpnQ2H9A9PCB1qFd5NiErNRafG1w6JB9FJIlhbnaREydXmZubZWdrh06nQSFfAqvI5cqEYY5CPs/xE+usry2Ty4dEuYhWq8Hu7gGry6tsbWzS70uVS6A1M1NlZqdKlHIROpDya+0oSa1DojBAWe/qLKxJYrz4V36mRliGOEmJ08T9kxRFkiYkicGkNmNtrbvYjIvTo9QwiFN5nfXn75MnnY9LnuV+KBcUrW6bP/qzP+T+5h10oHnv/Rv8+EevuhRNKCkzJxhWWkszR5e+1G7i1jp0XiyaQLszrj17IysCryM5csMo6Sclv2q0dW08dCB6GC3vVyqUlA0GYzWDGKJChenpOarlqlgToFAPHb+koFy1ka8kcAAnCCICHclxecbGrRjT1BlPOt8VpQNyUY752UXWVk+wurrG2rHjzC8s0ev1OTg8oNfvE8eJO2YZH2s8yBmnoazyRoPOk0lptI4IghCtxiJ8kxq5TlLPylsSIxV6aZoyiofEycgxe//ZmJu/+bnGsw3A0VV3IgEBd8BZBYgav1a5SdhY8W85rMPNq3CvfjSFgBp/xZFLQo0/JytpnpiUsFJ2vboOs3Nj0zw/TZuJNIo/MVgJzmEAB7twdxMODmF5CaqzMOzJ9426EpgGQ2mH8GDbMT6xAJvFefHZWVuTPk6hC8rNLjR78rrUTwbue03qUlyeeZgIdoFy4mzlUhDKVc6E48CptKtO02Ng5NODfpJWSFDLBW48/Pn7+JxyZMAfFtwOLJSr8M3fgNWTAvwePwdffsmlaBIysbBxY5uNMQ7YmImf7nc8+DGMDRcnA83E4uZIfyt33ZnsBnPvl9R3VhIdAcMuNPelHD5NxtfK5GYdcPHXqu85ZlLR0qQxWZuODKDiAIxnedzr45FcS5t3YfMB3L8LezvCds3OOZfocHz/oDKC6AjIyo7dgRXr0qRHjkHJ+Q20AGXtrh/P4ulA2MfQWQT8NdJSv/SV1tota+1b7vc2cAVYA34T+B/dy/5H4G+7338T+FfW2qG19jZwA3jhF3+JX0y5/5RxnZL9k34gbPYG6y4g5S5iz8kQaoqL88xfvER5LnT3l1+huU+YoFqdVlxS6woHqiTN4cMiqaJzf5P23hbxoId/lXbaBB9whXWTwLh+5iL1gzpvv/M61UqNxYUlup0+H7z/NjPTU6LfUZpKuUq5Uuaxxx9jYX6B06fOUa1Msb21xd07t2g2G9QbbWq1MjO1CvPTVcqFSJjKMCAKAik7R4CfMSmJSQkCCeL+HpeiBlllJ9aQGKnkMtaR3FbSFCZ1jxl5fWIssROdenZGUkATiwL82PGxAP/zNmOh2TOMEkOj3eJPv/8H7O5uoMOA9967xquvXsaaBB1oVGAJAk2gvQ+SfJlnQj1A8GwfSmdAwV9fPmdujbRx8BVC6WQVlvbXoAR/7auwlEWHAaiAYWoIi2WmZ+aZqtSIwtDdx751iMqYRFBHtFGSBrP4hqvaHU+gQ+ldlmEEK6yIMRgjegulIJcLmZ9bYHn5GMvLaywtr1CbmqHT6VI/PKQ/6JG6BoqplX/WHb9217wyNhMASwsIt3qzngGV6yY1IrZO0pFcE0baOSRpTJyk4peTGtIk/c9mUPxfZK7JgIcHDe6f8c/5yXm82MJfS0d0BFr0IHv7cOVD2Pdl23b8evzfH9+F7MRkQcA9EVg4vgoLK1Lh5JdhqQ+qLhj6a9oYuHUF5qbgmRclAO7uSArn8aeh0XDVMUb8YrpdeO99CV63r0GnCSurcPK0aH1mqtDuSp+hRluaKaYIiPHNMXHAzwtLU3cMk0OWCUkd0xKqieddmsIDGs2YkdEu2GbiWz9p8/GfDwf4yRTa5NgroKQFHFWr8Ku/IexVksLj5+Gl50AFcmypkp+TlUt+JZwyBpgZ22cmrinG14lyx+AZDj8efvPXG0jw96DKNx21jp0ZOB1Mu+2YM8ZpmowdcefkyPE74JBOXGMWATh64lygxqBBR+NjiRPxw9m+78wlN4U5qpSFwSmUnKHeRLrJH5LfLz35uGeJg/F++vH15z7ITQAbJWmxyP+uXfsPPvX213gpKKVOAk8DrwFL1tot2Ue7BSy6l60B9yfe9sA99os/24EKj/Z8c0FhUlwVlU3dSlsuKq+90EDgUL21iny1xuypM8yePUEu9P2JzNE5BX9fiReJsRqbmf+J8idQzinZano7DRp37zBotVwaVVYe2rELWocEQQ7thK5g2T3scu7cRRqNJjqAdrvJqz99hZnZaaTlAGjyFAslCvkppqeXmZmao1KeolabYWtzg1u3rvL4Exf5tW99lXMXzxCFIYnrJyXBJmU0koCTJClxnJIasEoT+hwuOJbGknqBtmuiqACMIjVW9IGu+7QxkCQirk5SK2AoHWvwvF5kYl1JxiT+3HN8dPPzgbGWg0aTv/jB9+j1mgRBxFtvXuHtt38G1gmeXQftwPWsCgLHenhxX3Z2RWMzdj+WG0jijp0AIn4nfEpUSvmV61yu9bjBZRAEKB0QG1BhgampOaZr0+RyucwjZxJM+dYe45ScG+cJHYBgiPGNnqYpSZpkKbA0lUalqfGOyQKc8rk8S/PLrK4cY2XtGHMLSxSKZVrtNs3GIf1elyQWcz2ciNhBN/ldWZfuDdwc7ACZ8mBdxku7xpjKOtGxa6yZpilJMpLS8tQ4EPbpm9l92u1vcq7JrossbeGCmReNKiTYed2CZ2v8NZP4FJaFdgvu3ICbd6RC6egd8dBF7xZqvnQ4A1lqHDB9t/ATJ0UIaxnrGFJnKmhS16pgAujMVODah+ITYxDfmJe/CIfNiV0awaAPgybUd6BxIP2dWoewuiYdyt/7CP7kB3DlpgTT0LHmgQs6OeddEgYSeDQTgT47eQ7M2DHQ8U9qOw6uvvu0ZszeeIOygLHf3iTAeegUfmz7uQBnYhU2PQVf/S6UasJoPHsJnnlCnptkUvw1kcbyOGYiSPtz7c6l/ztb5fmf4zlYHpN4IqyNZ8A8i2PH51cjTU8bB9LU0js9T7IuGfBW42vZD0rGfLmfGavEmEHzYxK4RqVZqstdj6Mh7G8LwNl4IOxNvysAcXoWiq4tR+ZZMwH+sxJ0x0gZGBtYOlbMa4t8itL32/KNNX0Vlk9JBQF/nd5SnxrcKKUqwL8D/nfW2tYveuknPPaxy1Ap9d8qpS4rpS7XG/WJKjkLNhVNjPPpsMZkY2K8sl2BcfSWBbQd63FUFFKaXWTu9AVKc0VxPxZexzEVdmKnrAPl2qV9g2z1PX6RxvZS6jev0dzbIh0ljs7XWZBSWcBSKBXw+o9/wHvvvENUqFIqFCkUChRyea5d/YjBoEmhWCJNE2qlWcIwIpfPEwYB7U6POB4xPT1Pu5cQRhXW19fQSnPs+DrTczW8j8kwjoljqVhJjJUFFMpp+gJ0cDRVYhygsg7M+JV3YkRIjJHPNan0qLJG/kkai4zhyoT3eHCunJeWD+KffGFYIAoCwoeMmKw7L3v7+/zVD/8IY2J0EPHTn7zD1avXJdiiCDOQozLbgGyi8foIa5w+y+JX5cZ50lgHFITlSjN9CkzOgT64ube71NIotVgVUZ2eZ6o2TT6XJ2s4acmYIOvz63KNu88er/CsB+5Ob6CQiqYkjV15uqSFklSq7tLEl2o7sAFEUcj8/BIrKydYWV1jbmGRfL5Is9Wm1W7R7/cZJSO5VwTVjWOP9V2xrGsyKmBOnNHHiwmZs9WYPXaA2Lomor6CShGIe/N/xu1vcq7Zi5OJV/gJWeacbIL2596LQi1Hg4Ga0OPEqaxwb16Dgz6ZcDbbu8ld9L8b+XwzEXCyp41oZs6cF/YmF06kLZD98Zod4/b7i78CTz8Fg45oaAYDSS2cfwQKUyJADULoHYiWZjiQ4FJxnjP1fSiGkHTFit+kcO8B7LdkpwLlOnGHY1bFLQIz8OUZgvGguzF0YCYLTg7Q+89xDPORvycJMv/Pn1l/TXtB9iSgenhLUwGEMAat/nPn5+Er35VgmY7gC0/DhfNjkJCBHDvxXg8mJoK5L9XOUjQTTEamKwnGwXvyMshSkv64HBAIFNgYGvsi4h0OJ8ASY8Coyeav8QTmGSI3D2VzjxtU7QBCMAHSQi0VaIE+yjaBMDj7O7B1FzY3nG6rD7WqpDOLRZcymgB13pY985VT4HSmYB0DNgHqtAf9Dx/fBDBVFtEXfXqa+FPNSkqpCJlsfsda+3vu4R2l1Ip7fgXYdY8/AI5NvH0d2Hz4M621/8xa+5y19rmZmRkklQDe/0EHIVqHeGOzsfhDgVFuVSzBXOnAaUY9claEpTzVlRVqJ1cIwtS9UoBNis0qhjzelaBtHDgR5kbjWzWI+LT7YIfm1gOG/Z58ntKOPZATo5xM2RrDO6/9kNAM2Nu84ywNUsIwoN9r8+67rzM/Nyv7oHKYVJMmCc1Wk/39fbZ3dhj0BywtLPDg/l0ODxp0Om0O9ussrswTRpokEUO2UZIyTERk6sdEKy1pnIcMj1KLa6wpAd4qZ1PhdBgmGwvv8gvGKJfSss4d2L0/uxBVNkZjUfjPv5a0DlhZWCAXHUXgqbWMjOXB5iZvvPMKYRiQGsVf/eB1tjZ3syCstSZQwZgPcefNuOg9bs0AnpUBnWlPDNY56jpWxYFTuf401plGCf8j7E1iIEVRqk4zPTVNsVB0x5u68fD9mSArI3epL+uuE6XDzCjQD5H3tjHWkKQpcRI7wa50Dx8O+sTxKEt5GVelpIBiPs/C7Bxr6ydZXTvO7PwSuXyRVqdHp9NjNBySprEz9nNpKAfoxudXKhEltminw5H7R6q+nP+NSTKTP19K7ydm8UD+BSf8r7n9Tc81C1FAVnrqWzBIP4qjq3w/yWsmAqcPehxNW/SHQtvf2YTEBzvIZuqHA6+Csch2YkbPUloWji2L9qZYGj9nfApkIpgqLX4uuiBaEguYQFIbpQo89SIcHMg+2BgCI2xMbUoC/NKSBKj9XTh2QlyNK1WYn4HtfWGpQj1OC4TBRODGrcLdSvzI8ZHNxRkI0hwFczABFNz58CsmNfEvA9h2YoxUFps/tvl9M6kE4zjOTt+R87u6Ck9/UcZKW/ja87C2OA7CXgfj3+zPmwfAnuXwn+kWLEdKyr03lh8Db/KHcSA5Qzc4Kl/+bjeg2RCmDcuRDuJZ80mnW8rAiCJj+LK2Bu6EhBM6pzAYp4A8WMsXBeBk58OOU0rDoXjfPLgDD+4J2Bn2BRyXS2P/oSz1piYA3UNA0DIGcXjg6N6jtIxXZvIXuGPz4FL/nBP+ydsvBTdKItc/B65Ya/+Hiad+H/jH7vd/DPyHicf/gVIqr5Q6BZwDXv+F3+H4BWstVjkfkiBE6TEbIve0owC1U4GrAE0oqQQtwCLQUmEVRCG5qRq1E6eoLJbQ7r0Gm4lss1NvwVgtwduIDkEWENpdopKyiBt9Gvfu0G+3JK3jblSlA1dpY9Amxu7fxexv0Njb4IN3b1Cq1mi3W5TKJXQQ8MMf/YBqrSBdsVMDSUQuKlJvNDisH7K3d0Cr3WV9bZ0vfuHLnD1zHhtr6vUGaaIo1wpiv2Bt1jzTykDK/ji/AGvskXnVTrzeB36pkPLzh7vArCLrE+VEjT694p3orcUJUP11Iufpl4W5URzTbDdYXVwUvcrkc6lhGMdcu36FW3c+IJeP6HSGfP8vfkKr28quVpXduAJXlJs4jPfb8Omn7D/pdC0MCAI88GaOrmJMhwKSA+2AdYDWEQZFbCz5QpVabZpSoSjXkU2OXEPjn47t8CsNmzrvGRFe+mopXJl2HMduXrNuIe8BhSGOhyRJOjGny4TgGaNiocDi/DKrK+ssr6wwN7dAFOVp98TgL4nTsQ4rHclYWPd5ExOf0qLbknlISsi99sg68GitFzmDh8HCKJvxuP8nbv8l5pojAc66IOGBTRZEQVIHSoBCNvbJmEXxQlKLrG6bbame2umN3/tzgY0hW937oDdZ3m0tTBekBLdaI6tm8QyTNzfTEcwfh/l1WFiDJ89Cuylpg05PAMeXfwWaridToCGKpQXCzDTMzIrTcrUsDSZ/8iO4dV18amamxeem1XfFK2oMOibHMcVPBkcXNZOv9/+MZRyb5B5gcuGa+DnVjsclW4FOfLh96G8+4W8Qtqk6A7u7kmKb3AItz5+9CKcelSqych6+9kUph/enw0zuhA/CuODLGJhlr3GPZ0yGPx4PcKzoXozTL2VCZudlpBUM2sLYDPpyHamfU9Tsg77vXq4CAQc+peoF6ziwEOXGYD30+67l+oryAnoyXOZLs91xDAaSotp6AFtbwlbGQxFpFwquB5UDNTrn3htMjI07cf64DYzbX/jAxRgEZePqxty65/y4f4rt0zA3XwT+EfB1pdQ77t93gf8T8GtKqevAr7m/sdZ+APwb4EPgj4H/zlr7C2c/CTzOPTURG3kpW3UaCEezed2A2KUDSKNMrRHzN1dRE4V5dBAQFvJUlpeZPXeWsOBWo3bSlWOslbCAsWriEhbE6N1rFBYdK1r37tGp78s+OoTudQ0YS+7Om5jv/794VnfoHR7yB//+33Pn9hZXr9wgygUoY9h8cJ9r195nbn4OAGU0JpYAF49ihqMRQahZWVnm9KkzfOfbv8mv/63fIsqVGI5iarVZqtMFhPwQjxthdDVBqAhd13Kpbnn4pvfH64KkmVh9WAQs+JJMQCsrLQgsR9J1nqm1E79Pzkk/d1PQ7Q1otZocX1k5CnAs9Ecpw8GAt995nf6gRVTIs7W9z49feZUkkQnA+kkxWw1NfrnjZ6xLEbnVsTzqtFoqyNgadODAqeh35HF5zCppYRHkClSqNcqlsszRRgCCSa3Tnshq3lo7kSoTKlj2Q/QqWklaTWnPFLmxc4NnXJdu34hyOBwwGg3GbsrgBMra+cxAIZ9nYWGZtbXjLK2sMb+wTBjkGPSlmsmYVLxojG+ICdaMmSbl8uJZN3T3uw8oFsmNGwcHceDIn3DNxOT0n779jc81wHhlGLqJ3QdUM04fZitJlY4nWd+N2esijBl3tB4MYHsHblyXypxsJe83v7L2f9qjz2UMjhvc0MLx49JKINDjXHCWXlBw4hn4xj8BWxGR59/+O3BqFS6ek0oorWHtGFx4TITPANqA61hALhJTvNSKed6dW/BH/x5+/99B3JPnW3VoDMRHMBsjZJwSF6h9sM9KtCd++lVXlq6wEy/RY90JkK2cHgYzDw/jxHD+ws0CpYKwVFtbRwGOQiqwCgV48gUo1KSSbHkOvvSSE8uOF3sZqJkEMl7/4kXTWfpk4nFfxZSJwX1Vkxk/5zVVGogHouPqdd3pdgAhUOO03hE20UcsBxR06NJaD32XZ578+fC9mjyLmS9ArkDmpoz/DjMG18Mh7G/Bxj0RGe9tS0qvUJioZgrG6S38deGZLsuY+VLj37PvCibGbwIc+X3O9E2fbvul4MZa+2NrrbLWPmGtfcr9+5619sBa+6vW2nPu5+HEe/6P1toz1toL1to/+uW7YUmSGGtSUhuT+dyEAVpFmROt3Ft+1ThRPosrBw5CdKDlnw4Iwoh8dYra+nFKCxUMRmzJJm4cv4Y3OL8bax3raFxaCgIlxm4BMNyp09vfJR0mWbmwmKRB0NpDX3uFe1c/It9p8FStQKdxwDtvvsXqyhr5QoGF+QXm5mb48z/7I6anKoRhgElT+q0ByWhEkoxI4hFYy9LSEouLC+RzEc88/Tx/9+/8NlrnCII8MzNLVGcKFEuaIFCuhBnCUDRDONHsx6CNZ2W8HgSTMRpKqUw/Mp7rffWPE1lP2F8b956sIkh9/Pse3vy12ux06fXanFxfIxcG2f4YC71BTKfT443Lr5DLK4Ig5IP3bnH12g13psZAV5pT2jHOcdoab0onhn1ys2i/ItC4svLQlZPLDaiDEKVDtJIScwMkVlEoViiXKoSBpJaMMfQHQw4OG9TrTfqdLsNejzRO8D3NyDxkvGBdhLdJIg7CSqlM34X1ZflxxvpYLHEcMxz0XQ8pr+9RWRpOQKWmUqmxuLjOseOnWV1dZ2F+GaVFeJ7EIyEb0vF7lZswfWrSeLYJmce1DkTf5O4jpXVmpzD2GBrzYnwMQP//t/0XmWsUjkIPQDn3XWtchUo81gFkq3PFGM25Cda4NFbqUjImlcDZbkpDyt0O41X+JwAct3DCaZuOrE4ngeLitPiLTOpujNMAVefhwhfh/EWozEBrICLP556R1fVwIA0SD+rwze9CyzkT60C8dKKcBKQoJ7u0swM7e1Ly/fYb8Hv/GswI0qGIj+sD6JlxZZRhbAY3KZo9MtZ+ceGvDw8CGI9xlgJhrLHwYGKyDC97z3ghNn7u4XF+aKuUoVQVB+fMwM59ZiGS9MpzX4ShlfP62Gk4f3Z8XrLz6EHrxPdOmtJlzQkt4w7hyHGkiVw3XgSe/e21KG68eh35lybjzy/kHdM2JSxbyQl5M1bIA3J/XXldjb++7cR1bckqk9TEWEc5139sIk14BIwg39Npw+4DuHdLysT3tuU4osgxQ8oJwd17/fWarXrtePwsY8Dn76PM7dndlz4V6//9PI+jT9g+lebmb3wzBuP6E1mjMCZBaWlToJVoH8RwzV/fOluNW7d6lHPoXWcDV+USEeZz5KdnqBxfJiwYdz/JAE0mUcTwzjEU1neI8udB/gpQmFaf7vYmcb8voNaxAWEypLb1Mwppggbu3G9zcTbk1PoSD+7eYdgf0G52WF1fIk1SWs06b77xGosL81hjGfWH7G3vU28cYq2l1W6TLxQoFPLEiaRVvvGr3+Ybv/otrI0kqJVmWV5eZGFlmmIxIgwDQh1irWWUxIzt9ieG2jrRsIWMPWCivxJIOssJ40QXNAYeHtz4FG8GkexR0PjzN3lNIZ+nOxwSKMPayjKBY8EUMIxTMQzc3uXBvdsUCqJLeuVHb9JudiUlmHrwkrrAr8Dpg6wNRF+SpaG8E+9EVZNywR4P0MA6SlTpSMCB67ZcyBfJRTnwab3U0my1uXbjBteufMj23bvUtzbptZqkyShjRXCsnj/ujDmxSAdu17TOutVKkqTEyci9XNHv92g2D2g1W7TaXbq9HsPRkMFwlM2H1q0KK+Uqi/PLrK2fYHlljemZeZLUEMciGk9Ngu89hU0d8eIruiypkQaYkykrb/IXoOR+ciA+S4Hj+lj9ZzLx+y+yKe36EzkmQXvgEPsTMw62XpA5uRr3Yt7MdTaVGyONxRK/UYf7WzBwU2t2T0xMyoqxvuQTbC6yf7UiLK2J7kZDxgaEOVh9gqzp4PEqHCbwYEeqrAoFmKrI32EgPYKef0lM+zRQzMPKvKSlUJLGGgzkn09NfP9P5J8SawF6h7C9C1sN6MeuqagLwGE0sQKfHGs1AWYm0m7+MGGs+/DAZRJ4ZE1DJ17vgcYvAjNHBhphHPJ5Gb+t7QkWDKn4KuRgeRFOnIbBSHRJX34OpspklWIq5IgwODt/6Zi1UnCkDDwDrP48MwZ1WRVRLP8CLa8b9kUMLqtq+VerwrkzcPESnDghpfu1KceWTKQsJ6uVjgh8fTpHFlJY6/RTOfdyK7qrqVmYqjkAVZQKqnxujBI8291tS4rqwV3Y3hBButaug7hLjfneU952avKc+QaYavKCmQBovmrMTjyNA2X/mU38/sY36wyRJAAlY4GjVg44uq7EHL1AtBsMeb0zQ1OgAkUY5tBBJKxCPqK6fpLq+iyhTrMWFuDDqYyiQR8RGk/+A0nR6FFKb3ebUbeFsjLx5+Ielduvkt+9RqBhaXEGnQuYvvQU//U//Uc88fgZ7t++zr07d6g3G5RLeVJjePvd11FKUciXsAnErZhm45DhqMtwMGBvb5dyqUSn26Xb7aG05h/89j/i5Ze+6K7/kPmFZc6cOcfJMyfIRTmnoTGZGP3juWibpTds6sbQTup33PXvbhhhQMDbJqZW2glMLsi009pkrM8v3GTER3HM9HSVnf09lhfmmJ2ZIp+T7wi0ot3r0h/0+fDKO4ShdIPf26/z1pvviHGcF2NOLA5TPFNjx8UUThwoPZ98x3YHpNxE5CuYZPfkerDO40fpkDAU/ZfxQkCEyVOjIaN6g97eLt2DXYa9LiZJMCYhSUfE8VCARZo4vzNJERlXHWWdvisKpUmm8U0orSJNYzqdFvfu32Jj4w5bWxvsbG+wv7fD4eEe/X4XX27uLQwq1Rqzs4vMzi0wPTVHEOTknvJpM2fi5QXB1omwjTEoX05lVUYqKG0JtLChgZYFg2ixtBNwu9LyT1y2f0Y37ah7pcbgwLMiTuPI2JGMTLiazT2MV+UW12NpJAZ5gsxl0r9/KHqdibeOZ2uLVH5MBvqHxtAqSZssLYvA1zMHURFOvgSLF8Ao2KvDMIUr78L//V/Cz27C6fMCcqamoTeUY37qBbl0h33RW1QjCWb5soChhUXo9cQZuVSS8fjX/2949RXIIwzD3o5ocm7elQA8UbmapUqO3P5+knWr+WxhMQl6Jo4/Y0U8wNFjMJCt9ifAz88FOPbozygnnj3zC7B3II08R+45Y6XXVKEIF5+ERAtwm5+GZ586CmiOBAQPaNR437wwFkVW7p0xORN6ovHKRF7rwZE3uPPjOimgzRWEvVlchLlF6fcUhi4N5Rg4X+KtcekhX8bvfmJdv65kIl1kheGp1ODYaVg7Ke0qltelievMAhTLY3DiS8vbLTjcFe1Nc1/SU0q51BkO4Phxm7xOgvHvmWYIuZZNMsHguEk9a/XgdES/NDcw3j4TvaVMPBJ0HUQoJN8vE2sk3jFBQKg1cZJkE7pGjdlwLXlBbWRCCpQW91cVoxw/U5ibY/bCBQYHl4nrEgBFAye6GlFkSApBaZMtIlwNF16CHBhLf3uHQaOOGg0oHV6nsPk+QWsXaxNIR8zMTlMqFQibB9z+wZ+ye/s+9faQ4lSZ2ZkK62vrvH35Q+qHu7zz7ls8/9yLbN7vkSYpw3pMPBNTLhao1+uUSmXKhZBm85BKpcLi4hL/5H/x3zJKYt5//12mp2pEkSYMc7TqTdrNjkvNiDfNkdUQEuaDCWpPuRSVVPWobC6RKhoHHjFZocPDqXAPBv28/cuwjcUzi+KCu35smfsPHvDYxYt8+NH7NJo9TGoJA02r26HYyHPn3k1OHHuENEl5692PuHjpAnOzc/4AMr2IzJHaaUYCF38MEHAEsmYrBtHFZKse48TJzgvGWuN8dYJswe5fXynmOXXiOP2ZFsqkIkR2+iFrLaNhTLfXJQojcvmcAy4JSRITxyNQCGBXhkBHRGEe36FbFluaOI3ptuqUilPUjHLnp0NqU7CaXD4vJoOuOitQIaVShVK5QhjlUUEgwmcbukkkGMdRd6K8Nsla6QBuUtGYWONSw4EwqTjgah0bpQjkGrEaYx8Sa36Wtygnq/gkBu8XYt3EakYuuJixO3CWjnDv920QtA9QnvWZqP47OIBrV2H+OZhRE0HfX4MeOFn5vGxTEz8dAFhegukZCW6zZ2DlcZhaAhXKyvugIX2jarPw1W9K+4VqXtJQza74kzx3CWYW4eln4fVX4XhJAuFMBPWc2OnPzIjOYxAL6Ol0xAzw//nPJOXw2FPS1yg2AmxmpoQd8kDF+SKNV43u78mUZTaB+Nf6ww3Gj2djMzEc2fCo8XP2E57/pM1/faiFUVtfhw+vwMXHYaoozEhqBNRNDeHEGbj3kYzPU4/Ah1elUsjv/6QTcyaIndBlZQjZAxm/E/45Le/zukbvBeO9lNJ0gnJwbEZ/CHfvQb1G1vQ1TsZjko8EgHj2UDv2JIxEKAwObGm5VpPhxDlDPi+IpNlqvymslLWgKnJudq3EZ5OSVWfZRNJn3Y4Ii9NErknlrBZUOh777Lz5tKSRffGd6rUbk9S6hYd/jwd56fixnyeu/oTtMwFu0uGQ4f4+aklSKioI0ESgnJ+MkkoWSEQ1o8g0OLhAbpXJ/Day20lJZZRJDVGxwPTJUwwP9tl78yYkvkGnBHhlFam1JDi93cS5lzSlRSKcZrS7T29vC3U/orD/DnrQQ4WBNFbEUiqVOXeiSimuM2jUsfUWNijwre/+GqFS6FyZ7Y0G9cYBl998hVy+yPlTJ9nb22TYGtLaaVI4VgRCDg4OKBWLtNp9ivkyURhRKlX4rb/72xTyRR7cv0uzdSh6kNS7DKfEqdfSPIQ2LKRmrJ2xguCcmaHN4p7oeALSxEgRgxob0/k0lhdgZ4uvT4GsBVcIoGo22zx66TwHe3Uah4ecO3OG6zdv0mj00Eoaevb7A65+9BHnzl5EBwGD7ohXX7/Md771TXef+f2RUu7JVbD1tA6gnIZGiBudrQiUTeVaMg7QotxnCftlE0s8ShgFsQM+clEEYUR1ZoZSdQqMiH11GBDmQqyFev2Q+xv3mJ6eY3V5mUIxh1aW4bBPIZ+nWCiQz+UZDUVnk6YxSRqJAV8edKCF0Yly5HIFKpUqqR/3RJyb09QDc5Wl93O5IqVSjSCMSHz7hFSqEPGvM5LmTJMY36RWNG9eyzSuilKMU0/G+R5J81r/OuN0cJ+TLZ+XEmivaUhTIAbrXHytq17B9QVyc8wRxsFqPu634UBMoAUs3LkNc/Pw7BkRBx9hnSdAAEzcQLjA7YK8MrAwBwursD6C+ackiCWe9VECSO62IZoREDRTE53Mf/wz+cxRB9ZmYHoOnvkCDHpw+458Zi0PSzW43wMSmJsTT5xqUSz/4xH02/Dv/rVoeNaPC4hKXEl5Zpvvg5aaOEb8xDlOL2Uao0kQhNPxpE7g7d+vxseI+6wjw+3QzScCnIl5yAOqWhU+uCYdyufm4OYNOHMGpktuwstBsQAXLsJ11zG8lIMXnoM/+VOyySNbFBmOsExMHv9kOs2Mg7eaDOb+BW6BpRDjw1wIqW875D47iaFeF02X1zwmqTRLVQgwXTsOjUPY3ob+SK6hfFFAyWAohnz5SF4fRBDGotsZIuAuiYWBjIeiq/GsWRiS9bKaFCYDjPrQa7rrQTnjRQU2GL/OVzeF0fh4w2ictsuYL3e8PvWU+Sk9nPL79MmmzwS4iXtd9m98xEKUR9dq6DByxyCVLYHramydk6jyiMPBe+UqGYyr9FCTJW1IKqUQRRTKFabPnqG/s0v3bhdjFeHEBWpQpEYGVWMJSGV6V75jeUCgEmy7i9m/R67SYtTeJ1/IoXM5CdomQocha8vLpK0251Y0j2/2+NH+kMPdA77wpZfZ3d7j4qOnuXdzipt3PuSHP/wjpmr/M6qVGq1mncb2AVExT21mmsFwgNKaw4Nd9vcOeeVHMaVykZe++CLf+Pp3uL9xj//xX/zfUEoxHAycAZ/vwfVxqOGDl1ZSAYP1wAZAZc60GcWipBorMeNqHQcX3P/7kmo+peZGNq0UaWpoNFqcOnOSG1dv8cLzL7K6MqBYaLK3d0A+zNHv9Wi3m9y9e4OVlbMko5hr1+7y7NM7LC0uZoxM5hJM4JqBujJ4x2xYa9AqHO+rqxRwNUDC9ODbEQBK0e922N07ZGdji1KlSBRGhFGOKJRu70EQEIY5wiAkiiIKxRKFfJ5er8vu/g5XPnyH5eVVpqeqVColef2gSxSFFApFisUSvf6QJI5J0oR4NGQ0iikk0vCyVCwShhHVapWZmVnCyJVYIi0cAq0xCPCQW8OgVUChUEGHIcNRzGgUE0U5rJssrTHieoxvgimGhl5U7p8Dsv5kxhpSI00yUTLXxUmC7zxvP3aVfYa3chnOPiKTeKslE7PBrWoTr6KfWGUyAdrd5DwptEzSMQACeSyOZUV7/ab4yJwocdSRGPksbYSOl4gjj2XflQrgqpal3HutCtUF0YSMRi5IuhTD1jZMV2HbwFoJFnLSK+rHP4HlBfjgJpxpwMlL8Cvfhda/kjYNUzNSHdQfwmFDKmaMkbTH/Ax86TlhhV55Df78e1J59U/+1zI+hcJEP6hPQBj+WDPm2AcxO/6ZOdMyTkP4sWfyc+3ET/XQc5+CvrFWgvN0TZykHzkNr70GWwUYTAmATEaSjqvWpAnp1g2pFjt/At5eknJyfw1kIMcLqj0Dko6vC5uM9826xzPA5RicSQBWdud5dQW6PWFmYsckJl68PpTrLYnFrHE4FLA7twQXn4KdLbEk8DYAhZJ8Tr8voLbk0ldBKIxOLpLfrZHXpLHcE/W6fLffPy9kxwMPd53bVNpDJLFU3eUipxdyjFPWfkGNtVWT+qSJqtwj95RvB2HdbRE68bRPEX7K7TMBbtLBkPtvvEJQKDF75gK5XN5R3+LGGgTB2A3YAkr6egNYZUlJCMk5lOx8O7STACvAldEGuRzV1WOMLtWJ628SN/3nuNUUmtR9rlapeOM44bKklIUyXFqv8Mz8iNlcD1urYI1UwNjETTrGsrC0QH0YUy6V+PqpOjYKUKMpKuVp+tU+K8sJO5t75HIFhsM+f/WXf8yv/8ZvUSgU6Xdb7N55AMoSFQuEQUixXOLty1f54IPrnD9/gnMXTjGKE7QKKJVKbGzdo1DN0+l1SNJUvHx+DtgQYbAiQNx+vX+JxQoTokBZnRnM+c8RJktWISr7rDGT82mDnMroacvduw/44pdf5taN29y5c4ez588wGt3EpoZOuweBoT/ocfvWTU6dvkAQRPR6fa58eI35+VlxsQakX6KY0oFj5ax2AEYmIEuKsc58TwWM631k77XPBVsxFRyMYu7evcHewb6bwxVBoAjDiCiKiIIcuXyBYqnMyRNnuXjxEtVSkX6/x87OBiZJGPQ7dNptluYXCcOQMAglJaoVOpAUT5KOCAiIk5R2p0WcDgHo93uYxFI/3KdanaNYAjHRk+PqAalj6uSyE3al3WzT63RJQ+PKwQvj8OCAnuixBJxkGib/Gie8MqSO6TOkiWiyUuNafzhhoge8n5stn4fnvyiT/Y2rE7b2HO2f5OOo9StWHPAIgRFZGiHTB/i8pQvMoxFs3ZcUyMyzMOU/RzE24XNgyQaODZoI3t7uYqML+zkYlaTfk+/y7UW8WsHOrlT9dHpwe0aOI9eEbh3aRdgOYWUBRgNZzX/tO/AHvys+KuUanFyXffIBrtuD5y7ApXNw/S5cve36U6XSm2rtBLSHYhKYNV78OUHHAxfMUTCTAR8kGAbuuLLjR94zuVKfZHI+VU6KowzQiXX40U/h7Ck4fQqu3oDcGQmk1RKkWgDBmTNw66qMRakIj56H/UMyQz/fCNKLyrFyDH7/rYvKPiB7YDCZT5sU4Ssl4ODkWWEVPVhOrQCHeCTgazSUVNDdG3DlCvT6IgReXpPUYaki4vD9XQE1aToGl6ljjoIckErarVJzfysRrQdKrAfaB9B1YMOfA89aeiGwZ1RqFQFmqRMo68HEcXmwwngsHgYoWYWZ+1zfh0wrpydy98VkuvNTbp8JcGONYfvttwmrNQqVClGpiNGOcNfaiYMVyuqsskS5m8NXoxiTysqVMFuJg1R5oHygTslNTTF37hH6u7scvnMXlSpczUyWakmNKwMHHK8BKkUrWDw+zVe+/SxzlSLaGFSpAFGI6fdJewNIRa9RKBToD/rkNdTyAU9M9XnvsM3br77FI0+fp9445PylY2xt72DThHpzmx//8C/4yq98nXjQZdDvsX9nk9LSNIqAmZl55hdrpO/26XbbbG9tMRqNKJVL5PNFVlfXmJ2u8coPX6E/6EwwLB/fZG6RNFOgPR1vpGRaicNy6gzjlJ/gPRMCeEdiMrbEp9b9zfsLzrX1U7ropjrdLhv39zhz9gxXr1zj/LmzVKsVKqUqG/EGxkgH6la7TaddR4cBOoi4du0uzzz3OKVSGfBiX3fNKGFrlEICsdJOaO08ctwKxAd0lVGeLugo0bdUqlNcvPQkF5KUOE0ZDgcMB30Gwx6DQZ/D+iFxs0EQhtSq04zilO5gwIPNuxwe7FKr1dCBpttpMBgNKYfFjGvMzoS1jEYJOkhIkoTDwz0ODvfpdLuMhkOSJKFUqnBs/SzV2jQ4psxaO+5HlSZYdMbAtNtNdvc2OHvyGKePrTpmx2THbI0APJNVl7lzaGwm3M/eg2vHYVKS1DgfQS06nMkY/XnZtIann5YVaqcjAd2XmxojQcS4YPVQf7Is0HpRJN7a3+ksPMgJnL1AswnXPxIR6FMnpCnm5Io9c4HNlgryuwc295rwx29Cuyev6w0kaBWLEnQDFySHQ+cwa0Vc3CjCbAVeehbeviYl4lfuwcqS7NvUEvzK1+EHfyHBvFiGk6uw05B9qO/DbgueLEkAXF4WUNjtCkDa3IB6C77yRShUPh5wHtL5ZeyGScYBT7lx834rTAAdn75SZIugoykqOMLiPLxNio6zXxw7cmwBbtyEi+fh2nVod6DXhmhN9iUqiIC76kBiGsO5E/DGe5ICZCLoo8asjMWxDZMgzu2ANuPfLYzFxXp8bbWbcOVnzg06FBatUIS8cwCemZPqtiQR1i13XR5fOyHMTaslYKgyLVVOSX987U6eF5/2CkOYmRcwUy7L+Q1DAU8PboiJYHadqrFAOYjk2D0DU52SJqR3NuD+JpkpoHXHrK0DQo6xy8ZEkQmm/XtQrv2G0+ME7npwvm1/TYPizwa4wVqG9T4bb/yU6vwC+UqF/PwKNpSUVBiGREGE9lSVax0v7I5ES4NDxxZxgbVWBL7yKGkak6YJ+XyRcH6RmfOPMNzdo/9AWilkQQNZiYYBaKflsUCxHHHy0gpPfuES07WCsMlY1HCAjgM0GlsokXY7kKYoLFEUQppSiAJmyyNmWh+wt/0yx7Y2OXn6HPce3GZhoUqj3kSHERsPrvPm5TKPP3aJ0ajHoNN16YqUamWKxYVZXvrC02xubtJo7DO3sMKFRy5y6fqj3L13g2Ixx+zCLPuHrZ871NIDS0Ch73idpa/dKt04BKJVANo4t3kvwAbfkX1SdSDz2S+PchlTYiHUItfe2NrnK19+lps3bnLz1g3Onj3Hzdu3OHX6JHdu3wGdMhj02NvfYX7+OMMB7O4fsLO9x6lTJVDehUUmHOs0JTbLk7u+TxPcksV7vbkAkVnKO9Gt1pRKZaanZikXSwQ6kPRMKmXVo+GQZrtFEidEkeig8vkcB4d17t27SxLH1Co1olwOYxPpE5XmHcsk5pRaiVg3HvUJwgCjAvb297j89uu0m21UqLPU/vsfvsfS4hq12gxhKOm1JInJ5QrS2NNNEuL7k6JVSJokjEaxeNuAa6Mg1VJ2ApgqNeHvlHpRubB5SZpKU9U0cbYTrumoY/tUJrn/nGxKwUwRXnhZKj06HTEmS5zfRiJFAbgUXJZOyiziIUshKVwqwq/i3RY4un/YF6v6qx/B4gKsu1YKD6dXUhwt6h7rJfDhFvzkQ2j2XYxRDsBI6xAGrrLJt1hJYglOcQrdHNQeheWfSouBW9dh/ZQAlpkpee3aOXi+C+99CLmyeMEEoQS/ThP2DuEnb8HamlTM7G/DR1fg7Ptw4pzoOvYOYbb28fH9GLDRZB2vs8O343vOAx0vrj5SRWY/HtDsxGt+8cmeOE9utlqdhx9ehrNn4PRZuH4dzpyGW3fg1ElJExZKML8M+3ehgKStlhfgds9PKow1Im78vVYI9RBgdayE/93r/awFPwcZI8CpeSjpJp/eCgLX1DInICIKJOXZ64iOZmYGjp0U1qbTErZQuZSTHuIXT+NUawC54rjr+MICPP2ClH+nEwDs0Sdhb0P2J0nk4KJINDap33f3U0t6nyiUsvHJBYCvxpoEphnQRcC+cudJMWYBg0jGMzP/8/fdX0/b99kAN4Cxmu5Wk803XqVcm2FWa4LpOVQQYpTJum37iVhb6TlljUIpGWiDdPL2pcrGdTxGKVeSa9FBiM1rKmtrLDz5JLu9NxgdjsSvBmFurJJgECiFVSnzK1Ve/NaTHD9/Am2ExVE6Ih3GmEEP5ZxrtdJQLpPUm1hrmFtaYu/BFouLxzjsD1i2Oxzu3GdzI8/xp+aJyiXeeet9Br0Wpeo0y8dXqM2V2T5osDQzTatxwLDbozcaEkQBKysrnDp1jGIpTzyKmZmeojZVI5cLKeTztNpt4njAuLXA0U2OyRHnrhRYbDw0iROISupPAl9qUqTJI4SBT1+5Jpq+SurIFzw0sf2czQOkKKcp14oMBwOiaIrjJ9bZ3dwln8+jlOXkiZPU63V6/S5pajjY32Nt+SxtpVFGc+XDa5w4cRytxCvGZjOnFxh7sau70azop8ZCY/+3Hx33fmPRyhKGoYsdqZhCBiEFciitScsphWIBrUPyuYLcr9ZycLjP/sEuoaNTAwfI4zgW5sOA1poozDksrkhTmSx0FBKFeU4cO83CE/OUqiWkcWlKIV/kxPHzrB0/Sz5fIElGjEZDcrkSuXwOhcVYmVSNSWg26zT277tGqHJtS+pKxLLWpZ1U5vlh5J7S7vxb519jkTRVOmGW6OckKwsM/dlwlPj0mzKwMgXPvwztukz+jQPXhsGnm8x4IlZWArO28vwEczkeDD3+OwxcFU4CQyNMx7vvQul5mPX2wLjPdb9bC4Sw1YE/fgeu3XWAJ5AKl3wkQbfnW0UYYVJmpiSg7OzCsRXYvS/CWLUES8dgdQRv78trn3kMSlNyzPe3Yb8rvaTqDREcl0uy6o8TcfS9fV9KyfM5eU2zCcNEmKJK1VXiPMSgPAxs/HH69ARm3CwzAylqHCQtwkB45kP71zy0+XPzSQzOpLBZfoGRgfZA2JC4BXfvw+qypHqMktYZMzPCYgWBtKXYuu5AgYFHL0jFUuaT4b9XkYmCtQacEZ2/Znz6Df+32x//fg9qk8TF7sA5YCdgR2C7Mjb9gTw2GozHbW5eTB5TI9eRB+RR6MTZ7jpOhmNgGThgFifCUj64Az/bg3afrPP7qAd3r8G9G3KuQ9c1fNQXACV0gRyDDkW7NX+MTFCPHxopAsrSTlnPLQd6MisBx94oXDrKToiImfi8iRTxp9g+E+DGAokNUamhd/s+22+9ig0DZs5eRFenUKlxvX6UlKf6lIL1oF8GSVK/ypXHWgf+QrTWJHHsQKAISHO1KebOXSRtN9h/433sAMBIEkorVE5RDODYo8d48kuPMj1dRakEggAzilHJgCAsYEtVkk6LIJ+TKq9Ebjo7SiiWy0S5CBVEnFg9RWNwg/mDqzy4v8K9Gzd55Jln+dZv/Dq3bt1D6TyXHrtEs9Xmzr2rxMlpji0u0KrvkQ5j9u7eJwgUcwsLrK4uUD/skMQj3rz8Kjdv36VcyHN4eIvd3cYRVtaXwvuUqf87tZYQCViJSUgSyS+oCaGxcQjduAncaysk8FkmO6H/dcTEAFMzFWbnSxxbO8XdO7uMRorz589xsLNLo95kcXGJ1BouPnKJ9957lzAKGfaHTltm0EHEzs4+aZygo+DIubXWpVd8XxhtxTDPMxRWQKuUFTrGQ40bgBolgj+tpSXCYNhnNBqCgtD5vmAgTRIILFJqHdLt9tncvE+n3WCqNkUcj8jloqwpZpzEwoy5NhvKCnDsD4YMBz2malPko4ilxSVOnTjF3NwcJk2IkxSlA44fO83xE2coVarEcUx/0CcKc+RyOUyaSnPTxEq6slggZEReD10qTmeLLaR1rJvwvFml6NOMC+rSk8pmFVL+vAsAVmCdy5T6nFVLKUAlMgmfWoenXxa24/oVYSwCzzI4AOHpdT/J+lSQY68y5gbIegblXFm4vydaTfn86jQ8/5iwAX7lbyzEFvrAhw/gxx9IygdhfclFEBYgGUj6pFKTct80FW2CtcK2dDvu8QQ2b0PhLMw9Ase24NxZuHwZfv8P4fRxCZrvfSAVRMfOQ3Rb3IlnFgREnTgmAGNvDzb3YK4iQOaZl+DMSREgz54WB+UjuMKOf9iJv31wV0qCYTipTfFBzAe9SdDDGOS4OWkMaia/8qHHHt4aXdjrwcZtOLkAeQvXbojYe2ZaSt5VAB99CI8/KcxWIe96amlJTS3NC2iIve5m8tj0WDBrPFCbBMYBIjD215RfXLnnMOP35Z15nnXXU5o6HUoIqZJr1yZQLkhj1eq0pLSiCEahALMwGrtwayXMj7/5C3kBya2msEA72wLsDg/l9aHTCN2/DXdvSuVU5IB1MhRw4xmWUMlz/T6QA5MfA5CMvArIwIw/Zn8uM7+ph/7568Evln1lovUA8tNtnwlwY4DYagraoEYxzavXSHM5yBWoHj8JSvry6CB0LJt0PZXGjQq0rNKVs4YPgkgCjxLRps+nSMAzxMkQnQuorqxiH3uKuFGn9eEDSIViNwZqixUe+9IjrJ9cI9SQxDGMLCpJCVSIjnLYeIjOF1HVKmmzgYoidBQRFAskowGBtcwuzrN96w5LJ45xIU7ZP7jJg3sfcHBrmruF9+gO2jz51CXa7Zh+p8f2xn0arSatVoNi4csszS5zsL/FsB+zdeMuaTJkdf0EtakCrcY+H12/zs0bV+l3O3R7DeLRiHxOMRyNx1c5SKOVIlACSEKtHZMqK3QB3Frqw0RRnKUvPGPjK7DGm0xOmXYFsgvyF0GdM2dO8g//4W/zzrtvA5ooV6fXH3Lq5DzTs9M0m3VOnj5Fu9PmiYtP8uD+fYySbtuFosu/mpTD/TrddpPpuQUXqB0bgyilUFq0Q24BmLpANLbeEGGxzm4YJ8J2JeLie6WcblT6WiV2iNLaedKYLAWqg4jd3S02Nm5LQ1RrGI2GRFHEYNBnOBxlIFFMFsfduFvtFvce3OHksRNUymVGoyHxaEAUBKR6vEYcjnqkqXfSNQwHA/qmR0DIYNinN+jR63Rodxp02i1KOSjNTYN1Tk42EUbLGrSSSitvwqeUgD6NJlXG9aJKs+vDggOFstJMvcuxsfB5ZG6MEuBw4ZyshkcDuHdHHrcuPaWQCdhMTMzGAUVvDZ+6dJAXbXqc53UEYV76PG1twvvvSLn2pXUppcatUHc78OOP4PYDeX8UQU5JoLGpCEqjvKS52m0x50sSCTT9gXjgKA27B3D6pLASUQDzZ+D4o3CqAb3HoFiDdz6EWgTlIqwek8+amoH+j+BwG+ZXoBjB2ROy7w/uSm+p6Tk4exbOXhDhannKreateGdkm7tafQD3EyqMV+gGMrbDMxyZc6RnbB4GKxMAKfuqXwJqAG7fg9/5V/Dk0zKWoxkJ8Hf2pUJsehpu3hYh7ofvwLFjAjhUAP2JvllzM5IaOtgb7/MRCtOlfTzYygCO3xF3LrOFgA/eZjwm3tQu8H2t8vJ67a4lD6TTGBZWYO2UvB/tGLdY9Fj53Bgkosf7Za0c5/opuH9XAHEuL9dPEnOk3D5XdO0b3Hkr5EEXBVjlCyJALlehMiUVZrGCgyZZpZQKycTIPpXnGS/rjtVZq2QOyv76gDEYmnQ51orPHXMjFUmgCQgxmHaP/XfeQRerEEbk5hdQyKrZmJQ0TQmQzs2p67HjNx24fj2O0vLtGAzS4iGOY0xqCIMcUanI1LGTJE8+R9po0XvQoFyNePS5szzy1GlKhTyhTWWcU1DWEubLYFJccQ5pr4cuFNClCmmvgwoiTH9IEIRYk5AvlqiUCoz6PU4cP84wSbn701u899YiG/eu8uJ3vsljjzzKD//8B/RVQLfXQVlLpVrixo33qDz5Msurx9nZvE+/N2TnxjaKkKXVFawdMj87yxdf/jI6DPjDP/ifKJY7FIsRjcMBg0GCsaBdes4zLVpLSiJrFol15fYK0sQFPY1SZuyA/gloxTfS9MHXT0C/CNhMTdX47b/3WxTzRWrVafb261Qqs7RbLQK9yur6KrsbhxRzRe7X7zNVq3F8/Th7hzuEYUC5UsI7WQ87XRqv/gXVl79GOLss/jWu5FtCR0qgQ9cF3pXzu0lXZV1vdSZp8OWayhoJ4lo7VtCi3PlUKLJ2IUphE8PQGAYjw/17t2g2DigWClIqTcJwNKA/6DMzu0htasbNgRFah5n+Jk1HNJuHdGcWKBVK9Hp9Gs0mc3M9AWhpTBSFDPsd2o1D0iSm3jjk+vVrtFst4mRAv9+j3W7QajfodjsoZXjuyWdZnp+Rg3OToNfmWBes5TbxAuVEGnIm8tNrbLxrsUEApnUTuBAYci4+f5u7sKsleOpp6Hdkgt/fc087F9cgkNVy6st8Jz/Cr8KZ+Ok0CkEkICXQouHp9eH+HXj3DSnbXp+BTgyXb8DbN0VDkVWlIBP5qCsTu68cLpWkRUK3LYElGUkrhTQRENbviei4WIJ79wQcvXwantmF4xfgj/4UPnwPvvl1eU+5IsfT7sHZJ+Ddn8DmPQE9pTycXQYS2NySQHtYh5/+WIDVb/wd6FYFAMzmoeCNIj0j44ENZIHdi3A9MxY45tT6IOfG9ZPwyscmIPtzXjixtdrwb/+t6JPaDXEd7h5CrQZmEx5swtqsgMZjx+T19++JQDdJpPrMs02VErz0dfjJX0J9ewxKMgPLgKwdRVaB6wGMN/bzkynjgO/FyMal66wan0+sA8iRHL9v9JrTcPw0TM25tFEIhAJSCkVxDm7WZTdMTNbc1BjQOTFpbOy58vCiANyDfdmnIHKi9YoI0cNQfp49D1NTEOQldVedFrBXqcq5+9mbsF93x+3TRz5wTmqQ3JhMuif7lGWm0XHjmd1v7p7AnYtPuX02wA0QyZpROiAnAYODNvffeANVLLJw6XF0pYyntNJUDMdUzs8rzopM66wNA9b1nML/jfTuGQ6ElVAGFWhy1TLTJ08zPNjB9l/nyefP8PizFwhtijauNJQcdjRCl4qoYg47HGHjGEUASUza6RCUymACRq0GUb6MHViSQZ8gVJRnZqg/2GCwd8j67BRfe3SF3/3Ze+yGT/H+6+9g0pg7d29Q2N9hZm6FYDovbQ50wK3b7/P8s1/i3PmL3LzxEZ1ejwdXbzMcDFg7cYJyOU+1eob1E6cItOL3/+BfUalWyEV1tjbqJInvp4UDiK7RptaeziDQyhmMGrfoGhu0gWd3jk4uauIXPQFt5JYVQ8SHt3w+z9/+zf8KpQ0/e/9nLC0sUW/0WVyYZ2tzC9Q6J0+eZG/rAKU0cTIiTmJOnzlNp9sil8sTBoHrywQmTenc/pCRbcLFlwhOXkJ5R04XcI3zlBgbEDpxtA6zNJSkxmWlpXybD3dNKef7Y40Zj4kF37gVa0nilMP9QzY372HShNSkmJElTUfUGw10ELC8tM7CwirK58Enxs+kKaPhiGarThiGbGxu0Om2GI1GaK1ZWJjn+OoalWKO0eCQQf+Aazdv8Nrrr9FqNLCBCIuVgcFwSJzE5KNIxklZso7fCHspppUuDhnRqilE+2ONEk81Y6WrvCsh9Z3QhakT5kkIJF9V9XnavA4rgDCFuSo8/4KwIB/+DDpdstVR4AzHsgW3u/LlApxYnRtEb+HeGgaywrVKmIDUiGvw7dsw+wEUX4TLt+DyR2OWJ3Bl5rmcgKHeSFbhUSSfHUZQqYj4VKXSM2rYhYKSoJZY8Sg5tgbpLBw24YMteOIJSN6GF5+W4z5xFuaX4GAL6sMxK3DqMbj8Y7h2RbyASiW4cEqqcu7eFf3NnRuSxkgt/OY/kPL0eEaMAkOvH/LDbOR1xjFavru5ZRzUM7ZGj8f357ExNvu/ow9m6YuJ9w2G8B/+EBIlqabdHZguCru1tgL2gZgZrszJuYtyMr43b0nqb+RSf4GbJ4MATl8CPQ0f/hTufCheSTAOuCoka6sxmVYzPiXlAbBPZbqgn6U17Zi1mtShZOk7JdfV/AysHpf9jRNh+XQkmqE0hZ0HsLspLOSkvw5KjiOXk2qwUQyra2IHkIvkGt3fh81N8VMqzEJxDk6fgRdekhSeiZx9gpUKqygSM0Ht7Qz0xHnQY/bFqrG+SFmn77FubBVjb5uUrBO6B0q+O7hnsD7l9pkANz59Z1AkqaROEqMZbNXZfedNomKBwrHj2JzG6kDKe3VKaENUdvJkEHXW8ditzgPXuVsFpMmI4bBPFElDTgHlIfnZGeYuXGS+mPDI6Wl0r0s8GBKW8kTlIiYW0WRcb4FVhKUSJCNsarE2xQxHgCaoFIh3OyR6gA5CgnyOdNAnVyihA00YRehejyeOLZJa+J1bN9meepZHzsyxvrrGnfv36HbbzM4vsbhynEE8ZBj3uPzOK7z07Bd54vEXeO+DNzhsNrh/9Ra9To+Vk8eIwoSD3R1e/sLX2dvb5I3Lr1Kt1YhHMfu7bQHsSrxtwjBw7sRWKmoC42o/nKmbu+ZiV1UjJm4fBypqciLx9A1usXD0oWxbX11CkfDmm28ShHm2t/cJwwq+G6yxKZWpGsVygSgfEASK4XDAiZMnuHP3BmGgGQ3Fl8UYKfEejWLs4Taj176Hvf8Rhce/gpqZw+oQixjzyS46k0cCERFbIHAAx2lucKI/0d947xjr9s3pL6xP1xgnvFb0e102Nm/TbB0QRRFpGmNSy2g0II5TzChmf3+X9fU2+WKRNJXqqX6/R5IkDIYj9g/qNJttSsXb7B80AMWHH35EGAV8+2tf5cKJU1TLZayCeBhjYtHVFKJFwlxALgqJ05Rer8doOEJE71YAjpwwfGNZD9IsuFYOKltop9ZIdZQDc76yjkxkLKXhAhIn0g2fm82Og2TgAo42sDINTz0r3i/37okA1TuzGsfeZJUyiqwXjqf+fZrKGpmgw5zoJ+KYzNMkTaB+CFevwCCC2w1hWYoFAQ69vgMIRpyGlRXPmTDnRLiBgB0MdPuwWAFTcMLloegiBl1IjHxvqQT3d2WXT5+F1mW4cSjdnI+dEPZnfwe27knaKyrB01+EN1+B916HR5+XVf2F08Jc3LkPSQiLS/DTv4DFVXjuJSlDzkWwWM1IC6x1FWg+JZGIZsSPX+bSC+MeRBOBcVIUfESkzC8lbLAWNnck2D73nGhFluYhdeJcX37eakF3IOXziRWAeOeO+M0YA3nvy+LObxTBzBK8+F049gi890MpmzcpY3rN7aRnLzz4TSaE4BlY8YDHe8e4cVET/7JeTG5+Kpdh5RRMzcs5DiK5NnJ5SUXmIxEZP6iKFiYI5NwWS67EPCcptqkqDE7C7Izsx6VHRE/0lz+Au3eEtbJA3lVfDQaiwRolAqiCQK6vfI7MyTuYOGdHwKr/faIkHBg7EXut1cQ14P/5z/Sf8dfQdn4mwI3fLFZ0VUrqfbSx9O/e56D2M8rKkFtZJCxXsEbJypEcCoMOtLOUF7ZG0i1WJnik0gqlstYEJtBusk5RWpOPNIuLeZan1silMUmvj3FGQiaRlESQj4jbfYYHdQGepSIqidHWYkcJ6aCPCjRhucSo2yEKI8xghNKySp5eW6e7d0AQBSTdFk8eW2B3uMn3N67SXn6Bv/Pbv82/+Of/D1rtFoNOi/u3P6JYnaJQqdHttnjl9R/w5MWneemlX+Gtt37KxvYmG7fu0m23WTt1nOEoJl8o8Z3v/l12d7e4dec61ZkaFkOrPiBNDFGoyUUa0OJbYiW1orRhem6KYqFCHA/RNuTgoEGj2XHn5ZM3L+D2M47yFOIngSGg0djnjcuvk88XUSpPrTbLyvIp7t7dpDpdESd3palUyuSiPGGYI00SFheWmZ+dY5TE9Ho9V+otrrlbo5Rz8YjIKLh/lc7OXfTaBQqPvICeXUC5LumZEHaS8gSsFvDrWSoFYjIIIkI2xjUBtplzPIg2xVhpgnlY32N79wFpmhBFIf3+gEG/Ty5XZG31LI3GIbfv3CSfL1KrzdJqHtBsHpK6RpbGxPT7MYf9Lko1s+Frdwbk8xHdbs8t3MSNO1CaQrHA4uICaWoIQ3FlGg1HRFGO4WBIahKUduDOa5Gc9saPhbJKgJsr/0+NE2G7uVergMQ1ibSQgUoPEBReo5Py+duUC8I+2CoR0rafBKNha1c0Cd6nA1nAkBqyDss4IINjZ9DjVFWgJQD4yh9cNVBsYW8IrQ0JTCXHuBg7UWEVSwuEuRn5ml5/3Mk8F0oQTo0An3JlLID1K/+NB1K+HKeyKr+/B/lVWLsA26/Dv/438E//V6KVqNTg1CMiSu205PUvfBWuvA2v/hU8+zIsrcLpEyJAvnVPgMygB9/7PVhchlPnpRklGmYKAtBiI/+8J4pyqRWjhVHqd1zJcioVW7XyLz5dHjD5ZZMHqJ8kLgbRCD33olT4mKFUiG3chBNrUO/ICswYYenioaT4wlCagx7uO0BQnAAXWsBOlJNr4vgFWDoBG1fho9clFWQmWJsMlJkxKDa+kmqCffD7n4Guicc8e4ERVkhrEX0vrgtQiRMBxsWiHOfmDUkhnTwjqbbWIdTm5LFMvBtByfWislNjoFEpCHApl8YgDAfYB33Y3ZNr2hWekM+JFqyQd7o0r0Vz5yfzF/GgxY6ZFw/iPKjN2Kzg4+OBOjoOdsJy4ZdsnxFwo0itcu0NZaUsLQ/ADhNaH11jEFhmwqep5IukiHDYU5ECjp1eIkCM6VxljNbB2EXdgjEpykZyElJDaBMW2zeZGu4TjIZYHREWi5BG2DjFkBLkA1Q+T1QtMzzYZ3SoKYQ5VKjQhTykFtsfYIYjgkKB4e4u5CMKU9MMD+vYMCVXqWCSlPb+ITpXwg66fP38Gs13b/FXP/4rTp1Z4MKjl/jxD38obtjDIezss3LiBKWpGRrNQ37w0++zt7/NN776TT587y3ev/Iue/e3ONzdZ+3MMRSatePn+O53f5t/8S/+L3T7LaZmppmegWE3pXHYwHuhAKjQUq4VmZ9fZHZ2gcC1Ksjn80zv7nD71i3293sfQzcKMuYrQCwQ/YIM3DVpjqamLNBs9VF6n2NrxyGwPP7Y0+xsd6hVK5I2ttJ7qVIpEQaKMAhIbUK5VKJardLp9eh1hwJWjCGJYx7oMgfDIcslUKlF9Vpw/S16mzdQp56g9PiXsPkCUmEHinEaBn+9WX9caiIt5R9hnI4yFpumGOt8rK1lMOixs7tNq9kkCCOG/R67ezu02k1OnbhEsVBhs7/B65d/xBuXX6NQKNPptVmYW+Cpx5+lUChTyJek7QUfx4XS1Vt0L8akGYAMgpBcroBJExdTDWEQEDnaeZQ4gIakAmzGwMlEKwxMKrEYeb9JU3ncOIYHYSyNchOdCx5jSYXNhN6fq22idYu3CAAkeF04J958ydsSICaddY+koJQLkI7RUS54+fOncIHRCTUDLQGqehryC7LSNrFbXcey6iYQFmE4hHZXSn3njOs6biXVEigJaPmcrKYXFiUoNeuyCk8CqXAJA5ifhWFP9BNXN+Cp0/Clr8KNPXj/A/iVXxGyIZcXZuPuXfmcqVl4+VfF6+UHfwqPPyMds9dXpET65n0Zg3vX4D/+G/gn/xsRK9cb0ABKgQAW6wIhSHqo3ZfVfwYEAulZtbAkXjPzpXGwPcLWTIAZ/8M/bXAA9CGuuFYEOy/CWaXgvbdguSymfQkCMApF16rAuqqkSHRL7Q6ULVTyY+YhlxPmJ5+HHhKYSzU4/wysnoXbP4P3fizH49L740lx4qLIsJhlnJaaODb/fZkbcDB+vFCChWURQSex7P/CMtSm4O6HMOhAYRWe/wo8+4KweOWq6Gnee1OeH/bJKiomRds+refTcDoYs2SpK0EPQjfeWsYrSSV9F7qFgjNAHXuGORpPuWPxmM6b9CnlFgp+LJz2yvfa8mOTLZrHi9JPs30mwI2xkGAJfdCxYJ1nh0KTdgfUr1xFVapElTK6IqWJfpJVSmUtA7xZW6ancFS8LNqlvYAxKSYdoZKQheEGc3GDwCqM0cL21MoESSrgZjBk2OlgRiOCXI4gypP2usTtkNxUDZRCFyJ0PCRNYlScI1+bpn+4R5TLE9UqjDptFAnF2Sk67Q7vv/eAJ588hk4Svv3IGrd/cp3716+ysrLMMFEctNoUA0UYwPb9u6xqTVDMo3WOW/du8bt/8Lt851e/w+zsHK+8+gp7e/tcfesKzf0WSTxkfnGVX/3Vb/L7v/97KAIWFpZYenSJq1evsLu9iw4VtXKZanWKSmWaMIxI4kA0ccbQ6R7QHw6kG3uoshYqAGGkKOQjAUJGXIbjJGaUSBpD5MlyQ7uEyHgeshDoPDrK8YWXvkqgC5TL0Ok2WZivSgk/MSqAOE7odjqis4ly6FATRQVaza7cc1aTJgMavZh6CPORIghDrLGEkUL1W6QfvEKv26Tw4nchX3bXhBOt4VtGAs4PR3nWyY51JArxU5LUjQjzlJtsLdBqttjZ38YYSwA02002tu8x6A84efxRmq0mt27f4PatW9TrLSmoMZZHL13k8UvPkM8XyeVFS/SJm7WOMUnwpdvGlXKn6UjYYK96cnNMaqXKKTUma60gzj8O1Diw5tNL3rjRWgE0AqT8RGXRRmFdywCFxtgYaxwYU583QbGfsd3vCqTCwwG/cgEuXhCA0OmKyV88nIhTntkyHHHWPZKKgGzVqgOxuA8TyK1Kg0tlJRVGIJ27w0DATSEvmppcToJG7HoH1RJotOS7B7GwCmEE0UiEsrOutUKrIwJPImFHqhV4fB3evS9lzB89gC+chwuPSD+q0Aobk1rJqhw7IYzQYCjA6/hp+I2/D9//j9IZ+6UvSnuAZy7CfE1YjN0t+PM/gb/9WxLs9nZgZ0e+Y3lJQFm3C+0WdOoSlKPUlVkrKM+JNil1qaFg4vTEVnx1XHUs2LFIOwMzE0DVb+66JXXdqn/6AzAD6ALladjvOB1MTvYjCmTch67BZJJC3Jeu5yDnKsxLb6bE7Vfi9im2Auwe/aJ89mvfg2FngrV5aN8yPxw7AWQm0llZ5ZirCs3YZgTEzC+NQUltClaOOQH5B8LEnToLp09LWlMjr73yEXz4lgCv4cDpSB/a/PdoB6iy0m0HurUviTNHbyPPtviKJz1xXib1VD69lBk3OkDjGR2/7tJ2/BwGVCSPYQX4fB4FxSAgRYObSJ3rKgkaTVJPOfjgCrnaNNXTZwhzBYyRHj04lgcNSTLCpL6buFtd4Vx50xRrDAqDsgkLvU2mh9vyPTpE5SIslqTdkyAZ5tCFPGGlgklGJJ0eOufATbOFDnOElYpcr7kIkyaY4YBiuUxzc5s4SciHecwwQUchyhqmF+aZK9wj7fYgXyAyiv/5syf52eCQUXmdmakqteos7cN9yjamHyds3r1NeXqaSm2a6tQUvW6Hf/k7/4IXnnuZb3/jN3j9tR/zwfUr3ProBjubO1x4/BHWTh7jb/3632JzZ5vRaEh/0Kc2M025WiaXy7OyfIxCvsJwmNDrD9g/2Kc7GBHHAwaDDr1+i+EgJjVWFq4WcjlFbbpIrTZNuSwCb2NTkpGhPxhgTUouKoKF/cNDmq0uJhVoEwYhFx95hK99/ZucPnmC4SBgZ/uAMErA9KjV5ohCTb5QolbtMhzG9IcDKsWyVKUllmK+RH2vl5VhK5UwVasRpPuksaSfUBabJJgkIYwigu1rcG0B/cjLmHwRlPTUykolndW+cjDHZiZdfqWuBcwoUDrEpGl2PcX9Pjv7OzRbbXQQ0O61ODjco9vpUCpOUSjU6HY7HBwckqTeHVh0PAcH+2xvb5EmIwb9Hj+vxsxaEcJLGlaAl3JgRhgsXMWgmP0Zl9OXFKxxxIObcFxD1dQ5OBtXpWIt2NSMW1j4XjjWLTYUBEGEsYYkjeV+VCkY5aQmn7zvn+ktW0xbMkMyXPnqTACPXhQL+ls3BTho5cSwbpI2CMDwjQf9ytcivweeVneMTWkV8ivyPSYRMSdKqrWUkoqqwVDAVJgTjctoCKWyVPfEI3nOWOc1Egoo6HbEjC4MBQzlXbpCadjdh+FxSTUMBhIv3rwN+Vno3ZMmi+1DseBXkQCgk6eg0YBWXUz7SmX4r/8JXP4p/PkfwItfgnMX4ZGzsLoE730kWpw//H1YXhHAUyhKmqrdk33duS8BPx+Ou7IXctLqoFARcFBwwm2PBUYWGn3xY+l25EEVSKVQsShjG7s+RnMzktbyQT9JRNf0F38mouFCKg1C4wCCErQeCIAZ9KFdcgaJBUmVBUr+DXqwUJoQsUayL+GCuEQrN0+EoRv7GJbPwfnn4MpPJU2UARwHon1HeQ8QlA/k/toxE/OS07XgQEahKCzdVM11LK/B7KKAskFL/pUr0vE86/eFfN7snJybICdAaBLcHwFeCNCeqCTNqp60ckSTHjMx2e967A47aXevPTPj3+cYrWxMfYrXHt2lNHaAyLV6sE6r48Hap9w+E+DGD7HGOmCjsDZwqSntxjWku9Fl74N30JUiYaGAikKCQKPxJc0Kk8Qko4FMzHacG1dKo1zVDAZm4jZz7JMLA4JcHgLFqD0ANGmcSHrCKJI0JiorQhWQ5CNSM0KpABVbRgcNdBCiowidy6OHA9JRjB1panNztPb2mVkMyE9NYZOYuNUgLJU48+wleo1DPrj+gI0G/OpLx7mgIz4Y9qgWCsysXKD2eEDz7Tfo9NrsaUW31aTVOETrgFyxSHVmke/9+e/z/upJvvXV77C0tM6Pf/qX7O3v8doPD1m6scqFxx/lwrnHqJQrJOmAN995jcFwyDd/7W/x5S99g1y+TK/f5q23LvOjv/o+V69dJ4ktzWaXRrNFPIzxDRKVgiiKyEVlCoUKpWKNKNLE6Yg0tZQqMVprivky+XyO6nSJGzdu0WqNwIrDcS7MoQwc7NWJ0xytdpM0HXH27HHCQBOEAcVCkWplint375OMRpRLNVrtBkEYMuwaRqMRaWKJh0PifosgKVGJAteDLMIoC8aQJgk6UETKom6/KZPrY1/HlqfAlbDj2D25QiTaKS36LaW9LstVFxGRqhjveG1MSqvdZGd3x5WLp3SaDXq9LrlciWPHTjNVnebmnRt0um2sSTM2ONCK/YMD/vKHf87C/BwPHtyn1xsSTDQxPXJ/WJO5nvtbWzkn3dRISb9NbVa5lNpxbyhhKVNhWHyqyuKAlsXY2N15yt0f7o70GiSLA17WMeUhqTLoxLq+pJ+rnuATc7lfPcq5w6cPrAUSWCvDo09Bpy/AIE6E1cCXNFvn3FpwK1EHkDJfD898AVEFmHc0/lCYkmpBXhO5UtjAymTetWBT0d3onPweKUnzpIkE0dHImb1FkDOwfyBW+rspNFsCfGrTosm5/KFoLs6vwzTw6j0wI8g5wLN9Fd5L4ZnnoVgV8FSbkveYVNJm9V34xt+CzTvwg+/B9gP4wtdhfgG+MgtnN+FnH8DV96Q1QFCAp18U8PVnfwA/+jO5/4pV+Z5f+TpcOC/RZ6osATvvPVVkGKVhZBeGbei3RL8TOGF1pyv7OewK21LvwrnTUBPXb1LjulobWJiBYCRlyzoHN+7J80kqAKbThOPrwob1WuLbkqZQdqmoUEnarlCDsCc6JmNk/6xjLELvhaTh1LOQr8D7fwHdZnYfZWmGyYvQuODuWVLlpBbEYJ1GyVp5TXVK9E2BkmA/NSXAc9QXw712Q6rgKlWnr3FfZSzMz8FXvgF7+7B+XMr8s/5X7qffMi2M+9vPBx6o2JSs/1PGwnjWJhDQY5WMmz/UrPrLgRXvcaP8fagnhsUvLBk7hoeOpPhrABv4jIAb8Ne0wriJwyJCXI1CW9coNA1p3donN3uVfHmaIMphgghNIJOL1aTAKB4SqNBR+RKctNIkyMRRZchaZ49cTqHDPFhxFA7CCBWG6EARFEvYNCHsOx1GEBIUIsxohA0sjBJsMmJUj8jPzcr8VKxiTQdrDYWpGrv371COqxRLZcwgRWnFqN6kMDNLs97k5n1DL7HU9/ZZXlnlzruvcH5lmlev3+CpJ7/Aqa99k+bbP6W2t8M1YyAISZOUYbdLEm8wt7ROvX3A7/z7f8mzT77IV772Hd7/4G1u3rjG/dt32dve4cTZ85y9eJFTZ8/y9//Of0OpUuHRR58kVygzGMTEqeXJp17i1KkL3Lx5lR/91V/wk5/8gNmpeS5deoz+oM+DB/fpdjuUSgVyuSJhWMLYiOHIgMpJFZYuSIl5EGJtwMz0IgvzXdrtB1hrieOEZrPB1sYGZjmk22+wv7vD7GyJanWWOB4Qj1LiZEQSp2xtbFEI84RByP0H92kcdomHiiRNSOOETueQNO5gRkN0aLJyZ40iTaXJaRiIA3BgYtTeLYbvxnDpK+jpRZSOJGWpcNeaa9+gjNObSIrGAx9j5fryvhZpnLCzt0m9cYhWimanTqPZAKOolGrMzy9QrhSxKiGfzxPl8mg9pFjIszi/TLPT4MatO9y4eYfUGMqlPCeOrbN/eMjObj27LyyWNLHYVFJDRskYJEnsKrn8IickScWkTyMu3nGakCSuZNs3mM3SKiB5SJ+mSuX4DeCYocRpb0CT2hhUgHZ3aBiEpKnBOr+kz92WUd8+mkI24VogSOD0PBxegG5DgmUaIznagMw1Ncq7tIkTfGZiTMc0kIfKguiRE7GhIAolOCaxAJ1+TwBJ0Z2Y1Egpbi4nFUa5UNicmRgODuUc9dugK3LyWy04fhKilpSJF+S8Mjsl1VnTU3BMC0haXJB2EE99CbYacO4cvPMK/MWfwjMvu7SHlsASBlKdE60JoKnOwd/+x/Duq/CX34NHnxZTv1MnJAV1/aqkQG7egN/7/wjj8v67ov0ouKqed34Ktz+CM4/AV78OX5iD1gF88L4wMuvHxCSw3xd9SNIHFQtjY11T03QggCBNZd5v7sJ+GarrEkSjUIwJ19Zg5x4UpsWN+LAnItuoALnApfa0lIanAzkf6+swWxYX4yCUz6rOCEDN5SDRY8bCM3QWEdpaK7qdhdPwZAgf/BCae5LimzT4yyozXXoq05zY8XWjnIgYBDwtrArgtFaaY07NCJvRa0kX8E4f0WwNhcEzefl9f1tef/qkuEtrLQ7T9zekdHxxZuKe8CyMAyDWyjUQejEyYJSrlnIspxdMB4FjfZgAK2ri9konQI5ja7S752BCe+NSUXai+ixNZL8yv6RPt31mwI3Q5JN9f3Q2NoFS5JViqDSDvqZ+5Q6F6XnCcokoX8AojSUhCEJIAoxKUIE4slolncV1oNAJRFhWe7vYtIkqzmLSBBuPHAgPSLo9dBRAmoghYKlIOuhBW0y2omIZW0sZ7h+iVUjSaqGikKhaQmlNUCyQjmIUltLUFM3dPYonyoTVMun+EExC0u2wt1HHDCNWa0Oq5RK2dciXTi9Sa/e5tWN4/91Xee6lX6X85JcZvPtjVva2uJ+kssbWkio53NmgXJ1iYXGZd957g1FiePyxl3jyuSVuXnuX/YNdrr7/Dpt377Lz2CW+/PWvsra+RqfVQPX6KB2SGkOSJkS5HI8+9iyLC2ucPXOOZrNDqVii2+3w9FMvMjs/TxBaNh7cY2Nzi+FwRL3ZoNfpMhz2UcoQhWK/HUY5CvmcgB9AawmRw1GfBxsPmJ1bo9ttMjMbsrBYwt/gxqb0uj3qhy0ebNzn7KlzWKXZ29knHkCcJJg0JY5HNA/uMzufp6IScloYOR2G2HSINSnaOvdqI268GtCb10gbu4QXXsaefAKby5OZ0k16TbjUgjUS9LNUg00EBFhLq9Vge0c6s2MN9fo+/X6fYqHC7NwCJ0+cYWV5FRUFTE0tsrF5lxs3PiRNDMfXztDs1Hn73depuyana6vLvPTsi9y4c4v9g9dJJ/pBxXFMahIpMU/ku9u9NqkxBIGmWKqilSY1ltFQvHGsVbQ7HRrNOrlCnijMOSmI9AszvsrHdbcWvY0L8tZrkKwDRlIu7huSZl3hM+nA5wncqImfbrLNdDKMV8vWQNHAxVPQ2BcWxItFCV3wT8GGzhY/lBWrMQJOQvcdpQUIp2H/0JXlVtxkl0q6KJZFC2kqVVGFEtQK8jn9LrScMNgmLj2VSLrHGOdO7NxsGw0BLve6Ikaez8vnliuwNg35GFp5EdDWZuHWjqTElhQ89RK8+n14+0fw9JfEpTh0rLf3kVhek4qq3S147AUBSu+/Bpd34MKTMLcIjz8NJ09Ka4e//AE82BAGqVR0AFDLPo1G8P5l2H0AN65JWXK/K/v69qvCRKVKWIbVFTnG6WnXvboooCAZkbk3D0YCUrLzhzBq68fgcFPYmHoqLRiy8+6A20wN1o7D3RtybpcWpD1GGLrzFcHcMTgYAdG42ilJxNBu0pPFd8MGWL0g3dev/RTu/Mx5wzihrKdmJ9Nw2oMaHAAIyfQstSlYWnFtFBRMzwsQHHSksuvuLXHAjlMBU2sn4exFOYcbN0UL9OQL4yanmzvw5quiqZp7YdwOA5ymKRyXmNemRZSstVzXvZYco1YiajepAKFKRQDXYOhYM2QR4J2bMzY4HKeugCMdwRVkeh+fzvKA0K0XPr/ghmBsuuZM/QIlgknBbYqQgOHBiL2rV8jPzVOsVNFFRWoTEaQGliQdYVXoqHcjbQe0fOZ02iGsb2DLRcxoiI0DSWUlI8IwIh4OCUJNmMsTFovoKCQoliCfYhMLRhEUShA0SYZDwlxE3GgS5CKCQk5aMADWKEq1CptbW4ziIVEaARAUi6SjmCgfcGJ5RDWXUszlsSS097d5dG6Zf3iuxj975RaXf/zHnDj/PHrxNNUgx8z2BgejASoImCqXSZKExsEujfo+Ub6ECQJeff1PmJpeYn31LDNzK2xv3abVOeSt11/h5rUPeOa5F3n+i19geWUNqzRBmCfMVygU83TbPXa2NtA6YnFxkU6nS2pS5hcXOHP2HKvr6+ggwKQJjfohN29e59rVD7l16zppnJCkCa12B2zKaDggjkeUSwXyoabXHzDod+m0W2g9Ynbaks/lXSUPKK0IQ8Wwl/DRRx/S7/c5deIcrVaH+mGHwXAk/ZPiEQcHG/S7+8xeeJJjkaEQ5US2MBwICEgSCrmcm28kgGkgCgPS5i7BRz/EdA6wl76MzTvRoPLgRYFjgYwxKCtMjnIpH2MN8WjAzt4W+4cHWGNpd9o0W00goFgscuH8RU6ePMPU9CylyjRzs6ucPXOB0yfOsLF5n3KpwnSnRqOxgxleQQcBF8+d49ix4xw062itJjR/VjQ1SFVab9DjoH5Is9kUUa9rVJcaYXMErIqL9+7BPqVSkVK5wvTUtNMjB9JXKyVju6x1tVEub2asEWmJ0VibToiQXXuKbNesgCrPYnwetmz3XbWOX316r47Mrc/Ka+YiuHBRKk46behbCTwmlQAc5AR46Im0gnEr0KACM+viSRPlBQwFkbAwaeyYGSuBr98X4NLvwTBwVLWV1Ek6JVqVUSwszCiWgB7HsqvaCqBZXRXhq44lEPT6AgxGBnZyMApkVW8DATAH23C9BV88DV/6Nlx7A3ZuCXBYXhOAkKaSBgoCATAz87JPJoUXvgWNHdi4Lp3VV09BZU50ORcegzdehVd+AlsbEtjSkQTk/lA0RStrMg67O9KVXAdSTXXjOmzcl9RREMLsLJw5DxcuwelzwqYEoQimVSB6mVxO3JkT48qjyyKwNRE01Fg3pXAVLFaquh65JODr7nWolmG2KkE70KIfml2D8gJcfRdGWgK3RVJu2ultRiMH9O0YuCQJTC/CI1+RMfnwR5KaAwHBygX5zJXaMUIeJPm/c3lptTA3J/tfqYr3kHKaoWtX4M5NqB9ApyFg7uY1MVtcPS5pwkpT9iV/Sc7n9evi5VSdHldOTQqc/TEUS8IWTU07gbZnWULXu0rLdREEUtnX6wtb12y4BaFjOQPGx+mBjZ4ANxYRbXswN/nPb16T5BvNfortMwFuXGtHuc8N0uUZi1YCTEA8RqySFVaSKg7u7FNZuU7NnXQd5QT4WUCNLeTlWpG+VLnAstw5QCVD8mEZkxhp65GMSFoDEtshjWNsbAgKIfmpaaJSnqBUQhdyYAekvT5pb0iuXCVWPdLRAG1j4nYHpafQkUI5IVa+UiPIF+juNZheXCI/PcXg4BBrY06dW+PY2VXqOzt0O03mFhfpdtoMDnd5aWkZ/eQC/993NxgcfkB14RHU0iXOLK0Rv/smh90O+8MDdBQC4t8zbLcpTE3R6/cYju7y4N4tpqYXWV1cY3p6kXp9m26jwQ///E956/VXOXn2DOcffZzjp85Qq9WI8gUOD5vs7W2gVEASC+Cbnplhbf0k8/MLFIvigZCGOeYW8pRKFWrVKc6cfoSZmVlm5uZJkhF3bt/g/r07HB5eYHdnizu3r5Gmu+SikNnZEt3eNmEQoigQRgodWPL5Ikk84oMP3ufm7RvMVmYol2rcuXOfdqsjFhHpiE6nwf7mDarTRZanq6xRR2FI00TmlzRFWZt5Q9nUZBVR0rQ3Ie23CR+8y0gp9KNfRYV5V/GjsSbBOEAjjtkm0x3hjPt63R47u7sMh0PiOOGwsUeaJkxXZzh7+hznzpynVq1iTUoQWCqVHGE4TRwvMRi26HX7RKFmamqK6nSVMNCsLK9RKVcJo+joTW1FH2Nc+Xuv16fRbtAf9IRtUXkG/b6YAg7EFDBNxa+m2+2xu7vHyuIalcoUYejcuk3oOqmnYipqEJbTM1Y4sXHG5DjwY8G7gVulMgbImM+bz411q2UYi8fdJOtXlH4SDSycnIetc3BwIMHAr0yVe10YjiteTCqsTqqgPCtgI+nK6tggK+NaAVTFdW8OpCKo2XBGfj0BLqogQbeUl3YLtuT0PZEEddOUSh3fW6jTcmXVM7C7LYLeuVlJk1zfgJubYr5XnnJgoiqC1J1teHcPnlqD2Udh7wrsfAg7G/DEs7Iiz88J8MJK0K9VZX+LJcidgGOnobELuxuiz5l15cq/9i148WW4fgM+eA9u35KqqUFfUmaLq4BxotwcNOrSomJ/V8ZBKQFau0MJmq063LwiLswH+wI+Tp2VlNzcNVhcgZPnIFgUYFTvQ2lFzgcDGS+jJN0V5eDSkwKWug3Rx5w6BjUpECHMC+Ozdg6aA2i0gRkZ68CFTV+15XDwuOpJy/cEIZSqsP6kzB8f/EAMBbVL6ehwDGhwAvSsx5b77HJZzls+L9fK9IJ8brsOt24IkGm1BRikCjojSOoQ7UC+Jj3EklTE4Y22ME/bG9BtOYNJy7gvHw6IuO8vFYW5KZTc4m8ojFGUk8c8u6URFnJxQa6BTlO+01rQrsrTBvh2YgLsGM9zk+0ZMkHyxPOeSVXBmNH5FNtnAtzgVA4WRUqQrQ61y4lL6WuUrTAtilEfGtdvMbuyQlguUsjnXO7f6Ses9P9RaIIwRxgMWVQDav0mUbUmrrzGuDSgfPOw1yfUimQ4JO4l2NRihgWiOCEyFXQ+QkVDwlJBKmeSEaP2kFCHDPd3QQdEFXEjFkF5QKFUod/qUpkfklNSSq4CxbDVoDi/SO74Cfbv32d/e5dKpcLBwQ69g12+cO4EazMVLtdHfNi9SVQ5Td8ukp9bJenfIh2OKAIEzlAO6DebzK2tMRwN6Yza3L13nZ17t1iaW2R5/TTzi2t0mjt0um2uvPcO1z/6kPmlJU6eeYRjp06jAoVSQ6yxxCMpwSzky+SjUFrkxNJaIEkSWs0GD+7fp91ssHb8BMvLa+SLJYyF1dVjjF4YMRqM+OC9y/zR936XE8dWmJ6do1Qso1UINhCGwcRARBAEvH35fd566y2SoWH9wln2D9okaSotApKEfrfD7u0PCTsN5i88Rrm1jQ1HpLqCslL2bNIRKpDGpkEoK3NrbGbIFwUBNklQaYq5fplhWKJw4UXQCmNil4IxTn+jXGrdG9kZbGpot1s0Wk1MmtJq7TPo9yjmK5w6eYpHLzzG4vwiWst1WiwUCcKQNE2kwMAaBv0umoByscSpU2eoVavML84SRkGm5/ObBUlRWYNFZ5VRQRAyGA5RKFIdEMcxSZySJOLg7KN3u9Oj0TxkdnYGHRTQNkSaaLrSd0ArhVUBSifCBvkGmtZVRNlEDP7cvWoxUsFm4rE+8HO1eSFAOgEkPZgLgHgcZLBQBM6dga0tYWGGo/HrfSAII0GJyQjSvGgeStPS6BLIfEOs0w6UigKUCnkoh/K1+aEAHt0RQXGcF8BjYmGIqk7fM78oIKrTk9W0XCQCAGol2M+LaDh24uXatACGe3elh9LyklRezS0JG3P9rhjbzeSgfA7aN0HvCgtQOu1caJHP8szW1DRsbAizUKvCiXNw4jQc7ML9WwKOppckuD/xNFx8VErEb3wEd265/S7IxZ4LJdAPu+LZY3DjEEggn56WFNP0tDAO2w+E4VLAxj0JtvkInngevvv34MGWANF+V1g1lbognAMbC6vy7NPwzHOQ19IhfK46rjIKQxHrnn5U9DbX3ofaEiQ5MJ1xkNUuLROPJJijx8JbrcfMkw7g3HOQ9uCj1+S868gxFQ7cZFo4x16gBTxVa66nUyCuxMWyMEB374iAe2+XzF100HfpstB5+ShXHWWEGbxzUzx8dg+dAzfjtI+/JzKHZDMGWGki4AorxxtFUj4fToINI+zb1Kz0IEsHoBL53MkWEFKaCSZkXPbtgYt9CMBYN6bIeE1goE+zfUbAjQUn30xsRIAhUKIvAYWxAYn1Ik+XwrIBvZ0hBzeuU5xfolyZEuCjfHNEwBgCrV2SyzLX2SHMRUQqJB0ZtB1CqDHEROUS6XBEGITYJCUxCXG3jU1i+TytiCgTFCqk9Ek7I7TShCqUVewoZbS3g1KLBPkCOpD8a76Y43Bvj7Q7JC1pwnKRZBSQm4Kk3iCcm2N2eZmdO3fptnvUKjWarSZRGHFqeYW5Wo+5G3f44w9us59fZG31MSrFOe49uEKv0ySyFrSU/VoF9a0tjApodUfEqaGiDe39TTr1bWZmF1hYO83y4iL9foNut8n2g/vsbGxy+Sc/oja7wPrJ0ywsL5PLFyiUQkw6ZOPeRzQONiiVq+TyRSyK3e0dDg8PmJqepVwsks/ngJh40CMeDen3O7RadZTt8tSTT9JoNFCEhKFcuCaNCQMloWQQ8+brl7n85ttEQYFnnnqe+dlFBoO+sCapod9ts/fgKsn+JseXZ5muHzLY2OLuTER0+gIFHRJFEUoHWWpbIS681vdFss4c0sKw2yceDmm9+j1Uvkp4/Dxee6Fc0LLG4ptKKnk7Jk3pdjoM+gOGwwHtTg9tI46vHePR85dYWV4hCgOMMQSBwqKJ+0Pqh/tsb91jY+Mum9ub5MIi5VKRl55+kWPHjzEzPcNomBAGAfohoyqTppLm1gHlcpXV1dMMByP293fotJuMhgMGwwFJEhOncbYSiyIBMnGckCTWmef6UnbXTNZ6ATVkjVCtWBnK/1y7BadBkvS3NBdVVmWGvJ+vzU3kSirF8FWVvizcV1FlL09hKSfNAw92ZJU/ci/J/EE0WasBFFSXJH1knBhW5Zy7ayT6nXxOgErsAni5BuFQPs9YoCspHIpQycl+WWfhnwvEvM3uON8SF4gGQ1hchPI+9IwAsVwKTUQ8erAP29tw8oTobTot0XMkMWxvQasEZ0/CYydhuAub70PvAI5dFBbDM1yBY7lWViRQlXKOmdIwvwozy3C4Bxu3YGdXQF55SgDK2ip88UvSXfvuLdh2x9BLQOfhxCMwvyZs1aAvQXZ5WcqZG4cubef0L/mSpKOKTu+hyvDOu9IDicQBDsegpO6cFiJ4/ll47hkwQ3j3spzTQpGs51GpBsfOy7HsHAqoWl2Fegy3rpKV8tv0obSOHWtwPBuhEPakkIeXvguDtpgfThrVufhCpgGTpwkCAQyFgoDISlkAw+YDuPqBeBUlTsvkgWcxL2O1egxWT8Lyqoiy+314+zXpGN/8/7H3X7G2ZWl2JvZNs8z2x19/w5uMNFVZlVW0paZriRLZarUAUXwQwIeGGhAakB679aSnBvQsqAGBb9RTd0GARLIpqsEWTXdRVSxWVRbThc+I6+89/my33DR6+Ofa+0SUy2IZRCRjJW7Guedus+ycY45/jPFfCHgMgc/3uRMWUgmIWS3g2SeppcMNcWwVpfyxmZRY+wywTjLAhI1UCYj0WpsE/D4PcuCzTA1qy4bpa79TidH6coKb7VoqxIjREaMiVkueSEh9cCLbQUcBXas4/+gJ0zsPGO/sYWwmtm40AY9SCqtl4M66BYWrGQ6H+KZLGg2ZCHzToLOAtRlGW4K1xFDguwa3riQzx1i0zlE2wxQlbrlCZYZifxdfN7TOEZcrdHYFewqKjOgjk50dinKAIeBdhcrH6DxHJ8tcrFvy0YjdWzc5efgQY0uGWcny/AxjLTv7R/zSO2+yVzzgH3zwnI8/veLGra/xtTf/PCcXn/L08Ucs60ri1ZTCdg0rF1lFKeXNUdywmrGG6eIc8/4l3XBM3LnBZHyDNrasllfMr+acnlzy0Qfvs7d/xHR3h1t3X+bOnXvs7e/SOcd8foHrjgkEurZD64aLi4f86AdnTGc75HmJNVps3caiQ2QwGDEYTOnaiEpNHF3X4EJLXo5Zryt++7u/yvMXZ7xy721uHd0lzwvR7UWNdy2LxQWXD98jnp+wUpFid0r++JR1DLQzJdlGmaINDZkx8l4iysjDFHyH6iLROwgR5wNnF6cEH3DA+of/kunN+0QrYEBFRcSBMsllJGLnGCLOd6xXSxbLBatVhe8cNw4P+eZb3+Slu/cZDApRx0QIbcXZ5Tkff/oJDx8/4NnTJ3z08Y94/OQRdRN57ZVX+IVvf5uX7r5MUeYcn7xAKSUJ20jpI8ZtyJ7WmtFgwmi4S9t52rbl8uKUdbViuVjQtC1N22BtxmQ85ebREaPBkN3dPSEOklAfIAQni4UgXKi0kwCvUgpyVChlN8Aw9JbvJJj0SWi9TXP+Em5KSfkgJkAR4rXSQpps+i2P8PptePqSOJC6TrQyG71O3E502RjsQEorRbL0FmkiKArodHJKOQn3axvR5AxLmQi8E+bFdTLxj0ciPD67kEnSGtGsdDM4j8LyGAWXVwJwQL6/XYgexCXAVhYSqPfsGdx/SdxbXS2ToXMyyf/oA2hegjdvwsszePYufPAvYfcVuPu6gICeacgKmcg27FcUABeAyR68tSOaj8vnsHwhAG88EybicFeC/s6Opcz0+AE8fgjnl3J8011hldCiGwoF7N6Hb+xLSaxNoM6H1EVbCVNTz2GdrqlKuhmdC1AclPDn/xzcPIDH70mDybZJk2ZI+UI7cP9t+e6o4HwOdw/ks+ZRXtNFERN7nx4nlfQoSib8TCX3nJL7afdg21T0G38Bnj+U870B1GZbXuzFzjp91nACk4lc78xK1/r3vi+MVSXRJSggH8DOLrz0Ctx7WcDYa18TUXahJO/nt38bHn8qZc/Do3TPpjDDDdhInxeCOPLWF8LS5Lkcx2Ak+5Pncv19K1q0kxNx6l1cbAMaN04oK/eG7hmikCb8xGYmveMGGF7X4wAbofUGBP1k2xcE3PTr7NRTCo/VEaN0T4JvVpzJj4YH6ghceC7e+4DZ/hHFIJWENhklMiGoEJg2cybTEVlWoJyE+UVAZwWaDN+1mKxAa8goMWWBrzNc2+Cblm6+TPR7wA4H2PGI+vQSg5LFnrXozNJenqJyC3Esk5yS5oV6WBLqGtc0ZMWQGCO2HEpPqgCj3T3aas3VyQmT4RgbHKuLcxSK4cERP/vWG9zam/Ev3n/AP/7kN1Cjm+wfvs707dscn3/MR48fsOo6NJAMqyigDpGzEGm0JlOKw9IwjRXLs0eEyyf4ckg5OmR8uMu6rbian3Fxdsbp2TEPP/2U6XCPyWzGdG/C0e3b7O7uMhwNMZmhLMdS2lCG9drhupaiyFClxliNMpBlJUVZUrQNXVvTNR2raolvA8fPH3F1OSe3U9558z5ZEgaT9CVN03F5+oT22Ufk6wUPfeD24ZTB1YJ60aILJYn33qGzHE3EeYfWGuc8Ooj2JnqxOW/bNrRcXZ1jlKGLAffRvyF//ecYvPpOutsSKApuUzAlBQQSI13XcHlxxrqqGA4GfOPNr/HaS68wHg1SgVDeVdcrnj39hIeffMh8vqCpVnjX4dqOxbzl4aMnnJy9oK5fJcsMwYn12lqDVmrTsLRz0mjTda0ADlq6pmG1vGK5qjm/vOD584dcXJxTVR3WZHzrGz/LO6+/w+GNG4yGA4w1iWlxGwa8HzD6ZOKQrO/iaOnkHPQlOhQieVMp/E9tBclfJkExsKXhFWKHV2ybYoJYcDu2IgFksN7V8PZbUuKpUklok1GikrNIQzGTDuBdk6j79BldAzih9btka64b+TNIycNFLroPhXz3uhJB78GO7LdBJtXOiWumdcBSJoKoBOSsa1ntF6WIfzMl/y0HcjgXFzJJHR2m/lkWdvfk809fwPsfyqT+1n145TuwfA6nH8F7T2H/NbjzUupU/rlNpxV3T+fVHtQA9u/DTpBztj6BkwuZjKcHksGyfyThgatzCU48W8DTZ8LUrFK2TL1kwwIMrYCWppPvcEnc3aZMorwQfVKRSbZOruHmXRFj+zl88HArDO5ZgiKH/dtw+w2xohsDp3MpuU1yaBJzYGzSXKltgKNNYCSyDd7rRcJZnizcXq7Raz8LH30XPv4h/VwG6bX9fZkWFyiVQMVeaopaSTjhw0+S9fsaE1KO4daroiGajoXNynIBhtMc7t+GvRtQjuR8mgTIfdLG9ADVJiCTJaE8uQDy8VTSu3d24OZLwgQOcgHgP/xt+OhdKTuu11swvemW3u9mGkOlziT/5l1y/KVr0RMYun99r0NKwO/LKCjWyuNSywWpSsc0JiTdQ38y0sXsogzEWTAsHpxxfvADismMSXYHXZZSUlAKHSMTt+bOoGBojjBKk5cz0BptJI1Vwss8KoL3jugdwTXgA75e45uWqBVRZ4QuEFzElEPsoKY7X2IHBTq3OGsIc093eYG2GTrPUdqirUFlBq1yuvkKYy06BdrpQYGv15jRiMneAU1TsbxaMS5L2q6iWS7IipJitse9+/f5j3Z2eOPoIf/w3ef8+McnlLuvcOPwTcpyh8fPP+Z8uSB2ThKZiVgFbeu56Dxz7XjqPUdWc6Q8B0FzqFt8c8lS5VzlMw4O7xEGY9bNmsXykrZpODl7wenZCZ9+/Ck2y8nLgmFZMp7NGI3HDIYD8rygKEvyIiOzBm0UMQSWqxXL5YquaWmbhrppaapOHIQUTMdHKCyZtSiEpajbmnp9xfr5J4yvjol1xwetxxQZh7MJ/skFXQwMTWQ8KlFE2naNZozRwhypGFHeoVJdWEo7TpiY9Me1HTq3tFcXrP/NP2Nw52V0PqC3RG+gdfCbCVBCRRVX8zNihJ995xd449U3mExE9+M6SSJ2rmMxX1CtVgDkec54OOJgfx/vHbu7DYPBkKapOT8/xXnH1XxJ3dRYlbqVJ4B+uZjz4uSY4WiMzSxEOL885ez8lOg1BMNyseT4xSXrWvZ9f+8R3/mZbzMoS9Aa5wMxSCrutowUiH2Q4SaGAULopBu8d0lQHTbgh9ALjnuL/JetLqXY5tTE7e963cLvFrbWryC1h5f24PSbIoztHqfkX7WdIOxQ3ED+WCb5+mprD9fJndWvRE1y/dgCFlomsKJI5YLUb8omYFIV4uSpGgE0ZbKG7+zJBNO2sgp3CfjEVlJ7nRMdkEbeWw6FvTk/FVv1bJQs5QMRGTc1XJ2LPufyAo7vw9duwquHcPEJnHwA1SXcek0mPJsmSdLknhvZ75DEpi7I+dYBQi6ZM7GF9hJOHkoqcDEUxqQoYP+mgJ3XX0k271r2e34lOqF1JfktTS2tKPrO4721e5zOYZmA4iBLItkOlsdIucql66kFBA2ncPNVmB1J2So3Au4vF3BnV65/UNJBHCUBiCzle7sEbo1N+9Lre5JYWKcFeZHJdZvtwM/8ZXj8iYCxDRWRJn3da0/09p+mySn1278Bn3yYBMQ66ZKUlIimE2H4QPZ9vRLdkcngohBgWZSSRm2svL5MGq7+3lVK7qmDo9R2JKVo7x5Iiw8T5DpOxnBjF8q0gxf34XvfFfAVgpSWdMYGzPQsWm+T3wiJVXqd3oryVQ989BYwbizy+hpL+AdvXwhw07dP0CRAohCtjEoam5gShlNXYx9T3R/QShNryb7JZztkg4LBwaHoYAjMmop78yeUbQWpNKlJ5zqp3kPw4NwG6KA1RhmC0phigh5oVG4xeY7OCjm/PmAHI3xREaJP41+EvCQ0Fd3lJdlsBz0YSAuSdUM+KMB53GpFNlQoozBYgnH4akk2mjDb3+fFsmKxaphOB3jn6VYLTF5g8gGj8YTvfONtXr65z6+9/4D/9sMPeXzxkPHuy7z50p9hUb/gxclDLuaXtM4nDYXcG85H5lXHQiseacXUaG60mhtGc5DX5E3FenmM39klH+6yf3SDYrpLUIaL83MuLs9p2prVomU1X3B6eiolO23RRqOVpAyj5LoopeTfUmKm0QalFUZZYXYwMqmqIBku3hG6Bn/+lNnVU3bXKz6qPA+6QKsUbx3NqE4ueVK33M81h5OAwWO0TM7ey4Mqyd5BQKUWZid4SZhVShMdWBWpuyWDcpdiOGC4OiU8+ZDs1W/h+4mexE6ke1T0dpo8N2RWc/foPq/ff5VhWbJczfHO0boO1zmarmFV1azWa8o8I9OGwhgGZcHtwztorcnynMl4xHx+xbpec35xwWqxxpgcoy0+SGnq9OSUH737I9rOMdvZpygGrFYNBMOgLGm7EcPhiLzQ1I3HBXj24oSPH3xMUQ4YjAaAwvuAcy3eh+RwUhudDUrAnFJ2k26MCvgQE4BJrRaQNhCbxqPpWfzybQmQRPiMcEgZWbGqtKLuTw4AAYoAb78sE39VS5mgL/cVA5jeFqAQPvs2cewgk5e1W6ATgqzqY0hpvFcyCfa9pQLCxlQraIayfwH5vraR79zdkZybqpLjGZbC3tipTPjrmDQZDrwVZmK1kMlvVEqDyHmVQvsm8rltJeWGH7wHz8/grZfgjTelNHTxKXz6r6C8AYf3RbCctHSbYzZKgEVf7vNB0pR9gLaUVhTjG3Ie1xfi2ppfyDnZ24PdfWGyJjlMkYadMchknAT24shhC7CDS5M1aUGSyh0unWOVVv4mZblkBezehp1bck4GRvJyYoTjKzjckTYRbYC5LLk3yb7GJraOrXg4sAWsJt1fNjGE2RjqCwFnw324+yZ8/L1r91fPTpDAQLovWye29ZOH8OBjucaj6bbtg81SgnIp4uG2S449L4zgyVP5e9slwflMAO7uroAhn0CxkegMDg7ha+8IcLo8E2fZqBBg39QCmtZLaA6k0axGmq7ef032bVWRBkphf4zeMpcbfU863j77qGdlNonH6SV9G4gN08qXD9yoRONrpVK2jU9dp03K2GCTtQFs3HfyXnl/dRE5/eEHDHb2sEWJGY0wMTC9eAZnz/C51Kqj78CalPfRyQnt1e5pItN5TnBOKHfnUUUBzhGahmjW8uw0DeQaOx1RPTvBoGVSmgxog8Ov5ihryDKNzgy+8+gsw44KQtXguop8MMa7gMlLXL3Cr1aUkynTvV2efvSAcXKBxa7Fr9bERvIrlNEczHb4qz83YmI/4J89nPPblx9zdfmQm7fe5vVXfoFV9YyTk8dcXs2pOpn0FfKcKB9pfaRygUun+bGGnc5wpDWj0FG2pwR1wrNPPmCpM0Y7e9x56VXuv/M2o/EMFyKnJ6dcXF3QNC1t29E5odldI+0pvPZorUV7qEJaYUR0kEBF33lQDVYpNAHTVgwXp4wWx2TNmkdrz/crz7mPtAreuXvArjX4Rctdm3GQBfCKohgSg8cHWXRFIr5rWF6cookU0yEoje86KfsYDQFsNsC7c7pqQZYFCr1PfPIe4d7bqMzSW6L7MllI4jutYW9nl29/8+cY5QOUUTw7eUrdNLRdR+s6vPO40OF8oK4aXNNStw3eO6wy2NEYazJsbtDKMF8uiBHOL85ZV2sJnNxoP2BdNTx99pzxZAdCwWSWY1TJzuwQ13Vopbh14z5d1zEYXNG0HXluePbiOZPZjN3ZHllu8T5SN2vqqmG5WrFYyGuNMhvTj8GkyAUZZFRMts3EaiitUnZUenL7QL8v1ZYmnr4pYO/g2Ays144pXn9P+sVuhK+/JRNzW0vZSGmZJA9ub5svmiyNKx5iCoCzuTAb/UTWttsEWGuElbBW2Ac/lNcURZpgV3DzUICXbwWQ7FhhHjovLELn5fOdg1UjAtNsIBOS1bK/5UhAz2IO5yN446WtCyzLxdZbZHK8Pghw+q0ldG/BS1PYeR127sOz9+CTX4fBbTi8K20UMnttZQ6bXk1Wg016nCyxLTqD/ADiIbzyprBVl+fi6vnBj8SurJUAm51dOQ+5lYm4LyVFD8EktgsBLyFKF3IdBNRlBmKxBaFZCZNDmB5CMZK8m4Fh09zx8ZmAipup7NJpiQRo1olZQaqWqASQDuTn+VqAVpbJtfRJW9JVYPelRNZpCGcS8vfw3STE7e+1BHD6nJuA6It+8F1o13IsB7eEgcmy7ffoTEDEILFVeZFKZkkU7DtoE6s0nsh37e3CcJjAZ9je58Mcbt2Udg66gasWYi3hgFkmx/Tikdwn9Y5c7y7AjZtiN786l3OnlYCoMpc4gclMrt0GiPLZUjAgFq/+xumf0WuT/fWwzZ9g+0KAG9mk9t8/C0ZbASChxUXw0WxQTRA6Z3NTyF81yydLzn74fcrJjMnde0zcmsHFM+g6osmSA8+AssSuBWOJvkV5oaiVEgt3dIne9ZJ9ElYrccwUOX2CbTAKUw6wRUa+M6E+m1OWYpnUwwEAoVrjiww9muCbFcEP0IMhBGjma7SyKKUxeYkyhna1RPnIZO+A4fSU+XzBrbu304ok4OuVZPYUOappGZUFP//Wy7T6U4orw68+POHjB7/BsNjh4Oh1Xrr7M9y+Pefk5BFn5xesmk66oqeT5iM0MdApWHWR5wYypSg7z6HRlCoSW8fV6TMWl89F1K9zDm/e5LU33uaNn/0WNs9pGkfTtkSi6EOcuHPqqsJ7j/eOEKP0Q4qBGB26WaOWF9j1FXl1Sd6u6FzgeRv4qAo87QJNuvdvjktemQxwPz5lonMyFFWA+wdDdicTmsU55WAsJSSlsFii7+hWK7IiQxdCfYboMRGkxUJAaYUmxxpDbg3t2RP81Sl6/yZ9HzK511Lj1VSf39vb561X3mK+mHN6cUrdtNKB20s5MIRADNB2LWfnZ5ydn7NaL+icMIPSo6tgMBgyHU8pyyHKaJqqo2s7jFJoHTdrltwaylzKFXUzx6wCZTkUdjM3jCdD7t65x97eHnXV0HRLjM4YDSfSpqhpUk5OTOyNZ75Y88GHH/L46TPpOaV6Zlqlx0qluV7ybHozR89mCAZIzM/n3F1f/K2ny5FBNjiZCHSeDsyzGUX7474+qKqQek99Q1J7u4ci4N27mSaAFKLXJYdTnieLbpqEUGmQJ62+zTbOfjSSC9G0W8eIR0pTTSqVHExFFBoRJgBk1d50MpkVIzCVlCI0Yg+PTr6zTV2hR2MZaC9OYX4gZYrHT9m0kShHMhk2rZQv6ho++BTiyzDzcP8QXvoONFdw/CE8+jfwdAqH96SRZX4tr2mzEteyz5lKvUoT8PAJTOdWJu+dm4m5aMXd9cF78FvfS41Bs6TRSGUZm1iSwXAbKKcUWyuzlbLXaEdcW8MdyEcCtnINAy1sTS9fWTZwtYbXDuT7e/3H2Vps/ZNdYdFIDA/puo7Hcv6bpNW6LoJFJdailf86D/t3xNp99jy9vn8AU2m0F6ifncGP3xMR7+6BgJc+6TkmhkQjYGN3X7KNhpNULgxSkuxauReW8xQKGVLj0iR2D9cARudTY1adcnK0tM8IUUDLspKAxYtzYYuykYDS9VKuQ1Gw0TGZdI0mQ3j9DWlz0feJgs86zfqFQ8/ubISBbP/es8g/4fYFAjdsdFRaabSyRAJ9LHxPTMUk+QxEjHSeYiP6dJb5x8eMDn7EcDRi2l2hqwqdWaHZjSZ2jkhClt4ltibKs2Ckzqe0OEe0kU7fvq5BKbxbywkvLCofYDJhgOywxKwrqtWavCxAa9RgAE2NX1aYwUSC8eoaW+S0TUuzXpENBOwYpSG0mDzDVxXGGHZvHPLik0fUVct0d7bRNpqBZEP41uHahiIreWN3iLdr/OgOv/XxMfP1BQ8e/WvKbMTOzi1uH73FrZsdZxdPOT07Y7la0/iQGjWCS2UY76AhslawCBFrFJlWZCgKNDZCaQxuPefpg3dpfEXnPR9/+DFmuWQ2HGImE+xgyGS6Q54VBNdho2S1hK6lXs1xZydMqxU5HS5Ennk4cZEXrefKBZoQcchzsFNYXtkdMn5yTu0VyxhwJvLSrZz7d3bxqyvaes1wNJX8HBXJswFRa6Lr8HWDzmXA9i6gI5tmkooMFRxFkVEMSoyKrM6fovdvQdJhQZ8G0yf0hsT6RU7PT7m6vMBoK4JdIyU6eTU0VcPp+SkPH33CcrmibVuc9ygM1lqmkykvv/Q6t2/dIc8N1hqMVmgVyTQ0aXKYjMTxNB1NMCrStTXep9gCLXs4m06YTqaEGPChQ0WF1kb0XUpLQKz3RK/QGHRUtG3DalnRdj/5gPFTtfUDapRFzGdi4eHazxo2ncPTa6yD147g7B2h++1MJtiut+YGGdixMigbm75DpY9LTIOIzwQQGSsTRoyi3VFKJsu2ktVx9FIKq0rRllRNcrVUspofD2C9kNeVpQCTIt/2aqoSs6BzmcAGQwE6L04kwG6QS/hfr3Ota1kB5VbYgLaGizW4IayeyPEPd+DeL0iTy4tncPw+PM+k3LO/LyxQYku32UFq254iksbizaqVjZsmeBjO4OWvCXg0WvKGxhMRGi/SZD2/EteXSeDUainXjGZSZhmMgCxNuKRmmEZe1wPIiEze5yu4sydMTa+1ed7BkwvZl3KUQhVTOF3X60ysgMDWJYYuaWZ6IEK6vvVCrltUAnDOnqWTfT3bpQc66b4LSjQvO7sCxDuXGBe3ff2gkJTge69IuSnLU6lQJBcs5lLWev5kyyz2Xe4D27Lsep3SjhcJcJZyXr3b6tLmC/k8lbQ1Ksq1cglAaxLQjGyiFYpc7s++TcafwvaFATfik1L0/YlRmuh9ssEakiLg2uvlQehPVQ9z3ArOfvghRzs7DMZGLMlGtB4qIcQIQtOlQUXnGSrVSXVeQASDTvS7JhYe10rHb6U1qgNdOrT2QIbWFjsoWF/MyXJLludilS4KQtUSmxZjM7rlCluWuM5LvojWUm4aOIy2aG0IJqdZnjOe7VDfqLm8uGS0s0MxHhGjx7WVEEpWRGu+admb7fENYxlcnbMYBz4KBZVztHHN09OPyE9+zGSwx2T3iKPXblF1c84vz7i6WrBa1/gQcTGxsokd8yHS+UhrFFZHmuAZFCXDwZTRzi7lYMT8Ys3F/AqiIs9zYlWzXixpYmCRD5hMhpg8J0ZFXVdUKRsG73mhFEunuOoctQ+0PuAjm57LpdLs5pZ7h2Py84pntU9mhcDP3M742t0SXS9YrxbS28tkxOC2eh5d4usVoW3AC4BsnQMnrTpcW6NVYDo7YDQcCYMeI2pxIdorLZohWUB4+j4psYssFwuePnvKjz/6ERdnzzDKUpYTbDEiywtsVqKNoqkbutoJmFCK4CNNVdG2gRAiTVNx48ZNFB6jNVlm0CYAbnuvKyjKnOl0zGQySvNjD/hlhReiQgcjPby0RaGSIBjatsZ7z7peU1U188WCi6szjo+POTs7w/s/BM/7U7X1lHfSb5jkalKydPocVcNn6Zs0CY+Ad94Q99Ey6T18n32ittgo1zJRmEy0D95v2y4o5Pt6wWVjZELJUxkrs1BbCL1uwUHVwu5Mko2bRiaOpharc5nLan08EnBi9RZsjYZQ2Q0TjG9hvCeljxflVruzXAnzkA8kwNB5eU+RS9nBO5jtw1JJ6SKzoIZw+DocvQrVOZwfSypyNoOdfdiZyP5dBxO9GFAnut4nFkGbpO+4StqmNewORS+iECZiVKY0YS26kMVaAJsK4gobDATw9a4gG1PbBp2yVK5d3hDlupwsYXcgJSoAr+FJB48qKCbCiDgvQFRbNnqekEp9eQFmncCNle9UVq5n1NKjbL2Sg1dKWKC+K/gGOFthDpUWhmsykf5ar38N9lOuULWAdiVgs21k/4scSkvqqyIAbjCQe08r0WYdP09luyBAJGj5vv6+jsi9NV9KO48N6En3f88sab8FVz17ZNiWw4qhgK3pVO6TwyNxxZnrJ53tNegfq+vluf7v13/+Q25fGHAjZSHJtzFafCooRYgKHzdr58TcxKQt76nz7TMDmjDvmLUVeRiSF5lQ67kl1jWhaVB9lL6xKCUTlrYKOxj1u4LKM3Bd0hjkqLaWVhBao4zFlplAMS8rOq0txXjIelkxmYyEIUA0CqFu0KOSal1ReC92dRSx89gswzctodREJ06tvBjRdQ17R4c8Wzecv3jO/o0boKBuOxZXS9bLhqar0RkMRgPyouTtwxvs5Bf8048v+I1zRRUtrQo0IXDWnnL+9Iz8ecnB7hH3b7xK/krJqp5zenLMyfkFq3VF58JGayK63IgLERUUoas5Wz7FrS/pug4zmaLzjGbZoTNLORoJKNEGq+R60jrapuOiqXm0WtB0ktninfQs6uKGlEIhAvxhUTBUhp2xRV+ucHXAKjgcKr59J+PeQUERWrqqoukcs9FUxOeJtehFxdFKGVFFSYuOiL1ca4N3AV83rK9Oscqj4gG2sIT5C3QIBNy1fkqkcpqnbRsuLs948ugBTx68z8XJMzFIaEuwGdgheTGiKEdYW9K5jsLsYsdTimyBVmdEv6T1Dtc6FpdzLi8vGHYd86s51WpF14p+p+/g7ZzDtw1tWwvoR1xZXQjST8orvO826dFt63DOUbcNVVWxXq9ZVWtWqzWr9Zq6aTfdwv+d3aJi0+hyU99P5SrgWi2lf8NnsQ0AAWaZgAC9FvcOib7vg9f6nlPeycSSKYngr6rt17SdMA0BUG2aDEkAxKXPTQAMZFJZroW9WSzTLiYAUxbi6hkO5PV9uFtuxP1S5FCnyddYSQXOCjg+FiHyjZti6Y0IYzOdiOA4LyV6abUWQHXyHNpdeG0X9iKodHxai47mzj7cqqUdw/OP4ZMGBlNx4uztyv712S/9+eyt5DomXcwdGO4KC7G4kvM0knGZxTIBU5+upZZjLMqt8ytLTJntS1WfvwfYuswWDnZGUKbSWRXhcQenjTBdg4GAo2qR3tizFon5cNfKiMHL/pSZAFmr5LrMDmWRpE4FmE6PPmsd32i+dAKXhbjh7r4E99+SdhUmXX/XCmvULoW9crVcU38u5aduAnEfzFiuc24lX2hnV+612UQ0N3kh5an+u7MkUM5KOb9KS+lQJzbMkFKX7fZzbWL2BqUkOw+H8mc0lPut7xbeb58HKp+/Ltf//d8C1PTbFwbc9P4LEJo9xu1KqW8aeJ00jumVG+Fj+h9Edg92uTUbklktVmAfCOs1oW6InXTsjtqinCB97TQxC+i8kATbVE9V2opF3Br0UCjn0IkIWVmx+imlpQQSAkYbCJ5quZJu5SFibUbsWjRDog+EtkVbTXBSGjGDHKOlk3joOrQyqNwQUXTVkqO7N7l88YJqvaKc7fDohx9x+WLOusqY+4JWRbJ8xXQa2T/I2Z2O+V+8c5PXnl3wTz5Z8MxprLG0wdOZSB1rHp19yvOzJ0yLEXv7h9w/vMUbb7zBqmk4Pjnm9PySy4tLnBNkHpF7+kALs+KamqA069US1oHQeLrG0yqYas1AaTEjJOajBU6iY+kiVRcT6y1XsG8CYDVMrcEmEeaO9ry0ipRBkZWWVw8Dr93IGeey0umqls47sqJgMJwI7FVgEIYkK604sXwgti1qUGC1YdnNpdmjq8mHI0ajqbTuQDpqL64+Ybj+LtnwG6iYpf5kfYfwQPQdTb1mvb5ivVziWtEXaTpaappQEbkkz0uKwZRBMUVnBSFqiBqrDJnWtBHWq45PP/2E88sTyrKgbR3HxxdcLRtq5zdj/vnFFT947wc8fvYYHzyd7+haR9tt/3jv6JzH+4D38VoDzZAayMZ/t8HMZ7b42Z8/k5L6e5Xo0uv6UlY/Gp1eiEbDJS2FUTKwl0VqyaBkMrK5THg2iKi0TaWJ3lYVJDQS56U0kFmZaPpVds8w9UGDwctkOh4Jy6GVMApZDnEt7ESeC+DptShVKyxDnsSo0QuDHaOUrh4/k9YMw5GwOe+8DjenksFj0v62I5grOG2lPPGj53BrD14Zy7H5FMbmFagS9l+W8kuzklTi42fSuLEo4fBQ9Dk7s62oGtjojEBeF4NohIZaHDqF2YK/GESH2rNAIGyJVQIkNx947boHtgyMNUAO4wSqagcnGl60cm60lnKdsVLmW83TdUufZ5S8R6mkU8mlZUb0kE3lnNhSrukqATSUaId2XoXBz8L6B9CbW3qQo7Uwfb1eaDJJQEIBGVCCHgI7wuBUC2jmAnIIwmDF3iaPgMKXXhadT13L9x/uCnDtnW4AO1N4+xvS1FSbFEqY2i1s2i7Y7T1l+301yRl1DaT12+cZmT+l7QsBbnqGUitPpiRZWHpPasnW+ExBSp5vgTExWcL7Rg2Sbnz/pX2GuegXVAj4uiJ2HaFeE5VFhQja4X2L0Vp0EHkGUWNGQ4yOSIdoI+UqImZQoLKM2Gj00KBzIwLTFGDmg6drWkyW01RritEIY8eQAFXsOrIiJ3jpXq4UeN9hQwkKjM3EnmstsfMEF8jyEW27Yrq3AzrDRygmBXZuwRkO9jSzwwHD6YCAR+eWuqtx6wVv7405KCO/8XjNj+aKS52z6jqsjjijCcpz2l5x8viS/JFoNvaObvLK7Vu8/frrrKo1F5cXnF/MWS8XFN4zi5G661gTsMMRFxdzWucZGpX0eIqxkrBAk9iT2sMjPKdtpAq95T+xbloxzA1DI7+dtx5TN/xMbvjGJCOzGdMJvLynmBUGrTp82xBdxAWPRzEd71GUA7Iiw+iM3Kau7Gi0yYgIG6ZjTpZZGtegUbRNRWGHoqFBy3WxGcM2MDk/pZ09pl3dQJGLNTpCjJ7MWo52D3nrtbeJbcXHH/6Qk+MzQoxkShONQesBg+GE8fiIwXAHkw9ou5blEjQNOlms69axWKxZLtbpHopUDrrPAZFl5Xj/x09R6qk8L1Hcg/08+xVm+UNuilRmTCWLgDhrroeiXX/t5ocejKS/BwUPz1Ofnrh1iGRWyhR9t/CQHD4hAY2uk3FjtZbP2HQZT6m1dZNYlgBV2AKQPsBMG5lE206A1GoFbimAKkuC26ZJbFCyS5sMdC0/d518hnNp0tJS5shHcHoJMQmilw1UDqyHiwAnFVxVgBF2KksZMWcLqIG7Q5hGEeJmmRybD3Ke8xnc3YF7EeZzad759Kl0AB+MJKhud5qEzlYuhc3lfKzXsJtEsu4afdY7b3r2xCD/l6nPlUDSNW59ShL2AhTKQn637OScLIFzBKzExGAYJeeKCMtzAZJNKyJa16XPDwKUSM4l1YouxqZ+TMUQ3DqVHn3KxGmlZLR/CFd3YfQCaNn2jknX5/IUPn5P2Kg3vg5H+9tyjfcQKskKWryA9aXos7ICxgBFYtNUYuGG8geSe5XfCUQGFl69DeHWNSbpGuj8zLPxh2RV/ggszL/N9oUANwBKRTIt2gOTElq7FLqWSMDE3qjE/slgs2n+l/5WFJqbByNM9EQv5Y/YeQE2SUwcU51ToQhevkM58F0LK0HV4sTtUOVgq0yPHXZUYoYpBdkYUAEVRJ/huhZrZbXvXId2MkgYrYhtgzEZsXHovAQCXdOQDQYSt68TwGkD3reEtsaUJUU+wnUNwUSir7n90j0Obtyk7QLGekyWoW1O13V0IbBuLGvABQ/e8EaZcUM3PAs5j9yATy4rWhfJc0WXKzqgdZHj5YInl1dkH3/IdDTi6HCfw4MD7rz+KsEYPJqua2iqmh0XcL5jdsPRNDW+bbFBYbqWGCOtirR9irRS1F3LYLEiC5FRkctVCxCjousaLmpH7TtGwJ+fWP7KvYKXb0wYFAOib+naFbFrcU2HCmmFpRRFnjEaDLFKSnrldCKJ1M6B71ApAl0FL/dXnhN9oEsR8UWRUxQlWmspVwbYyYfwcEW794Sq05T5odygsQfPip3dKd/42jfZGc/oHDw9/lXWq4bMeDFnlDlZljEaj5nNDjDW0rYNWrV0ZaDIrVTXVzVd1266eAMYFfFRbTjLniNwCRimXflq+6NsUbGxD/cJrZsOzZ954eeYms8xPk2A42VatRuZfDMjwGYjJvbbcoVKomJDslxHmSi9ApVJCJpPLIDKJKtmFbb72Y+CMcr7XbctF9hk3Q5RJmXvUhhdiugvCimFhSQMdZ1MriaXklNdC8DJCtkfU0ofohfPBfz4BGhcI8BFayiuZfcYL+WzUIBuwVaiX9EK2ih/QFb646kk3b72hgCzk1P580EKPsQn4FRutIW8sKKlybJUtioSFk0F7Z4Fs4W4c4zalvN0ul5ZLqUikxJxlw4eNnC8kHNvcgF4fSPOPoAuplJjvZbraa2UxXz62WTb82qSvqp3HNnkZmpaAUYhyLXQCJt1fwint6W9R3ss+9U/6CHCxRze/b502jbA0Z+T3BmnwWfimmtbCd27OhVAlBcQLdQ6JVgjGqUsZ9PFu38OPlOGTVtfHry+qd/xwxd++2KAmyiFp0yB0UacUtETg0rrpE0RiusDzOewOQo4vDlmOsyhbej6pnLegZeQPoxJYNQA4nzpKdDgxK4XXYPOM3RaASmbQQyoMkcXYAY5Ej+fpqAQpFeUEidOjJ71cslkNBHwhAYvOTckbZHOMlzX4OtWLMl5ntCbQ1tDzAti9PiqxeYlqpCHKESPzTPyrqWrG6Lz2ExRTEY0jSOzmtwq1s0KtyvptJOV4Z7SvI3lu1bx7rzlfFkTlVjvZ5nGFwpfGhoXWFRLFp8u+fCTBxJal0l4YVkOme7dohxO0EYz3s2YKAc+oo1KPc+kFFfVFd4HtAvsNw3Z5ZzVfE7d1FRtS921+ODJIvgYGWv4nxxm/M3XZxzORmijaKsF9WqNb9xmha1ReA3GWvZmB5RFLhhTG4osSwu7FPpIkEE4pekaozHWUi/OCb6FGAidw2lF9B6VQ/Aef/ac9mSOmt2mtx7G5OSI0WNtzmSySzm8YO0iT6866ipiVcSagF3PWTSRqlMsq4a8GNJ1HXVzhdYtITi0CmjtpJqgRBrhYl+q+2r7k92SriL4bTlI/y6D/B80kL9YwTppZIoyiVWTrVubBEhIDEO/ak/vtRrIwRSpT1WX+k51ArLqFhqklHTdxaXUNjBOG3nteCzuFpvs5D07RHL7dKm1Q5miLNqUWKysfFbbyOcMkiOqccnObmS/sjyV2bT0VVqsoLCpFBfFen6RJu6xT8ebwudmuUysvbW3C6lvjpfPG4zh5TG88rK8v0vhhfUKzp+JE80HOO8Am5gwktNHCwNSDrYlkiKX0sp0lnJxitRfymxZiACcdvDRHC5XSas0SenGqTzWA6IOAQxXJwJQHLLvbbvVOvV9ofqkZIV8ZtfBZF/AT58oHGK6Psh/927C0RSunm/B9aaJppHjW1zAakdm61kGgwTmvBbmLFciXi4LyeLJMiinCWgaOU/Bpnvmmr7nD7V9eUBNv/2B4EYpVQL/PVCk1/8/Yoz/J6XUHvBfAy8DnwJ/K8Z4kd7zfwT+YwQ2/O9jjP/tH/Q9ufbkVslEhQEV8THgo05szfbnjYCaNEYR0ciK/uatCTYEfLUG16Rk40jvqVfaJLCqNi0rooLYtng0yg5kHm0kMVfZDNV5gooYnWNHOdHHVNNUsqJXCm0tWVFQzefkeclifsl0ugMhEJVOXZQRnU6WoZQmuBrfNWS6SJoOqesbZdBFQbOaE00EDW61xo7GGGOxRUFejnCDhs51aCP6EqMVJivJsoJhPqTIKqy+pC0VO4MBX5sc8tp8wW8+PeXXjhUP5p666nAurW5iJNdQWA1G4ULAxYjvatq2Zr2+4vnpcwIaZXJMNsBkBZnJsVmBTdqjEFJSr+voupbO1XROLJM6RkpgjGKgkobHav7m/RH/wZt7jAclbbNifTWnWVe0jdQgjVFoqzBZzmhQYrOM2XSHoCNaabKswBhN8JEugLWKEPw2xdx7rJWE4IVvktA4EL3DZAVmOJQ7qquorhb4RyVN8ZjcHspdlvIXeoBd1SsePX3IDz74iPnaszEdBVBd4Ky64sn5Apt9SmZMyr/xcm5xOBfwPtC6KK7g2I/ZPWfzO7efdsbmT2usIaTyhkfe1sfD9y0Z4rWff8eYnkadoODZPGkyhsIYxKRv6Fe9vc07xuvUs2hhCNKtWSMsgbHCpmSmH5Bg1QoDEfW1FTayWGsaCc1rG4n0n18m1iBsSxvRy2dGL7qPrIDQbHURUZGCkCT11qeJfzRMoCJ9T72S9g9ZtgVsIYr9umskYK4bQNgR4FJVsDgRMfLtQziKMDWSWGx1khml73IhxcYnvUlWppYIM8m8IYirq6vku3yf3OwTKDXJ9pyl/5ZiG+8/D/hM7dZFeLiCD87EVl8MYbYnAudCxvO00kj5MLWAm/mlXHOCnHMfUslKyWu12a5KTNJONa2A1z6F11jZ9/Va9smWIuy9V0NzF7rjrd7m+v1WjuD2fXjzdQkc7A9LI6zaYAb7E+hevsZEmtSF3so5N5ptt+7+o39CwPKnXE7649p+EuamAf5KjHGplMqAX1FK/WPgfwn8f2OM/2el1H8O/OfAf6aUegf428DXgdvAf6eUejNKaMjvvikobBTbttJExMffD/hyqUMS+m7eQl+cMkps3rsHOXfu7hPrmugEnGilMAldq81Ao2RlkWqXKpIEbWL/jkYTnYegEwJvUJkl0uEbnZpkJgFVkMFEWQEdLjisseTFgKjkOzu3JtM5yntJv0XaEigMvmuFFYiRjbxWge8csZMsG0qFKXLJ32lqdDHADEo5bluSjUbEtiGsJVzKtw2D0YiiLMms4dLOWa5XlO2KezcOuH20z5uPnvBPHzcs7Yh4tqS5XFOHyGVwrBtHQ0ATyfsxUIFHETOFVxBViw8NsZVr0FRQ+QTQEpDUSlHEyAjIjGKkNTe1ooiGZ87zLHh2SsP/+muH/MX7O0RXsTw/YXm1ou0EMMQAeaHIBhmZySjzITuzXVzXAJ5hOUTnA0Ln0NaiceKAS2yNjoDNJIQxQpENIEpPsaIckRcFBktsO8ywlATp5Rz3QqNfe0aM39iI2xUyaUQfuby85L2PPuDxk+MN2JYKxjYk0QUvg9xX20+6/cmPNShJr00ZVxs24DPjd49EYDsr9hc5sShnnSTZFmVykdjNM7wJq1MqCQTTv6UF+UYgrNL4Yo1ofowWANI5IBPNjXMSrOZ7FjL9rm1kcsfJwxfTd9qhaF6MSZ+TtBn4VJboV+2azY2bWfmTFwJOmi6VT8r0YNfyWtcI6MkLER0T5OfVSspazoObyr/lI3hxCsdncO8O3CskC2d/DDvDVPqwwpT0M+5nqn9RWKIIxBx0IaUbEHt6fxw9kLwW6iqW8rRiUD6dXwONh3dP4MGlAKDdQ5gNRY+STglNTD2rUr7Q1blcE4yUpdpKQJ5zcu9EtWVrFPK+XqvSVXKOdHpvkxqn5qnkuG4lufdGgI9vscmM6bVdMR3nzgxeexPu3vgcsdizech3XBcG/37b50se1z/rp2j7A8FNlNrLMv01S38i8B8Cfyn9/u8B/xz4z9Lv/6sYYwN8opT6CPhF4Fd/r+8QvVOGMiYJPFP/qBiJiJhLA71/5HqR6nrEn9GarlpStyvyGIWxUQp0kAUQiDU7ifeU1mnSS40zs5LQOaJXKbnYgOrAGEwhlK/rWmFJfBCAgwKDpLhaS5YVVFUDXUM1XzCa7OGaNpU3ZbZWWmOKEtYrXGoLoHNplqhCIFpDjA6TZ2hlqK8uyUYjcd0g6bqRSOy8lPC1IRiLsRkmy9Faowk0zjEoB0Sgzgrm9RJT5ezu7POtt99iUj7mBw/Oqb5+h06V+CfHVC/OaDtHFaVVoo9w4QIuSJrxcdfRWjg62mUwm9K0Sz59eo4LCmM0t0Y5R4MhuqoJywqlIlOjuFUqJlqzruF5pTnXge8cjPhb37zJS7Oc5dUp87M583lkXRnGE0WWK4Y7hqywDIsx49GU9XpOlhVEX5Mbw3C2w9XVFZnWKKNRST/pnRP3WtSScZQo46Io0cYQqpa2a6mJGKvRRSYMm9HkwwHt6YqiWeMGa4weotAobYhBbNYvTp7z7ocfsFq3aTzeBk1+tf3bbX8aY41M0ilrpu9p05crkNBG2XrA0/PD/c89c+OlE3M+ZNPQL0ZZEG1YvLSCNpZt9/BUuujqlLsSRethPMTEjDQpVDDL2bhw2hSG5tkCHNdKKckWwpIszlNLgnQ8Ki2+2lqSj3vNRerBtv1cK+Wn6IUFWq1k//oGhqjUDJOt8NklEW5Iy09rRbcCwk6UYxi00p/ovfehvgsv78EPn0CsZaK+sZe0SQlZKJJ9m1TGyaQMdHIJV3MBTLf2ZMXig4CDqpJyzHiQVmBRAFqIUEYYpEXq2Rq+/xwuG2lEeTCDiYKRh7kTIHUVBNg0K3E2jaZyLKaU4766FDt13ytrU2JM2irVC8tTCbKpki4nsV6MhU1pO7mGPkjC9MFIcmiqIYT19v7SyWZ9cBPefFNaI2zuw89t/7bg5Kd4wPqJNDdKBCq/CbwO/Jcxxn+llLoRY3wGEGN8ppQ6Si+/A/zatbc/Tr/7PTeTFygVCFGLhktrovIpoXuLTsWJKX/XG1UUG1lxZkXUq8sBRikpg2QZKjqi90TvxF+lojxUMYIyKULeptiLKPocBIyoIBqY4FoUA6KPhK4Ga4ixwGQSmmayHFsWlIMRq6srrFZgLWaYk/mSrq6xRiyMKgaUkUEyBIera7Isl2ciPdsmz2nXFbYYUO7s0VyeoRVks10J80utDVRUuKYm4iVMMMuIPmBTiQZlWIeK8WCMUorL5YKAYne2x5tv3GNvNuSDDz/kMpTEN17Fv32PwfI548U5mVHEELlctjw+bblYKwZVRO1N+Ot/+z9idnSPx48+5p/8i1/BjsYcHt5A+Y7Xjm5yWAx5/I/+IWq1REWoqoyHreJJ19DYlr/8tQP+/bduEZs5zx4+pF7UtJWm6XJu3Rqwe2NI3awYlEN2JnssVwsG5Yj1aslqcc4oLxlPd3GdZ3V1xt7ezbSAsWiriF26U1KLAILocGyekZcl62WN84oqdti6wdUdqpAaZTkc0Z2ek10p/OSSzExRqRyqlKZtWl4cH/Pk2Qkufnbq+2kvHf1Jb3/SYw1tuy07KWRyjmmW6ks/G5R6rda42dLvHDJh1fU1oNBt8z96PUxU19i7FH4WnXyMVvLaHlzppIGxOVDJqj0r5XeqTTqaVC6pGwmE20y2XiZ7U4kGxfstSPBR9kMbyd/p2gRUrp2T4UAm48tzifGPwNWFALFB0rSoKGwORrRKbZPC91KJJnrQA3HvxJj6GEVhPz58JJb5N94AXcEHP4Z3H8LkloTZ+XQOxjkcZjCMEnp1sYT/+v8Fzx/CvVfhL/2SRP0fH8v5On4mOpO/8R+I00oh1vU8JnF0Ae+dwnvPJIjv/n2YlFAGyFt4VsPzleiG6rUAxPEE6qV83mRPwOHVpQCv6R5cJuGvT7qi3nLet03oGba2ExHxpBQQq7LUrTxjk9y7XknA3U6ExQ74OZtyaAzC8hwdwa3DPz4gct2K+VPI2PTbTwRuEs37s0qpHeD/qZT6xu/z8t/tbP2OMV8p9Z8A/wnA4WRCsbtDfX6JMgUojQ9tEuxKdrEmJhq277nT8zdbm/hkYqivzslu7VOOJhA8urBgBkTnCU2HTgp2PRmD9yLoNZrq5AzaQD4aom2BKUQ0HLqO6CKoKExPEEpZGvl6gk/uLWMxRUk+EIBTXZ4Rp7JCUkpRr+bk+QHaeZQyaJujTEZwLa6tybohFAXaZvJ85Dkqy/CuJSuG6J0D6vNjYgjk+0eYPJNxq+loLs+l63WMuIUR1isv8NGjjcJqy6AoqZqK8WhE2615drxkNp6xM53y8sv3uLg4I1s/pbUlx+M9wqtvM3UNR6Ei+pZ7J8c8eX7MwVmkeO0NfuYX/hqjgxvcePlt1GiXxfKKGzfv0DY1J09e8PLP/0X08w85+41fwzWa2gWMMtzezfjL37jPO0djjp885ez4EteBMZbBuODejTGj2Yi6W5NnGWVeMhpMqeqK+eoSFTvaS8fRazfRg5LV+RnOOWyWI3LjAEHE3qLPSnR+CMTgscZSlAPgHEUnq7oQ8E2Hch5dFNgsY1LmzJ+cMb13TvR3oU8FjrBeVzx7/oyrRZVu7vjHAmo2bUT+Hd7+pMea+7u7ksK7uwO+YdOOYNMsM/2Jn2NxPg9dFyml9/mZiHm1SULcSsoDRSaTvgvirDFG8lJcgMO9VM4RXSBNEg1nGZsu0iFsHVwGNlkiQkvKpFk10udoZx/mdssejabQnqb+Ql6+I3QCmvISslQiSW5O2mQ9t7kAhYtT2DuS7zw7Tp2mSdkse2w6Yk8SgGpq2VcfBPQ0tTARqxVkQzgai9vnag6fPhLwNLwjmSzzc/j4XdGf6BT1f3AEt45gX8EnH8Gv/xMJDfz0XekgPppJG4G8gHu34Dd/BW6+Ad/5s1LKs4k5uXDww0fwfAF3bsONHQEiwUsWzY8XcJX2sesExKznAg5HuwJGdix8/EIYor09ARttw0YwsWkpEbdMmdFbQXm9BrWHtH9IY1GRsWmS2nVyHW/vw8N9MI+3pU+FgM6bt7YW7j8+hPPH+FlfzO0P5ZaKMV4qpf458NeBF0qpW2kldQtIcJbHwL1rb7sLPP1dPuvvAn8X4K2XXo47X/82Z7/xr6Dz+OA3VD8ErJIuxCpuo/76smZfqNIKhoVnNBZBrTIKXZTYUS4sidbEtiOmcpJWhqAU2dji6gp3tWB2sItrr9DZEDsYJDGywdWOEDuUVRL4l5T3MQQJ5lMKhaQZ2/GA2dE+oWkTVSm9qozSVOsVw8k4LaLSajEin+GcOKa0ga5FZTl2MKS9usCFFdlozODwFuvjJ3R1Tb53gBmOiIWVz2iQhOO2I4ZAXdU41+FwtDGSO0tuLIMiZ7F0YC2L1QrvPNZaxuMpoQvcPThk9+qS009PWd56hXr/DjvRcWM0oxgPuHF0yXI/5/DoJrNbdxjMdlgs5/zav/ofeO+9HxEDTGe7mHLA3stv4D/+Ncn1WVuKvOAvvHGTsa9579/8mKaNHN7cYzabiJvVaiKe1fqK6WgXOy6ZLy5wviWzmsVyQTPvoDNkowE+RlbrK4zNMVm2GWgCHu9aIdW13mgnVfQYk5GXQ3Se4RtHpzx+OKZrWmyeowu51ybjISfzJd4vCapDRSN3Y4jM5xc8efaMuun+WKHIv+vA5vr2JzXWfOfoIPKD34bv/GJKXu2fw16Hck0vs9HZsP2514Y0RnJg2kaYkSZpKFwqieRWJrnOy0QbowCiYiBC4NMLyX7p1jJxxgDKS4S+yuRzbJD3BhK46XUymXzHqhJNS9G7YtJ3xyC6l8VS9tWFza6LsNSmZF4v4uauFZA02wM9El3NyTM4uiNMz/mpAJXGyWcUpFTaZAkfJN0RCfRYlwBYC2MrJbTRKOXUdJKgm2k4PZEy2MsH8OwTOHsiJbLVlWhSjmdw3ogd/dljYU/GU/gzvwRvvyMVs6tLKYd9+gG89mflmIZOjumDZwKYfuZVYYGeX8DlXFi3LoGTwY4ApmUtDJJNAHQ8gWkGeRAQihKRs0t6nN4irnRi2tiYDkQwbcRxVldy3gor99Z6lTKKWmjSvbZaw2wsacIxA5XyjrSSa3LrdmJ7fo/tD50309/vP92b/oNeoJQ6TKsolFID4K8B7wH/APg76WV/B/j76ed/APxtpVShlHoFeAP49d93J/KcW7/459j72tdAeZxv8MEj6hswyqeYvsTeJpGwVtJ+IaLQBkbTEbs3bjO5c5/x7dcZ33qN8vAVsukOpix48NEz3v/Bx/imxWhDZi3GKNzlkuHuDvl0jDIa38lDrHMLFrKxYbA/wxQ5dlhgB6UwL0mALJZSOZ3KWuywZHpjn+AC7WotzRttTnAe70JStCNtGJQW7VuikVWykyqtRDScl2JPbhuy0Yjh0W2i71g9f8jixSO65YoYFLos0aMhZjxElyXZcEg+mmCLklxrFosLmmpFW1UYZZgNJ/iuwyhwocVYxbqec35xzmw85tak4B3b8Vp3xerqgvdjzuLO2xT33mBCjWnmaGAyHnHj1h2GwyFKG3RmCcGxWs9Zza+o9Ijwypvc+eZr/PvfuI26POH5wxMOj3b41s+/xGRvly44prNpckJqxuWMQT6gzHNidMwX5wTnGQ7GXC1huDPDDAc0dUXbtmS2kDTiEOUaRPBOEp979q+nYpXRFNkAa3NQgc41VOslrq4wVnRL2hiG5Yju5AVnDx7gfYUPnXSo72ouLi54cXKCC3HjcP1q+6NvfxpjDW0L//r/B+++K5ONScBgU5JKOjqQC9uLhDcXOsqzPl/D8RPpkPz0I3j2MRx/Iq6auobXbsI3XpOJrG8q6KNE/F9eSf8e71N5nJQhAyw9nF8JMFg3Msm7lo0AWfc5JUl3s65FuGvVNhnZtQIkrN7mmvjAZ5oaxlRO6nthVbUwF8ZsRcLHT8XGfPM+3LwnacgqyvGt19ICokk/rxby/hAEJAyGwoBEL6m+WSbnVRUCHoqJBPctl7BowGXSh2q2C6qBx+/Co4+AUl4L0vPq6RP5vuBTk1IjdujJDOIaPv0Qvv8xfP+xpPG+dASnV/AbD+D0XI7ncs6mkWdzlXo0tQKsJnty7qqlBOFdXgr4HAwSEGzYAI++wafNti0MotqCDR9EVOwauddsak9QDpJmyiV2ZwUHN+Cll8AMhEnUuZQkd3bh8OB3Eb3/Uba0jz/FJSn4yZibW8DfS7VwDfxyjPG/UUr9KvDLSqn/GHgI/K8AYow/VEr9MvAj5HH9T39/9wJobdh78xv4+ZL1ixcsnzyhlw8rojQdjPpzk0hMvX/kNTuzjLe++fMcTPcxUUNI6cSIQr2dL3jx6ISsRBpgzgxKa5oXJ0TXMTzYByLaWilRuw49GqKLHJWl0D6tiE4mUaUjoU+ljEFAjtJoUxBzyCcyltTLK0azfUzX4ZuKZrWmONiVBofKpGOSkklMAVHKaMnFyQvMaCygqO0wmSMbTxjpyOr5U+r5BW29Ih8fkI8n2EEhGqPULC4LYDqN1QWqWXLZzLlczxnmBZ3WFEWZmheXdL7BA89enDAZjbF5SVNX7E1nvDnUvDh7wroa8sIMCYdv8OmP32VPZUz2DxlPd9mdzriazwlBIv+fP/uEs6sF4d432KkXvD521KfHZKbg/iv7nC/m/PjBMXt7+9x95T55ZvDOoYKG1C1co8iyAq0tZTnkalmxWimO7uwTomK5WOB9kJYNWkpQm5T6EOh8jTU6RdWIs0FpRZ7lZJkm+nbTOysqi86tZBtpTZbnlD5y8uARh3cbimxADBHX1sznV1wulrJI/gra/HFuf+JjDd7D+z+AyRhu3IA7d9gqQ/vVePjcm/rJIP185eB7vwnzU3mtTjqL3sE+HcP9Q1mZ5zlceZn0bxzK30/Otlochaz8V2sBNF3YOn1smkSDSsFzSQTdN9n0jfQ2WaSzNZ1JR+csE4ZoNBSGKDj5g5RuBSBpAUHOCKBpkhPKGmFkOivltqDg5m2Y7ooleXkqv69SScX77cTr0j4VYyimsDdLjR2DgCAVU9mulPN541C+s60l2fnqSkILD+/CYA1uJazNq18TB9jZiWhi5lfSlFEnx+rNVyTb5sH3ZeBdGtg/kvf8+BFMpvDyEZyfwY8fpvRgK2CTBP5i2FrM65UIlEcRnpxt9UMmsTEhMTYatq0SyuRoQ25FRbLLp2tqcjbheNHJPrRtEnwny/9Ld+FxIYBIK9EMTaciFu/vvT/N7Y/QtPKLsP0kbqnvAd/+XX5/BvzV3+M9/wXwX/zEe6EUg4N99r72TVbPHtHNr1hfXiXXdkhKirjR7puktJHGmRIg97VvvsrucA/tFbEP7SszImvcqmL19Jj5vOLV/ZmIka1idXyCayrGL90GINQtOsuIXer/ASmYK0P1lkNLoh87tEolIaAXJkcFKmh0ZihmI5xraJYrtDGUowlNvSRuxihZMYYQCV5KXL3IWYINI6bICUWBX69wzYrMTsjGM0ZHGs6es1pfUftndO2CcrJLNhgngKPEBZQyLWIoGQ06Ln2LVxGjNENjabqKrhOxbFGUlKVh0SwZD0b40DI/fUI5mjItc26OBuxeXPL0k0/55MPf4v3ZfcZvfR2fT/DrFePRkM55FIqTTz/EPnwXnl9wjuGTHcvOMMPmDrdcMpqMuHnzkNnOPmSGbrVicXHGznQftKKuF1jVsTuaobOCi9UVP/7kgum0ZDib0FQLVqtzVAzkWSEDlVX0WSMxynnt75RoJIBPRUs+KAXYVSu6zpG7KMJwIxZxlVbre6MJz1dzvF8TsimRSOccy2pJVdU/8e391faTbX8qY02McHomqa+37gkg2Jklql7zO7UIcfsnKpmwvv8JrM9FJNo7WuoOGEpg3e0bkpJ7dgV4mdxuHEqmyqepalbmAg7yjI2y14ft5AkC17QGMpkQ+93qy1wR0XF0XrQjtoDJSADHaiGOJZP2OQTZf63YdsZO2pR+Fd+0AnKGIwEybiFameMA+zelLGNuQjaB7ELYja6TElrf9ypG0DVUmUzoMT2T3kE2gCxudTq1FyC0XokN+vCOlKyqVkpuu7tw+Aq8+XNw+QDe/yG0C2GFVuttaOErb8C9t8VJhYdLB+sOWptcZGt4cSatDDovJbKdfVicyakvJ1IOWl0JwBnO4OVdWNRwuZBu4KM9GZe7JKJ2CeD04l/T3zshJU4nZ0hVp47tKbXa6mSZTxbx3pa/WkjJzQyhm8s9mFnp+TUof+/7+UsKPP40ti9EQrFSClsOGN66zf43f57Fs8fU3/0NVNdiUKnjs5SoNCniABHyxgg7uyPe/NrbqOCFTYmR0FWoPCN0Fc3VnLNnZyxWHTkK7zzV2QXNYsHe26+j0PiqIgaPGQ2gNqjM4uoa1Yo92GSFWI2NBgLKWpRRxOBQMSP29ValpNu4CcSuxZqC1eUFWT4kNwbb9xuJoHRihBDdDT6INd0IGwRSRjFFjm/q1GyzxeSWfHeGyi3qxLJeXOLjgtoHolfk4zHGGoKVkp/RUuIeaWhdx7qqGATHoCjRZkhoGyrf4ZzY3C/XK0blkM51GG1oqgoXOqJrQTnu7swor17w6Ue/yuXpA+o3fgEXIjfu3Nm0fvFPGxbHZxxNHHcO99ibTtnb3cMWGa5z1J1DOYcm4FxkvZzjOoeP4mozusDkQ0yes1gsePjpOS+eB/7Cn9kHbVivapqmoSwm2FxaXujoJUTQy0o5hE6cccYIPI5ezrlSUupzjqbpGA07lEmtDqKS1ynFwBisb2nbJXkpk54PgappaFqfRMtfbV+qLUbRQTx7At//Tbh1F779HbFJ9+XL64F5fSmqxzwXa/jRu2m1njQm2SAl+SY9za09GCeNRGZgf08aH773MeClxKGNTOA+yCq+LCH34MsUVpeswuhtSUtbNg0W+2PxTqL4s1zKH7s7ksXivTAzQBIIbjUhG3CjrlniSQxLm9KWjYCT1kkZrXVw6GCyA6NJKnlFKSs5L0CsvebCCki5ZjCQ/W5q8OvUrykTtkopmbzrtfw9VCKg1enfo5Xvnt2AN/48HL0CH/y6ALQnT+S6KAW3crhxAEsLx+ewmMPFueT12JThYzM5lxYBEbkVsGIshBRE2LbC0Ly8B7c0/PqZnJ9hkfpQLYWJ0Vreu7kHjOikYjqfpH9PTXclPdmKbqaym0R80QgmrZRzUorKJ1C/IOkWUsKy+T1AzFfA5vfbvhDgZiO6HQ4Y3bvHwbe/w+L4MeuPH0jysNqOLdf/gEKryMuv3mScSd8m51uIkRgdOji6+SXr4xOePLxkf6+kHBTYsmD+5DnlqMDPa8xkgCkHaGulUaaucVVDc7UgBEdWlpiyJBsNsMUQZbUYt/qOq72s2QcgopSUsLSyaGtYzdfUzZJbd46wRvYt9rXzpKqP0Sd9iBItTxpotbbErEAXJb5Z49sWpTN0kZGNJ4yNxeYli6sTfL2mVVeE0JAPptiiJOYk1wTkWjN0jtY5POBDJHjpu+S6NV1XSfsLY7lazJnt7rJertjfG7JYLhnkJYNiQNt2jPMRtw9rrpo17794Ro3i/U8/wgePXyzYPV8yXYGdKYoyx9UVuZUSk4teNDFtTTWfi6uLyP7hDbTRRAp8cFwu59TrJc8eLfj0WcnBjmb/cJe2qlisrnCtJ5uUaJNBsq1H7wlBAh/VJp44ZRp5GeRlweXp2o5mHWiHLdW6xdgVWVmkwERDUZZMQomKwkahxInmvMeHsPHtfbV9ibaIPLfrCh4+hO/+BhzdhddeYkvD/l7vVfDJc5ngCiuTv1Ki1dAWpjvS6fr+LpzXok2pG7h7U/Qz0wIWlYArl0S3wUlWzWwin1Gn960qcS65IJOh1j1FLPtiNBvQEqMwO87DdCQalSfHbJpyxqSrSe1nZDJOTEMMbMpu3gmwalJyb56Ly6rppBTlk6NodihlpDgDXUA1l/e0bEttIciEbtMUo5V8d0hgMBtsM3MmU7i4EE3P+VraSbS1WNPzTHJnTkoptR3dElDw8usydo4nsDeGEXAVpW1FMUgA0cmqzmbiEptO5dhRcPIigcdGzvt4AoMJ3JvA7RouAxxfCNga7wgYWlQpIyluj0crKU3GkK5PyjQyCbgEgFTqG2pJeh7m0I3k3uiNJ3UDpk77FzYM9Kbbdj8Dbjps//E8Dr/v9iVnhb4Q4KYvJ0YVyXZ22H/rW6xPjqnPLnGLVZpIBDigxC+l03/LMuPlezfo5udpDNDgOszOENde0MxXzM8WXKxaXrs9wWYFRKgWUus1JidvptjREGU0wQdc1dIuVzTrFe36CrRmMJ5S1jPC2GN6bYtC8nGik4A3vEyoAESiUiijGe5MefhvHjAZF+zdOEraD8SNJQcj4YLRy3EanbIpICqPKjKMK8RV5R2ha+QZMAZdFgyObqKsZXVxQlctIThUkDYTMWaYssBkBYGG0XSKMhrXOgEZeAKa4DtC16KMYTAe03Vr5ucdmc64Oj8hxI6rGCiHIyrfEowlRI9bL5llZxy+9BZ1npOPpjz7V/89WdugjaJrNdHH1LG8QnsBWuNyjB5P0cZivYcY8CHQtDVVu2K9vKRerLg8aTg+GwCW116dUAwHXF6esVovMFlGbrI0EMh/gw847wgxYLHEqNmmiAozJuDX0zlHW0eqdcXF6TOCaxgMhuRFiR0OKYqSURM3c15M7E8IIQVMfgVsvnxbfzGVaDze/x4cHsH+rpSSdF/8VlvNQS9Kbxw8fCH6k96ubTO4XEO2KyWh/SmMcni6kAk2IvqefCBMSjGXkor38pwPMpnUhyMph4QopaDySrQjvbYlkkpTKTCOLbsr+5JKT5dX8DMvw7KFFy8ECIR0DL2bqteMoLcZNQqIJrEdTWJ3bMqKIQlfWzh+LsBs91D6QmkDus/U6VJH8wYopPu3D1uWBHkGMXlq5WCE+clGsJdB7GDvUI5RJWeRydn0/xqOoduHB+8Ly7Kaw5/5H4lbLERxNvV5Q9lAghGVksya5Xx7zpWW65yXEgw4mgkoPCxhvwKc2MTXlVjfhxO5dj71/Yrd9jN0YoRwcmwqprJhWlgpJefIWnFsDUrYvw3mDKprguymkn/faGvS9dG9wF1duxf50gOPP43tCwFuAIgQfERlGYNbt9j/xre5fPQJp7/1WzjXQbTEtFYWYCP/2z2YMLSeevmcPDfYcojKoKvXEFuq5Zz52TmjsWY8LLHGEpqGGDSZzajOzgidR1+tpJt3U9PVFc5LWwSTlSjvCU1Ni4hTrZf8nD58UEBX2IwXShu0tgQtGTrD8Yi9wymnZwvyMqPcmW2OGUhJyalnVoibEpcykutDDOiiwHSO0EZJNHYeZQTda60Z7O5js4L1+Qvado2LAXyLdSNAyWeZDJMphoMhTjWEzhFUJMSOiNTxoxeWohyOiD5QZgWRSOgCrmmom5rOOULb0q0q3LJjvPqQencf7yyvvv467fkLRnnGvU/f5RffuMtkNMBmJpFcKjF1/YMsrS6i97TrBVfrOc1yjluvqa5alguD84bXbyteevU2bedY1kuIniwfYrNcxmXfEo3BeSlehuBlTA8CQnQK81MpuTU6hVYam0earqWt13TtiEwblJOVrpmOmKhdat+DpJ6tUZux5qvtS7ipmGzaHTx7Bj/4Ltx7BX7u5wSs9FZc2AIbgNM5dBrGtyTZt1lLA8RyCORSejrYg2VILicn2hodZHLcF30Zs5FMjmWZmj4mS3WX3EpFCX03a5Pyc9rkuEHJfzflHy+Tf8wFSCzXcDKXNgd1K86g7YEntjmmuVNtS1w+5fooLbqbzKaGjEb+eL1lvS7OBMDs3ZDwO5VKWHYl58p7AQJdlAk8FskVpmQRQmKOUpAp62W6HsmJlFnp81SUqayUi8B3nMHoTcnhsQE++kj2oW3hla/DB48EkLR+e5039njkhNkkoB5OxGU1ngiwnOWS22M8PAN+/DSVksZyfO1aGDuQY/U+gcIgn0c6nz0o3oBJnyz9AVqVmpAOpNwUfGoNoWC+gngJpgdJPesctvff9e0rkPMHbl8YcBNBumNbA6ZkcPsOe9/8NvNnj+kePEEpaTAIJIN4clE1C+rFA0azCdkoRxcKRSAET3NVszo9J3SO2/d2KMsSU+Y0q5piMCAbDAjzc3xd09U1bVPhfI3rWmLU2CzDKgta4V2dbjhxWaEGECXbRqWgLRESa0LXsMlAUBqT5Rzc2uHDHz5kZ1ea5amN+8ImcBO293AEZay0olBq0xaAPAPXEYNokELXCWjRGp1Z8t0dlMkwFy/o1itiXOHTZK6LEp3HpB8q00JNQ6tonXTcVUYTgtqIagsjgj1jc0zK2/DRpcFRk9uMPKuxMWCvzti1u/zKP/pHLBbn7ON4PQ/s7M7IBwOidwSXcmGUljE1xdZL/9FA1dSsLo+h83RrT10rvDPc2o18/Vu3sJnh9PKEar1CIfol2+ugosJ1Hu+9DBoxpHJBGmdU+j5UCl/sqFvPaKdAa4WyCumepSEEXFWhBgVDldFWia0R7gZtDHrD0H21ffm2xHQ4D74We/H3vyv6m5fuyM2ir722L/8UE5i8BPOFNLVskgpQGZiVCbxYeHwppaWmk7JGXYmdeLonE1uZSiymTC0WQmJnXHJJlanMkVxWsRJQ0GfYeJKQOAizoq5paroWnl3C1+/DxWD7HgAcfS+8DXjry1Gqf1CS1qftBOhp2AQMJi0bnYOLSwEwuzcEHKhRmsxDslarpCdKwnsfJDXYWtkP37vM0uTunZxL14Jq2HQt7wXJroOulP3cOYDuAv5nf0Os21joDFxcyXk2vcaGdF4AwjWQo4Xt2TkSsDk00qrBerhU8L1ncow7h5JSTNIv9TooFeV99nqJz221E5FtubDXLmUGrpp030XEoRfk2AcDYejoYJAYof6+6xthfrX9obcvDLiBuHEkxQB6VDK8f5+Db/8CbrVieXwFRDThescTjvYzdmYTytkIO5DSUvSBsG5oFnPa+YpsWLB/sI9bO7LRgOWzY7JccnKMUkSlCK4lBEf0QfJOlDikjJK+U8GJSNkrg8tylDUoY5KuIyKpuAEfO7Q1aJtJ406t8SHgved4kZEfr7n3lkcV8n5UEqaqlKrrAjHbtg6ISMKxMhZjDNFYovJEJW4qYhQLuTIQHdloCOoGWp/RrJfEagkoKb+bEqVzlBLRsrEWUHjXYYxNi0W1dTfaDGKU7t5tLWffV/jW0dUtVV0zKMfEyR5qZ49vac1AjfjexQt0UTDP4NNV4J6psc4JQ6MQHZE1UpeOMa3gLF3X4Oo2sduerlPszgKvvbHH5GCXqqpYr1f44MlsRpEXAoaVnN++ISbEBGpkYFAmBfklN0MMEe8irguYrGMwmVAMxuKqCg5shu/WmGZEWVhYXkgTzP56GCNl8K+2L+mmto4kDaxqePgAvvuvxUlzNGNbGmC76Dhzkk9zuRJGoi/pDHLRjcxGoq05PYOBFRbl1hE0vS4mgQebi87DJLFw7LYgRBlx/WUpI6ZrEwhLgD0qAQVKC+BxXiZ+nbQeOpUyJh3cGML7VhpGeidlpz7FWCGi4C4dW5+K24uUfdi+Z8NWphJL9AI8VhXEFxD2hQkZjLcny9dixe5Fts4hzEmWxLPpxEYErPUNJ20mrAZRMl9yK+xXWUp5aXEh+pzgIa5g7+Y26Xekpd2CyVJ39cScOC8OJq2S/dtJhkyZS/eywoiLa67hwwvJwykHUgbTJjXRrNM1SOdXX3M7BdhoeXy/SFWbxRtWQa4ly2e+EJcZQa6Z6yQhuVgLGB7vsglkhJT6/Hvfxl9tv/f2hQA3sf//GNFKp/JxIN/b4+hb3yZUa9b//J9hVx2RDIVGoxjm8OYrewynQ7LRUNoZJCDRrSpWF+cEHNODfcaTGZfLM0xe0DY1o52RfLnNCT6IbVjZTUlWpUlYRSSJOBoIDt/W0r/IaJQyqDKXBzX0jgP5OeoE1rQmqkBVd3yysNiBIiiF0RatJSlZWjQkFpUoLA6g0cIVhFQMyTJ0JiUcKYGlHVWiIYlBSsD5ZIS2lnhp6ZaXdKs5NgGogLA8OpOVoM0KsrylyAvqTOO7gPeREMA5hw8dvu2IrkNyfgLdsqLxkd3Dm4z2D3j3dM1o9wbawP07M8LhHbyxPF1c8WzheWm55ut54GZhkr7I4ZxkAymjsSlhVRpTCgMTQ2RnbDk8mrJ74wDnPYv1krpaoKImy0oJ71MW7yO+cXIXRZ8gsELFBPrQ11arAiI3MoQQaJcVNlrsKCfrHEaL+y3UDVlZEM4fwMvfAp2hVEZmS4y1XyluvrSb2rIdCnmOzi/ge9+VVfRf+iswypCZP63UG+CTM+mPtFoLa9FrLkZDCaTDwtm55LCM9qWUVJRi0wZZ/Rst40V029JSJOlK0r7ghX3Iyy3QiEnzEpCJFVJpKcjE3QOnqAVYTRzUJOYiMTa97btnGPoJGNKOaDZdtrtWSnDGCPjonT+9fk0jZafFSsDKjofxTFo/9ACKxPJ0MnbQtcIIdU1inVJpSpPKM7mw0zaxVFZLOcpoOH0OZ6ewP4SL5wJSni7g9KkAhOkMJlb0S60WQBdk0YlNz78PAoRCYnd1YmC0gpWDF3N4cSLgYjgWgbFK7JNr5DwalTqZw0b8S2KJ5UQlpiyVM3WicvprOx5I2XPVChsW0n1UFsL27b0En35P7q/YSYsK1wGDa+c1bZvr+NX2u21fCHAjWgxS4i+E0OF9hylydu+/Tli3nD/4mIt3f4zzUhrIteLWQcnNI0mr1WUpzEftCK2nWa5x9ZpskDGazkQ3guhZfOuwWUnoOpzzeN/ifIPGYKwSViYmmlZrtLIE3xGjwrcVWgvokGaMYzSZBP1F+fzQNuiYCfhJg6j3kTYIMxnTgCXlfNFyqARyYlqdxeursN7CiRb7d4doSWLquaWVDDpOUnTRGaYoGe4fUStLvTinW10RvCcLkTgYSFigAozGFgMGbceqWNLWF7TVEqsUKk9AUimUUfhWLKnD2Yzd2R55WcJgzMMfHrPr3yObDDn8M/8e9zLDDz59Qrmzi1bwIjjayxf8WTdnb7azYcDxffsKjS5zrLEQFM4FrFVMZwP2bt3ADses6jWLxQXed2TFlCwbYLQWgbX3ApSQsSiqmKQ92ZbZ8tJ1vQfRpLFTh4CvO9bdFSZo7GSMVopMGYLrsBHMxce0q0+w4zfRWpEXlsx+IR6dr7Z/m01xDdhk8qdp4eFHIvC9/zq881piFBPLc1bD8ZUwNnUtE01pZdU/Hkr2St1JO4ANy6GFeWhTB3CbShSmQEodqTSmQmIAgoCeIrUSyQdsum5rDXEJpNYCm88vQSXHTV8KN0mvkcek52nYPByfybbRmxJziknfanAIYv/OSI6ga+dCxVSyymUSbmo4eyGT8WRPBLq9k6hKzrD0vIsDykIzhnJXAESMkknTJ0H7mNpXKBF9X53LOa+W8M4RmLclu+bX/rns48t3hM2JCBsyuyEg6+oysSps7e8xCEj0nQBDm1pdXFXw7IWECpZDcUiZTHJ1ukqO29jkNkvnSJPKZkqOncRsGbdlwvoMoUACMSmJWYfUHiOBTmtlP3dfg9ErsPxAvrPtBCB+tf2hty/ICJ3C75RBIfRriBFjMrLBlPH9l9n/1s+zOj2jeb4mErFa8erLM8YjyYwILuC7Ft90tGtpMxCVohxPyIcDvAvk4zG+awmhQ2tDIBCiDChZVoo41Qq9KOJTeSBC26CipqtWqBjp6iXaO3RUaGOl7KqMOHGUImrR/CijUVYGT2stQUdqH9JkHOV4tYGYXFPWyLzrxbIZowcf0mtUysVRCfE7KaFoWT1Er2TBEPwmCFNpTbm3j84L1hfPcdWC4DvysIsZz1C5IaJQKifLS8rRlPVyDgZMrgjWiDVc5RByTBnRZiD6FJtjBkPq6HlyuqAcD8g0PP+X/4yb+3uMAlRNjVIaazSX+ZiPn3+K8p7d3V2yPEsLRyVNPxHwEYl0HoalYbY/o5zs0vlWWJu6QmlLnhVkiTnp2oaQcmlMajSo0MKuoTbZNhjAJdYmRnJrGJY5XdfRuoDVkbZe0VgobCHnNDiIHttETp/9Y3ZevUdEYbTBfgVuvrxbRCYUUllBK5nsqjk8eiD5N4f7cHPIZkL/dC79h7wXVJxl0lphOBS2J0aZrKpa/n2xTOWnLLmbkjZHWWEC+nITsInV9kFKMjqAGSUANU5ZKn25qBYA1K/iQ18qSrqUkCbDqGQyt4mNiYmtUKls0lu2jUlZN8lyHHwqsyeNSpdKXsZuj8NENjEWBrGAhwDn58JW7d4U0GIy0Bfi/mpTuTi28prVXPJmPNAmkBe8/LtOfZfcOgHAVkAlGg4msKwELPzFvyJMmUYYsugFGHVLuPGSHNvFhQCEyBag9PoY0rhQe2l5sbiUfR6OBawGl1ibVFLLiwQOSSLuxNp4J8fWL0Q9YOMWQLrEumWZXI+gUkgiwgiRGEBlJOT61v9UkpU3ZbVrAvevtp94+4KM0KkwpWJ6xiV7xWQ5OjPk0ym7b7zF6vQFy8tfgxWUmeLWzRmhGEIxxHUdvgm4qqFdLWmqFdFETF5gRkPaVUc+yWhXa0w5xAxKitmMYmdGcJ0ACJDJPqn4pTFmJBYFPq8x1tCsF7iUoeDqRdLNaMzAoK0hqgAuyOJGlyiToYymLDOGmaLzQRZIRssCMjqxhJuE3FM9PKotwIohShidVSivUUZASUglFlmBiThNRS0MVVWhbYYelhTZDK011eUpTbWgvmgZaIO1U2ISM2dFzsBPKMczTOeZDHYkrTlunaQ6Smd0nWeQFehBwfnjY06v1tysW0blgCJGXNNwd3rAR1WHNgFtMlQx4NNGkz9/RFkWGDMiOo/NM7HvB4VrO7o20LSKg/0Rk70jojEs5wvmizk+QpkN0cYQYqD1nQCaqNAI8xUggaZcgHLfqTcmAKoCwXV0wROCJ9MWrzyNC9imIR+OcNGjgUwplDKYWHD5/mOY/Tdkw79GUzdUbfOZO1ht7uKvti/F1ouG0/2DayW9dj6HD9+XXj87f1byU7oIz64kb6VZJ2BjJZ9mNBZBrVdSblmuYWRh2Qmj0ySm5+pKbNo225YtepaiZ2YMUjZpS5kQBxMRDBsrKbq97qZKOpKYwIsCQi0AzYfUxiFuS2AbJ4bZamoibHohXdcDbVjgCCYkF1UqsfSlvKgTg5NokcFAgNW6FmAVgoh+BxPY7XtrzZOYWcn+mYWAntxAdZlKL2lTbL+r6VJjzwbuHMJsKFqZupLXFIW0wSgzkQb4LtmqAwzviTXdr4Q1a3tBdZRrmGtht85X0v3cO8kqGk9kH7p1AoH6miUdIDFfpFMTWqS9S9gyX70d3GZJo2MSIDJyzYpCrO4qOa16Bke18NZduPybUP13AtqKkq9qUH/47QsCbkRrEkIS10YvQFgrtDKozDA8PGLv7a9z9vgTlj98xmhc8mQ54MmP1hzcKsmbKw5nBQOb0cZAV68x1lKWI+xoTHN6zGh3QHVxwWA2FnChNXY4BBVTcF6q0/bCZifljtAZdJajc2lk2SykdON8K3knSpNrTYyZlD6MlIhCJkyC1gabGbTx+BjxXU2Mo5RrE1O0RmKMrBWhsPdgMkJy8Ki+n4wVFieiUcqCeOi3E6vSEBwhhLTi8egsJx8PseVt7HxOPT/BLa+wWYYuS1SMWGsZ5CWz3Rusrk5xMTLMC2KIhCgMV0TSonWeE6yldR0PPn6MbhXrZY3b36GY7rJaXjLZ2eVof4YHzubnXJyccXG+pjKRG1VNbnN0jGRlgTaaLjrWqyuqOqCN5eDmEdloSN11LJsVXVejbYayWZIpKHz0EIy009ByHRS9KSIlDveR8ITtYJ4aeGTWQqcoraL2Ha6THCHvGnGxBC+6yxipHoPfrxi/csXF/Iz1uvncHSJ1NHYAAQAASURBVKwSwPkK4nwptk30vZE5wyOTS+fh5Bje+yHcfQW+fku6f4/X8PURPK2lm/dVk0SwRsoYzkln7dUSDg7hopImkFerJAoNwj6ENGmTyja9sNmmckeWRMRtiu2f7IpQtw8M7F1RqtuCI5ttQUXwomfx6fOzElQ/ieqt3oQEcoBNz6TewdM36XSJxSGVy3oQ1k+0MYlitRaWamBk35drqJ+KDmZ6KFqcrkvlvCSibmu4eCHNLZUSUKf7Uln6jojYvF1KGn7tnoCRcQnnl9KkdLwDVxdwMZdjmeyKHX9vBE5JrkzXyD7WKflZW2GNShkreX4sOqosg3yYMolcOifIvqiU50O4dg3ZapfoF5npGPqk65je45yIll0qFWY6uboKOWe9nVwpuKvgfAg/nonDblhs9+Mz/03A9Ce1g/9erqufUjv5FwLc9JjUaIMLIu6VhYXZBEyZIqe4ccje299k8fycYnZIef8d8nLAyfEzHv7mxwx2x7zz9svM8hlMlhgdyPd20EVO266Z6JK2bpgdHaCzgr5+I8F7kmobcOB9ui9dkt1oVCn7olQAvYNSmrZaELyjXV+CUtg4wma5jAUKlGsxWY4PEa0Vo8KwWHW41m1WTOqa90vYo356DKgkNou9RiBRqZGQSi0yKMUUGKWS0DAGOS4fIqp1KJ0JaMoNxWwXYyz1/IxutSDTFl1k6KjIc0sZc8J4h7ptGbQOm1mCUkSvcCjphm4tUQWePXrA1dkVt2zGuGtoURTBo2MktC0vv/Mqb//in+P4+XP+33//l/nRD37Ecxcon5zyV+84JuWUIrFSTVWxvFrQdIr7d3eZHd7AR818dcWqrgkhkqXec0Yb6Z2lLCrGdBlt6iUlZTk5RykYMdW9pRSoUxK0gJ1gInRyfeom0KwruqyktHmqImistezu3mT21t/kfF1xen5C1Xafv42BrxicL/7Wa0eSvqTX1aQSMDHKRPviRPpP3dyDxQk8/JGwBYc34TuvweUSfvQJtFcwH8sq/eJC3psPhUkZFHBymppHxmuOqLRQoddwkMolCECpU3klagiX8trBRCb44U6a0FapFUCUscTmWy1OiCKoHWUpQK+fAK8pmKNPQB82ZZHEcH42YyWxNL6TSVmxZW5Avr9fEOZJIOuclKGuzuV90wNp2RCcMDEqCouiWlheShJyblM5LUrZi1SOck6+79592J8J0MkLej0kClmI/PBj+PVfhVs34X/+t+CbhTAk9YGc53q+ZaUGpSRCZ8CTCzg+FhZqNE3tIhS0gU2OUO+wQiUSy6UFsNmWt/pgxJ4F2wjW+9dFYfeydH0KDaNBKnu1qUSVSosXz+G9fwjDEvYPU/8xfp+BJX72364Lj3+SAemnlBT6QoAb2dTmQsTeqpgSbYzOwWjMoGB05y57X3uNW3feYOf2bdzFGQc2kt2/i80MTz5+irk9xehdzKTE2SG0jrbuoAs458iKEqEWM2GJEgOyWXsHvw3Vi/3fBVaowRCVFWibw4Wia9bErsVVCzSBMJxsDkcbw2p1xcfvf8h0nDMtNYslBBfkfjI2gSvQ1qQyFJLbohRRmW0rBkAm5FRm2bCiCkyG1kHKaMlZFaNFOZcWWAEfvOTiEMknE4Jr8d6jiKio0jifMQhAGWlUoGkrrB5jtJJoDWWIKVenWl3y7OlT8sxzfy8y2Ruz0ob67JwiM6wv57C4xGrFz3znz3Lj9n1u336FRx/8iEdPHvKDq4qvh0he5Niy4OrslOW8Ymd3xN2X70GWsVytWayWtE2LNTnaFhgzJM/yZMfWmBSyFjFE5SFYtA4oNZS2FiEK+MMCHQHJ6glJ0O2jRAuooPBdpFl3uLIhDodoO5ASYFTM7ryBHU1Yn55xenqB67YjRt/nbHM9fsKeU+raPU/vqIjqK/bnT3JTsJkMEq7ZMHuoVNqJUgZ5+lj6QT39GJ4+hd19CbN79Fgm79dvw9MlxAthd7q1lFnKpK3IrLAvGCTVVuIa0moFegGqittSjDZbNqBaC+vgWtiN0hIhywXooGG9kGOKCNM7nMLbb0g6cRVgguwHUUDCpiFn2AKZHtDFVPLazHJ6W2bZrPgT2xNUMjuk1yonwCuSSjCp7IOCxUKAl5HYiW1icidruloJeMkHEJbbfYx+m6szmsHt29LB/FxJGSl46dnlPOxOpZwUAvzrX4PHD+HZA3jza3D7HswSYGlaYW/2D2A6FEv/J4/lHI9GYmcvkkja1eCr1MbBb0tqPc0XDWgnpbC4vtaKoQdCCZD0ln8FWyFyFJAzyKQdw3qdvi/poJ58KI00D/YlOdteRx7XgUwPoj53j3/eUXX9ff29FUn7qq79208XwvnCgJsNkEirC1lAaLQSEa3RGQpDsTPjxjvf5s7Nl8G1jApDsT9lgmP59BlBw2sHe3g3ZXD3PsUkZ/HpA6Z7M7q6IR+UaKu3rQ/E0yhsYwIxIjQzKBWIzhERXYrSBqXAZBmaEYSIniu6eoVv17SpGGJsKc5DpXn84BlPHi6ZvLNDbhwhRJpWVgMxJseU6tsxKJTp47zl95+ZLCPipjLJWRUC6OTICoDSKJ1eq1IqMRC8J3TynTrZ0+1gRFhcEn0Q9gMlg6+FGIcYNN47muDIMHg0XgXAE13k+Plj2rplNInYLLD3+j2WB2/x4sMP0MMpXdexd3CD+dU5L7/xdV5+9XX+N//b/x3V4op//vf+r/zo1/8lnMz5pskxa8vzx89gfIM3/9bfYRRWrF884vz0gnXriNqisxJjM4w1EiqoNdqkFXiQQUdHTUhND7VSYkTrOyiLNQaFAQxtCBSZRitwbZA5zSkZx5ysvnRm5By7jthVBOeZX11xcXqxiQpJp1oAUlqUeT77b/2gotJv+/FmE9Kc/i/0bH/SUn0Fcf4ktmtAQiKA5dchlWNiFPYBLxqZH/42PP9EykKNl5TiaOHOTbnvTs/BXsHjR7Bo4KWXJExuUEjmjes/F+QhzbZi3J4d6fNT+i7XSm/dT10AVnKzTKMIUfMkdEbJpBiQ77h/E16awA8vIFg5xt511LMcPjELkVR2SeWVPom5n+D6ydgnfYm+tk86AZ+gtu/1SRxtjNirDelhCFKum+ywadbZM0cOUGvZB2sFCGzs1OnaWAU374pVeqHEnv7RYzh+H958E9ZzAU8nL0Tn8+GP4JOP4O/+l/Kdf+c/hV/8C3A4Bd/CwMHdW7A6hl/+v4Mewo17Usoq7DURcWKgXJtEwnEL3IgkW+b2+AMyfvbgWZZRieXRch0jovPJEMGxQY5PKWGttBZ2LC+lTDmdwsHuZjrob9/Nfz+PRa7/7vMlqOvv2yyk+p/V7/6eLznY+cKAG0WayNHp+TGbn5VWaJ2B0ugsY//WHcbjEc1VzRgnkQhdRxcDr9w9pByWeOcxvkXnJUpHdm/uc/bJQyYHuwDErpUHqF9R9JOJlvwaYWuChOsl50D0Lf2dphRkU2FpQgj4Zo1rO6KqyArR2fjouLx0mCyjsANKMyfESNc6vHN479E6k8Rbk6OKnM1g06P8pMvZBjn1lGNqJZCYJYVOzqPUVTzZx6NWROShjU6eXW0DyhpMKQAttC3YDKUimTHJ0m4IweFjIEaV0nkNBs16dcXF2RlaRUZljsotg719xm+8yemTRxSHB7TPXzAd73Dz7ksEIrYoGREZDob80n/4t3nwW7/KB2uNPjlhuFpRXda88Vf+PSa/9De4XCwZ55bXfMPqxQPa06fE5Ypw+RxdrdBdi/KBGDopO+mAUZrgWgEQkQTEDFEpvGuxcSBurLRKjUDXRsLa0a0j6w66YERagENbi8nKzfl36zltXXN6dcbFfLEFKAmymFTh8BFU3A4KOg12m6T7mFjunlVPC+D+HBP7IFQleq7PMc5fbX/UbUMPI0CCpEHpf07gJgZx2Tx7DMuVJBAjiddkViayx6cS929Nsg1XcrGencEr98XJA9sU4t5V008am+wZsy1p9DeEuTYWRCT8DeSmKYZSqogDCQgMiX3ezUSj0lXgpvI5RUrrNUaOq+8W3mzHsq1+RPR8Pd7b7ms6XzotgPq0X6Pk83oRbUishbYyadsoHcudhzoBtDwX4NCH+yklWpbkdNyyCemaDKewdyCvr1spZ52fwocfwN17Uj68fVPKW48+lc9rajbM19//r+Dn/hwMgzQ1HQ5hbwD/9FfgX/wD6fvVOrADuPkSHN4RFmfnpgjFbZaE2VbOca+3sXk6JyQgloCfzUFVbEpTOpWuciX5Q0MFOXLMFrmnnBeGSCUd2HAqoYU7+5DmmO2NwKayKAD08yyN2mIrde1PuP6+zWorAe20r78DLMXtI/MlrFt9YcCN1uBTXok8R4lZUSEBD4n9V8YwzgYUmSIbFxRtRte2LNuO4XTM4cEsdYcO+MUcVwaqk2dkuwN85xhNJ2mFHYgupnK0zDxKy+mQkDwBPrFvN9DfWFFWWiFGVFGQjyV2PJ57Ot8QOo2jEnYodfruoiD+wniy1MBRKRHnRiNOKWWSO0rr1N5BbXCMSuFa/fMSuo64yWhWyeggoYFKG/osimjMVl8SYrrfpbmkthnaenzwwhArjclz0RXFgIoKqyyd73DBEdIuxei5Oj+l7RxlZinzgpApbDnk1ptv8YN/8v/h6vg5w9kOL55+jJrmHBzdFqt2lhNUx9EbX+fmna/x+Ff+B743zbhzueaVu0fowZB1VfF/+7/8MsYW3Lyzz9HNA+7c/xZ7r+0wHOWMyxzTraFeErsaVgtUs8JfnNFenkI1J6yXuPUS37QEV0sJ6prDQYIeHa51+FrRRcWqy4he40MH2mCKAl3khODxvsPVF9SXZ5ydvGC1rtOZlzKiVVAYKe2FGKWHn80oioLhqGA6mXLjxi12d3bpXM16vaaqK7q2pe1a6qZmXdU0bYPrAk3b0rQdnVOiRe1vvTTYfAV2/ohb4LN5JT2zEntmITmoghdrdxfFBp53MjkXufQCOrvsRWCSUFxrOLwtYuLcwtWCjYbFpslDgrxklQFbi7V3MnluZqP0vr49QdMIyFIK9oxk5WQBGAg71Cfk9oxCMIlpSYNI7FGzS+Lpfj/6slT/1dduOEjlpX5WTCv+Xggd/FbH0gOV60GA6JTC3ElJSRthLXrgGIKU+VQUhsNkAiI2k7CRElKvx2mTC6xewwfvwf/4r8PN25Jnc/s1mLdw/DQxXi3EDD74ATx+F37pl+Cqg90RPDkRp9JgAP+HvyWvfXwKL07hwXfh/UtYt5JblA/Fjp+VIowuhwI6dg6k0elgJNbxIpd2GkaY4W2pxwgrlVsYxFSS6sSJ1uucmlqur0ogOd+T7zi4KbocuUk3lwDfM0XpnvKdgNV1I2XA4+ei/7KFgLlykMIRc2n7MShEt5TpJKLOBIj2Uwp8lrX5PMPzJdm+MOCmp/hiyg5QSqf+PalUFKVRZm5zdodj1HrJuCgpb90ihMjw6AC1vmJUWnzXUpQF2sL6+CG4iugL8tymuH6DykthM2BbMkj2UNWr3tFi70YRYkOPc0JAAM26QWWafDwmuo5weYz3rYwNKcSvLKHtPJ3zOC9MQjkaJ4ZIAJBWKuV46e0AmJCNiiFl+PiUHCw0d4gijFXGoP7/7P13kGXJeeUJ/tz9qidDZqQWlVkiSyugUEBBaxAECEqAutnsmR7bZrM507atzNbWxnZnWqztNq2btjutp9kESZBskgAFZAGFAlAoACxdWTordWZEZMgnr3L3/ePz9yKrAJAAGyCLaF6zyIiMuO+++67y4+c73zkhpVoZvyOA1hqjFDoIFp028iy34YGk5XPVpYRmxlP/HAF7URSBc9RXtOcbpSmLnO2tTZSHZiMhTRtYo4iTmIW9e+nuWkLNzjJ/4GocfTZWzoV4CCXdTmGfrnnLu3j8U58mikeca7Y52GzQW7lIpxzhfMrqcsG5s6dx9iRpo0WcxejY025lLMw3uOuemzBxRJknFIVidmYvi9fMMddp0EgNxlWYOpeQvdWz+OUX8VurgABbN0ldt5BXmmEVEaGpfY02niiOUJHC10q0fr113DNfZnj5kgSXhueKAVKj2bUwx/69+7j66uu45tqrOXz4CPsOHmR+aRfdmXnm5hdIGxnOWeqyoMzHlEVBPhwwGA0ZDoaMRgPGgzHnL57joYcf5sGvPMiF5RXyPMc6qK2ajkOeHbDz18u3sUy6WIBpZ87EZ2bSOTWZzNSV6FqabRl8lpfl76tr0JqFcSWsTFGImfGugxA1QRcSdllbucDKPJRcmJw4drQnk7KpC743HlQqT+bJBaaUdMxUTlK0TQxzS6GDCqRzyoqLcqyD22/Y7nC4U3KbtIJrvwPoJszMpMsnCq83AbSFZgvxAgosjVIijlW8FCBZG1gDuwMgJyAIH4Sx4XdVNZkthTgGPX3+Try7JP9pXt5nXEpbvfUCjJaXpattaxvOPw++DXsOMY0uqKvpRJTPfgLe9Q6omgJqhiPYvU8YMFXC3hQOXwXmagFO4xIqJbEcG2P40pPSRZflkFrYvAjPbUJvJNornQj4mV0Uf53dRyWXSrGjTZqwJLGDOPjmTIBcVUsXVRSuu+4iHL8blvZMu2OnUxrrpFNs+SK88Bw89wKcPgXnzsHqZdhah80NYRS1ERCTNeRYttpyLbdb8nO7AXsPSmDs3XfDniVpO9eIqPtKLDM5V3+FAM4rBNyoMBsIHS0Eczyt8U4HJYvDaEPpKqIQXOiHA8rY0Nq9SLNpSAppa1aRQnmPLbcp1tdoz83gqpqsHbJPlBcvm+AELKysxSsrJYVJuisTx+AwlVCSHzXRBTpb4muHiTOiZot4nOGLMdYWSLeOoZVpnPVYa7FOS1RKIwUmLE24YCLFtHMrGHpZ5wXUBCGHDdoZT4KnjXOa2hmccygsWlcYVaEji4pqasCYCKP9lGWQeAdA68A6esCKsaATbkcASIQyFmqNViI6rl3JYHubfFySpTGNRoM4jVEIUxFnGXuvO86TX7yPzUvLNPfPcOO+1+FsLaUzEwVDQrjmNXczs2eBjFXiLOG5jQF6cI7W+jpZluJ8SVEVeK/Q3gvLMqrpb425+/U305qZYfnSFs1mg89/5hHWV/so7clSTbOV0mymLC7NsvfgAkePHueW29/M1m/+S9JqjLWO2snzP68N48owrmMaRlyO4yTFJGlgyxx1XVIXAzqbZzlcD0i1Im63OHLoELffciuvf9ObuOWO2zhw5AjNVjOw95Hop4JInMmhJiZNM5rtNrbMYXEBHcVXEIPC9v3EeMza2mWeefopvvCl+3jwwS/z/POnWNvsUVs/LfP/ddnqz7E4v0PFT0WyDok1CKOQC6WSibdMqy0D3MoajGpIg0txHbaTzEgL+NaWzNIHA9mWV5NaZRjoCANwEBK7CVRVO2BrStnqYAiHAJlIix5kNITGWFgEk4b9dSIiNkpAhXGiaRnlsn0XNDLeyz47v1MSm/jhxFFgotjRzlAimh8rx0d8K8Al4CNhZOowjNg6VNImF+UVAGha2jBBfBtqtBPfHWtCeraS46ISmJsRT5uikk61InQo1uH/zz4Dr38z7N0NF7bhoS8LE6bNzjlVFr76ICyvA0tBUNyGzgFhhfJC3itOd0BvEkEzgtmGAJvNLdg/J8Lft98DSx05loUTADQqxL363DqcfBoe+hx86H8O4ag6HE+kzT92EFVBiExgo0I3ndLCtiQtmDsMUVt+PxwIeHn8Mfj85+HhR+DF03IduHDcbfXSh4ECCO7Rg4HoeNbWr2hvZ4cVzBpy7V5/A7z+LXD3a+Hqq2CuM+1Wnm5zWqp65YOcVwi48TuVn8l9Hpga52xwsFVikOc8ZT6mYytsVTO4vEaxuc6upRl8kcuA4SzK1dDUaK2JYkM5HJHEBqUidCyR9T4CVcvA65WW1m+l5cKdDPSyd/Kz8tJFRdDK1TWuKsEpTKtJ0p7DWY+vczw13lY0mhGxhqKoUMrTaUQkiZ7S0lIe0qGcJGJCaz22rLFVJc7DxlCPMkbjLv1Rl61xxnau6Y1rhnUlJSNb04wV862IdlQwP1PTaqwRJ33iVBrOjTGoyQPVOeJ2C5Nm2CKX41zV6CwJ7dXCDGml8drha8jHY7Y2NnB4sqRBFMVEJiU2kOgYpQ3Xvu4elInoDTY4fNsdNJoZthY3ZWWS6QNkYd9B9h+/gfMPr6Ljktcf3MuL2yV/+JEPc/ZSSb/fQukmDk1tQykQh/IWk8Y89+xF9u5b4MzJS1x/2zHu++Sj1LmjLGF7awgMOHVyE770IvPzLX7pH/4gKyuXuSrTcv6cos41eWkYVxGFj8mo0JFHmxhtJN+mLi3j8ZhxkdN1jjuPXs2e17yHV73jPdx4xx3MLCwGKwEBjpOOk4kp5MuQjYxbTjrbTNpgRy3op9lieE8zTjjU6XDw8FW89R3vor/d4+mnn+S+z93LZz77OZ546mkGw/FOs8tfC5C/9eXlD+vJw0eHgRcvJarJg9/EMvAvLkrH1Oq2zHDjLACDGIaBwSitGM1VQUw68TCpCaJZI9eImZi++Z2BHpg+BCeD/GQ/IyMDsEbYmOFWYFmCFshEwiQ5JL7BK8hrcf+dXIt1FTql7I4o2CgZzONYZuvWCXBq9qG5LWxF5mSwj+LAyEShVFeDTWE7gtEiVJ2QlE4AhWGiqLWU1Io8MANGjmceWtcnLdPeyaAfISWj+Xn5fTkWpscWQYoTSloPfEmeo60FeOxhCfKMQ2nLhtBOj+imnj4Br1qCKoGzl2AmgQ/9FOyOoDsENwZcACPBE0gZ2ccbDkjZ6pq98MhJePdt4pGTALNtoAPH5uGeo7A5gn/6u7BnEfLJdeXlGCZWWBtVScnMqtAGHvKlErOTGt/XcOokfO2T8KmPw8MPwdpldhLeAxhmwoy97NqeXEpay1cRPt/0tYTPiACsfh/OnIJPfxJmZuCGm+Atb4O3vgVuOC7p9lMlhLoC5Lz8TV85yysE3IDDSWdLWER3YqR0FAR/Gi1sngOjJFspxmEHfQrfx8cRqqygrjBZjBs7tK/RUYy1NXEjCaZuFiKNdhoVRbi6lt8boJLoBILuxgUBmbO1uBU76S6a0MkKj6uDK6aJiNIM60pq5/HWEicJjaZhNMgxWtNtGKIkntLTSnq/xZsGqKqcKh+D09jSUbsug+IYZy4ZTm87Nryh7xJoZLTnu6yuDlBEoEpcUaBHMqtZSAz70jmuWdjN4uIardYmURS0PkbjKotOYkxi8Fbj8loyr1w87eCSOZqhco7aVYxHfcajEdoYIq0wUUJsEozRJNpgTER7ZoEb3vRmehuX2X/1DWytXZISnq1k1hJai5TzXP/GN3L6q59jmBcYo7lucY5r7n4T0VMX+dQffYGiHnLg4DVAQ0r6kcdZ6A/GHLl6L3v37qIqcza3+zg8tfOiD6pr4khTl5Y0bTIcWy5d2iCvKmpjqG1NmXuKQUxuFUMbUQfQqpUmzppgomAXYskb8zSvuY7k6luZv/oGjuzZB5HhxJNPoJQiSVKSNKHRbJKmDTqdGVqdDlGavIzZDcwfCkx8RSeVmoJ6mDA9oeyoPZExzC0u8tp73sSrX303P/c3/zZf+dqX+d3/+l/53H33s765RWXVtDb+1yDnz1r0zoAPO8LeiZMsk1JM+FGyYWQwaXdAdaSUMAl5LCpoaFDRjuFcXu4IcOvw0KpDy7RWMkjHegdQuQB0CE0O0w6nsI0JoxNFAhBsLWBBB/OnyEh5bGTF5M45cTIuA4CYDEjehvchJGM3ZN9iLa7ByUnYV8OMAVWDDuZ7Gz1YaiEoLQlljlheX1goNmFtBdZ3wWBWtDQTnU9spJRUWmGUsgDGdPVSNoAAunSIQGg2Qxu2FxBgy2CIGDRK2+tw332wsATPn4DFvYEciqWraqI1QsHn74fXvE26rqyDtU148PNww1547xulnHj+JDCWccCGElmnAc8vw6VVYT9m2kwrDTqS81E7ASbFSK6DffOib4mtfM5UQbsS8Giu0HA6J+PGRGhuDOSbIpZ+/lF44Sm4dEHKlTfcKJ+lLOTaGgew2N+WqI+yvOI4ssP84QOrwxUYZMLwhDLixODUhdLj2mX44n3iG/Qf/g+463Xwwz8Cb3qDsGnTkpV62XZfWcsrBtxMu6W8R2sTmJswgwG5FrzDK0/SbKJGDq3GGKPRaGFuPag4QqWicLd1H21kkLBlLYOKs7hay3kP+UA6DloGLy2MKnRKYT2+KqU8rTTeVQEA+PC6COtKnC3wuSVqNokabepyjLM5LswEZmcitrf6zDUiWlEGaDwhd8p5FCL8rUtJ4Ha1pi404+IIp1d38cLIsGxbFM2UXftnuf7GvTRaDZYOzPHx334KE+W8/l3HWT7XZ9eeNg9+6mk21/o8trHCc+c3ON7bw0179jLTPU3aHKOqmkhrkshL11TaFMbJib5GZnWgowRvx2ChrkvyYQ/rPYmOMFEqZ0yDiWLxANICnLK0CXMLaKVIGy3wkgAu9uUyeCilOXjrHehOi6Io0VGKryp0MeLotceZ/cpllPb81N/6AaKkyfrlLdozKXWpWNw9Q7fbRmuFwzG/MEOSRYzHJR4nWVNWEekEkzQoij6rq9vMNFpYO6Yoa8ZDQ1VrCqfIXYz1Cq88tYblfMzZy8tc0h2W4xnq+YPYJMVdvky98lkcAoZrVwnoRUlHXJyQZRntZpdWs8XS4l727NnPvv0HWdi1m1anTZImTNv35cIP39VL/jsFOV48fJQXij3KUvbs28f7vv8DvPlNb+Pxxx/lIx/5DT7+yU9xcXkN6/zXdXT+9fLyJQwu05LJhC5m57sKGpDRCJoafEMGxWk3IwJwiuCLE7WZBtwm4puFDqUWR8gHQhgPhZRLLLLOpEMqSYMWNYhNTbTD6lS1ABmTQmZkv8YD8YcxmTAe1sN2DbMdKZ3ZgmmbzIQdmAjrk4mQ1EHqITkFS6vQcmAG4vNzYQtOLItG5dwm/Oj14Jrw8afhUBcu9eFd10ve09weODgPM5dED9K7CkaZMDTOiVtwbQUAmAk4YOeY1SWYRmiPTqRjSGlwxU7+kiPENARm3TrZ3saaDObjIfIA1wI8fND6eAePPyQgIE1ke3EsZb1nn4bX7JKB/d99VFii3bOwWUAGXNqE3iA4G2sBeXktolwC8DQeXCmvTduwNCP7EjXkWmhbOc7aB0AXQKxHgOquPeD6ElGxcU4AzOIuWHqrbF8H4DzxEqpDJEWew3BbylNrl2DlglgSrK3IZy3KHT3U9KL9JvfDtKRlw7VvpGR38SL8we/BfZ+BW26DD/4EvPsdsHtxR0v0Ci1VvSLAzc4zRYdZpwqZRzYYrgU9SJi9+GmQmLSIe1fhrMXWFVGagNeYLMZvSQyBrz2urKC25JdX8R5Ms0XcbqPiKAhdASKIQDlDXRTCyCgtuU4afORRcQTVpD3bo6zD1X1cXgIQtzpESQtbO2pbQlUy021y6UKfuUbNbEtAhAoeLVobPEFbU3vqoqYq2lxeu4onVxNO25Rh0uXQDbvpD0pe/Y7r2H1wlgtn+/T6OVGmaLRbbGyMmdvVpD3X4G0fup3e+pjR9pATXzvLEy9eZPn0BnftvonFmVN0OiukkcfEHqNEU6S0Bm+lRBcE3cbERLqiUjV1SFD3HozRGOMkEwphn7QWfx4V2kJbrS5KKeI4oRgPSZqtcJKFrvA4Fg4fI921B3PpvIALV+H7WyxcfZw4jqms58VTq7z7/fdw52tuoLY1WZbyxONPs7G+zeXVdfbu20ucan78Z97FubMr5OOCB7/0JO12g2uuOcaTTz7LYHvE8somu3cfpD73NGVRgRW2sHTSNRZnBdu64ItjR295DTt2pAvzxHGM217HOkttK8o6x3uZVSvAK0scZ8RRQpW2qC2MRiVarXNpdZkXzjxLd2aWVqNFtz3L4sIulpb2sbR7LzML88RxImGogXVhwubAdMYtjwwjQawIe2hMRHdG8brX3sPNN9/KD/3Qj/Crv/ar/PEnPsV2b8A0deKvl69fJrPVycF2QWyrrtCDTHR2E++Zif+NCW3VUSyDh3ICcLIZeV2sA2gwsGtJ3mI0FN1DVQehK0AtJIi2woLEkZSx/GQQV7J+HLqgJuWdqCM6FBCjt2Io5SmTiLh5ewT7OzCKYEhgiQLQcla2FZvQ4hdBOoSFU7C7AFNA1YOnVqGTwKeegbObcKgD7RRGHkYDmGvAyhA2RvAbj8BCA2Zb8OpDcNV+ODIHK0/A9lXQ3x0+i5LPNjUhNTvAzjlhF1wsOp4oCu324dw4vbPvHjkPk24vlIRwTjqkGk3ZR668ATSceVG6iPYdkO3qWKIbnn9KSl5GwdHd8NEvwldOCLDMC7j5enFGXlqEC5dEZ/Orn4LDu4UFev1NUg577iTceC3MtGD3HKyeg0PXS3edDvugQ9dYnoJLpbS1d1HYnvUN2f/uQgDFkZQcFVd8drPjaFwMBQg2E/C7RCB91XHJMBsNpDV+fVW6x5YvhVDTcNz+rFLSxK2bcM3ZGrY9fPlL8MRj8Lu/DT/zN0Sk3WlNhuJX3PKKADegxOfD1aEDxKO8D4JJveMS7hzeWXmGRAaSDOUsyiWgSwlhNBoTR5BqzGgboxXKyeBd5wWuGGPLnLq/RT2cIe52MI0mJsnkAvdQFwXF1taOONwHoXPoOJIMIyUsduLwtkFtB9hiiDYRJk1h3Av3piNrisPycFzSaATn47pGoXHeU+c5dSFsQFHOcG75Gp7stVhO50hm27z2NUfpbY+57Y27OH+6x32ffIH1y5tYC0UAVU8+doZ2JyPLYhZ3d7jlVYc5duN+WrMtzj69xImHXuALm9u8uriOxVwxt3gRN3I0GglR6CKrncc5jzFRKNHVTETUVVnI+VBaurt8CIRDksMxhhBbGcCOwdUVOjKU+VBAorNTfQookqzFwjXHGW6cpajGUJWUK+eZu2uWLIspBgVf+dLj7Du4xKvuvgGjI3q9PmmasrK5zvziPJWznH3+PFdfc4TXvO5WNje3+L73v5kkiSnLMav/+hJrK9ucP7fFq1+7n9ELj1CWBVY5bKLQzRzqnIt41jLPdqxxlWaOFlVeUQ4uUJY549GIosipfUUcN0B7mo2MbncXiYlY6Cxx5PDVHDx4iMXF3czMztPqtMgaGSaWtPfaVpRFzlNPP84n7v0o7azF1Uev5/gNt7Br7x7i5KVlrJd0J0wfSAqlxcVYk6C1pdud4Z7XvZ7jx4/zjre/nf/j3/xbHn38SfKi/usS1TdalJeZ8MRxdnqM/ZTUkfKICUDDyaAyNmE2nIg3ig2MSO6gMROEw2GwzlIRlKaZmMm1tsWrZjyS7ikbBpk0hdnZ8N6KaVSCC8zOBGRZpNQSjcG0IW3JoFMWgeUI+zwOpZtmAsHuZcccUImeIw2lsaQHe56D7giKDcnBevAkzDbh/lUxBHznMVial+fBBFTdehj6uZRHlgfw0Bl44gJsDuH6VbjzailfpM9C5uHyPmG/xsGnpp50bAYAZwngLjAaaSbv411gyaswwFthf21gF6brWAGbtZXWbO92tE0TAJsPBcgsHoK4IUBw9wH4yra0fLdTeN3NcHYVvnxCgGa3I6W+hQVY3ZDje80BeP40PPConLeP3SegIc7gF/fA7hk4NAdfOg9X3y7nFy3ap1EmLJtS4sxcOWF0GIpOqr1f2LtmU0pgKoF6LKzSOIfeZfmsW5fhzEk4f0bMC7c2hF3Ki+kzGxPLex+/Gd76ASgGcPIZeOpxATuTpPSXgxIPOyym3wFWlOAM9LbhgS/CM8/Apz4Ff/tvwy03yjX1CmNwXiHghgC0Q1cPUdCXOby1eOsD8AnrxAlZp0vWnqHYWqMYDfFEJNcfx7SauFPPYTdXRbBpZAaQdVpks1286+DzkmowpOht4ouCeHYe33SYhtxU9XBEPc6lmykY+lkr9WqvEcGpFp8ahUI1WhK+OxpQ9nskM7OkWQvb38LZGqUjsizmwmXHzBy4okZpg1eaOnRASfk149zyUR7bTllu7OLau/Zy/PbDIqS/pPjkx57m0oXLuKoOjKjGOSnj+dKyuTkAYOXSJmdfXOPodUvs3juHTxVJu0UexzzY2+AursP6MQvzqyitaChNFMXY2qGCiZlS0maqw4BqbY21VbAdqvDK46xDxQBGXIRVFBpARPexdfEsnd37GPd72KoSkW7I0FHaYKKU648e4cmHFUVVygyqt0aiodVO6Q9LhsOKj/32/awur3PTbdexuNgmjjXdbpP1y5dJswYzszN47+kPBiijaXVagKXZnkVFGWmjw/rmGN/ez6Cq6Y+HFJmjXylWR7Ccei4ZR16AthGttM3K6iaD4SUGgzFlGDDEw0uJc3or4aojR3n/2z/IXa99PYeOHSZrNaWFXqmdstPLL3IUvUGPT3/2jxn2t3n4ia/S/GSL647dwB133M21199Ed25OWLGpZuCKZVq+UkGbYdCqJCZlcWEX73/fB7jj9jv5L7/2q3z41z/CxdX1v24Zf/mikIFVOP4dMGNCC7SOmAonqwr6PUmwnl0UYzdqeOZZEckeuQbmd+9oJ7yC/hC2eqD7AgjaLejOyWCztQEjLYMVQKspWUdX6n5MKHdI1wJTGm5aekE0KZ0ZCY3MJw7AkQz+eQW7DGz64LobOr4mHVAaaBSw+yTMljBeha8tw8OnBVzlDt53PRzYJQwUKpRlAuhKDMy1ZT/2zsOxRXhmBZa35LWDkRy37gLwLKgGbCwxzdaqK2GbtBIGxZdXMJc+nIfg5KyCONpoabefABxf75wjgH2HpCzT7krJydZMg0En+VAvnoY7EWATRbJ/DonOaCXy9aNvEObl0edgfSDAdmsES7tE47K1Lfvdbsk5GwwAA4PNAID7wmwNzglgy1ow1hL42UTa9WsDKaK/KQawaw6O7IFOExpJ8AZip1Q0rIR5+v3fhi9/EV44LddeXb9UV/R1i5dIibe8V0JMb74L3j2CkyfgoQfh6Selu28aLfFNNjPpKLQWfCIfYv0y/MHvwyMPw0//DPz4j8HSAq+klvFXCLiRi94Dztd4JiBHBZGxzGomKdooTzXooW2JchXee4bDMY3NNdINi9++jHcVKhGfGq09cbuJzmLssMaWBbqZkpkFiv42ZW+DJBjf6TRDG/HY8XWNig0TYbpzHm9ryqKclm7iJCVptNBpE28dLh9Qj0fEzRZxUVCVFSYxtLsNTpxRXO3A1haMx4YWTu891kZs9o5zYtDkYrqbO956jKyZsbkx4E++fJpzL66QF4VEURiNx8gkU4HXHqVinKumeoG8KllYaJNmhsPXLvGat19N3it5+mtnOPfkGdrla1i5/Cn27C5Q3tNoN8TEryyY+CpMTAWtC2Jv53GaKZszmQ16hfgGhUBP42RwH6xeIjIRXtsgChdGbqpDM5q5g0dRsWZUjIidxvbWweZ0ZzKWV/ooBVsbPf7oow/w0NdO8p73vYqDR3bR7/eJIoPWiq2tHu12yvLFnPldiwwHA8qy5OSLF1m+1MMBW1sD1nqW/vaY8+e3WdtWbOA5H1lWckfuFMMK4qhmY2OZcV5TBX27YofIct7hIk2rFfO6u97KD3/wg3Tm50Ie2GTtb7aEv3nP6spFQNLYh6MBlzdW+NrjD7B/6QB33fFGXn33Pezat28H5ExvlZcDlRBmql0oz2uOHD7M3/u7v8Qdt9/Bv/j//DKPPn5C/JH+epFlMuufmuYFumbi0KvDzxNdRLsrZR8trf20GsHIbRfMLsnvCyfMgVUhFbuCViQz8VEOdl3ASHeeqfFdkQto8E4G22riE4OsY2J5/cQeoiyCkHQkA2DWDmWYoQCnJA6BlWM4LKV0IiP7hNsRKJsaOk9DZwzFMnz2pOzjXAteexUcC34n3knbOOFG8AiL4KsASpB1klS6hAoHL1yCz70InRhefRhuOgLxV2DXO2EllfcfjEUAm0zar8OAOOniUoFZCqSVnK8J2EeYr0n7uw6D+9LeAATNdAI1FeqDHOezp+QYp00RUXcXpPSzncPujmxnvgsfuAfuuho+9idw5rIwOLUVoDPbFTC0b5+Eorbactyv2gt7u/JeMy0RZM804GAXZsI+1FJRwHgxM6wjAcZZzI4rdFii8LlrD8MSvnYf/MZvwMZmuGYm1zLfHEhMMM/ufbJOXQvYmd8Nt9wDK+fg4fvhwS/BpUsvBTnfbIN1GfRdyPpnTsO/+pfSzfX3/2e45QambtuTc/CXtLxCwE0AMiHMTSH0rsdOfWb8VJTqUbbGj0fEjYik0yJqZWy5knxtlbhhwAdNi0LKJarGOodKM6IooR7n2EGfdNcSKEXRW6N0ilgpYmMwSYZJxlTDscQZ6FhKL6Hwoo0Vl9u6CLMIS5Q0MM02KKjzIZFrkjRbVHYD6yva7Yg1NcaaBt5WlNbifYTyGmstw9Fhnl7LOFV3GfkxzdkUvObeT55ge7CFTx2tlud9P/wqmk3PxsaI5566SKvVYXur4tLFMVnaYnF3l6PXLLHnyDzXvvoQyhtOPHyB088uM9dKOHLzXkYHZjl37wkObN3G+ub9JLsMprSkWUxEjLVOAJ1ToZtyEkCpwkWtUBgUBq2MtOoncilNwKdGUQy2GFy06KUFimGfpNGatjoT1u7uOYiOEwpboXxEXWxQD7bZf2iJE0+fx3tFbR3OOVZW1/jIb9zH+3/wtexaalLkloVdbaqipixyrFdsnrzAlx94hlPPn6e3neOdQeFQxRZP/Oa/p3fyFNsF9L3jrHKc7zmGtWcYgjQb2pEq6Wi13pMEzYtS8lwqvCLJUt7zzh/gJ3/uf6DRaFxx/35rN3JV1WxtbZAkCVnWwAYn67zM6Q97nDr3Ip+5/w95w2vewRvf+g4Wdu8O+ia+AbgJ/9fBJBHwvmZmZoa3ve0dHDhwiP/nP/3fufdz94tm6s93g36PLZ5p1hKKHQM/fUWHUmAWTCQAYlxDfyROxToWPc0wiHMneU3Oggsi4CJoIxqZdFhdXpV1uouhA8sT6spQNgQwGcU0ImFyLU0EpXEaGCUjwtXRQE591gI9EoBj5oXpGFbgZ8HlOxohFYzjIgPNs7ArB7MtrMpWDsrBu2+A9hwUGkYKfvcR+T7XgBv2i6HhTAz7MtF8rPbh+VU4vQFfPQPUcPt+AUejEh6/JELkt90Es4/A/JtgNTA/eQUEBsfDNN38SiNFg4AQQknKh+6jMjAyqOlETMI1DayuC6s1GvCSkiMKVs6G1vxYjkc6L4zXmVW4fn8YL8I1sLQIP/Fm+L0HYHUkIu7VvnR6pZns31X74HXH4dqDEs+ha6SsNgsf+nk4dpV0SikloKurRes0mQhNvG4mD5jJvT0BuMpLWezeP4D/+G9gPH4pqPlWliiGuXkBk/mYacRDkkkK+qFj8Kb3wYOfhs9+GlZXeKkv0ZVL+L/zQdiNANHtbbj30yJm/sf/BN7yhsD4TT7MXw7AeYWAGy8zYleHGaZHh9KGR1x5nZMBNkKhxmO8zbGlJk4auDzHD/p4FF7HqDTDjYY4SgE5OqYablE3xkSdBjpLKbc28bYm7nRwZUVVjahH2+gkQjebmGaGq2vqfAxU0xq8Vh6TNHGuwmiDqy3VaICvHHEzMDi1dNFEWYs4H2LrmkasyVVJ5SzDaog3kRjylSVV3ebM+gLP5jE977He89l7v8bu6yJ23ZyzP4U4TnG25tY3HCRymjhLuO7mXXRmOmxt9lm+UNLds5d4LkMlhnK74P5PvkCUefbNNaiXtzi5nbO2MqLMLUW/IFP7me0doZmdEZfjMqI10wFVS2caalr3l/8LwHHKYWuLjWuslYemSZthJicXs3M11WjAyomHOPy+D1FXubRB+0lquazXmt9F3OpQDoYY79F4Nk+/wMHDR2k2DDOzXba2h+S5J81S8lHBR3/rfq6+fi8333odi1ZKhWfOrPD88ys89dQlqtzR29oiTjNarQYL6Zjd649y/vlT9L2jbxzPl47VwlM5KMNDJZFLkaEXXWjbKJJI4Z0XY1QHHsWrbr+NH/rxn6Y7N0tV1aiiAi0dU5OU929KE3vF9sYGp0+eojPTZX5+kTiJcCGbRmtNbkYMx0M+8rH/zJe+ci9ve/P38bo3vJXZxUXUlQ/BcH9MKX3vQLnQ/WfJkogbb7yBf/a//2/803/xL/jox/6Yoij/GuAQumkmZp2TATAIxXf+5sRvxWSQuNANkwqTM/TB9j6XUpVPgzleFdyLG9AfS0fL7JwMyv2+zPLjpgzGZS1dT6NcmJusAQRL/kl0QjkSMOVsACZtuThHgcGJYhmsxwMBOlEk+g4fGJ84aHNiE4TOI1hYg8ak60jB2++CZ2t4IhOdTl3I/t53RliGcQGPX4atvpSjDqQy098cB1+fFN55tehINsfSCj2Twu6miGY7KfiL0D0F4yNyjBML2z3EbCx0hBmYRk6gZHD3Wj53FdrHvZbPPWUsvJyvVhtuehX8wW+I/mXqMn/FehuXRYTdbjHVWx25Gs68IJ40m9vCujSU6FdaKfzYm+DpS/DYs7IfzsOhJbhmD9y4V2Y8c7NyHYw8jBqwcBtcc5Xsg9USlpkqpum6kyXsghjxebl+rnQzxsOjj8GHf1UYmzgSbc7E4dldce9/3RK2Mz8nIGu7J11lRb0DcJwD2xSd0g/8LNz9Nrjvj+D+z8L6+jcoL6kd0KO0nIvKCaAuazhxAv7JP4F/8A/g/d8nnWl/edjmlQJuwDoJk8RJqCNK4esJYyMPfu8dqapINFCXUt4pKlRsaO9dIqsHVINNdJKisia2KGUQ9QqUwY1GuDRCx+J+bMuCqNkl6c7itytsVVGPS5I0RUcRUSPDVgW2EkGb95WUhWJRomgTo1CSPVQOUcoRNdqotCWmdVFMnLVwRUGiPHGksCgshiTJiLIIW2bkW9fwwqZnO+qCgcVjlnjXGucuVBRbTcqhlTKUt/TPfoK3v/s4/VGPuqw5dOQwzpZ0ZypGl5c5+9URuw8ssPtgBzcYY3uepNvg2msPMBzlPD46z3NnLmHrkidizRsaN7K+fop2EyKlUSaka1dWDpsmdH7VOKdC00hNnRQoF6NtBbXHJ8nUp8gH00Wbj9g68SiH3/h9qN0HsFWJ0jFqQht7T9aZI+vMM9hcJ9EJZVFhzzzP/vfezUynyU03H+PS8hpJ0mDfod30Nns888xpTj57gZUL6yztX+LMqTWKckxZCCuCjyjKEXOzc1x3VQbPPsDamVNs5pZ15XiudgwdpFpRhQT6KNzEuffESpHpUPJDkTQMg7Gl9J5rjl7Fe973Q6TNJuNxQRwn5EWFczXNZoMkS7BAv99jc3ODwaDHcDBgNBpK3MJ4zANfvJ/N1R5l7hj2RkRJTLPdImskKC3lwDgaY3TKC8WznP/IOb74wL28+Y3v4fVvfjvNTptpCChKZrTB3Mt5h7c7JajIRBw5fJT/9f/2f2dxYYH/9J8/zHic//cNcEy0Y6hXy7OFKHTyTB78SoMPA0mUyMCWxlLWuLQqrd/tueA7MpKuGKWEAfFWRKFFLeu7ULoZ9SQHaTb44zRSmZnXtWhw4jSY0BkZMJwPqeAEZ1kfSlUtGVjGA2FQdCR/z0N5yitpOZcXShknr4UxmXkB5rS0HVvgRQMrC7A3gdkxtDVMkskPvUfavptdGag4LcdiO5Yy0N1NOL8OZ7eFeepq6I3huXPQyqB5EA7vkddUDsYnYPGodHH5oINRToDXhK2IdGiBl/I1cQRlKp1GJhbmoyxD2ZDAZnkpNd14O9z/cVi9ILoaV+848ioF/S3ob4gRoyvlMx2+Bh5/QHRST5yEPQviGHx2WUpQx4/AdfvhwAKcW4WjiyIUT8K+qVryp7a24MURXPsaiXLITABmimkW1zSo9IqSzdRqHPlnbKERrsFTp+FjvxMcqVNhnZKgWxyNRdDtveSazc0J6G61JfgzScV473VvgKWugMxuU4TEg8GO4aMH6kw8hA5dBx88CK97O3z+j+Hz90pL+XQJ5dppWXcCRCeXWi3aoP/H/yrg6G/8lAjrv65E9e3ST3++5RUBbjxgrbjYor0IdZWUN1SotXovYZgtb6U8GcLnqvEInyRkS4vEeU3ZExGyHQ2oiwHVaESUxuhM2h+VgqjTIe52BNy0HLoZE9Vd/HAIVYGvmqjUoJOEqNGSTpdyKG7lGpSKglO6kbDNJMOWQ6pxD6U0UdbAW2khjxsdnErQoyHtSKGSlDjK0LXGK02ZG86stNho76Oyjvlrx9DdZvPFeTLmOXxwhj0Huuw9ssjKxSHnT59meeUSFy+e5bbb7ySKYzrzC5R5zu6De3lDknH2mUs8e2KNU8+u8tp7rsJ56CxkjMqSW+4+BGhOPH6WjdpxvkxZKHYzLjaJ45i6ckSRRnktIhPvqN1OMrnyO/ejdTV1XWGtQ2cNlAplqrBSVYyxZYHvbSFt/tLt5kOJxXtH0m4TdWYYlIUE6npHe7hOt91gYb5Ns91g774lGs0GrW5GoxlT2oozL65y9OrdPPTQKTrtjOuuP0JdOUajgrNnN+jOdLnh+jacf4SLzz7DdmnZ0I4ThaNwnlasGVs/DTfWCkonwKapZcwbOMgiR+w849qTpQk3334bVmmWly9S1xX9YRcFnL9wjtWVi5w69Txnz51mq7fNcDSgrArqusJZqOuKQX9Ab2sLHSfUVU0/0Ltb61skjZR2t0HajIL7c4GpYvJyzGPP9nnh3HN85av384EP/ATX33IrUSxZXV4HXxVvUVbq4c4GrZQtSCLNnj17+Pu/9PdJ04R/8+/+E6Nx/pIKlwqzsu998bEK7d4R0zgCH8obKmgO1KR0MGnDDmxO1pQBZnVNyhPdIEJutSEOpnNFGfQ34Tj2+9DryYA4HMCogrgnA1CcyMBeWBmwx0N53ictYTEcSM4LoeRVC1BJWtDoCqDNx2KM57WIWamkjGa9DNJ1LplF3olL7p4BDC7K9p9rQm8Wjm2A2oCL23CuB6fXYF8TjhyRYMr9h+HhP5GBcX1DBqzzl+ATBVy/B25YhOuX4IunZP/XcxmEHzwDWLjlsNxkcQnZMmTzUtaIdQj9dAEoXDFYqpd96WgnoTsfB0Bvd1ZIGzKgz8wGoB/KS24yEBsZ1Ptbsl6JvF9rQTRAG0P5fvGyAM3tXMp7OoKrd8PzK3DHVcKyPXVaGJtGJp1RvT481YP9t8F1N0Bq5H3TUNqs3E6MgQ9f+gpgE+Rd1GH9SMl19PAjMs7t3ieAptWXz7bvYGj9vgYOHYHuLLQ6Ao6joN+JYkk8n52VazYOxw9gYVbYuN5Y/JDqCmwm35MGXNeBg9fCa94Iv/fr8MTjwhR5L9cgYSJgXIgGCXouk8r5XF6GX/5/yzX9P/ycdOgpmNI4E+2Unpzo787yigA3CrC2kowkJXVl72vA7JTFvUV5S1qX6DSBXjAr82CHAxg3UEkiDsK2RndS3EZP8qnKmiiOMVmGisVaXzda1KMhdjwi6nQxzQzvLK4usfmIKOnIunGCjmvR+fgKV9dgx+gogsiiVYRWCp20KUfb5MMtUmOI0iboGNNQaK8oNzeYiSK6zYYwI85ibUFRXs1ymeHn5zl2xLJ0a5u5xh1037CfhSOzaGN44U8u8typTRbmm9z+2iMs7Ya5+RnKsqDX7/PUs0+yOL+bI8ePMrs4y8yuLvuu2cPVNyyyvT6iLCy9fkkUGbpzLa4+vpvedsGlC2tcdDEL8TVc3riXVqtFPs5ptFK892gd4ahwrhLNjUIcm5140kSqgVaa2ntM2sR7pHPLWZyrsHlJVZXYrQ3AoVUUNDkwOXnGJDTm9jLoW+LM0s2gWLvEiw89yA/84F1E2Qy11dRWMRrlXF7dpN1oMddtMzPbYc+eLr3tEXVdowzs2t2lKCrieMD5p78Gzz7MoKpY8Z7nArAxSpHXjsoHzWUANo3YMJ8ZXF3TL/20aWFcCrguxgUPfu0hujNzbG5tkOdjlpcvcu7ciyyvnMd6RxRJQKtcw6IZq+saV3uqqmQ8Gk81TVVtQ4inHI/RqKK/NSBpRHRnOmTtjCT2IrlIKuqy4iuPP8ALZ57lzfe8i+/7/h9m9/79oTNLTDB11MAnCj8S0aXHYJ1FGcP8/Bx/9+/8Is7Dv/33/yej0Xh6D5ooQqMo6/Iv9ub/i14UQRysBThgRTdwpWh2MjuNUxlkuleUClptiScoyvBAj6Qtel9HBp44CvqGPLSLl9L+3Qzi335PBkhthNHImlD2ZfCoyp3yi4qFXTINYXZqzTRksxxIInVrNuh2RuArGIcH4swcwXBJgIPWYFqQvABpARvrcCaCR8cwfhS+eB5ObcprXr0XDs/LYP/AKVhVsLEtjFCnA9feAJur8OyLcHkLLm/Dc8vw9Lr43SRGPHIqK547z6xIiWr/IpgKqudh/u0SIdHIYFiEEkkNRFKCm+jLtA8MTgx+zDSmYVKWcqG7TEfSlRYnErTJ5NyqcD4nWpEKNi5Bx0BupAS3sAfuvBv+64NQbEsZLkL2bfesAKneSEpyK31pk48juVxWtqUbrWzB8VfDdXcKqJsI9CYAZpLdNbm+tJLjk9uQGK6YJiMkAaw1Unj1ndINNzMvx3/PPjh0FHYfkm3UpbCDfiLE1gJgIiXHohGyrTzCPKqwH1pBM5boiHEt6fWDXLyIHFBG8jluuQcOH4cvfhL+8HfE0M8Hts07aVMvPTSlmUQcpo1ckxub8Cv/Ss7Tz/+crDNhp+rgyKyT7+y9/bLlFQFuPEjytXOYSOCtd2pajpKypIdqjMlHmHYHu3oRZy3KeRQO29vEzcyBiqj6Q1RcYQd9tPG4cUXcaaCTGGUMaC9dUNpQj8eYVhOdGPGn8eBri80LTJahIxPY6kjyqBTUvkBXFbpO8MaHdTRx2qIc9hhvLpN05qDZodYR42LEoLfNfJTSSRXKGOrRAHyDja0Uc2QPb/vAjdBKGTpLd7FJ2Sv5wu8+TmlzlvbMUW/nnDi5Tj7a5n0/dpSDR46iUFxeX+O3Pvxf+NEf/3miJMZai440Swfm2bV3lmF/zOknT/P5zzxHVTS5+jrL0v4Wt7/6INubJRvDPkW0wOV1w+49Y+qyBt+i0WxgvRMDRa9Rzu2kooduNu3kQjbeE6UJWoljsA96AVeLAaPbuCzZUN6iaocOFvc+xE90lvZRF5qhK1loZbRczsof/yeeGUPeWCDdtYvOriWW9u7jqoOHufGag8RvPk7caPGaV13H+lqfcVGwurbF1mafw0eafOYTX2D/eJWGGtPT8GLhmAzbld+JKHCIliYxinYM47JmVHtqL+B50k06uS9Pnz3Lpz77aeqqZtDfROuaOJa09ziOUWospVR8ALHgXUXtPLYWs8YkyairmqKUBHk1kReECc04Lxn01mm1EzqzbdIswsQRcaxJ6pSqKvjYpz7Ck089yod+9G9y+12vIU6ExUEbTNYkQTEejqSyYRUxwlrOzc7yi/+XX8B5y7/797/KOLQk1xOB4H8Py0Q0WgfWxkzo9sksUokXStqAQR+W9gVRbkA43XnY3pABtNOCKpaB3ylhdAa5sBy2lt9VVgbiRkPcfksr5SiFDDqNTMSitWUahGhCqUaFUlVUyu/rUOYqBqLbmdsD/U0peRkrYGmmCzYXHYm1AqxUDjMFnF6G3zsRhNEGLo8kZ+mHbhFt0aVNASPHFmT7v/UinH4R8DC/AD/9s/Cb/ynESwTm5fwGXNqSqIKbjsDbr4V0BM9swoUhfO0czCXCLlQbsGBhObj3qqGUWFRgwZQL7AU7+g68CItNGKAn5ZhJjIYiAEED87vCekZKXCG6Z1oCWr0IqZOBdViAzuD7fg4awHhdhN+rlyX24NwZeOY0fO4pYdW+9qyUeJIUds0KODg1hHe/AZq7QDXk/CV6h5BQARhP3l8Tyo0IEIzUzjpXjsZKwaFD8Na3h7b1eRGrVwHgVhX4prCHE+GOIejFQjksNsL0xVEom7KjgZnsX5ZI19ighK1Qrkpt8OApBOC/64Nw423wW/8BvvpVeW+QY5uPZKOtZpgABIDtkVLdr/xrORd/62eEwYEdBum7vLwiwA3eS8eNd6KnmpboZAD0XoF3xLbAeItJE1xIbHaulElYWWJHA6JuF52A8yX1aETaSbHWEaUZShsBIio46SodmJqCqNFEJ8JYOOtQ1gojnSSE9gZQBm2km6i0FcZXxKqBq8U9VscpcbNDPdhisL7GaDTAxA3KsiTPC9pxgtEJtiwxKsbpBttFi9Vhh1Mf/zxzhxx68yAqSlna32b/wUVWzqyQ5jWRc6yc3SSvcr76pUtUZcJWb8TK2gp7Dr6V+z+5zXMnfof9BzvcdNth9h/ZRaPdpDPbpLWQ0mgNaWaLfPJjJ3j/D9/C4evm6XxthZV+j6FqEBWLbA1WmNvVYpTnZI0MGxKxnRVlysTcUhH8h5TH18JCmKwRAINiEiBpq0qiKwZb0lofVPiyndD95qG9tB+LZjSssQsJWRKxyw8px5vUF84zfEqxUiieNQqTiR4habRozs2SzszQ2bXE/IF97N9/BFzE5774MG64xkIy5LRzPFc6Rkj30zcqunigtJ7LIzvV932zpbaOUy+eITaKKFJEkaYsRexuTBmuW9BKSZo7EGlFbT21ddQW8mKM8z44o/tpZWTC0mobJvJFwXBQ0WwltGcbpFlMWVZUmQi5nzv9FP/63/wz3vXsD/D9P/jDzM7PIzpMRZQ1aGjFYKsXZAc1SZJglGNubo5f+J/+LoPtAR/+zd+mKP87AjYoGSzUFZ0qsMMKKB8G2kwGzuKKxGaThMErFsDQ60l5g1hExf1CBtY8lwd/HbRQLsx0o0RKOuORaHUm5a/J7LosYeKc7K3oRYwO3T2BvYistAJXhYhjO7OSbt1sQzWWQSxLBVy5Uv7vK3AjyIbiQPyeN8FZDXPnpWx1cQBnL4vXSjMSwHV4Tga21++FrxTQbcHiEpz5HLyjA9f/KJztw2Nn4NSqlHS2R7CWw7AF4zX4wI3wO4/DM+vwqt2iDWEM6Rq0d8PloQx445xpIraJgSvAAXoH6EVhIC8mjGM4gUoHrRLQmZNjra88vxM9FaLHwUmb/nowFVQtaM7BgYNwo5c4CuuFWfGVAJuNLehtweoqnL8IF04DNbz+dmgvQtmW95gAm2/UAj0BF1pB8+W93y9bJozP0SM7YuNJhpVWYJOdQ+A9U98mh5TAJmnkaYNJnt8URE0egh5ZJyYI5WNpO98aC8hJYsgDk3jkBvif/jEc/xj83m8LM+OR+yUfyz0y25Vt2ThYimgBOP+/fy2TgB//MdnmSw7Id295RYAb7z1VXTANFQwnweNwyoo412kaxZDUVRTnn0FVPRlgXSXnFYUvCwCUUfjSYquSKGriNGitwIgTslLSAeNCcq2vQ/xAqtCEB4MXHlEpUJHGFRaUxyuFUhFaeZwrqeoCpRJ0ZSXOIIpJm23q3ibVqE9paqxSOO9pppBojzEy28hHhn6RsR1ZrNrm8WdP0+11GGwNuOfNV9M7tUZarnJV13L9XTfy4smY/kqPx766xolHN7HW0Zj3JHMl477i2Sc3efHpLao8YeWFHs88dxmrS3btNsx359Auoswt2miee2KF7a0+6IgNW3MoXWLcP8dMs4nzjtpWwRpDAiStdVinUCaUA7XBVQW2dpA1MFmTiUJNgXQY1TVGG3Q+xpe5dML5GhMH52Mnvh7NmTmUNhRlzSjPcb6imSbMzRg8NeXYM1PIudPGYsuKujciX19j4GHbK16MMp6f3ctmnOLLLW6er9jYyHku9/SdnxoLftNr8GXfv9kyCUOwDmzlKSo77WAy2oYmDAkdtUG/YrTCeYUNGp+JrmXC1EyqdG76HrI4DdXYMS5yhsOCdjel1cmwddiW0yi1yR/e+ztcXD7Pj33wpzl89TEmHlFR0qAzC8PtPkVeoHBkzQagWFxY4Jd+8Zc4d/Ei9957P87/aZDue2hRSgbRSYfO5CSgwRspUWknDsAqhgPHIe4GnU68Q+ElKdPBJDZSBqhHQR8TBkflw0CrApvgRWcydCE9uxDwgdsZdGonmg0/0SYEY0CdyH67Ut6vUqKRGA3EILDZARuFmYMW0DUJQvRA00pJqjbgZ+C6q6DTh9n98PkX4PACZLuhZ+DBE3C0gt1dePUi3Dong+WGgs0YOh5umoPrZ6FRwtVduGYX+ARWrOhaqKRkYx3cvAfmOlJ6MhHkK9A5GMpmesewzwVqWGthAGwYjJ0LxntGupLGQ5hGVIdzGkcCKJPgCj3xy6nCMZm0+G9vhvUiAYEqFgC7bYFIOqXScO5s6DDrNgVAKuT3dQ5bl2QAT2dgI4a5bKft+8ourZdo2NRLx/OXC22/qc0DEAcmZtLB5MwOsJkAJsK1p/yOxucbmfN9I0zhkBiINJMusV4h5dYobEs78HPw9h+GPfvhI/8FXjgZ9tFLJ+EWMNOR40omjBxexMX/6pdh3354+xuZCpK/y8srBtzYupbATMVU3Kgn+T3e46lpFtvE9RYsj3BOnH3RGYoGWjVwtpbz0Eqhf5nW3AwmjoiyBFtXUutTESrT0q5dV8FDSmZtyoPOxCHS1w7qGq9MuOYidCRJ304pjPfU3mG9QrtSOqaqkrjZIUozstYMZTGmsBUO8VpptTUa6eaRz9ykNBm196RNMOMmw35JXcGupmWvPx0AWAJJg6L2GDR1leOI0cZQ5Y52phhrj689Ve1ZXRlw682HaHZn+cwnTlAPNcfetIenT2xS1g5rHS+e3GbYl4DPfqtCVS3GoxxvHZV3VHlFZGK8UlhnsXUYwJ2SyWhtsarE2ZoknsU0W9PrXKsQKzEc02628FWJGw4C02axtkKrCGsFGKTdGYzWjGvFeFRTVzVpkhIbRbMB7YaSpo9SQIqrxObRei9MvTOs7r6aF567SCvKiYuCF1ZyLnjHthU9zZ8FWr7la5UJQFHTZ5XHT81b1QSpsAOUimAD7wOUmZIF4R9/pZHZFa9zLqzrYGQ9ZZlTjGs6847KlngruigTZZw4+QT//j/8Cj/8gZ/gljvvwEQGhcIkGa2uR3uZCDhniQMtfODAIf7R//UfcvnyGo8/fgL3PS8mJpQ8wkA4PQEwDXDUoT6QdiGagz1NYXBiDa4AxsKgmEhe18/FE2WzJwL8vAy6h0iASe7C/+NwsegJdSnrWrfTIeRtoK1ryWMyVwxmSsvfokTAQJyI70wRwhPTRmA9rLzHwMnnUBM7/rGUqpSSluXGCLqJOOWODaij4qSrK2GAosBhxhkQvHcaGi4hoCkKX3va8MRZ6G3Cu2+Ctof7LsENszueLlfPSMnKZDCMIR5KN1WkAS0mdjYIVrWBOHxmHRiJSINP5RgNtqV76ErGTSOdQaOBgJFWh6k42cRyHkwAOb1tOdeRF5YqjgSkWA9jRLcUIWBCKflO2J8IoVVXTkoruG0I47E7tJ4bBAhMlj/rfno5u/N1IGcCUPzOQ2GiIzLwEj3R9M968ge+bqqmYOoL9PLXTZLidfgMSQaNCDYCY2mUgM86h6tvhp//BREbP/ywMJR4KYH1FOLNFLr+JuXuC+fg//XP5F655cbJg5LvJnvzigA3k+RSY2IpRSHCYu09ymu8d0RFQbMcEuHQ5Uj4gbKgKrYoa0/amqUxu4hutFGxxlWOqNHE2RKFwpUicHVVjTKz2NJSVRVJmkoYpgo3lqtRUeiCUhpbS3lFqlIp3hdoHUuXDZKW7UI7sa9lEKfRIoojrMtwRU5Z5ijlabdTtI4kN8tZvE6powYeTRpnZEnE2DmiNGW550n23oIucmYbFSptsX/PPI1Y0xsMKEuL01q6srw8F511RCZm9UKPwbBidqbJm99yPVkW02jGjEcblKXj8vKQ8bjEYlGJxzYrXC8mdw4VgFhV15gooq5K6fapPNp4lFNi7udrvE+wtSNrzmLiVNgwJ7oBj8cVOTPtFr4qxJvIK7wVZ2fwKKVx1pI2uxgTUVsYjhx5VZEmKWnUpDIVqYlBaeq0DoaptfxOG6q6ZjnezTN9zVIKrj9mOS84qzxJu8Foe/SSxsPvxPAtGE4eOJNb04YANDFF9dOHyM7tO/k5+G+HnfH48Oz6+j1TXtZFeaxTuArqXk1R9pmda6KcQakBSdSgympWNlf4zd/+z2ysX+b1b3kLaSMTBidt0Jo3FKOBaNlQJHGGVpZbbrqD/+Xv/RL/4B/9I1ZW175jIPAVu0xm1qEMPhWfTtq4lZYW4aQtf0uagJcSTTYnA/ZwC7bWpBW7cjIAjocyCOBlgM2SIDzdklJFHBiCMjAxzoo+og5dUN4JEIiDNsIWoFIRwU4usmhSIg8/t9ryvlUNOpcBKc0ABf0yMCEqPNcKEYDixMemqIXNyAvoKLj0mLw+T6SlfHlDSiHt1k6ytxFmVgZxLYBkf1fEqdtD+NzTYs43qqA5L597T1vAC4FtGiXQqQJws/J5okgmnnES2u6VsDbaC2OgIlClgJzRlgivJ2zYpJabZqJnmghplQ/lvsnEIWh2RtvyXgbJu4pDCaUeSTnFVtLtZiI57iYWUbgL4t9qVVK+SwSwZaH1fjCGmeZ37hr90xifiW7DT/72cpCgrvh+BT083c43ABTqinU1Ul7qRpB0xH1aW/BtuYbySFyOf+xnJb38s5+V6wgvJcONoPOa6G+qXFjRE4/AL/9L+Of/XEDOdxfbvELAjfdE2hBFEQoJbwTwIY3Xu5ok38RUY3mQ6AhvazFaTGLIQLkxLl/HJRV+YBhcXqbZbaG9w3mFLi1uXGCLEowmaqbEWROtNVGaYdIMX9e4SV+eJuhvaqy1OBTeVhJJgEFHCR5FhMZZSYqu6oo6H+Lqgjhro6KYJE2pa0ccaSITo5QESipinI8oa0eNoxhoFpc6LF8wjAcV93/uNFGqMJFmZq7BW7Oc/VfN8Td/4VbO/NGnOKev4/6vnmNcn8VWOUoLHenxbPaGfPwPH+Wu113NbLsF2nF5c8ylS+vML2bMzjcZF7U0dzQ91laUVYlBBMBKe6yv8dZTVRX5uJBzYhXOKnQkgmLvaoyBrDuDx0ubdwj689ZS9TbRTo6oKsb40Do+SXgXJseRNBqYRDyDhrlnXOR0W23SOEM1xPjPe0dqEmovaeSRjgDHxUHJs34JPdyE/iatXV3aowF+e8RGP6cK11ISRRijGRff2W4g/7Kfdp5JL//Lzs8qsD/f6O9fv+3JrM2jvArdv571ekhZ1jjvSeKUOI6IjGFgBnzyc3/E2vpl3vO+H6Az05UilYmJ0wxbynl3qiaKDRkxb33ru/nxH3+EX/n//hvxCfpeXibmZVOH1Ym+I5QtdATpnAiKK79TSgEpV+eAbkBjEcoYWhYW94pPyoRtiI10u6SJMDOjQh76LgiJi2DaRxC7urBfSRDF4gPj4GWduiTQS8J+KC9MUNaSUlU+kM9TFjvt1bYS8BDFiAlpvcOUtB1c7sEBKzqLtxyRMlntxIQvz+D0JvzKY/Ded4B7Fu46APFhKfs4FcC7Ei3F+26DB54XB2erYTaDvQvSEr4+FH8gDYxgJ1LCyGe1SsCLUSGLKQ2aES9fdRh0dehQ6m3LuZh0BxHO2czcDhuRNpm2jk+iLibu0+M8CGJ9KEGFFv0qD8yVkmNkS3mNH4WuAg3tBNSKdKl15mGtJxEYs03oZEwN+KpaznuafD1D8u1cp8D06fCSh4R6ybc/HSGobwNAXLGu8nLOGgqiVhB/K9F6VUHYXrfhLe+FhV2SM7Xdlx2dmFsmUZCrBiE0FXz2k/Abd8Df+duB3fQv+7x/yvJtMsuvCHDjnSVCiUeK87jaoiOFQmb2vnZE/TURqJoErQzeBiOnCLRRRGmK0QZfjnE+FvYniXDjHB0blENKIkWFX4VkbpaZY0fxVYmOhUnwYVaktJHQTqAqSnyoW3vlcbULugqNR1E7hws3qko9uDF1bbHDPjpJ0XEDk1p0UaDCTFGbFJQwLcpLCWy4FnPdDbvYOFMwHjm0HoJuUtuIPC8pSse4KJkxOf5PPkH77p/kzW9fIm5lFIXn3rU1vDUoZQHLaDjkoQce49CR3Wxvj1m7XDEa5LztnTfx/LPrrCxvo7xCJxUUGq293JDhWWLLGmtqxsWQqszxVskxDPe+xqC8opF2aM7Jg8U5JwOw99RlQdnrodoxSbMhlGX4m7MuxOW4AHQMmAwPFIVmPK6o6pJmo0maiAmUc1WQWsagPGU0y/ktzWPr5xm2xvQuX+LA8aO0dnfZ/OrjNJSmtHZ6jaVpymg85pWw/HnZERdYHoWiqmB7s8BW2+GkhBMTkua//NAD9La3+eEf+yBzi7sAMHEq4FX5oJ/VpGnEjIr52Z/+Ob7wxS/w0MNPfG973ZhgIDNpn41M8KQJzEmkJCIhDjN2b4WR8VZ8AawPIuOg71BVeOjXIo4tbTgNgQFaAja3RJ+QJNKaRyj5ANM8JbysH/R4+Ek5BmEdJroRb0P7txKQFRkpw5SFlJMKI6USpeU9bMFUk6FCCWyxgicvw+FU2AvXkkHc1ALKEiXbqFN41ffBl38N7r0svi+Jh12L0pnlDWCE3bnnNji9KjEEi4mkbH/6BFw3D3tnZLCsYnEmduyIhDUyCNoI0rawR8ZPCSo5TKFcV/Zhc3OnfDVJUE8SCYYcVDAc72RWTQTblh0w5G1gsGbFdboRCVt0pchbT0SvQXtZb8GMhYUDMMike+7Z09JZdtctO6zQhP0oisAefScu2JcDGb7tQf4bb1Z9PbD4hmyRFxZnLoV4ZoeNwcn1hII7Xyf+Qr/1G7C2Ji+vgrh+0inhnRhJ+gr+y3+EN7wBbr/5zw/+voXlFQFubFniR2OIpUNHYIbGOysmcVVOkvexZYVuZaGcqgR0KIX3mroocUrLsTSKYjSgo+dx1hM1G3jnMEmGKyvqIsdvbqLMAlG7Kc8Sa/E2n9QcRNNTW+oix7qgmbCBtvbS7lzUBYUVpbgkmht0nOLrEjuscOMKnRREaURnZoGo0RQmSunwrKpopRGxS8i3KnorOYdvMDyxepE3vPkIc/OLPPHoeYYDT5I4Dh+dpxoMcDomasC+QxlHr7+RrNGmGn+WrbWY3XvazC82OXBkH+PBBvN75uiv9zGNFn/0W5/gCw/+Jturh1F+Fqcq0pmK5IzB2iGNOARlViXEKdY7hvmQopREdpxc8AZPZCIaSZNWs0t7dknOVz3xHlJU4yF2XJEuzmHiGDcciPmiFyG3VpJo7ryT4xFlOCeT5WFuGeZDmo0mUZxJIHAVU9kaE8X01CKfOdemuPg0K1tbjJIR177uTlrzHR750lexm2OKRHNlktJgNPqeGLQDiYNHsOhgUGLthrTrE2GtxzpLo1Hx6NMPU3644kM//pPM7xKAEycNqmIsZUPrMLEhjj1HrzrK3/qbP8+zz/5jBoPRnxuAveKXOBF9RpXvzPxxMlhGsWhMso6Ulob5xK1yh0lRYUYeOv2wXsS8q5vCOIxyARJlEAunmbjH2nUJ1AR56EehLVYh4D42Ao4mQMfIc2aqHYkS8byZsAO4wNQk0IqhEYuTb1HD9rq06KpQjlGAS4R5UqU4JO9twFO1DNSfPyPW/LcdgLaCUsOL61L28pUkWZ8ew7NPSYdW462wVMOlPqyP4dRFaM/DpQ1Y6Eip7EffBXf9GOw+C2oLiGErgcMWdCtEVQShcF2EcmBLRMgKGUQnZRdroRzCuAdbq/LZo3AclJf4gEYMa5vCyrTa4diG0tVE1K3DMa2LHT1yZkJy90iuCQfElbB1dQVuHQ72YP/1YohXtuDBh4X5uufVMN/cAawTLVWz+V0dtL+5APkbrPcSp0719X//s7Y7WUUj/kVmPoCaOgiNNYxjuOF2+MkIfuPXJFAUQlyJNDBgtAD5SsGpU/Af/gP8838K7W+jlPdtHtNvGdwopQzwJ8AF7/33K6XmgY8AR4DTwI957zfDuv8Y+HkEM/+i9/6Tf9q263zE4NIFukmGShIp/WgjWVN1DcUAN9jAlwXeNaWryhicLSEkUKMVzllUsPp2NWgVU3uPihSqVkSNDFfVUrO1DltUYHJx1jUK4lhKK7aSEkwhGVFSJrMoL/uktaKyFdZV1EVBVcl6AGhDkqSoLKYaFdjegKTRoDPfJGt0sHhsNUbpBKOHzBpPoj033XmMxasMK8ULHL3tEOfONNm1q82HfvZNeKV54uHHOH9um4XmMcx7Psjs0m504hj1x6RRxj1vvIW5XYvESUzaymi0G+TD/fQ2enRmOqgYdu3XfPi3f5+9u97F7rl7yDqSEdX1CaPxZea7kywQj9KaYT5gNOrjSo9yYK1Cp44ojkmTjFZ7hnbaJO3M4vDU1RitDMp7ytEIX9U0um3Q4Mocj5pmhzkngMk6gSBJS5ygvVPkuaMsC8ajPlEnIdYpFSUexdC1+PSlDqdf+Ap76wGF0lx3z520D+zlT77wIGvnLuO8p1/al9yj3wvAZrJ44SUx4fk/HtesXFqjriqKYgFnHZ1uTavZ4LFnHsb/uuMnfvJnmJufFwftOBVQDnjrxCQwMrzvvd/PH/7xH/JHf/QZ/vz80n/b8t18zgBipLd3vzCJZfBLmehfoljYg/aCzP516OaxgdWZJFC7wBzYoAOJlIAApaS0E4XyRxzJ4G20lGZsxjR2oKx2BK+Rl7+b0OaLARX2yXkZaE0ibEoc75TJnA3xDxU0U+i2xS9nYyRiY5SU11wJviUlHqXg4RfhxRrSY/DoWTg8lFDI//M+GfzvvA0WujA8CX/8m+L9UinRmFQj+MLjMoAVlXjF9EfQziRRuzeQEtcFCz/6g7D+adj4Agx0YDdK8YRZKXcYKuukvNPqBNkBwt4UWsBKmcOgJ1ET/a2dz+WDgr8ZjPX6g9CqnyGlrCvKVgqm7sejwQ6AynSIKugEnVKBZCt40EPYtw3X3A2mDTh44CE4exHe8BrJmFJK2rOvLBHpb28Q/nMvLwcj37D9/M+xLy/ZbmCjJmRjI4K9gdlM1uXa7vWlM+r4HfATOmRhbci1VBUCyiEAHOQe+aM/gO97r5Q9p8DwO3vcvh3m5u8BTwPd8P9/BNzrvf9nSql/FP7/D5VSNwAfAm4E9gGfUUpd6yfBQ99gqUdjNk4+Q9LpkC3uhiTBW4d1FUUxRg2HlL0tMm+ndKWUNGRmIqLMCK0NOorxdU2j3URpjw6Bhl5bvItJuk1cHeOCo2I9EjMtbTQqitCRRsUZStdopyUMsRiHspRDKYU2BoOndpWYApZjbFVTO4uta6o4JYljiD115ch7fYwxqLiJMoZUR6AckRnR1gM68QLNTgZFwvIzEfOHCzYp+NTHz/LcM2u88W1HeNO73gh4vvaFBxmXI951++txtaUz16XRbjK3Z5GkkTIe5lRlTbk5YLjdZ+ngEk898Tif+cTHuffjn2Fx/m7murcSd/u0926z8VSLNpa8WiPNEjkm1lJXJf3xgHxY4q3C15IrFWloZgnt7hztRle0LK22ZIPZWoJKnafob6GxJImRrtZiiAvr2NqhIoW1FhsSv+M4CdlVitFYMxpXNKOcVlaQNDsUNqEqRzw53M3jLzzBcd3jvNVc+/o7mb/mEA/d/yDnnzlF7EP+3J/R+v1XffFewjxRCqMVeV6ztroVjqkVZ2g7Q9ZIePjEQ5jfjPjgBz/I7PwCCk0UxThbizWCFz3SwsIiP/czP8uXHvgKm5u9v6yP9l17zgACbo4dl1iEtRUBOEYHrU1D/Gq6szIQBpH4tDV5wvSoOsxCK2FchkNhNaeBhka6jnojiKrwOiMAZEK51bU85KtczNm0k9JWGjRAk66qSUK4dvJz3JCBXJvALhTBFEkJMOh2ZL1qJN9dLduyDXBtqNbFdj+r4DoHZzSQwnsOwXWL8NnT8InPy0DzhteKoPqRL8mNv9kTILO8Lvb9zVRA2XxbWoDPrcKNN8G73iOD1tZXYPsR6Lfh4izcEFq448UgQA26mzgR9qWVCNCLrhhMiyqYFG7LMRsO5FyZSECiVtCekW0VoQMube+sE2l5IBiz4ylUVuF8emg6YX3qDPJUQKEp5XM3V+Cam8B1xfjvSw/Dc2cE2Fx/NDBHMEU230225k9bvtvvO/XHCcC+EcHSbGAgw/kz2zAu4cY74UM1fOQj4oRN0LeZ0LSjgh5pfR1+9T/DPXeLP853YfmWwI1S6gDwXuB/A/6X8OsfAN4cfv7PwH3APwy//03vfQGcUkq9ANwFfPmbbd/VFRcf/QpRt8tSmpLMLqBMjK0sVZWjiiG2GKGyBlpdMWsBUBodTq7yDm0UZV4SxwlTd0oPoFHGoNIUpSOUlZZjXxcCiKKIKIqYoCcPRM2MdhqRNBOqvKQYBT1NKEPJvkjXj4k0yjq8M/jaMbbiuYP31NZyeW2LXq3Ye2A/Jk6xdYU2Oa1ojblqD5trQ5b2dTl24Foe/Mqj7L5+i6vvmuX8MwNOv7jKzHyTYzddy7t+5H1cOnOR+d27yIdjrHOMBiN6G9skaYrzFls7fORZ21jlvvs+xR/+7h+yckkxN/NGlq5aoLNQ4JINeud20akzmv4SOZukSQPnauqyoI5itrc3KHMb4gHk+swyQytt08yaZGkKSM3b1RZra7TSKOsZbWzRajSI41TuiyInBF/jfA3W46wP2VQ1kTGhIqgoK0WZe3xH0cxapFmDcTlmo27ypRcvsNescnnsOXDHTey+5TpOPfM0Z586SeQ9FiltqXBxfy/LYz1grUA4raEsLVsbffAK5zyVLZibm8M14MFHvkRdl/zkT/w0s7NzGG2wtgpEnQs2DJo3veFNvPXNb+R3f+8P/8LB4Xf7OQMIMLjtNWLAVxSwtS4CyCiSjqi0JYLUfCydSrAz459oXyAwOkiJahrkOBEnByBSFDuC5DhoO+p65+tKu8hRLiWlUSmdVs2G7JMObIuvmI749YRJsqGNPJ0cQBlwFmcFIJy/IDPnKLBG9SLEy7CrBRcvwfln4TW3wdOz8NVNuL4Nx5aE+TnxHPz2x+DIflhelWBMlJQR5maCPsXI+1fA7C54w9vhR94P+xT0vgin1mA9hXweDq5BNAa1G9S8lCx0JKxJXYWIASNdTAq5cXMLeV+6t4rwPC1LGVBNFLQuCuZnxTixCutk6c52VBwEyirkLkU7tuMEIJUpGHiJdcjHoqWKxnB0H9jdIqp99AQ89gxcdxxuvHoHUEwBDt8V9uEvdXl5WWvS5u4Qtmq+c4W2KRFt2Ri4/R651j/8qxIU62ywKUDuG2fl3H3hfvjs/fBD3/9d2f1vlbn5ZeAfAJ0rfrfbe38JwHt/SSm1FH6/H3jwivXOh99988XBxjPPEc/O0JpdJGm0QqjkCOsqkkgGURUs0r0LLbLegjbBt8qjE/F+0caQtKTuqSMRoAq1Jg8KDyKQ9QaTGnQc77A2gRlSISMJNHGzSZylpI2EKi8o8oIyt4jTsUGbCF9P0pwt3iphKJBZUwmMBp5qPGRhT01MgXYerTXGXGRPeYwXN2vwsLTUpskeTj24TLJrmYUDjs6eReb3LpI1MupKjOJWLyyL1sd5mt0maFjZWOH0C8/x+KOP8dijj0Ls6MzsYf/RO7j2tjZpZsjLLS6e3mR0bgn6McdSx2jjRVpZTrM5h1KKylUMix7DwRBXg6sVKoKk4em0O7Rn5mk2WxgTUVUFLoqkK81WWIRR3l5ZYWGuIwnqOhJheAjgtLZE+RRrg6bKWiLtMErK11WtsFZLN6dJUFrjlObcuEsxeIEZZ/EHDnH4VbewvnyRF772BGUuHkejUI5veEWhoPc9VI76ZouUTVUoUVmc68txdeId4mfBNRp85dGvkMQpP/HjP0WjmRGZmKoqUJE4cytt6HZn+Omf+knu/dzn2drq/0V/lF/mu/mcAXkGHL8WtrZDO/dQniNZA3QSumQ80xynifOrMsHICGFpJvEK1oqI1XsZpCddRN7vDAzGS5mpcNL5VFsBKBNsM8lIwomxXV7ILDhLRYeTTcphVt4zCtuvTegqihBPm7DBthIGajlC/GFC6cfuh+QkzIYultUhsAx374XLe+G8gktr8jXKhZVyHvbvCZoVJayP8zC3BMeugVtvhdtvF8O77RU4/Qg83pd062RWcqquXoFOKWWmuWPSjTXaDOW9WDyF2m0RrkY+ABstnja9TWHGbC3gsw6dS9PB0sOePbDRk7b8ad5UQDcmluNi9A64cXpHzBx5OYYgLNjETbqxAZ1jsp0L5+Crj0sS+qtvloiNyetDGZ/Aon7PLS8vfU3uB5D0ct0Jx1XsOthCSqO3vUZYyV//NWH5bBXOXxBtOyudb7/2a/DWN8Fs5xu8+X/b8meCG6XU9wOr3vuHlFJv/ha2+Y3O8NeNMEqp/xH4HwFmtKYcOVYfe4ru7gNk3RnS+SXqckxkUtLmLJFOiaIIo5EDPDHdctImrIIDpRh7ilmcd0Eo6JSY9pXVtNtJzP2EblOxQkcJShk8DlvVeFuLyNhLMrn3UruNswgTpcTROICcmFpJx5WvwDhHaWucqzBaBM5KOZzS9MYRBZ5YFaRaAjcb2RqL1RanL88wGuxmNHJ0Z5v0h7NUl5tcuNzjS5efxY4Krr/xZrrzs+w5tI/RcMhoOKLMSx544HN8/BMfY3V5i7yfEevDNFt3EjUctdFsVRXjUcWg12OxPcM7X/Mm/uT+86xuL7NQj9nYPsHVBw1JpHDWMuz1qMkp8pq6lmOUxp5mM6UzM0enNUOUpEgopMNHCa6usXVNrFPwluGlSxxZmIUQoeHyAlvmEuZuHS54e3hHcDK2xDowyyGlOU4SPBrvPKWLOdXTzLPNetTmztffwbAY8PzXHmXtcl+8kSfPGGTcGP53AGw84XO7STaeEgZnc7wjjveOORZxSc3nvvxp5mfn+P73v5/IRCg0dV2RJmZ6H93z2tfzmrtexSc/9bm/sM/x3XrOhG1PnzWHDhyQDqHbboCV8/KA3VgVtsYWMujaUgZRTxiAw4xHqzDz9DvvNGkxnggmJ23aSbzT7VTVkvPkkRJJVTD1eIlD+WTabeNkG66W7pKqgDr4qWQV+CR468A0uFPHYVAmlLMcZHU4RGkoTXkYL0A8C7u2ob0ijMXWCNqbsGsIu2Zg6TpxqH3yCZmJn70ompZWUzqp7n4TvOcHYM8cdAtwZ2D4iLRRWyufpxFL1MKoB1/7PLzhAMzskTb22RvhvJPjEBnodsFnAhiicIwqJWLu7U0YbAWWaNLZFpibKBJ9jDKwd6/EI0zE01kquhvNTslxEhoZGSkDOgK74wX8TKIvNFJS7FpgFuwQvviwlKnuul2ypaZX3xUD/ZXOxH9Vlm/WLfWSz/GyW0ohx8gi90FiYK65w2ApDaxJ+OZr3ynxCx/7WGDLbPB7suE+cvDgl+ArX4N3vfU7znx9K8zNPcD7lVLfB2RAVyn1a8CKUmpvmE3tBVbD+ueBg1e8/gBw8eUb9d7/W+DfAuyPIm99RLk5ZO3xh+gs7GZWgYoUjbRB7Kxcm8oFC3+HijTeKdHURDHaiOZGoSQiwRjQWjQgk1K5URhjQvq4nA0dRRAbvFfUZY4ra2xV4GpRwKsp7agJhhQorYgbGVEasbm5QZGPiKNEnitKMRrVlJUiSR1Jokkygyk8W31Nb1CzuNQljTNwliRT9McnOGr3cOGFPq966yGuuXGBj//u81xa3iKyhvF2i401cN7Tnmtx36c+RbvZ5tBVx+jOzvLQVx/m5ImK+c5rabV3BdG+JqpS6DcptipKD0lc87q33six43s4+/yAeHmZavs5sniNpaUlIhMxGPWoXM5oVFGXCucUSexpNBQz7Vlm2wukSSQ+aFVNXo4gzSiLXMJPdYUtC3QxoLPQCp2sDluWpHi0MZKE7ey0LdzamihypLFnVIuWRBkwUYIKM4XcJtTDMdul55q33oluJJx+5DEunlpl5OVZ75HAX4WitN/bmpuXL96L0Z+EkUJdOwb9HM8m1lm0MnS6HdI05aOf+n0WFha5+57XYnREXZfUNkJrhYoiup0ZfuD97+fz9z9Anhd/UR/hu/KcgZc+a151+20eVcNsC259Fayv7ICOYnwFeAmtw0oLy6KD3sAGp3NX7zz3rQ2sipkCSqyX3+ugncHLA74MACjJpAU6SoQhmbTAeZDnTKAFvBdxclHD3LwEY1YlUzTfiKQ9uzCy7dxKDEDHQTsSoXA1lkle7qF5I5hliUy49yycWIcfvg72zEh7d3cAC8ggsz6At79DyjWnTspAddedcFMG/S/D4PIOKx4X0B5JJxaIId7nT8CJS3C0JexK9xqod0k+k62h2QWdiQlg4uUYV0pcggdbMNgIpoeE8MeGnKO0EUIx42Cu2JYUc5DzlSSAkveYdJspFcBgLN46ldrpuLIIaHKBjtGlALpEweceEhbrtlvhqqWdQXxyjvEvdSX+Xli+lS4sHYCIR1BENwPmglbNiqYtL+CdH4D1NfjSl0OJNgYdwHZdQ39bwM+b7gmxDd+5Rf9ZK3jv/7H3/oD3/ggi4Pus9/6ngI8BPxtW+1ngo+HnjwEfUkqlSqmrgGuAr/7p76FC94enOL/C6hMPsXHmBVxRYLSWRO5Q91bhgPrgqWJMgkkzoiwlajZRSXhIa2kVN3EsHlFpTNRI0ZEhShIpRcUx1jvKYc5ofZPh2gaDjTUGG/J9tLXJcGuL8XafvN8jH40pi5yqqrFW4U3CcARrqzn5eExV1hRlxaBvGPWjIIz1uFBmWS8qTl3uy0BUFJKaXVlmOhu0ypPYk+e5cGaLUb/inrddRbORgFfkw4g/uX/M73/4ES6+eJHe5iY3v/pOmrOz3PvJ+zl/cpF9i+9AMyvMSKlQdYKvoSpyqnFObCxve9dxjt96hLMvDrj03AUOM2B78zH270nodFp4ren3h+SFo8o9zini2NNoQKfTYnZ2hmazhU4SnHNUlWVcFuh2hzIfY+saV1eM+1u0qIhC8rqtLeVojK2rUE5EynbWSWxFXRFpT5J6IiWAMo4VxkREkUFhyHWLarzM/DVHWTxygPULlzj71Cm2KyuRPUqy8BIDHk8f/6cGYP5VW/6sCY1WasrgSG6gpqwcva2cwfaIre1NRqMRdVXTH/X5zd/5dV58/jS1rVFKU+RjKal4RHvz+tdz+PCBv5gPx1/Mc+aKd5MDun8Jbr4TDh+TTiTn5AE80fNNWnu1lkHclqLtyAspH5VVeE0oDVWVlFSKWqj42gkQqapgHKeFFZmfg8U5mFuAhXn5PjsnXiEzHWh3RXOTpoHZCe/d8LCUyd+SoOPpWujU0LCiDTFenITTGJY6gbxJg/DTQH8ekmNwdD8cnpEE8HtflDKY8tCq4Y1N+Mnb4er9sLgAX31Iul/e8Qa4ZgPWPglsBY8aICqFBckySTh3Bj71NDxyCq5qwfED4FswfxtcKqE3lOPWbomAOlNXABukZX57W7qaykKOf2wEEA4G4iEThe627gyoRICds2Ji2GzsJE8rAjOmdmIxrBKfoAnVWwXgWYtHGH4EjT3wwil48Rzs2ws3Ht3pigqd0NjJG/wVBTcvZ5umDM6f8brpfRG+XOgQnM3EpXlmToT7cSRdaD/yk3D1kR2d1MQDSIXXfvGLcOb8d/zj/bf43Pwz4LeUUj8PnAV+FMB7f0Ip9VvAU8gl8Hf+rA6GCfiLlYLcsn7iSeo0YneS0N1/SDKIogQdAAtGTxnjuihlwpMmGF+gXELUbJGPNtFa4VyFJojKcNPSeVUUlKOcYthn3B+QD/qUQTAsgZwOCWqUBHEdK9KmOOnGSUKWtYmTDB1FbPZTsrQiSRz5uMK7CKU95VhQbGQc3kUU3nJ5bURZFURpA2oJBU0iQxo9zqFigWfue467fuQWDh1b4KZbdvPEY5cYjYrQKKAo6oKjV1/D+sY6v//hT3PiazmunKUqy2CtL4tzNb7WKO1JEsMb33ot19y4nxefXuELf/AUB0ZbXD7/IK1smd27FjFKMcoHbG0NKMsaazXGeBotT6fZYra7QLvRxsQ66Co943LEuCrRaYNqe5s4TvEeyq1NFlohSqN2VOOcPInoWo+KzbQt21lHHQwS4/D8ipQi0gqjJURVoaltzfZYsqyO3X4Tg+0e5545yeWtMTXQ0gJsvFcUFobWM/oeK0l9Sx/HS7ArgHUuJJM7+ttDkSHoCKUMaRpzcf0Cv/6RX+MXfuEXmZmZwTqL8x5jHSoyHNh3kHte+xqef/7FqWP4X9LyHXvOyBJm296Lx8mNN0krdVnChVImUZNZvDGiVQF58KchibkoQaUywx8NJWrAOSkP+ZDDRBAca2RG2sik1bnbFn1JoykXvA5dPGKuxY7Z0zi0QZfiQFyMZabbLaCIxYumEWbBTgm4UUYcgnUtPy80hdkox6F8pYLe5xZI1+HN10pq98lNeHwFbt0rHVAR0qumE3jhefF3+cl3wmuakGwKM6KvuCZMBDjZj8rB556HJy/A8SV4343QnIUDd0O+Dy5fDse+DXPt4MrsBHAMlRzP7bWdaIuJoDpuyvvmI5iZkXKdQgbSQRXqslqOcxWExpXdGbCvLP05Jedm0v3jJ+KZAFIbHkjh4QdhpgvHr4bZxkuBjfJMs6T+KpakvtEyLUt9C+teKTaesJNaw0wrlKxqYXCKChb2wYd+Gn7ll2GrF5g05LqvLVw6Bw88CNccZZpe/h1Yvi1w472/D+lWwHu/Drztm6z3vyEdD9/yYrQj0hJemW+MuPzY48SdOeJGkzhLiEyCUjXb/R5plpB4qfHqNJbSknN45yGJ8ElMZS2+dPjhiDgILp112KKgHA4YbA8Zbq2Tbw8oB/W0K0hMhD2uli4sZRxoi4k0o3QIyhM3DI12g7jZIM1g36EO22ubzBlHZDQzs45IG4rCUdQea71YXzhPVFfUZYFLWygvs0SjNXNzA8qVh7iq/1r+5I+foXr7dbzq9YeIopiHv3KK/qggTTxPPfQIjZkZPvwf72N7dY5ynGBdFZxnI2Idie5EG0ykmOkkvPO917P/qiWG/ZIv/PHj7B4MqNceYVw+zvGjHbrdNlU9Zjgak1cFda0xsaeRKbqtjJmZObqdWdKsEcYFR11X5PmQEkBr6rJAY6h1CcMtOq1GMFesKIqSQpXTbijw1NaFjjONURGRViSpJzWWKPIkSUQSpSg0w3zE6TPL7LruGD5SrJ85x/lTl8idJ1HQNKC9CpMwT4H/nuqSiozBOjcFhYrAYCIs1URopJQWt3kvZoqRUVTOkxcWvTkmSxr04z6RmYHI8cjTf8JnPvkp3v+DH0AbQ1GMaTSaKO/JsgbveNvb+a3f/n0Gw9Ff6Of9bj5n5IVBKKsQE7bbbpUyyHgcxI8l+AjaHQm31AHoFKEkpbUMumUdWsmNoPN2c0dwqbWAmlZLAM3sgjz4O7GAqtBchSNoTbwAE2eE8SlaMgjnVnKLRmMpK53pC+tjtQCvraD1SXUIqgwDt1bBiyTEM0SB/XYONtqw51XQeQDeexw+/Sx88ayAuruPiram0HDnHdLt8jfeDLs3oFEIgDMGfCjNAVPvnn4Jf/g0nFqVUtN7b5V4hoXbILsVnu6LD04U2Kc4hcgJY5N70dn0NnfOxUTDEcXSKg6y/0kKWHAJtGcFCConOqc0ZadHMtwYJnSxebejPyqUlBFtOI91IdvMmnB4Dzz7ggy8R6+Cq/bK8fSyyjTbaUez8L2zTEqpVwKMlwd5itaAqYhasdOWnxqYawigrjpgt6HScMOr4N3vht/9PXmPtCHGiUoJG/qZz8CP/aBou75DyyvCoRhUAMEGhZivlZdFf2OaDWYPHiYJjsUPP3SCwdaYa44vsnfXLrKiiRoMUbHBNFLy5UsMhwV+VDG/OE+1sU5ciGHUaLBNPugx2BxQ9kvKsaN2DgxELUMSG4wxmCgkgTvxYVHWYwsH1mMrR17UVMMhJh5BppnpZKRpm8F6j0as6TQjskZKWVgurw/xXjNyCudhT8NCUWLbCu198HfxZLFipnuKej1m3/KreOQTjvqtR7nhjkWW9nX45EefZGYu57GHnmTz8hzj3nxonhDXXtACpi1oZVlc6HDjbfs4dHSR+cWMUy+s8eVPPc3uXo/G8Cm2xl/mjuNtrj16gCjSbA3XWV/foq4dWnuSxNNqJrRbHWbac2RJA6UmSdwVeZFTVQWWNDgue7xy2KpAj/pE2uCto8xzRvmI2kTYWsJKVSylKuuEJSvKXCa4kSaJnIwVUUwcx4BjeW2drdLTPbaf3uYm5547zfZY2nQ7kULjqfFUYdL7yghZ+M4tRov/jwdQCh2iLrSWEEwRvU8YGz8tUVXWT5+/w7xCrW3gdE0caVrNFmjLH3zy97jm2mu54aYbsSH7y3ixOrjjjlezZ+8SL7xw+i/x038XFo/cKD60eO9qwS13CoA4ewYmjsWvvklm7M+sCeOQjgTAVE5A0J49wnS0Ulhbh/mF4F6MeK+0OtIu20kkUdtoGXdHVliF2gVdCEyzlkwlQMUoMZjLIgFIVVMSxvs5FAMx2ascjEIJLDWw0JJB3gTgNjIy2E9mw1UlP9ceekdgoYQ9fwLv1vDZF+Hhdbg4gB+4CTYyuPMmWNqC7rqAsSi49k7sNQxyDNf78OglePEyXB7DsUV453FhPVrHofU6eHooJZ7aQWsB5meCbkZBqaQsNuyLp00x3il9RLG4PMcpEocQ2BivJVer0ZHfmQAms6aAvcgIuKvCzzoc3ySVC6B2UAd2rap3yoYLC3L8T16QUuG1hwWoQdDYhBsq6Di/Z5Yp5e93wNuk408HHdqknDtZWaud82TUjmYsi2FxXoTbtRM2zgHv/EF49ll48gRT08wJ6/XI1+DSqpSvrhQWfzvZUy9bXiHgBnQoQkzcSbwzbJxap8q+hjeahoM41rQabVZObnPmuWVMljDX1ajaglGU61tsXVxjtLXF/oN76K+DHQwx+ZCiLBltDiiGFd564mbK7EJCo9Miy1qYOMZohXLBFNDE1GUOCNtQl2OKUcFoe0A5rqiKmrLvYFyj8hLTSegutBlsjbGjUtqXaxiMYrZywzMjT9PA0kyEzXNsPsYkUeju8hgF3VaMs8+iex6zfjuPfazPxVsPkjTbtNsRVx2+hszsRhcbbFUDysrjjKa2lu5MRiNLaM80KCvPe3/4VnQcMeoXPPDZc5x/+iTX4kmrF1hd+ww3XdPgwP5daAfFOKe/PWY8GottRuJJU0O71aHd7tBoZKjIUHupTdu6pqpLiqrGmmw6g3G1wymPGo/Aw3g4YHnlImvrl5k5eBTvHHVdkyYRVVWHCAZhgSKlieJJOz2kSYyJYqqq5OxKj8bxmynqirVLF7lwcYMaEQ8L/JEbrvQB3HwPlaQUUNUWpRTGyF3i8UTRTnlPa4ULQEaF/3vvqa3HGDV9DudjSz4s6CcD4jglTiM2hxv8/kd/h0OHD9NsNcjzgkYm5dg9u3Zzx+23fUNwM9mPv3qL3/lSNZI4beGqRShevZOv5pxoPo7NwLV7hLXZDi1pFljQ4tQ6NwvnlmHei4YkC+WTuY7EIkRKvGvWCxgMpaxSlld0YSkRKSfZzi4mmYCmmXYQ20bQ0SIezhJhSNYHAryaSdA8eGhWkFloBvZm24YBvxGEuV6YEI/kRJnroKtg4RH4gQ48eg4GfRjWcPYFsCuQzUsydERwajbQy2FcwfZYRLe/86joj7oZvOUQ3HAM0BAdg8V3wvNjuHBZjmsjk/VaTRnwSiXdM4O+fI1zYUykpTVoa4Lo2pU74uwJMJowOq027NknIY7nT8mxjSL53HE0EaIJ4PGBLfJejlNZCWiLYtjdhWeelJ/37YP9C7J9Gy6bKU3KhEL9q1+SuvJ5GZlwXBzTzzo5HxDKteplYGjCGF6xnYaRfLGyLSXEoobWHHzgR+HMGWHbslQYO+vg8go8/IiAm2+0f39VwY3CE2uFUQrrwaOpvGFcKPJnLtHsPsPsUgdSxdEj+7l0fo1ez7FyacD6uSEXBqI1qIYVc3HNjVcvEKUpti7YXN8m0zV16dFELOzdRXtuhqzdxiSxdFh5j7cenJSMyiIH76VMpg1KGZI4otWeoTs/T1GMGW8NGG0PqfIKWzncsMK0NTMLbfobQ1aXc5zXrA+7PD+2nKuGXNtIyNIYa2tiX+NVFAT6GuMVKo2YmzEo9SzF5TVudG/m5FcKlk2bXVctML80y9Leee56w9Vsb+Ro7SlLy9e+cJq3vf861lZGVJXjj3/rSU48coHttYre+iadvOJOKrZXvsJm78vceHXCgT1zxArKumCQD9ncvEzWqAVoGUW31abTDm3fJsJZMf33eCrrqKtamKOgi9HKTNvydTFmNNjizIunOP3CKo2mYnG/Bq9E0+QVtq5Ax9RlTZkXaCsaEaU8idHEWjQ7vUGPQTaD3rXAaPMyF144R15bEgUtpdiuPbFRJEpRec/oe6gkpZTcE0orIm1Cw4eAWQjPl3DPR3GEnbAA8mqiSMz8JMrE4jwMemOiKKbZaKO1xuN45KmHefCBB3jz296CtCInaBUTxQmvu/u1/O7v/QF1/VI5y19NYAOggs4izDhxAm5SD9fthd5xWOlBiYgcDy7CjIbdLdjfFA8ZvIAOG8Hz62IwFyfCprhYBnxqWL4MG9sCasoytIormfGaYGCXNoIOxIeSiRMWYbAtIt60IR4gM02ZEcdaQNPACWMy34Y9mTA2rZ4MKnFL2JyiDM6wkZSRJqBN+ZBBZcFdB0uLoO+D16RgB3BqA1Y24eI6fOEFmG/sGLe98Sr46DOwuynA7YM3w+37YSGSclmWABEsvQZmXgcnK1jelIs1TiXHaX4JxpF8buvFdXi4BcNtYbKMYkqNmEm7vGIa2ij0dIi1yIQlu+ooXLMkyeMXA/sQmfA9kmObRMHgL2hEvAp+Q6Uc9/YMlD1YvQyzS3DsYBjskfVNAETSNMsVN9t3fvlvYCy+zTfaeb+JBsmJDhIXwOzLVqWqQ2lS7/yhDmWpic+QUiGuoxb9lAsdgNffDq97Hdz7Ofm/L0WnVlfw4Jfhh94vx/zK5c95DF4R4AaFPMSVwrtaXMy9pvSeKNf0nn2RXnKEqpGyOD/Drbce4eTTq2ycHrE5hBdGDqU8t+wz3Hx8D4mDfL2Pqx1Z0mRuoUWUNchaTaJmJqZ7zgVjKxmywUnqchThc09dFWjjUaWgRqUVykQYHdFqNGk12lQLBeNej8H6gEE+olovMO2adjdj6GNOn4t4ZlxxuuoTY4gUWDw1DluOiOKGMB3OAmZ6P860E5Ra5sLKb3FQ3cGe5FouPDvki1sDFg4v0mgb5ne3aXVTnFdcc/0iccNw8sQKg2GFryueffA0uxsRx3VBkp/m3NnP0m1c5pbrZtm9OEtkHLWtGFcV/d6AZiPD6JqyrsiiiNmZBdrNLknSALywLrbGAnk5pKpLvC0xsQ9tyAJ8bF1iN9a48NRJXnh+nVjBwYMtms0mHk9ZVNiWlD+chroWR2SsE2NFvJTioxjnLStbfaqD11HYkq2VZVbX+lgPHaPYdopB3CFzOfgKo6D4HmFtVIhViCKDMRqtNJHRaK2JahHkeSYOxeKCbUyEtxZtVIi18NiQHWUiPR03h8OcZHsTpT1xbKip+IOPf5Tb7riduYVZnHNYJYLuV91xJ91uh42Nrb/kI/KdWtQVdHsUZt9OHqCZg2uPQXFKwMFGD/7/7P1psK3Zfd6H/dbwDns68zl3vt23J6AbaEwERJAgKXCyZkuWJdr+4DiJHMcfklTFdsVKonhKXBV/sL8kVa64IpesVLkkStRASqIkEiQIEQRIYW4MPfedhzPv8Z3WkA//tc++DYBgN7pBXai0qs4dztln7/d999rvetbzf57n/9Xr8Nw5cf0MomTkRAV3A3zrnqzB2yP54Ha1dEVuagE0i1oWa6046xu11JGQxJSlkkXfK2FsYpDF03eyUFQLWRyOCsmE2R4KO7RdwMwKi6I6uOKE2cnWEMfPklrQktHSJTecNvJzJX8xb2H/PJz7tyB+AdpX4D0DscpfP4SZgwczmCQ31TcPpRT23F5ipjL4+OMS2hcyKB6Hx34W6l146RQOT+XcTCasydpA2JlgUmKzh/GxAJu2kmNe5veAADWbi9anVaufo+T7Wzvw7FPwzLZ8IG7PxMkm4VwwT68TlICcvEjvRWIlWkRHpYyAyFsvS+LzuXOwu/aQngTwE1AlqIwUYPbuTs3vdu/69u+966/JCtT4VCol5RAFD9avQI1JYMYaeaxBro3RK7AZSNEJCK0+KET0HZSUCMngT/45YWmOTpMYOQm6v/RF6VO1tfGunO8jAW4USx1eJMSIx9Kl3kCZirjjmqMbt2g2rzAcDXj8sctc2tlmfDrl5s176FenOCLPXS1ZL3tkmSXb3sIWFhUVJOcNSqO8l4TjCAR5vWUaqTaWYCK2KIlR0KYPQUL8fCS4DpUQv9YBYwtG25v01tcYTucspgvqpiF6xRNPX+TG7JDXJqfEGMiVwaJxriWWPZrFlP5oF6cMLrQiuieKuzKzbK2tUeYN9w8/x/Hp1zmn38t6/0OMvzbn7qLmJdfhCajcUvQtL/6GoZkuGJoen9jMWDcd9fgV7t/7XbS/zlMXMy5fOs+wzNE4gvc03rNY1BRFhg+BppmiFayP1hkN1inyDEXAOU/nPZ2Hzrd0TuzbIJshpQy+a4nKUE9O+drvvsi9V6ds9A3PvGeXc3s7lGvbKKWp6xkxjHBOhNRd2+KaOsXdR3RUFJkiy3KauuIoGtq1NRbjYw5u3Wfeeorlhk8N2dg+T3dym6ZpaZWwnO/23FRpl7asNsdET/+gYJSU5jRlnpFlljxb5j8I2xBsTKUncUO5rpPjiVBoS+eFTzPL8LllFUZUx0ynDXluyHLLaH0EMXL97mt8+jd/kz/3b/75JAPxaGO4fOkKV65c/JcI3MSHhJCJYTmr7yvYKuCxK3ByC6ZzYW8Oj2Thu3oBnhzJ42/Vog3pHBwdCxOiIoSHnE9Ld45m5fpRySniXbIk16BGSaScgMfStqzU6jldA0cnMJ6ISHetL3oaE+GVu9Lsc20vlZ08EGRRr6vUFPJQdsg6fzPl1zlpRdEWsPvjsP48hG/B4ivwgQEMymSr1lLiWXTw08/J6/sKTjpwFtafgos/CuYa3HNw+8FD/aOSU6lfSglKN1CM5Dimp8LatEnzYpN7zCg51iyl35JKbdELSxa92MA//iw8NRJw9dIBPDiEyZGAxHIIepoW4yDlwrwUy7pJ17aNUjYpeqCDWNDXt+DK+WWuRBLRTuHwHmxeWemqVjeHtzDtvhcTE1cA4qz0lcYPkiFagnwfpOzauVULi+XuyalVKXBZ1luW5UJicJbzfXmoanlOEUaF2PRbB+OpnP+FJ+Bnfhr+9t9JCCSBpTu34NbdN4ObdzAeGXAj2CYS0fgoN26rIqWCGDQHdxdMn56xuTlCozHakOeWXk8xzBwhRtq2oRz1KKy0U+imU2IK24reozODzkpQwpJEFYlasUwLVajUumGEyQt81wIIsImO4APRO1wIuNASmxrdCWPQG+T0Rz2CkkadeW/E1d1T8pvSJNcoTaGlnxJR0XWe4BeUw21mlce5Gqs1KkZUjBibMSgyrpxfZ2ez4+D499i/83kqt8fVrWexxQYhagIGs9AorTC552h8g8nhbY6rB5R2zLXdkr3dbYZlRpEpVHBEpWl85PT0GKU1G+tbTKeREKFf9NkYbVMWBVornI+0PtA4T9PVON9Q13O6NuBdi9Xi0OnqBcZkVPM5X78x4+pI8dH3X2JnaxNjMkyREbWk4TrfMZ9P6fcHhODx1UKAo5LNdJkblIqMZ2Nm29eog2dxcMjJ4ZxAJFeKCRmDzV3mVY1xHU3S3LwFL/BbHlopepkhsxpjpGTaeY/rAs5LqOK7DXAUkFlNv8wp85Ki7EvfrRixWYbNMpqqoih7NG1DVdX0e31m8zlGaVrXiqXbKJxzqMQ6yuYsyFSPsJjVZLklz0uywtC6il//zX/ET/zET7B77hzgyXXJoD/kPc+8h69+9Zvv8pn+Cx4PpwGrVKKIyAJ3sQ+vDOFkKo8JXhbfKspCrhLbMqkEpHSdJPIu6XijZZfa1XJvUcjzhyjgJjXtldYNUylZ5Zm8vlFSRjKJvdBaFvmiTHoRhG2ZJtFt10E1hf0NuAorV1A6DhVEr2J6MDuSspUtU3kqAS7XyeJ2bwzHGWx9HC7/GJh9OPom1KdyXaKHXsr1aQ2sfQh2LksmjFuHwxoOjkUc3AX5MC/7P61vyfGeHol7TCHgcHosWTYhPc4krUxWSr+icgi5FkAzS0LmspdCAAdwdSh9oV64K40afSfluBBWbQEGIxG1KiMWfJvAiUMW3qjk/Tu+IY/Z2YGdIWcsHw5ODkUvZC1ni/tbGX8Qk3z28yjH4qSaIPJTk3qH8RAoWqKqd2m4II7AthY9mE+l02U2U6+X+m0V8u9qIQL3mMDzsrRo7YoBWrKTJh3qsJRz62px/9kefPJPwT/7bXjwADAQammF8vKL8MHn3pXzfGTAjUacHyGGtLGKZ++pj5pZDUfjBZfPe5QVMaOKgdxaNtc9RekxUXPz9VfZPX+RwfoGxd4OxuaEtsYtKnxdE6OUv5a7KdlM5SibS2NNLZSxjiW26WQB8/7s7xgj1jmaes6inkNMImTXkikwxuB9S1UtGJgFH1i3fPG0I0vMTdc0on8IjmZR0d+x9ENOFTyBgFZB8mGilNqKzGCtptfL2NvzLOZTDo9+k5PTlrpTNB1AILhAbiJFFri0XbJ+sWRt7RyDXp9MG7TyhBhwvqWJivF4Qr8sGW1s0PkOpRxWW7Y3dxgM1gBN6xxV27Ko5ywWY9qmpa0bacvQado6MkDC+Lq2BavoFhWjzPPBpzdYW+8zXZwwn88JPvJY9HjnCQHatqXIS2GymjnONbTJZqlspFqMOWphdnmL2fiE2YP7nNYdVilaIBZrZIVhMj9FB08bYf4uQg2jFGv9Pr/w5/4tXOh45ZVX2T+5T90ucG3HfFGxqBvaLryrAEdphTUaay02kxDDXm9wFkxpbY41hl5vSFY3aKXJMum95p2j8x15nsl9Ju2mlp3XrRHwrhU0raepG+q6QpsSpSPX777O537nd/hT//q/jteSJF2UJc88/QzGaPwy8+WHeZztjCNnjeSW3b8jAgZKRONy3wg9T2JcnIOxgdrI4554Cu7fleTe/QOxUuelNJksygSakkZj2bLBtwImvEu73QCqlhKKUiu2Z/m3taJTKQdygEavFmfvBQD0+uD7MHaSEBy9HF9RCMDQVqzXh50AMJ0W6GWrBpVKbUsHV9XBvhFQsP0zsJW6dWekRSuJeTsNRzXca2CyL+Wg4CCa9LhcjmNtXRiq01MBG9EKYDw5gPkkLZRWmJVyAP11AXu9EgoLeZDU5SXoKwpp1tnviZ37lTGMZ5I3NOgv+5DIcyrkedtaAFIxEJeVSe+7U+n1gNvHEqR4/rxkCC2BRztOgtj1VSlzRVG89fHtD18+f4xiff/lX5SS11NPwuZ56QCfZ3KeZSF6q3cL25yVooLM6y6FGFbzpLuJMk+Dl7JoWcj71DVAXAHHtksLePosGS3/XiZ0R4QBK3Nhx1wtc+fiNdHe/PIvJy2aFkv4y6/IMVn9PQ7+rY1HAtwAKAxeCi3E5JwyKhKiooua2gf2TxZ414m2AFBa0x8MuLC3ToySz7KYznlj8jK9Xs7muT02z12kv75OnpeEriU6j14GWqlkr021whgDMQYIQRo9arkx6cwKo5JZIpEYc6azMZPpGKUMSoneRCuDCgofWlrXUtcNH96OPFhk1E4To6auI855rDE0izHt9JhibRuFpprPiNoSnMMoLc9thGa2OsMo6OcDNtZKXPA4J6BCGY1rA1meoZWnyDOKLF9lnoQax3KjEpmNF6yvrzMYDvAxAA5tMtaGI3rlABcji2rKZHLE5GTObNxRLSLzxlK5jIUrWXgIUbGuDJ/oPL7rxP3kA1e3LWvrA/aPH3B6NOFov6Wnn+ZikEaZcp0jblnrbio6V9F1kioc8IybGae9x5iGwPTogMXhnDrKPWgRDf3+kM3tHifHHXXwdAhD9m4MoxRlpvnJH/0p/sp/8Z+ztjHk+PCUb7zwTT7/ud/lC1/6Pd649RpHxw8YT+e4d7HVQ24M/V6PXr/PoD+kXw7o9YcoInlRyPzzkX6/z6Kao1Ukz3tk1jIen2BSc1kfRPUYUpif1H0VzgcyrUFpmsZT1zXGKIoio3ILPv2ZX+enPvnTrG+skXlLluU89cQTWJvhl53uf+iHaNzOQA6JuVn2GTJa+uXYjLMO0iFIA8f9segurE/loWeEqXiwDw/uSlmjrWVBNSaBmLhayHzSIyxbOyz1OF7JIXWpTNYlDlK1InQdrafyedKbLAXCJpPFuizgSIljyibQVKqVPqK/DqNtKdkQxF0UXNpxJ1bGB/k8+k4uSzsXTY9ODEKep/KOkUUtavm7a9OiG0GXqwXYKElcnoylxKe0XHffCaipF/K43hDWtmFzAGs5DBQUDmwHtmbVA8rJa9vUS8toOHRwOoOt8yLo3s3hxTeS1dim65xAYkz5KrYnkeZClUExhOqmPG57F3YGKwChvAieDxfyGstF/O1im28vRz0MbFyEf/7b8J/9F3A6he1N+MBz8GMfh498DC4/KSLs0WAlan43tDfep2ynShjEei4MFwibFhP7sliIK21DpfwaJzb5s+ayqRS7DPNb2saN5qwRaWGkHOijsIS2Dz/1c/Dp35RgP+NkHr3+mjBG9p23Yng0wI0SJiZEOfewmlkENG0MuAgHxx2LxTw1/AtkWcao36fQu1SzKfmgpDQ5s+mM2XjK4c17LCZTLj/zDIPNPazNiXSgpBljcMLExNYRQpQu4DHRlEp2uSrdiFSaVNFHfCd6E9c0qARCfNvSNC1d6yXkTkUIisIoPrZh+OKxwQVF02g656BTGB+oJmPy0SblqEQbmE/HRGvkfhg6VDAE79E6oJONU2vITU6wHtWTPiqSdUJyO8nkVzHiQ4sn0jkPyqKi5tJjl/A+0vka7z1VNRNrttGczmcsHhxxeLhgPHZMFhkL16MNmi4q2cgSyE1gq+d5aldRWE1wHq8crm2JvuLGjetMDh3TmeHUZTx//hx1U+NCKpVgcD6QZxk2iquncYCCLgaaeWBybofpbEJ7fMJk1uJiJFOKVhdkvuXw+IDgW9EEvktCYq2gZzXb65v8wl/8d7hw9QLKaIZb61x96jF+/s/8PIf3D/jcb32eX/p7f5tf/fVfYTxf8G6gG6MVZZHT7w0pioKy6DNcW2PQH5JlFmtyBoMek+mULBOA3u8PhYGpKkZrmxADddOeWcWbrpH3Vqt0z4nElNZd1458UWMzI33XlOblN77FKy++wof/yIdxzmGynMuXLtPvFzTNvyzgRr1ZG8Dy78RiKGArk7KHd4CWG+5iAeFA2iPMa/ANjIaygF+9AGsjePllONkXFodkO35YUJynjZU2AiSW7M5ylxuXZQklC1mWMlaKYgVC8lx0H7nhzFWk083z1MOWl/8XiRHJ0kKztiE5MtNadjpr68nmizAG2stxhiWjQ6qgtdKBvGrlOi3DkxQCypaLrRYGUXplpfrnjdup3FSmLJqhnJMLUt7Y24KdvnQq73dgKymBqVTeQMvxVAYOkd+zRtifPJdy29XHYCeXNhS2gwf3hUEzy45zPpUKuwTAlKx8S1HwQMODAylNbW3CMJVbYoTQCFO2vSdMVNKtvfWp9l0eewZs0vmMT+EX/2e4cVfA49EYXr0Ov/JP4dwufPLjYqH+2T8tzNQ7xTVLANK0wsrUTSoRTgTctF0CoAu5Jl0nj18kBqfXk7BFpWUeOrcq1Wb2odJUKlmhJa+pXwpo91Hm17Vn4b3PwO99SeZp18Kd2yI475V/0Fn8geORADeyKANEAtLEUpFKu1F25D5GTseR8WxGvxhglMIWFmsGlFlGmRXUviIqzebuHts7O1TzuQR5tgHXtjLPEkXvWgcuSBksdGiTSY6IzVAqorJMFuHlTTAqonf4psU1HUppeoMRRE8MnqhzjFbUtLStQ3VR0tRt5Fyv42pR0nhN0xqqWUPIwDeavJzQ35ihhmsYoylsTuulhORjFPeY81grqnKlxXodkeafWitiUAlkRenZFDQesZXGCF3jKcqC9Z1tXNMwr+dUXUPb1sxnMxaTmkXtmFeGWW2Z1prO5fhYEBHgaVSk1IHCeDb7jnPbGef3hqzvrZNrJYCua/B1w3jf0cRI7QymjLzv2gbPf/gZxnUDQTqPC0iT0MToHM7JZ8RYCB3UesQs61Ef7+NOF8y9gLc6AlbTOU876Vh0DSbCu7HsagWZVpSF5b3v+SA/8bN/VNKvl4ughizPuHD1In/u3/lzPPP803zla7/L9PoN/DsEVwoo84z+oE+/36PXHzAabTIajiSGYNCj7TzGaLa3NtFG0+v1qaoFXdfSG/SpqorhaIMYJyyaGc53aSOwjKcQ5ia3GVVdg4q4usMVLZ2OmLJg0c75Z5/5TT7wkffTKkOWR7Z3dhiNRpycTN6Fq/wveiwXTYW4htL7ph7+UrCupE1CM5ebU+PAz5MWoZFFNQY42BeH1CAlCheJ4YgkzYuW0opdMjWZLBw+CO0fk74hxhWRpKJ8EIpcylUxyM5apTC6kBYb8tRjKpXZnYIqkxKQ8ZB7yRrpEKBTj+B0CLOJ7Khd+2bRs8rkOF0QBiskwMdDO3IdUzktsSEqaWuWoLAwsmgeHAogK/uin8kLSXweleLq6nnpXF4G6U2lmuXJJ32SlpJTZaWcdjCDg9ME/JIGpyxgL2mgrJPU4etj+OLL0MtXLJxCjtl7OWbDMk4tddydiZtsa09cYstGmAq5FkZLEGNWvAsloYeATUjz6uWvwa9/Wm6AyxcOCMNx8y78z38PvvoSvP9jcO3xFfB6J+xNm8DLohbQMj2Rvl2dk+9nVubo8bH8XS/Se5kLyC97IgZXa8J8mYdYzuWCbrTM8aKUb/YyaJJzrW4gH8Af/Wn40gsC2lsln6Vvd0x9n+ORADeAAHQPPgZEbQOBiIvQBilXVI3i4GTC1mBDguUCCYlbssyA7eGaDtd1DEZD8tEAj0YpTTebCTvkAr5rCc6jsZgsQxcZWVGke0cGWiy3KAmVi0pJrynn6JoG13VoregPRgTviK7F6UqEs8Zgq44ua0R06yGqyMWy5bVZTtVlzCaO3qbGYphPKobjY2xRooyhWBtSAm3T0SzmUrqxitbVoBQGKf1EpTC2JABdV6GNJvpAPBNHCnVts5Kd89vozDJfTDk9PuR4fEI1c0wnkfFCMWsyal/gQtoFEjFKyoJaOXo6MCo7tkeR7Y2Mza0N+v2RAK0Ui6y09PlysxNUB5WKrG8Grl07x9XLVxmdP8/9qiZGoWdMZqSxJpJ43PqW1D2Dpo1UuzvMvKeenuJmLXXqb9Sg2Nxc43g8xQZDL0a8SvfhdzAUovsqrGa4NuSnPvHTnL98/qGbmVr9O0a01ZyeHhF0eOf3O0ApRVHk9Ht9+sMRG2sbDIYjBv0Bg96AvLRkJhN5iFj9MEsxdyfhZl3X4kNH3svpfI6znizLmC9kx6+1pZdl+OBBC9ipm4BaLIhaBOQqwhe+8jmOD/9dtne3cV3HxvomGxsb3Lx5510400dgBFKpQ7OSoKf3V6d3s4iwtSZOnqqWxT+qJCD24CoBHlkG05mUXUgU/DCJUW1ahK0BkvC46SQXx5Ps3iFR92nBWtL81qbGmZlM7vlUAI/NIfRWmoZeBl0hotuljqTOYdhC1sGahZMkYF7vwfq2gB/vpRUCyHn0BymBOIjgOM2xs0wYJ4GmZL0U5pd0OllMLIsV0Hf/gSyQ/RFs7khfqmEGIyVW+qID0wg7cwZmlvcsIxbxOoOpgtNOcoIWk5UORBt5/4oChpsJnAAnBq7vw60b8OCesAs6LW+dT8BBSUnLph5hDskkOjwQkDfaENZGn33Q4WQizJxOQttlyQ1WDMzbARnxoX+4IPPms78pQZC/353EBXnfQgrYeyd3nOUcazsRB88nwhzNZgJyqjnUblWaVHJnlHmKzEelVvb8qgXdpiiETqISlJGSZ9eu3oMQZY72+xCblaD9gx+H3b8O+0fy3OMT0WbFy++49PZIgBsBsTGVpPSSIBZgEyNdivsOXnM0bhlvnmDsNrmx+Hqe7gdG2hlYk+hcTTSG2AW6qsJ1NV1Xo5XCZjlZXmLzDFsUmCJDaYW2FmUsarm7S4JDpdIHXCtsYRKz2af0Ob5zxBDoXA/nanwXKMpAM6+oqfAh4LvIZukZVFCFnLrrwMDm+gjfdSxOTylHG+SjNcATQiQfFJTDHl3bUc0XuNrigqdNguSoIk3doI0WfY7WqdyjMNbSH62R93uE6JlOJ+zf2uf+gwkHJx2zhaVyBS5I+UviN4SdMYBRjlx7ChtYHzg2R4bNzR5roz69oo+xlqAN3jl8U+GblizPqccTmtMpc+/pDT2Xr2xz8fxFiv4Ahhs04xk6M4TQYbMMozUx2e07H5MIFurW0G7ssZjPaCcVvvVnzIzJCoajArqGZrag0HCCAP93MhRKZAWFYXfzIp/4qZ8iK7Lf58GiZXn9+msJ4L2z1wZxZi0JBWtyyl6f4aDPcDhkMOhjjaU/GNA2Da5zlL2co+MTYtBkJmdtzdI0HVoZurZFG0k0ni8WOB9Sz8SOug1kmTlbTzof0HXE2E7KnVnOg8O7vPiNb/Jjn/wEbdvQKwt2drbe+Uk+EiOVFRTwcN/4JWND2umbAOs5HG+COxJQUyYtRvDyCy5R7F2Qf+dadAV56psUkRt8W8ti0rTJyRNlsfVpwYWVlTamm36IYptWQFyAaWU3rbWUbmwpAtNai4CZXrLqKhE895BFJ8vkNE+n8u+NddlxT8dAKpXNG+lflWfSXqJMAs+iEDARVdJL+FQaSywTSYw6m0jiLEayeK7sSdLvZgY9B1mTwAGc2dDPRNxWFm2nYWFh6uGkls7hzUKePyTGJS+FzWobae2wMRJQMjdw6wju3ZGyyuRE0p27IAtwl5gyncTQy2qeRsTKpweiQRqVwjwtR9fAtBH9x6i/mi4PPeTtjYdKoAF5f0/uwmd+S+bFdwMtS4bm8SdXjNm3/+xtH0ZcvYduCXIWoi2aJcfUfLbqSl+1Uq7TQUDPZJIYRS/vx1KY3Osn0IswOXmx0o5BKksqcJkI4LsWdi7C+56D/c/K45tWohfehfFIgBvJtwkCbqIixCgNEGOkSaUVm+pDk6lnPDmC4Nna2CEvB1KeAXyzwBHJbU7nIrSeej7BNQuiUmRFj6IoyfoFWdFHWSUJxSkk7Wyh0vrNH8T0l7aWrCxQxmFdhnftGROkncU4i7MBWwayXk5R9amnC7q6JXaOnbzjoM2wWSQrMopBj35/m+nxMYvjI2xeoosMlWuR/lhFVpZkZQ4x4l3E+04WchXxXYuKGm1SyKA24rRSkbpt2d+/x717h9y+V/NgDPPW4mOGQaNVQBMwOmCUl67sxlNmnn4e6JewMcpYX1+jPxpQZAXWFmhb4FxHtZjQNBWN8+ydHtMbbTB5sE/nW8gcg5FhtL6JzTN02cf1B7jjU/plDlFybHJb0rYCAEPQorlpwOcFXdmnPjmim9e0LiStj0rgE6q2hbaiU7B4F1gboyC3ml7Z45knn+fZ59/7Pe8bdVVx4+Z16vnirJrxTg6jzDN6vT7G2FVon83QWpGZnMGoL7btrMBoaOqaQdlHBS3W+oUkD+e5oyx6TKYTgpceXUqJpqx1IvoWkXkkooQ5bgNd7fCZwWtHFSIvfO0FPv6TP05LS2Ytuzt77+DsHrGxLKGotDicfS0/96k+NDQidNUGTg9FcLncrRd9BOCIS5DMiBan6KcyViWgZtGIldaH9JUAwtI9FcJDbMDDWgwn1L23SVibP8QEOflyCdxULfQWsgCXuSxIbQZ5K6WquhONUHUEm9uwtSXC0KaDNshi7aK4Veo27cyVLFBLNijPgaQHilEAx5JxynPYPS/tKC70YAPIHahOficmJBEUkMCSN9AZ6W5eA9NOclBmMwEvrhW2yFjor6WSiIWNLQFn585J2F5nYeIF0LSdXPfFXMoazULe4y49V95LpcEo51Ug9uRqDuevwLCXyofpTViWWYpcfvdNc+idsCckC3YFr30Dvvrimxmhbx+9Hjx2TUqf78ZYsjbeyZyMqUTpI4QUM9BWAu4CAmzrhYAbk9xbroPWihh5uJYC/TpgGZWQrYD6splsIG0ArICekMD6Bz4An/kdIBfW72D/XTnNRwPcKJXC+xQeidFvY6QJISVdq7MFqBhYFnVL1TwgqsD53atkvR44j6rnKDSua8lsjm8bVIgU5YCiPyDr9TBljjYalWrNSgW0FuZmRcPFBBLEqaTQxDSZRegLznUSQNd1NG1FcB7XOVzXSQx+EiKqIqBCpD+wXNUt/igw6AeshjY6tjY2yPtDTu7fpZ1PKPNtkQHoZe8eyeBBgS40OuikQQxQZsSgiCrgOk/dtkwnYw4PT7n/YMb+seekstReGAijFKXyGN2R60imOwobKfJAbhSDoWbQyxiWBb1BSdkbYI0ly3OUslIabOdMxyfMZmOqWUPTaC7sP6B34QJKRdbWS65d6yXg3sPYDD1ax+U9rMmkfJaScZUJkhZtNU3npTlvUJidDWoL1XzKbCatMCLSRqBxnq7zNG3DMEIx7KObBppO3nPvCDF8l0n2PacfRkOeW4bDTT76kR9ha2/ze/7O8dEhN2+/QdW8cwO6AmxmKIoeo+EGvV6Poiwoi4I8y+kPexRFTmYtpmcIwQGRznU0XYe10pqhaSqapmI2n1MWUlrovKfpWow2qPQ5wwdpvaCCsP0hUteeLHOpIXDk9TdeoalbijIHa9ncXJcS7b8MCdBqCUXTiqLUygXzMMBYuGRhPScL9MFNuZlbk6zZQcCGa2XXqbUAoGqeunh3AmZ8cpWgUykqpjLXsiyTFphlBs5ZuUN+5cwmnWWyyBot/85S7yVjAS+dvLWS3lAhl/5Xcy2LijJwcio78vMXYbAG7RFngiwS8Fg2xWxCEvYigKDuBBRELUAuy2FzDXY24NwIto2wNKZL1y+mMlNK8/VZCi3UKYEziuW8apLuYy73zLaFKNlkFH3JxxmuSdJtGWHvHNy7J885qeCNKgG4Shbc2VgWZt+l1goqiVi1AMalIDlDAhAPx6JJGo4ksHApsgzLx5mV1ma6SDqoXEIVz7RGbxHoLKdcQHJf5ifw5S/A/sn3fo7tHbh8TQDed8zjtzPSvOqCAO/ZqYCWupFSaZeATdPIe1H5VWyATfPNJeF70ZOv4SAFUSph0bJcgO+SVTpzTOlV2bc0AkoDwv5cezr1mWrkPToZv3NNEY8IuIlRtDU+LktRUIeASzygRZMpTWYjvYGmiw4d4HB8zPpoG5vnRN9RtS25zdBakxU5eZGjRkNhZvJMdv1aareKiLZGgJPSwpJqEGBjBFgoIGoJmnOBrq6oZwuq8YTFZErbppybiCziRpOZjNzmaCs1ac8aUzUh6JpRETBjTcz7bJ/fxbc1XVNTDtYYbGzTzCfk/aGImpf29IR8lZWAPxAND1qL06mecXIy4e69Y+4fVkwmkVkFndf4KJb5TAUK7egZRy/zlFkgzyP9vqFXWnq9grLoURY5RZ5jtMZYK2U6ZQhEuhBZVBPGR/tMT2a0dcB5hbIKNxkzeuIZrM0YrW0Q1zdwIWBTsq7a3GOeSlfpDceaPDnRPLoY4DpF5YVBPre1S9V0LGZzTirPIIJF4TFYk+G9JzpHVHA8W9CEQGH7/Imf/Df5zJd+lePx4duafwpFrjVFXrC5vs1HPvZRTP69uee7d+9w/949XOdWLP33OZQSJstkFpvl9Mo+ZVHQ6xUUZSE/s5nk3mQZTQ3WSh6SlBM11lgGwwF1U9HrldItXhvuH9wX4NO26GX8P9B5h9VaErgVdF2kWXTkucFksH90j/l0SpZv4kNkfW3jHZzhIzbUQ1+aBGyW4Ga5k1USGqes/Gh9C6ZHsviaLIGapJlZlpumM9kJt8scm+WuNZWwSDujiOg9UKmeutxYhZXtuuxJiWh9DUYjyWdJ9yd53fR3k3bcBGAKcQ1CKSBiPUC7ECdQlhaj+ViC9AZrorFwy5INnImGXVgtLDEt9NrIMWyuwYUt2O1LM89+lBKeSixH1LIj92kB67QIRRdexLOL5MxpulV439JNsKwtayVszdae9M4qtQAR78Xh9drLctzjU9FnWC1gA+B4P5Wu2vReK3F7BQAj9vYsMTcZcHwgPbuGA+ibhxg0LwBJm9R4E3k/tBa91W//Enz4j8P6zlubcw+H9YUg5356BP/8n0t67/dayC9eggsXkt5lOYe/n3JUOg7XrCz81UKOpWoEXHStnHfrkhgYYQiXG8YYZG7PZjKfqloAtvewd15eI89XzCQkl0gqC8qCJL3ZWi/AcvuCuA7bTt77yenbP7fvMh4JcAOpbIeREnYMeOLKYaiEdbA2EHVHFTxDbanbluPpCf1yCKlDFCYjRo/OFMZIe3ttbfq5IEptrKQVaytOp9TldFlGjoiLyrcVXd1QzycsTqdMT2aEzolNdzhk49w5TGYIztMFT1fN6ZywN8E1xKjRVtNbHxAGGV1VsbfTMqsteTEg749wTU3sDSmHQ5pqRlstyAZrqOAgRpSxYL2ECyopJwSlWMxn3Lx5n1dunHL70FHVChsVVknzSa2gMC2F8YxKx6DnZROaQZYb+v0B/d6QsuyR5ZKho87AXY7OcmHX25rOO6pqymx8zHy8wHeRomcZFRn90YiinqKsoTdap1vM8LZk0BuSFz1QFnPpGnVXo7TGd400KVX6TCSo8h7jBg67KCnNe9vMjg6ZLhpOuyAlMwVt2mGfnowx3mOVYm0wYDyf8/7HPsZ/9n/5K/wf/293+a3Pf+otswzLzYQyAuguX7jGM+97z/f8He89t27e5OjwGO/DO2YzjNFAJM8KcY/FSJZlKGXIi5I8zynygjzLyPOc4BzeKXQCoXlhsY2m3x8wny2Yz2fEGJjPZ2ht6DpHCIEYFcYYBLeLbmgp71BRhNxlG9EmcnR6yOnJKetbG7iuY293B50A9Q/9UMCyv5JKIvqHyZwYBdyEPAlYnegPRptQzzjT5SwXvy7KAgpJuKqB5ELyPlHwTh67TJ8lPWxp5S56sigP10VLsjmURbVppU/V/r5Q9jY5psqB/NxmoivRSfcznkmCca8Hh4U4kuq56GLKHlRKFqbeUDQS88lqdx6cWL6XpTIJyoL+EK6eh8c3YMcKg6IiZ7EZEfC5aGcqK7btDunb1Hpx19SztJB2K/YCBbGVBVWR7NsWypGUn9b6SUPkhDmaTaFck2s6Hcs5+Fryh+pKGJ87b6wSmLM85cKEs1wzmkoW7CxN/P1D2NqWLuxZAriRVDoMsLkujESM8jqDAdz6IvzX/3f4L8/Bj//8Shz7VgBHZOWUu38Dvv7S9368MXDlKuxupfTq75PNeDhnKSopOS3TiNtO3sumEVDYNDLX2iaJ2NO1cAmgFkHe0+FctEpKi4he6uBJ1pHA6BIsLoHNclORK/nyCja2RdNzfCoA7uBgBYbewXgkwE0EXFT4ICUpD6m0oNAoMvRZWrGLkc45+taSZyVH01M2Buv0yx4utNBpyiyXTUAGSmvJr9Hyb22NMBLos/h85aTHVHAdbVWxmEyYHp1QzRryXkG/V2KV5cJjlyjX11Fa09YLJkfHHLx+xPjwBLoOHRRKB4xRYKIsWlbumt55VISR0qyVnsnhPnuXrtC1jaT2ug6TZTTzCcqmAL4AgVYcSYUhOEe1WHB7f8LX35hy+8jjvUZj6GtP33pKEyiso1dE1gYwWsuxWYHSRljWzNLPh/T6QznOCD50KC2lK6VzIoq2bam6Gte1ON8yGx9TTxcYbRhsZhRFIeW+3hA9OaVr5mxeuMLRouLqz/57PPljfxR98oDJP/81OH+RsGjwPtAsZuL2igHvREzcYrgxhsMQGPb7xOGQ6uZ1fBeYhchQqdSjTa6jdw0WYTzyfg+1WHDlyuNUzLhz7yaj4ZB+r+TBwVtjcNTyuWyP9z7zHFvnvndJqqkr3rj+KpPxSWpcuVwZ395YAjCdGmTGEDBGSxij1hhtyVPkvjEmBUYq6qYhhMj6+gZN0xKRTCYQ7VrT1hhlKPs9ZvUClVK5iywnxMBZprJSSYQepclmgGrRoDRM1ZT9/X2uPPEY0TvW19ZSSvEPObhRSm68+iHaWwm4fGjV5SwDxdqU4FqJm2Y+TvqDHLIgC7NBAM7Dbp7lYuCcPOfytezyeTMBIKMR7GyJZbtupZwVPdy8A6djWYzKvnTcfuKiPDbLkiU7lXi8Sgtmel+X8QUxiLh4Z0/69hDlZ9YKRTpYk5JaqphBnvRCXkBUvy/NI6+twY4RhgafBMAmlXqsWLDnwLRNbIyXarpzwpTMpytQpzOxsoPoO4ircluWS5bM+qYE1kUvvauaRq55NZME4WIAd2+J9uM3/n/wuU9LF++P/Wtw/w70Uufv/gjMA3l/bRIT40UTpLVc69kMrjwuwGYJ5iBl4ZhVmFyMIpru9+HWGxD6cOGx1NG8ls7qb3Us3WevfAvuH3/vx5YlXHsK1rY4C8v7ftxSS6Zg2SBTmxXLuOwE3rUrQB5T+OSy3Do+FfAN8vNlGTMv5X1aJKv4Mrepa1cbh+XrL8uwWsl86xepNLUGe7vw2nUBU5OJHNs7RCePBLgBcUn5FNjXxkBc6mwQNmJJHKvgaVxgGhfsZIama5nMpxRFSb8YEVxLcN3ZmxkRylWEw3naoHhidCIG9o6uWjAfTxgfj1lMG/KyZH17nZ1LlyiHfZQ2yUbuaOuW6dF99m/e4/7tOZAxHGnyoaHIMnFtmYRc0/uptCJiyIocazOstehMUXcLlFEs2imhlrJBPa/IyhpnFMFJUnLrG6azKfcOK14/dNw+sVReYZSiUJFR1rHda1gfBtb7UGQZ6xsblL2MECPz2ZR+KWxKURRYbUVvQQRlyexA7PJdR+Ma2ralbmZ41+LaRlxRlaPMCwYba5KCGz2ZsZR5j7xZUC/m6KLHhfd+lCd/5o+hsgytFPr8efbbCZPpPrPZFFdNCc4RlNSrRcBtmMTINETK0QinNV1TU7hAR2SOYqRkvVkbDplMFgJ2QuTO4SHOB770yu/wl//KHa7ffkM0VUq9LcgRCNgs4/0f/AA2/94fi5PjY67feIP5bIZ/B+nExmiCj2QJqCsViTFgtJHSoBEwIxNfgEudkkOHw5Kua8kyQ1GUnJ5MiCHSuZYiK1hUcyaz+ZkwOQJaa5z3OOfTRlMlokJYUucjMRoU0HYdDx48AIQt3N7aFtaH7vs820dlLAFM4Cwl+GEXy5v0LqlEpPrCvmS5tCRoKmimSeSbrLFLTU0gLe4JNFgjpS2rOWuDsLYG2xvSVLCp4WgCd+6IU2XpxLJGdAjb5+DqRbg8ADqYRpj7tCiFhxYaVvoZFQQouU6+OiDrC8DIh/K8IYrLqk6psVYLS2BSHs12D3YtbDopCS3tdS6DRSFanjmywz89Ef2MUvK7dSP9rppG2KCYrrPvwM0FdGUpWTnLJdjP5rKQWiv29raRJqHBc5aa3C5Eh9MbiK7mpS/Cp/7xKmTu/n3I12C4J6CxN0rJxG5VDgx+VQ6YTRN4TGBoecdYTofZTNgjkMfv7sjjnvwx+K//G7j6RPr9t3kHUFoW/69+NZWkfr+pGmFzS8TEw0HaKH+fIyT2yjvR28R0HMGn+epWZcmYaPyiEEZwtpD3p/My9zdH8lxZLgxQOUhgNDFSy9czJgUu8tDnKrGkRoFKG6XMwrnznAGf4+M0r79PIJfGIwFuYgQfFY6ISzvLmLQEWQrSU0oSdzWBXpYxrztKOyMzfQ6mh4wGI6LzlFkpQCQEfOeJeDQQVCTGjhg8rm2pqznzyZyTozHHJxXGFFy8ss219z9Ob1CK8BXAGELwuLphPj5l/GCf4zsHjGcdexd2eezJKxTDksV0iu8aVAxoazF5LkDHaozNwCQnUwjSq8oHgu/wTY0PHV4HYZadZ1HPiVrju5qqWnB8OuP6fuD1k4K5y1EIqOmZyFa/YW87sLUuDJMmUuYZa+sbNE1F2yxYH63R740E+CuZlDYvCFqnz3nGbHrK6XgfFz1dVRO6tOMMERMhHwzpD0fkeU7XzFEoer0hvcEIFVuKtub2/n1+5E/8u6jMMj84YnR+l3GR8eD2Pe7duY1zDaapcZ0jGA1IoKI3lgMXmQW4trfDZDYhdB1ZBxHFIkaGKELoODm9j48iNO8rsCng5uadV7h191UpEXnpXfV25p9WmtFgg6fe89Qf+Pg7d25x//49mqpNgOD7gzdaKUk4N1pcUjYDFDazKK3oXCvCcSTBuW0rstxS9vKz+AMI1E2FNorOeQntM5YQArkt0Hp5LZSAPteeHW8IK2CjFVirKYuCrmnwNnLvzt2zUvt0NmU0HFFV9fd1ro/UUOmmebazTDTpWZDeQz/vOtFkuCH4BaztCBNhjThtUMmCbTjzCEeFJP4a0R/0BrJIbq3DVh9CA7eO4es3hA1Y9uxa7qjLXNKEz52Dy7uSE3P/AF69BbNaFu6slONzSTvhl0xRt3Jk6SVg0aITKsrEnOgkVE7lrRDk+Xp92BjCnoaNBrLErEQl+qFFAYcaxo04q6JK3Z5P5LmLgaTcVtPVdezalbYmArETBmx9T0BLr5TFDb3MpBBx8XQiJZJiIMdQzeS6k8trnbsAv/rXBVzt7sD9fQF0l87DpcsiAi7Sc7sEZI2WRdykDcP+oYCxLJe+LizZvCjv38b5Za1+VaYDuPQUXHxSHmtITrK3OvfSdVmM4aVXH5ovv8/jL12G8xcSG6VW4ODtjmUQmEuaGdfJSXWJocnyFdDXSpi01okTT8GZNqxIGUvWJLeVS2F9yVmV56RyAGeNNSFt0NSK5HZBwG9RiKbn0sWV7G04gulU5sY7wHOPBrhB2iyEmEjhGN/E2kgsgQTLZToj1wpdwLRzjEJHFWtOZycUticlGKVpFwu0E41N8JGuW9A1NZPJlKPDGQ+OO5pOsbOzwVPveYLzl3ckI0frxBkpgg+0symunjM7PubkwRHVyYJQWJ5+/knOX76EHQxQ1tLb3BT9TPTSqiEBmeX5iZYwMVJKy4aC5NxqagKKtq0YLxbkrsVmlvlszsG44Y2jjNuzHm2U6zAwkTXr2Ox3XLxk2Nneoj9YF8BR9lkbrTOdHDNeHBJ9CypgY59eOUKrEkxk0QrDVeYlup/RtnMW4zHKiEjVKgXapLC9grwoyG2J1QYVPHle0husozND7Dqyk2PqxZy6njOwltG5XVAKawrqquNg/x69IofFlBBjKhdG8qLEFrk0XAaGOxscHd0nBI3xkQxJHw7AGjCLgdP0/ybNk7N59P2CDK2IAbY3t7lwae97fp5ijLzx+uvs7z+gapt3FB6otMYQsNaAimhtpIdT8MQQJU8oCJtT1w39Xg9jDVVVS0Z1iNSNI8ZInuf0ygKNInQta2vrTCaTM8FwllmapsH5cMbWLPWpcl7QucB0VpFligzHjZtv0LYNRVnyxhvX8cF9j7P5YRmJuVm+yWcahodYGxIT49MC0JBKQRnoUsLjXLLKxiBsjE1iVKNTw8OedL/eGcF2JuLVoxN4+Q24fbBaVJblMKPlpl4ORH+wtyNAqHXw9dfh9h1hEpyDkwQmVNLwLIHM8jwUqxJGDEm8nITDRSnfz3tSYrHJfjscwHoB2x0Mq3R9EqjpLCwyuOPh6FgW5hilVDQdw2hLAvtMnliaBSymEGvRLuWJ4eoamHeSTLu+nkBdutYhyHF0ybnjamEUtBGmYT5O7JkVNqM/kGvlnPT1ihF8I6zPuQuiVeqPEquWyoJ1Ld9fYtrDU9g+nyzO3+VTvwQ2b5onD/3/+9G/LFsTnB7D7Qff+7FKwRNPilC3yFdz9vshNEJA3HpJJxVSyVSnrKPOJXCphcmqKgHLvZQurNSquWvbCjtHAkWTsbCRS11NlzRqRq/Og4eOWSFM4bAn5VwMPPaEMHd1DdeuJQfgOxuPBLgRKBHpooiJA5JrkykpvVgl2iOjPVFrCkpsDjMfcd5jYsZptWBvvUcXPDHAIi2iTVMxn1ecnNY8mATuTxXGG3Y2LB98fo/Hn7hKUebCFUWxG4cQ6aqKejrl9OAB9fGYZtoAms0Lu+w+foXR2giVGTDivFJ5RmYV3snCFKPsnqJWRK8I0YkYOAY0AhqUjhitQRlclJKbHfa5e/OELIscTiO3xiWTLktlucjQBC6NajaHjo2RZm04IM8MCo81BaP+CJDMoLXRDoNeH+8rXHBMx8eUxZCgwbnAoOyLzVtLywvnG0wwFKkLtTUZuc0w6SvTGUYrirzAZFqaCSO2eQ7ucO49HyXrpXTWlBm0df4C489OqBZzdHD4owN08OL0MSZpQBQO0Jml7JfcuyGWfnxgoOA4mVcsss7YKD2m5u/C3ItAFyLGe/Z2L7C2NnzoJ992B4mRarHgtddf5fjwmKbxZ7qt72coBOAIAA+E0BFDIHjRInnX0XUddVXRHwyRvmGGXlkyn81pu44sy1kbrXPkjgjR44NDG0u1WDCdTfFBWFDnnNxTrCG00rpjeZbLHatOTEYIArROJ2PpJ6UV73/f++jlPTI7w3n3Q2wJT0yNXHz51lmoWTzDGmJjDkAtwlijhAWhE1BwWqWFAVlEQUomwx6sl7CmYS1KG4Sxg68fwOs3xZWCEmAS5NrSKwXY7J2TfJZRAQS4fwjXb0r+S+dFW4OSkpRLu2ednmsp0DdpsdDLkttS0JwWtOhXJbfZAq5uQqckQXi9llTj5XXyGmYlTC1MU3mi83JtfCo9oUX/Mz0SC7xJycDrW9DMZBditQChJulxVJTyl/arLtS+W5XRXMdZi4m2EevymQA5wN4leOkLIpRmWUpBekoN1wT4aCtNMI2R3/H+zSXIzonm5uoluSbL8LmHq5TwUMnx2773/Q6t5LUO7sv7upyS3230+9J5fndTotvfyesqOAsBNDoB9TSntV5ZvXs90REttTd1LS6xLE9W8THYbeR9t8Lc9Psyf5fOQJtghQuSa/Om65euZwycsUTBSw+rZSDgN74urKh3K5DzfZz7IwFuIKZFQiWxY8SgybUmU5FCibhdAT56goqUJkdpjdMOawScNF1N2zb4AIuTE2bHM24cwfU53G0EVDy7bvnI0zlXLu7SH/bwdY1TiHXbWLrFgsXJCZPjB8xPJjSzjtzmrO1tsXHhHKONTYxWxCA7Lx1UigAXN0r0gRA8wTuCjyit8KkMtbRsSnigRWtDzBTW52Tp94bra8S85pW7DXcbSxcMfR3p6UCZebYGLXvbkfXBgF6vJM8LrO1jTEa/HBJDpG0aOtcxHIwYDodosyXBftWU2fiUdr5gY32H3mh0VqY3tsCYDNcsKHoFRbFBmZVYbTHWYDIJzyMxAQBRrZp1tif77BU9+ptbtIs5Smnyfg/nHLdv3MC1NUfjB8xfe4WqqRkMJDcFv+TJIC8KlBVRq54s8DEyUopjAh0Ccn2EkVJYoCIB/3c4QhSre+srXn/jNS5dvUJ/MMAu+4vB2Yfr+PCQ1954jaPjk9Xm+/scMYI9c+oFgos47yQ3KQzx3tM2kqode54QAm3TslgsCCFiUkq0cx2u7ahraeSa2ZyZn5FlGbFrqRvJ/rHaAElEnOj3EKV9hFYaYxR158mjIveBO/du8OnP/AZ37z/g5W++zn/47/2HGCzfeuUb/M1f+Vs0b6P092iNJTe+nHnJDbJ0/iy/1DJwriU1iktaGrXql6STLmJrCNvAAOkvhYeJg1dbuHMgCcBFsbJaLxeFjU1pyrixJqDGNXBwAvcewMmxTHhtkwgzin5GJU2f0QJSjBXwFeJDZSgFaAFBMaX8dlGSjpe/N55AW8LFQrpw6yUI0iIYnuXSaXw+l0WubcAtBIjUaQHsFcL+zCfCLPljeY7+SEproz5MDqXMsLz0rpHnKPoC9pqxCLaDE7agSwzhkgkAzhKNlYLNPXFHnRynOP8oQMUYeOwxEbmu7cFTzwhTNUtMk13SlCTbcxRR63r/IRCzZLyW0+ShD/g7wBZnz7/U++gCHr8GN2/L9XVu9VrLx21vw7UnYXNT1pjvYBvf1gEkVxdAMroYm0qVVq5dysaiSoCnyOX66gR0bHLn5VYA+TL8Tw+lfJvl0kdN65Vm5mEh8dlmIq2FmVnN4wtX4Sd/Bs7vwXNPwV/77wEHTz8Hf+YX5LPzNscjAm4AFfFRQI5GkSlxSGVKUWiJKY8x4nxHYwyGjEwX5DpDaYNRGu8aqrqh6TruH9S8fB9enDkWwTPUGR/cUvzUBza5cv4iRZkTQsCkkgDK0MxrTg/uMj64j2sc/eEae5d2GG5ukJeplug8vvWYXo7OxTIt5ggvnbFdh++6s5BT7yRJGB+xxmLKjCw3KBXSTgrZuQdpP6GM5tylATeOOuYLjSbQzxwbg5btjcig1Az6fXJrsGWGNTlWK8pigMkKvHe0rsUYTS/rici0a1m6HLQpKfuaouxLmUxpAtI1Oi8LukVFdIGiLMizHtZYsc6rCMERJOWNqAwRk3R6AdW0hDs3MFajokmlPcjLHsE5JqeHjG/f4PDGAZ1LIYkpvMwrmAD9MqeqKtraUVYNdYRhYvDmMTJMna0nwLqcEdX3zZu8efgQ+dRv/VPe+Euv8+xzH+CZ9z7F49ce58qVK5w7f4GtrS0GvR6vvfoK16+/zmS8eMfNMmMM+JBE74lNqJuaXtdjUdeS12QtNs/xQZRoddUwHIyYL2bUVYVzHZPJhPl8gXOOpmloXYfNLbEC72WHZIzGOZ/IiZg2vPK3Sta8Vd8+QwiKOw/u8rf/zt/l+o1bTCczXnjxa1y+eInzW+dZG404ODp6p5f9X9BQD5UVlrtIUnnEcqa9MFm6SXfCsoQufWaTnqAs5Wa/U8J5YJgWidDBSYSvnUpLgLqVG75bWqe9dEjevQB7F2RBmE/g3k0J2qtSFL8x0mSySvkjSzCpk1BzudteJi1bJQuMVgIU6k6s2DGBGcVqcVVIWejOXMpm/VS26CzMczhVUCfLr/MiGPapdUSzSC4xK6/ng4ATjfwfnYBSDYsgJQ6t03W28hx1k8p5WoBTVyUNR7onarsUhSW9h+fMOp/ncOlxYZHUEolCCoASa/Glx+GxPbkmy7IUegVamlbcPaUVgLYEMg+7ir4DQyznzDuYd0u24qd+Hv7Hx+GbX4NvvQpvXIdbt+D+PRHUVhU8+bS0XdgYPFTa+T5e/wxUCf9/NopSWnmUyTrvXMqaSXW7XiE6p/5AGB2Tid5rMJD5lxep3Oigz0qUvQxKXM635XEvd9JKr5BH9ALaz12EP/9vwONXJfPmvR+Au7fh5L7or4rdt33ajwy4CRG6GAlECqVTWQry1CYgoAlBo0LE64hzHUY7imyAKUqib1nMF4zHC165H3jtRHG7aXExsGd7PD9UvP/xnL3tbXr9XhIMR5SRJOJmXnF6fJ96PmY42mLt2i7DzTVxiASITkoGKLCjPqZXoGxGQLpc+6bF1S2+aaimY5SK5EVfLOYhkGcZWWkwuZadOIoQA13nqNuaqqvpQiAoQ29Q8uRjJYfzjsbBWq9leyuy1s8YDEYUZU9Y4wgmL7EptVRwkscT6ZcjlFE0VYMKDh8D2mZsb+6iMkU9n9Mu5mQ2RxUZ1ubk2YBZGBOipSiHFFkPpSIqemnKeVZusiL61ganJC/FLm2BSmPzjOA9wTlsnpPZjIODe0xPxkybhnq+wAePZpkUrYWNWxtxejqj6wKD1om5Q8tmeBIj86jQUbRXOtGb4V2bf5HxfM6rr73GZDrnhW+8wGg0ZDAYMRoOWNsYsbe7y/7RPW7evEmz3F2+g+G8x6JxLqRsLI/rpPFrXTUUWUEg0tYiLO7ajn5/wOn4RBi61tF1HT4EsixjsagAKIuSqp7RtI0E96FSttBSl6RWZViSXIFUYkSl55Wb0P79fSbjCU3nuHfvAXfu3uPyhQtUzQ+5sFgl1uZNQuLlzT+IDkMrYSFsJqCnm6eO27nc4Nf6cF7DVkyaCC1anHmEN1rpcLxYCoYVZ1H3gx5snZdMm+kxXD+UBpE+LeA2W2lopnMBN84BPu22M9FFFDkMN+S567n8jk4i49onYJMWf6VT4m4pXzqBrHkN12sYZLIa1DmcaNHGLCZJOCwvIT2yqtWuXJn02snq3UssgNJJG3QoJaXBQBZI10p4n2vFIq7XQXlhgbpKgJ9KzNNZuUk2tmeptzq9P10t17LtEltlBLC4TvoVba3L9RkMBNgRVkLrqKTz9MZQLOC5PSPwzubGEjAur9+ylPmO5hyciYcHAyk5jQbw3AeE9ZpPJQjydCpZL9vn4erVJLheztnvc5h0DWwSkxuzSrnulQJWUStdTZ6JsHt9MwmMM/kyRkD2zk4CiZV0Bc+LlYYssdGr6/cQKDw7hQT0ll3tCXDhvIRWZhYunoNLF+DeXRExfx/jkQA3Ssm88iQhcXJJSTlK9AExaAge7cFZR1QWlSzNMXjaas7hUcVr9xRfnngmSfy4Ywo+MDI8e9FxbrNPDI1kdaT2CyjJj2kWCzKTMTp3lXK0RtbvyefIe4m717IQmyJHF5IbE3ygayvaRU23qOiqBa5doLxoFtpuhs0sZb8vbQKsWG+DNoTOU80bFtWUqvU410rpwBYYW7K3N+TJ0xP2DxvKXmS4PqAcbjEOinEDTYj0rGW9DaxrRxkdozxiI9ispOz3IGoGaz2ZT5nBGE30XnRKOidaAE9I94+810ehsbagyDKibwiuk529tihjUNrggNZ7YatQqCwnKAXrW6KjcY6T12/RuI6tKxcZDbdYLFqGG+cYH06Yzyd45ySJWWuxPqMY9nscnUzIjCVPGpEuyiT1wCxlIMltP0qrmneHuAGgdYHxbIpzHUWRkRelpAMb0aO44KSz+nj+jruQA8LWpTuqczWdyylUj7puKHutlKiaDq0r0D2wMJmcEkJgNBT3m1YSPeC8x1qDMZbJdEJVVVhj6JwThiZRxCutTDzT3YSHGKgzBVGEtWGfq49fpWoaclsSgmcym3Lj9h06987B3b+woc7++E5wE2MCNjr1XEpW4tCtGJByANslXADWDWedj30rjR/vWThZSOnBGM7aL8SH8mN8Bw9uSrjeopIJbsyKsfA+JR8nnYrRIsTtl7KL7vfk/0uQko2SjmQh2hi3ZCCc0P/9QsL4Mrtyxrgk3D2Ywd1N2C1goWA8Fw2NipLmuwRMmRaQp4ykDisEZCwqUEHaIYAAmuU91hgIbRI1G/kwR5JeJoh2p+tEg2MzWSBDYnBCAlHGJIASZRGOEcbHq1LJE1fkd2/dEbA4yOH0AeysSZaPtXL8S+0NUVxqmyNhi5YakYexw5uAhOI7H/AO5l5EQMZoJOCi6QQ0d03KKgqgrMQOrA3fzIB8vy+6ZL1ALPi2gVgl8XACLUUGoSffd0gatDZSUszS/PVpDrtkHx+tyVxcvhfLTcObBNfLkty3n8dDgGe+gOvX5Xhc0rMNR3D58ur9eZvjkQA3EVL7BSlJWaXIE7DRiJbFo+SDFRQWaayZq4jKLG1bcTprufvA8PIsMAnCXmzrgg8NDe+90nJ+Z5NhuYbzgaapKZQWFiKI3qDolQzW1sh6JdrKmxG9lI6UjqgslxYOWm5wrmto5xWL8YRqNsbXDb6tUd5Jx/FeH6s1xXBI3itQmYi4xB3ZMhuPmUwnoDUxStqsRaG1wgeNsTlXL/doXQU9xdeOAzduHxEGO1x68j2cu3QF2y856GpunRxS799khxOe2hxwbjQgGEWZ91atT5QiBo8PHt9JzHXZG1HNxnRVTYyRspRMn8FwiC0kCTdmWQI1moBmPDvlaHJExDAcraNtTt0GGOyyc/7xlJ2iqOuG44Mjth+7wsbuHlVdkw9LOmNY1C1q2ewTJUyWgrzMODqZM7ACbiGeuS8j8nnrKUUHzJCO8e/2cCEyq2varoXFgrOWY1F+5nzAvxvIJo0Yxf7fNh02q1ELyeipFgvKvGCmLdZoilxAdZf6RJ2eHjObLVgsKqpFTUj5NT548jwjsxmdc2fsjNxfVKoOLJtmysV1/rudj+LC+fOcnJxybvcyG6MNPvD88ww3Bty9e5tf+uW/x8nJ6bt2Hf5Qx9lNdgn64Kz/yrLMoRNdvrxRx8RGZD0Y5XA+SPuBpGMiNDBzcDsXzUw9EUBSJG3Cw/2k6lqCyqp6BUKWrEtQsoAvO1kHL7bmfk90OcN10R8UKc23bZIoN4h2o6qTALeT88wzCb4brXGWgROSmDMkIOdauF2B7YmQbRO4tA2LI3j9VQnMm1fC+GzuwO5ViJtwMhdmyUdhdMLyksYktk7sQIgiPh6uJ3uvEs1M8LJwNq2Ari5Zi0MAAgw2RJhMECGra4XKXRzC/esrVqXMJQTu5i04fCAL5CwxTEVG6si8enxEAMVGX0ooS3bh2z8Gb9LbvAvA5tufSyMloSxpW5Yvp1gJj/W78bpx9bw2gZiulFJkjPLabcok8mGVUrzsE7W5JaLifgLVxq4AZ5sE4GfAhhWQCek8lnMNVq60h69njJJRtLkJB7fkvX7hBTidwcUr8K//WdjYeNvvwSMBbiDp7OIq2yZTCqtEZ+Cj5EdIIrYmRxPwoHNi0NRVzYNDx915jwM/lc7gaK7mGed6rZT1sgxtLWuDAZ3zNHWFMposLwSIZBaTCzshjgKhcrUBlZVoW6Qytce3Nc1sweJkTL2Y4du52JbzPkWeUfQH0uE715h+gUp1cB8V7bxmMpkwm07IMkuRlyhl0FoTQod3gVZ5bNQMh336mxX/+EbN5Q98iP/1//Iv8fyPf4K13R2yTHozxRBwTc3i5Jg7L73INz/zG9x96Qs8NVywPYTMSLMznUmtu55OCd5j84KmqmiajraZMxysCQugNHlRQtSYXk8s20rjXeD4ZJ8X33iJznVc2LtE7Rx+sMXg+Z+g6Q+xexeJSqGs4fyzT3HuvU9i84zh+jrGWHRe0BrLoq6lF5cS9iwvC6wyjIqSO02Lrxasx7j6rLACwEMFfRRjhMX5QQwfInXwZ8zGao6++2AqEkWzGjx1XVGUJc51eOepmgWDQY+mbTCVxvtACI4ItE3HYlEJC6kk40ZpaNqGthFw1rQNrXOSCM1yDZWu8eLce/P9++Ex6g8YjQbcuXub55/9MD/7yZ/j0uMX0Nrw4Y98iLzI+P/81b+aND0/hGNpEV5ehGgRIJNmlU4LPwFI7IMKsjjvWBhUYEac3cXbDqpcFqyuEyA0n6csmV5aNBppQdA5sXj7FFAX03N0rDpYgyweeSkOrM0NYV7ygSwQ7UJeZ5FKZW2Qvk1dCvdTUZpNrq0JsOmW4W1efq4zYQ+ikfOazeG4B4+X8PUX4K/9VfjsP4ODQ1nsAklkWspi995nRQD6no/CrC+7Dd+l/J9kKx4OZdFrG2GbikxYr9mEs2C9ppbXX1RJYxNkUd/ahWvvFW3TwW15nsUJvPDb8vsP7qSdgYdvvQYvvi7vwelYvte2ApR6vcTaJMambuTfdQ3FXkrV/S7A5owVXtbkfkBDK3mfv5cj610DVktQleZkXQvjZY1ch0Ul5aVeeg9UKtcVWQI16TiXwXx5AtkPBzAu7d+RlUh/qfE6I3K+Ddgs5sIWXroM3/oy/Nan4I078vtf/Ipo0P79vySv+zbGowFuIrg0u4yCXCky5dFEOox0C4+aQKTpIlaXaBVRNqPrao4nDUenBUdO0o0VsK4LNixoHcm0oSik6ZlCYa2lc06yb1yLyTNsr5Q+Thpx8BiDyYrVASqN9w7fdvjOEdqAsZbBaITWa5goDJA1BpMbdK9ElyUBybvx3tPMF8xnc7q2ZX20Tm/QS4nfIpb2TuNUh40WbzS5LXjicsEfe/9T/Pz/5n/Hkx/+I6i8v2LVI2Ckd1aeZ6xtbfLEBz/Endde56v/6Jc4vv5lLuaBns3JXE7b1ATX0ev3CVFRVzPyoqRX9tAEnA9YC1pLVkoMCtPvEyNM5lNeufk6d+5U7OxYKhT5Ux+h2tjjU//wV5gcn/B/+sgnCV1H8J6sLAEIIdBUNWVvKC0CtGYxm5NnOdpYiJFBf8igzCnKnK5t8W3NOAn7NXLPT2QtDjEOFCgW72ZN6jun5B+K3TlG6LpADBKW1TYN0vfJ43xHZguUthijhU2KwngRwFqL8x0qCtPoWoci4H1H1zmck4VaaS3T2gdcWEHC8D0YqMFgwHh8StN4Ll24wrWnH+OlF7/B7u45bLbLhz/yEc7/g3/Anbv3ftCX6N0fb0LNURZ42brIN1XSyOQKpimoz3XCoIxy2EiOo6X7IzQyMYOSG3KzWLEjLtlZy5Qp03bCrniXcFMUkOOatJgm0GWssC6ZkS/nhOUIE1ZCKSe6mqoWkPBwcN+gL9k1eSE74Xm1oiCVkn5BMQOVduvOwJ0Wvvka/A//b/jy7wqAenh4tRKdHp/AV74MTz4Bf+rfhMc+nDp+t1LyWC56i4W8Zm8o4KquAJ2C39J5ZLmAycVCzm04gitPwKUeHKby52tfhqP78Mf/lPRZ+spnknvHpMwV5Nz7pQT++QTihoMUcujkvBczEXjXrbBKRfkmje13Hz8ggPOwzfzdZIZ+39cjJW7nckqF9F4Ux13KIfJpPmS5vG9LxnE5j5fzJ0+bAZOlHmcJeKRstzNH3nIsGajvdp7zuTAzpYX7t+Hl6/De9wkL1x3Al74I9/80XL74tk73kQA3y125JgX3EbFK8m5C1Pho0u5dUTcah6NQBuc9k+kpBweGSZdTxwqIlBguZSU93WAKzd6l84yGG2JUiBp0JMtzdKdwvqOaTdBGk/cyVAxndkqx4wfQkZgW3ehFeZ+PemR9cVOoEFEhElwrycTWosoeUWsp7XQ+9USSTs4b6xuU/RxtjAAmH8HHZDsW1ir6nCx4bNGjLiNH9+9xta7J8/5D4qzlh06BzVAhYG3G7tXLfOLf/Uu8/Pnf4Y1P/S2uqoaec2hlWN/dJSpFVzWsb+8I+xMj9WKGayuyXkFsa9TaOsE5iFIiuXHnJq+8Pme60HRln90f+WO8sP86X/rFX2Syv+D8k4+T5Tmh87imJStLYoTj+/cpdMmTF9/HazdewLmOql5Q9kop4QZHbzhkbX1EfzDAtY5MQaUiBsm1aY0CJ0yOyN7i2UbgBw8/fvAjhHC2G2pb6SXW6/VxXctiMcdmhrquWRsNyayRTW+aA3UtDE2InqqqqOqayXSSHHKSoxRTaGJIbpClvf33K69ppdhYH3Fub5uPffhjfOCD76N1DV/5ypf4kQ98nI3tTYaDIU8+ce2HENyoh9apZTkirW4qrJgbIuRLd0/Sj4w2YS9A1ogGagmIXA2hgCbA3fswO01PHVZlJqIsBMM1WTyW7Qq8XyUUm1SWyvPURDJpgGaVPN6kXButElBqhaWoE+thrQAhaxIrEyRgbZ6aJC4t42a5qCbWyrSyEDWVNNa8cAG+VX4nuFk+3nUrHc7N2/DX/yp8/MfhZ38ByNNcDiKKjVFcN0eHK6dMfyghglUjZT4/TmWNVCK5eAWeGMIgyLl94R/DzuPwF/4inOvD6zfk3DMLvVzAjUISnUML974Jj71fWImyL+DPIHqm2UzyZeZzcamdlSTT8DE5rB6aL297PFxf+gPGt+fofDur8W6Mh19j6dpTyDyLUdjELBfRd+elVDadyePsQ8dRFgKWlRbmp+zJfM5zOddlA9GHG4meva76LsAmzafJBB4cwVe+AF/9hgj2P/Rh+NrvweGJ5O68/roIjN8GCHwkwA1AIKZeSRIToYnC2KAfKuVG2k7TKrG2+qZiMgmMFz2aoPCIZmdN52zbwFbfsbndJxrD9bt3WF9fY9AbkescqzS6yDBdTdM0VNMZoeukZUKWpSabDQoteoa6JYaANgZtM5QNaGswRQaJnVFNhs4NOi+ISuG7QOicuKmc0LC9fk/aO1jhJTRA9EQVV2p9IkEHdAqvstMjbn7ja1x7/wfZG20g2oAVz6eUOJeUtZgsw3QWk+U88bGPEzPLC3//r/H+smV7tEFELNjFoCBGRwiK4Fq6rqNtWobrO7TNAtnFBnzbcPPuTb7yrQfcPFZUxvDMT/8pXnj9q3zji79LnHqCh9PjI26//iIXn3ka2yuIIXB68IB/9It/nVu3bvDjP/fTjP/BEbcPD1jMFxhjcDGigibPCtb29sBoVJT2FFWQjBsKy0DDfNKgkYa+y3Luvzwj4lxgERoikV7Zp+s6lEptF+oWCpjPF+SZ7JhChMViQVGUoCKnpye0bUP0AWNybBbovOx6jZHO4JL8LRqn760bUtRNzY2bN3numWc5d2GP2WLKeDymGFqCd2iTc+HCBd5q9/VHZywBTVzRgWcw+aFZpZQ0xly6nIqeaGz61UqLQ5TFtNOwsHC0kB3uxUswHguDENpUfulEs1IUYnW1mZRHlmUkl4L7jBENybLvj+sknt55eQ4SO1Mkm3eXnj/Tstgbk4CCljLDvF6JVGFVBjtjKxQEnRpHImnDzz0PL3wFpqec2eSXWpWlc2nJ4GROjuH3Pi/lqD/7v4K6EIC37N81b6TEoRFQlmXiZBofJieMQSzeBVy4As+eh+3EaH36H8K1D8BHPw5rRh66tQXX3gMvvSzARmsJ7PuF/4X0Yfq1X4c/vQk7u+JKWna/1kGOdX9f3lNlVoAxRul47ZGk5u9raj0MUt7G7/1+C/YPhM1RyTFVJO3TQt6PGOU6lLnsKAf9lDeU9DP9fmIHEQfVMoF4Of+XYXveyzw8i1mIf7BuKC/FFfbyt+DuAwG/6+sw6+R5fQv37nFmaX+L45EANzH9qYhkWkpSSoEPWrRg6UEeRdVJLosLgfl8zmSsaV2ekkLERr5uLMPMMVyP9HqG/cNjrt+Ys7F1wkeef4ae7UkJRoPKcvJEH4fGEI3oEZRW+DYI69JJoq7sxDShky7eCoe24ppy8wW94ZBsbZcQFL5tiFFaOIRUHsh6BTbP0Lll6dJQJkMrTfAOFQLK6DMXUkw77Nw13Hjlm7z81S+wvneeYrSVmGmJ5j/ThiRHl81ytG3RxnL1/R9kNvnzvPrpX2LQa4nRkBVWdBjpvtXWLVpZ8nIAmaOeNjjXYkzO4WTK5194wDf3A4fe85Ef/zEmZsJrr3wTFzN6maJWjnY85e/8d/8lh3dvsnflGj3b4x/90v+X0blLvP9DP8I3X/gS33rlReZVzaKpJXiu84Aizwt2zp0H5dhY6zE+rJmGwEgrtvb2qOo5TBqWDbhLFAGY8Nas4N++OXrUxmpTJUAhKtF8tV3NbDFNbItGISAlz3Ocd8n+PWexqHBdQGlFUBFrDXULeVbQuQ6XhMUhSgdyaenw+18QazXKRObTlq5T+OC4f+c+d+8+4Atf+Of83Na/RlFq1tfX0fqHrFP4WU1XJb1N0g/o8JAmAM6Ym5iAQn8A6wFsu3rQsjTkLEwUVB62N+HxIRxvwgsvi/PDaLmJpR5fwih4KfPodBy5Sk6mxHpEncoDqWSATYmtqeQ0m8HkQIBWnqL5jV6VB6pGwEfrOHMV+G5V8tLp+ZcupOV8sKUEp33wY7B/X9xHD+ekLB8Xkti5a8HlAnK+/lUY/W346b8g+qPCC2DQOglJo/Tpik7cUp2V4EKbywI2GsHz5+FcKq19/vPS0+uZ90n5rIvyfqyN4D/+LwQI3XpDggX/wn8gOpwvfwGe/zA886zoo8rkwsrSebaNJBlHC5NaMoq0lvdg/0CCBdeXuTcs/+Ato5UfsETnHY/lsYXlgSawm5VvbldBAiltyjPqOvkM9HuQG84abDovO86uSfqdpXYtzeslY/PtoGQ5j1z6HIwK6e+lrfQHu3gBPvYxOP6nkrd0epq0Yn9gDfFsPBLgRmmFQZFrKFUkU9I+wEUlwXZpxrgYmTfQOYXWLVXtqOsSkH5IGZaRUqxpQ2Eb+v2cEAP39+c0jUaphkWzoN8b4IME52XakhcDnJOadXDgXQNRGjUG51AoTF6iYsDVjraZ46qK0HZEL+WTtYvnKXa3CRh8V0sbhghEj9IaazUmy4T5WVLjSktysUqpsUahznZZwuwYmzEqFbvdhOtf+QKXnnyKS0+/j6ZtOdq/x9HBfXr9IRcvX2U0XEdHMNqQZTld12F8xtMf/SN87uZr3L75BWkuHIwwVFrTNg3OR4y2eO1QQZPlAymh6cD9w2O+dljzunMMNje59pHnuHnjRS488WGMKeju3CJ88VsoFdl/6Rv8j//5X6boD/jQJ3+WytXsf/PrfOQnf4bN3XPcvvuA3/7sZ1jM5tTVAqVz0U4ZzaXzu+wf3OfcuV3GR2Oa6AkKdi6c596tm2lfHalT2TJH/cGl8jQeZWADq3voMhOp6GUM18TplmcarEOZQFFahoOhBPdNG1rXEoInyzKMUWQmY2N9nXv37rE2GFLVNTF4aufPxNDfS2ezHNZanGvZ2tzi3MVzvPLKi2RkfPKP/iTX37jB+MEpzh7T1PV3iK4f+bHM4gjIzTnq9FmMDwGftJgXSKqtziRMr6xZfTZTomzw0BWwaAVEnBtAESAWqSQyX5WSgoNmvmp6aRFbrkqvsdQ0tHWi/q00juz1UsZIutb3HsDBEbIAlYmpQZiIEJJ4uXsoJRbOhLrLoLpl+eWs30ByTdVROmt/6EfgtVfglW8IeNo9L1+LOdy5IaJexQrgZBmYDr7we/DYk3D1Y9I1XCdLdwiQ9xPQc+J81UHybqwR9mhnS8CGtbKYfeEb8Niz8MZXRJN06TL8yLNy/Z95Dv6r/0aO59O/LqWM970f/tlvSGuDC+fhJ35KNDe9fmLQUsnk3r4EKD7Yh+21xGYB9+7DlctpoizRzdsofi+D6h7FcSaaTvN8CVYXnVj4AwIenZW2G/VSEJ8AaJYLEO46mTu+E3bywgUB2mXJWbjk2Wb7LVwM5wW8nxzDnfvw1HtBtfBbn4Frj8G5Deg25TPwNm/kjwS4MUVBYRTWQaYcSgVCtLi0QzfpbxcDbRulZNg2tLWicZJLrYFCWQptGRlPVgayXDOZtYxPctBBLPQe6romz3PJxMoMJreYfIB3HaFuaeoZrusIdBhtsLYgNoHYtTSLGc18TmgcmbEUgyHrVy7Rv7CH0hm+q4jeQXBobVHWooyWUpZWKK1RUVgXYpRoDS8TTakMhUN14EJN3bV0weOCY0dpju6/yq///b9Ff/vT1G1L3dQ0dU1QcPHCZT780R/jscefwtocY3VapDx52ee9n/hpPvuN32XT1th8gM01vvM0bYu1hbDwVvq9ONeBtrgIx9OKW85TZ/D8c09RjkZ8+Md+nrXNLZTV3PriF7jz5ZcYWE/TRaqqJSw6fvPv/hKNUqzt7DGfTljb3uX5D36Ez/72b2B0xAeHQRONBF9cuniRo+MDlIbtcyPaexO0i2A0dSf8zDLrpga2FJRK/UDs4P8iRoiB0MnNoG4r8janXw4oyl4Kj4yUvZx+v6DX22R9Y4PFYkZdtTzYP8RmORtFj6OTAzrnmM7m4uwLgZA6ixuj35K7qdfrsVg09LOICw2f+tQ/4eRoynPveZbD8TH3D+7wpa99GZtZSZn+YRrL2H2L7N6jFlbgbAFLfyst4WIGoc3LCLZb/Ty6ZJ3VUGvR2wxz2GxFN9PaldW3beV5Oi9MSjtP7E0O5VCAAVkq9zRSl89SN/HBQNgO72Qhv3lHwE3oRK+ibcrGcVIq8iH1Zoqcxe0vd85LAXMIEFt5zQwpUWRFsm+nnJ3zT8Kf/Ytw+EcF3JQ9OZcI3LsNX/gcXH9VAJFLZSqbdDu//Zvwv/04uFKCDxeJgSoK0SdFUhfpxEotbeujUh7XAd98VQTUn/81ODmS0tqHPgIffg90Rt6bMod+Bv/GX5DzPTqA0Toc7cNXvyhurqBSDlGQa4iCu3el5UUAHszgwkiAnveJ4Unj24XnD3/vh3Gc4TUtuTUg2qe8FSatXiR2TolDaVFLUvLpqZSKyhzO7QiYbSrY3BXwM0xBiWf9zKLMw29vnPmmY0nfqxcwKMFNQefwc39MAOdL35IYgJ2L8MGPCFh/uJHpWxiPBLjJBgM29/aY3riPUREfNV1UtGmXqZSAxSZGglM0LhJcoG40bRCng1WRkdEMNPRtS9EDZRTj00DdDRgN5migbSvqPKMocop+kdLUHdZk2Dynq1tC5/BNLaGCVuFCS1ed0JzOCV1Aa0VRFKxf2GN06RLZ+hohBLxrCZ1Pad9GwLEx6KxImS4pIk1p2fREl0pDQg9G19LUHePpCQ9ODjmazplWHZUDoyNFv+CF197AjXbZ2j3PaG2D0foGg7zP0f4RX/nS79J1HdeuvQelxRVmrSMGy97lq6iLz/LSzS/wwXMKvSiJKIbrawK8lCa4jqqaYY1Ba4ULcDKrqELEGXjsiWu890MfYG3jPNbmuNByeucu42Doey99tjrZhLku0hLZPzjh4N591rZ2qZuKDz7/AbY3NoieFNYpacO7e+co8gzvPMNhn7ys8bOGg+MjmqY+Y+9BTBbHUTQ5b2Nf9UiPJYNrtGi86qrGqpxpmLC5sUNZ9FBotDLUdctkOmG+mONaL068uuGknnF8dEDTtrRd99AuUv4R3qJtezQYcDI5ZTgc4oNnPK64efsBTz/xDDfv3OKX/8E/4Kd+9Cc5XozR2vxw2cHnc7i5D4+dTxMwJObkoYVsCQhsYjesFjbGLJkQlTJoAJ9Djdyg1jVkc5gP5HnyntyUm1Zs2ktRq0/fK/K06Jfyoi7KDb63KZH7NjEtTQP3D+D2bekHpXXSriQNSvTyet5LeeCs5MBKM7PUvMgDhekoMxFJb+4khiOlFEcFi6vihJoeCBMyORVxcjOXjuUf+VEBZa+/RAprkl2/dnD7Ftz5Jjz2MXgQoVfLNZ6MZecfQwJ3QyldLR05w2UfI+D16/CVr8Hp/dS/KIcL54QJMiaV45D3IEtlRrMpjznel2v69ReknUWqSLEMldh/sEo2ns1FIzQsYWs75RLBmxiYR72u/XbH8qa57EXWKwXs6jU4PRLgQpB5VWYpqG8g5ShjUjr2UDRNedJQnV2esxp7eq0/AAzOFhIWOJ/JZ2O9D1fOwesvw6Ur8Gf+DPzuP4PemoB/3rod/JEAN6YoOfeRjxBmnyYeT3BR00VNyr8VayySg9O5yHgeWdNQVyZJiCOlBqs0A10zyFsGAyn5NLUhRo3VAR01p4sxi2aOdx0Xzl+G6GmqBm8DGqjGJxACeW9IcA3V6SmucbiZHEtvUNAb9RlePEf/3Da2PwREJxNTzLpOjgRtLFrrBGxWn48YU8lKaZSOxBBo24b9g0O+dfMeX711zOsnLUcNTF2gCZ4No/jw7oLDzQ7lc558+v387J/4szz+1LNYa7l76w2uv/ESN994mf5gyN7uBZTSaKMTi1Py3I/+GH/vt/8pT2/0yXs9in4PrSMqeAIB17XE4NFGBGZVU3M0XYi7TxsuPXaV4foas/kJed4nRMfuY5fJLuwyv3Pn7N7ZeHE1ocDVLa+98jKXrl3j1Rdf5GMf/3E216RppjGpB5VSjEYjyqKgahzGSOZQE2qOj4/o2vY7AIwD5v8S3XCUkgDHvMgoywH9fp9ev4/rHFU9x1gIwXPj5msURZ88K/E+cHp6ynw2Zzwdc//Bfdq2JRLP+kZBfPv3Za2oq4aN9Q2MMayvbRHCbW7euc18XjGbVrzyxhv8hV/4t/jy11/gtdff+AFckR/QaGr40pdg+EnYWkvgJrAqzzy0Q7cKBonx6InAXrQ6yAIdCmhymKVdaunPdHmoAP110XDYTCyuyohzyKUb/8amLALVXMDKxgYUBoZpNZ43MF1IGeX+odiYl4LiZYsCv/xK4XfLHcCZfsikxSw5t3QS7u5sw9ULcGUbtvJUgkv2XR/hoA8nmTipXv0G/Orfh1e+JazQlWvwxHvg2jOyKB3cW5XDXBB25vOfg5/843C6gFClFGaVND56VebwyTVWFNLOQqdjvXFDgNxgU6z12sKNO3DvAC5dWp3jcq2LSB7LM++BN16HZ5+Fz39WniPGh0p0MQUHNlL280kYrRO4ybPvPm/OFul3WVTz7aDgD4MZilHmSdsKc7KYiw0/szJfuyQEv/KEhDN2tcybzXXJLhqtwbkLK5fUWTlOfSco/AOPI8hnYnwqDODkGNRlKUH2S2Hzrj0Bv/g34PnnBXC/xfFIgBtlFGtPXiPMZzz4nd+hnbqzbC1hUyMuyt8+wslYStE+SO8pgFx7erqlNI5eEcmMoWs9XVuQKTlRoxRdU3Gv7midY3fnApkxZLmhWSzoFhPq2SlbFx6j6A9YnBzTqjmojMFOyWh7RD7oYUdD7KiPLUqwGd51oJEu2VajlRa3lbHCS2iEswmglE4y2Ej0kbZpuXP/Ab/7ygN+9/oRr5w2LEIkYlBKLPAtDWPnOewUypSc2zrHfHyKjoaNrV1e+ebXuHf7Fu957/Ncv/4iN6+/ytraJnlepm7PIhq7+vTTjOlxsGjZ6EVc05Alh4X3Da5piDHZh7XheHbAwdQhXaUUo9EQa3qUmSUvSrQ22G1Nf2ODw9fvMFSQR8WUSA9FF4W9uX/rNr/9md8kOrh49RKha5JWI0hIYAzkucUow/r6OlVdU5Q9XJxSzebUrfuuC3T7nd/6oR5aQ9t1HB0dUVU1i8WCrmtZzCuqRUNVO0LwFHlOfzAAPE3d0TQNXeffFQZLoWhSbshobYhShkW1oHOOyfQU7z2LRcOd/QM2Nrb4j//3/wn/6Ff/Mf/gn/7Ku/DqfwgjRHjtDRgM4cd/HEZLvQqcuYEevlFvIAF1Gs4s48FAyMFn0KRyRm6gaFaLVYziBCrXZCE/vL/Kpen3Rbw53IT7NwUgbG5BHEDs4LCB44k4nSZTAThNnZJgMwEpUaV03ZCAhQPCyv21BAlo+b9RwhSd24Onz8Pj27BZJMbKyy4dgCL1oIrgazh+IDtr5YURefZ5uHwFvvU1ePxZePwpmJykgMCQnEkRXn0FWEA/F3t5UaQEYi+tFork1lkKk4c78l4svZDTGfgqlfJS+OCRh9MTeOJSwhgPaWKW7tGrV+AnPinurxt3pNwWo1yHkBbt1snzjcdSaqt6oNakz9OyzxT8ITI2/wI2aSHKXNreEnDR7wsD0+9Lq46eFfDZtsJuKS1lqaJYNcX8buNtgbO46vY9mcl70utLqWttI7UqKeHcrrzv/6//Fv7kn3jLz/5IgBtQ9HfPo98L9ckJh1/9JrGOxJRnAopASIssjCea7X7EmIjtIpl29ExDYRzWBrJCaM7gNYaIVQqjFEZHMmuZaUfrHa33ZHmOJScYR+0Vg/Vd8l6P4D3NeExvfUQ5GFD2B2il0blFDQp0XiT7m+yQY6LmjRaxLmf6mlSMSp9D6cStcF3H/uEhn/vGfX7z1QmvTWe00VHmJVcsdG1NsB3lnmH/gaavS2axQZ9OOOrfpqpb7ty/yxPTMd/4+rd4cO8mLnSMtjbYf3CPyWTM9nYOSmzDhMhgbZ2N3fPcGh/yxFYg0xZlDW3T4l2HUhlGR1zb0HY194+OOakiFiWTW0N/OGJ7b0AIwg6M1td47wc+zC9/4eugFHs9w7WNHnsbPfLcEk3k6N5LfP14ys/+yT9Onpc0qY9WiAGdIuGV91jfsb4+5ObNm5KsC7jWEd/FdgeP6pCYg0jbBRaLjiM1xxgtphYX3yQEXlQNi6r5gRyHOLYCvSIXJq2ec3JyDIiyrdcrCAHuH9zldz73u/wH/+G/z4994hM/POAmImWWF5G49w89B8US3SwfoFf/HwWYK2EdMiVCWF+AT8LLVgnYMOL8OxPsBiWlmmBXcfVtI/S/T3kz40PZMRsjAGIyE3HmYiE3+tYJe9M2K72IYqVlCEux7lJfE1ePiazcTVkG29vwvvPw9LpY0ZWVElYXRVPkM9j3cC6Cn4MqpN3D4rIsfucvSqbJ88/ChcdEAH10AucvybEfpZ5PCgFM04m4rdZ34DiJiDu3ci/FTq5RXogoemsbeunAlwzUbAr7SZCtNOhT+OqX4aPPy2tVHsYVnFbJxq1h72nYGsE//FUBRTYX9kqnOnhMTiyTSbz/B66uehedWZh5M8A5mxcP/+BdGt/+9D/wkebHMhyynwmoXpZZrXqzELhXyNd3PM27cB1ClDm67KHW68tnEgQoV638fOcC/PjH4b//H+Czn33LT/+IgBtQRlOe32X3wx8lto67X3sZFSX7RiF9p0IUwNO2hmphsSGQm4aMjtwEityT5wGbC72sgsfETIANCkMkMwUbZcTrlDjsOmYnx0wO7zPc2GawtYn3jum9fSBj8/zF5Ph0eDoyYzHakNLvktW7gwjaWrQ2yTauhaUJS0gWichrTiYzvv76EZ9+OfCtUwi25Omnr7C3tU1RrlEf7RMmtzhtT3nyJwpC2GJ8b5ubb7zIneNjZnf2+VN/8U9wfHzCb/2Tv8tkPMfmJYcP7nFwfIDRmul0yubWDj4EXNfhfYcPnuH6Gndv3JQEXOfp2hlKW6zNpJShLFHVNM2Cg5OKupPu7EopDvZvcnhwhwuXnkQphXMdwUeeeO+zkOc8MQp88vnL7G6tE6JnOp3w2sEJrxy2/Hv/1/+Ew+NjmrqjP9rAO0eWFWdaR6M1ugsYDVW14PC0ZhQjyqlH1oDwAx0RvAs/sBYTv9+w1jAcljzz2BNcOH+Ok9NTNtaH3L13gIqZzP0osQ23bt/i7p0HbGyu/yEf5TscPoiG5ctfkJ36B55h1WuKlQAXBbmHfrJT+wLIEqgx0GphbkB2uapLC3wCGb6BOrET1siivrEpTp3TIzg+FuBzfle0KvfupHKYSa/jSKLA5YdEnkORgFP6GYnB0Xp1DkR57tEAntiB92hhoXwDr96B40Oox7C1B2tXoNiAzzRgjuH8ITzxrOTJXD4Hv/iPpf3DH//zsD6QMsXeeWmREIK0eDg+lNfPMgEO2ggzcu0q3EgumrVREj6nUlTsIJbiotrspeaM6RT2rsLuZbjzKmeR/0bDi98SNmGq4YU7cHwq4GU0ErfVbg7/9X8ri2SZSVaPNanfVro0IQizE6MsqBvlSmP1+44f5F1I/WCf/tte6jteTMGb0oT/sIbzkgB+4w1xqm1sSBuGCxFJzvar471yWebi0fgtP/1bAjdKqevAFJF6uRjjR5VSW8DfBB4HrgO/EGM8SY//PwN/KT3+/xBj/Cff6/ljjLjQkQ9Kzr3nfdhoOD08wN06wqqktSGedQ3XKOo6Y6hqkjIKYwJ5Ll86C8TQEX2BVhGDl10CCoWnn5V0GqL3jI8Omdy7S/ABtaloFwuxcjc1WxcuEYJH2YIsN+giJ3hHjIHoAxHJp4k+oI3FWHvGNIm+L9XpYyAETV0teOPWfT77WuSrBzn3Zje5cPk8/9Ff+a+4+tQ1vvDrn+VbL77AN04PuLdoORrXfOFvTrD6gCJGtoYlg96Qg8mCo/Ep+XCNZ679KDvb8PqNl7h/9xVeee0VHnvqGR6/9h5ikIydznW4tsW7FlvkTKogeTg2TwL0KMxYJ2WPEAKzxZyTmaeNCgMYAsfX77N/94D+YIsQQuru7VnfXuO5Z97D5vgVRv2CdjHj4HCfW4cLvjRX/PxzV9geZNy9N+cbX3mdH/3JH6OpF9gsR0WF0QbvI/N6htaKtg2SHYSmjH94n/t/NcCHwMl4wvHRhPMXz5H3e5zbvsr9rTEmWZFjiDz+2FUIDZPJmF4/f9de/wd9rxGVfyaMyEvfkHLLzq5oTyIrUPPwlrrsgCT6RSdwk746Lc+nJT6Cs+abAEaAQEhak61tuHhRmIOTKCUAmyzj927LY1wjDEed8kXUUl8TzpLTJVvHrY4P5Gckt4oOYp29fB6eUrDbwvAK3D2A/8d/BK+8Bj/7CXjP+4VZ6WWwXsK/vQZhB9R7YVZLs8vRQJiZjQ24/ntwFOGxZ+DSM/DE0/Day/DGy0nknABcnotguWmhZ1J7iXZVMkMLS7LcJA76MDKr66Y0PH4BLu3A7EiYhOGaPP/RBF5+CdafFjdPfwA752CnD8MI37wD0xbO9+FDT8A/+x25vl0rzx+8sGa9kcyY/KHr+6Ybzb+66/zAh9bCDu6sSXjfYgFHt+B4fZXarRXcuCVM4to6zN66GOHtMDc/HWM8fOj/fxn4VIzx/6mU+svp//+pUuo54N8G3gdcBH5dKfVMjPF7bEIjKE2vXKPfG9DWFdsfeB/t7PfoTlq6GPFxWaYSd03XFviyo7SBYRYZ9CJ5HjBZPIszyGzAGk/VCUjsukheglKRfjnCo5idHOObjsH6iLIc0s1nNCenDLbWUEtboHfofh90wOQ9ole4tsIWEl+tjUUbyaqR7JrVqQYf8K7j9GTCZ79xly8e7vH6eM60e4Vn3vscP/8nf4Htc5dQheJgfsCnf/vXeO3Gaxw3NYukMdJENoymDQvWRgXReX7705/iT/65f4enPvhB8szwld/7FF/8vc9z49YtIorwR+VGEWOQRopNQ3Ad9aISe3BwLIWUwYmuJjhPCBEXA9P5nMOpYhE9VYTzo00GZsDprRM+e+/XmM8nVIu5CKEf7LP3+OPUX77OyekRdTXj/kHHl+bwyfdc5mOXt3hw/yZr25scH5zwe5/9HB/5+B/BZgUUkWgzfHAspgv6mwOslU7ppRJDxL9kccSP9DDakNmMo/EJ9x484Ec//nGuXHmMyk15cG+fPMvxIZAZy6g/IHSBtnN/8BO/vfEDvNcoYTnqiSQIlz342jdg9EdgI38za7OkEYoGqkyEwJ0SDUmb/r2sYjkN3qzs4xnioooK6pk8z9Z2SuadyfcGQ2FEjqeiLQEBNIuFiJLbSqzbeU+AglKp908qfS1bxSzHktnZGMH7LsHuvrhP8mfg5W/CP/xFuHdLyjnlFvzEz8NjT4nu5GGtkQ+g+jBLjMtP/yz8vb8BX/mKlMo+9jPwsR+VVFkV4TP/OF1anTqWp2C+Xk8WMJ0s99IQTV7DmpT/o+U6DCNn4ufpCbgZXN6AvZ8TYNMfiH7m/B68cR0+cg3Wt8WivJvBEHjpDtw+hAtXhdHZ3YZP/Dh87vekBNeo1DrCSDPSk3lqRRBXhNfbcxv/q/FOxjKBe30Tzp+Dz30Obl0HM4BL51ZtPvwyc0ennlZvbbyTstSfBT6Z/v0/AZ8G/tP0/b8RY2yAN5RSrwJ/BPjc93qyouiRFwVRacywZOvpZ3HTBXf/+Zfp5h6lojg2SfqZoNHBYjKxWMrmKErqsDV4F4gmoE1IrjdF0zryYMjyIZktCM0Cv6jQKPIyJwYHITLa3qa/sU7MNLbfAy2NDJXO0CrDlAbXSLlHmwxlNFGpZLVN5bMoTEi1mHPz7j7/5IV9Xu6e4GB6gC1bPvKBT/DkM+9Ha82nfvWX+bVf+Tt848YrPJjPqGM4azmhUWgMXSiYu4yshTKPnBwe8sZLX+dXfvF/4s6N6/zOZz/NweEB6JamqhkMBoCicx3NoqauFrhmzvHhETtWo1JystLpgx2k4WhUER8CxxPHvDFoNH0VGUxO+Npv/CoqGv7OZz/FwXSMQjPIMobDHs8+8Ry7557htdtfIdeBb7Sa913Z4Ucf3yVqCE1NMdzho5/4UV75+ov8+j/8J/zkz/wcjz3+OD4Bwtl0zt6FbTJrCYjWp4diT8Nt/4PrAv6vxmqEEMgzS1Hm7O8fcjo+YTRcJzeGH/nQh5hXc37tNz7DyeSEF197iT8RI1U1/UEf1rt4r4kizl02mpxV4gIa9eFjH4ZBSmxV6bFRNGFoJ2F9yXSDVwK6nZebrk9fIItlbkXn0c5EmJv3ZbEnClDRVhb342NxSDgvzS1DlMU3dFK2qX3KvcnEWeT//+2daYxk13Xff+dttXd1V2/Ts/Zs5HARd4mSSFGSKWgjLcWygwiIAn0QoCDIh8QJEMgxYNgBnA2Ira8RYgMGItkRHEtiFFoSJS+iKZEUh5whZ8gZzb729F7Vtb56y82Hc3umRXHIoTjD6p68P1Co17er6v3fq1vnnXfuOf+TKifX5gXZGyp8TyNBUxNw1yT4J6EyDmEO9j8DR1/RCMonHoNf/02tdCpV9L2y5tyQgNMHX1t+0BeNbO27E37rn8GOaXj4ozA+oUnVxYJeeDC6HFUsaKQkV1LnIkqvKCenciUnB7jcMbriaaUZqTpBQ8Pwa5/SqNoHH9VlL4xGq1pdOHkYZo/AtnvVCQxSOLcIp+b0+8nnobUAzzyrOUKPfwJ+9EM4c9ou33kwVIaLCzYCtsaRTbnSe2sja9psBDjulSjlxCgMjUC7oXP8wAGdRx/9sM6HPbfqXC1Urvnjr9W5McAPRMQA/90Y8zVg0hgzA2CMmRGRCfvaLcCza9573o5dFSIOfpDDtT0ujCsUJ0ap7tvL8ux5Wkcv4MSCL/qD9kU7h3tJjtSPCHIp1YpL4HkkaZ9+akiN4JPiBTFOOyZJhX4XesUYL2fwAo+w3SLpJBSKAYXyEPlCEbc6hFfMIZ4HqXbcxuacGKOl1cbEiOPQ73bBRPj5HEYMrngYhCSJ6Xc7LC0s8sKJC3z/ZI9O/ja60SLjUyPs3nObllS3Grxy4Bw//OGTnK0v0kxj69Toj83FIS8FijJEyatRyo1QDnIkziK53AJ+0eG73/km5aEqsYkpFn36fcP0zr2MT04CQr8f0o+6hJ0V2ssLzM7Mcst4Dj+nlVTGGNIkQYzBJAmGiG6vxcx8TDNO8R3D3WWfW8ccTqc+knPZM30L3qVTjIwMkc95CIZcyeHUfAN3FpyKh+sKD0wU8cUlxSHnOKSBh+/7PPzxjzBxaJKo2yNOY0wMUdRnpd5ga+AzPlplYb55+TpSBEZEWLiJSr/XK5IkodfvEYYRl+ZmuXjxLDu236IJz0mfxCTWF07xPA9jYk6fvXA9KdxQW4MxmmgarTauBOYW4cjPYXIr3LpFcy+Mvb0w9j1uCLGvna+bVrTOCWyyqw3f9D0oearBUkCjPaFosmupDEVXkyRbDW1W2FjRNglRrJ8Tx1zuNSO2tFqsqF6hAOKrCKERMFZ40PHUoRgdg91bYHcBeq+CPwozdTj+qu6nXIW7t8LHHoORUStsZ/dlBN1xF8wKxEsQLmuSZzoK/XFoJfAbn1etGsdXZdvAgdPHtJ3BauWLX4DSEAyPwuZNMB9ecSRFNNK0+owP+QqMe+ogpgLtPsxbZ7KfwpmjMLULllegF+l5biUwNgyTQNOes9nOlfyjNNUIUxTB9/8W7rwEJSt46KHLZsNDet4XGzA+9MtzJHNsbjxcR5PZc76qX2/ZDmd/biN6wZVInuvY35urMgTXiGt1bh4yxly0RuUpETnyJq/ZiCzsAAAXBklEQVR9o1nxS1clEfky8GWA8dGxy2XLcRzZPBePoDZC9dZb6TaapDMtkkQTjF3RpRrHGJw4wM11KZVcHGPohir+J/2U1HUoFlI6zYgoFe0wHickSax5O8tNXITq5CixuJyZnWfTlnEKSQ4T9u1NUYwXeDiui3iqHBx1ItK+QVxdJ456HcQYEscj6kW0Ww2OnbvIj44t8tOFhJHxB0A6vP/hh9m+6zaazWX6UYeZ8yd5dv+znFyao2/W9EkSNTgePjkp41HCGIdmd5l2mFLMVZgavp009mm12hSHilTKeSqlIps3T/OpX/8clfIQ3W6bsN0mancxYcjC2fM0lhrsvnUaWe10jMF1bWWZ49Lvd2jWO5xYThgpCZ/dO0Ipn5A4hp4ZY2iiyuawxuzccdrLi8w0WvTDiIPpUaquS85xGYmFDwjUcgUCx6WZpriui+e5uJ62hpjes4coiUmiiDROiaKYleUGmJTq8JDqa8VG5TcQVFHBDKJo8v8r7JreRmwi5udXaMYdLl2cZeuWaRyr1SSS4jpCEsdEttv98z977npSuKG2ZnuxeKVs2bOJr3GsyxhHj0K1ApvLXG6maOxuHFHNl7AA7UQvfjl7EQwc2+nbgYqqoSM2YrFaUVmrqNMzt6jh+MlxuDCvuTqlwEZPPb0oJ4kKOTl5rWYJxOq0iN7Nimhibt5XR2L7Ftg7CmMuzO/X6pdnnoETr6pIn1+ALdNw/wdUmfcXLtyrUYsYTAtoK/fCiEaMwibUD4MfqdDfSkfzcdpdmDkDT/yVVkatqimXCurkbNuqOkJHz1g9m+SKM+na8u+gCMMFqLnQMXBsGbqrEZ55uFQHv6wVUMM1TUjO++Dcqp+XJuqIRqgWTmr7WCWJ7Vlkc32OH9Ooku+rE+V5uhwoDiw3lZO3JsfqqlMrw3WDMXDmPOCpc+kVYPMkXDit0UtBo3KpTYxf7Xb/3geveRfX5NwYYy7a5zkR+RYa+p0VkSl7JzUFzNmXnwe2rXn7VuDiG3zm14CvAdyya7dxXIc4jemHXcJeh063SURKcfMkk3ffiYkPYubaiFmtVjMq5RB5zC15+G6PWsnD8QTHGIi08WSu5JIvRsStgH7kkjcJsUlJOl1MGDG6bZzIdzh4eIaTMyGPPBgxOTaJawzggmsQ0WQzcV3yhQJJT8sK84US4gjtRoeovUIcG+bmF3j+7DI/ONdhJnIYH72DYing0cc+w+7b7qNRX2CltcA//PAJXj13gqXUavrAGnkowRWPgDIFbwyTpsTG4DtF8kERx3FYuNSlOJywbcc01eFhxm67h9279/Hehx5iy9btRFGfbqdNr9Mi7rZI+j0OvfQiI74wPVLRqhe09Bdjo1FG7xZNGrMl7/Ke3RX2TI/RT1JavR61oMahH3+XI2cXOLvQoVAKqFSH2Ll7kqXFJeZPzZLEhj2JjzuSJ5crYMQlCrsEQQ6Ty6mwoAiO7yJJSpT0MDj02w1od4g7IZVyEc91qUcJeQwVuzRfRmgmmXtzo+B7ws4dw+TLNWZm5gnDmIuz80RRqGX74hD4AcPVKgZDHIU023Ve2L//unG40bbmgVrNaAM+V3NZ8kUoqBAnF2fh4CHw7oaJ0prVCptb48dQiyHJQztWRWGBy6Jc7QTaHlT64Cd65+lYBdicD2fnNRpx+xRszsFzPizMWmcjgVjsvqwz0+tC3ibadtu6n2pRHRpPYGwMdozAtqJWGi0e1h5XTz4Bh/fD8BiUavDoZ2D7Ho1c/NI129goUBNiW/Ekjgrv9dsaBdlUgLqrwnr1ZThyEE4chWf+Ac6dUR2fYslK9Jf1bvy+e9VBW25aZVk0V0hSe0duE3nF16W3E004vahLQvk89Jfgw4/D9lEYK+lx1Ztw8pJqs+yc1HPgRlDvqaquSVRbqG9Li1dLyqNUHSo3D6QaxSoWVM+l3V7TdkFW61P0vKymM2VRnOsLY/S3c2ZZG7NOjUPO03wqP2fnn9Ek8EYDEB0vVOH++695N2/p3IhICXCMMU27/XHgPwBPAF8E/rN9/o59yxPAN0Tkj9Akv73A82+xEy237id02i3a7SadVpM4DgkqZXJ79uIakOdeorvc16itnYWpcWl3ysw1mhTzKS6QGBfHiXQ53E/Jlw3tTqI9v3ogQw6+germCUzB4/S5eZ47mTA9YRAXFurzSJLQ60fUm10WVyLqLYNJHW7dUeT2vdsp5ItE/S5ht8PS7CUWFxdYbEQ8dS7ixWZE4jpMTtzF0NAwn//SF3j8n3yO8ycX+NnTp/j+d77OazNnaJn0sqDoZedGHDx8ilQZ8qYo57djSPG9HEOFYSrlEr7n0uutEK+0Gd4+zu5tu/joYx9kz77d+EFA2OvSajZZWZonXFkh7fVYnpvhxf2H+OSeCaqlPK54JElsBcESTBqTJH1czwUS7p322L59BOM6hFHMcrtONHuJZDah1zOUKzk2bR0lyBdwPO2+PjxUoBjFRK5H6glhEuGYCN/zcAslIsfV0vg00UahqPFJ05i03WQk6tOrNyiXiziBR9yLqSP4qH6ULwIhmYNzAxB4Abt2TjA3f4F9Y2Ns3zrOqdOXaDRWOPLaq8RJxEi1hriCI1AsFBitjfDq0Vc4febsdeHwrtia1TvzwPbEKVX04edUOO74MXUAHrwXRoIrSbY4mgNSbGl0p7eaX5OqqJ+LJhi3XSglmlCcR5ewHNFKpW4EW8dhlwsLNooxPK4R1MDTvJ+KD2XRi/GZDhw7qyqyQUGXpiandAmq6sNWH4Z8jRrNvayJuH/6Dfjzv9Ty74en4bNfgM3Tr8utWT0VKRr2WIH4IvTOAq4qDPfq0LQJt/khGCrBuXk4dxKe/Am8dkKdiHxBy7BrY5obU8jpEsP9d8HxeRUiNLHtRG6Thh1fq6li6wCeieHssjoZXgClYZjcBJMu5EWrn84v6nmIRROim12NwCSJXihdXx2lOLaOYGKTmVW6ABy73OHZ7zuA4arK/4exqhWvzo0++p4cNv+GNRVw68TRWbtEv6GcL6O5Y6fmYHwLzC/A+TnYOaW/q9tu1++ysWQT50X7Wy0ta3Xf9I5r3tO1RG4mgW/Z7r8e8A1jzPdE5GfAN0XkS8BZ4B8DGGMOi8g3gVdR3/1fvnn1gh5vmiSEvQ7tdp1uu0kYhTgYXM+jNFkj5xdJwz4XnjuA6WnxcmKE0Li0E6FVzzNU7DA+rEtPKvuQ0usLjm/wczFx36W94lEeFiqbx3Al5dzFc7x6qkcjdhgdFmYX61y41GWuaZjppDT7KR4eo4HH7ppDznNpdzokcUrY77E0N0uj0WC5HfH9C4ZXOgmO5zJeu5tKdZKPPf4on/qt3ySfzxHWL/C//uSPOXzxNE3Mlai3hSMOPnlK1Ci745Tymwj8PL4fUHCL5PN5PKdALl9gpDaBn3OJ6w4Hnp5n7syT/Ivf+6dUR4ZYWJhncXaW1tIivcYycafDT/7+aYZNxCP7tpEvlFSmLBVMHGGM4DoBcZLg+T7DtTEKU3li+kRxQhAEJEbYXC7jF8osJwGtbpugUCRONWkaMZQ2aTfxC72QsTyEJqHsBjg5n9QLSKMY1+b5YMxlFec06dNbrjMqUFhawtm1lUolx9xKT5frcuD5ejEYdsExQiPVzCTXTrIMvzoE4d733MXtd03z05/8PUdePUR1qMxIxcfzAmbnLuE4Dps37UAExsdq7Ny2h06rwY+ffpqwd920om+8rQHbH6eg0v6lsgrJYXNeZpcg6mhV04P3qIOyWt4tiVYvDfegU4R6alsWYBNbRR2c0FN9nKEY6gbqC5ooO7UNduXBT3V8dFijIhWBoqPLW8S6NLVs9MJdLNoqkTxMTGo5bNmHzaLJz3EKyy9DYxae/Bv45l9CrwdDU/Cl34YtO7lSCbUWKVrOtQTJAvRmtGw96kPS0c9Iexo9WppTZeVqCh8ag+lPwx98XfNgRsfUEamNadVLoQgf/pA6L68dVUcD1LHxfFuO3dfvIIpUH2emBwRWj8aWbLdaWs3m9nXJq9tRB6lY0gveTFsjP4WcHoa4kPS1lUIUaoL1ap6PiDqASay8RobV8NZqcPIctEIthRdRxyayUZsEbBXLGkOd5eO8IxgDr7wMB0/CBz4Ct9+p1YMrkS4hTmzS7232rE7RhSU4fxxKVfjQI3qXe414S+fGGHMSuPsNxheBR6/ynj8E/vCaWYgmlHa6LTrtFcIwBJPiuA6O5+Ll8jijHrVbbiNutlk+fAKiBINLbBx6JqXT9zi3HFAdiokRXEfwUwgChzhJyRVSTOIQRy5hJ0F8h4XFBeYWWxxf8eikCc+djqmHhvkwQYBtBY+7RnPsGi+wfbLKWK1KvlRgpb3C3KUztNsdZme7LHeFZxrwSjfBdYWhob2USpPs3bedhz/xGP0w5cJrB/iP//63efHsUVbML+aO6H2Fax2bEYpOjVwwiuAjuOTcAoVCiWKpQi6fI8jlcX2XOAqZnTnO3NxBThzr8f5P72Pbrq00l5fpNhqEKw2SXpujh1/m+Z/u55/ft42RQh4Tx8RGvWJxXUgNcdglSRKiJCJ1wLi+Xd7TRqHLK32K5WE65SK0IvxcDsdxcYwt7zSwUG9Sr7fApCS+w3RhlvftzVMaHiUWwZjE3kAa0iRGUoOLB57BDdvcvlXwZJGL/l6mahUqwRhzS/OUopYWWNhlgooDXauZEYjqIPWuebJleD3KpSLve/Ae/LxQHR7j0swFjAnxAxffCzBpqpE2UQ2kXtil0aoTRx2Onzhx3Xi8K7YGbMftii7v5PI2DJ5qJCEMYXFJuxJXSnDHbrtkkdglFQeCWLt/r1jzmdgLYN/m2XQdjbz4iTogUapl4KNlqNjEyB2eKiMHNmmyG6vK73wH5hqa6NruKsdN2zWfZbKg3cmHsfoxBprHoDUDR8/D9/6Pfua+u+A/fRV27LvKhTgFYx2bdAmiBTSCk2jLg24bOk1Ndg57Wqbu5bRT+MTdcEsR/u8ROHFexfKqVRu1KWl7hg8+AC+dh25PbYPYpOvERrFyBdv80tcL2Gp/Kd9+D5UA2nWNqpR9u8SU2O8p1vNVrcBIWceiFLqb4FgPGos2Idi9IiHhWkVoYo385EpwwQBj0D8Gi03oL6qD5pd/MUdA1TK4nFy+tiXDIJ2ct9vmQN90I5hcOweD9hh79oAuRTYWYGoLVHPqPMdWkTgxerPgWKe+VNWcnN173tYe14dCsTH0w5BOc4VOt60aLCZF/ALiOMRpRCopxalJNt/7PqQf0jxyijB16aaGfpqSGMNsM0+t0cbPQyEGfEMqBtcLCHJ9kiiBFNorCcfP/JxeN2RmQXit32UpjfGWtQpri+fx4CaPe3bVGBuuUi6WCXI+gkMYdVlenKG+uES3DafrDn/diFlIEnxHMG6V6sgu+ukse+74HCuNNjO9E/zx7/9bnj7yIvVU20hcWdDXUu+8VKg4kxT9UQp+jXxuiLxXIB8U8HyXcrlKsVxW0T3H0Ok0WZw7x/nZF2j3TjMxNszhV15kbuEsvgE3SXDSiNnzp/n2t7/HI5uK3DFexsQRiSPqPDoqpNXrdUjiPn6Qox/1cXAo+AGtXp+o36cXdrkUFeiUN7PYbrKy3CZXLmDSPmISjcD4HsO1MovLLbqdlMgYfnp6iakxj7gbsiVOIA+eq721BNuewo1xHJeSE1KZqNBL2tSTPpPjNRrLl3CSmCi20WzsDV8CBUdop5qEnRMNHfc2WLqx57vE0VsHGm4kHBH27tjK6GiNZrvBUHmIeW+ebquJ7weUy2XNr4kjnXvG0Om2eeXwYR587wNMTIxy7vylgR7D20Yup83/CiWbh+JA1L1SJmwcuDQLLz2vUZ19O7Wse1WXRQQqXaiWNWrgYTVvRA10aDt2O6g43Y5boBDAuNELu+PBCFzupn0phhNLUF/R5phhH9WEycPoJm2dUAKGU6jaVg6pgXQFlk6AuwkOfVuXjnbvgt//b3Db/Vax+IqdYbXU2zQhnYNoUR/hCsRd2yQxgdaKtj5I0WXrYgUmtsLkA5DfCQsNeM99MLbdVrNYR2XLDviNT2rl0lzTtlmwS0KpVVTOF3XpqR+qk0mq0Zp8oFVMuQIEXZi9qMtHI0VNYF6tnklTrXJabkKtrBEvEZgegYVIIzm+azu1p1xuCZ6m2vYiTSDNwWxT9VS8ABYWoTalTpCnpwjss4stz7fRr/Xg2LxdGPR79d3B8l5NIl5aguKQzrN4HMoVnQOtFppf419xJIsluPMOeP4FTcbftumadydmHZTXisg80AYW3uq16xRjZNwHgYz7YPBG3HcYY8YHQebtQESawNFB8/gVcbPNmY2CjPtgcDXu12Rr1oVzAyAiLxhjHhg0j18FGffBIOM+GGTcB4OM+2CQcR8M3in3TGw6Q4YMGTJkyHBTIXNuMmTIkCFDhgw3FdaTc/O1QRN4B8i4DwYZ98Eg4z4YZNwHg4z7YPCOuK+bnJsMGTJkyJAhQ4brgfUUucmQIUOGDBkyZHjHGLhzIyKfFJGjInJcRL4yaD6vh4j8qYjMicihNWM1EXlKRI7Z55E1//sdeyxHReQTg2F9mcs2EflbEXlNRA6LyL+y4+uev4jkReR5ETlouf/BRuFuubgi8pKIfNf+vSF4Wz6nReQVETkgIi/YsQ3D/2rIbM2NQWZnBouNamtuuJ0xxgzsgUoknQB2AQFwELh9kJzegOMjwH3AoTVj/xX4it3+CvBf7Pbt9hhywE57bO4AuU8B99ntCvBzy3Hd80cls8p22weeA96/EbhbPv8G+Abw3Y00Zyyn08DY68Y2DP+rHFNma24c78zODHbebEhbc6PtzKAjN+8DjhtjThpj+sBfAJ8dMKdfgDHmx8DS64Y/C/yZ3f4z4B+tGf8LY0xojDkFHEePcSAwxswYY160203gNWALG4C/UbTsn759GDYAdxHZCjwG/I81w+ue91tgo/PPbM0NQmZnBjffb0Jbc924D9q52QKcW/P3eTu23jFpjJkB/WEDE3Z83R6PiEwD96J3JhuCvw23HgDmgKeMMRuF+1eBf8eV7jawMXivwgA/EJH9IvJlO7aR+L8RNgrP12NDnffMzrzr+Cob19bcUDsz6N5Sb9ToYiOXb63L4xGRMvC/gX9tjFmRq/cXWVf8jXZ4vkdEhtFu0Xe+ycvXBXcReRyYM8bsF5GPXMtb3mBs0HPmIWPMRRGZAJ4SkSNv8tr1yP+NsFF4XivW3fFkdubdxU1ga26onRl05OY8sG3N31uBiwPi8nYwKyJTAPZ5zo6vu+MRER81OF83xvyVHd4w/AGMMXXg74BPsv65PwR8RkROo0sfvyYi/5P1z/syjDEX7fMc8C00/Lth+F8FG4Xn67EhzntmZwaCDW1rbrSdGbRz8zNgr4jsFJEA+DzwxIA5XQueAL5ot78IfGfN+OdFJCciO4G9wPMD4AeA6K3TnwCvGWP+aM2/1j1/ERm3d1KISAH4GHCEdc7dGPM7xpitxphpdD7/jTHmC6xz3qsQkZKIVFa3gY8Dh9gg/N8Ema25QcjszGC4b2Rb867YmXcrM/pqD+DTaHb9CeB3B83nDfj9OTADRKj3+CVgFPgRcMw+19a8/nftsRwFPjVg7g+jobuXgQP28emNwB+4C3jJcj8E/J4dX/fc1/D5CFcqGDYEb7Sa6KB9HF79TW4U/m9xbJmtuTG8Mzsz+LmzoWzNu2FnMoXiDBkyZMiQIcNNhUEvS2XIkCFDhgwZMlxXZM5NhgwZMmTIkOGmQubcZMiQIUOGDBluKmTOTYYMGTJkyJDhpkLm3GTIkCFDhgwZbipkzk2GDBkyZMiQ4aZC5txkyJAhQ4YMGW4qZM5NhgwZMmTIkOGmwv8DhihDv3YyGScAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, axes = plt.subplots(1, 2, figsize=(8, 4))\n", - "ax = axes.ravel()\n", - "ax[0].imshow(original)\n", - "ax[0].set_title(\"Original\")\n", - "ax[1].imshow(255 - Idata)\n", - "ax[1].set_title(\"Modificada\")\n", - "\n", - "fig.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Colocar dos imagenes en un tensor" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Esta es una forma para organizar conjuntos de imágenes en un único tensor" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "original= np.expand_dims(original,axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1, 512, 512, 3)" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "original.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "Idata_m= np.expand_dims(Idata_m,axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "images = np.concatenate((original, Idata_m),axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(2, 512, 512, 3)" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "images.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAEgCAYAAABIE1IQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebBlWXbeh/323ufc8d035ZxVmVnV1VXdDaAJgABBNETSMkgGSVsIRjhkWZItkfKgsB2mwzbtCEu2ZDFk2WEHRctBhRyWHJSDpCmKkxRBh0gGLYINNkmQAHpATzVnVlYOL99853uGvbf/WGufc152NbuqiVZXgW8D1S/fffeee84++6z17W99ay0TY+RyXI7LcTkux+W4HJfjN8uwP+wTuByX43JcjstxOS7H5fiNHJfg5nJcjstxOS7H5bgcv6nGJbi5HJfjclyOy3E5LsdvqnEJbi7H5bgcl+NyXI7L8ZtqXIKby3E5LsfluByX43L8phqX4OZyXI7LcTkux+W4HL+pxiW4uRz/2MMY868bY/5fv9Hv/RDHisaYT/9GHOtyXI7L8fEcxpiX9FnP9Pe/Zoz5Q52//x+NMcfGmANjzF1jzMIY436Dz+HfMsb82d/IY16OH+zIftgncDk+fsMY84eBPwq8AsyA/wz412KM5x/0/hjj/+nDHvujvPdyXI7L8ckbxpgHwG3gdozxuPP6V4EfB16OMT74fo8fY/wDnWPeQWzVvRjjob689f0e+3L85hmXzM3luDCMMX8U+L8A/xtgB/hZ4B7wN40xvQ94/yVAvhyX43I8P+4D/0L6xRjzeWD4A/iee8BJB9hcjssBXIKby9EZxpht4I8BfyTG+NdjjJXusP45xIj895Se/UvGmD9rjJkBf/h5ytYY8y8bY94zxpwYY/4NY8wDY8zv0b817+3QzX/IGPNQqeX/Xec4P2OM+fvGmHNjzFNjzL//QQDrclyOy/GxG38G+Jc7v/8h4E+nX4wxO8aYP22MOVJb8b83xlj9mzPG/HG1B+8C/83ugY0xf9sY8z9Um/I3gdsaivp/f0AIa98Y8x8bY54YY86MMf+5vr5njPn/6vef6b9f7HzHy8aYLxpj5saYvwlcfe4c/qKGwabGmF8yxvzob+TkXY5//HEJbi5Hd/wcMAD+SvfFGOMC+GvA79WX/iDwl4Bd4P/Tfa8x5keA/wD47wK3EPbnhe/xvb8D+Azwu4F/0xjzOX3dA/9LxLB8Qf/+P/3ol3U5Lsfl+K94/DKwbYz5nOpf/jtAV7PyJxHb8Cngv4YAoX9F//Y/Av4Z4CeBnwb+2Q/6ghjj/w/4A8CTGONWjPEPf8Db/gwwAn4UuA783/R1C/zHyKbtLrAG/v3O5/4c8GuI7fm3EXDWHX8NeFWP+WWes4OX44c/LsHN5eiOq8BxjLH+gL89pd29/P0Y438eYwwxxvVz7/tngb8aY/xSjLEE/k3gezUw+2MxxnWM8WvA15C4PDHGX4sx/nKMsVYG6f+JGMLLcTkux8d/JPbm9wKvA4/19QR2/rUY41yf7X8X+Jf07/8c8O/FGN+PMZ4C/+fv58uNMbcQ8PM/jjGeKRP9RYAY40mM8S/HGFcxxjnw76C2xRhzF/htwL8RYyxijL8E/NXusWOMf0rPvQD+LeDHjTE73895Xo4fzLjUS1yO7jgGrhpjsg8AOLf07wDv/yOOcbv79xjjyhhz8j2+96Dz7xUqCDTGvAb8CWT3NkLW6699r4u4HJfjcnwsxp8Bfgl4mU5ICtkk9YD3Oq+9R8vwXrAhz73vo4w7wGmM8ez5PxhjRgiL8/uBPX15oizTbeAsxrh87hzu6GcdAob+28A1IHSua/p9nuvl+A0el8zN5eiOvw8UwH+r+6IxZozsgP5LfekfxcQ8Bbqx6yFw5fs8n/8HsuN7Nca4DfzrgPk+j3U5Lsfl+K9wxBjfQ4TF/w0uhrqPgQoJCaVxl5bZeYoCic7fvp/xPrBvjNn9gL/9USQU/tvVtvwufd3o9++p3fugc/gXkdD870FCay91Pns5PibjEtxcjmbEGKeIoPhPGmN+vzEmN8a8BPxF4BGyE/te4y8Bv2CM+TkV//4xvv+HfoKkoi+MMZ8F/iff53Eux+W4HD+c8T8Afv45FsQDfwH4d4wxE2PMPeB/RavJ+QvA/9wY86IxZg/4334/XxxjfIpoY/4DFRDnxpgEYiaIzubcGLMP/B86n3sP+FXgjxljesaY3wH8QufQE2QTeIIwypflLT6G4xLcXI4LI8b4f0UYkj+OAIt/gOyAfrfGl7/X578J/BHgzyM7oDlwiBiDjzr+18guaQ78R8B/+n0c43JcjsvxQxoxxndijL/6AX/6I8ASeBf4EiLg/VP6t/8I+BuI/u7LPJfg8BHHv4SwRK8jduh/oa//e0hq+jEifv7rz33uXwR+O3CKAJ9uWO1PI2Gqx8C39POX42M2TIzfS+t5OS7H9z+MMVvAORJauv9DPp3LcTkux+W4HP8EjEvm5nL8hg9jzC8YY0Yas/7jwNeBBz/cs7ocl+NyXI7L8U/K+IGBG9VsvGGMedsY833FTC/HJ3b8QeCJ/vcq8M/HS4rwcvwAxqWduRyX43J80PiBhKU0Ve5NpL7BI+BXgH8hxvit3/AvuxyX43L8Ezku7czluByX47uNHxRz8zPA2zHGd7WQ259HdvOX43JcjsvxGzUu7czluByX4wPHDwrcvMDFIkyP+N4l+C/H5bgcl+OjjEs7czkux+X4wPGDqlD8QXVNLsS/jDH/KvCvAvR6vZ+aTPbo5ZZeLyP4wGKxYjZf4UMJgCXDmAzTHCjinKPfd0QCm3WFdY7tyYjRsI91DozREzEXzyidSfc1Y0jvli+JYEz764Wf7fsuXmh6R9T/j8QY9dX43Du7xzBpTjDGtO8w3VM1zTHS6bUz0bku0x7nO8/z4iTECx/+ziEhy+4bzMXv616L6fxs5i19cZqP7lE6Zx913pr79dyVPX8KH3jO3evRT8eLH2nnVl/t3r/03c2UmYsf1slNcyI/It2w7oW/dS+4e5Yx6OEi3nuqckVVLYihbl4PIVJ78B5c3mc83qHf62OtvXALu/e9XV+d+ezMjImmmdN0zml9Nr9fON/vvj4urGX97oNnR8cxxmvf+e4f6PiedgYu2hp6vZ9iaw96FnoZ+ACLFcxXoLYGMrjQ7D6Cc9B3QIB1BdbC9hiGfflb57n9MLaGC+srdj7/XS7xO/580dbIz84a+K7HSP823/2cn3/IPmghJIPYHOf58/yASfhHKSC+i635ztE51w+8hg9+7poT6Nia7/jb8+fYnYYLU9J973e5tg+wNd/xt+fn6jlb08yJ2poLD2j3b9/tmpv3RDEm5QqqBYS6/XuIUnXIA3kfxjvQ68v6/q5P1/O25h/xWndNdq/hOVvzna8997fud39IW/ODAjePuFhh8kVEXNqMGON/CPyHAD/yuc/G//uf+BP0e5YQSn79K9/mP/1PfolvfPMtVvEpgZKe2WGUX8eZHiHWGGOZ7Az4p37HXcZjwz/8lfc4eLri577wWf6pL/wkV67u4/IMrMVYp98phthiwVgah2qCACcrRJaxFhshEvT5sQ34MTYBEYu1FgsY0z6YBkMIkRgrgq8IoSb4ACbqsxcx1mKwWAPWOTKXY4wly/o4Z+T7CHK05gGOGNI5A8EQ8HhfE4I41hjAOUOW52SZI8tyuRZjsa5D0kXwvpbP+EgItSzmaOSaMUQ8MQaCl6uKjTXTiTQOjMUYg7UOYx3OOayzOCtzY4hYYwkxEGOAIAAj6tyGUDeFy2Na/MbouSYgJZ/V2RdHbCNEBzHo3/W4oSZGSwiVgIfgMcYRY8BZub+WjGgCxrgGiKX7YC04a3XO5LoSrAzRE0PE+4D3Nd4HgveEqmoAgg8Voa6Jwei5RaIxmGiJtcfHirquiAE2xZrDp2/x8O1fZH7+LYiGEBy196zXnsU8cDaPrEvDZz//W/ipn/pdXLt1S6Ydq/dD7omst0iMcs+Icr4YiN6ACcQQ1LbIv0PwVHWND56qDtR1TQiBEPXIUYxUjIEQ0+stSIohEqKsUaLn3/7jf/K979NW/OOM72ln4KKtMZ/7bOTf/RPQtwJmvvpt+E9+Cb7xFsSnQAlmB/LrYHoQa7EVO334HfdgbOBX34MnK/jCZ+ALvxWu7oPaGtTWiDkIgLtgazBBgJPaGnnu9L0GeW8CCzY5Pdu+v2NrwIhzijX4UpyW2hq9cP2cOirnwOVyvKwPzui56X3s2BqeszXgwevzGqNemoE8h8xBlqtDtBcdY0Q+FyP4KOeotqb5XjzEIA62Gd9pazBG5tc6vRb9LpvO1cpx1Na0u8Mg39tMXWtr6Nga0M+i8/+crZG/63FDDdGC2hqCl/OMAWy6v5neb9cBgnofLO25p+tK6CZ6BR163nUQcFJVLUAIFdS13JsY2vUVLdRe/u4rmYdiDU/fhnd+Ec7E1hCcHHPtYRFgFqE08PnfAj/1u+DWLekAltZBsv8hgRS9Z+nfBlBbIw4JvQ9B5qau9WfQf4cO0FFAlO5dA8r0voTY3pfo4UPamh8UuPkV4FVjzMtIoaN/HimK9IEjz3Nee+VTrFYL7t9/h9ffeMzBkyUWhzU9QizxqBNJTj5C7T2ul3P99havvlZycnyfo+NzVus1V63BOQc2w1ojxjmC7L4D1hldp+qkMVhr1JFCNIqGbabA2yrQiMqKgCFgrCMGr2vXEIhgYnOuEHEuI0bfYQ70GAaMNQKSTCbPTAwKvpR9MU7eTzpfS8RjnDhqMBgL3pc4l2FMwFknzjz9nxpLZy0RCL4SBxlqcdoxEnyFNfqAGdM4UGMDMdj22TEGjNMjKxCwVsGBgIKLe7aoNruzwyISo8FEI044GgIBQ8QYS/DhIosVYrPhCnp/kiWMIci5Rq/HDnodaNBVzhdrFLQkQ4kAzc6/2w2SOKUYvB4rYHF4vN4ziwlyn01mwQdijDgyTGaIIcrn8UQsJlqClVOOgPeecrPk/PR9lov7xFgpuCkJQda3s+IzCCXvvvsNbty8y9b2DsOtAVgFoSY5rlpWhzXE2mA7O8Vg1VFZ0/iqaMSgOyf3xxkIzqlxrokKYLw6BBOtGKZgBezoakxsYvyurMMPfHwkOwOIM/70p2C1gAfvwBuP4fEKASE9iCVQtQZWbQ0+CNNzewKvlXD0AI6msFrL3KqtkXlOO2l1di6BlAR0FLhERfbP2Rr0+cfEdpdPEAcYFAEkEGKS4dfzdZk6mw66SE7VGnWm+j0xdL5Ln5PuJsboonXqqDHyTPlSvsfoOVn9WxcgJTDmK/mOUMt5EeW1jq1pHKgN4nQTeGvOSd+TwIBzLSi4MPRzz9kacZxG5q4BVQqGfOhcP+JIE75L9yehrqDz1bE1fBdbI+d30dbIv59jL9TWNOAoAWJ8B+zqOamtkc9nkBkBjEbfjxVwo7cNYwRYFis4ewjz+7K+oxFgH3R9G/3KUMK7X4ebd2F7B9TWyHW2tga1NdTm4j14zta0a8goUIotuFNb0wKYBD5bW9MCzdj+/Ai25gcCbmKMtTHmf4ZUmXTAn9LKtR84DPKMFOWGJ08OeeP1U4LvybGIsjvH40OBc3mzg/d1oPaB7e0dXn7FcHg8w2QVtV8LKDdyo401WCxBDUNUqZEx8pA0IZzoscYS1Wgb41qkrovfGAmDoWAjxtA44YZ9UCRqjRVHEoOwQsowJHAjD52VZ8bJuVmTwJQArQaQGXEpGNcAIYzFWkcMEWvFUVuT42z7QMjz6smw6qwk7OG7wCadso0NwIuxEwQzEYsh6nm1351jTMQ6q06fxiAnW5HYEbAyb1EWfgyeGIXdiQYBEcoSGDW4ibEhGmLwep6RWHuMNRjSjkgNmEFYNN2VGZvJc0gkKoBtTkqBFHpOATAeMAFLRjARjIIsq3Ng5f1ye4385wQwmuCIxjf3WdZtToOYvAJdMuq6YrE4Znb2NqFeYzENuxW9zLrNIMug52B+fszbb3+Da9dvc3t0B2ODrK0Yxa9ap1/jMc50WDKHjV62A7reYrREI+vXxUAkl+erttTGE4PTXZXBGSfPGfI9gUA0FkuQe0EKz/1wwM1HtTPNcEC5gSdH8PoZ+DwdEXEuHkIhLEfawdcB6ihG/1MGjmbgSggr+ajaGnEGtgUhSdZoug7ZKABJrIE6qOdsTevsdH5juAhaOrZGHKnufBMb1ACgZGuM+s4EkJL5V6CltgaTmBzXAiGjrFRQNsNYMImtic0piuNPYCbK94VKXk+/R+QYNjEtsT2PzrPcGDBjwebyN2cbrNOAvy6WacBSa2sE1HSYqMSwdMFdDFwEQeh993pPv9PW0LE1qK1pQNNztoaOrRGAh85zpteh91ZtDTa9n/YaE/senBgra1vQ8AG2BhzUJSyO4fQdqFedex30fXIKZPpcnJ/A29+A67dgdFcAp7F63+kwk15Ae8OSuRb0dXxbs5ZikHMkQG3l/Du2Rj4f23vUAKrQzutHtDU/sK7gMcb/AvgvPsx7Q4xUVYmPNS5zjLZ62MzhbI71me7Ma4I6m/Qs1KGk8oFeb8ALLw75GRuZzaZkPXlgXObAxoa5sDYjhPTgWoLuNoxxGN3xG2VdAkbDVGkBN2dLplRvSLHLzvNlEfZG/jdiTUagRt14Z4JQ54qCK4tJjr/ZlafPyH/C2kRhR4xtWVdrsa4n1wIaMhPgFY0wAT4IOxDxBB+IPmhowRNixOIU+AhbIesp7TACEadTEcBKyEY2UsLYGGsxtstqpTAGyDLT3WSXimyQeMvIGQX/CbVLOEhATQi+ZdaixVqPwQrbYYKCHTEQ8n+JeYn6zEjoRuxTG35J68NYAZHRCBiwxoJLc52uLROAZeW6QmzXZAgoa6O/R0/wXq7NgsFhgbraMJs+Zr14jFSGlwURg26mCAJaDFgXMTHw8OHb3Hv5M1y9do3x1lgYIRNx1uo5IEBZWQBnrNiXKMY+RE/EN+tKVl6u8Xddhx6sMXjj1b4bgvXCUkWEAfW6Fpo13oL7H8b4KHZGPwBVqcbZwljDKi5XkGORUJQ6m/TI+lJo/F4fXrwhznl2Dj1dx2pr2pBSpjv9BvXTAIa042928aYNrTxna5qwUsfWtCPtajVkYjKg7ryerpmOw1Xnnxy/UQff0hW0zjiBB9sxcFZBXwJttn1e08OrtkZCWUHDK7EFOGprCDUN89GxNaitQW2NsEPoz8TgpLmmPefvaWvSnCUGhgu2RsJB+v6gYRcQJ20TaFMg0rE1cszEvKTzSNcLF8KE3ZBjWmNpjlOYsGHsMvmM2poG3Da3XNdORL7LKzNmQVEPVBuYPobFY10bOhcJZDbhUMBF+Y6Hb8PLn4Fr12FrLNfdBaNqa1pSJf07rS0V8TTrHp63NQ2zZLyCrAxsresEmR8f2vc3a/xjAG4+6shcznAw5O7dm3zhC3c4PT5lPnfYOtP14gmhwjgHNtAbZFy7vcfNm3uMt4YMhn3yzHBy6gi1pyjWbG1NcJlTGt6KE7eyG43GSQhEBb8pJAJph94gBw33Jq2MLihjyJzsAGS6ZQGHmIwLGNVBNBuLJmTjCESsolOjTI6xFmeMMoVpkSQQFEC1IhFhWIw64NgApcQsqELGuOb5FibI471qR4L8jOnBVmfvTKa6DTm3GDwhoKAPjFKPSf9jrITFbNIkKRCQK+gIhDu7pKiL1EQBtsJieZ0RCQGJhkR1K8HrNYXmPDEygxHffEvUuI8hEpsQWQpHBmK0AuCiUqBq7KIRYBuDxZgeId1rm+693rsobI3od7wGnWQeYohYJ6xY2r16r+cSouhwrPx7uZoyO3+P4JcK1EIDtJqpx+BsxFnILcznMx7cf4uX7n6GrckE52SuBOw6uQZ62FjjgxqjqKGjEFQXJbs7X9dybcZInDx6tdMGU3co92QAjSFgCCHIvY4tDZ7c4SdquBwGA7h7E75wB45PYZ6ochDmptLwRxAh8e1duLkHWyMREWcGTp3s7Is1bE0E4JiO7bDqxFN4oiuuTODhOVvTMBLd0Ioxci5NmCQ5y9bWNNqHNBon0HEOXcCSdDGJaUox046taZy17Tjg5j1pV50MjOssBN2pe9WOBH9RN5GcvVGHHRM7oOCiCdMl9GHb87Dp2jpAoPHOaXrS9+g6ToAgvTXZohQCiuncEqhR9NCcZ3q/73yPb0FMw8glYBPE+cco96hja5p5DRZMj4alseneP3d9NlNg1SAxmUsXW8CI1ciZvqa2hhBhNYOz98Av9PwSYIsNXhCwFdupnk/h/ptw9zMwmShjlEJ5yhCierT0XQmkhxSqVCaprtv5UVvTXON32BrXXnsIermdkNtHHB8LcGMwVKWn2gTG4zGfee0Oxz97yunJCcvHRzQ31QRGuz1u39nizr097t67ykv3bjLZ3iIS6ff7xGB4dnREL99lb/8que3pJsVioyH4Tjxaaf1oLCYGBQxp14CEHbonGlGnEJMiRUCFiqgknGKJsoUXpkW1GUnIHJvdmmgXnEyAgARjME6ZjCix6qj8kmzrbaPRQZkAmcDE9NAwEfINXoG8gaihDwUrYpckFGJNuhrbsD0xijNrwlMaIovBYF1s7ls7V2IA5PKSUYgK3hKYUSYqoiG7Sm+FhJhEPwMxyKIPwYtoNSizk0JVxqqJCS2g0lBaYtvEBoqBifog+6DxZgU9QZ0+EbypsSYjOo8NXRYqhS1pwnjEqIAusUYCkIgWo6BLLjOCyUS0TY3DsFmvmZ0/Yzl9CKFoNkGxih2QbPQ+0mGqA+8/us/B4SOu3bjKYGso918BTKLKo7E45F4bF0W/pDuu2DAJMufRWdJMyi5QQK+LEK3BxxoTNWSrjsRgCCboWgsNaP7kDANVgCLAeAyfuQNHp3ByAs/ZGnZ78OIW3NuDe1fgpZuwvSV/7/fFsB8dQb4L+1fB9nRulRl5ztbI86BUvDUtIFAAeWHE5sanN+g9CK32w9hEF9KEDpr3J8cPujtpLr8BKy6xRZUswiYEILam0Y50mQCTQFK6puedva7F6FuwErgIYtL5JbYnqjPrsjcRmV+XLHAXoHSYlwQoTAKMCczYzt8s2Ko9P/QegIYPTcvU6HPQhKrStTaiaz3vRqydbF0CMwk0tLZGQIc6/QiYWoCdU22JTejHtvOZQFZibpr7qwCpCfl05sFkyoIo6N2sYXoAM7E16NKk6oBsDA1bmP6LER49gMNHcOMqbA1pQGDH1rRAPsh98qFld56zNReE22mOU/jPGlr9zXOg1SQw1mHXPuT4WIAb7z3ffv1dHr1/RK9X4mzNjWsTXnnlKkfHR5SrKT4W9PqWl17a5sd/4kVeuHOV/as7bG1tYTOH9zU2M9jMMl9MOTk94V5xh8FwoOEcK+EiZ9qHKDkRjRUKiIjKiBhiNETVNqQbLyxm3bBBolFR1icgGSfBS3gHSIJaAN8wMUa/xwlYck6Fue0KE/ajpeXEUcbWloSotlFBU/OQqbFIv+o/0zklHU9MuxPSV8o5eYKGVhCGJwZCHQl1zXI+49HDd1jMjxkPR1y/cYVr128x3rkiesv+GJePZJ5012qchjDSg676naDCPROj6k2EYUkaqxRbtTiiqfUeyuvGJMfvdG59Y0daH6GMT4iS1RQCAa+MWMO/CZAytOwYkWijgkp9oKCZM2GRdNqsVQ5OhOXEiImutTVAMJq5pGG1slgynz6m2pw2D25ir0NaG/qtiXl3RtibxeyM9x+9w72XP8VgayQ6GmWyTEygTsIjaf2KzY0QHSaEToYTAmbxGOvUflqCC3hjiLUYdtH1GQF7HglzNmnlYoSax+mTMLyH19+F94+gV4rTu7YNn74Kx0ewmkIsJJvqpW348Rfh7lW4sgOTLWFnfC3MTWZhMRVgdOcODAe0rEZUTcLzzjkBnuR4ddHG5Dg7jgY0dKPHTGJltTVNJkqj7+nciOQEdI00mh+XBK8db/acrWmBWDqH2NF2dB36RVvTvt93wjrq/D7A1ojBjO13xCC6Jl/DfA4P34X5EQyG4mSv34KdK/Le/hb0hno8dbwuhYVaWyPAJXaAkAKT9HvH1kioKd2f0AFN+h2ygDpAIH0utuyU9+rYk8C3A1pDRyScmBCr52BaWyPrJF4EfEmDk4Tl+kxfuO0m0mqbvAiJp09gfaKgFME9aXQBdTKIirGYnsGjd+DlTwlb2cwnLXCkE4qNjXOU80qgO617rMxt0uxYC06BqNoaIdOMHNN31hfp85HuEv9e42MBbqq65hf/y6/xa7/2lF6vYG/PMRxElosaZ3KMyTGU1HXFdLbk8HAOxrBZV1y9VrN3ZYd+P8cMR+zt7rG7e0pVbVivVuzt7cnGQHUJTsM44vBR8NI6MqdxT7kvksUjf5FATNDdqhXPSMoqijEqeJHFKqBCQYoyD0oTyeddhrWWzGU46yQkYE270Wtsgay6JnvIRIyNWJsrME5hIL33SXdBbB5icdQSZpHsAGjjxqF5jzDbohEJIbKczTh6+pD57Jiz8wNm8xN6uWU07GHHE8r1jMP377M9vcJwfIVZsKzWJcPhVca719maXKWf9eXaYnKCjmglM8rjiF6NcDKojRaADqqX3Yk1DpyGBk3sbJx0Tq1VPizDGqN6okDtK2GFjAWraeDI/U0ZPybNQfAizk5xf2h0NEHDZCAp7hgwLjmzNOQGStaT3D+JShiKomKzEnBThyVOWTG5xJapaVh09UEui7jKEH3No8fvcX52ypVr18l7IoQNTSZee44mqbxEfCUhQIze7tiwOdY6AeLWEVwkI4e6FobY5niJrYmvzA14yVKUsghiy63pXv/HfNQ1/K2vwa8+gV4BuxkMAyxqMLn8Rwl1BbMlHM1l17mu4HoN+zvQz2E4gr092D2Feg2rlfyudqFxYskYh/R7cvRWAEMCKsmhNiOBAtMeMwGLJgSVHKO+X20NHVsDRjKbrNWfGiKzaVedvjY9cJ1FaNT5qq25wAZF5Ll8ztY015ZsDeh7UjhDryXSakRCFDDz9CFMj+H8AGZHguiHPRhOBHS+/w5Mr8L4ijAe6wpGV2DnBmxflfT2dBlJ22MVROD0+3jO1pj2M2nOIgJmErNlYgfT6Zza9KFMH1gFc75SpkxsDR1b03xRmqfgFdx0QnqNjqahvGg0Ld/F1jQAEQWh1kBZwXIpepuwpBFMN7um9lKaQxkgi1AZAZiPHsDZqWhv1Na04DydYwfwphT/NE9B57rR6iQhtFNGLpPQlEPWWK1AvmNr5J6ZTlTww9uajwW4KYqSb379MefHFaVf8eCdJTEWbDZz6irgTB8f12yqFQ/eOeLoaclw6NjdH/LZz9/iZ7/wOW7e2gcM1mRc3d1jua7YFGtCXeHyXBgW4/BK0YYQiEYydgCMdRJSiOLunBWxaNqBp/BJ49jSGlRHgtHdMrXs4oOKYSMYk2m4QsIuUkPFSl0YzTawNmVXBfBBnz3Z4VhriTGlosvCUhcKIDtrYxqdisIq0oqQv1UNQIhqeKWGCZTFhtnZOWW5ZjAasCk2PH38Po/e+yaL+RHbWxNe+fQrfO5zLzAcDphs7dIb9KiKkrIoKIqS45NDVss1Ze1Zr77NpoxsbV/n1c/+DLfuvEKe90CzgURHg4hT1bA32h/Vf6QNWBvOU4eqmiO5V60dRjU5ovmR2jYxBHxd4b3UVXAuU+BjO/FcTR2PNOBR7LNm6alILuq9jFE0QQI4BVymDDMBVBLSsyaAc7IeAKfrbLk8Zb14hotWN+Kermqr8Q/6S9o4Wt34nBw94+DZAS/efYn+oCemJWTKpqQ5MrohdVhlawIiPvZEXDQaosqJxmOdFBR0TvVtDn1GDMYFjPeiMaqDJliImD4ERGQcPkHgpijh1x/BUQV+BW8vIRZQzCVcZfoQ11Ct4J0jeFrC0MH+ED5/C372c3BbbA0mh719WJUSAqgrSTVPIadEzccgN0/XgACMxBhE0VU02UpcdIQdW9M4kkZwWsuxQnKuINlNXaYkIeSUraXAJ4W4fGiPH4Oei+08WJ3dlkG+KzEvjXNrbY38rWoBQgPy9HuKDZxOoVqLdqko4Mn78OCbMDsUduzTn4bP3RYmbGsXBj25b0UhP08OYbkWx7f8tty3yXX47G+HO58CtTVN1lDDcul8dEMchtbpN/Obsn6UCTKdOVJbI3NraTKvQpD7r7YGpylIz9mai1lxra1pGaTOXCVxdQK4DXsXOvfAyPk5R0PLpHW2PIX5M1rxb1czpCM+9x/treT4EA4O4O5Lcg8AQkYjFk9AONCu97QmmtpDRp+DXObVRa1OqtllLh1DQbj3YL2wOWprSPXQrBFQ+yHHxwLcrNcFj5+ek5kJ1shusVxvqINvam1AJMSSyhdsViWbFZyfrsFmvPrqTa5d3WF2Ouf+OwfM5wt6uaGuNwTvGfT7BGvwMeAsze5bNj1RmLCUVo0KgI0CEbqiYwUOSgu2xeWE3rfGIBk0JRgjTjME2VmjdWA6osEkVE0AJ+KVJQgCeKKKoSPK6qR0ZjF8SSMDKaSTFn2aMom9JuBg0XWvtFBdVTx7/JDDo6fMp+cU6zOWy3OqckGWO3a2h3zq3ivcvPECV65dp9frkff6qmsxOJPRH24xqGvy/pJgT6hmcylyVxccP3uD42fvcOPmK9y8/Wl29q+zf+02xmSdMBmigyIqm6xMWmKqlImw3fTWJG6OEaOixKQ5EpBT6z/TPTT4RiSc5lsZNxTUpAdRd71GgY2JTjVIYKJtWR8NITf3rwEVEroK1mCjwZiM6KTqdqhrVsszquqsQSwmSLq2J9KksdOCmrRUnW7018slB08eslp9nu3dfV2rta4H13wmmiSMlDCSs1aF02l+LYSU1+ewMYqtdz2cCZgYBNxEjzHpv5pU1ybqzlIKIiar+AkY6wKenoOZCDjxHtYbDSu0toZYgi8EuKyA07UAh0/fhGs7cLqAd57CbCG7zHojx+r3Wwdk9VhBnVizU7JKz6fQUQpJmNZxNmGLruD1ORBBJudpOmAqCUxtpj/ToXV9J4CDhlGScDZ2BNVJk9OxNS3r1GEeEsUIja1pz5M2TAFSgO7J+3D4VEIe6zNYTqGcC0OzPYK7r8DN23DtBvR6baVcjMz9cCw7/f4C7CnM5sKUVAU8ewOevQM3X4Hbr8L+Nbh2W+YhaCZRly3qgq6GLu045i4ASUxQEkB3NUcNoEism2mP0dS76YbyTOenAs0EbGIngy4qcII29JPuXwMqorI/RkFOpgAhCAuyPIXqVI9hITgaxq/5Hjr3kAbfAcL8PH0Plp+H3X0975Rx1QmJdWyN0M0KnJv5tS3QT9odD7geTfmCBNBN+k+/p7kvQY/54W3NxwPcrCrWbsloPNDsFNs8XNZmmNDSuyFWCCsou/P1qmS9KdmsNxw8PeNLX3qL5bzkhReG7EyucPdWgd0aaealVscNEa9siY9GnaTcnFQAzWiBIxP9hcSFlDIdYxDAgQAkME1oQxgczZSySAZURDU1kmHkUjjK2jYZwdBoIkSkKs7TQOvsAUlV99imSqyeHJI5YzCEUIsDauhu0azEAHVdMz894e03vsr7730T63Lm8znBb7BZzdZoyJ0Xb3Pt2lUmkwnD4YiqWBN8TVkVjLd2yPs9sjynrjyZNfS2tyHWRO/ZLJdaQHHE2ekJD+9/jfcefJ1r117mhbuvcf3Wy2xt72OsI4RK179mnjU7xkAjlk06lGSkU4jLCFuR5oQohRiTg5e6P4FoLQadb2dJafSCajMEHKquBL0fVos6quGJ1mBC1I2rac6z8QFomMpEojJ1TRkMDHWM1HXBcnFAqFYdJjAt7djYFFmJUcW8Hd8E+Mrz5OkjZrMZN24GXG4JUSs3hxZsg6R0S+KGAmmdyxBRoGMI1mJCwNoeHinsJZlhFmccjfAcK/XCrAA+o6DGmQx/IZD/MR+rCtwSxgMaoWbjODLZGTbGvtLJ1935uoRNKWDo4Ay+9BbMSnhhCJMrcLsQfYKDtsaKOpIm5KG/JyrA0AlF+AYXNDv1BGzSQkif6wIMonzWos7AtE6zG45KGVLpv25WkeGi473gwLvZTunkIk2BvVC3IKHR7ihT4j2cnsIbXxF2JssVlKzBVTAawQt34foVmGxLuK9YCwNSFbC1Df2BMGK1l8/YHfk+H8QBq63h9ATufw0efB2ufQruvQY3X4LtfWW4tGKv2hqeszUtmEtz1HH+xtCA0cSYJMcQ0zrS+U4Vip0Cm+dsjQAIRREGWg1UaI+bigl2Y9XNGrDt+SWmrgEpusbqEhbPhIG0zYKiPeHn/t3VBqU/Vx6ePoLZFG69ICA0reEGrCSw5VsWKtm2BH6bGj4KcmwP1NbIexTIhbQm9Rl0CfCF9lo/gq35WICbsqzxviREif07l5MyY6yROjcGofhDrAixRqoXOzbrmvWy5PxkzoMHh7z/7pyyqJmer7ly9ZDXPr1iz+xKKAhZYziDDZLGmgWDT+XrG8GLZvUYKednTSZODq2i29lVG03lRjNoCOqQdVceosfpLsqk4mkuF92Ms5oFqDt/i7I1inGtZFfZRqSYjEdsHFqqS5NOKGjbBNDnldhUJq6qivOTM779jS/z9NHrbI0deVZDXHHvzh55b5/RcMxwMMZlGaGOLGYrinXN1mTMeDLC5lJJt1jXhLKgqivq2mNdRrmes1qcg4po6yKws71LMShZLeccHb7FbPqUJ4/f4vrNT/HC3dcYjraRys4+wbMm5V5qEmlhQbSKsVY0TkYixNAwSaTUToA0b87pc5ZjnWsYsHaHJjsL0R7GBrAIgNG2FQk8dGn6xtao4Lx5UeLKCmOxGgr1saYolmyWZwrCehhyYV1ZYmNGzAzW1xifNFtR7JieU/JdZyfHnE/PqKsal/cBizVRme/Y2mo1MFZr9IQQSGxTorUb8BgNxuRgKvlMNPKsRCv1oai1DpTBUGq0Q+6LrO9PyCi1VUFMsf+chjo3ynagFH+sEEZCWY1VBasCTubw4BDencOmhvM1XD2EV1YiPG50FoiDa0Sz6rS6WUZpLSfAYzLauCTpRtI4krRDVlsDyWnorjwxNimTxuXicJyyOCn1O4VKkk9rivElWwONx2wcmoeOrWnaJqRf0zMFUNUCar75VXj4bRhbyCqIC3hxH3p7AmwGYwE8NTBbw7qGyRgmI2HEQiUtAspCwj61hjTWc1ic0QC7IsD2HgwKWM7h8E0R0z6+DTdegbuvwXhyEaQkbRDJWScmJQGNi7ZG2LgPtjU0tiaCyVvh9gfYGjq2pgUwVp257ayPDtBK5/sBtubC7yHImt0sYXWmYKkHamtgCTGT73Lddh2xNTBdgH1yLPWcqlp6T6WwaMfWNKAqMV3N85SOZy6Cx2hkjtTWtLqnxDim+kcGaYdCOx8fwdZ8fKySPkDWZNg8lwwOK2guARypU1wSQo3JBhiTURWBo2dznDe8+fox5VrCGMv5hvceHnF6dsqtW9fo5wMJL8WIj7UUnosWr2svqqGWzZaEQYJmNNGoIiAVa5Lf5QFP6cF1qNX4iyOwzmrtI6ehDnGuVneLqfhdU+smGqJFggvG4JrPtQtEBPQGqQujBeTwhJDaPESdK0HLvq4hs5SbDYdPHvPrX/tl3rv/TYZ96OU73Lx5ncn2DoPBAF9KrLzcrFlWCyJSCHFvdxdCj2I9pxeH9PKMLM+IboCtHWGxZL2ag3FcvXabzWbN6ckJ82LGpoLVekmW9cFY5osTFqspB0/f4P5bX+HVz/0M127cZTDexuU9MI6IlGdviygKuyYLXCtEp90Smh4eJeSUdi7WGJUOSK8ro0XTUso9IBlGRu53u2NLBl1/aJjc6AMsrEV6UKOk9iNskBR/6/bhMvjoZd16z3I1ZbM6V0apR5bt4eMGU1VYY5ns3GO1OuP8+LGEgdRPNL4EASar9YrTsxPKqmRgBmSmJ6xc9CKAN7GVESDrz0bJhAoxaFcAh1cQZqxQwDZaoumJHk0nQJjl2JAQMXqt3pzCuKGp/P2JGQ2DkqlGxilrU3QATkR2lzVkA3m9DPBsAeEQXj+GlVr2+QYeHsH5Kdy+Jn2mUhpv1CabqSx+wwIkcJMcX2JCEjui4KHJ0tHfdSMlWVSGxhE4dZpqM0RMq04z7Zq7IZKU3ZJsS/O5jjNK1WOjp2WJlMVxeo2JpTFGQiGZhc0Gnj6Br/0y3P+mFDrMd+DmdanwPBiI4DUaYWkWKzlWZmB3D2JPwEscylzmGbgB1E6YmvVcruPabdE6nZxAMZPQ13opwmJrYXEiQuQnb8BbX4bP/QzcvAejiehyjAO1NXRsDR1bw3O2RvQwtp2r9N7EAtpeazCa8B60upfvbmtEd0ILFlKYigQadL4bW9MsKH2/rg/v5bpXZ3r/c8j2IBYyR8bCzj1YncLxYxrBdPN86E9jYL2Gs2MoS2E7TY8G+KWQpul81jq5VqfhJgdNRWUAtTUyH70WVF4A7Okl3wJHq/fiI9iajwW4EeZVQYJqI2yWQZVoeaWtotR/8bFERKkVVZHx1uvHvN8/5+GDMxHJKuA4OZxycjqlrisGZiD1P0zEREuMLVsgafUdMGN9S/EbtFaN1cCBNmdIC0nXXDRBW8jEJuwh1XE7PZesVkA2sqNPwtZUT4UYJRSg/aGEwTDqMOXrpIpvy9wYNZby3AQBTFgISUgcqMqSs7Mj/tbf+qs8efQ6ztTEOmdnnFOvFzAaNn1CVssFxWbNfDmnLjfs7V7hPEaK9Zqt7W0GWyMmkwlxtWa1mBOIWCep+MEXZHkfE2spPpcb0Poty5UcryhXDPpbRAPLxVPe/NYv8vjhFcZbN/nUZ36Cnf3rAuqMaQTVwqKhc548fqrNA9JSIDVEbTcDRE2NbuK1ChTVwKQmoU38SBejMESBGEoB2z4FHrUqdENLJ82T7JhNRwzoFeiGKLVmqqpitZpSVnMMhry/z9bkUxTFGX62Yefqy/zoT/8znM8O+fLf/XPMipOG0dbLl403kbKqOZ+eUVQbMLukTCmC0017qwuwqaq3EWBvAR9Do100IKAGQx28gGwDES2maKTwpfGxuRcmiUpp7fAnZkRoaogYxKllWVsoumNrhLkp5UOhgiITUPPgHO6fyb1Gj3U4VaFsJULYZl0plZ/YAgvt7ry1NSQqMHTZkw7CTk42QpPWi77XoI46hZ4UrDTsgKMRthq98en7m/5QKbyQnDHt+5LDb4AZtCyGVUZHHX9ZiTP8W38V3v+2XN8gk0rQ6+UFW8NqLs5zMZd2GHtX5DvWa9jehvFQQlWsYTGTc3BOnLcvhElI4Ti1NYAct9xIF+zBlszP4il86xfh4VWY3ITXfkJ0OWprWnZB18Vztqbx+E2GWJp3WtDynK25AH5SWYnnbI3c1yDryzia3XY6fsfW0LE1dIXHCejGKExMVcF6KnomDPT2YftTUJzDbANX78FP/YKk2f/dPwfFyUWyrjuqCs7PpNKx2W2vS20NHVvTVlzuXmNojVeaP4yClASMlAUzUe6Hj+296Nga+Q4+9PhYgBuDGNMQ606qdSaMh5GmktK4UDthx5IQKxUfBx49PAfAl0LFGkSPM5uVHB6es1yuGI1HDQq2JmvStqXrlLA5xmRakyQ9x6Z9pgGh8dNuPfE8vrE5URkDrFOhJQLUnDaaTOEFq7oPBPGnsFdynsZkJAGyrPMEYqzupENT/8oaaSlhNIRGjFpkTc7dZo7ZdMbB06e8+dZbnJ0dszvJ6fV2eXp4xNnZMTuTxxgnyQhbW1vs7e1x5co1MicMzXg4YHtvj63tHfav3iDLHC7vEUPN9PyUxWzK9OwU5yzrxZLVakmWOUbDAXbSp9d3HB0dUVvoDwb4uqQOkVCdsV4esFrc4Cg/pqwLPv8Tv4PxZFvbSejiN6ZN5b6wulMrjtBct23oUTDkQNRwckr6TscRoxO07o/8apSlEBBtgsH6IE1KjRT2Q1eMiJpTk1MJjzkEJCTdVAp3hhCoqg3FeoGvNhibc/PeT/Jzv+9f4cHbX+Erf/vPcuPFz/Ljv/W/zunsiHfe+CLzk5OWIdZLbkLzdWAxPaUsKtHDaKO6qGsUuWqdi5RlJyBQWoYkHVdnip2G0Dxa/dQhjJnFasjVugwXgjTj9IjQOmgNo0/UUOq+yR7ppkhncu0oIImlgByTi+NQW0OZnJ/qN6YlHJ5JSvhWa2tEhJrSthM7ULevd3fJXcfSLEp1gEQuFDBrGIMUToKmjk3nGWjZmsQupLBX+pw2FerYmoapSM4rba6NtpTopn83vYMQkDibwcFTePMtATmTXIocHh7B6TFsTwQDFMDWlqTPX70mTFCeCTDc2xOG5+oNqSuU98SBn5+K/uPsVGsMLWG1lPcMBzDpCZA6PJRzHwygLsRZVmewPJC6RMdH4qx/8ndKZennbE3rsJ9f1wrgutfdPKQ5zQ1MDxbpOLEFf8lZNLoaBdHBaBaR3q8Lhf0SwE27ndCChKSbSuHOEESrtJ7LNdoc7v0E/L7/Prz9Vfjin4Xbn4Wf+nlJt3/ji8J8mfYSm58mSrhweipZajHIead12oTI0lq37XxEK/csHTBNCWiGlFNRcWtrGtAv9S9UnxPbmjdBgd6HHB8LcJMsuNaNxRhLlvcoNrTrBcmzj9Gr7kazNGIkVKk7MaR8fmsyNuuKJ09OOD+fceXKVWzqzquCYNkUeYxx2pahCxLbB7hpdqm7KBF7Sl0bo4vNNinlyXE4zcBSx2iQUJsxjZM22ssqIXRrXbMLb5jLpmmbFgqM4I2X8KzRqr5Gq5rENkQQY6SuSxbzGQ8fvMWv/cqXODx6xvx8TawDL15z3HnxNi7LsER6A4e1hr3dfcbjHd3FW6wzZL0ey8UC72vWyxnDrS36/TEx1FiXsTXZJe8PmU9nhLgkEFkv1wwGQ+oyUq43bE1GZLljtVoxGGVYm7EunGjUQsGN/S3q8ph33/oHvPTSjzLZu43LBsK06XzGjlgxVTpOguIL4etGkC4PnbRN6Cw2/UVAjBQtNCnkpWBJWvmoLsrkwrahbRIspNq+wgTqijEa4korKEZltDx1VVOVa6KvcK7Pb/nZ38dPfOHnufva53j3219iPLnKlau3MXlGf7CN6/WwdQXrSNrUN4CEyHyxoCgKYjTKsATNlAyE2uuaM83OLyqNLOy2GM1gRJznrCNGR2ZEJB+8hKyixtSDDVIawUa8zbA2CHALlc5j4BMzGrSou2ljJTOnoHU8dGp6xIpmJxGj1AC54KwUwKwreHIC51O4chU6tqbdYWuYqalUm06qCxZM5/fQvt6IjZNjo6MPSQ5Rfxo6jIQyRw2To+eU/p4WV3O89D4FO8Yn9Etb6VivPYUIGgHrDB68Db/yJTh6JlqkOsA1By/eEm0NEQaq29m7AqMdGpbEGbkXi7kIipczAUD9sXyXczDZkeJ90xn4pRxvuYbhEMoorM/WEHInQHOUCWDdZEqsFHBlC8pjePOX4aUfhb3bGnpMziaFBzXkhjrVpjFkZy09Z2su/D2BvuTZY+iIaHUNNCUAogIb1YClZ8o2/0MjcA6d+9gsoShz5r2wLcVaMslcH37298PP/W747I/C61+C7Wtw5ZZ0uR/uyJz71tZcfFYiLBYSlord9RHBBtFApTmI3XlKQC6tTxUCW0cjErYGvIaskn7HJiYxyH2zOmchUasf3tZ8PMCNshohSPdqozfUZT2c71GHDW1vn0BQxbTR/5N/W2FzkiYDQ/SGg8Mzzs5nVHVB3/WJMeBjpSFx0wAXlOJV9YvwMZGLKBwJRwWvqbcmCU1pimKGGDTUmlK30zOgugwjTlWqy0q8XJyW3IrE/jTsQkODIsAqrT8jAmtMWyHZGIMPnqJYURYblvMZTx+/x/0Hb/Lew/vMZwWbDRwcFvjyMf088NLLn2J7Z0/qoBgYD7cZDyfkA0fe7+FcRm8wwNoMaw21jzx58ozzs7fo93IGvQFXrl7B1zXz+ZTlfMFsekJdBVarJWVVMtndZTQYs709pqyGLGYrer0BvX6P2fkp0/Nz5rMpu/vXyV3g9W+esn/tFV58+fMMRhOZC2fabDej91tDb41x0NmWDWhqLNp2sk73OwYJy5i0+8E0jF3aMSeHHYLsXoKtpcAdkm2UGrK2LJyEewzC/gSito8QgFPXJVVVKgHbYzNbSq+7qiJUAWf7upYj4HDZiCxfIqI7OU3xXVIYslivKDeb5lkPMbQCbDV8ojGzjS8MWgVX1puRejeqHxAfbHBRQzLB4k0lmX0xkwaaJj1zAsqNsQTjib4bsP+4j/SgppRp5GfWA9+DsFFDbcXoNtkZ6UnW98eKJgyBkZ33szM4nwtb4PrquKrWyD9na9pjfrCtkQXSTYmN7UfSRs7QamvS6IIcdCdsOk0qUzfwBKY+0NY0SE8/1wl9JGeWquAWGwEkj9+TnkQP35XwxwY4LKB8DHmQarc7e3o9EYbbon8ZOHGwWSaZUakmjweePIOzt9rU8KtXtYLxVAr/nZ9InZvVUhqi7u5KKGoHqEZSiLE3gH5PmJ+zc2F/9q8La/DNM7j2Crz8eRht0Qp7TQeAdkNvnXWU1kPS0zRMTWjvd2K6OraG52xN+xAjomlbA6kjPTSp4E0PKwWXibEhtqFWXwvQrEo9z57MQUBEwVVUXZCCVyxkI8gu2ppGfG6i6Jo2644cLIVSOyAr6jU24afOmkw6gaRVisjz0rE1mEr/pr20mk1IB2wbr2G7Dzc+JuAG1UZ0di/dmh/dpmwxEthQhw2ZVSGlLjqjqNlqESofao6P5hydnLHZbOj1e6DwRfR0Vqu7Ok0HN42eqSkxr3RYTHSkipKlw3Kuhf6kEmzTGNNokTqnztckABY6LII8OTH6jnFJbR/0e0DrlYAU3ZPrj2l30PRBCdR1QbUp2BQr6qrk4Oljzo4PqKqC8XjIarWmrlIIxlB4eHK0YnvnCGsig+EYnOPk7JyA4drWdSyG1XTKej6nNxyRDfpgHJPdbUaTMc5aitWSd9/+Fl//9a9zPi+4srfPYODIXGRrssN4OGjsr1Tt9bx490Xe/NZbrNcb9vf32d27xmqzYDTe4vTsnMX8IQ/uv8fTJ0/57b/zD9AfjvWmpNYLuVYSlpCA3LKW+pfquTZ9BKuAJIWQoqUBAkYdXNtEFFIGSFTnEY3BBIPXVgUxVLjoWqbNpP5byimZti9X8LW0fqgDdV1KbR9q3vn6V9jZ+VscPP02y/NjynLFer1kOZ9SVRVZNsDaAkMl86d2IdW8qquSqiqIMZD1c2zM2KxWmpBhJJoQEACYdtwm2QlZY6JtAglgWaDGB6mAncrnR2XJjBHxu03NRIPej+Ca+frkjK6tsRdsTdsAMr22EcBjVUjZODh9BlPBu1DD0QKOz0RQq7amcQBYtJBQa+Mam6ZOsqHeW1sj5+DB5O3rjZNLn0H6FHVsTeNgrV5LcqpdQXGz207X3tqa9vXvtDXUhaTEF0thCQ4ew/FT0bmMB8KkVJ2duwcOV7BzqKBGbA1n53L8retyTbMZ2Lm0WxgM5D7tTISJsU40O+98C7726zAvpIDiIBPx6mRHtU50zreGuy/Ct9+G1Rr292HvGmwW0lfs7Bzm78H9B/DkCfzOPyDnBq0PMrk8C7a7zrthRgUd6Xu7bI0xaviUyUhguil2x8WfCVgEI99hHdKjKoVNOwA5rdEEoBKwCUHr3FT6vTV84yuw94vw9HU4P4JyLXM5n8r9ywZgSxrhWRd3G4S1qQpZP/2hnM9KwY41aCKxfF/H1sgU6RpTW6OoSc4rRAFuTasOBXqJhUx9zdTW8BFtzccG3EhhsRTrlvi+dTkitXUakhGrGomquwm4pg1BylJpdznW9FjOSw4OT1gslmxvT+T4unuVt4rDE1Ch7RSiVwYw9TnS5zxUysKIh5TifLrIE0WNhaDl7YMwTTHW8n4t592wS6lHRxPnjrq7RgScySEZ09lQRQXu8oDF6Ck2Iu4t1ivW6wWLxZSqKtje2aL2A87OTun3HMOBw7lIiDAe9cmzMZsyx3uLs4bt3QmD8YRyU3Hw5EBLNRjGk21MXdKjhyHgoqfarFmtF8znc46PDskGY0b0mK1WHJ0uGY1ysrzH1njEajFlOQOsod/PeXz+DifnZzx9espoe4+97RHWZdRlSV3XjMdjitJzdPQuj957g5de/TGyvKd2W5xDMGDJCMZD9BhyUgsNscNaCFCfUGvlvkQ1OtKrCtqQTetsQpCUfxrgIvcnhrph9oOJ2NTJPAo8iCYQg2myjYzLqcqSUNX4UOvnPZ4Np0f3+dUv/hVWq2PqcsF6MePpowccnTyiWK4kVVzBsujsIg5DFsA6Q+1rqqrCZpadnSvU3rNaLwne45ru1JJREdJzEVINoFRbSfqaSWVraekhrGYKBSYeU+ZI7I9ocyRjKoXCmu3sJ2M8r6lwmaRMNzvF1tbIjU96g9SGIFnu1tZADxYlHJ6IFqRja4AWNMjE0tbzSLobNexpM58Yn6b9SHKo5jtsDWprpN6J2JqmdUDQEMAH2Jompa5jay6CrrTYU/KElx38Yi4/V3PRsFQFbI/BD0QP03PCxjj9rmEf8jEUPdl5OwO7E0nN3lTw5KBlCibb4pjpq+7ECzO0Xsj3Hj6T9HF6EnY6XcIoF13OeCShsVmUY/VzOH9HBLFPTiRVfHsk97sspfDieCz6qcN34L034NUf00wqaArOGZBqw17vQ07D2KmtaRiVBHaaXTKdNaAAM933tBY7tqYBLk1ByXSv0ucS4AxyzxOwcbmCEA1NNZqyDRzdh7/9l2F1AuVC5ujxAzh5DMsVTcPXtKydfkdA7pWvFAQ52LmqhS+X8vM5W0PH1sg123YOXBLqR3mWYtUB1pa2H5dX8tLQZJ4lEf1HsDUfE3Aj+hNhUWTn7bI+WTbA2RXelkj1VUkTjngVH3tc1CwVEjgBjCE1RPQlPHl8ymy25MYNT5Y5wOqGpwa0JYCBVN+maY7Y7KDS8QIpUyZpHxI9GEn3KXZCSvJaUK2D9XLDo40ktBJNxHhlH6Jma2nmjzGSrSIhJ81UaYBUpK5KivWK2fyM+dkpR8/eJ0bPeDKh389xNiMPGet+j92dCdPdczZFyZXdCXnu+Nmf/TEePXrC4ckxi4Wjrgpu3RmQOejlPbyvyTJLnufkWY+yKHG9nN5gQL/fI4QCMwv0eiN+4re+RqxFC3J2fsp8NmW5Ktne3iXYiLE5zuZMl+cQHJPtEU8PT/jlX/51fvzzr3D9xj7YSFEsqRZnLDcVxvT4+te+xNVrL7B3/XYTBjROGQOEUREBeTM7Mq8KVBs9QgRsUBbHNg9JTP1vkA7pydGnDWtjwIzcnxAKRFIcCGTSh8laohU2QFpaRPJ8gHN9NkXJsphR15UAqygVlMvinMX0CUU1o66XnB2/z9uvf4Wjk4esF0cYO4SmVYbY/sxFcmck6zd4QqjpD4ZsbU3YlAUxQlmXjLJRk+UUozTBDLpcxTdGjMvEH8ZIozEwQQXVIob2XsFaEt9bg3GRmNZrAn/xwxucH/4w7S48AZysL7tXt5KdMpp5REVb78bLjjVta9MOsht6KBEnOl3CDS+i16ZvkIaXtFdXUz8ldUbu2BrU1nRisLS2JrFO+lrH1shrCpB8Am5pZ4acY1rv6b43mT9d+j8drLU1VNpiYnYqYOHZ++KAJxPpO+Qy+b3fE+Cyey4i1N2JFH/77T8Gj59I3ZSFE0d8ZyCXk/fFgWZWUvOzXD7by4XB6fdEKzML0BvBT74qfnC+kFDT/FzqD23vCvNjc3H2amuYjMAdwy//Onz+FVBbQ7GUWjmbCkwPvvp34NoLcP12C1qdMgYYddiuBRhpPSWg+pytIdHEySF3bM0Fdi4d6jlbI528E3UhtkbYDA0vpiaZ+UDCoGUpKfF12a6PWEmW1PQJVDOol3D8Pnz7K3DyvmRMqa1Jp9CsG2dapinUwtpsTeR7QBi8bJx2X7JW63TdCRhHWRvpmjq2pqnTFHRdpirFKDh1nfX6fBbWhxgfE3Ajzl6uPxXukx22dTl4o5V3ZZFJTY+aEGsiOQntNWEEjWVaJCPh8NmU45Mz7t57AesyBUmqoUnZMUGKxEnvoyBxQG2GlkBL8Kn6sG8AjrRm8I2DleJzKZOiltetwRknDsZEYkgp3pp91UDm9L/SSwnjtVVAElrLz+ArQoiUmzVnp4ccP3vEs4OHeF8w2d4lc5ZBb4BzGev1ivn5OXW1ZntnSJxFdne2+Inf8lluXL/G7Rdu8/TJI5aLGUcnR5yenzEYjun1h4zHYywRfGSyu81gPMZZx2J6SlXWFIWnP9zi5U9fJcscdVnTz7cY5IYr+3s451ivNuzt3sT7msPjQwh9NsWKolxw68Ye5+OC88WMK1evMOj3Wa9zqvUc8GyKgjdf/zVevPs5furKdXq9vrIq0vAiNHOmDJciAQGgaNPcoDqoFHpBQ1UWH6WbeAw1IUSp6hwgEqTSsck6xsZDtO0mLEZtHyFVoVMnddnQWfJ8RNbrky1nFOWGzWYt6y0K2+b9hqKcUVdLQiiYnT3m/ptfZjZ7QllMybOs9Xlo+NsZCcejBQ6tZTjaptfvU3kpw1/VHu8jzllpORGDZPdp6QOLlkHQ9F5jZNvgI3gf8V6OnZjiJAuQudMQbhY0rdzJ+v9EMTftxkIATgZqa4SZ0d1i6umTGIuYdBCtXWgMNhHU1nAwg9MzKF/Q/kKGJowRkrbCAEF7HyVbE7jA4vjEBvgW4KQQVeNgY6sdQosNpr5WoGBGwVgDWFpbI0O1DMZ3wl2h/ekrcT7FGk4PBdQcPBTHtr0jDNFgIOLP9RqmUwl77AxhGoXR+fHPSVfvF2/D40fSduH4UPQywy3R2Yy39HqAnW1hVJyTTJ3KS5G+4RheuSpi4bKGfAt6Bq7syXmsC9i9KeGZ40OIfdisJCX6xh6MC5jP4OoVaZOxziWrCC9FAt/4Mtz7EbhyXfQ9TRXe2JmzdC9016G2puma3tSf6YaqUkgSAQkh0vRLIrT37Dlb09mptZoa41pWKCLvy0dyvqu5XMdGM3EiGqbaQDmDaimA6fyJ1P2ZPYViqkLvi5eIMyo3iy3TOZrIvPlS3lR7WcMuhXaTvkjXDlb+faF2kAI4H1tQk0jJZpqVxbEOsmSEdM1/0pgbkwRHGLKesBahclhFfFKNWABPCj81DRU1918ye1pUnZyZx3J2uuLg8IT1asOgPyRS02R4mA6ITjoJAk3noRjxoRYmJaph0c+ltPVW3S5pwJZ0GtptWsv2Oyd0cowe6RkljQ7bgmuJmlPWQR8c6etDU0G5rEoBNmfPeHT/dc5PDwApuFdXJdPzc1brNXmeU1U1la/I84y9nW2GvYzd7T5379xjOj3hzt0XuHHzFiFcpaw9i/NzrIM877G7v0eWD1kt5zx9422yfs7OzhXWqyXBVwyHQ3JnqNY1VZTUdx8ChhobPVVVMtkZs7+/x/HhEaPVktOzU1arKSFWmAhXtgeECGen53zqU3cwwGq5IlZTTBSdyj/8e3+De6/8CLfvvILLrAAJG7BRW5Eqo5ZCfW3qc0r9Ts02ZfXYpnutwMoQHDFW4tRDqiidKhUDuhaM6WpxtAUG2YUwsFTstbg8J8sysqxHHWrWmxXBR4kO+CAZf2FDoCDGirKcMTs/YLM5k6OYnrQe0c2gyWQXldXgnAiAs96A4XCEy3OMy8lcRlXX1L4mywYCbEgMDlrpWhusGulFFYKE2GKIUv9GWZtgAiEJ843RUhs5IRYiMM6S4/StM/0kjMbWALkyFZVrd5c42kJ+XceWdugpsyfZGjrvt3C6ktDUaiM7XSqaEEYyEw1qjZ0X9PdQ04YtOrvpJCDt2JrvqA4cocmkUVvT6Gyez/Tp2Bo6tqbNjtI3VmULbB68DidPxYE5JyGQ83NhdLJcfq8rSene2Zbw1E4f7twTIHPvRbh1C/wVYbDOp7I7z/qwvwf5UKoLv/GWsDZ7V2G5EIA1GonD3Sxgk0Cigr3otXnmCK7sw9ExrBYCMlcziIXMxbZqck7P4VN35N/LNdTn4sDrEv7u34BXfgTuvCJMktqaC+GgdN+aBqO0wLNptqlrp2Nr5Jwdkvqt99p2wHVi6Ihc6KBuEqjNaES9CWA5K/OdZSKKD5UAugBNGYFYQ9gAhXx3OYWzA9ic6nflch5Gl4XaGsHLeh29vtyDTFkxlym40SKXSTPTZAImhjNtJlx7To2uTFkbE1ogmebB5nLfbCadyr8PW/OxADcAvVGP2y9NePHmNtPzyONHkSItEIOwNiksgSXP+ownI9lY1KbZXYa0u0wIEctmVXHwVEJTO9sTrZ8jEy8ZNMrO6PdZdZDR1/p96hBAKeOOPbG2DV/HRCFaYgiaBu4U5GhNEBKw9crICOMQELFsd3OVsq8AUh2b2nvWqznTk2c8ffw209MDNusltQ8MRmNi3LDZFMQZjMY77OxsMRrk3H3hRcBTVQXDQc6zgyfkecaTh4+58/JLmCynrgI72/vkvQxnLM5ZNsWa3mDErTs7bFYLyvUGX5es1wX3332T9fKMne09hqNdJjv75L2crJcxmUwYj8fkvT7nJ1OKoubKtetEIqvFuVTMVRA6GA3Ic8PsfMrs7JDFfMF8Mac/GjLZ3ub07Alf/ZUvcvP2PdHeOIR98EhX6kaArWsEeYCi0UKMqUBMMGDSvRE2zSBVhI0XcJ0acEroyeq9luMETeU0KWU8GoINukZCs/vK8oF0fHcOl4njW282lGUpa0Q1FD5UeL8mxpLooSxmVNUaQiRQdda+LDbnMqzzslFyhuFoi/5gJCUHsGRZTgiesizIe5kIgHGiIcMoQwgmOgKe6Ctdx2J4G/ttQMojqC31unMzQQFOwEVhNIyxbTX7T8oY9eDeBG7uCLvwSEGOzje09kEQZV8cZ2WkAF13d5l0gum1dQVPTyVDZXvSCkGbEJNScYlN6QqS0w1oHGHKGpFTaxs6Ip9LwERZvCazJMaLmo+U6QO0qbkXbU0LoKBJ9a29sAGnh/DoLTg5UK1FFEcX16KHmQHjbRH/DjJ44QUaNmTYg4Mnknb88BG8/JICoQDbV+R1oxqhYgWDEdzZFj3Nai2AY13Au2/C8gwmezDehZ19AUC9TNLFt8bCAJ2cS5jp2g25qOU5RHXcxoroODfCMJ0dScbVYi7FBbe3hdX4lS/C7XuivXE6Z55WHJvWRVozyUGjdqZja+TemM46CZoBp+dDWkuqTekC15AYCz2HBmS1tkZCUpmATSeSCzZrTd12LcANlfTzipXcv2IO9Vq/o7U1zWJzmYjUrV73aCL3JmXi5Sq0Lgu5B2n9NbWj0npzsha8ipXT2o6dtxnXslQdW4Pt0YTeEkj/CLbmYwFusp7jd/3eT/PqK1cwNXz7W+c8fVxoFd8Mo/VijFfQgmFra8Tdl3apKsOjB1Ni3ckyMlF2utFgaoje8PTZKefn59y6dZUsCXQN4rSUEbLNmgr4mGqgaMn6FDxSOthERdwhxVshWq8av1qrvgaiqTHBEJ3VDB+roRWndqWrWdBdWVMKXPgjknMNNav1ksMn93n84Nss5qesNmvKckPmZMewqhesyyWj8TZXr95gPOyT37yODRVVXbA1mjDZ2ebhew/o9frM50veeuNNrl+/Tt7r431gNZtR12uGwzF7V6+xNxxSVxXW1Vg7Jsuu473n2u3rbNZr5mdT8l6Pfn9EqAOxqvHrDbOiBJthXcbO7h7n0xNqTVE8Oz+m3+tTbgws+5QbYXyMzblz92XWdUVZbcgwlOWaX//qF/nJ3/ZPc/flzxARPYhksRpI3dODhiY7dh1EM2KDVZZH21s04QRJvbdWM6xC+3qIsdN7Re+1kXtm0v3xNcZmch+NZHBleR/nMmGJXEaW51S+oiyl9HmMAU9UgOCImqvt/Qbv19oxvRQBMmpPnBGWVm3gYDBgZ/cqWZarzsdjnYSc1sWG4XBMlltw4KKKp3VGQmhr8wiTGHStBQ2zWbCBEEWbYo2TkK3OiYAfaf7a1gj6hIzcwe95RcIbHvjWFB4XalDV0VrXhnMwUpTvpT0BN/enomdpnFwUZxmN7HS9gYNTYTRuXaUR6Bra4yWqNkDD4KT0tiZrhPb4H2BrUFvTCIgJYGpxqk6ehaZRYWKASOecwi0XbQ10/hZqATJP35MWCvNTCXeUa3WiQfQb5UKAzdUbIhy+eV0caVWIYHhnG967Lzv/+RLeeBOuXxcgUnvJkKrXEnK6ek3q1VSVZn8NIb8uLM/ta9Kw9GwqaeH9keg7qhpsIc7cZuKU9/ZEi1MVctnnR9ph3MByAIVmEZHDvZeFbao2MrflGr76Rfht/zS8/Bm9zxqCVFuD2ho6tkZGAhIpFJheS2xMbI/znK3hu9ia9u9WQFFqvmk0bJP3NPypgCTP5X1l6tvUOX7MaMJpfq3gxkPQNiPo8nJGlkwCHIMB7F6VYocpfJoqWhcbuXd5CqOlD6lNCAqi0zWorWmYStEIKBBT0NaUQtA5MEY1XbEF6R9ifCzAzZX9MX/wF34Owoavf+0dnjxZEiqLtbmyMFbBgPwEi3GG27cnjIZ9yqLm2WPZUbhext7VIbs7Q+bTirMTS1VGTo6WnJ1PKYqCLO/RPNzKuMREl4FShr4FHg3jkpCz3BwJd0CqlRNBK1Bb6cQcaSvr6sKW+yWaH+GErO6qabQRrZ6nFocbIYSazWbN+/df58mjb7Ocn1IUJXmeE0NFMLDZrFgXKwb9Eft7VxgOcjJn6Y23uXfPUdeeytfUZcloOGKxWNDLHGVV8vD998icoygKnOvRH8oD01v0qYoNVS0NzEbb20QfyHNHf2cPvzVhb3eP6APFumKz2VDVNVSVNESN2p+ISO0D+1duUZWexWJD6Wv6NsfXJefnC4bjLSbbfQb9Abduv8SDd1+nKJb0BmNWqxnf/Nrf48W7n8blmQKa1FeqzVCKCYDoDsJ0as9I+MoQVbEjrSoQUW0Cr6R+YlEz0mh3uWqwmjYhsVOPSEOJ1jopeKc7dWcs/d6IPO9jbCYgInqcyRhuXaMq51TVKRhDfzgh2kBRzvF1QfC1hL6dsM7GRrIM8p7h9p077F+9TiRQ1RK0dk4afRabgqoO5D2pmNzUAlJEY1XnkVLiDVbS3ZPtsFbWsY3gpewBxmlmqzBdVun0aMNHCYP/8MeVMfzCzwEFfO0deLKEyqreJll03YUmC2+B2xNx3kUNamvIM7g2hJ0BTGs4sVJI7ngpIZdNIVVzO7amEZg2uokozjs5oIZxuWhrmp26TVQLjb6ryYBK2ogmpQ8u1OJpQm1Ax9bIedUtMxS8hDYevC4tFOanIvDNcwEuBmEHiqWAjL0rMMgFVI234a7TgnJB2ZuxFILLnIS53n9PnFWxEVZsoKGcRV9eU1vD9rYco+cg34etWnpP+SDszLoQkW1ZigYnRvWtChSu3JJMqMVGgUEuWqGzuQCv7b5oSG6/BO++DsVC2InVDL769+Dup+UeN0xeCqWo800ApMm2TMBQmZzEkiUQmbBMg4giTRjru9iaJqzT1I1JAFRBuM1pWEFrRXDd0/5W0dFUw966Jtqj6kSOO5wIE1TOtYpzLa83yz4KOugZuPOigFcTBJDG2NYi2mwEZPaUgeSirSFpyhqgbS8CfutoKxFHGjY0gZrU4BarzNWHe8zhYwJutrZG3L1zi7fefIs33jzi+LAkKh1nlc5LLRmSZqUsSvqDHvdevgrW8CvlAWUVeOnVCa++fBV84I1vn3J2siQEz/nZmsdPD/nMbMVwOJKWCM2OSmZMFBq1gIxOuedUyTYhTRMjUbO6UhPMtHJTaCQ1epS+SKHZnacsjWiidCaPXpnpVigWY03UfjApO6ssK95/8DZPH72BL1f0+0OsySiLBZvNjBgMm01N3nfsbO8SQslqMcNXK6wx9PKMYrnGB89sPuX89JDT40Ou3bzB9tYuWEtZFfQGfQaDnoQ4yJien9LLDcPhBJflLKYz6lAzyHuE6Ik+UBWeKpSURUFZVKIJKgu2tifyWrXBWUfeGzCbnTKbLlmvC5arNdPzWvQjecb5bMNyM+Szn9liujggy0ecHByxvdOjLAveeP0r/NTP/h5u3r6ruhqLjVK4MFVyTpWajdGK04iQVsTdEmcJJmJsuLDxkmcpZaMpo9KkfopTkHCi3vOgbThsUMZUnIhosJzoa4KA036vz2C4RZYawrqc8fYtPvdjv591cco3v3ZC9HDn5d/Kcj3l3TdPKNdLoq9k06L+KDOGLDeMtzJee/XHuH7tJi5zJMjiXI8scyzrkrIqGZtxU18o7XiMsWonM91Yiig61l7BjTI5ifcyuo9K2Q82gW9hHn2z2/yEjPEI7t6Gt96GN4+kyFyjbUkiYqPOQY1rWYrzfklsDeWBOM1PbysDFOD1UzhZipM6W8PTQ/j0UrUiHbFo17GlDKoLpeV1x5p2tTHStk+4aGsuhM+aEH7aGdPYGjm+VUehTrIBV1rcr6ltYwSAvPcOvP+G9GfqD8VBFgvYzIQd2tTQd5KhFEpNCV/R9OpaFsIGLKZwegTHz+DmDVBbQ1XAoC+ZUHkOZMK25EYcb5ZLFeJQCzsRvYKlAL6QXjGbSoBQWUgIsCy0B5KVKsYzDQ+uSwlznWt6dZ5Js9PNED4zgcWBiHIPjmC3J8d+48tw9Hvg9l2UIqbJZEuVnJvdqmsBCYkVsq3GxIZWK9PQygpc1dbwnK1BbU1zr9JxPDRNJNG/ewVHxglYG2xpQ1grbMvkJvzY74PiDL52Iu9/6bfC5hzePNVQY6eAXwIWuYFxJunx128KOAU5R5fL73Ul68WM9Zw77EpTLVthhlFgVKtwvimJkN6fpuiircGo4Pkj2pqPBbix1lIWNQ8fHPHWmzO8H7StC6wKiY3DkusuUxoRFlVg78ouWztb9IY9jLXcu3OF8TDn/jvPOD1bKyCOFBvP0ydnTGcL9q/ut8Y+GXRdfRal4HXHH1LnZDJClIcjdZZ2zqkOz0iJfq2tkoyNs5LKLUC2rSIclXpu+hoF0WwYvXHimKMImI2Es54+us+7b32FUK/Y3tmhXG9YlnM26wXFZkVZ1vT7Y/Z3b9CzIvYqNyvKdUXwHl9XFJsCYyKbzZrZ9Cmr5Rlnx4GqWLO/fwtHzmK+olgXDHoZ/V6JtYYqsxhyJrsDhoMhxWZDXVXSGdxArGp6+YDJ9g6199jMMT2fU5YFWR/OTk8oq4LlYkVRV5RlpAoZB8/k39Ya1dFU9LeWbIqSXp5jjGW+rNiUU4iB/sET3n3zW1y/cbtlVxCBsMUSraQuk0Aj4sxd0Ay3ZEyg2QkF7eQt7TIkC09AbsAErcKbQEsUVidY36yBRuAeRI/iXJ9evyfsUggYm+GyPr28h9WYvYlDcrvFINvBYnG2T94fsLf3Ir3BhKw/oa7mOBeIxhMCZBhsZnExsjve55VXf4y9/SsMhiN8XTXPS573qX1FUWzwIZDl8oiHGNRIGJyzknFngxjQiBbClPkRZgtSpW+rxlSysBLoRsGba+z1J2I4K+zL/SN4Yya1WZJquxF3OkCL8BkNfZQBru7A7pboSIyBu1fk3+88E0Cjtoa1hydnMFtIZk6jd4FGEByhYVUasXASFGQCOhJTYwxN+i9q7FNtlYbad63hT4xPirM3gAmajK1uq4GupiF4ePQA3vyyhJ12diUcVM5VzLsSlqQ/ht3rMme1FyZnPVfGppbPJIZn+hSWp3AcRJy8fwvIYb4S9qWXQ79qHSo57A6kmN9mIyGWngKwshIHvr0t35tlAoLKQq7v5ESA03LV3rfg4Fml1XmNttqoYLxQRqonQGCpYtsYRSf05rfgxm2Z2xTeSc1C07OTQCPI6zEBnO+0NaitaRqWpjYFqL4mVTdOoazUWLXpLq4ANgRhbFxfwm25boytk9fyXkcfNAC7BdmurBunqfX7L8B6Av0tmRcXZP0FXWOZnv9oT8DN/j4MR1pBWZmYlMK/2cg55anydWtrcFbe07E1dGxNG8bS607AzSs7lFLrQw0f0dZ8LMBNjJFVseDZyTmLRYWJYlgads46rM1wRlMx0X1PrMh7fW7cvMq163uEGBnkOU8ePeP+g3NOjlYCEkxGqA2Pn55wdHbGreI6fdsnM46ANhikBcvRRC1epJk1iDG3UYo3ybuleiumWxBNYopWX4uEJqwUVfEetctp0Pi60QciILSgS5k9iSmIgfVmxXvvfgvvV+zsSxGl9WbJZj2V7CxnsQ56/QyXB9abKePRkGg8dblhsZiRWUOoA85ZiBWDfp+wNaKu1jx7uhAW94qEsqpqw6asKcoVhppeb4xxGcbmlIWKVfWBtBYy22YS3bh1k63dfVzW49nBAdPTU3qDMe+/9zZhOaeqC9XhRHb2BhwcrDmf1uzsGvb2Mq5d22M6PceaQF2tGA0di2WN94GDJ0/51rd+jR//6S8wGAwFLBhoxZHqiGPUVg1BIwFW2QfT7IpTzRxpyForixGxmTruKFqrqAUZU/XiqPodE42E1q1tdhzRRLJeLnWB8p50Bi9LnDXkvb7oY0wNrJjPH/Ktb/916nrFenlKmQ15+uRNVuszytWKLNuhznOIJ42NsC4ji4brL3yaF+98muGoj7PS6T6q8ZNQfmC9WVLVAjSj6tBiQ5VH3RxaEdOjPaWIDQsu7UO0tg3S6sOm0AlSkyqQ2ll8ghTFMQoDcXIGiwpiqiQMDU1uM9oMqPS5ShzJzW24tifrqNeDx8/gvXM4WqlDykR38+REKuAWN8D2acIPz+9SO7amcZwRiKlQHPLTJEofGgFuw8zoexrBcVRHpU6x0fJYZXU0BNE9J7U1bFbwzjfBr2D/qpzXZgXrmRzHWcFk/UyyzTZTEeMaL3qVxUymrY56jqU4060RVGt4upDLuqKhrGojYKlcynn1xjL/NhcGpZfLtQcn35uy6zFw+7aEqbK+gJHTMynw997bknVVb1QYG2FvAAdrCR/uGdjL4No+TM/l+OUKhg6WGk57cgDf/FX46S8IyPoAW9OAnmRXoMOatbam1b44mnYeJkpWUtKaJAFx0/0bGv1OqjTdsTUQhJ3p5QIygobnnJV1mvWQfk5rWLwP3/4bck8XpzJfT94S5ma1gmxHjqW2RqKyqs954dNw9zUYDWjaMSR2yeqaKZYKNHU+UtG9jq1pNgop9R2dxzSXJnYYMWU005x1MwU/gq35WIAbY2Aw6PPyy9d45dUjHr4jyM4EcVAOhzcOYzKMyehnhnsv73Lr5jZ53zIc9djZ2aIOgfPTGU8fz3jnzRN8EUX7YhzO9Dg5nPPs4Ijly3fp9XKCSyJKq7v3oHMuWgrrEgjRZ98EQrACKNSQpEaXEdF+tKGq9ualEGPUnX9M5bg15NU9ng81xrkmPBKJzM5POD56SL/viLVns5njfYnL+sRqQ783YDic0Mt7ECyTrT1Goy3yrAexZrw1YbI1pi4KCIGy7jMaDqm3r7BczDg4eI+jg8fU1ZLJ1j55ljEcjhltjen1M6pyRa/Xw2UGX1fkvR694YiqLFkvlqw3C6wz7PUGHB2eSLuE4Hjxzj1clrGcL+n1x1ib0+9nLObnTM/n+NKzt28YbWVYY+lnUK7OmU4t21tjrDVMtscU9Qrna/K+4ejwIVW5od/vE6P260q6EvR+RK8RgLadRQgWr5oECZnLzZGmo1osMekrYtSEEa19pJlYEU/KmG00oTF13zYYm5PlQ5zLcZkjVEEbNTvyvIfLemAyYoSqnnN+ep/gK2KUon5P3vsqZV0S6gLX36Ktrixp/s5YyCy3Xvgs+1du0OsNRDvqcpyR/mvWOiyW1XpDWRYMhn2C0erfKQUaAeA+pNYOOb6utDq2E5/nPcY5EcYHtNUEhGiwqeQ/iQBoLO7HfxgkHPLyNXj1CN5RBxOSg3K6s1aAkxl4aVdATd9JptXOljj6sxk8mcMbJ7CJohswDkwPjuYS5njpjha50115kz4c2hNK/YxCN06qWoUEYBrWJzE/pv2s6ToK/Xza+XdsjRi3rrambjNsEjMxPYGjh3KtdRC2xhfiLKsgfZqGE+3UbWFrT3oyqa1hayKZS5uNnHvdE5Hw9hUBPgfvSbuGaglb+xJ+Go402ykTkNHrybzXpfx7OBHHPV/K+TgjDvzwWPQ8wcGdl+VYi5UAHJvL8ebnMJ1LGHHfwJaC1gxYncPUyndbIzV56pUwTz0Dhw8FsPX7et9SyCgBVNOyNt12FsG2+qeOrZHPJYattTWNQUkiWzTDqFkLnXuavt/15F64XMOeoQVAeU+rLGudrnoOp+8KgxIr0TU9/KqEk+pC2JsUj7KxrTqcWXjhM1r3Z6Cgpwe2aMEdTuoblYVo0oyG6ZqTTvOQWjvkwv6k6sNqa+QadL5Sq4aooCdAWwzzw9uajwW4iRG2xhNee/VlltMNf9c/5b0HUgnWuR7eFbggYQqDZXvS55V7+1zZ7+HrFetNj16eY4GyLDk9X7GaaXwvaJ2P4FivCp4enLKYL5hsj1tNkxXHFrHEUGOjoQ6ViCaNlurXgm2k9GIj7RecGv10LwCtdWOba0ti04iRsEcEEx0+ejDCEJhgdN1aFcVqxV1jOXj8gLrakGcDqWFic7J8QF5vWC0WWOcYD8f4usTXa8bj61RFKY7XZgyHPXa2d4leOhyHCMvlnKqoGA63qeuS2WxK7jJivWa+WFOsh8zPcya7O+xfuUreHzA7n7Ozu0s/3yLr59R1TdbPGJgR5WbNarlkZ/8K999+ixu3XmS1XkBds7UzZG+1x3Q65ej9+yxXK8qNlN7Oe5nMizcEHyFW1NWaorQ4YxmNRuxFx/npGePhgO3tEVkmYmfTWUBGdwNNuQhMYxyMQRgrVH+SKu6SstGMaKBcRtNuI6QGm8r0kIoGyvfIUghSnVhfs9bhXKbp32CV+ZDWM9p4Mmo4UqMFqfhjCJ66XuF92YQ6MUYrVAtoc1baX0y2dxkMhjjdSTXZdlEL8BEpyw11LaENaxLbKdfSZDzpLISoqcLq/5oshaQBQ0OqpBo5EpazCGB0LoVMPgEjImLSV1+G6Qb8U3iglWBdD1wBIacpxDbpSabUfl8c3yZpRJCQxtkSOrZGBJJOKuYenEgrhp2t9vtt2vlacaLRiOFXW9Nm4ujuF6NgxLdGHzoOTxmZdG1JbIqhCW1FJ583iSFILERywslpWml+WW2kdknKzskHwoIsFuKEUniiXsP4usxDjPLeYU90OGPtph4RFqWopFFmXUrjSpfJ5xensB7CeQ67O9JRvTcQ0e/eLvS2JNW4rgWsmJG2gFhKE82334RbL0p7Bu+lls3+ngi6378vzMRay/z3lPbxypTFStik0sncDnPYc8IAjQawM2o7mTfrJzEMsb0HHVuDQYEsqqNSsbggGZ3nqBlOKVSowLYRkXeRqoKfJt1fX7NOdS8pzR05L7U1zbk2rQyg0QYFL/oonyoZm5Y9Mfp76qW2syei8cTadCsrR2ViykJCgFHXVFqX6X0X5ukfbWtkXtP6jUhWmJH5C0HB+IcbHwtwU5UVB4+PidFz7+4+658sKIpjHr1fYZyW09MQjjFG0pVXK+bzGZPlmMGoz9ZoTJbljIY5L97Z4d6ru7z1rUNiHYle4sl1HSUlfDrjxs3rWBOk3ofJ1NxYrbekDRJJu3sNQkVxiLaTYifF6IRVIiT6X3RBz1eLDlroTjJUFMjEqCEsL6EUrG4MpK8PMXJ0/IDaFzg7weCpfcFwOKAqe+zt3yCEwGg4ZjY9YjgaQV0yXy7YFGuGgzFXrl6lWq/JMkO/P6KuA5ktcT1Z7FeuvUiW93BZn62tHbYmgdViymDYYzjYItSRvVtX2d2/xtOH77BZrRhNdhmOJwxHY6L1zM6m5HmfdbEhmJx33nydK9evs1rOCb5mb3+f0+NTHgbDclHiMsdm4+n7wDA3nC0j4/GQECPHx8fMp+dEk5H1t6jLDXUNmMjJ8WPms1NG4wnGpnR6Le9oTNvIFC0JQMqU6gKBqH3JZP4j0iPM2YwYvWhsVE+FcUQr7zdNgUBDNJ5oM1KBQNs8ra19Et1U0q2YxgZKJ/FWZGpNH0+lz7wlUkMMEgrSz8imXcBqnucYa/BBtGF1HajqqvkdRGQdVEdhU+goxovaU5PRVPZWniiaBOGs2pfQ6MRSeEv6aEFAAKhPaaSfhFFW8PgE8HB3H36ygM0xPKpo+jElwGDUCa403LIcwagPo7EyDj14cQde3YVvHUooRm0NdZQu4dOZpEebIN+ZOnKnEFOTDZJ299AIjJvMkrSgKgEqJqXFqiNoCr51rrNxGolisx1H42nr3ei5pDDA0QNhauxE3ucLqQ1T5rB3Q853uAXTIwE5vhSgUawl0+jqVdnJZ0acog/gStHMRODaHU1f7kuzy0kQdmXYEyFsHSWF/uo1ETWvVjDZFUZotAW2lnTwvC8gx+Tw5uuSXr5Uzc/+PhyfCmhYaE+kjYabcgPLCOOhXO/xsYamMtWfFBIVMRGOn4goeTy5qHlKYOBCCW99mBtbQ+e+pZBhpCnHazMazU0jOHcCflO6tEmgwyv47YY204Ym/ZdCj6YNoYECYtsBXz2g7Nx3BaEpVJleJsp5ZblKw/T4dRCgmUoXYDTbT9d9Ch0lRiqdqtqaiwLi0H6hSWtWGazQmdN0rsbCR7A1Hwtwc3a24D/7y/+A3b2MnW1LrD17kx4Hbq0x/yT4lBYM0/mKb377Eb3+FuPxLnt7OtfeMxwPeenla6xXG9brgkfvTPFeKhibmHNyNOPkbMqmXLOVj3Dkauil5484EJTFEZQZ0p5dhZQ+emzMiMYSfMRaLWqm2Qxy6+wFYXKbLijeKqZdme6GU1XdNo1fDJGvKxbzGRGDjzV1uSFGKUy3v3+VGCO+rjBEtrd3MNGwXs84OT3DxApfLBj1HNs9S6wc68Waqi6pq1r0GrUnI2eyc4VyXWKCFKHb3etTlWtCHQgZHLz/kOF4zPUXXmK1WDKfzpmfL+iP+kx2JvT7fWbTMzBQVobVpmLz6AmDfp/57IThaMz29jZ7+1vMZguqKrCz36cuYTwc8NprN7h+7SoHB+9z+Owpla/J8oza16zWG/avbLG13ef87JD7b32dW7c/BQjoJKbEhGTwTVs+JEpKP0HAaYw0DIyPysZFACdO3mhjSF8r858S9fVuNZS0rMfE/DQhAwVYUvHXKEAygGtATYi2jSrgsHaIsWvSjtsY0fSYpocZeo4ea3NNw466MUrCdAU2Ea3b4zDGaSE/CMaR+pOFIFqyqGtMmM0WDMqUatFKDethNDtM0ZEBrFVxfMpm+CSM8wX8lX8gmouJEYe304On61a4aTQ0hRPR67cfieMb78Iesth8kA7YL1+TasTrAt6ZqqG3EHM4nIojLtaSjaO2Roy22JqmNkhTaC+0O+AITU+rlBWTCrl1O4NjLzq352wNHVvThDYSCQA0oKquBcRhBEhVWtnXGNi/ps5N9RCTHXnfag6np/L+Yi4gpmehymChRfgqDYXVNZDBzhXJYAoIK7R/Q8I/dRCP9P5Dab/wwksCnKZzuW+jPuxuS5hoeibnVSFZU4+eSO2c2YlkxG1vw/5ERN1VgP2x9P4aDuC1G3DtqrSReHYg59XL5N6t1rC/JWniZ4fw1tfhhU+1960hGFpb0zAjiaUJidnQuU33pGNrGkduXJuG3WTC6ejYmov6qHTjFGClTLuOrREWR0M9DUBwYIfQsTUNm9OWydfjeAkhpUynqNec6tzEzjp1en5Nd/QUeoutjiitMesuApdmjrgI5Du2Rpa4Uebmw9uajwW4WSxKvvR33ifLYDiOTLZ6rJcZtW8n0Gh4yJARQuDZ8ZRf/8b73Lx9i9sv1JydTikKKWud5YYXX7zCj31+yXJWcnq4JoQaYyyz6ZrjozOKTcnWcNI0LRWD7XCENtRntdR/jLTF4cSpeMSARC0lbay2XTBSmVbWakSKtOl7Sf2ZpXUEUZkGuvVSojJU8msIXgrFRag2c54cv8dovMvtFz/FeDgSHVBVEXxFnsNmseDk7JjVakMMgf7OFpmx5MayWs6ZL2fqsJxUuiUj+Ei/N4Kek+7VRaTf7+PrktXiHGdzRttj1usVtY+qH7EUxZrF0ZTF+Rl7N3ZZr5dUVU2WD/EVFNWGzXrD0bMnEFcMRztEX5LnjsXSM97qsbuzxdUr19ka5RSbktFgzGR7xPn5mv6gjw9w9eou460tLDXVZs23v/Er/MRP/zyjrYkwLwEV1iI6GTX0srnQsFI0BK1E3TC/KewSfAe+BL1XRu+17OJjJ03T2tSbzDZrJwFUk7JfjDgced1KGMdkLQjCYm1P7YpW1TaZbBBV6I5NrQ+iAg6v1ZFyLW6ZrkXP3gj4GvSHhGA0i0yNihFhtAlBhe9iQCSDL9klXa+ENgFEEI6sSTzROAV7oWnM2TYE/ASMeQm/9FDaRI0ibPVglck1NGyGkfuHZLxxfA5ffx9u34QXborWplDnnBl48Qp8fgWzEg7Xsrs0FmZrODqV9462Wn1yckBN7Rtoiro1DgT0poPamqZsvU1sjGtperU1bYXYdE+iXFNX9GpbW9PumhGAVWs38s0Cjh8KoHvxU8LSmCAF9nwlnmO5gLNjAXchSPgtZZ6tZlL51yJhOovMp49ai8XJPBVRwEpdwuJcHOr2GNYrrSXUE+1HsYajqTTtvLErf68qAY0VEkpbb+DwMcQ1jHYgFJJJtPSw1YedsehHRj0BRMMJbM/gfC06rBDg6q5UPKYWZujr/xB++ueFOYq6i0rMSGqrEIO8njp0dytRP2drWkFsa2uaG9BkD3VSwq1r73/DGEWazKok8m7Ey1bPL+t8xmqYCQEtRpXZTsEN6ZpMB8Apq2Ry2pID6SHS6zdWAOXzAMbo7825JSBok+kj2RoIbdXhmOZF56ABdEHmwX40W/OxADchROrKU9WR5brm9LjGuT5eU+esdVibk9sBmelTISm8s+mKs9M1q0XB2eGcr3/jMVUB166PmGz1sN4y3upzdrLBRIcNGeWm4PB4ymq5YX8vdjQzutul6SoF3hBM3SJI3YnH1AQtii4mpA2YkfRvuY9pobabJaMAx2m6uYAa3emjOp0I0QRsdAp8LHk24Hh+nxUFEch7I1I8Nfqa/rCPswPyNRw/e8xiueDgYEG/73jh5g0m2xOsMeS9HtXpmhgNWTakCiXD8Q79TIRnGy+xaZM7yk2BdSPyPAcD68Ua13ecHp7g61oyszIIdcF8E3D9nDwbcX7ylNHEUZQ1y0VBjGvWmw1Hzw4ZDw4oApgoPZyePJkyHm1Yzufs7uyymJ9TB0+WRbKeIXOW4XhMlg8wJuP87ITpfMPjJ4+Yzc7oDYeSfQZIw1VkXg2gmhmD0wariYqnYVx8rEXflKr0mlbEF4KklXs1+tIAVe6x4O3GUzW+QdZGMlZpfUBVV6yWBfNVQVk5bBRWIGlZwBBigTVbHSY36NH1UMaQikY210PSHal1MBbnMrYm2xpmzLQeU2zAsvRcS4yXlB+I1mBCWo8SVsXUWjPMgg+SsdihkVIosBt2/USMEKURYx0lM+a4lhBJrNudpc3BDsD0EWBQw2wFJ2tYFCIW/sZjSSm+NoatXEIgW3042YjRDpkU8TuaSRG5PWizXUwnXKAT6A08Z2saNkBtDdA6mCZbh46Oh2Zz3zpPdSBdx5h0ORF1wp2MlGwI8/vIxSH1YqKG1OpaRKO2Dxvg6LEAnIOFCJBvXJd6M8YIKClWch3ZSIDGeEc0IhHRGQUEZG4KcCPRMhmE8eln0qMraW0yRPy6CdDP5ZgnT2DiJNtqUQioWW/g2TMYPFV8FwRQPDmH0VraLezsSigseOlb1DNagHAsTJLJ4OxEauE8eQyzMxFFh/Rcq43p2JqmEnSsoWNrGgcdNZSTQGbH1miDNwVPehy1NaBrsgFBnXXcZXHS+qhr0XutSqn+qbZGgIcCplBI09Em8ShcOHTDKGH0uQg0YDnW7bGcg8m2AlBlFxPASaxOWpQx0GRENaFSfY+pNTIqtqbVljUH0nPhI42PBbgBNB3XqHOHVDQvRt+EbFLIwKhRKKuK+XTD+emco2czvvIrj5ifl/QHOVvbOf1ezvRsQ6zTztYSvePo6JzNusT7QJZlSJaJalys3mWfOjhrB2btGt6t5hp0QUVkh20QMbCxRo0/mvmUNBRGHJvumFNswmGbUFNEBaAGZHcfGI6G1MUKl0lqea/n2KzOKFaGfm/AaDxha7JFqEqWqyXL+YrT0w23Xtgms32uXLkOvmCys0vwNWcnRzgbmC+m5NmQ3sCR9TLKdWRTloR6g3EZsYzYOILBgBgjm/kGX21YzqdsXEaMkaouqMolq8WcW3dfI4TA9GxGAM7PjoihZDGbsliUONdntdkwm9cQYLLlMM6xXJVM5wf4umYyydi/cpW63mCcI88zqqqirFbMl0thzpcLNusNMSgwjFIrRx4Do4AlErx2XY8QTMRGg3WZdG03qUaNrrkkrDTC1tW+bjLlQvSy7qI88LJWFCSk+iCNLkXWhY0CSMqy4snjp/zDX/syr3/zG5Rnp1wde65YyDPJ1ivKgrII+LxQm9hrdoXNRj6KwbSd8BZokchUNkErpvZ6fbxXtjCiBQYlfBrVsMg3y67Oqs21VovyIb23CMIgZZkwNCY5yuAbx+zT8/mJGjUXrHkjfvQtAGnCUwpAqgqmBZzO4XAG//ARnJcw6MG29jg63whoAvmcd3B0DptSjHbKQml2uWrXfGJsYuvoEgBpUy25sHtPAkvbcXpO02ib8JRrd8wN6NZ/JzvXsTXYIGndxUq6MVsr17U6h9VUMpTGWzDZkvlYLiVsd7qRCs6uL8xIXQiA8DWcHIH1UswvG0o14l4G66jZOmsR15YR4kjSrmMUYFFtYD7VtOSoxfuWwgjde02u/1zDaGdH4rTnU1iUci6bDaitYUtZrlUBcw1FTTIRMNcbcah5JtdVreTaakTHs9rQZNPFjo/osmm+Az5TRWGXtc9K10F3bA0hyjylTLmojIXamqY8AOlvaU3Ezo5K12tVw+On8GtfgW98A85OYezl45muubKQDuuh0Pve61yHLruYwFknPNtSjHIuqTpzr6+hWL22pB+zoQUxTTjNtmSVRVkYXcNBP5e59rufszWNGPlDjo8NuBEwYwjBSzNEatFLhFYEanT3mt5f1xVnZ3MOD8548uScxazA14HVPLCcr7W6sab4agzQmZzTkwXHp+fcufcCuWYPGFJND6s7eSnmRoiSOYM0vkRDFcZIrRdxHsLIBDyOTG2HOs/QwBzVLgidGJVybm2XtCdwzikTJMbOmozR1i7D0YQYNwz6UgJ9Pj1h0B+R91MdCJhPp5yezCkqmGxnDPo96hgYb20xGV0n1DWj/pDMGhbzFcP+kLpek9WW/mjAtb2rrMsNVbEBmxGoMdEzOzlQ1sDSH/bZ3dulLgpWqwXTkyf4EJmfn2OMZbNZUAaLD7BenbNazCk2BbNZSaTH9t4Ec3pCXUeGwO5OzsnJmtWqJHeQ2Yyq3LBYLtkaB4b9MVVZMp1OsS6T6AGB85Nn3HzhHqldQpsxBN7X8pzWtTA6VjN9TFCnL7Ag9dNJIloBOTUxRIIP8p824AxI6Ms68CbVMtLqwDH1HUt9yGR47zk6PuGLX/pF/uJf+gucnp4ycoGXrlleM3NctkdVLjg7PaGqCwbDDGMjddjQ72cE34YtRBtklRnqgn/9TzVF3nvqqqYsK3q9QBKlS2iuedrUHtqmCK8wQlF1ksmxxnZHaNA2FXQ2UYm1+oSBG7U1bbXZWiYhpJ1zAh5p9xokbHI2h4MzeDqFWSEakflGHHxDobe2BpPDyVxq6tx7AWLWHj9lgETT7oZDVGCj/252vJ3MmqYwnwdSpow6zu5u/kJRuOQA0/VHFfqm9Fq9zyaDrR1pkhg3wpCESnQsvZGktKPnOJvCyUIKwE0yCevEKCGd0XVlXLQ+zFyrHNcrqK3oXvauSqipLNrQS/DaddzJ3Az7kjFVFNLl+/iJXNf5uVzbZqmsiYHVmWRzbTYSHoy5aG5OTwRwRmAnh5NaWA0N/1JupODfOEgKeVmKCNxlLfNz+gxevKf31LXPRISmIWQCKCmjyQR1+nqM1LurK/4OtYKboGHRhC70PjvQPig04aMG5AYu1HzxHo5O4O/+bfhLf17WnPNwzYKZQ7YnfcBOTwR8DjMNGW5owoUJv6itacoHpBT1BoDrT++FBS0r6Pl2HTXaonShukaN6YSg9Pu+i6258O8L//iEgZtU1TfqRUWCpuKm9GsxBElU3IQOYsnxyTnvvjvm6GjKpljhzAAIDbVvmkJCAlx89CznFQfPjlkulgyaGhQWcKReUBIu8Coi1u7gWpemQedGKxWn0JYxHfsTNJU8BbmsAv5IjJak+jaqccAk3Y2cb9TCacZEtic7jEZjiDnr5ZlUDTZS1t/iWM1nrOcznh2+z2K5IB/02d0dEmPFaDRhMBgyGm8zGAxErH3lGo8fv8fifJeqFvbKWsew1+dqPsBaR11X1KFkOT8H26OsS9GMECiKDVlPuIt5L2e1XOKs4/TgIbbXZ12ULFYrYsw5PV7iQ2Cx8JTlXNo4OIuzGhKMhjsv3mBdFGA8L9y6w3o9ZbVaY0yGj5FNseH8fMVg0KeuAqdH5zx++Daf+bGfhNRGgKRxEcfl60JSufWBMziM6/TGNgZjo9iaiABVxMGH4PE+SFp18HIvXY41QVKfEcMT9L6mEKRRRs+qRqwoKh48eJdf+jtf5OnTQ2nZY8CayHi4xpoT6uKY1WKNzS3WlUCkDhVQYKLHe900GgE4Lu20mywsEQ0bExt92Gq9YLVaMRxM9PzQnZbs5mNymhEF9Rbjg5rMdh0awFmnejUFhCCtQUJa18kAfkJGV7SZnElQoNOxNY2IM11arMRh3B9LqKlcAWJrmhBFx9bIevQwD/DsRBzvc7am7QWVNAYaAku6jedsTROK6oYskoNQW0MC7Y2uobU1jcah0RSluVDGx0QRCqutYXkmxqyykp1knAiOF3N49khYjUEf9oYyP8MtYV7G29JssfZw5ZpUPD7fld9TW4DeAPKbcj11BaGUUJHNBUiSy5yUhYSNMDJ/i6WAsoOHwhoU2loh9uB4IXOx8OLIR0arX0YFcgZevCFgyXi4dQfWUxERo+xQsYHzpVxXFeB4Cg/fArU1MhQ0JpBcFy1ojTqfrrPOjJFzCOmlxKxFWXdeWY7gaUSzJjEfCnIScO6GIBMbYoxU3X54H/7O34Ynh61MhwjDFZhTKI9hvpYml04aGBNKoJBr8Wmt6bPxnK2RtadAJIHv9QJWS8l0Q9ddx9bQsTUC6m1HN9Ndh8jxQ92eN8iaaxqMfjRb87EAN6lBZUyKfw/BtsYaI52bgxFnaE0Pw5oQa06Pp9RrWG3W+JDhbGJKoOkxRMCZHtFEXOxRbtacnsxYr9dE9kAzSyTslWt2lDAvKfSUNDKAVKzVM7eNIFNTxK3GsC0d0CLZKIllMCFiXS5C0aB0f/qekIBYwOIwLrJ3ZYfJzi6EkrKYs1mv2N27iXU9is0Sg6csNpyenoje0FgWizXDYZ/JeEye5WRZxmAwIs97WHudnf1rTE9PpKN43qOuKur1isn2FXrjCXW1oSxX1JuCAJR1RV1WWOeoqpLVYs5yds7AWZ4dPqXfGzBbr6lCRaw31IW0WyiLmqIyVDVUZc3Z6VIYDm/IXE5ZeVgstYs7HDx5QlltWC1LjO1hsjWGmizPOT9bgolUdck7D17n5zYF43Gfht5XSiFEKbYnWW0isItpXSh90WhFYupqLWElATRRkwK0BhFWmbUahyNitBecfF80VoJUUdZyiAEbLOezGW+98ybzxYLReMhyviZEmK8jT04WMvexoG8jw3GkriusMVQ+kFW1MDFKKhAgUEGs0Z7k7X8xEnQzEGKkKAs25ZqIxxpJYUfXt4mRGEWknKIgKSybmMmkK9K9prZfEOMibGbKzoqy8fwkCYobVqS1NU0jy0b4qKxNtMK+JN3NyVTQ6WYNPqPpGJoKsKWOxqanO9GesBOnUwlt7KuD0Hshx052xXQWZWtrmgwUOs4mZUp1bE0LWrrOQO+by9UhGXktfU/TByjI6y7ClR0JKYVSsp9WK9i/KTWANksawHF6rKdpRSMz0JBVprVXBiNtA3BdMq1OT2Quej0Jn6xXUthvvKVVileSQWUQsFNWAkiqUsDU9FwAw7OnwgKt1gKo6o2AlcVKHHxlJJxU1nC6lGvzRuagqgUcqa3h6RNlbkoR3OYboBYApraGuoT7r4su6HlbAzS0Z/QKKhXIdGxNC5DTfCv7FoKydShzoyxGjMIEpXCQhbYmRAcMNMDBwnwGb78hmqLRQHReESkuebKE8hHEjZzbWK8rZeBVCqg9MlcBUFvzHUxJ1HWUzr3UTvF4mr5maX034moF6QGa7IWOrbkwOrYGtTVt2JhPnqA4aW1kh20JtVTpTXU9YvDSfTh4LWQmtKUxnk21pJ4KkMnsgIYBShMU0Jo1AnRMdATvmE7XLFcb7d6sAuIQpChoFAcVQtQCialKrW6h5aSl71Wi9kPUDZPDmkzq3KSYuSLWVAtFQuEqdrXSsLDG67mmYmleou6hotfL2BqPOD46J++PyXxNCJHNekYMfaIvOTk7pK49m3XE5Y712rO/N2Zvb5c8l0aY1jj6vRFZ1qeXj+jlY0IIZJnsplazU/r9EePJLv3xDnW9YrOcUxQrqkoaT1pnZIPhK8rVgsX8jKOjA9bLFTWGZ4ePWa0WPDp4wmZ1ROYcpzOvz3Lk7KRgOHYsFp7NBm7dmrD2K9abkrL0DIaWnd0xWe7wdYWvPdZk7O5uEQlMzzdAZLFYkXqCNc0gI00Is0mRNO0aS/cvwdWkaQjeq28zmm0lFKtsnpMuR1kcIpJFo1WsLcIOpkJ5mgZe+pLp9JTgAz/7M7+Lg8PHvP/wAU8OnlKuNpwvPctFzaQXubVniF61Xcbqv31j9wIQogjXQy33PhnBoOxmTKBEQ1QWJ13Cm5ThxCpYDZUKY2BTdlhQTY5PrSlQ0Kdd1fXaUF1RJKjcwHec8idhtLYGrIRP1NZgVSNhdRftctHNRCs7/WoFU3VMdkCTFZfASICmN07STXgnxQJXGxrKHpRt0fNo0nmhCQE8Z2uEmVFw06TSahVl067lZnfc3eVGBS82iVg9TdZPYphAQlC9TIS1R+fSPyrT0Ml6BqEv7zl9JizMOko20trD7gj2d1Vcqh3WeyMp9Z+PIB/LNautYXYqf9/eFaFxvRJWqFhryrht21L4WoTLizM4PFCmBsmMWi+l9cLqUO7jzKcHBk4K0dosvAigb00grAVElTUMLOyN5RrqSq7JZtI/jCAaKqIApwQCGzYjraHvtDUtWE0vdO6PT2BI/57Sx9XWtMBHX1dbI1otfU9T5E6/ty6lsnTt4Wd+Jzx7DA8fwMGB1BxaeljU0IvSesJHLSuggCaFtxoQps9IraLvLsuUrjmxO8kWOduC7o6taes1dZ+TKM+YV3AT6YDsBBoTcEvPBJ3v/3DjYwFuwEjRNB/wdSUGM9TYTNottOJPuTBrbAcMVsL8mNTrSSsKI2EkaewnFWGtM1ibETxMz2bMF3P5vjyT3bYRUBEV2KR7Z3C4RsCpDRlV6yBp4Gg9EUWsFkAdriL45FwbJiCxQFoTwEVDpG5YLKl1ErFNMxVHVVXaXXtIiDVlscQ52GzWVGVkNl1hM8NisZJjh8jWeAtrLI6MzPWI0VBWNXW5xriM0XhIng3BwGg0weLoDUa44Yge2wzGe1SbJVVZkGV9sv5AasB4T6grNusp1194mfnsHJf1WawWnJ8e8+LxAQ/fe4s333kE5oSiLFmtApsyQpRqveui5MH7pwyHlsxZnJNmpAZD5vpAwXI1JXrLeGuPydYYZw1FETg4eMJyMWc0luqvVmn8kGrXINWd5VFsQ1FNc1Nic69jrJt08FQssmH29ZmLoPVlhM0zIWK1ijTWq89MAEhCVv1en8989sd49bUfwRpYrha8+84bfO3rX+bdd17n5MkRrCM7o8igb8hCgFRSINkP9XUhRHwdqWIlWhySLbIkzQ+6qTT6P6llglWBe9r8WGsIQQxr4oCaTE8L+FSKIIE8ZaWiIfiAD0lAmPRwnyTmxogT9EGNt9gayfbopurHzoToiBVN35zG0Sm/FZWVSWnBzoij9Ahzs5jJ9+UZTY2TVPukEZNCK+I0XKw0q8beok4ku2Br2gWQdr2mDXs1CF9BXDQ0PY6asgURyNtrqiq5nt4QYi1CXoc2sowwXQkDsli35zjWVHAyYXqi0eaVKhoeD0VUbBBdD1YYnuEY2IbxnrBDZSGgqK9Vkr2mqK+n8MLLMDuXv68WwiAd//+p+6+gXZItPQ97MrOqPvN7s71p708fb8ZjMBYYARjYEaEQBJGIIBWhCN2SuhGvGMErXumCwQgpKIESKAAEgwgRGiAkAaMBZjSWmHPmnDa7T9vt9/7958pkpi7Wyqz6d/eZ6TMxHHVXx+7f1VcmK2utN9/1rrXuwfvvwLtia2gaWAS5zjPNNqsb+OgQJuqInenT6NXWsDgGb6UtRGrJUAcBT7NTuT+gDxkmZ9svbjJCMKZ/znnfIGOZ2R4FPYMoU36VUhPXGOSazACgJsMQBvOjGsHLr8GLr8rfFzP4/lvwnd+H778JamuYRhjpcWMKpek5U9gsRNUpdb1YmPQupPtL12x0Hqr+Kwnc0zGtEXCWKzXH84fzCSwmkGfybhKu620NP6St+UyAG4PBuZLoVYei4CSGKA8TQMW+1hZY7Tga1UGlG/Y0RO0rZDJS1OrBiW6OHmcjwXu6Vqq7gjhAr8r3oA84BNFY9IInSDRaLttPAibqONSh2pQRkZ6nSfDGqLMVjYiEPNCdpIZISkcPJhC6yHweaFrRnpTVmMoVxLalC6LJaNqO+aJhuZIYcNN61qYj1tfWWV/bxPuOQJBMqof3OTs5IgbPxtYFtnYvMJkExpMp1XhNwmtlJdfnCqyBamIhGtxoTDlaw9cLgm2JoWM83qCspoynW4QY2di5yMbWDvtXbvD0M6/ywit3ePedt3nn+2/x7rt3WJ14Wi+Lw7iAzguILCpHWcJoLNV3m0bStEfTElMUNM2Mrm3Z39vhdLaiKBzW9fHfiKZ+q3DWJPozJnij4m+0Jg0aBg2GqAWsolaOLqxkCUVr8cHrAqQHs+llCxpzN0ESu0OKkSNF8tY3drh8scO6yN7+HoVzPPv0s+zu7lBYy++f/jbLozmL2rDZRbouUpSJ9dXaO4pIfAg0bYMniZjltYgmqNBewYYaD+sYMDf0K64c9hSGRsB7yDZKSlQII0Z0YtuUrTEpw0NZG7kGXf1/bjajjIw69wROnrA14nQKpKJrWqqnTCSAhsx4DGwNQ1uD19WxF/1Glz6r50vH8gpwfoCt0R/IICrfio77E7YmA7TUJkBtDSn9GzgngEYBmw+yym8R7Uk1FtDXKAj0CMhYNJKSncDLdCQAZW1TxzUIu/LogdSlCR62Lkh4ahpk39EauQ+S2hoMAj6iEWAzWpPMLdsKAB1vCNsz3ZL5vH1R2gNcvgHPvAav3Ibvvy3/3r0DJ14w3BRY6jhHpMZOibRbsFbuwQepf1M46YDetrC3A3PNpBrYmgw6huM9sDV5NZScMshcSeI56J99zi6yyhpyHsym0GIW86b509sarJUeX5c6mW/7ewLcnn5WWlE4B6e/JaG2lRGA00UZA0MPktIcCkHCgcPyAkAuBplLCihQcWbA3PAxW3MOtCSNWp6aafXotHizjt3A1vTA/4ezNZ8JcJNZFiPdl2Pns2bF2YqUapo7dOvLniuMmH4SBaQmCXEoJka+Dx3WBKZbE559/ipbW+uimyD2TJCyNmKorFZy1YloLDZY+qq4ormxrtAFjzwFeXY2A1iL0xCDdJ+WUKwGqdQxmSBF0YTZUQ1ENITYUa9W3L79LmfHpxTlKe2yoijk36rpWNUrjk6OsZXFxMBkWlCVBXu7e1hraZqOB3c+omk7RpM1NvcusrG9T1M3HB085O7ZO/iuZjSecPnaM+xdus5ouo7pajFu1mVmLbStCHW1KJWxBSYaXAVdvRS7NNmUUK4P7O5eoL3pGU0mXLx4kUeHR9RtTfBLvv3GAWezyKwObDQte7tjrLEcH85kVhgoSstkbYRzhrW1MWsbu/h4zGSyQzUaUVhHFz3ETlkYr0Am6jum3dWDzhoLxICPHTm1WQGxNamWTcRFfe5GDZKu0DIwAg0BeQ2JGYwNWbfTdoHVasnJ2RGjUcW+ucioGrG1tcXe7j4bm1tUozFncc68hro1jDoIVuysLLAFRIiuJdIFaQ2RdVnGYKIlxBRG0iyTNC8N0vdpYIu7KLWMUvVtUNBCUGBjhdVJ72VqEBu0H1YeEwV7n7s0cAUIWmQRtTUQRHeR7ien4CZgkdiPgcPCk6vNDmwNamswATYn8Pw12NogU++5c7SGFRimiPe2RtrOq2FKds6Vyt5ki0/P3EDfYDAxM/r3dO1Gry2xTCTHbASYLGv46F1JsS5PYVkJS1KUEsqpV6J/qaw4wammUO/uy3GaDu5+JF8nU/n99r4wJ48fwNktSekeT+D6M3DxuhQ4HNgaYda8AIw8RpA7VVdI+Moa6VcFci37FwVATqZw8YL0iGpqCCt44wBmUZiYpoXdsYyx2hoMUHawVomzXhvDxg7EExhvS6FB6wSk5Jo1urBOlGiq8puuV22NaFd6WyPPIgnDo86Hj9uac2HMFBZK88sq8xIUNK9WUo9nVIG5KEzO1rYAyo0tAYtxLlWaky4pTbcIKeNWGBM9FynclgCNzpOo15+Bsc59tTWZXFFbw8DWYAbgz1py7aAE0hK4SlmDZjAOP6St+WPBjTHm/wj8JeBhjPEL+rtd4P8GPA28D/xKjPFI//a/Bf4e8ub/b2KM//yPPQcGZ0u8a/VdFj1KWk2HzmdBrrUWZyosJV5DRIkJkVTcjsKMkvuRYYuS9URs2Nwuee0rT/H668+yt7cPOEkmcOjnpTx9iLUIek2qaaJskonCDlipMmyUqXGpKFeqEJkBmIAgY8AENULW9rFMGTOsLRUISYHCZICNlWN2baDzQOw4azzjSSSGGuMWdF3AFSXjomLhl7iqoGs69i/sk6qubuxcYGN7l42tfSaTdcbTDYwr8E3Szhzy6P6H3PvwLU6PH3Dh8jOMJxPKUYmrJvpcOny7pG0WRAtd19A1nsMHdzg7PWaxnINxNG3NbH5K00UODw84PDpgVS8pyglXLk1puyXz+TFra6ccntTUbeT4yLNsV3jvWJsajBbQcxpmc8YyXQ80zSGnx3Oee/4rjEdjwIgeNEAIWtMir3z0MQSJBafsJ5PiN/qSDXuKBSPzSRi4/lnaCDEBnixCFkZFvu+IxuC9p2laFqs5q9WSwklbh7PTE1YLw+HBY05OTlguGwVehmUTWbWGcRso1Ki10eNDxCf7rnag84G2rRUEJ4gsTirGBNQVOAcvwEUzH0Rro++DTavImIGRLWwO2wkTBtApu6YQP2cRmj7s+qekufmzsDXizEtQW9MzLqij8GRaylpE9KuZO0BarmSnZUYMlpbkWiSxge0SvvwUvP6MrKaNg87oYjzFG4FYkwEOA1CVnl3KkMlMzSfbmnx9Bp3zfMzWCMuQSthbuYcE9pJmolWWJnby/TgiYtSFrPiLQgCPX4pGp+7gYm9r2L4A27uwtS8ZVNMNAWVNI+GSs0O49wG8/xYcPYDLz0iRvFGpYTAj49gtRWhs0DYOHh7cFXC1nMk4NDXMTyUl/fAAjg/6dheX17VmzTGsnUqdojbCkRcRs3eSURXUYRdG9DXWwnqAg2M4mcHXviwsVhrDqGPj+QG2RufS0KlnNmcQhjHpeekzT88y0gOeoVNPWUipD5TQ9rBayD+nGXinJ7AwcHAAJyeiMUptNJoo4KbtGehcBqHV1yFFMn3UFhxp7ve2JlMvQ53QwNZkgBe93Ncw+w8ndXdy2M7oHO36mk8M7jvb6x/O1nwa5ua/BP73wP958Lv/CPh/xRj/U2PMf6Q//4fGmFeBfwd4DbgK/D+NMS/GmEfnB27WOozXcEwM2CiAx1gr4uKQlNsGZ0qsGRFiTcTj4xJnJsTo8bHBmA11WOkBdhgT2LlY8aWvPMcXvvg8V65coKwKfPB0nZf0XkArg4hxz/ZgwBKhK2SD7GnAIb2A8iQPSNG4tMZPTkQfkEnhA9vriFIacVQRtbBNELBM1jYZT9aZzU45OlIh7VFNWUBZWlwphfysMdTzFleMsMaxvb1LNFI7ZzzdoByNIHqatqY5aemamnq1xLcLnC3Z3N1nc2eHZlVzfPKQtXaDjc1tjC2wTiqLNvWcplniQ2S1WrA6OWOxmoN1rG/vM9nYpBxN6EIDxrFa1Ty8f5t33vo2t97+Q1Z1zcbGNpPxBtvba9y5X1NEMB4Wq8ByaVifFkQb8G3g+FAAZVkZzuYNy+UJk/GIq1efpnAO3zUiCPYd3nd5JZAypowxg/R+eUbynosYN3UTj2pkBuUXM3jINYlUuxJS5WNdosQQlFGVv8UYGY/XuH5tnevXr+O7hrZrWS7m8lytlUKCKjKsfWRVQ5jqi24i1kmFZt/4rP0KIRJ9oG0a0T2RMvCE4ZNwUaDzLWC0QCVgXBYDG51rxGFYVzRe0qpBCvYFPF0QbYBNgm0VrlobtaRHFBbvh1tQ/VHbf8mfga2RYkWJFVHWxWqI4glbgykFwMQaqTy7BDMRox0bMOuIsLe3NZgAFyr46rPw+vNw9aKAgOAFPGUgMgAm+VcDxwECiLITBAEk521Nr7Ppbc15ZxAHIEjPEfVz1vU/Y0XcO1kXjcmRCmljLY6/NFLBd7oh7Ma8EZBjHOzsyn07J39XW0Nbw4n2qVotpQu3LaQx5t6uMEUnD6HdEHGxLZShsaq/WcrkXy3g9ExBjRU2aH1TGCCvmT91DffvwFvfhrf+UIDPxraEs7bX4H4t9+mRsNrSwLQQFqQNcKRjVRmYt1K4cFzBlacF0HWtaoD0X65YrBoaY3qdU2IcjI5zrqmEPLQUDh2ygvkZ0mtXUsXiRIekwngpYylGaVB6bQ2uX5dwktcCi7kisNI0xgg4rRFQl5xMCis1SQtEoosFkHqtw5SAWNTwbAwQtM5P7k6eGEGlgRIbhYKozNBE3deQaxxFyILtJJLPGYm6gv0hbM0fC25ijP8fY8zTT/z6l4Gf1u//T8C/Av5D/f1/HWOsgfeMMe8A3wR+8488iUH1DKqXiOKQggkUrsBaq85DBszZEdaUPYjTb6R3k3TqlqwlpRFNx/6lTb76zed4/YvPcfnKPrZwBB/xXUdjDZWT1gtyHDFAqaZOJIDVom0ZPUcspTJ2lqg1cTBotWLNXFF0arXoX6pom0StAnY0g0dfCGNSwT+wrmBze4+qKljM5iyWXtO9oS0kFDJZ69jYmrCYzXCVJcTI+sY6GxsbWiXb0HUt9XLJwcOHPLj3kAcPH3EyOxOWIrTsbm+zvbHB7s4O61sbWOeoV3NG0wmFrzBW0qPbbsWyXrBcLqjnC2aHx3RqXF2IYGdgLEU1wjpLsV5hL18Rv1FUvP/em8TocK5ifW1CUch7NHaQ+1hYS+HgbCZVgqtKEuNXq8CqDqyvj7h85RoxSPq0953Wpmkl20mfIkYqQkvqc1CYouJuo2AlBg3vSlg0BGFg+rdcYY6TCscRQ+4YH/o5F4OA1hA8pSuYrE0pXF/noe1altM1nC04PT3h0sWLFFVFURjalTYtRpiqgKEoNNtp5Rm662g8dS2d1vsCfnrHSSCszlAqGRtZIHRSpFJWZCZXgcfaweLTaiG/qIsL6YxuQyBaqwLsiLEuSwMCYP+UmJs/K1tzfrWdHFLQkI/eSy62NxKA84StycY7l6N3SDpsBxc34ZvPwhefg6sXRMfho2QBSayQXjugYCfX1AnKoLheV2EiIvaFczVxBKnKPpF+JZyL/qX9BiBqmIEFch3JCbsCdvaknsx8LllQaaFeGLnktQ62xlL4rtK08vU1ARoWcZRdK20QHj2Cew/h4SNtyIk43u1tqXK8syv9qJwTIDOdgK/INWG6lWhulgtJ/T444lxlX6fsTTWS85YjuKzGsajg3TeRFPcK1ifi7SKKFXpbg0MqGcegNXUsrLwAoPURXL1GzkrynThi3/ZjmVkGJ6DDDFiMBFxT8cUEgqzV0OV5W4PamsyIJE1OCgkT6Vs1eBVqT3VOKVjvWqlV5Aqp2HzxkqTgF0ayxjRiSaHnKFRTtPKDlgzIfTRnAsiz5iftEDi35fIEVgCUMZrtpvNHbU1/q2ne6b2mViKpEGISa6fw3cfevz9++5Nqbi7FGO/JueI9Y8xF/f014P872O+2/u6P3AyWUVURw4oayNVXjSEEhzEG5ypiDDgqbFfnDuGSvSQ6C1BnExEHFD3Qsbe/xle//ixf/uLzXLl2kWI0IvhARwtRRKPRO0HwSbhsrLZB0MmuK3nnpDZFEqFK3R1DtMLeWBIgQhxpFE5InCtYUxAQ4at8XjO7klNKcVvIrMN4tEaIFaenHT6KGLTrwBCxhYCu+eyMs5NTxtM1xuMRl/YvMx2NGI0mQKSplzy89xG/+Ru/we2DUyZbF7j9/tvCJnSBV15+hVdffIFmsWT9bJNLly8RihLftkDElVPa5Zyua1ks5xwfPub40SHL1YrlfM7sbEY1XmO+FCFaUVaMpmO2tjbY2d0mBtja3OXK1ec4ePyAtmtYn0y111GgHCSwjEYVha3Z3S3ldQ6AsayvS/uGazee4eqVmzTNSjKHYiB4L89RJ7/RNh3RpFh2GlOZJQlUZro/SrZdD3B1HyPzM4c5o8l+QYS4ulIxooUJWil4tWqp2zMKa5lOJmAszjnKqmR9fYONjQ3Go4qyqjhbLVnUka6zPRODgpa0OAwIa+Qjq+WcpmnIQnR1bjFqaEptizV65dEjjTMRzZjxSgJI+M8YcnaxaM8iIRppV2E8Huk55Vyhc1/KHsRgQRmw/xG3P1VbA1YMfVjJjyk8ZAwEZTFcpZOuEi1ILkHv9V8y7Ek7oIsoOuk19fVn4IsvwPWLwmD4AGprxDH2tibPvydsDSBgi9DbhBRaSE4i62vStWj2T6qCm0HOwLbITev99rYmsw6VFvA77foVd6efcQq6ZjOp4jtdk/o2+5flayW2hnoJ92/Dv/kNqQ20uS+F8GZzGYuXX4YXXxTAcrYJly9DoRobooSUlnMxBqu59Hl6dCCAaTGXTt/jNWl+iYKa6ViA0u62TObNXbj2nOh8ukYbf2qoJxEhLaJRcTXslXkYMVZAzWoluqArN4UF8prxFLx+n4xKChOetzUMbA1DW0NIK4v+eWT2LnnyyHlKNCgAlnc5C9BjhLqVooXWSHjPKANZlSLy3lAmraqEPaujVIrOoOwJVsTrfPBRxrtt9J4imTkM/WX25FPsr8+iIbqBSD/Ntzj4l+4zGlkYZDZJQ8GZobRqnD69rfnTFhR/Emn0iVDLGPPvA/8+wGS8yZe/foH7dwNvvXGE94rMo7InBsDncIF1Ja6rsBR4TZ9OwUJpkKjggY6N7YovffVpXv/ic1y8fEFWxNYqqAjaIBF8DJRGBWsm5jChUQBijVD1osdQZsaggmTVPqSCW4OHFnNuvzzYGIOuoPUpp4UZGvrSYk1GVeTGOYpqhCt3wFm21yrapqGtvdrlSNsETk8OGY+dMnuRq5evUhYFVVVQFCX1bMbjB/eZzWd88Uvf4PVv/gx//z//33Hz5gu8eettrr/wOpdffIHDt34PZxqOCss2e6xtbeM1jdG3K9q2YXk25+j+Iw4OHrGoV4yqEdPNbd75/vu88fZbPHx8xKXLl9jeu4gJHVcv7vLMM8/QdTWFLRiP12jnjTp3Q92IJnHsDNEagimYro0ou4Zl02GtgMKyKljfnPKTP/XzTKdTATRKDwcvoEIAipG6SDFqiNumSQfGYNWAiDiY9AB0/GVMnS1IKeUo2xN0XxsLBU1RV5BFFha3TcPx6YzHR6e88+4ttjZ3efHZp9nb3ZD2DdZSFCXj8YTJdIv1jYbF4i6rNrCqI+vBiB3wuhgLyuJF8GpM69WKtpU2EVnsl96OJBLGqM+UlPCgc92kuR0N1iaGURpjEnwGkzG2GGtwKn41QVpXWM1k9MN4+f9/RMV/IlvDeBO+dgHuBnjzSMJTamsY2JpssV0JXSVAIbE0WZjg+9U4nZT3/8pT8KXn4cq+rIitJesnQpCPhtCLYxOiTA4iJpAzSI0drv7TrX+CreEJW5Mp3uRQsxg6sQLqiFPGilMWpNpV3UklYYlGGRwiNEFq1IwSkIpw+aqEJUaFCI9nM7h/TyoYf/Fr8K2fg//8P4abL8Lbb8Hzrwu4eev3wDRazXdfBLApZbpdCdg5m8P9h9KjarUSILO5De9+IMd6dASXL0olZO/h0h4887SAUlsICJo34tgrI4LaAjlnYrmmI6i09o1FflcVsDmFn/w5Se0chqKyLkTH2yrIsMATtiaDlQyEBsgn0Z+2GDyX9FX3jRryzLam7LU8TQunczi6B+/dEgH0c0/DzoY8U2u1oOIYppuwUcPiroTg6tjPE9XFZ0YIes3MSp9DtjX95eefM+g25DpPuX+W/j2niAfZJy2IAhBbnYtaAiEEeZa5zMLA1nzia//J258U3DwwxlzRldQV4KH+/jZwY7DfdeDuJx0gxvhfAP8FwFM3n4k/8WPP8G9/3/PO2/cI3Vwq+GoYx2qJfaPaFsm01BYJaXWB3HaInmhaTCxZ2yz54us3+dLrL3D16mWqkcNak+dgYRwdJvcQClq7RP4sjBFGHBIx4lLFyEgueY+udFMjxSQ4jSnV2yAaooR41bH01yzxV5NoOhkdAVCmJEZxKF/+2o/w4fvfwcYFbqPg7GTOahFpusjR8YJRZWlaw3Y1ggi729uU1YiqGmXG6dKVK/zY2ibWjCkXxzxz4xneffdNru0WXLpwkZtPPcfyzjtUhWFzd52ycITOE9qWdjXDtzWr2QlnR0ecnp1xNluxf/ECpXFs3XyF9+8fcuXZ1/jg4W+wubfLT/3cX+LtW9/ljT/4Le7fv8OLL70EMTAaV5zNIlXlGE8KZnMxntFGurqjqQOj/R2quGCxPMMWBdYYFrOand0dnr75rBTDDEGL7gVCbAWEoS0QUDYNbWiqpelNyp5SdZXUk0pAU56hJYUFU8hQjFhy7CatsFJNGgPRyup+uaj54P6H/P4ffpd33nmPixef5tHBEa++cJ2Le/uAgLWyLKnKklFZURSOpg6sNOPWODFkxoqoN3rV/Sjgbtoly+UpXdfiCpcNY9BCgzIjhQ0UABP7MhwyG0itKYz2nzB40XupIYppTKwA5pjqQCW7m4asb1j1P9b2p2przM1nIj/2DPwPHm7dg24+YEg850rs5xWlCj7p31s5sAfTCtOxUcLrN+H1F+DKJXH0CYxYyLVrUg+hXIgPRLOTHESyA72tySXvs91ID1OPlQTOCdAMbE0PenT/dC8DWyPnLsmNCb/2LXjv2xAXsFnAyRwWUcINxwvJlOqMAKEIbO8oeNC0eVfClSvCGpiRaFduPA3vvgE7BVy4CE89D3fekdDI3oawQp2yN6uZaHRmx3B0JFqbs6V8zjq48TLcP4RnX4P7/0bYmp/7y/D2d+HbvwX3P4KXXpaxGFeSJVUV0k9JbQ02avZXgP0dudflmWZsGekyvrsNTz3XA9KsdWqVQdDnMwSbKZU/AU61NSQ6f2BrZHsCcCbAlBz7wNak3VFbw6KGBx/CH34Xbr0LF56W0N0LN2BvD9AwaFVJ1eVSU93rIKyVR0JgIfZA15v+vAbRSC3OhEVLtiaxfMOifugxiP30VFvT92tLdI/v53NidNTWyJQMPXhKh4kM3pdPt/1Jwc0/Bf4u8J/q1/9u8Pv/qzHmP0NEfi8Av/3HHWxtbczm1haPD2vaVh5sVOOedCzWlQQvXbELN8H5CusrDKt8HAkKOaBjshZ57fUbfPWrL3DjxhXGk7HMExexzpHKrbuoK37NErGqSwiEnqEZOjRD/0AV2AD936OkSacqrzGV+9dwQ49G0XTvqCyQZlRlsad8b42jMJZrN17guRe/wne//etMxo7WW5ZNR9OIA1uuAtOpo20aJpMRZVFQlgWT8RSMY1RusL65x8XLct8xWn7qJ36Rb/3IT7Oan7K1MWX+4Vvs72xRTUvWtrfJWWI+4n1L42uWyyWz+RltiFy5fh3alqtPvczO9ae4dOUit279Kk/d2Oba9WfZHlc8feki7fUbzBan1Ms5a+vrrG1ss1rN6LqOzbWKg4Na7DrgrKVrVpTliBA8i8Uh7WmN7yTzZ29vyubWjjqCoDoYJCQYbAYoxmpYkdQ4w2SwqtZK9CVYgoakHMjzMX0Ljx7IoG0M1BCpA4pWnqsP0g9t1TacnB1RsOKZGztU04IPbt/j8OiIF56+wvXLu8Qg/bwinla78zYBVm2k8wKardUFounnEAjY6RppWtp2ncxlxFGmApDCYHbaEkSvHaPx9KTxKPBRwFmyuxEkKzFKh3qxp8KmxRCJWpE5RC9ZfXgt4fDpV1N/gu1P1dawNobtLThsJGsk6TcSw2HQOjga+y/G4EeiBRnYGp2tQCfl7F+/Dl97EW5eEe0IiOMY2Jr+X+hXusn5DYXEP8DWZJAiE5xcAn8oEAZ6wNLbmh40mX5FncWe+n0Kr9x4AV78Cnz710UM560AgUbHaaWr76aR5palE+c5XpNjlBvSWuGyOk4M/MQvwo/8tGQ2bazBR2/CzqbUltne1vG0Mu6+E5HwciksUIhw7YY42KdehutPw5WL8Pavws0tuPGcgJjLF+HoBsxPJKy1vi6C4tUM/LGEmg5SN2wdk1rZoOBhcSgNUb2yZrtTyfpSW5OBYjQaJrH9cXKto/R+nbc150DoMN0/2ZP8CllldD5ua7BDYGEkXHR6JMDsxraAt9v3BBA+fQUu7/a6HAK5E3hAssa8niNFwhjOIaP7NQpuOgE3w5hSuic6DVnqtX+Crcl1fYb4JDGmVs+V2MQQ6bU2mniBJzNEn3L7NKng/wD4aWDfGHMb+I8RQ/MPjTF/D/gQ+FsAMcbvGmP+IfA9uWP+158me8EYy0cfnfD+uzMphBbBh4bCjiAG6fdkO5k/HaTid+mFSE7YUWGBcVXw0iuX+fKXnuPGzStMJiOcFYOd2hugPXesBeN9FmUKJYA2iUSyrjQskZCpKBnkOlLYQ7pBe4hO7YUIjEOUMEASCadXQBhik+euMHyiscnZUoA0Cw2sr23wjR/9WW5/9B737rxLs/QsVhFnjejHJgLDmmbJ3t42o9GIohQRYlVWuMlIbi+CKyvKsuLSjZKu6zg7ekg7P8U3LVWxS1EVlEVF51sVEovDa9uGtm2oVwuKqmJza4e9C/uUtqA9vsfXX/8yl7d3OHj8gFExJZwdMe4a1scl08kupStY31hjPB0xP1tjcbZgZ3OdO9WM0EWqSgxv23Z0XcP62homwulJS9tEXGHYu3CJ0Wgi0gicilq9ZNvhyAWLID83o9RmNBYTVMuVnYbQnxKGNGpPbP68PAddtav/SRWPU24VxuCsJRjL5uYGX7xwmW985Qt0vuNsNuc7b9ziD773Pk29YH1SMB45iqKgqipcaZmuT2jqjmUTqVeBYorUsgnatsKne4BopQrzcjmjaWqqqiJq+YIYwHfyujltDSKlBLz6UyM1mQzSHT2vqAS4xdiR9EfWSJXmkBtKupwdJfcdxACn8MmfwvZnYWswFm6fwHtn5MrAoQEzom8P0GWb3RdLs0/8q+S+qwJevgxffk6AzWSs9HxazRtyzx2LOM4nbA1mwBalsMSwAB9kW5MdZNRYgtqaXGU4g5bBM8krX5MPL84rkCvLgoKbINlOP/qz8NF7cOddERavFNi0wEQP2CyF3ajG2nIhCjugtoaI/FxWcKMUB3n0UABO08LWnoxfUYlAd9hcsq1FK7Oai3Zkewcu7Mv1Ht+D178sBfwOHoCbwNmR7D8qYbwnDn1jTUJOZ2uS4r25DtWZMFBqa7TpnYiiI5LZ1URhlPYvSX0YWRXrNPc9c5JsTQaWwzCKHQDP87amf0b0AGkIage2ZoA6yKApganNDdE7feU1Yb3mc3jjFnzvfRFiTwoJHxaFjGFpRVhdK1BdBSlwqLZGRNwGigSII8ROwGFTCwOUWMeIZv7p/M2lBHzv4FJhxidsjQj2eluTQdHA1uT6HgmN/QlszafJlvrbP+BPP/sD9v9PgP/kU18B0LWeW28+YD4TJyWpsEKd+7bDuRHGFYS4JL2JFpdX16gQ1OGoCnjm2X2++MVnePrpa6yvb2jWCjAAKVaFvNIjyGh9m04yQXQCGp20PYGY1D1pRus+MSg7aXIsMaSkckuffZPCGul4Or+FKUghj0EmlYlEZBIUVcXNmy/yy3/z7/FP/8nf57133sS6mhgDo0p0Gs7AqCxZG08l0wZH4QpGowllOaYo5UUNrceHlq49pWtbbPSU1ZiiGoNxlJWBWOOQfljGWbrQ0TWdZAKN16nPZrRtjTWGshrjnGUUAs/cuMy1y3sELF3rwTVcbK7QBs/6ZMLexT3asGJ9Y5ujo1M21yeMSsOyizgHzka8DyyXK/Z2t6nKEmtqfICdzS2+9c2f0jChLqRMpHCl9GIy6ekoODEpXKijHgWYSEhGnigx4vKqWWaWPN1UE8bo88mIiWEDzsQGGQzWjNjc2efCxX3WN6d0ref05JTVasGt927jFFjEGFibrvPC889z5dIVHj9+wHe+829pzuasWph4AXKohixFIwIREwwhoKLimhjX9d6iCKqRdHTnEhAHayq8kVYTKWMMnWtS9FD2DdpQUoTJQfuuGW0DAsEaTNDKzBiMCaTMsz+N7c/C1tB5ePOBlOW3Cg6cisK7TlKbXQEDW5NDRECvt3FiPZ/Zhy89DU9fE6ZgYGsySInq9ILpnV0qpJec3TnmJX0+fU1zL/Yr4IGtyYjA6u/V1pxzBAObkp3wMJPKRFBbQ1WJPuZv/j34J38f3nlTRLcpmyi9LmUpqdiFEYfkSmlqWY7ln0Fq04QW2lMtytcJGFJbg9qaDOKclbFpOgEy43U40zCVMfI5q07x5mW4siefVVtDc0XGZTKBi3sQVqJFOToVx14aATeO3oGuVrC3LQDA1DKcG5vwrZ8iZ/Gorek1L3EwFzg/riTDnhw0nFvFDmzNuWedNFgDW8PA1gz1dZgRbO/BpQuiDWq9iLxXS3jvdl9QLwbRDD3/PFy6DI8fwnf+rWiZWoQeLhJ49wMWR+drQFiwutb2EzpfUluGEOi7loM0jVXd1JDlMZYcykMBUmLBkqg/FzCkZ3BSoclcHZlPvX0mKhSHGHh0MBc6HKvjIfVN0mrEGKuZRvICOlPiTCWhAoUczhgu7m3w+hee5emnr7O+sa6hJdQpyb7WOIIxSP0bizOF1gmJuMELn0JiIQaMkZzlBFRMEi8j4YUQPSZlKyDXK7SOAC+jRY5yNVvkPPJ9lkrLhepLkLQ8VldlRVHyzLMv8VM/80sUZcn33/wOi+WKsjRUFipnGJUVk1EpK3cLZTmmdCWFdThrcMWI6CK+7bCmYDS2rG/uyzUDMXQ0ixPmp/O8yg8hEnxLCB3WFbjSYQnE1lMWJVVVqEMtmKytUUW0dUHAjgqqtSnL1YqqKFlbX2NVF7jimLIomIxLRpWlbSKFM5SVpSgM3jc0bc1oBG0joZ+vfeMbPPPcqxhbkGqRmPx8lF8xpYKBtBIyOq903xAySxZiUGYDadCaHH9Enm0wA2ZOywOQCv4F9V1aD8c6bDVmPB5TFCWS4ecYVRWX9vd5/aWnKKxhOp3StUsm4zFP3XiWplmwtbnB+x9+n0fHc5oWfDD6Ypr+/8lm6vT03lPXK2FgIvquIMAtBmJMDGUKu6UK4JGo816oCQ2f6iop9VWTujpBRdpqVELU1gxWKhyTQGIy0p+DLQR4PCcLiFOoyAy+Gier0eTsc62b3tZgDOyuwxeegaduSEZKWoVH+n1zh2Q9li0k7BKfBBcJ5AQ597B0fXI8FPI1CkOctyxcTXqbJ8ScamtyejHAE7YmnycxQEUJz74EP/NLAmLe/I5kK5VGsZ0RxmVcyvXaKIDGlQIIrFGgGAXUmEIaVaqtkWfRiR7nVAvQGXVoXtstuEJCXgRhWAoV+oYgY7GmbIu18rtRAdOpCo8LAZt1AcWJCmtL0Qs1Ua6/suLYu1rAU4X8zRj4xjfg+dfoxa9m8Hx0DFN/r4GtyWNsdK7l32uY0yBzIDn9iDxTtTXy/BIIGM4J+vOm9PfJRBkzo2LwSopFvnRTzjWdimZmPIYbz0pBxK0t+PBdONZqxblC8AA1ZDCnv++CdP/2GhpK1507die2yQ7AiM6jNO/V1uTPpTEJw2PFwdhFcjZhqpac5+2n2z4T4KZwjldfv8xHHx2wWBbS3DIV9UEcicVpmwNL7GRwrJHGmpGOGDuqouHZK1s8dW2Pzc2pCrSF9rJGO4PjpMJwFA2BsVIwjWikt5Sxwh6l+iVR0n0jHVLePuiKXiZ5VL0GWktFSvepUzIRo800xblIbZxo0+yJOUwmLkSNk4HcLygtAqw6UVfw+pe+wWS6TuEsj+/dJtYP8HVgXFqmk5K1jW1559XJp/fCWoezDlM4CuMYlRWBDmulyYgxhnp+xGIlhQKdLeh8iwst7WpB6Dq894SuY1RVtM0K3zQUa+vYUo5RUuBVx1TXLZPxFLfnqOsVbb2ibWp8q8XkXMmoGlFYeV+dsUxKS+cDTeNZLufaKRtu3rzOX/nlv836xpYAEwtGmQpZVElZAKNOPdge6UsT1EggaEq+U7lD/6x6XZWCWgpSzFvabYgzkFnh+88q+DHGMh5NKIqSxbJh1SgYJLK1ucnrr7xAvVpRFAWnJyvhl5yhKCtcWeCKQnQ3TaTzhgr6BpkBzZ4j20TftdSrBU27ErCWQxJyv8ZGeQ7By/yNmkWmId0E1owa4cziRJP9nTRvDT3DaKNWyY4K7BzBdH9qzM2fyeYcvH4ZPjqApSN3Ao/Z2ABGHKu12g/KnAc8sYOigSvbcG0ftqY69kqxp/AOQ/BkBQDkRoLpdykvWVepRnU8Jv2e3qGmDJ2YVrLqVGAAypJzjUCq26MO6Vy38GRrBiAr4x79xhXwpW9IewRn4d5tqB+IILUw0ptpfTtNln4MxVDJv8LJdZUjuS+1NRgjjSpXi97hJ1CzmguL5r18rSpxrk0rXb7LUseg6Me3bqUJ574THU29klBKq2PrSjmOkm5gJUzjg+yzXPQg5cZV+Kt/W9oWYJDeVglwoMAyAUwjepyhU07PKc0Bw/lnRQJDiWHrbQ0DWyP/fP/ZBH6M1Y7rBaw0yytIEU82t+DlF+X+iwJOtRu9MxoiLOT3WXejL7faGpkWQ6ATRf+0WkgG2xDMZRCiczcVMEwAJ4vbB+Aw76NAKQOpBMrTHIx9BWhxFmC6cxjsj9s+E+CmLB3f+OZz3L//mH/9L09ZLgzBd6SWCmkuWKV8U7XgnD2FNGPYNjN23YKpjcKUgGa9DJA1KbhkSDnzqfngOeW3ClMFxKj2IYMdXbmmSRu1iF8SnGnfDQFHHS6WpDYNiRnIRgVpkGmCAStdybU+ux7PZLAjfa5gurbJy698mdnJEe/f+g733+twsSPGlul4g/39S1hTCKDrgqzm20AwDbgxzlZ4F4lNDdqvKPqALUraZoFvVwLkilJYI+8pjKYKdw1tUxMNTMYVXSOApSwKaUFBpCyk2qtzjqqqWK0WxK4lOof3Hd5LZpNJZeWRsEfbegpnaYPoblbLM+plze7eBv+zv/N3uXbjaQGMSdBnDdF4EcZpp2tZAEvYMRijoE7GPOhqXfyKZj+lDJEIaQUbVWgc9eVN2puU9ZayjJx1xBBl8ROE/Vm1kfn8lPmyZlRYttcriqJge3OLRVmwWtVSeLDr8EH+AdpXTGx02/QL+Ag5mSCi4fEY8DFQ10vaekU1GpFrQ2ntleA9XacdxHWxExQMZoGygZS5lwsC0o8D6fsYVNfTr64kNT7IwqBPxfrsb6WDbz4H9x/DvzyVMvVeK7jmtG4G4aU0FrZnQfBgZuAW5B4/AJ9ga7L1zj2FhkCltzXyebE1eZGatRvJ1iTHl1bQva2Rv3UQy8Hz+LitkR5CRsNlva05xzgkXQdIxtMrX5aWB7e+De91SLZQJ5WM9y8jztkJEAwKFkwDbgS2UvamVgday35lKZ3Gu5Vcm9oMvAK74EVD06gIdjTqQUvqQUXsP5eYi9VChMfOqTBZM5sGtgbQMJaVF6rtYHkq1ZJ31+F//nfhxjPkjB61NQxsTc+0GDKdmoXH0DODkMXqqeVCCk8m5iwxNKnth9Fnn56NCcogxX4/V0hYaa7XXVhJ3S+cCOYXBaxqAYedgp+gjKHT6EiLsDdTetAwePXlPhJ4XMrYj0bkMFKaqKlru0/jzIDtGgDeOLjnDIQ/bmskbDtkcnSu/5C25jMBbiJw9coFvvWt57j70SP+4PcP8LWUlO9Aatq4AmMczhV0KXQQpceNjZZNE9gJNTy8w+LRbfzFC8SRvlzR9saBgKEgGll9EwOFLfC0ua+UvNcKnoyj7yKtIQANg5wDTpp1IP/XVTFGmCVFshYDLgyybuh/b1OPH832ScbRRGFb9OURLY1lMlnj9S9/i+2tHd6IczYnI46OHhFCYGNjE1dVRN8Rg6erV9gS0UhUniS0DTEQukayhqIAhdB1FNWIaJyyNB6fmU+HM46iKvCNxxmDr1f4dsXIrWFCVAZBCoAVpgDTURUlVVVSr5Z0TYPvWnzTYYIwOr4T1qTroPERZ2G5WHHqOjpf8At/4S/x1W/8pBRuVONhjdVUcJvnkNOwiwybyeyM9AQDh3xmaIscJQIJEiNn8rNMhinpBm2miYUB8REFpQLEO98Ru5qmaQlthzeFZvgJk9W1HavlguVqSdM2BK8NSKMIgD1SqbjuyCVRUug6WnlmaVEVQqCpV7RdhytKIhIGs8bhYyfp7VF6X0ljUBmn1JaCNMdi0t4kHY2cNGE9ixwjqONP2YFZvzPUgXxetisX4FvPwUeP4PcPoDbirEFq2jh11k7DB0kXYJIjC6C2hkd34JIW67MVffpvMv6FOMUEnmyBFPRTA56cNMr4ZNDTqXMZgKEnbI1siVEw9Fkp+rPTkMEwA0ZtjTxge/73w3YMxogTxEgX7y9/U7Ka4lwEw0cPxclubAqoSJV766W04iJIQcBceydI+CdpKxIrU1TK2njRQ5UkYyPjURVSZ8caca7tCtxar8dQW4PaGoqyL1bXtOJ0G2VZ6lqr5+qw+SgTfLEC10Hn4Bd/SbQ2xvVAJWWmxYFjHQq48zNX8JsWvSH0hI0BublITutOICh9n9Kx0c+bwdxLqxyrQLzrZDybVsCZcZrhF5WV6YSNWi61JYOGgDDk3mKd/kuvb+inYj8tdJ7WK31eyryl55NaT6RK3zm7if5v6X4SWM+hK3rbkaZ0DnWlQdHfZVD06W3NZwLczOcr3nv3PrGLXNyfMqoK6rk+CJDGmaUwJkRxXFGtvomGCYEdu2IDQ32w4Oz9j6gv32A0GVO4sg8+RLSlgpSmT+E+Azhb0nYNPkTKNNImGXEtpKTGXVJhnQg8tWJwj1KtMrz6MEzS1CTHmMr/p5x+fWY6w5yt9N0QkaOExNDUZtF8GCfhpd39yxRlSbF4DN2CZ59/gXsfvs/ISsgJnDBgpQiKpTGix1ZTFQbKy2i7lq5b0q28ZmuN6LwntJ3O7YgrCgpbAQsmo3XmZw85az3jckpoO+KoVXZJQopd14ITMOFsQWEKbIx0TUOzEtFe6DpmZ6cSRlE70ykD3HYeouUr3/xz/Pxf+JuMxmMdRR0PY/HIPtbKuKb+SSkMGNQBE7W5ZowYpxlsKZ5LYiJ0vNNCO2ebaHhQKVMJ8gndGqNogaRgnsOYkqJwbK8V+GlF6RxVKce1jcc4MQzWFhSuwmBzRCSqTapbATddF7Gl2hv1dylXQPaPtF1DU68oy7F8Pia9DTrvdIWW5pcZtAQJKF+W+lNZjFFjZB0mBi3vEUh97kVgDKlkQsSKBrEY6D8+69t8Be/dF8d2YSrOc2Br6DookxFWoJu7P+uzt5oSfriADz6CKzfE4buS3rDTg5VcUVg3WworEejPmw19b2vkwT3JrgxszXDRdk6s2tsa2be3NXJcdRC20q8qqE77pVL6KCNinTA0ZQXzx1Ib6PkX4MP3e8YEZUpKFRQXylRUa6JlScfrWmFrVrU4LTfS1hQq5A1RmRmxNYzW4eyhMC3lRJz2qFXkrSHFxNQEL79LjElTS9gmRHmuZ6e9xiPSN4rsvLAzX/8J+Iu/IiJp8Qr6bBLrYtVkqJPN+hu1DxkI6z5OAdATtoZhJ/n8nHQSDGwNA1tz7vkaDacWDtYcTJSxUVtD43UuGo33V3LtKcyTTteiACcqIKW/9jQvkwHqak2bH9PX+1HAZK1e42B+meE+DO4/yrUMbE3PfA6AebpOY/rx82g6+qfbPhPg5vBgzj/8r3+b0Shy5/YJTdOpsQWiIQTpHVQUhTouWbGbGBlj2Deei8YyMQVNYzj4/gfsX73KZGOTohxjikpCGQYsBikor7n/5omigAH6TBldpQ4bZES0foqmIqficEBKRTa2lwgbUA2HAJW+1opMoJhazZte8CmtI4K2JjA5JCUf1f0QB72+uc3151/FNUcUlWN7YxusNF0MXSuhBJCwkEnUpsFONzBFQegesjx9zPzsgHa1pJysYyjo2lr6JNlCbF2I0LZUpmBERbtqWHYLCDAeVYxGFaP1NQxW+zlJtkMk0jUtvhV9jm86mqah8y1d8DT1ksrKe1Y4CU2t6siVq/t8/Ue+xS//tb/Lzu4+Of0eo2BGHFCqHxRj4qOsLqiMaG1yyEnj68ZglPHL4E5r3iR7o6eRTWu+9L8brFT0GAaDsxWjkQiKjREWpygKCicrFR8k1Oq7jlW9YjQa42NH57W0ua6u2yghdC8TT/s2iZNN/gxlTIL3tG2DDx0mh43k3mP0hGS91VDGGDScmkKzkaQhQzVeETVYGg5JRQF1F8D1zGVaCYbUrOZzsB3M4R/8NoyBj05ksLOY14iDDL5vBJjSUHP4IKXzFtAYeOd9uHpVGIxyIkzEuZV8EgIng49+3qrRV0+THdx5W9OzK5p6nD2Tpsumyq8ZJFlyuOoJW8PA1mTmIQMbpRhSSMoM9kPPs7kFz78KzZH0lVJbg3O6KlEn1bXk3ljGSGp5WYJ/CKcHcPZYmJXJuoxNp7VlbCE+MIWKTAFUAlDU1jAaScuE9TV5HtEholUn191ok86mlmM0tWp5vKRHp+EsEMBUR7i6B9/8JvyN/6VUOh5SF8nW5GaPZuD8E2g12a4+aWtyYcSh6DutZD7B1vDH2BowAlZGE0lTT6G8olAwFQSoeQ1H1SvZL2jtoASa0xfteHEO1CSAlqObQbVJda/tyZrYBP7P2xqtYTGYf2Jr5N7SvZy3Nbm+UL7/NDdNzzr9ELbmMwFu2tbz/beOiMGzqBfnFzTJ6IAabqcIv6Ygsm4a9mzHtpnoLpHFQcPRW28z3dmlXJsSR4I2DUa1HjJIctSAtY4iQmcMPrSE6HA2ZSyk61DEnShFPZt5YlVmFECBajp0tW91hZUYm+wcImAjFpcNU9QjKOpSpxIwthKQY+WYESiKgs2LNzFnFmMC0xsTlosz5vMlHis1XUyg8UsqOyaGQFicEOo57fyMs0cfcfzoHrOTI6YbuxjrGY0KnBOxnLMlJkrn16KqKFtpzmisYzQu6NqWxw8eUo4c5XhCaR3WFlQjSYs1IeCF8pDmlsHT1CuapqFua6Jvcyg4AL6LrK1N+emf/QV+9hf/Knt7l8Qpm9hr7hTEGBPPAT0pfphGL2JcSS6SmD4bIVLo8zT6MxhCXmmd6yWloADbA01AgYQYOkmnDlhncYX0tPKhy+eVJpedhPWcCndDB5lpSS1ERK7QNpHQWalCjrLnermyuJVVooS6Wrq2FSAeoupqpP6Rc04ZlgTUo9rmIGLgqIUjEdG01bo4wUhDWVn4Ob1XZS+SyNiqziwJBD8vW+vhraPe2WHyO57mB6SvamtiI78wtYQF1NZAhIMW3npbmkCuTcWRJP1K1HBKNsgpDIUIOUMrzvkJW8MPsDUfY4AygDI9QMv3E8lMTHIOamsY2JrswdTWZEBnq/MgB8SBXrwJZxqauzGG+Ux6ROUqyxH8EuxYzrk4lXFenMKjj+DRfTg+hI1dsF4rOTt17CWoraEqBZyA/H1cSNbVg4dSu2U8kd/bAkbaJDJn4URyCf96JWGZJulPBs+4i5JR9Od/Hv7iX4O9y+RMs4GtEVCbmC19GYcsGlGYkgwOhnOp6EFJfnZByw8MWLn0oQSkEtAE+urI+h6mfUp9jrmLPZqJ18nxE3uWPpMBR8yXkYv5pamWrj3NxQywZHEr6fxia/rmsojtzEkPiaGBzAimEF4amFwXJ6KNEpV9O29r+vHw8EPams8EuCFG0R9JHXtlLMSBS/YL4APGaQXh6LHUbLNizzbsmZLSFHgCbezw3nL47kMmu28y2dxmNJpSuU1MKRPEoCI8G7FRQzfG4Iw02wwhUliQjsmSqSVZJ6lTckDErFLgLrMAEewgdSQYEaAalPbXGZNDHqlWSoRcCl8nhLWy2stZK8ZhTMSmODiSiRWJ2NEasdmhjKeMqgnrGxvYg2PmZwfU9ZKyKDBFibMlzWpG1y3wTctqNufk4AGP7t3DVI7ttTWcZpYVpQPrscaxtnuFohqxnB1iyjF2cSrvc5QX8/6ju0TnKUYTtre2KSuL7zoKt4Z1BdF3+NjhQ6Dtalrv8cqqTCYTNqY1pg3MVoGdjTX+2q/8T/mFv/zvMB5Nc+gHTC89MFprxaRsNQEkGAk7CgjpDbdk3hlt1SCrCYMCFD1GYsWCguC0ApORtqQwT848MkbDw0HtnF6jfkLE5B7ptG3yM4ugi7eomrmYwz0RATN1B00bGXtI2Us57G7BRwGJIQSapqbTGiDShiJk1sxao/Y49v9CDwLzTM1GKDEU0oMqpvg3YKzNmiWftE1Rfh8y6/A52GJUel5sTXYg6M8YWaU6XUVHj9RhWYFtkLRwZWJiJw/k3Yew+6YwGaMpuE1Jmc6iUKs6Fw3dYMh6hWF36rR/WvEmVsUqaBj2EosMrh16oKKOIz3dJ2xNXrkPbA02MUsKiIyyRANbk0HQaA2aXYinwlRtbMLhsTAy9VIAUFHKMeuZMC5NKwXmHj+QnlOFFSBorNyv2hqMg50rws7MDiUEorYGtTU8ugvOC7jZ3NZWEJ2AC6fanaj6n05FzF7HbTKG6VIc+ioI+/O3fgX+yt+WTKtzoR+9bRMH70box8JAbqkxsDWyUkshTc85gDIMOZl0T72tkW0QEsxNeQ255kwGsL1NEePh+/OmBx3Rz8UeoAzDUiBgrx2+E/RAx6LHVRFg0/T1hvI5tR6RNYrTPm5rzp3wE2xN1vWk8FQKc4XBfjG9I5/e1nw2wA2G4KWAn8VJanKiQ9Pq2EuPo9h22LBk3azYNQv2TUVhCsXX8sA9UNeWx2++z3Rnn/H6JrYsKNwE46zUozFK30XNclJNSxuiZJgUhuhV3W5kVWttCh2hFL66q4Gx6Rdf7pzzEICjYG1AFTvNgBLH3IevUmZUqs9itc5POvc5R2uB9QssD+aUBtY3Nllf95wcP6KtW9qylRU2hiLWRKBZLVjMznj84B7zZc31q89TFg6/XEoZiPGYruvwtJSrOW29oqlbVsuG48PjrBWrV3O6znN4dIx97/u4p59hbX0DW5QEFoRo6JoWgqFZNXStZm+FyKiacO3qTSbjCe/dOeTVl5/iS69/gZ/9pV9hOt4gpS3nFwKAQSZTTjlM77wZAMOCwlgRCqekg4hkUUW5BlmU9m0aUugrgw3NbMn1hxK4wim7L88+pnovEVKPsNylKloFWgDSViTqXQAEH/A+5NsLCLnQdgJsCClE2tutGNTREem6lrZpsEWlfwOiAPXCOipb4mOQ9hBaEDCk8DdauC/rwgaZhDoWzkpVZ2MCXgVC1oCPqfSfBPY+P5vREIhD2JGP2xq811VqB2EFZglmgRQoK/rjpDe8tvDG+7Czp+GpQqrmOg2bDGwNamsym+K9VuhN4ELBSQoPnQMx521Nf0suX0rP2gzBmz7TlAFl4Fz46lxfJP1bStV70tFaYH0fDs5k341NWAtw+EgEY6U6QizUjY7PAmZn8OCesDzPPS8gaLmUc4zHAlBoJYOqWQnCXzVwdKIxWjRF3Et7gXe/D08/A+sbKnLVYzWNjPGqERo0KfOrCVy9KaDozqHUgnn9C/A/+RWYbJDTltPLltmUof0xvZ9OQEVtTZ5DQyImpjBRCsdYPsaYZbARzmtzMiZI7FsCXqH/XL6e9DllmNKzzPehX7yGl4aEoEfZLJ2Pad80n3zsY+RdK+NbpErFeo+ppIEtB/fr+8tKxjHXbhoCs7STzs+gwDtXK073mrbPG3MDBLyk1So8tcbhuwbjCox1hLaj6xbQnrLNjItmwY4tKXDUmmYpOFiqxfgIy8OWx9/9Q6ZbWxTjClsUuNGIEOW4GDRLSAx74Rxd6LKAmZh0CEYaaqZqtdaoqFkAWcrGMaB0fyAZDqOrACnqVmbWJ1VGluJz0nHcapEvo57Y4CSEZo0+f8m+MtnRyn3HCMaV2J0bHDz6gOPDD5jNT2malrpoKJZLQunouhbTClBczGc8vvchp4uaZ1//Chtra1gCvoDT+RHv/+5bxAh7V66yvLDCWMNyvuDB/Tvcv3uHxWLOZG0trzqjscyXC+7f/ZArV29SjiaYoqXtRGPTrho672maWrqadx3j0YjNyVXKsuLFl77MxYtXePHrP8Pm9gVtD0BmGII+KwwyR0z/zlhdzSZtlLS8MLk+lUWyrEywuTCm0MIZnurMydJwUrPNnBGXWTd9KYOA1GACIXaSWu7kxYv5mHqB+aDy3EIIhBxftiLaVbAQovSZajuk7pIeIqeDB7RVgr43yuLgW60wnGyBrJqC6ecxSDdzEzVlHIt1SWTsE0QjGVo5j89+VPycxQdpZhvwWmvo87YpY5KcjHEi8HUaImk76JbQngFnAmxsiWgA/OA46aEARy189w+ls/W40i7ZI4iNZpboqjrrJrQQZRdEwByhZ1xi/zWFQGICZAnJ0wOOnBKuRsgYDZP0tuacZiO1a0jF5FJ13SdsjQC55GD0viNy7J2b8PB9OPxA0pFbdXzLhTAxXSuMQAgCbO59BPMlvP4VKa5HEO+zOIbffUsm7ZWrcGEl1zBfwIM7cOcOLOZSHdfGflW/XMDdDwWwjMZQtJpu2cBS05KbWn7uWnkWk6vimF/8Ely8Al//Gdi5qO0B0s1BzlIy0OtI0mNJ46jaqMT2mDw4Ek4MCkyfsDU9YByA05wZdd7WMLA1cg5lC3P37QHYgR4oJVsD5NYK6Tw5xZr++jo+DmzS34bFIqOXOeuHQEjnTqqunOd4EsYP3jOn4xUH2poE6iKcq3OjtkYqeWvxyjB89/747TMBbvpieWbAtkWC7wQ8+EhoWwwN6/6Eq/aYyxYsFXMtpR8ilEZyaaQiqzA0s9szHn3vO1SbGxTjCbYoMGWpgCKen2dGnGIXW7xXfYtRpsX0+6afbXQ9kE/hEyOr3aix24hUN05izWiEYYq5y6s4HocTPY6J+Z2xGvM2RleXRovnmyRglrFLVZXdaEp17SWa5SnF8SO49wbBRVbtkq4zOGugCSzPZjy4+z6dgRe+9HW2d7Zw0eDbFlOVTJzh5hdegujo2sCj+/eol0tOz05ZrJYEY7Hjijq0FLZgVFWMJhPWNjZYtTXHh4dsXbwAoSUEQ9PUnM1OWCxntL7J97i+NmVzusmF/SsY57j83GtcuvGcAkh9y3TVY5OgOAGSYVwXp0XpkgZHG2TkFy5BGNGapHGEFPICAdTK4iYGOXFnJoEWo+Ekj3VS9NFEKY7nhnNF907Hj2nOxHT9YIyAmqDhpTBgpppopGq9LnbC4IhEabMQopd6N8Er65nmabr42Iuk0To1mRLXgn6aARQJGCvx7lyRGBQA6Sgk44u0qxBgr6Ltz1UqeEKIaTWi9+U7cRgerajbgD8Ge6KLxapfgWcg0o8J0cHtGXzvO9LzZzwRgFOmDKpBOAIGz6kFn/QtCYTEft/08zknM3CoKZyV2gGkqrlDEJRqj2THrIAup5ZDbkUxsDU98BmMXfrbaArXX5b6MMeP4d73tJ7NUvoTqa3hbA733pdr/NLXpRdVNDLGVSkO7wsvyv01XsJWy6VkNq2Wcr5xBaERJ1eVopPZ2JAQyeEhXLwgTjAYATSzE1jORECbwm9rU5huwv4VARvPvgo3xdbwhK05x6oMn7HamuycMwvDwLmnCaKAMzNn+szkQfTPN4ea9BqG6flRgYlTMJHYo9Rb6glbk+fEOVuj4COo9iYMmCQUjPj+EOe2GDXMlj7rNd08vT8x25qsw0njNbA1+UZztqEyNMOsLEJ/AWY45sp4nmvH8Om2zwS4kU11KUEyeqTHkyN2nTjuuGDDn3DRHHHZwpZz1NGwGII9Y3BYuujposx13zmO37nLdOd7VNMNaRq5LkyDfCgKwDRenVjMz8eow7BqeIwJunIXwCFlzDySJSWp6iaJWk2hIMT1EzmSM6mkunICLEFbLMiDk8q3ybCIsbJWqjOnTuJEcUguOej8ojkmG7sE37F4VGKdU12gACVvAydnB4y2t3jhhdeYrk2lpYIKCG0ssG3N9toUYyu6rqMqLaePDmh9gx1buhioVyUhRmkAWY4ZjaYUxYjR2hp113B2fMRkfYOAY7lcMl/MWDU1PgZpVWEceEPrW4pqyjOvfZMbz39R0opjgCjMSbBewkQhvcupnYJmRxnR0fS6psGaILYSHkovoBqt5NgzS68rNGnF4XC54JespCX9XzUoKCsUDM4GfDTYKFqsFKiUbu69s7I2pYsrHI2JoYwEBNx0vmdAuhhpOiNM/cBeRtIlxWy7Qgh0XSNFALXRJkR8kJIFcQAEU1ZZDq0S0yhmh22MJxfsU8NokOJ/zhUKyCR0GmK61yet4md9U6MZnKq1Nd2568QYxwV0J2AOpVaMK8QwD+1qAgkpPmuAroBbd2Hne7C2oRVxUygCeZ8D5Iyr9FAj/X4Z5CRngAAOlOpXW5OZIKICmgjnbE3swxzJPqSwRmZ8kJ2fsDWiobC9xiGGAWt03tawsSvMxyNtu+Agh3JskMyozQ144QuwrlV1jY5LLASgTKfCBnVesrAeHQgwGatTrlWs65z0lhpNpbXD2powbsdHsL4p510uYXkmx00CXOMEcPlWdEKvfgNe+JKkZ6qtkevVUEgGHKYf42xHhsBmOKXawT69rcmOffhjEsumBpE4+pMmoBD68Q6G3JU8GgWiQ0AzAMbpmefGqwq0oAcow4yjGGVshkLrNJ8zGFcQFIKMd2pJkQBIFgEPQYlJTnQAmvTAUd8f48/fK5bMiKUeXiHN13Svn97WfCbAjZp8vQGlsvR9C2HJyDm24xkXzBG71rNuHZUJdNFpSE/YjOSOImKz0nRp546D796i3NymmE6Zlo7SFhofNbmgXwIyXeu1X5HVSeklOySSHRV4ojGqg1FJq3HSvDHSMwM62RIrlVLEJTuln3wxOgX02qIxmD48rx2GjXUCcJAXwqqBTXqe3OJTRbadb7B2HVdYSldKmjLQ1i3j9TW6tmW5qCVTsNTMGeso7ITReIPR+ibBe9bGm2xduMTF1YJmtWRZrzibndA0rVbBlaqly3rGqoHN6RrL2QxTWiKGxeqU5WpGXS/UuRasb23x/OtfoyxKLl1/gc3tS2rvPakXVDTpPgdzRJthxpBqHWnxPk1zzUyuon/RORlhHvTFErukvaisZF3FKOHPtJqIFmwsBITEmENimb62QIwKNjXEqOyNwIaOxA/1iyoFPTrXQwyqOey1WugpGh/xweRFd3pRvJHGmJL8IMfx3vc6IdUTSRaWdrs3kAr1GWWtUrjVGTv4bAqo+YGdDbow03HA5GMl/U0Y6j8+F9vQ1tDb/7DUEMKpABuroSATQN/PPnRw/nB5Wzj47i1Jm55MxYEObE0u6Jc0Na2uik2VbU12nDnNO6UTF3l+ZuYlTTCeBDNwflU1uNF0L2nWBd3f6jlt0lAka5oAWtKDGPqCduqYfANuXcTCrhQdDYgOZ31NQkOLWlLwy6jnc2An0hxzbUuc2XgTLlySSsMrrYo7O+kL8qmtoZ5pdd11mM2klQIGVqfS6HGV2ikUsLkJr39NWLTrL8L2JXqxrI7RuVYJDMbMyvjkCtOWPqVehyeHlBR8DGwNdjDOKTsopgwx3c/q71Ka+A+wNQIIByAmhzEHyCRdT2KBssDXK25IoHiw+aj3eP7XAqx8T2cnhjOFvxILlEBkEsKnhXpm/9JX1382s0q+H/OQ3sfQj006VtLf/BC25jMBbuReBaDE5H28J8YVRViwS8sNO2PdRgpKrDE4OslDMJpNopMr9QrvkN460VhMhNVBx+H33mC0uYUbV7iiwtqxzNVoMuMnLQRacRwGnHEKiiVN9pzwMpLDTVY1GjbHT+XByO9TXx9yKYPkzoxJfa+QC1CqL3itAJsLA0o7g9TiIM3+BHDSwROLYzXOG0OHK9apRmPKcUXpKi5cu4F1Bc2y5qNbb3N2OufClctsbu0wWdugKkYEZ4mNZTTdpNpdJ7Qt9eKUxWKGPTnGRMvCLpkvpV1D17WEZY0nMJ6MWJ9MsNbiiTRNTdN5XFniu44QO3b3r/Dql38K5wqxAUb0HV6zg0QbJ8AkUfqpGrUPKbtNeyRplksv8g49G6ozzDBgdQzSTgIBPcIAyYuVWLr8OELqteS1+KcEvYxm2wiIsZlVylktBKDQ38d8zKj7pcJ5oKLegW2KGpZqW1nIpoUODHwUmvatwDqkNhokJqvAWXsue9jkkJOsvNP5ZZ6hjKnBRCfVp41mTSm4lykfsr0WxsdyPmX5c7ANBaPJgMeVgBsasDNdUWtpbtJKVx1hcmR5giXnpoN90MH33pRsnnGlVXjH6qRM7xjV1uSfkzA4sz0DcJIngeoXkuMd2BqyoDStjtMlpsmjbEG6lxRW8IklGACZVLxvYGsY2prEUmAF0IQojECxLhqYcSUg59oNOdayhVtvSZjqymXY2tX6N5X8vbUw3ZL2B10rWVLzGZye6Bxb9v2NuhaWDeClgN100gOxVlO+y1K+xk4KEH7lz2nFaR2HYW8jC31mTwqn6NwOnTpsJ8dKGU7ZyQ6ATpoLQ9Freq5pvBOQisPnrI47JFDgz4PWlNmHVifOz1TnndqazLJkYzGYo+k8mSVJl2s0FEvWLg+ndQYiw3YIuZFlAn0qqH6yJ9XA1vS90tK9KhiPGrrLoVVPb7TC4Hp+eFvzmQA3gAiKY8RR4KKlo6OMDZvmlCum5qI1gKOLZPSadEjDdpVG0bOPkTbbBEMMjrMPj6m2v8d4c4tiPKay4KoRJhp88Dgr/ZhMNHRdS4xjQgwUrpDqwFnNLaBEbI7JDGASoYqOwehdgc2Fz2wPcKyIg9UV67UnPYj07IlYjBVGIRXvw9DfZ2q4pnNV5kyQhrzFSBkFi3FWHXjBaDRlMt6kbWvGozW2dvb4V//sn7N14TIvPPUsu5cvMzIVk8kW49GYSts44ApWixWrrmY2P+Ps7IjjkyMWszMOjh7y1rsfcHF3i5/9y7/A1RvXWR2fsb69y2x+SjmagDVEL5WOw6pla+8iRdGXxYwmpUTLSyHvUtKGDI3JQCcVFGomI0vSIvXfgwAWG8kFF0XTk3qHJZ1X6qKtY6svlNV4rw8KfACihJNS7aT0mfQxCUcODBP01xnRysmSIZgqBif2JgHn1huaoO9/zKaMSMzMjLA/0PmGMpQaIkrXr/Jgk0ZQHGCuNWYtIUraqlGHHRFw44h0etKYs8iGRjFNOO0S/jnDNllkYAoxmLGD2IA5BaOCVhRV5gJq6bMKLoC8Uo/KhghKl3DXh8ew/V1hcMYKbKoRuVBgrqRrxFnHsRzHpdCQJXeVTudJL3+Ec8CmX+bTFz6zPS6xhiwOzs4u6UGCaDpIbI3+PtfN0fM/YWsAsq7CjfXabJ8+bpykjY+3BHCMAuzuwz/7VbhwBZ56Fi5dBjuCyaYAotTGwRXSEqGrBeCcHcHJoQiTjx/Bu+/D9ib8lV+EGzfg+Ay2d0XYXImtwUdtLNnC3iXNqIIM4ga2RqZ2RpjnbE0GiEHHaGBrZBt+T++YB7Ymx78TI5OAazp2Ol/UZ+EZfEYdfgpJpf3znEx2prc1+VnEwX15f/7ntB9RBcL9j4MHPDi/AjLfQqh0jqZrGczTNMfOzb/0jul9p8VFcpzJwOV365NtjbxbfOrtMwFuVIWCiREXDEW0YDxTc8ZlM2PfWUbW0aRVfcqoIko5it7y4BDdTRsDXYw5PGUN+MZxcus20923KTc2seUY60oFjpFopKCfVH+VZpLGWc0SjMSgdXas/s4ECQpFpw7NKuOjPEF6jgBGsngEqFjF9/2LZGzvxE1qnGmMpMcn1ki1HCY5UyQ0I7VNop5bnFRZTSlG6xhjKV1FjCn7CIrxCFuUNPM5N55/gV/663+V20dnPPXal9m7tEV9/5BqZ5ez9+5AVbF4cCD9oEYVJ4eHRGtpm5pqzXHv3mO+/eabrK9t8CM/+S1uPv8MZVkyvrTBeG2NxXIuoMUWGNNpkTnY3b+smo0EMmT8AgkSirYmgUJ5bwSUWH05ookUpiTiicGAZv5I1KAPA8p7L86gtw19OE82eW7G2J5ZJhKdwQRpeyFak4jTGRdyvFyYJ5FUpJdbnEyM2jA1sSbJnnRB0sC7TkS5GC1HIdfYRajbSKWgJ9mutKBLjS5D6PCdoytagteMp2STCMpgW63pE/Nn0y0nAy4hM5376XurXcJ9hPQcINe1kVsZTvLPw6bOKapRT72izBnSDNOQi8oNbE12dANb0x8r9GOQDHrj4O07sPu2iF/LsTAZMoDkZogx9im6zqqxiqqzsApyoGdkkt4iLbSeBD0oGIoKVGx/rWmup3CXURCXVvs2rcBTaMsOnFYCcXqvYQASRlNpk2CsVM+NGsoAGI8EWMznkgL+1/+6pHe/9hW4tAX3D6UA4nt3hMU5OhDKclzB4YFcS7OUNgP3D+CNNyQU9ZPfguefEYbm0rpkUy3nCjC1z1Sqort/mcysAec1MSnryfSgML1wQwbBRET7pPeWM3/S2OrXiB5jsOLM7Mx5W9OfS3/nTP/c0/uarnNgazADQ5BsDaodyvc3mKqdCoG7tgd0+fP6pR1cX5rDUY+VsIbX/ltF22tu0j4ZCA6uPQ6uZWBrevs4uH6rAE5tzflnlbYfztZ8JsANgIkGGyJFDGxOYXNSsn5cs95YJsZSAE2+LwknJJWJ1XWyRE37Mmpe15sSupTPNKdw8N23qbZ3KNfWcFWJqUYkPYGIgaWScYwRa5K2RScdkiKbK1ZGMMnZ4ntnaZIT0aNmcCoxddGUkNkY8nkE6BARQKOx79zfKIIxTsJfqq3pvZm2pcDgiorxdJOmeYz3Y8qyJGracowB6wqK0Yiuabj58sts3LnH2cFDuosb7L/2EuVkk+3L19i4+RJH73yH2HaM9ne5/85buOk6J48f8PDhRxQP7vLTP/4TvPjy86zvb4C1FOMJG1u7rGYnhBBZLWs5Z1HiFzXVaMrO/lWMhvxk+CwhdOqwY574CeiJ01enaq0wu1ZBbix04ayZOxZSzNfkVbYIcpxx/YojHS9PKyNiYSJGjZNV42Wtw2O0XowCoSBZQxl8mf5YJod9EiC1Hy8noGIiWYCFfixQW+QlU7hgcOwIXZBCk2HQENN7+V3UjCeDxRnbj5mCJGsN3nv9XuZvrm2TRXuQkLDFEJ3qnxKoyRoUI+G61Ijv87Klmh4xwASpfntSSzuFbFTTzgnpxv5neOL74d/Jz5gz4Ltvw/aOON+qVPZm4D2METAQIz2bkq5jCL4Sk5TO5XtnlJxxOma6lOA5zxL0tuYc0Imc19kMbM25ruPJyiaHn+rouFJCSs0j8GMBMyltObFRo7FkMr38Mty5CwcP4eIGvPaSMDeXr8HNl+Cd74i+5sIe3HpThNmPH0iD0gd34cd+HF5+Hi5syrWOJxLimp3IM12u5JxFKRqf0QT2r5JDfmpr+rLocTB2bnCfsR+foOndGIiFZIUBPGFreMLW8Am2pp86pv/9uQKLCq4xHxcVp/5WHzteGDxn+wRo0ntI1abTiYZ/DzKdMisynOJB0zbTuUFYIB/7UFVMIDqBqsHc8qpVUlvDH2FrQEHjwNYwsDUYDz+ErfnsgJsgDmFrz/HiK09xYXyF+t2W4z94G9sAiNahT4LW93Tw/2x+dHCDghtDCgdKptH8/oLDN99kvL1FMZlSOXWySPViYwyx8/i2JVbjnvmNUpo+dYc2tiSXitbJGI3VirjpOgY6ECOC4IjHoM3mlPYn3YVV0alNzQxlIkR1QjKfOlof6NqWpm3pWk9bN6DO19qIc47OjKGL2vwQUjNJ71vFaar9sI61/W3MvQNWb73PYuXYvLmOrUrC/Izp7h62qLCmZG33IljDg9kpHJzwxedepZqOiSOwo5Eca30Xg6NpGpq6xvsO4yy+qWnblq1L15mubynbJGMXomTheB/OCVxt0jNhNNMs2SeTXwh51+XNNIXRqtGOvkZNhFhoYcS+ZYMh5j5hSXwXo9fmqian3AdSBRgFP7o6SbViEiATvyMvZxLIS4aSXiMq2o5ZcUWfph3PLXK6qKVDVHuYK5vr/4M6rpTZ1PkO77vM2IQE7ZP/M4YYOwXZQYy0XpOIhnV+RpsXlRaDjzK2hqigyegVpJoTgxXf52ULAB52HbzyFEyuwLst/MHbIlLNzq23NbI9+TODe4/nd0vs0P0FvPEmbG+JwNgl0aosxTBWa8K0kglkBp8X1KEG7OO2RlbJKVtreG0KhlLZ+oGt6RkLQxal2tg7zcxG6FffaV8hLWrYeS3Op9dgo5beF1tzro1EDBLGsOS5hrWwvw33DuCt92Hl4OYGjEpYzCR0VZRgSti/JPt/cAseH8Fzr8J0DCMEJFoH67tyr00j/4KX62lqueaL12Bji6wbQYFbULbsHPugzwTO60cGtoZsayIUCpJzNk9va7IGKDv99D3Z1uRMrp4q5hzCSC9iSEt02wMyzOBzsQcLn1SfJ2+hH4chNopocz9SsbjB36Lqjmz/Wd/1Ya4EtIfnM0aBbTpnKk+QmL8E1tPc1vuNg7HNgBP6Ko58wj394O0zA26KCLv7FV/90Zu8+toN1lzDg+0IJ0fMv/9QmFsgIV1hbSxOV9udGmBnLFYrjXqSqFgcewIcoXMcf/8u471bVJvbmLIglpWCDw09aUVWWR0Lmra6+onWkARcwsCIA0srHmdMZrVTwbTU3VtsitPwrfam0hCTFCwU950aeYYQCI1ncVYzO51xenbKyfExs9mSerlkuVxKr6a2o2tqTbMGomdzzfHlF7bY2BgL2Cla2jZSuFLb5nhCkA67blRR7m7SPp5x9sb34ahmtLNNVx7SLOfYqqSdLZgdH9F2DfHhY4raULuGZd2wPtnCuJJqtIY1jno2Y346YzZf0Aa5pq7zNG3kys2XsLZnatKzyVq3mMBBIKau6AqAErsl9lzE2JC7cYmjtpFUFE9+F/Gmyy+ZCR5jHTFroKKwb8YQg4iLxc4rqLFGGocmSBRTerUAaGf6bDjZkhZIjpEArGRUiVNJVZKJVsNz/WrRIGPRaCG/YFNXc/mjZKfJ7tFI3RvjpfIyObvJZ8ZIrqPPdPK6YjLIM8gWJkZCbEl8V67HlbRbRrVBWuJYauL8UPbms7FFYG8EP3oTXrsuNLvaGr7/cBDXHzisnIVkegOcMk8Sm5Lp2fTyG6Hx370Le7dEYFwWEn4xilgtsrJL9UTSyl1tDQNbkx3ewNb0q990Y+o4dPeePYg9K4PRgoWmv4/kRFsPsxpOZ1Jr5vgEZgupLLxawmolIKdt1Okh55w6eGETNlaSIeY7Ef+qrRHhrXbzHlWwuwmPZ/DGO3C0gp1tKA8ltFSVMFtKD6quhYePoTbgGqhrmGwLABqtyf2dzeR6Z/NeANx5CbXcfEnGMzE16dkMbA1qa3qxte3HNm1ZjD2Y8VHB3TBUEiMMbI3oq3R8oz6HBESC+JkeMCngTAXyEsORjz8AoQNbc+56suB8AF4TmEsNYG2aK7oF+kJ+uaCeHjaljadrD156UeV+VQmkDRmj2M/jmLKhTG/AcgJM219/rrmk15zqQKXwZmYsLZ92+0yAGwOsrRW89tVrfPWbr3L50g7LxQH18lmarx5zf/4bLO6eJJchw2E8qe+UIyXDiVEuSBlNA3cxWGAGoJ1bDr93i8nuLuV0Srm3hymkqqdRABIUGJGPZ7QIXKE6mHQDHTaKRifQ5XkjbJBMmBhFz2Os06/aQ0ur2hrjsM6Qekh1XWQ5rzl4fMTho0POTs9YzM9omhV1vaRpPcG3dG1DXTe0XUvXdQTfZv3KyZHhwkZkc1MK7XVtQ2EjPrSDsLzE8GNnKCZjJje2cLVl88J1RvuXaB4/Ivia1b3HNLMFriioFx1117GIK9rgmVTrFFVBUVSMRhNC07E4mTOfz5jPZ0QiXRdYNQ3jtW2uPv0KPq2ikDFKvYrSPAdUJ9Ovp4yx50S9AjajLsiSpHxgPBQQYbT4nnBXuq+W9TMxhzXT5wREuXweaZmgc0FZjrzFoIziYJWtky1fRs5iSc03BWSLbfWaPafZW+RAI12IeG/wTpjwqKOFjlc/Zqm4YF+AL+mXUjgqKmuUv8ZI1MrKIXUKjzLGIeYyiMq2C/gz6hCcLWUOxXSewcrq87CtFfDVq/DNV+DyLiwOYfksfPUEFv8G7pxwzmmYlJE33Ez/9RxzZfI8zj/PLbzxNuzuSk2XvT1xzhmcpJV/Om4y+GJrlEbTw2mox6tHGvhBeaEV9CRxcA412T40YZzS/6rf8RHOGnh8KAzJySnMzwScrJYCeHyrDSjbnmnyKQXZyPE2AmwWfX0fGxXQ6G5qa+iM9Hm6sSWtKy7ckPTvR4/A18LqzOYCkhZaeTiuxLGW6wIQC+2M3XZwMhfh8XwuY+C9sDhrW/DMqz1jA2T7kJ5RHr9h2AZAxwv6Z5PrFNn+wwNbk59ndsQD7Qj6+QxE9HNDUJX0LQlUJ5YjbedYjfO2pp8/va3J2p8catVQZhxcf9pCFA2aG/469gBwYGvOsUckADVwsCSgkoBbJFdWTunikf5zwyyqBBYT+LSVzKGo9xY/va35zICbG89s8oWvvMi1G5exzrNaWcbbW+y+8DLNyRGLk9+Bs6ACYmFtrAkUKu/MJsEgqeLGEhJzkylBeaAy3pbV4xUH33uDcmOL7dEUV42T+9H+RJoJUiiwsSXY5GBTqf6+KaaxEbwjGCmwJ65KG3VaqYOSPm+VNk7F3mSeRzrfcXay4NHDYw4fPuL07ITVckHXtrS+YTFfMJ+fcnx6wvHxAScnR5wt5qyamrZuZCVuoLSGSVWyvfmj3Lg6YXN9HVs42s5SNDV2pBWREQbBOkPsHEU1wVWGVXPE7L37hMUK4yZ0JuIrRywMvguwXhLrCmdgbW2DoiixhcNHz3xxwmx+wtnslKbriNFQ1yvaJvDy177BdG1TdR9W9S2puJzTcI8ZjJ0lKW4ADY0kWy97Oas6neyMlF3Rpx2V8ZHPKrOW9CNoD6/ECGlRtlRkL6YU6zg4prYlCF5i61Fj7FFjxzEfPwEYBU+JZtZmijFGLd43bN0gWwC6YOhaCfknnWGH3EfQYohJVEyMWu24I2VWiO0zCsqkvlDQEuZ99lSn5RQGrFTwwjgmsImD2EpH8zDUiiXN1zmv8Nnfnt6Ar7wEN69IE8aVkbDRCy9JVs6x2JrsPLLDeIKzTwYnaughObXMAOjP0cLjWsSwm5siwK3G/bFsIedQWwOGnE2VOkSn4yU7prYmC5NlmS3XmGvV2AGwGehpDOrMOjhZwsNjARanJ5pu3UixtsVSMpBOT+D4AE6OBUQ0tfwLmnVmjQCajW/B1Ym0VygcdFaYlrEji15DECDUOclsqgw0R/DufdHIuIncU+X0GAHWSmikd1ruJVUoKzA/kWucn6pg1gi71AT46jdgbVN1H5YMNpK+KYMeg6Yo0a+w4Bwjk8DAkEIlPf8BwsyZaslhD/9u+89A76gTZZ1SrOPgM0norLbmfMXf4flNv38+h5H5kMBE0r+4ND8HWzB9Ong2sHrPSXOTQlRRrzWFRBP+ioNxMwV9u4QEgLrz15uOMwSbFEjLEkuuv5SYnCFD8Sm2zwS4cYXhtS/e4ObNK0ymE5p6BiZSjEasXbzA7suvMX/wgO4P3tdKzBFjPCFKinZhLCZ6DXtqcTZ9MJ4oXZnTuJPSdwPRF8w+eMDx7huUm5u4SUVh1mV1asRZ+RApjbAt52y4Zkf1TTBRgxS00aDRq1BjpBPGWYdxMoOsS7VzLL4LzM9aHj444PHDh5ydnbJarlit5iyXSx49fsCHdz7k9t0POTg+ZLFcaNgsnhvLxGw5A5PK0rZzQoTZfCl1cjB0ZUUZI/gWZ0ti0Uk2qG9p2xnBOkxwdHS0RY0JLY1bYNYKOt/gR+BChQsl1aikKAyuEJq7bVvms2MOTx8xXy7ovKdul9Srho3dyzz94pflKpPP0JVBYkNs6oQM50NOptfH5HDP0KgQc80bCWkpWDEisk52wNqCrIfR5zKsaZWTuJWODTEVxDPkgnYZgojzkvBPzNeTXVFM1+HzFJEMOGVoQsgLHps6PwsKErYrSL0b7yEUyY6IFUgapeA9rnBZsxMjpGKCcnUiik/6Iash0+D70G4SSEsBQM1UMzqX1GEXVkxFm/vCpDGUIoKfm60w8MUb8NQVqY+itobRCC5dgJdfgwcP4A/e10SaiDA3RQ9OU1XiYeptZgT0OZ5jYAL4Aj54IN3DN7ekPovamqxHSPqNnI6dDp9elo/bmvPNCM/bGqkYrN7K2R4odRHOWnhwMAA1K+nXtFzCwQO486H0bjo6EMDjn2AR8n3rl9JCu5DLmy/785baZNG3ohsqNJTlW2hnch/BAh0UNYQG3ELYNd+IviZUEEvR5RRGmBtrhD2ancDZQ1gstOHpUppm7lwCtTUJn2bQkO5jYGvOpcoP2Q4DfIKtyV24h+DeaOgHfaapTtCQ1Tjnm/XacugnaVIU0Jwz7Qk4q9F8wu7zCbYmh6aI54/3hK0RAGNkvmvZmnzOaMhtG7xXUKmfFeq/n1fp55wppnPR67Un8JgYK7U1Mib6O4KCfeAJWwOxB2ifYvtMgJvxuOCFV55hZ2+LojB0tcGZQtKgRxVrV66w9/prLB49YvbRHPJKWj7v1Igkp5N0GQJslOFKdgcG/4u0S8vRW+9Sbe1QTCdMLhlsNcZYm4GD1ZXVsJJs1lCghQINEL1WtZWy9zaJ+DQ7wdpBIcCUjhmhbTtOj1s++vA2B48fErpAXa84OzvhnXff4Nvf+zZ3H95j1dSZcfhBWxqDQB9m2NnbYXYyYzIeKYiWJp7isDpcUWAxFOOCtqmlqagagXI0pl0tMAX4eqn2Y05bL5iOK0bTilFZQTSE1nN69JizkyNmywWdFwdcLxuiK/nCN36OyWQ925MYNKMooiJtEVvnEEkUXZDTTsxSuVjDO9bqO3Te8EQCPiotC6CsiUlMSkDZsqhlQmRiJK1SqvpLAjNADNJoQ7LT7ID1UWenz9HobzOQyU9FVh65u7gaxJTOj5E5m4JSqUqSJ9J5g/fJyKDvdwpLifjaxQT20tipzguVO8QkytbLDUHq0zwZYtObkM8V+NhhU6YOgDG4KAJma8BrLmJinT4X27iAV5+FvS0pPlcbMNo6oKrg6hV4/TVx+mpr+rRw6EHLwIADgx3O+buhrWFp4a13YWtHgNUlIwxOanMAPYtzboU6ADZZ16CAKzcGOm9rMmtDcnB6D62HkxY+uCNZSF2QKsBnJ/DuW/C9P4CHd4Vx+WNszcCLkp3W3g6czCQFPIEsVwqwoZPaMxh5Dk3dN5WMQTKqVgvxSs1Sbm01l67i4wqmlYIlI/dx/BiOjxXYKNBbNXKub/ycFAlM0zsJsGMaT0vOOEuvJJ7c9T0V9EvhqU+wNVkgO7A18lUnQAphpXCWHYAFgzIi9GCGwffpuPn9PG9r8iT72CMahKXSH7N4Tl/uDIZjvw9RwlJP2Jo+Iyp9BQa2Jl9n1swMxkNtTQ6VfoKtka1AWJ0hqFSwlGo9pbznH8LWfCbAzWQ65trNK4zGFTG0upIM+gwM5foa28+8wOpLBzRHv0VcgKgCXF74SJ0OfXhRV/vqvPrnrw6O/pG6CO1RzcH33sRtbeEmU6odh3MVIXR0XUMk4lxqTKidugdbUgIFVCAcg+g0dDLn/lTWYkwh4SsrS/Gus8yOG9558xaz2Rk+elbLJbduvclv/t6v88GdD+l+yG6oyBDgNVQxmU4Bw+lszoadYp3FLs+oijGFK3DOUZQjgm8xdowUFwwYa/F1g3PaILG0OBOophXlxgjjLMYGQhdpmhVd7Fgslsznp/jgWdVL5os588WCp179Ma5ce1ZDKqBvftafmGTgTWJeUKGvw8eAQ4XeKVPNiLsO6RnHpIvRfSJ9qAXphC395xSYWIOPARsdSUBsopQAkBdRMuOiTjATnWpTgto3PY46HZlnmnU0CEn2c0TZqfRZzagyRkJmZpCqqdAHEE1kp5mXRTpS9ALC1EAl/U3nW9HRZF+jINCKUDoSIVg6pNZQSPdmgCBiYWe1CWmUTLWcRZbeF31MMtcVnHWfI+ZmOoYbV8RZxhYZKN8b/bU1eOYF+NIBHP0WLKBXfdGDlYGtyU7mXFuGIcIZ/Oqw1urFW5I9teOkNkzopGgdUQY5aXGesDXnwFVqmhli7ziHwMYU8nu1NXQGjht485YUxIteNDXvvAW/++tw+4NBKOGH2KIOUfCiKcKIZsZO5V6WZ1CMRcTsHJQjZXLGCiaCXG/d9E0iCw0jTSpYH+mY6L02K3GGKWwWPNRL6R4+X8ArPwLXn+udcXoPkxh3YGtQWyMrncTkJECYNEpP7qceZGBr+uetICDPDQbOXcOIhh7kqK05z6Q41aYM7AX0ADezGU+GJAcPJNuaoPMykEW67kl9kf4Q6LFy+v05llLvPTFxsRvg/BQGNSoCjsrI+X6O5JCoXkcSHCfdTdbg6JbxWewB+g9haz4T4GY0rtjY2MgrX8lYctl4GmOZbO+z+8IrzO/cZfaH3wdND7YoA6vPRxQNBmdMBsyZsRsYhpSeG42B4FjcPeLk1tuMt3cxownGFhLq7IQyzBWCdZL3TS/VEen5xOYoxWmQcyEZVcY4OV+qcxMti+MVb37vTWZnM9qu4ezsmH/9W/+K3//277GsVx8H5n/Elu5OQnWG0lq6piWGwO7+Pvc+usvZ2YKUem4pKYuJhPqcUKjORGwxphxP8F1LU57R1ZamdkQcPkbKZiVpx0aK0C2bOa3vqFcrFrM5na8hGupVzXy2JJiCS1efBaNBOiMp6zIGse/XZSOGQmrxIC0Osk7OCehxgkKyfUirjCFTmwTCWaisKzBh8GNeraUO4omuTmUGYhLJBgE8vcTXaZp5Ak5yPJvqDuUwpRjIOKSoQbRWqoGIakQjFmcdhSv6xb6B8diK+HsV6TTkbge6Q3EohsRMye/7K82GKBsfrwsAtbUYjFVdKmlXo0y2MHfeiA4q6Oot5NCcsk4xYYInHfBneBtX0sgR0FLh9Ln2ujre3ocXXpF6LGprznkDfa/zD8PVf8Y0AxAyrEwbC7h7BO+8LcXrRhMNzSBsBNBrs5JDHTI5T5zvCVvTfz6FtvQ6goGTBt54C07PRFNzdgK//Wvw7d+RsNSfZEvncFbEvSHA/j58dBfOFuRVPCUUE+39qeEaEwX0jCfaMuEUGivp4Sij06xEG2SC7LOcy8+rlQAotTWsapit5L6vPdePlzGqaVHHmZ6zjWTGID2jIYJP4CW3TBjs079k6WH3Tj+nbAMDW6OUabY1A2sNamsygFBbk9Pqk2EzsX+uqcZQKg3whK3BWhVw2x5AYXuAObz8sZXxWMVMkORWDFHPn9tTpN8P5n+65oGtIbNEuo/efj5m/rtGCdK9ZaYoAcLBfB/e36fYPhPgpiicsBl5UwBg5IFEwIws4/0L7LzyGu3jx3R3z7Ltdgb6PJPBfFIRqU8AIzk30hj19UZCU3By60Oq3V2KtU1cVcoiwdR0TUNZVmpXREeTGg+SXF9M6cfyRK0r9H2KWa9jbUHqZdR1nokb8fbbf8DZ2Sneew4OHvLP/sV/y60P3wV6oe2n3fJ7l8JpIdK0Dd63GAJXblzh+7feoa5X7Gxt4UxFVUywwRIrDYU0jWhU3AhrHY6CLkjV5xDEkTrrhKUwluV8RdM2rNqO09kZPnRYa1nMZ5ydzWi8Z7S+ztbufj/RY6+n6SsRRVIncHkkybCrbklp3ZTbFKJkywko8com6Cgkca8eN4EogGAUNAWwLsGAtI+EoXwM5Eyk9DktCZDHNwOHoHPLE3OM2PQ27xw8TY08+5o2SZNlc5PESOEse/s7GOM5eXBC00XR7xVy7jD4lwS9YXDNMQi9bowAvYAAOekSnkCd3JtohWTlGDMFbHTRajDR4JyyVl5ZJtNffwznLP1nfyscfTfS5ABTmEIdxMjChQvwymvw+DHcPTuHZT4OdOD8qjoZoPjEZ9S6NwXc+hB2d0TwWpW6fy1ZPmprMjNwLozAwJHq79XW9JoHVJOj+3Ta8+nt7wig8QEOH8G/+G/hg++THfkPYWvylj7jo1y7b+U+b1yFW7ck5LW1BaaCYiqMRKWfaRqZe26kIbRCQiMJjIEiemV25isVO3tJUw+d/n4u6eC+k+7guxfO2Zo+hfu8renReW9rGNiaPtykrQNi5JymJYGifnmh5xzaMKNg4cl9cmwenrA1uSRAPkdva/JnP8HW8IStyV/SVEmga2BrcBb2d8B4eHAieqyku0nzLD5xoDgAIKFDhFH015x0aen7NE8GtoZztkavJxoBXmprMrhMt/VD2prPBLhJYZsEPgScpMEJOlYGNx6zfvMm7etf4PHZ7xBOpLO2i4nHSe4nMVoRP0hUTa6shzQQo/aGIlKfRE7eusV07yLF5pRYjSF4QtdiiBhtEhaNhHsMIjSOecKLITJW3KXVVMwMgXRF1rU1O5u7/O5v/AGnpyeEGDg8esx/96v/iHc//IDEIXzax2hM3+AzxkDhDCNnGZUOZw2hbYXNqcY8/fTTfPDhhzx8fEDo5Dxro3WKtqK0Ba4YYcsRpigxJuKKirKc4MwYHzx+udA+W47las5sccairjk5PWG5WlFVI5bNkpPTI+qmo5yMGE82qEZT6d4NAjwsEJ12XzdIdeeid5xR6xOFqABRum+nsFBqUGoAG4UZs0iPMFDHr/qZDD6NpDN7EyhseU6bYrXmDTHI8aLD5zo85GMm2kTqFsnLLsUVhQYOIci1BrnPxBzldgkKoHKhyehF9GxT80157mvrW5Sl5fTwjG7paT0UmtARI3Rdq2GosZaxCFqhGHomSuacM1GzVPUNMSGtF8XOJO1NHIqSC4zTgpY+vS0aesVm4bF1lr4ux+dgy2EJeueWbU3UhbQR/cfNm/D663D223ASB4Y2eYsnnckwNDDcL/2YHFGU4735Duxegk3NngpeMn6I9A0Jo4aKVGj8hK0RJ2zIad/pvIn9aWqp4Pub35ZspxBEq/Kr/xg+eO+Je/iU27CKsTPiIEsnq/1Wa9mUI3j6afjwQ3h8IE4TpE1DqxqcYiQp3UUp91lUUE7A6FgsF+TwxWoBizPRAp2divC5Gkm6+smhFIWajGC8IVlYOQW7tzV97RrV1gypfQO5WnHuvh0GY53AgunBZsoWi4Gcwp1ASk4bD3KvcTA/kvYni4eHdXjScQb/ztXXUWAAqmdJYbHQnyN/NvRzIeqcMvqZIQGyvinP7/AMlr4XFie2pVPQGsfK7Gh4MLNNg/Pk+9YxMoN3Imt3hoAOAeJOGakAGbSjADMJj39IW/OZADcYqcobEM2EsQanZZblNgVABAPj7T12X3iV5uCAw397C9NKCCoVcZN1vrRQIM/ZFEJIR5QtIiXxXe7abVndP+H03bcot3cpLu5jpxPaVoS81hWiqYhJy2D1jK5nnrVOjTUWW5T0VVTURYbA+nSNex8+4vHBId5Hlssl/+9f+1Xe/egDelf68U1CCmK0rDUUzlAVBeNxIXcdPd57nBalKwuHK6RBIwYK59ja3uHZquDOh7e5/+ixtGHYHTFqPeW0ohqvY8sR1pX4eknwHlOU2s/JUVYG41c09YzVsmO1ajk5nXE2nxOJdI3n+PSYJnRUVYkxls2di1TVSATVAhMFtKizsEZCRlZzgSSjx0hKMn0vrZzinBYIQN9eQViREEyuoRM1XToVoUtAxSIOXcKZjqTtElbNaXHBkPV+EvJKqennV+UhasXqaFTDkqogSz8qCTNbFd/KdVgtAZDCVIVzFK4cLHKkvMDa+ibluKReehER68TwqVYECmqMV3umdWlItbwFCRkNHRjdP78nxuCNwcSgICfdE9iUJqshRFm50htgg4K4oO/B52QbhnyyPmXQVBEFEAbY2YMXXoWDx/Bvb0GbHFu6X9MfJ/ulfnzOe5DEFAzCCA9ORMS7swsX90Vk3KqQ1xXkcMJQHIwb2H3NTDFWG0MmkYJeQwiiIfrokQAMHyWc82u/Ch/+McDGDMbKIo6lKEQIjK7MvSfH4p2TfdLvCidtJ6oCPrwNjx7LPe2MoA0wtTBe63tu1UvNxklAwEmauF9JRtuylSaYZzOYzeScjZdML99KJpWxsHNBgGkeL0PfB4seWGSgoc80qDdP96225twjHNga+YzhXNXj1Gn8Se1Izshy/fFtRGo8aN2iAa7pAcN5WyPHVOCVHZqCnlynRxFJ1mwpK5nmkCtU4K3nC3rM9U0YlwpuYn8tA1sjbEvS4OiYZo1RqtVkzu+fJlOaS+le4/Acva2ROPnQ1ugzSPqyH8LWfCbAjdSKidke5BonOiDRdD10KS2TSxfZfeULrB4dMvvgEIPV2jY9J5Pq1aRXPegkSfxO7rkDAgaQxUVsLPP3PqLYu8jGeMSoKiVl10elFtVRJPBkc1CD3BjRWKWFxa2luKIxUK9WjNyYW2+9Q1s3RA/f/sPf4TtvfecHhqCctRTWsrO3yXPPPU1RFDy4/5Cjg8cEH+hqFWGrI2u8VFdem4BvGxEKA1Uhwryxb7n21HXu2tvcvn8fayQ9OrJNnDjKEOlY0jUrQtMSjSGElrapia7Ad7BYrDg8esjh8SHHZzOatqWtG+bLJa4qmEwmWOeI0bC7f5WqqLSDtGYg7dBO4gABAABJREFU6QsbNXZso8thHekGHilMIaAgxpzNZNXJJv+UiOb0f+ck/BL0pVUIQIidOHsjLIvLVWABDf95hBWSNGuZOZmB0cyuQJBsq1xzQrZcHVirfArQSjZVjiXvvVYN1rpH1ljRdSnYkjEBYmBzY4uNzXVWJ6vca8q5QYVkNQASlpPVkx+kVyb202i8P7W6kPFINWqCNN/02sAzCivltUFgCu1KDZ2QvzepXXkwOPuZMCOfcktGmYHjSs7AgklVd42IWi9dgFdelwJ37x+SwcVQA5P/9ac4nw4+eK+zo0L0Je9/BPsXJbuoKpWSP29rMnhKLE1eJXPO1jCwNRgEyBRjePP7Itb1wB/+Lrz5nfPOd7glJ7i3Cc8+LWnX9x8KwPMB6sQsxd4ZBS89uvIK3wgL45z8/NR1sLfh/n0yY8I2TJxijKVoaxod+9BqJlUh17xYwdEjqVh8dqZ9SbQOT1XAZKJZVwb2r8m5bQIesX9WSacSVciaWBciWdicGQ56QJ8wY/8Q5YtTkJcAQppLsSOD2RD6UGEGTonBgCwIT8Ys1QJKGp1PsDWZ/QjIfSbGI61+0sVmcGp6kKO25jxqi7CxDZvrcLLqhcXO9CAjgw3fj1kChNZwPgwVesCSM8oUCIVOwoeJJTO6mAimH5vge+1N8Hr8KIL4z2VvKUW/uZgb6hSMQIcQAz52mAjVdMzk2jW2XnmJ5dHvEo66HJaC82EnLcHWP/fBIitt6WyJ9akPVxy/ewu3u0e5uU7XrQihJQarmTCSEpz6M6WZK7YmMQFRfUwSjwZC54GWux894PjklK7tODp6xL/5nX9N+wn5+4W1uUFsMPD6669w+dJlzs7OuPvRHXzrabtOukvryp0olW0BJqO+em8MAeMcZTUiVUu+eOkinfe8d/sDTs9OubB1xsbaFqPJRHUhkRjECQc8nW+pZycsFnMeHzzm0eERB8ePWSyXNG1LEz3j8ZSqdFhrcNbS+Ui0VR78lE1mrbQLkPEBYyIhiLEwetOaeA0JOqYVjXUypob8rIngo6SNS8ioU6evWUznwIVJH9HaOTpHNCU8KJgSkOVy/D8GrzZMQA6aqumjx+q5ks9JKdb94kNWglELX8mxpQzAyekxy+VZfu4xRrwPrE3X2du/wOGDA7ouZhZaenB1OZSEhuAkNOXxWv8megGKXinzLDgOyH7e53dO7G3S8jQQjYbKZC6lZ0VMjJDev5X38nO1JZFpNq7o+6oPK6iDikh21bVr0vDx8HfgaFCVN39NW/YwH//TuW3wx8MVvHsLdvdgY10ypkILwfZ6E5Q9GdgaoA8P5fBaei6KhGMDHz6EkxMR+x4fwG//ulYWfmKztg9DGOD1l+HSFWFKbt8RsXPn1fHQO7wUJhillUZaYRfaJFSd+6WLAoRuvw9nu7B1JhWEJ1NymCJVqsQLKJqdSJr34SM4OITjRxKOaltxpuOphFOS8/YR7Kgf37zaN/18TcBTbU02sBkU6HMd2BrU1jCwNQKAtNAinVxzDj3FHngOBbDJ8afjp0yhlDU1sDUMbA0DWyMgwvcAFuj1O/TXGRO4G/y97eD0CJbKfKHP0XuYrsGFi1L7qIv5lLm+zcDW9KEpnQ+dITeiVVuTwXPQezl3DJ03EZmjSdifgX+63ziY0xZckHfjU26fEXBjSD1wbEqRVacXgwpdtROyU8Aw2tli6/mXWB0esPydt7AhTUsZIIvoMiI+Cy9TldvcNlFXHxaDsQGrDid6OLt9QHXlI6YXLhL3LxE1rUQcpMQHExySVGZHEmpa2/NH4tgCMRhOjg7Y2dnlw/feoO0CPgTe/fB7zOYn50fDGCZlgQ8hg55nbl7jytVLPHr0kJOTM+azBU3b0XS9cyJKRWbJCpIwycmsBmNU2xEpyjEpfXl9c5vL0WDNA+7cucOd23fYnqyxf2GP0WhMUZSiwTGGtmtpm5bFYsbjx494fHTA4ckhy3pBEz3laMJktMGoLLHOKUsjRei++4e3mS9HfPGLL7G2PsUiqalZgxNFzGqtofNdBiw2gUMjKdoGCCbiZFkhAEFr40QVy7axFRYlgymTbc2wMJeAXSsVrBUYimlKK3h5sVI2V19+X5iS3OzUpIwuWWFFzi/qjbWD65SXOHULd9ZhiPimxYRAUTiaVsbBGFibTrl+/RkePbjH/P4xXQfGpiadJtsSEzjH5lhjFaYnR2i1pURBp6BNWBgJsYbg1dZICDMCmChz3nQkET1Gw6LOKDbQFW6mnz8Pm4wHaQGSaMBA76jTajwBhp1NqV58+Bh+960c0Ti/TFKnHIdOkv77xHRgwKbVrHyE2wdw5SNxLu2lPoXNwLlO4Vln4/q5nFPFU1hCV0JHBxLuev9NdVYBPvwuzI+fGA4j7EyqWAwiBr6q7RBOTiXrqe2kJs5wFZ++T8yS2hoBDVFCTil0srmtTswJWLpzV8DJhT0Yj5XpqWT/TntXzefw+JFohE4OJW09dqKpmWxAWQpjk9KPfYTvfgSrEXzxJVifgtqac8LWVHvFp75q9M86XT9pfqjeKSY2xfd/jy0MbE3fYHNwvjwN7GDsEoIc2JpUEPAJWyNsXDpWOr6yOcPjQw/mcsq7Hp80Z6K2zQgCCtvQG6vpFK49Dffvwv1jwWupGvMQxAbOg5Qsxk8Xk66h6EFb0PkeLbmqMaafbyaqgFgrGA/Dg87oOdOYP0lN/ODtMwJuAGVpkkjTaAwxhQJ8lJWqcdJx1Y0q1q9epn3tC5zcuc/8gxNpbovJTGLP33Auwy2m8+WZIa7AKQQKGNoZnLz3PutXrrFx+YoWhguEYDBaNyJlQSXjb53LR83pscpEtW3D29/+Lt/6yZ/h6GSGbxuabsV77986NwplUbC1NmW5nNN5EQdfv3GB/9V/8O/y9ttvsVotODk9YrlaSlPFmFoPyPxLc9Dpu/PhvcecLWsuYIhdh+9aimpEFYWtmK5NuXD5EsWo4v333uPte7f57vu3qIoRpXNUZSlNIw10PnB2dspsOafxDZFANZmyNplSlBWFq7A2UhSi52hWDcvGEZuOd79/m0cPHvPVr73G9evXMC4oE6NPS/uOWOOwUcI2EjqRrCinTsgqou+LFeoKWxvOiTiWhEIh9k0rE8hAgZ81MbOjESuOPWUdkVgLBcv6AvcQmf56nK6eczVQBeuxE82PzJw+9IoAmKIsGI9Kdnd2GE1f5upTT3N6doazFTdvXOfF51/EB89sfsx3Zr9Ns+rAQ9dFCSMpUMEUai8ktVwWbjEbCqMrqU41WflfEFCYU719L3wWpkv0R9JHLWCi1ngyRueEwftA233OmBu1NbINjWmi1JW6d6pZGFVw5RK89gW4ex/eP+kN9LntB1E1520NmSVQJzcD3nsfrlyDy5fJ3b+DIdeoyaENvd6UTo3pHVRiotoGvv1d+KmfgeMz0fH4Gp6wNRQFrE01vTrIPL6+D//Bvwe33pLieadHAirSi5IBIANHrv/uPoZlLT90nYSpEntDlHNduijht/feg7u35ZqKkdxPVfVAOQQRDi/mUqmYICzPZEOyyVwlzrfQ+1810DjR4Xz/Njx4DF9/TVg3F+ATbE3uTJ2ZHd+DjJQ9F4c3et7W5NDSwNb0AGkAMiJkzU8EcOeZDCznGnBmsDBw5Ol6sq3Rv+dGk6nxKpxjEBNgKgvRJW3vSO2gm0/J+NoKblyH51+UMZ+fwOy3YNUpIaWgN4XCUpHDcyAk9D8n1iZpstK/oKxTYkxzR/a0wFD9kbEK/l0fckv0tw8quP9022cE3ETpz6Mx/iSKNIpcQwx4L3+3xuE0f79YK9i4/hS7X3iVs8PfwZ+JAxmKTuVIsTcvSWBJevwGa6LWhhGHT4QQDIt7J8w++oDmmecJbUsMa9giQSYZdLE36lBiUFZHj2ykQFwIkQ/evcvjxyfMT2vq1QofBCi8++FHLGvp71MUjquXLnJ0eEDrA+sTy7WnLvK/+Dv/HuvTDe7df8hyNaOra+q6w/uQi+L1WT3ouSHEyId3D/jN3/seN6/fIHQe39QURcF4siFhixEQIq4scc6yNr3PwfERjw8OOXl0xHx2Stc00nnaQmELylHF2tomm+ubjKaj3H1asqhE+xQ0rPTGm2/xwaO3+PM/8RcI4RK/9q9+l5deOeBLX3yZ0ahUMKrxb+XaMGCCiMwH8KKfLdngyFO12JySLEMvMm4BFI7UjVuK8Ell42C8tOXAqM2O2V4BmEHYSxhTWWElsJIK3kl7BwEVqR2GLOAEeA4rHEQsRCnk6GxJURRMN9ZZX19nb+8im9vbcgwPa2trXL5ynbKqGE/GHB085M7b36frIp0PdKHLofqYDaXMbwlX9ZVfo7afEBY54jvwXd/VO2jvHblmLUCJlKU0xhDwuGgxha5g1VF43xF9yMDv87FFMca5bw30ziCtNKP+PWVxWGkHcP0p+MKrcJB6TyXn8sTx87cJYKZNHZMx5F45ETnX3RP46H145jmtF2O1z5R+buj4DOpohqXutUBciPDePXh0DKeN6G5CEK3KBx9BravjQkNFRwfiNCYGbl6Ev/Pvirj0/kMpvlfXUPuBM+KTV88xSsPL3/0uXL8hIaymFoHwZEOcpNoaYVwsTO/D0ZGEnB4dwexUtDQpJGMLAZZrm3JNkxFZHJuZCdOHld56Cx6+BT/xFyBchn/5u/DKAXzpFdHmSAyADHISpRsSw5E2e/6+BrYGLP2Lx+D36XmYAXhKYTAVGifKOIdm0jkGYS8LfVG/xCAl5iW9e3YQVtVrSMcc3kO0ck22FCC7vg5r67B3QapkR9V3Tdfg6g0Bl5ORtN94+/vyty6BfT3+E7YmMzLD79Fh9lEAUjcwrLnPV+zftTx++nyi1TYPer9RAZYPTzynP3r7TICbNC5Gi5uZaCDYHJoKvtOMn5hZEmOkQupka5fd515mdv8+B3/wPsGLPsOZwUI6T0IdVGBokQwWZyKFCbQxgjbjDCvD8s596uMTbf9hkB4zZMeLkZovUvgsjb2kyCZNxOms4Tu//XtMtioOD49p25ZoIqcnhyzrGmNgVDpuXr/B4eFDVnXD2tTx8mvP8st/9W/y3M0X+L/81/8Vq8WSrm5ZrTpa7wl5jp0HNgCFlXDbqvH84//7r7NY1Pztv/GXuHZtgmtbSuMYTae0XU1VTjAuUu5XjKoxu7NL3Lyx4uzslKPjE45Pjnn88D7L1ZzNjR3W1teZTCaMy7EIqoMwE05LwJsgIY2u67j76Jj/4bu3uX33Hj/3536RV156ne98+xaPHx7yYz/+Vba2NiCm1GLJEgr5ZU8TP+r4Bk3HFuAiQy2CV0zq2C7sQ4hRAAqp/QKZaQlGnrHYLTmfNNXUjCfVsEi/p2RD5LzOFMImadMPAnQxSHFDHxgPjJhk4KlDyysUMcjWWopixGgkzVr39i9w6dIVWaB4T1EU7O3tU03WePHlL/CVr/w4Z6fHHN1+TNMEYXeDx/tOx2w4zxNoCzJOUSpMe9/RdR1d5wneK9gToCbh/MTcKL8UO2EnQfQ4nRo54/SdDXTB48PniLlJTiVnbhhygTMQI9r5HoQkYag1klL97Mtw7772nlIDk0BSRuI/2Nb0q90UwtIKs7WB2/fh+FQcwsDW9GEJ1eCYoj8Fpi8bHSPMGvid34O1Cg6ONTU7wsmB1JwBCUlcvwGHD4XxmDh47Wn45b8Fz7wM/+C/Em1L08LKqwA0jd8nAJtEEzce/vt/LVlNf+MvSRPNtpXrnk5FT1RORCy9X0n6+/4luLkSFuH4WP49vC9tFzZ3YX1NGJty1MtPMgevztEHYYoenkhY6u49+Om/AC9+Ab59Cx4ewo9/FdTW5BTuNAeesDWYlKmm4HWYWZUAawKTOTyXQk06RolpUVuD2pqerRkAHU1CyHMoMzKpvYbqwoYhodRIMx1H6NqBrdHrTSGpYiRZZBjYvwCXrirW8wIk9vZhsgYvvw5f+XE4PYbbjyV01aHaG60rdG6e63mDvljpe++VvUvMjYawk/jZD8cXpGt4us+owmexNfLOKvPzSXqxH7B9JsCNbDI4WQhqvWbUWHwnzfkiAadFuKTMfYGtCtauXOTiF77I6uFjTj6ayxyJfa+evNjIVLR8TZVa0ZV+6icGyvxEQ31wyPLxA+rljLWdHTV0VoXqfWwwErW7smZ56aTvusiHHzzi1ltv8SM/803aWqrvEgKL1QLvPeOy4OKFPUpnOJ0t2Nyq+Oo3XucXfuGX+OqXvsl/89/8I+7cf0AINUdHR5ye1IPKsh8HNqU1FIXN+xyfLvmn/+I3ufXeXf7WX/15Xnv5RfZ2dtnY2mE0WQcWxLalLCtcWbC20dG2DXW94lK9oqkbDg8ecXBwAKagrAqpjk7E+0joAl30ypZautjgCcwXK+48OiHEyIPDx/yTf/aP+ZEHd/jxH/kp7twN/D/++b/kx370a1y/dlXrzEQJM2GyTZHhNQMdjdarkREHPMZqvaE09oALVhmVxN6IYYmQa7SkeSDZUOl7MjMUQ8BZo1Wljc5PcXgGAQI+wKqLUGoVavmk2pxIqsUjUAcNJWnml5Hu8z60tF60LdFEyeRCwoCmbXDO8cILr3Bw+JDfPvs1Fm1D3dR4n5p6CmUcNZspaqjSGCfXGIOCGWFAg4KiBIZkf/l9wBCHYCXo+KtuTN4N7Uau5/5cNc4ENZqBLAQ1Cmai1SJmGhZKBf+yQLaQ8NQXviipzR/O9XhDdKNfnrA1eWU+/Dk5JbU1HBxJv6flDAa2RvYf6BASSI6hd7gxyrV/+FiqEP/5rwtLo7ZGml96uYf9PWGFZgvYrOAbr8Ev/BJ8+Ufgn/xjyWoKNRwewUn9RwMbaySrLO1zuoR//hvw7h34a78AL78o2p+tHVBbQ9tKaKksYKOTsFldC/iqGzh4BAcH4tgqTVtOIKAL4ghTOKbVkNVyBY9OZL/Dx/Df/yN4cBu+9VNwN8Cv/kv4sa/DtSv0qdpdP/7p+nN4KS1GkidXvU2qJ5RAUQLH2WANqgIDPGFrMiAbzsX0jBITZdIFKbhOWVwBecZlmgc6vxI4OxdqjWTNSwLqtoDQCnBIQvTUvsF7GUtnpTr34UM4+zXtAN+QG6eGoPcwAHYh9mMaQw9mUiad7wagTe81jUuyNfmW9Ru1NXkRkM79eWucmejw1DIhyX+JEgbwyty4ItV46F9uYw3ldMr6latsv/Qci8Nv083BmNgfxyToRAY8smkKcLQY0+FsVN2OZvEAfhZZPnpAvVioLRJEbqx2TjYG44oBQy3/HT1+jHORzo84Pb5DMYaqkPOmMKz3HmsMO1ub3Lx+nT/87htMpwXf+NZX+Pmf/4u8/tqXmZ2ecXQ8p7Alx2eH1HXHqk4dqz9ubEpnGRU5h4gYI6vWM+oC3337fW79Z/8HdjbX2dnZ4vrVK1y7cpH9vW02NzbZ2Fxna3OTtfUp48mE0WSdSVcTQmB7Z5ud/x91f/ZsW3add2K/Oddau9+nb++5fZv3ZiYSiUwAiY4C0ZAgQFISKVFSVMlll229VITDEX6x/wBH+MWOcIRdjpBVoSbMCtnFKrFRgCJFgugSSGTe7JDt7dtz7ul336xuTj+MOdfe5yIBJmSKzlzAyXPublcz15jf/MY3vrGwxGA4JEsTlLFkruVCkqXFNclMTpxmtFpdXn37Ntv7/WLfRnHMD37yffb2d/jG134LpRf47nd+wnOffpJLF887bylXH+VvGHz6RIKFnGPtvIbAU8FKaRSBMEgacSJGoVQkn6cCkZfnuFShTGBesC73lBslUyso61YiucpcybMCK57X1irGmSEjpFFvUilXi2owuTF9/Z0HTs7lx4nwtPbNVzVZJuXYYRSR2ZRQRURhSBBERKUKswuLPHnlU3S6He7eeZ9uv8doPKJWb6CtADFjcue+LCxLliXgx7E1GAdsvJhYqrec+Z+dlHn7yjKtNFYZxx67KimlUc5I0eTSRdx+rATFPhLoyXxT0PouEOeZAJvHYg1aiRfNsWNw6TwcvAkDpiZAP9H4bXpS8yDE6SO0dU+5fQEYGNjbkQohmKz+/ape4fxvmAJLygEBA7YMrU2oWAjdZOf3RwY+zM7AiQ149xpUQ/jsM/D1b8JTz0plVLsvaYz+oYCj2Hes/gBgE0ynztxrkhxKBq7fg//zv4DZBszPyjk7tgoLc9L+otkUJqVeE8ag1nTaIAPzc7CwJOchdeDKt1zI0snxm9xVgXXh7TuwP6k4JI7hpe8LWPzqb4Oeh+/8GD79NFw8x6QSicnkXND8nqlxr7HaiThd2klpCuYoYJJaUc5p2ncDz5HrYryGagrYfkCsKVgPlQkQcbGmeC4zYEM5V+XqRECMB0QfwBb6/S36PunJGI8ipL9aJOnDIBI2bWERrnxK2Jvb70sfsvFIUlrT4OQIS5NMzqc1E2BTiIkVhflfwYpNV305rY3xY007QO/SE9Of9yG3jwS4EeCaF2Zgck+63jXOsMj6UjkLBEpaBPgSX60Img1mz1xgtLdH651N8kwXa+zpeDPtb+MfMU4EplGE2pDmk3Jym8Nwe4e42ybPMoJShDd7Ux5ZO1pRhpYlTRN+9Fd/xnOf/TTHjx/jYD6lPqvodVusr2pCHZHbBK0sq4uzzM3ViQIFKuX5z3ySr3/9m1w8/wRRGPLdq1fJ8oA0i+n3euSpIknSDwQ2YaAohwodKCIduEkNkiwjSTURmixX9Hf32do/5L2b9wBhCoJIESqpcqqUyizMzzC/MMfy8iIb6+scO7ZMtRRIN/FAHHjzwYAsyxknCUkS0+0POThsce3mQ96/s0d7kIhWamrLcsM719+n2+vyW9/4XZYWlvjhD19lNBzw9CeuEAaBMGCua7UxXuTtjBERs0KlNYGWSirftFIr7VgPS6ilWsifJa0Uxoq+xzrBb25SLKkzqJ0Y3037xjgXGTRK/Gi0t2VUxHlGYkLqs0vMN+colUsFeFFkFM0y3W8vaFYFXSxByVhDkozFgDEIClG01gGNep2lhWXG8Zg0TXnu2c+B1fT7A3q9Lo1GE60qhcYq9waEKBdjcmFejN8XiuMSVU1Obg15lmKNIrcZYeCYLhALCpeqymwmx+5cSHObFemsj81mcZqOadGmmmJfgMdijaStzIRJaTTgzHnY3YV3NiHzzsDq6Hf9DKfq4sV01VRuJ+/LlbAmnbasrkuRY5gi95pgksLwn5+m8Fd/Bp9+TkDLYgqzSoTA61qAik3k7QszMFd3eoYYPvMMfP1bcP4Jmdyufl+OJYtFo5MpSU39vFRUqOR30fQMV+nkQFmuRNi7dwg3JNagA4gURVPQclmq0RbmYXkJ1tfg2AqUtOxTqOX+HAxkEk0SYRj6Q2GWbj2EW7swSCZVZn7LDVx7H7pd+MY/EMD0w6siUv7E5YkrrhcUF/b+HuxoinLx6bJ7jAMMDsR4w0B/KZUfT/mEYTIpTMWaI2zQNFPkP8TFmgLA5hmYAGYXYWZetEjFfnoAZCa/Pas3HWtwxxnHci6DYMIw6UAMHxeWhUFLUnj28zL2BwNp29FogqpMQH+hxfHAzAHoafHi9DH5Y81SYWZsNtG04Q/DfZb1rJpbBJhsks76kNtHAtwUBnRu0vDUv8FiMI7Klxva2BxrZALybSutBcKA+vo6S09+gtFei3hriKzlg+kvkuvsgYsL8cbibPM9XCmgDcpqksM2ceuQPB5L2SKWoq28cYPEMw5Iq4ByJSSMpOP21asvM06GdPodSuWQJIlRGJr1KufPnqRUCTnYbfP8p5/mW9/6LS6cv8jC3BJpmrK3f0h/0KXXbdPvp2jXvNJvClBaEWphbHDAEOtaETgQnWTS+Vpr5VbhYJRBo8jyhMCExFbSDV01Zq/VJb9xTypqcgjCgHq1wsryAsfXl1hbWSDQil5/xGG7w+372zzcPqQ/SklyUwDyopfSY9f7/qNN/oc/+n2++bVvcfz4GV7+yVuMhmM+85lPUiqVMXijRCcMLiYg6yp2cM1I3Xc4zY1PZeIrpPCMg9x0gQowxpkCotAqRGmhPHMlQUIDxq3WjTVSEelcn8UiQ5PmOakNqTXnWZibpV6tkltneOdZJitaJN+tftIZ3AD5EfF8EIgRm3WvkQVXQBSWWJhflBJ1k5Nnopu5f/8Oh60WzZlZoihy7SmM84PKsV5LZHK0DsQFWquisEFrXVRHGTPl7YPBGF+Jk7t7E1eJ59MgamLol2cFq/bx2Pzq3Ad7v+Kdot0LHUDOpLOxD7pWwMHaOjz5CRHubg0owEfxHUyxK+6xgkI2UwBl6nmr4bAtZnVFrOEDY03xHq2gFEi6KQzh6stS5dTvQDl0jsdG/HrOnZLH9tvw/FPwm78tVTLzyzLh7B9Kl+1eG3pOK/M4sFFqwthYJufQl/j61JGCwnytOAYllU/Glwlb6Rd12BWmx+RyqsMAqhVYXoBjy7C6IN87GEGrA/e3YfsAhq6s2U7t288AMQuPNuGP/l/wtW/B8TPwk5+KAeBnnhURrR8L0+kgz6YUrNn0bwfOpmJNkS6cijVSAeQYChTSpd2BKOXMEIv99gwHFLoZiwAn31iuuQBzs2JaaKFgmYq2IGZqPz3AMEcf9+lWv78+vaa1lOPPL8q+mly8hrJM3KxbbSnnj6IJYyQrGwrQZFzazhsHFpk1PdHYFOksz2ZNYk1x31gm4MyzQ15U/EvEmr8W3CilTgD/Blhzn/zPrbX/V6XUAvD/Bk4Dd4Hfs9a23Hv+D8D/0u3x/8Za+2e/8Eusd0ad/D2pwAFrM8THJHCP+4FEoYJQSlNqNJg7dYb+Ew/pH76FHriFBZ79c2DGrcR92MpdtYu81vj1Fb5/kemNGO5vEw/6VJozMgnloLQhCISiLPqD64AoKnP89AUe3rvBzqN73L/3kPEopxRtowOFsVJaNzu7xPLyMuVyid3dLZ559ldYWVqiVqmitKHbaxOVSnQ6+2xvHxCFJTo9yfOHWlOKNKUwnBrkkmYzOcSkstp2rrNxkhNohS6Es+71SqFsQObAnS+DtmpipmexxEnKaJyws9/ljffuFIAhc+Zx+ZRmpbiswKSZ6M+u/lrtQ/79n/0R3/jab3Lq+FneePM6WZrxxV95gSgKMTZAK1eCbEST48V6WsuEpHUIrjcTRTxQxf5J/HVgB7faQBx2tVVYozHauOosCQCG3I07N2qsZ/sEwGa5ZZwrKo0Z5uYWaNTqaB0IS2VBIcZeEjL9pCbnVbvVnn8u0AFScu3YImtRTDpxK6UoRRGL8wuYPCNz2hmlNAf7OxweHhKFEdVqBWvd9XOpKYuUcUtrE9H0CHADa1I81+gnfOsmfWOMA/25vNc4JgNvO+Duozwnz42zSfj/ffvbijUF8i5E3p4CR1aM1ok41fSkxeS3cuzNqTPwxCYc/tSlp4ojYYJu7PQTEzDlJ5pic9eiN4b9RzDoS+pGKTkybRxDMLVY04EIbc9ehHs34dEDuPNALPSjHdeLx5Xxzi6Kj045gt1N+NSXpDlotSaf3e2IDqZ7IFVPYcl19Ua+N9ICnqZijUw4AM6VOHc3YJJPARvFERbBBhNwV6QfHDviq56SVITO+1147w5Fai63k9TGz7u2PyfW0D6EP/sj+PpvwsZZePO6iF2/9FnR/tiAogTZ6Klx4lgbjKSKfG8m/xXaX09/jd1Ymoo1cqxKPtenXgqw4YS2vlS9AGc+tWWFAWs0RbdUq8t192CBgKKz+XSssY5Z8iDNs2a+87aZer+vTFFKwMv8gktduTSQUrC/C4eHrvqtMgH64K6H1/Hoyd+4zzTp5Hi8fshfq+n2FUXlWzA5F/51eT7R/XzITf/1LyED/nfW2svAC8B/o5S6Avzvgb+01l4A/tL9G/fcPwaeBL4B/LfKWw7/wm2yktGOOxGzNw2E+GZmPk2h/O5b0RMorQhLZaoL88ydvUTzxDyRtkjXJbciVhPA606zS0JojFWTfj/KEipcfyqFiXP6Ww8ZHB6QZ7mbgBybUJQai88NLh1SjiKyzLC4sMKp08dYXFxg59EO/X6bSrkGVlEq1QnDEpVymZOnjnN8Y41SOSQqRXS7bXZ3Dzi2doxHm1uMRlLlEmjN/GydhdkatVKEDqT8WjuzJq1DojBAWe/qLKxJZrz4V37nRliGNMtJ88z9SIoiyzOyzGByW+jFrFvZGDemk9wwTnN5nV/B/QwtL9vPSp7lfq9XFN1Bjz/9j/+eB1t30YHmrbdv8sMfvORSNKGkzJxgWGktzRxdSkGAjUbr0HmxaALtrrj27I0I5ryOZELVWkSrY92fGm1dGw8diB5GaydGDiVlg8FYzTiFqNJgbm6RZr0p1gQo1GPHLykoV21UVE4IwAmCiEBHclyesRFkRJ4740nnm6F0QCkqsbSwwsaxUxw7tsHGiZMsLa8yHI44ODxgOBqRppk7Zjk/1niQM0lDWeWNBp0nk9JoHREEIVpNRPgmNzJOch8LLZnJnaYvJ0lj0ixxzN7fGHPztxxrplfdPtYERayZpCnca60LwlqJf8vCPJy7BCfnj6YQ3HWEqbcX/3CfU5Q02wkjgJKy662HcHgwMc3zIEhPpVG8Bw9KJucsh8UVOHUMFhdgewd6h+BiDaW6TEyVsrRDOL7mGJ9IgM3uvvjsbG5KH6fMTcqzdZityet8Ceq0MVwYTM7L9GSXWyfOthRBI5vSNPmS4tyZA3pg5NODfvK3OOo5d+fDX78PjjUfCGwUUFEw6MGf/wls3RXg99YN+MFLLkUTUoiFtTu3xTnGARs99dv9jQc/monh4tQ1nRaAH+lv5cad/y7t3x/K+fIl0SlQrsPskpTDB+FkrBw5Rgdc/Fj1Pcd0IFqaIKJo01EAVByA8SyPe31UkrF07BQcOw4nTsHyqrBdhwfOJTqb3D/YgiA6ArKKY3dgRbk06ZFjsHJ9cyNA2bjx41k8kwv7mDmLgF8i1vy14MZa+8ha+5r7uwe8B2wAfxf41+5l/xr4e+7vvwv8W2ttbK29A9wEPvOLv8Sdc/8/ZVynZP+kP2GTFZR11KGyduoRA6GmurLE0uUr1BdDlxZ2J9L6e2MyMBwZRu7HnwNDSin8tEiu6D/Yorf3iHQ8xL9KO22Cn3CF7peJ8fi5y7QOWrz+xss0GzOsLK8y6I945+3XmZ+bFf2O0jTqTeqNOk89/RTLS8ucPXOBZmOW7UePuHf3Np1Om1a7x8xMnfmZBktzTeqVSO6JMCAKAik7R4CfMTmZyQkCGVzT8SYzssrOrCEzUsnlm7tiJU1hcveYkddnxpI60alnZyQFxBHWvWBDf27QOboZC52hIckM7V6XP//LP2F3dxMdBrz11nVeeukq1mToQKMCSxBoAu19kOTL/L3rAYJn+1C6AAp+fPmVijXSxsFXCOXTVVjaj0GZ/LWvwlIWHUrwiHNDWK0zN7/EbGOGKAzdIsO3DlEFkwjqiDZK0mAW33BVu+MJdCi9y4r71gorYgzGCH2tFJRKIUuLy6ytnWBtbYPVtXVmZufp9we0Dg8ZjYfkWQrIceWuOgzrgDpImb7xaTMH0PGAHXyTzdyI2DrLExkTRto5ZHlKmuXil5Mb8iz/GzMo/tuKNTIuPGhwP78g1vjYcVRHILGG5SW4fAWWfNn2JNYAR2LNz+7D1ETun8gV3N+CvUdS4eR55CCcHvAUdL/WcPYyHHTgtZ/IBLiyKimct16HuTlXHaPFL6Zeh6efksnrzEVozMKjLbh7W7Q+rR4069JnaK4pzRQDBMT45pg44OeFpS7WHDllhZDUMS2ZnXrepSk8oDFMGBmT+xzo5PxN1r1Hf3/IWIMFhkbAUa8Hf/knwl6FAbx1HV66iuTetZSpB44pKlJQcgkImADMgu1zk/t0rPFAz9gJw+HPh9/8eAOZ/D2o8k1HlWNnKk4H02w65oxJmqZgR9w1OZKSc8AhmBpjCgE4ZupaYCegwcUaFAKYF5dh7YQzlzwmzFF/IAzOeOgM9abSTf6Q/H6Z6cd9jiqf7Kc/v/7a58kUsLGSFkv938a1//hwl7w4xR92U0qdBp4FfgKsWmsfgQQlYMW9bAN4MPW2h+6xX/zZDlR4Gso3FxQmxVVR2dyttGWgeO2FBoJQu+urKDdnWDhzjoXzpyiFvj+RmRCW/tzikhVWYax2QlN5gcJK9ZZD2cOdNu17dxl3uzLunRBKO3ZB65AgKKGd0BUsu4cDLly4TLvdQQfQ63V46ccvMr8wh7QcAE2ZaqVGpTzL3Nwa87OLNOqzzMzM82hrk9u3r/H0Jy7z9V//MhcunyMKQzLXT0omm5wkkQkny3LSNHcWCJrQU+3gWBpL7gXajg5UAEaRG+uqYG0Rm7JMxNVZbgUM5W7BZSn0Iv6+9yd0Ohb97DU+uvn7y1jLQbvDd777bYbDDkEQ8dqr7/H66z8F6wTProN24HpWBYFjPdBTN451105PuR9LILAyTqeAiN8JnxKVUn7lOpdrPWlwGQQBSgfiVh5WmJ1dZG5mjlKpVHjkTIMp39pjkpJz57mYxLxWKCgey/OcLM+KFFieS6PS3HjHZAFO5VKZ1aU1jq2fYH3jBIvLq1Sqdbq9Hp32IaPhgCwVcz2ciNhBN/lbWZfuDVzWxQEy5cG6nC/t0gbKOtGxa6yZ5zlZlkhpeW4cCPvwrqEfdvvPF2s8spjEmkIj4EWjFpnspmLNBM0joEYhE1dzBk6fh3OnpUKpmK2nvm5yVBwpHS5All9ZuRX9Tgfu3RUhrGKiYwicqaAOXKuCKaDT6sPFK+IToxHfmB+/CAuzU7tUgkoVKrMwvwpzi9LfaWYBtjalQ/nTT8Cvfxkun5PJNMskGORu0kmcd0mWy8RjmJro/TF7MKMmQKcIRGoyufru04YJe5M7UJAzWXl+UFBR/OxjH2azFtod+O63YdgVRuPVd+E1iTVHmBQ/JoJIHv+AWFMwcVOxxgWbKaAz9d3WMCV8k8+aNiX019cgTU/nFqWppXd6nmZdCuBtJ2P58dWmH2dTsaZg0HwQzF2j0iLV5cZjqQxLawJwNo4Le1OtC0BsH8LIteUoPGumwH9Rgu4YKQ0TA0vHinltkU9R+n5bvrGmr8LyKak855fpLfWhwY1SqgH8j8D/1lrb/UUv/YDH7M+8SKl/ppS6qpS62mq3Cn2dCBhz0cQ4nw5rTHHujC/bU2DcBbKAthM9jopCagsrLJ69RG2xKu7Hwus4psJO7ZTIIXO0a0wYFKvvyYs0dpjTunWdzt4j8iRzdL4uJilVTFgKpQJe/uF3eeuNN4gqTWqVKpVKhUqpzPVr7zMed6hUa+R5xkxtgTCMKJXLhEFArz8kTRPm5pboDTPCqMHx4xtopTlx8jhzizN4H5M4TUlTqVjJjHULIeWsJwJ0cDRVYhygsg7M+JV3ZkRIjJHPNbn0qLJGfiSNNYlHnq1X+PtfvjPQfhL/4IFhgSgICIPwZx43Fvb29/ne9/8UY1J0EPHjH73BtWs3ZLJFERYgRxW2AZMbfHKDWVeq7WlT4zxprAMKwnLlhT4FphcTdhIjNOBSS0lusSqiObfE7Mwc5VKZouGkpWCCrLFMHKr9Z/tVm+tHVujGBHDnRpqSGuf9YBFAmaYJeeZLtR3YAKIoZGlplfX1U6wf22BxeYVyuUqn26Pb6zIajUiyRO4VF2iLGGt9VyzrmowKmJN5crKYEJ2iKmKdB8TWNfbzFVSKQNyb/wa3/5yxhnabIzd3UUobTAK0BwNeFKo4OhnYKT1OFMgK99xFWKxSCGeLPZneHf+3djnxqQmneFqLZubWdWFvkmwqbYHsj9fsaLffL34PXn8DKg3R0FQqklq4/j6MOyJAzTOoLYqWplyRyaXvPGfml2CUQVgXK34dwMnjsDQjO5Vb14k7m7Aq1p1+D748Q1Aci3Xn0IGZYnJyqyP/Obn92X9PE2T+x19tDzL9hPGLAE4QCCB8fLPA/j58/9syWQYl+NHrcO36BCQUIEdNAO8HxJqiVLtI0UwxGYWuJJ9M3tPD4EisURMgkFtQEcwtiYi3XJ4CS0wAo6GINcU4moo1k9YMbr/AMWNOiO1BWmakAs0tiI7oaaJQjBbXT8GxDafbqkK3J+nM0ciljKZAnW/+6Y8XizQZdWAu4OhiwnjQ//jx+c/x5y6AXyLWfKhXKqUiJNj8vrX2f3IP7yil1t3z68Cue/whcGLq7ceBrcc/01r7z621z1trn5+fnwfv+Ots0XUQonWINzY7QvMZ5VbFMpkrHTjNqBuIShHWyjTX15k5vU4Q5u6VAmxybFEx5DG3TNrGgRNhbjS+VYOITwcPd+g8ekg8GsrnKe3YA+vuc+eqbAxv/OT7hGbM3tZdpznLCcOA0bDHm2++zNLiguyDKmFyTZ5ldLod9vf32d7ZYTwas7q8zMMH9zg8aNPv9zjYb7GyvkQYabJMDNmSLCfORGTqz4lWWtI4wVH5gSyMvG+M+PRkFnA6DFOcC+/yC8Yol9KS9+Hf70+eTxM5tuKI/vIDNq0D1peXKUVHW9fn1pIYy8OtLV5540XCMCA3iu9992Uebe0Wk7DWmkAFEz7EXTfjJqVJawbwrAzoQntisM5R17EqDpzK+NNYG7jz4bRfSsuiEkWtOcfc7BzVStUdb+7Oh+/PBEUZuUt9WTdOlA4Lo0B/iry3jbGGLM9Js9QJdqV7eDwekaZJkfIyrkpJAdVymeWFRTaOn+bYxkkWllYplat0+0P6/SFJHJPnqTP2c2koB+gm11cqEWXRqJ0OR+4fqfpy/jcmK0z+fCm9D0bigfwLLvgvuf3njjW4WAMUsUYYEa8D4LFYwyTQF5MeR9MW1bLQ9qePQegnO5igwsfOj4WJyHYqohcpLQUPtkV742LNZKXvwbObTK0RPxczFi2JizWEAQz78MZPYHFR9kFFkGthY7odmeB3dmSCWlqBB/fE1bjfg/0WrC0JS5WZSVogy6cmbtwq3K3Ef+YY/bG782w4CuZgCii46+FXOnbqZyrWTM6RndxIP2/TgUzGj8Wa4vpubcHrL8q5Mgr+6hXY3J1Mwl4H46+9v24eAD8Wa3Cx5khJufFiXzXFoPhrF0yOxwuRjfuu5hzMzgnThuJIB/Gi+aTTLRVgxFIwfN57x1+MbErnlOWTFJAHa/FIAE5xPdQkpVQui/fN8dNw/KSAnXJVwPFgOPEfKlJvdgrQPQYEFRMQhweO7j3WyPkqTP5cKb0HPsUM9eG2vxbcKJm5/jvgPWvt/2XqqT8G/iv3938F/NHU4/9YKVVWSp0BLgAv/8LvcPyCtRarnA9JEKL0hA2Re95RXTovBoomlFSCFmARaKmwCqKQ0uwMM6fO0Fipod17DbYQ2U4DaGO1TN5GdAhSOaXdfSUpi7Q9on3/LqNeV9I67gZXOnCVNgZtUuz+Pcz+Ju29Td558ya15gy9XpdavYYOAr7/g+/SnKlIV+zcQBZRiqq02m0OW4fs7R3Q7Q04vnGcL3z+S5w/dxGbalqtNnmmqM9UXJWhLZpnWjmRsj8BMkEbe3RhOPV6P/FLhZS/FR3St2rSJyoUdO3TK9OVeXqK4fLX6a8bekma0um1ObayInqV6edyQ5ymXL/xHrfvvkOpHNHvx/zld35Ed9AtRqvyfTUcXJHWCDjmgyJYTqS0uVsMWBcDvOWAAxJKmqEqHaAC7YB1gNYRBkVqLOVKk5mZOWqVqowjmx0ZQ5Pfju3wHYVt7rxnJM3hq6VwZdppmspiz1gXDzygMKRpTJblk7jpVomeMapWKqwsrXFs/Thr6+ssLi4TRWV6QzH4y9J8osPKEzkX1n3e1HJYadFtCRkhJeRee2QdeLTWi5zBBxmlKMrN/ya2v41YU9wk1iLup0yATTGJAh8Qa4rCBi8g9WxKFIoh3akzsFqbvPfnAhtNsbr3k950ebdS0B5LCW6vS1HN4hkmb25mUti/D/sPYW8T3rwJzVlJGzRqAjh+8D2YdT2ZcgNpJC0QWm1oHYrTcm8gDSY//yU4e0F8alpt8bmZqbriFTu58adOIy7WCMs1fZz2Z0HKdNfsqVhTpGRcrCkuwuQ2PwqK1GP//nlbmkKvBSsrkmKb3nIjz998D+68I1Vkgxj+6kUph/eXQ0/vhJ+EcZMvE2BWvMY9XjAZ00tof6xOvBzoKSGz8zIyFipNYWxcrJFqqA/Y/KQ/FWukOs6lVL1gHQcW0mQC1jO/70bGVxoL6ClwmS/NdsdRqUiKav04rK8LWxmVRaQ9HrseVA7UmMS9N586N+7C+eN2rHiRvipOoZkCckzOuXLP/RKx5sMwN18A/inwFaXUG+7nm8D/Cfi6UuoG8HX3b6y17wD/H+Bd4D8A/4219hfukUw8zj01Ext5KVt1Gggn2vK6AWkKKAeulJUS/WBSUROFZXQQEFbKNNbWWLhwnrDiVqN22pVjopWwgLGFLZ9jY7xeR2pIdKro3r9Pv7Uv+6g9Y+HWrsZSuvsq5i//Jc/pPsPDQ/7kD/+Qu3cece29m0SlAGUMWw8fcP362ywuLQKgjMakMsGlSUqcJAShZn19jbNnzvEb3/i7fOu3f5eoVCNOUmZmFmjOVdyCRDxutIJAaYJQEbpOwlLd8jjc8MfrJklvc+2esphC8AqglZUWBJYj6brphZP/u1io/qKLrWAwHNPtdji5vn4U4FgYJTnxeMzrb7zMaNwlqpR5tL3PD198iSwTwZu105MHR4OLdfyMdSkitwqRR51WSwUFW4MOHDgV/Y5yVQdKB1glLSyCUoVGc4Z6re70bwIQTG6d9iR3bLSdSpUZQLv9EL2KVpJWU9ozRe7cuZNnXJdu34gyjsckyXjipgxOoKydzwxUymWWl9fY2DjJ6voGS8trhEGJ8UiqmYzJxYvG+IaYYM2EaVKu0qXohu7+dqsNrFs9GQcHceDIX3BdaA7+Rrb/7LEGmKwMMxfY/YSqpwSifiU5FWuKbsxeF6H1pKN1pQJrq3D+glTmFIjUb+4zixtIHX2uYHDcXZUpuH9fWgnkhsKErUgvWLj3GvzFvwTVF5HnH/47uLMF792QSihjYPMBXHtbhM8ARoPrWECSiileoMQ87/RZ+I2/B7/9uxDV5PmZeZiriI9gcY6Q8xS6idpP9j8n1hST5GOxBsxEdwIUPbweBzOPn8ap0/kLNwUMx8JSra8fBTgWqcAaj+HNl2HclUqy7QP44UtOLGunJt8PjjUU/kiTWFPc/9ZQVDEVYnBf1aQnz3lNlQGiiui4anV3uR1AyO0krXeETZzEmoL5yO3U57rv8pOcvx6+V5NnMeMxJGMKN2X8d+gJuC6XYWkdNk6KyHh5TVJ64/FUNVM+SW/h9r9oguhYmiNszvR35VPnbwocFZPLLxdr/lpwY639obVWWWs/Ya39pPv5trX2wFr7VWvtBff7cOo9/0dr7Tlr7SVr7Z/+9bthybIUa3Jym1L43IQBWkWFE61cE79qnCqfxZUDByE60PKjA4IwotycZeb4SWrLDQxGbMmmgo5fwxuc3421TtJjXFoKAmULsXy802K4v0seZ0W5sJikQdDdQ19/kfvX3qfcb/PJmQr99gFvvPoax9Y3KFcqLC8ts7g4z1/8xz9lbrZBGAaYPGfUHZMlCVmWkKUJWMvq6iorK8uUSxGfevbT/M7f/z20LhEEZebnV2nOV6jWNEGgXAkzhKFohnCi2Z8JN56V8XoQTMFoKFdd5YW3wjL66h8nstaTIWPce4qKIPWz3/f45odupz9gOOxx+vgGpTAo9sdYGI5T+v0hr1x9kVJZEQQh77x1m2vXb7orNQG6ClXsr4AFi++xJOkiSeeAb6ypHAOsUS716YWZOghROpQmnUr6h2VWUak2qNcahIGklowxjMYxB4dtWq0Oo/6AeDgkTzN8TzMKDxkvWBfhbZaJg7BSqtB3YX1ZflqwPhZLmqbE45HrIeX1PapIwwmo1DQaM6ysHOfEybMcO3ac5aU1lBbheZYmE7d0914BV+BTk8azTUjs0DoQfZO7j5TWhZ3CxGNowov9XN+RX3L724o1QqHnYH3bEO0qVKKjouKiweL06l3LhB6EbuXtJq0wFNbk+AlYaTBZ5X8AwPGpJ+vA0vTqVE29frct/iLTuht37ejtw7UX4fp70G/BTEVEnldfk9V1uSINEhfn4c+/DTPOmdjk4qWTJjIhpYns0uoqrC5Lyfezn4bf+UegSxCURXw8X4GanlRGaSZmcNOi2SOn2r22ACoeBDA5x0UKhInGwoOJqVgzec8k1nzorT+AYU8cnAsDO/eZ41TSK1dfhLKS6/r2bbh+c3JdiuvoQavfJx8k3UTsU5kFw+bOk/YMzSTWTP7ttSjufNUa8hOEk88fx45p6wjLNnRC3oIVmsSaQpRrUhEK+9VTMa4dO5S76+7PdZq4/mNTacIjYAT5nkYTVo7DybNSJr68JseRpo4Zsk4I7t7rx2vBUE5NEooJ4PP3UeH27O5Ln4r1P79ErPmbVQL+p27GYFx/ImsUxmQoLW0KtBLtgxiu+WslCM4HV9FGgC1cZwNX5RIRlkuU5+ZpnFwjrBg3Ucvgnk6iiOGdYyis7xDl7yH5V4DCdEcMtrdIRyNZeDiEHmYxM49+SiXP0MDdBz0uL4ScOb7Kw3t3iUdjep0+x46vkmc53U6LV1/5CSvLS1hjSUYxe9v7tNqHWGvp9nqUKxUqlTJpJmmVr331G3ztq7+OtZFMarUF1tZWWF6fo1qNCMOAUIdYa0mylInd/tSptk40bJmwB0z1VwJJZzn/D9EFTYCHBzd+sVtAJHsUNP78TV5TKZcZxDGBMmysrxG4lakC4jQXw8DtXR7ev0OlIrqkF3/wKr3OQFKCuQcvuZv4FTh9kLWB6EuKNJR34p2qalJusscDNLAuF6x0JOAgl1V9pVylFJXAp/VyS6fb4/rNm1x/7122792j9WiLYbdDniUFK+JZPX/cBXNikQ7cbvIUV2Ul1W5Z4l6uGI2GdDoHdDtdur0Bg+GQOIkZx8nUgkfy6I16k5WlNTaOn2JtfYO5+SWy3JCmIhrPTYbvPYXN3WLIV3RZciMNMKdTVt7kL0DJ/eRA/KRlketj9Tdk4ve3shnj+hNZmUyNBw6Rm4iDyWTrBZnTq3FcsC5cZwNcHlws8efm4cQ6VNw5KSb2qXvDMtGXTMRr7smpf3dHsLMpuhsDBRuQJbD1U4qmg/d7sBDC8VWpshqPodOXf2e59Ah65SUx7TPAKIZH+5KWwkoaq1KRH5+a+Oqvy4+NAA21BVhbgfU5qEauqaibgLOUDzRXK1JTTCZwfx4KvOMmZQ9cpoFH0TR06vUeaPwSsYZyWVoOYISh0lMfmOZiGLi9C/duQ6UkuqQfXIXOgKJSzGYcEQYX1y+YsFYu1hTHPRVrCsbBg7qiiiiSn9yxpeWqiMGtnVSPdXtw4xa89y7cuyel+92OY0umUpbT1UpHBL4+nWMpKpYyV4mE27fRCDqH0Ok6ADWSCqo4KYicohFnvSkpquOnYG1DBOnGuA7iLjXme095InX6mvkGmHbqGk0DNF81pqae9im7v2ETv//smzVCp8kElE0Ejlo5sbfrSuyP1OVBtDt6eb0zQ1OgAkUYltBBJKxCOaJ5/DTN4wuEOi/SxOCnUzmpBn1EaPx42NHKopOc4e42yaCLshL4S+mQxp2XKO9eJ9CwujKPLgXMXfkk/8X/6p/yiafP8eDODe7fvUur06ZeK5Mbw+tvvoxSikq5hs0g7aZ02ofEyYB4PGZvb5d6rUZ/MGAwGKK05h//3j/lcy98gTQBpUKWltc4d+4Cp8+dohSVnIbGTCwGfiYIuFJva6VtikPSE/0OhYbLgxa5T+Qs5Na47ueTj9ZOa1OwPr9wkzOepClzc0129vdYW15kYX6Wckm+I9CK3nDAaDzi3ffeIAylG/zefovXXn1DjON8kJmKdTmeqbEFwPe9naTnk+/Y7oCUq3jxFUyyezIerPP4UTokDEX/JZO4fJ4GVBKTtNoM93YZHOwSDweYLMOYjCxPSNNYgEWeSRYklxSRcdVR1um7olCaZBrfhNIq8jyl3+9y/8FtNjfv8ujRJjvbm+zv7XB4uMdoNMCXm3sLg0ZzhoWFFRYWl5mbXSQISnJP+bSZ6wXjBcHWrciMMahCJKmmKjYtgRY2NNCyYBAtlnYCblda/ksto///vLlYI0HfgQPPijiNIxNHsiLWFFFA2cmqXOF6LJXEIM8i2o3jp+DEguh1pt7KVKyRyo/pif6x+0ZZSZvsbIvA1zMH6QjuvgS710BbWJ6HcgCXn4H/9f8MPnEObl8XkNNpQ60sx/zGyxLty1XRW/RSmczigYChvV2o1cQZeTiU8/GP/im88AWIEYZheVU0OedOyQTsezJ53PcBsaY4h7k70GLCtZNT4Y+/YEWKVdYUw+PPyxT4+RCxBhBGYa4J+3uwvCiNPF2sQSvpNTUewXtvQmgEuO234dU3jgKaKQIBPKCxk32b8swqyr0LJmdKT/RYrCnAkTe48+d1WkCbjIW92d2Fg13p95RlLg3lGDhf4m1w6SFfxu9+o1y/rnAqXaSE4el34cFt2Lwr7Sq2H0oT19YejAaTIOtLy5szsLAi2pvZJUlPWetSZziAMzWZFOMkn/xdaIaQsazDKQZHTRinQozsX/zhto9EbymTJoKsgwjlavglsEbiHRMEhFqTZlkR0DVqwlA5a3JtZNAESov7q0olbQFUFhdZuHSJ8cFV0pZMgJLeFV2NKDIkhaC0KRYSroYLL0EOjGW0vcO43UIlY2qHN6hsvU3Q3cVaGWjzC3PUahXCzgF3vvvn7N55QKsXU52tszDf4PjGcV6/+i6tw13eePM1Pv38Z9l6MCTPcuJWSjqfUq9WaLVa1Gp16pWQTueQRqPBysoq/4v/+p+RZClvv/0mc7MzRJEmDEt0Wx16nb5LzYg3zREqF5nmAz0ZIMqlqKSqRxWxXKpoHHjECK5+bMEkr7OT2Hz0qz5ws7iFE+KCe/zEGg8ePuSpy5d59/23aXeGmNwSBpruoE+1Xebu/VucOvEEeZbz2pvvc/nKJRYXFv0B4PUiEhdF54IKXNyR1fYRyFpMVi5XjZWAY5w42XnBWGucr474Tsihyesb1TJnTp1kNN9FmVyEyC6nb60liVMGwwFRGFEqlxxwyciylDSVRoYGMasMdEQUlvEduuWe1qR5yqDboladZcYod3365DYHqymVy2Iy6ComAhVSqzWo1RuEURkVBCJ8ts5gzgaTucNdKK9NslY6gJs8d4tAlxoOhEnFAVfr2ChFIGPEaszPEzx+FDcfa8IIvF+IcoFVl9zkoifuwEU6wr3ft0EwhbrdsT5T/huLi3DxEuxfhZadAkh+ZvTAScnnFZud+u0AwPYOtFsyuR3egkdvQWcHbCYr78U56RvVPYTv/rm0X+jFkoaarYs/ydV3obULr78Kn3kB7g9lImylMJ+InX6rJTqPSiSgp9EQM8D/+p9JyuHtN6SvUaQF2LQ6wg55oPIBsUbO19RkVKSo/Gv94eaTx4tzM3U6itNjJ8+pD3j+gzb/9ZkRRu3hQ7hyGd57CzojYUYCLaCuU4Z7t+DkE3J+3ngfrlySSiG//4XXDEwEsVO6rAIhf1CsCeS3izUUTIr7HM9YFEPCxaZqGU6dhPkuRdPXKJyckzgVAOLZQ+PYkywVoTA4sGVkrIblqWuGfF6eSrPV6qywUkqB7cu1WVHCfumAojpLhZI+qzdEWByEMianYk1x7ovr5tOSThDvO9Ubd04C5RYe/j0e5AWTx36JWPORADd5HBPv76NWJaWiggBNBMr5ySipZIFMVDOKQoODm8itMoXfRjHmlVRGmdwQVSvMnT5DfLDP3qu3IPMNOmWCV1aRW0sGlJBxVmjbrLA2MsNpkt19hnuPUA8iKvtvoMdDVBhIY0UstVqdC6ea1NIW43YL2+pigwq//s2vEyqFLtXZ3mzTah9w9dUXKZWrXDxzmr29LeJuTHenQ+VEFQg5ODigVq3S7Y2olutEYUSt1uB3f+f3qJSrPHxwj073UPQguXcZzklzr6V5LAJYyM1EO2Nd3l/MDG0x74mOJyDPjMR5NTGm82ksL8Au4pD96yOO3OsCqDqdHk9eucjBXov24SEXzp3jxq1btNtDtJKGnqPRmGvvv8+F85fRQcB4kPDSy1f5jV//NVkMFfsjpdzTKz/rV4MgVUD4xZQubihlcxlLxgFalPssYb9sZkmTjCRIHfCRQRGEEc35eWrNWTAi9tVhQFgKsRZarUMebN5nbm6RY2trVKoltLLE8YhKuUy1UqFcKpPEqVvwpGR5JAZ8ZdCBFkYnKlEqVWg0muT+vGfi3JznHpgLKDVAqVSlVpshCCMy3z4hlypE/OuMpDnzLMU3qRXNm9cyTaqi1FTqyTjfI2le619nnA7uY7LFsZRAe01DEICLNTKgXPUKri+QYoo98BOCxIGjmxtruRGwcPoMHOyDizUT5sevZB9bJajJxzAVa9g7gL0teFiC/TdkEgs962MFkJxqQtoSENTqik7mW1+Xzyw1YLMF7QN47UdQqcGZ0/KZ3Rh2unCiBoRwcCCeOL2RWP5HJag24Xf/kWh4Ht4XEBW6kvLCNt9PWo/HGuUYCa8psS5XMHX8FqfjCZzA258jOzlG/1mPf/aHQTceUHV78ORF6VB+cADnzsOtW9AeyvN5AqMxXHsPLriO4cMEXr4Kv/5rFKs7udPlZyrWMBVrJswMEyCj9ATEGTMFejTFyimzoq8KMo74JYURzM+Lpsvfa2EgzVItAkw378PcAqytQbUkYygeCSiplMWQL07l9XkKWSS6nTKuEWokDGRUFl2NZ82yjKKX1bQwGaBUhdqsGw/WGS9acLGmYGrACbTd8WbpJG1XMF/ueH3qqfBTejzl9+FjzUcC3KTDAfs332c5KqNnZtBh5MaHVLYErquxdQetigAgUUE5FbVxlR4qDI4EjNwaKlFEpd5g7vw5Rju7DO4NMFYRFisqCeW5EVSjsQTkEt6V71geEKgM2xtg9u9TanRJevuUKyV0qSSTtonQYcjG2hp5t8eFdc3TW0N+sB9zuHvA57/4OXa397j85Fnu35rl1t13+f73/5TZmX9EszFDt9OivX1AVC0zMz/HOB6jtObwYJf9vUNe/EFKrV7lhS98lq995Td4sHmff/2v/h8opYjHY2fA53twfcDix01eWkkFDNYDGwBVONMWFIuSaqzMTKp1HFxw//Ul1XyIlNRk00qR54Z2u8uZc6e5ee02n/n0Zzm2PqZa6bC3d0A5LDEaDun1Oty7d5P19fNkScr16/d47tkdVldWCkamcAkmkNJu68rgHbNhrUGrcLKvSlYhrgZImB58OwJAKUaDPrt7h+xsPqLWqBKFEWFUIgql23sQBIRhiTAIiaKISrVGpVxmOBywu7/De+++wdraMeZmmzQaNXn9eEAUhVQqVarVGsNRTJamZHlGmsQkSUolk4aXtWqVMIxoNpvMzy8QRr6DsbRwCLTGIMBDbg2DVgGVSgMdhsRJSpKkRFEJa50I2BhxPcY3wRRDQy8q988BRX8yYw25kSaZKIlXaSaCxtzkxes/FttwADfflyA+MyOBWeNWtY618SvpInUyiTVFxYYPtEWscePGGvFVqTfgwjnxkbk35KgjMfJZRgsdLzOOPFZ8VyCAqzeQcu/NHvT2RBPiYg3GpRjW16DdgzUNm0PYS6RX1Bc/D9t78OQ5uDUHd9+F730bZv6xtGnotKQ6qFqGhTmpmNFa0h77LfjhVWGFvvBZ+No3pfLqX/63cn7G40n7hJ9737vJy7MyHgz43x8Qa4pzz/Tnqqnf9rHnPsSmlEzO7a44Sb9/Gz77WVgfQ6UjADIsSTqu15UmpOvnpVrs+j14dkfKyf0YKECOF1RbNzSCybhQ4WRfXayZAFzH4EwD3oG7zluPoF4TZiZyTGLoxetlGW9hJGaN5bKA3YMdeO8NWF0XSwJvAzAeyudUqwJqhy59lWfC6CSp/K20vCaI5J6Yn5fv9vvnhex44AEFY1VxPcuSRD4vKjng78CJZ6i8tmpan+Sfg6P3lG8HoZDbwsWaIkX4IbePBLjJxzEPXnmRoFJj4dwlSqWyo77FjTUIgokbsAWU9PUGsMqSkxFSwlN7SgeuM3TgYo5MzEGpRPPYCZIrLdLWq6Qd/zkWb4yVu8/VKhdvHCdc1oBSOWhYPd7gU0sJC6UhdqaBNVIBY7OkWN0try7TilPqtRpfOdPCRgEqmaVRn2PUHLG+lrGztUepVCGOR3zvr/4D3/qt36VSqTIadNm9+xCUJapWCIOQar3G61ev8c47N7h48RQXLp0hSTO0CqjVamw+uk+lWaY/7JPluXj5/JyBIMJgRYC4/Xr/EosVJkSBsrowmPOfI0yWBB9VfNaEyfmwk5yaWpXdu/eQL3zpc9y+eYe7d+9y/uI5kuQWNjf0e0MIDKPxkDu3b3Hm7CWCIGI4HPHeu9dZWloQF2uQEm7ElA4cK2e1AzASYC05xjrzPRUwqfeRvdfeQt6KqeA4Sbl37yZ7B/tu/lIEgSIMI6IoIgpKlMoVqrU6p0+d5/LlKzRrVUajITs7m5gsYzzq0+/1WF1aIQxDwiCUlKhW6EBSPFmeEBCQZjm9fpc0Fyp5NBpiMkvrcJ9mc5FqDcRET45rCOSOqZNhJ+xKr9Nj2B+Qh8aVg1eKK+OBnsQVASeFhsm/xuXKDSL6y40hz0STlRvX+sOxDx7wfmy2cQyvvCjB/vylKVt7jvZP8vOo8itWXIxw3K5PIxT6APcen1MolWD9hKRAWq9CZzoF6lf/Diyp3LFBU5O3cqzRRh2WEigNpd+T7/LtRbzGwuqKVP00anCmJceRzEJ9HpojWMvg0R6UKrKa/6s/hd/6B+KjMuiCizXFBFevwdVr8O4NuHAKLp1x/akC6U21eQ+aZTEJLBov/pwx4IEL+iiYKYAPcp/m7riK40feM71Sn2ZyPiygnmaA7j2EL30Obt6B23fg0nlIbslE6mIN46EwOmcvybkYjuCd67C0QGHo5xtBelH5VKzBs7u+rNnkE2CAB652wu74fUwSuHtTWEUPlgMlwCEqCfgqlSUVdOo8XL4MtaoIgbc3JXU47Is4fGlFQE0QTMBl4JijPAECSbv1u+7fVkTruRXrgeYi1B3Y8NfAs5ZeCOwZlW5fgFngBMqmMnVcHqwwORePA5Siwsx9rrHCYBnr9ETuviiYvo8ZuLHGsP3664TNGSqNBlGtitGOcNfaiYMVyuqiskTcZSfVKMbksnIlLFbioFz/KT9R55RmZ1m88ASj3V0O37iHyhWuZqZIteTGlYEDjtcAlaMVrJyc41e+8RyLjSraGFStAlGIGY3Ih7KaUUpTqVQYjUeUNcyUAz4xO+Ktwx6vv/QaTzx7kVb7kItXTvBoewebZ7Q62/zw+9/hV/7OV0jHA8ajIft3t6itzqEImJ9fYmllhvzNEYNBj+1Hj0iShFq9Rrlc5dixDRbmZnjx+y8yGvenGJaf3YQRlTRToMNiEBpXHWKNEV0H3nFYg2dCAO9ITMGWOGD+IRLhPrYJrFT0BwM2H+xx7vw5rr13nYsXztNsNmjUmmymmxgjHai7vR79XgsdBugg4vr1e3zq+aep1eoIcyM3omiHhK1RCpmIlXZCa+eRgzvOImUFE8Gf0LFKKRrNWS5feYZLWU6a58TxmHg8YhwPGY9HHLYOSTttgjBkpjlHkuYMxmMebt3j8GCXmZkZdKAZ9NuMk5h6WC24xuJKWEuSZOggI8syDg/3ODjcpz8YkMQxWZZRqzU4cfw8zZk5cEyZtXbSjyrPsOiCgen1OuzubXL+9AnOnjjmmB1THLM1AvBMUV3mrqGxhXC/eA+uHYfJyXLjvL206HDc6fo4ETcYA6+/LivURkMmdF9uqrVMItpNVtOMjddbwEQU6cOnd1v1ICd3Rmqzs3DhCRGBvnEPcn/CPMujjq5eC/DjgM3JWfjGc9CsyetcrGE0kkk3d5NkuewcZpWIi+dGcNiHl16FZy9Kifjlk/BoR/atswPf+w58+SsymY8GcHcLVudkH+aXYGUG3hzKBLi9Lem8el0A0rENmJ+B778I4/5fP+EUAsZJrJF53nnxeMO4qVgzKZ55nC3xv/76WDN52l3HwQAe7MH5c/Dedbh4AZoNqDUh3ZR9Scci4O45kBhEcOMefPppSQEWOhB/rRwro3BswzSIcztg9OTvx2ONH1vNWbj8CecGnQmLNh5B7ByAWwdS3RaGwrolF+TxzXvC3MzMCBjqt6XKKaxOxm5xGuwk7ZVl0NoXMDMYyPXNMgFPx8+LiWAxTu1EoJyncuyegel1pAnp6Q04ccyBGZ+Gs6LfsTmT6jJ/TixF8PDvkVUlRTWVizX8J8aajwS4wVri1ojNV35Mc2mZcqNBeWkdG0pKKgxDoiBCBy7P6SheYXdktjSe1rWIC6y1WCc+UoimIc8zyuUq4dIK8xefIN7dY/TQ2Zv7SQNZiYYBaKflsUC1HnH6yjrPfP4KczMVZ8lgUfEYnQZoNLZSIx/IakZhiaIQ8pxKFLBQT5jvvsPe9uc48WiL02cvcP/hHZaXm7RbHXQYsfnwBq9erfP0U1dIkiHj/sClK3KajVlWlhd44fPPsrW1Rbu9z+LyOpeeuMyVG09y7/5NqtUSC8sL7B92f+6plh5YAgp9x2sfw5VbpRuHQLQKQBsRv1tbaJB8R/bp7KfEr79+5BVMiYVQi1x789E+v/Kl57h18xa3bt/k/PkL3LpzmzNnT3P3zl3QOePxkL39HZaWThKPYXf/gJ3tPc6cqYHyLiwSLKzTlFifv8f1fZrilqx3EvXByvtA4ES3WlOr1ZmbXaBerRHoQNIzuZRVJ3FMp9clSzOiSHRQ5XKJg8MW9+/fI0tTZhozRKUSxmbSJyovu3gt5pRaiVg3TUYEYYBRAXv7e1x9/WV6nR4q1IXm9e1332J1ZYOZmXnCUNJrWZZSKlWksacDbOL7k6NVSJ5lJEkq3jbg2ihItZSdAqZKTfk75V5ULmxelufSVDXPXAxyTUcd26cKyf3HZLMWWiN4+cdS6dFoiDFZ6Pw2wlAqPx6LNcWq3AJTsQYXa4qSV5AJIM+kMmlpFS49Abt7MBVrJhO1dTpTS+FxUwvhyjp8/grMVinSWfEI0lDeX3GVTbn73jCSySkKoJ5A9x3Y/py0GDh7AR7eEcDS6shrN2/AK3V4+gokA/GCyTOZ/BqzsLwAn/8UbG5KxczSGjxxGW4+BfduiK5jeQF+QawBJqDQd7wuDt8BO7/acbGmOCfgV2E/O6Gpqdf84os9dZ0cU7K1D7/yPNy8BbdvwoULcOs2nD0Nd+5KmnA8hP1tWDoFYyRttb0HLtb45Rk+zYL/p7uuRwCrz634Yzkaa8DtW60OswuSbvLprTyXsZQkAiLSXFKetYboaFoteHBXWJvGjLCF1qWcTFn2ofC4ccxNMpp0Hd/bg9dflvLvYAqAvfMmLG/I/oShHFyaisYm8PvufptcPjvNpGx8egHgq7GmgemkUkfAvnXXyTJhAXNxbZ+Y//n77nGd2y/ePhrgBjBWM3jUYeuVl6jPzLOgNcHcIioIMcoU3bZ9INZWek5Zo1BKbhKDdPL2pcrGdTxGKVeSa9FBiC1rGhsbLD/zDLvDV0gOE/GrQZgbq2QyCJTCqpyl9Saf/fVnOHnxFNrIykrpiDxOMeMhyjnXaqWhXidrdbDWsLi6yt7DR6ysnOBwNGbN7nC484CtzTInP7lEVK/xxmtvMx52qTXnWDu5zsxine2DNqvzc3TbB8SDIcMkJogC1tfXOXPmBNVamTRJmZ+bZWZ2hlIppFIu0+31SNMxk9YCRzc5JjdEXCmwNaCsJnMCUUn9ycSXmxxp8ghh4NNXromm9czW9BeoDxV0PECKSpr6TJV4PCaKZjl56ji7W7uUy2WUspw+dZpWq8VwNCDPDQf7e2ysnaenNMpo3nv3OqdOnUQr8YqxxaThBcZe7OrMoazopyZCY/9vf3Z8cLJoZQnD0LXMycUUMgipUEJpTV7PqVQraB1SLlXkPreWg8N99g92CQNZ+QdukkzTVJgPI5VQUVhycVeR5xIsdRQShWVOnTjL8ieWqDVrSOPSnEq5yqmTF9k4eZ5yuUKWJSRJTKlUo1QuobAYK6kOYzI6nRbt/QfCxuQytoVZzoEQ69JOygv7MHJPeZG2df41FklT5VNmiXYy31prxKX447RZDY868MqPoTkvY2Nu0bVh8OkmPRnP1iF/o+R5H6y9WNWCZ/wKD5HcyueVtTAdzzwDw1fg0NsD4z7X/a0UkMF6A77xSbh4ygGeXCpc4lQm3ZpvFSGxhlZHJpTVFXjwCFZOiDDW7sDOA9gqwbNL8trX3oZhR475xBos1aWX1PycCI4HQ1n1R6E4+p45IaXkcSKvmZ2FcihMUb/nKnF+AYNS6JDcpG4A9KRZZgFS7GSS9EHKMx/Gv+YDPvtDpygUlDQ0K8KGRDNw6gRsbUuqR1tpndFqCYuV59KWYv2CAwUa3rkmFUvKg9BJrClEwY/FmqMtOPy/3f5MxRqUFRChAXLngB2CKoGqy7mpVuSxUmVy3g72xeQx0DKOPCBPMyfOduM4LE+ApYs1RKGwlMdPwyeWoVml6PxeqsGpi3DyvFzrzHUNL1UFQGEpqsJMJtqt/QeO4fFjGwf4Q4q001SskUpBNy6sZVIq7u6zQkTM1OdNpYg/xPaRADcWyGyIyg3DOw/Yfu0lbBgwf/4yujmLyo3r9aNcgz9dBFoFWEfPiiZNufJY68whQ7TWZGla6CYsUJqZZfHCZfJem/1X3saOAYwkobRClRTVAE48eYJnvvgkc3NNlMogCDBJisrGBGEFW2uS9bsE5ZJUeWUS9GySUa3XiUoRKog4dewM7fFNlg6u8fDBOvdv3uKJTz3Hr//Wt7h9+z5Kl7ny1BU63R53718jzc5yYmWZbmuPPE7Zu/eAIFAsLi9z7NgyrcM+WZrw6tWXuHXnHvVKmcPD2+zuto8yoMJtOfA1+XduLSEyYWUmI8tktaGmhMaipXBMjppoK2Tis0x3Qv9lxMQAs/MNFpZqnNg4w727uySJ4uLFCxzs7NJudVhZWSW3hstPXOGtt94kjELiUUwYgrIGHUTs7OyTpxk6Co5cW2tdesWL2LQVwzzPUFgBrSL6c4yHmjQANSoHNFpLS4RxPCJJYlAQOt8XDORZBoFFSq1DBoMRW1sP6PfazM7MkqYJpVJUNMVMs1SYMddmQ1kBjqNxTDweMjszSzmKWF1Z5cypMywuLmLyjDTLUTrg5ImznDx1jlqjSZqmjMYjorBEqVTC5Lk0N82spCurFUISyjp2qTjZZ+uYB+sDjPJmlYEr5HALBTP58Q0/fbWceAU5lyn1MauWArChBOE7D+H1HwvbceGyMBa5ZxkcgPD0uh/ePhUkA27C3ABFz6DElYX7yX1mVj6/14ZX3hY2wK/8tYJIQRW4chy++KSkfJBYQ5JCNoawIumTflfKfYNAtAlKCdtSb7jHQzh2BsY34eB9eLAON27C88/Db/8m3L4vk+bTT0oF0YPrkJ4Rd+LWnoCoew8EYCwvw7FlOOgLkHntJbh1VwTIh7fFQfnIba8mv9TUv/3kbq1Mhtm0NsVPYn7SmwY9TEAOanLOf1mN11wdlmuwcQbu7kGs4OJ5EXu32lLybnN44gq89aYwW+PY9dQykpra2RfQEHndzfSxmYlgVnugNg2Mj8aaSUm8ew49eV/szPOUG09B4HQoEmtwsYbBWBqr9tqS0kpTKLnmmFk6ceE2Vpgfz7SMYwHJM7PCAq2uCbBbWMCZcckYPnEGTp2TyqnUAeuwLODGMyyZleeqVSABHU8ASEFe5TAVa4rBoWDiN/XYjx8PXi/kKxOVB5AfbvtIgBsDpFZT0QaVpHSuXScvlaBUoXnyNCjpy6MDKbM1JpOKJuW0N1pW6cpZwwdBJBOPEtGmz6fIhGdIsxhdCmiuH8M+9UnSdovuuw8hF4rdGJhZafDUF5/g+OkNaYybppBYVJYTqBAdlbBpjC5XUc0meaeNiiJ0FBFUK2TJmMBaFlaW2L59l9VTJ7iU5uwf3OLh/Xc4uD3HvcpbDMY9nvnkFXq9lFF/yPbmA9rdDt1um2rlS6wurHGw/4h4lPLo5j3yLObY8VPMzFbotvd5/8YNbt28xmjQZzBskyYJ5ZIiTibnVzlIo5UiUAJIQq1ddaOs0AMNIqg24mKrJukLz9j4CqzJJjd0oV2B4qb+ReHn3LnT/JN/8nu88ebrgCYqtRiOYs6cXmJuYY5Op8Xps2fo9Xt84vIzPHzwAKOk23alOullc7jfYtDrMLe4PLVS8s0PJJDkrhOtBnIXdCYO3iIs1oXNuxNhuxJxkWLI600uvWYyG6O0dp40pkiB6iBid/cRm5t3pCGqNSRJTBRFjMcj4jgpQKKYLE66cXd7Xe4/vMvpE6do1OskSUyajImCgFz7swxxMiT3lurWEI/HjMyQgJBxPGI4HjLs9+n12/R7XWolqC3OgXVOTjYTRssatJJKK2/Cp5SAPo0mV3Kf+C7i0kgTBwoVWEXuXY6NX7l+jDbrJpMkhWs3ZDVcqsDJ0/K4cukpiwRgPRWYtVule2v4wKWDvGizGEouEGex9HlaPwZPfVLKtV2scSsGadfwxSfgzHF5v4s1ZDI+iUoCLspVaDbFnC8MZaKpVsQDxxpYWYTbd4WVSHPYvwX334E7c1B7G0Zd+OQV6KYwGMHWA/msTguqX4KFNdh/BKMUbt6TfT9+SnpLtQ/g5k24eU2Eq4OOW80r6VVVbA6w+AlccbQU3Bp3jtx59PetT18UjM3jEWQKIBVf9SGAzpmT8F/8Y3jzdTmXpZZM8KeXpEKs3YZzZ0SIe+WT8OCBAA6bw1Ss4aAlqaHpWFOwdg60+K7XPl1VPA8+1jAVa3Cxpjgn3tQu932tYnm9cWPJA+kggr1HsHlH3o9xjFskeqw4mYBEzGS/lJLjfHgHTpwSQJzEMn7CiCPl9snItW9w120cgxkJsIrHIkAe9KDfkQqzyMLiLEWllM0oxMg+lVfoH9yxoieAZbqLOEzA0LTL8S8Zaz4S4EYqkkATEGIwvSH7b7yBrjYhjCgtLaOQVbMxOXmeEyCdm3NrjoxvHbh+PQVAFL8Wg7R4SNMUkxvCoERUqzJ74jTZM8+Tt7sMH7apNyOefP48T3zyLLVKmdDmcu/loKwlLAtN6Kv58uEQXamgaw3yYR8VRJhRTBCEWJNRrtZo1CokoyGnTp4kznLu/fg2b722wub9a3z2N36Np554ku//xXcZqYDBsI+ylkazxs2bb9F45nOsHTvJztYDRsOYnZvbKEJWj61jbczSwgJf+NyX0GHAv/+Tf0e13qdajWgfjhmPM7GZcOk5z7RoLSmJolkk1pXbK8gzN+lplDIFUP5gZnja3xl8YPtF4WZ2dobf+we/S7VcZaY5x95+i0ZjgV63S6CPcez4MXY3D6mWqjxoPWB2ZoaTx0+yd7hDGAbUGzW8k3XcH9B+6Ts0P/erhAtr4l/jSr5l4ZAT6NB1gXfl/C54Ki8CdS0oZLzITaiskUlca8cKWpS7ngpF0S5EKWxmiI1hnBge3L9Np31AtVKRUmky4mTMaDxifmGFmdl5V0EZoXVY6G/yPKHTOWQwv0ytUmM4HNHudFhcHApAy1OiKCQe9em1D8mzlFb7kBs3rtPrdkmzMaPRkF6vTbfXZjDoo5Th+WeeY21pXg7Orai8Nse6dIDcJl6gnElDzkx+e42Ndy02CMCUsWAdkyzX4mOzFQHcBcneEN54HaoNCfBLy+5p5+Ka57JaDnyZ79Rn+dSVnzgUboVuZGJIU1znValsOXEanvm0lG0/bEEjgufPw7PnRENRVKUggbxUl8DjK4eHQ2mRUG/KxBKWpJVCEAoIq9ZEdDwawsmTAo5+fBteW4H71+A3fg2uPA1//h15z6Avx9Oswc2fwjOfh2MnBfQMY7i5DYRwbF0m2oV5+NwXBVj9yb+Dek8AwGEMY2e+5id9P4n5VEvRwNFOmLE8k38XXc79NfqA6+aZkskDP+eFU9tME/7hPxR9UnNOXIfrC9Dtgj4Gx4/B5qGAxgcP5PUnTopANwyl+syzTf0hvPQd+PyvwvzaBJQoP4XmFO0oPCtXsA/e2M8zEEwmfC9G1i5dp+zkerpYg4s1RaPXxMD929A5cGkjiTUkToS8sAKz87IbOqJobqo1mERMGueWXXn4SADu4pLsU5460XpfhOhZJr9vXodOB/JYUne9toC9fk+u3Seeg8dijYwBXwbvr5U7J9PuyT5lWWh03Pks7jd3T+CuxYfcPhrgBohkzSgdkLOA8UGPB6+8gqpWWb7yNLpRx8FI8lwMx1TJA0tnRaZ10YYB63pO4f+N9O6Jx8JKKIMKNKVmnbnTZ4kPdrCjl3nm0+d4+rlLhDZH++BGCZsk6FoVVS1h4wSbpigCyFLyfp+gVgcTkHTbROU6dmzJxiOCUFGfn6f1cJPx3iHHF2b51SfX+YOfvsVu+EnefvkNTJ5y995NKvs7zC+uE8yVpc2BDrh9520+/dwXuXDxMrduvk9/OOThtTvE4zEbp05Rr5dpNs9x/NQZAq344z/5tzSaDUpRi0ebLbLMHIm9oXaNNrX2dAaBVk7gb9w9OTFoA8/uHA0kauoPPQVt5LYWQ8THt3K5zN/7u7+J0oafvv1TVpdXabVHrCwv8WjrEajjnD59mr1HByilSbOENEs5e+4s/UGXUqlMGASuLxOYPKd/510S24HLLxCcvoKKyvJl7iYQjYmeHBNOHK3DIg0lDumyKlK+zYcbU8pVPlhjJufEgm/cirVkac7h/iFbW/cxeUZuckxiyfOEVruNDgLWVo+zvHwMpe1RalXJcSRxQqfbIgxDNrc26Q+6JEmC1prl5SVOHtugUS2RjA8Zjw64fusmP3n5J3TbbWwgwmJlYBzHpFlKOYrkPClL0fEbYS/FtNLFESNaNYVof6xRIokwVrrK5wZUgO+ELkydME+y0PJVVR+nTSMaAIk1HPTglZeFBbnyCZiKNSJutFOMjBvXvstzsTrXiN7CvTXLZYWrrDABgRbX4DNn4PBJGP0Enj8Lzz8xYXlyV2aeJAKGaiVZhaepfHaWQr8v4lMbSM+och3GVia1UIlHyYNNCA5hYRaeXIef/hTCZ+Enr8tx37sJ+zuwuA7z5QkrcOdteP6LcPGyeAENh3DtjlTlnDol+pvT5yWNESj4o38r5elRS4wCM68f8qdZO5HfJNa43PhkUi/YmqlV1M9jY1Txn6MPftDryyX4u78JoZVU08oqtEfCbm1KrOHMaXh0INcuTeT8njsrqb+SS/3lbuLNc7j9Lpg2XPkcnL4iXkkwmXBtRtFWYzqtpn1KygNgn8p0k36R1lQT1mpah1Kk7xybt9+Crfuyv1EoLJ9JRTMUBLB6HFaOCQs57a+DleNIEqkGK0WwtSl2AEkqY3RpCY4dEz+l8SGMDuD2LXj5JUnh6dTZJyipsEpTMRM03s7ATF0PM2FflJ3oi6xy+h7lzq1l4m0TUHRC90DJdwf3DNaH3D4S4EYruS8NiiyX1ElmNONHLXbfeJWoWqFy4iS2pLE6kPJenRPaEFWo1+XE6aLjsVudB65ztwrIs4Q4HhFF0pBTKdBhSHlhnsVLl1mqZjxxdg49HJCOY8JamahexaQimkxbXbCKsFaDLMHmFmtzTCw5zaBRId3tk+kxOggJyiXy8YhSpYYONGEUoYdDPnFihdzC79++xfbsczxxbpHjxza4++A+g0GPhaVVVtZPMk5j4nTI1Tde5IXnvsAnnv4Mb73zCoedNg+u3WbYH7J++gRRmHGwu8PnPv8V9va2eOXqSzRnZkiTlP3dnsQuJd42YRg4d2IrFTWBkdQyztRNyT2RuqoaMXH72eChpldSU4soR5J+4Lrq+LFVFBmvvvoqQVhme3ufMGzglfXG5jRmZ6jWK0TlgCBQxPGYU6dPcffeTcJAk8Tiy2KMlHgnSYo93Cb5ybexD96n8vSvoOYXsTrEIsZ8sovO5JFARMQWCBzAcZobCSDK6W+8d4x1++ZvXJ+uMU54rRgNB2xu3aHTPSCKIvI8xeSWJBmTpjkmSdnf3+X48R7lapU8l+qp0WhIlmWM44T9gxadTo9a9Q77B21A8e677xNGAd/41S9z6dQZmvU6VkEap5hUdDWVaIWwFFCKQtI8ZzgcksQJInq3AnDkguEby3qQZsG1cpAJWv5tpDrKgTlfWYdPTVopDReQ6Cezxyecj/DmSAVQUq2hFBgNj9rwxqvi/XLypAhQvTOrduzNdKzxvXA89e/TVL4hYpaIfiKKKDxNghDmF+DSZaikcGZOWJbRWIBDreoAghanYavEcyZLnAg3F7CDhnoVdvugx064XBZdRKUOoZbvHQ7hxIrs8u2bMPM8nF+Qbs4P7gn7s7QK6ycl7ZUO4fUX4bkvwNOfgXdekVX9tdvCXJw+AWEGuzvwua/A7hZcfUnKkJMUdnuTm1+qECjK7FUomhF//gqXXii8To5MjNPX7INjzS/cjq3KZHv1qmhFdvYhqDOp4sllv+sVKZ8PlQDE06fFb0ZriL0vi7u+aQqtHfjJt+HB+/D0r0jZvA6Y0GtuJz174cFvOCUEn4o18pj3jnHnZSrWTHoxWfncwQAe3YHOvlzjPJWxkcSSioxTERkf74kWJs/l2o6GrsQ8kRRbpweVu3DYkv14933RE/3ql+HUaWGtFBC76qtKRTRYpVAAVZ7L+IoTCifv3AN/f/w8BlynSsKBiROxOz41NQb8j//M/4RY85EAN36zWBF4K6n30cYyuveAg5mfUleG0voKYb2BNUpWjpRQGHSgnaW8sDWSbpEVk0IqrVCqaE1gXNmbtTlKa8qRZmWlzNrsBqU8JRuOMKECrTCZpCSCckTaGxEftIQ5rFVRWYq2Fptk5OMRKtCE9RrJoE8URphxIs0/LcxtHGewd0AQBWSDLs+cWGY33uIvN6/RW/sMf//3fo9/9d/9C7q9LuN+lwd33qfanKXSmGEw6PLiy9/lmcvP8sILf4fXXvsxm9tbbN6+x6DXY+PMSeIkpVyp8Rvf/B12dx9x++4NmvMzWAzd1pg8M0ShphRpQItviRW6U2nD3OIs1UqDNI3RNuTgoE2703fX5YM3L+B2yws37j54JaWAdnufV66+TLlcRakyMzMLrK+d4d69LZpzDTHhVJpGo04pKhOGJfIsY2V5jaWFRZIsZTgculJvcc19lORcSBMio+DBNfo799Abl6g88Rn0wjLKdUkvhLAKxFlUJhyrBfx6lkqBmAyCiJCNkfYb1hbMKIg2xVhpgnnY2mN79yF5nhFFIaPRmPFoRKlUZePYedrtQ+7cvUW5XGVmZoFu54BO55DcCeqMSRmNUg5HA5TqFKev1x9TLkcMBkO38BM37kBpKtUKKyvL5LkhDMWVKYkToqhEPI7JTYbSDtx5LZLT3vhzoVw5rnHl/7lxImwXR7UKyKzkwi0UoNIjIYXX6EyVQX9sNusvtvxtrAhpm2+CNrC+IpoE79NBCTCyuvUdlnFAxsUaMJNUVW5kAvCVP7hqoEjBchlmNmRiGjrGRaupCqtIWiActORratVJJ/Mkk0k40AJ8Bv2JANav/DeOS/lyFMiq/MQyxFuweQ3WPgP/6PfgX/w/RSvR78Kd90WU2piR17/8Xbj8LLzwd+DVH8POFty+JwLksycFyFRq8M3fgd1tuHNdmlFioDUWgBZp+fGeKC7WoI0wStWGK1kOpGKrO/jFl8sDJj84f0GsAUQjdPUnUuGjy1IhtnEO7m3CfANXbSIsXVSWFF+WSXPQhSUHCEZT4MII2EkTGRP3r8HOPdi4BE98RlJBeoq1KUTDegKKta+kmmIf/P4XoGvqMc9eoIUVMkZE37sPBahEoQDj0UiO89h5SSHdvSWptpkF6B7IY4V4N4Wh60WlOpPg3h8LcBkMJyAMB9grVVhZljEdunRTnIgWbBw7XZrXornr4w0pC9CiJsyLB3Ee1BZsVv6z58Ovuvx5+CVizUcE3Chyq1x7QzlwaXkANs7ovn+dcWCZD5+lUa6SI8Jhf+JEO+X0EgFiTOdLxnUwYUItGJOjrBNP5YbQZqz0bjEb7xMkMVZHhNUq5BE2zTHkBOUAVS4TNevEB/skh5pKWEKFCl0pQ26xozEmTggqFeLdXShHVGbniA9b2DCn1Ghgspze/iG6VMOOB3zl4gadN2/zvR9+jzPnlrn05BV++P3vYw2M4hh29lk/dYra7DztziHf/fFfsre/zde+/Gu8+9ZrvP3em+w9eMTh7j4b506g0GycvMA3v/l7/Kt/9X9nMOoyOz/H3DzEg5z2YRvvhQKgQkt9psrS0goLC8sErlVBuVxmbneHO7dvs78//Bl0o6BgvgLEAnGyIvbj/GhqygKd7gil9zmxcRICy9NPPcvOdp+ZZkPsFKz0Xmo0aoSBIgwCcptRr9VoNpv0h0OGg1jAijFkacpDXecgjlmrgcotatiFG68x3LqJOvMJak9/EVuuuAo7UEzSMPjx5hccwu+4dJN/hEk6ylhsnmOs87G2lvF4yM7uNt1OhyCMiEdDdvd26PY6nDl1hWqlwdZok5ev/oBXrv6ESqVOf9hjeXGZTz79HJVKnUq5Jm0v+NlYLV29JRdtTF4AyCAIKZUqmDyT+cMYwiAgCgIolUgyB9DQst8FAydLa2Fg8iKeGuOAv5UKMeXOlEZjlJH3WflEJ9dxi5G8AIYfj20q8BYMgjvpcS4C4xBJ45SrMO2seyQFZd0E6Rgd6yavqQyATIyTWIPNoHcb4j1ZaevIra4jWXWTC4tQLkOzLqW+B9p1HVeiy8mtTGhxIqvpvV2ZlGbnZRUe5lLhkuWwfwjlmugnLm3AG7fhh9+F88vw1JPwve/JcEgk1nDqlHxO5xB+/Jfi9fLlX4O3XpOO2Q8fSYn0uRNyDk5ehG/9HvzL/5uIlefnYA4Y5gJYlJsIQdJDzaqs/gsgkEvPqr0d8Zr5gFgjl2wKzPhf/jy7WPMzN053BGpfhLPWwtOfgu2BmPaFCMAYj1yrAuWqklLRLTUbMFDQjyfMQ5II8xPHUEMm5mEXrr8GWzfhzCfg6S/K8Shd3CsFGPODothNxSQtNXVs/vsKN+B88vh4CHvbIoIOI9n/vW3oduDUFag0YLwFr3wfXn1ZWLxBT/Q0Tz8nz5erFM1MHz/X1k7ScCafsGSBK0F3sQZj5HyFEmukas9djIJ9msQa+dx8Qmx5kz5r3ULBnwunvZqKNcUp9AuIXyLWfCTAjbGQYQn9pGPBOs8OhSYfjGm9dw3VaBI16uhGA6JyEWSVUkXLAG/WVugpHBUv94e0FzAmx+QJKgtZjjdZTNsEVmGMIEM1UyfIcgE345i438ckCUGpRBCVyYcD0l5IaXYGlEJXInQak2cpKi1RnpljdLhHVCoTzTRI+j0UGdWFWfq9Pm+/9ZBnnjmBzjK+8cQGd350gwc3rrG+vkacKQ66PaqBIgxg+8E9jmlNUC2jdYnb92/zB3/yB/zGV3+DhYVFXnzpRfb29rn22nt09rtkaczSyjG++tVf44//+H9CEbC8vMrqk6tcu/Yeu9u76FAxU6/TbM7SaMwRhhFZGkAgk1x/cMAoHks39lCJtsvdCGGkqJQjAUJGXIbTLCXJJI0h8mS5K1xCpLiHpO1DGR2V+PwLXybQFep16A86LC81pYSfFBVAmmYM+n3R2UQldKiJogrdzkDChdXk2Zj2MKUVwlKkCMIQayxhpFCjLvk7LzIcdKh89ptQrrsxoYvVuvsXOD8c5W9EO9GRKMRPSWhzccqU9hFyXN1Ol539bYyxBECn12Fz+z7j0ZjTJ5+k0+1w+85N7ty+TavVldhhLE9euczTVz5FuVylVBYt0Qdu1jrGJMPT2MaVcud5IrHHq57c3JtbqXLKjSlaK4jzjwM1Dqz59JI3brRWAI0AKZcv1xZtFNZKAFJojE2xxoEx9XETFBf/oThh1k/CWkps37smAKFRF5O/qDw1T/mVkuaIs+6RVIT7Dh+88wSyEJItaXBplaTCyKVzd5YLuBnHoqlJEpk0Itc7qBvCnMQaKpGwClkKaUmEsoeutcJMQwSepMKO9Prw1kN45oSUMT9xHH50Ha69L/2oMiVsTKAkq/LgnjBClbIAr/u34U/+B/jqt6Qz9ksvSnuA196D/a6wGCvr8LVfhz/8H2WyW16F1VX5ju0dAWX1OjRnoDEvk7KLNVgLgwPRJgUuNZRPXZ5Iia+ODilKrb1I26dpihn4sZnaIL2YghA+92XQFagDgzYsNZwOJpH9SHM572XXYDIMIKpK13OQa5XF0pspdPsVun2KlAC7d16Uz/7sN6HcmGJtHt83rxuZxJqJjkTBY7EGOwWIuh3RSvlKsm4HHj1wAvInhYm7cxNu35a0pkFee/kJuPIpAV7limsW+3PuDeMAVVG67UC38SVxU6Joy4Rt8RVPZuq6TOupfHqpMG50gMYzOj4YGzV5Dg02lcdQAnw+joJiEJCiwQVS57pKhkaTtXIO3nmP0swczbPnCEsVjJEePTiWBw1ZlmBy301c4WkFpRQ2z7HGoDAom7E83GIu3pbv0SGqFGGxZL2hTJJhCV0pEzYamCwh6w/RJQduOl10WCJsCMWpSxEmzzDxmGq9TmdrmzTLKIdlTJyhoxBlDXPLSyxW7pMPhlCuEBnF//y50/x0fEhSP878bJOZ5gK9w33qNmWUZmzdu0N9bo7GzBzN2VmGgz7/5vf/FZ95/nN842u/xcs/+SHv3HiP2+/fZGdrh0tPP8HG6RP89rd+m62dbZIkZjQeMTM/R71Zp1Qqs752gkq5QRxnDEdj9g/2GYwT0nTMeNxnOOoSj1NyYwsdWKmkmJmrMjMzR70uoktjc7LEMBqPsSanFFXBwv7hIZ3uAOMGdRiEXH7iCX71K7/G2dOniMcBO9sHhFEGZsjMzCJRqClXasw0B8Rxyige06jWEU8ZS7Vco7U3LMqwlcqYnZkhyPfJU0k/oSw2yzBZRhhFBNvX4foy+onPYcpVUNJTq1iFuy7Pyt200jNp6uZUWsCMAqVDTJ4X4ykdjdjZ36HT7aGDgN6wy8HhHoN+n1p1lkplhsGgz8HBIVnu3YFFx3NwsM/29iPyLGE8GvLzasysFSG8pGElUCgHZoTBwlUMitmfcTlrScHKKswUFLE0VM2dg7O8Vhgtm5tJCwu/mrJusaEgCCKMNWR5Kvejkvy5dWDtY7cVi2mJNbhYI3qXHN55Tyzoz54T4CBlhxOWRyMAwzce9GXJCpeW8rS6Y2yGWxA/ku/RoYg5sVKtZa1UVFXKAqayRDQupbI0+ux2JQXQaMg+lEoTi/56Q8zoskzAUOzSFdbAyhKU70uqoVKRWPjcGYgPoXZSmiw2F8SC36YCgO7egbk5mJkX077hAH7/X8Lzn4Ov/Rb85Idw4z14/yZs7cDTT4gW5zd/G7YfCeAZjyRN1azJvq6ekAk/ziZd2ceJtDoY9wUcjJ1w22OBkoK5qvix1BvyoM2lUmg0knMbuT5GBy1Ja/lxGASia/rK10U0PA6kQWiUQz6EmeMCYCpVaA6dQeJYUmW5lZ9KDfaGUyLWVPYl2xOXaBdryDJ37iPYvgHXr8Llz0maqAA4R2NNARA+INYUY0g7XQsOZIxHwtJ1uq5jeRcOdwWUVWbkZ9CXjudFvy/k8w4P5NrkiQChnys0QIC2B+3TVU/GOqLJTJiY4m8HXoy/nxx4MZ6Z8e9zjFZxTn2KV012SSGl7tZQtHpwsaYAax9y+0iAG4/1NNYBG4W1gUtNiTmfJmSwOWDvnTfQjSphpYKKQoJAo/ElzQqTpWTJWAKz9UFLPHCUq5rBwHzaY5F9SmFAUCpDoEh6Y0CTp5mkJ4wiy1OiuiJUAVk5IjcJSgWo1JIctNFBiI4idKmMjsfkSYpNNDOLi3T39plfCSjPzmKzlLTbJqzVOPfcFYbtQ9658ZDNNnz1hZNc0hHvxEOalQrz65eYeTqg8/or9Ic99rRi0O3QbR+idUCpWqU5v8K3/+KPefvYaX79y7/B6upxfvjjv2Jvf4+ffP+Q1ZvHuPT0k1y68BSNeoMsH/PqGz9hHMf82td/my998WuUynWGox6vvXaVH3zvL7l2/QZZaul0BrQ7XdI4xTdIVAqiKKIU1alUGtSqM0SRJs0T8txSa6RoramW65TLJZpzNW7evE23m4AVh+NSWEIZONhrkeYlur0OeZ5w/vxJwkAThAHVSpVmY5b79x6QJQn12gzdnvRvigeGJEnIM0sax6SjLkFWoxEFrgdZhFGyisizDB0oImVRd16FuA9PfQVbnwVXwu5LVmWEyE2jtOi3lPa6LFddRESuUrzjtTE53V6Hnd0dVy6e0++0GQ4HlEo1Tpw4y2xzjlt3b9If9LAmn8Rerdg/OOCvvv8XLC8t8vDhA4bDmGCqiemR+8OaYrHq52RlJd2UGynpt7ktKpdyO+kNJSxlLgyLT1VZHNCyGJu6O0+5+8PdkV6DZHHAS9pvBEFIrgw6s65X4MeqJ/jU5lePCqzTzfiJhBA2B/DOG9CoCjCIQmE18CXNyjm3jt1K1MWawtfDU/RA2gf2HY0vsQYXa0hdKWyuJJjXFahAdDcmkb9TK2meIJRJtFRyZm8pJBqWFsVKfyWA2RkBPt22aHKevyKai+sPoQ28cBJ0CRIHeNYuwdMBvPYKjHoCnrodeY8OJG02vwJ/8cdw7DR8+Zuwdhx+9B3Y34PvH8LNY/CJJ+HS09IaIB/D6z8R8PX134IvfV3Azagn3/O978C164IlOwOZsGPvqSKnURpG1qHchOqM6HdyJ6xu1GU/y3VhW+brcOM2uFhDoF1Xaw17LchLUrZsEjh/Up4PAwEwjVm4/1DYsNqM+LYEAQxcKiqzkrYbdyGriY5Ja9k/F2vIvBeSgalYQ32WQkxeGNi5sQeuNDt3Ohx3zykFRKCcRkkpeU2vI/omF2vodAR4lqpiuNeckyq4fs/pa9xXaQX7B/D9v4DlJXh4X8r8jzQxndoKLYz7t2clPVBRAUX/p4KF8ayNqy5WVs6bP9Si+suBFe9x81isOZLKU0wcwzPrWJ1fLtJ8JMANeJZLYVwe0iJCXI1CW6e5y0O6t/cpLVyjXJ8jiEqYIEITuHycJgeSNCZQoaPyZXLSSpM59N8kZqO/R6mk0KGUtdkkIwgjVBiiA0VQrWHzjHDkdBhBSFCJMEmCDSwkGTZLSFoR5cUFlIag2sSaPtYaKrMz7D64Sz1tUq3VMeMcpRVJq0NlfoFOq8OtB4ZhZmnt7bO2foy7b77IxfU5Xrpxk08+83nO/Oqv0Xn9x8zs7XDdGAhC8iwnHgzI0k0WV4/T6h3w+3/4b3jumc/yK7/6G7z9zuvcunmdB3fusbe9w6nzFzl/+TJnzp/nH/79/5Jao8GTTz5DqVJnPE5Jc8szn3yBM2cucevWNX7wve/wox99l4XZJa5ceYrReMTDhw8YDPrUahVKpSphWMPYiDgxoEpShaUrUmIehFgbMD+3wvLSgF7vIdZa0jSj02nzaHMTsxYyGLXZ391hYaFGs7lAmo5Jk5w0S8jSnEebj6iEZcIg5MHDB7QPB6SxIssz8jSj3z8kT/uYJEaH0unap8XyXJqchoE4AAcmRe3dJn4zhSu/gp5bQelIUpYKN9Zc+wZlnN5EUjQe+Bibu5WH0KJ5mrGzt0WrfYhWik6/RbvTBqNo1GZYWlqm3qhiVUa5XCYqldE6plops7K0Rqff5ubtu9y8dZfcGOq1MqdOHGf/8JCd3VZxX1gseWaxuaSGjJJzkGWpq+SS+BlEIVkuJn0acfFO84wscyXbLoD4vmEStMT91DhxvcUzncIMZU57A5rcpqACtLtDwyAkzw3W+SV97LaC+i5OBkXAVUAewu19WLgG9TmZLIMIpmINIJOidr4kPpVXeJjkQAz9PdEjhxX53jSTyTGMBOhUawJIRm7VG2gpxU0SqTBKMmFzWhEsLkigrzbB9GVimJmB+3chnZEy8XEuk9dhR6qz2h14YAQk7e5JO4g3fgjrc3DjBnzyC/CVX4PXfuzSHhJryHKpzkk3BdD0DuAP/zU88wL86jfhndfF1O/OPUlBXbgkKZBz5+F3/kthXJ56RrQfY1fV88nPwZkn4Nb78N3vwI8OYGYRnnxKGJmHD8QksFoVfUhYBRsJY6NcU9OgIoAgCARUzq7A0gB6D2USTTMxJtzchNWTMG6LG/FCTUS26RiS3KX2jJSGBxW5Hg8fwuFAXIzzTD6r1xKAmiQQmglj4Rk6hQhtlRLdzt5teDODJ38FZpclxTdt8OdTasqlpwrNiZqMm6lYQ5bB3pYATqWkOWanJWxGbUa6gDeqiGarLAyejuXvpTV5/e274i5tjDhMn9iQ0vGpWDNhYRwAUUrGQObFyEiVYBQ62wIH4pV2zsi+6stMPu+xWONoYnnQxRpgSnvjUlHeSA5kLOaGiV/Sh9s+MuBGAN503x9dpLcDpSgrRaw045Gm9d5dKnNLhPUaUbmCURpLRhCEkAUYlaECcWS1SjqL60ChM4iwHBvuYvMOqrqAyTNsmkirCx2QDYboKIA8E0PAWpV8PIReDEoTVevYmZx4/xCtQrJuFxWFRM0aSmuCaoU8SVFYarOzdHb3qJ6qEzbr5PuiLM8GffY2W5g44thMTLNew3YP+eLZFWZ6I27vGN5+8yWef+Gr1J/5EuM3f8j63iMeZLmssbWkSg53Nqk3Z1leWeONt14hyQxPP/UCzzy/yq3rb7J/sMu1t99g6949dp66wpe+8mU2jm/Q77ZRwxFKh+TGkOUZUanEk089x8ryBufPXaDT6VOr1hgM+jz7yc+ysLREEFo2H95nc+sRcZzQ6rQZ9gfE8QilDFFYBqUJoxKVcknAD6C1TJFxMuLh5kMWFjcYDDrML4Qsr9TwaN3YnOFgSOuwy8PNB5w/cwGrNHs7+6RjSLMMk+ekaULn4AELS2UaKqOkhZHTYYjNY6zJ0da5Vxtx49WA3rpO3t4lvPQ57OlPYEtlClM6X2I4RedaI5N+Qe/aTECAtXS7bbZ3pDM71tBq7TMajahWGiwsLnP61DnW146hooDZ2RU2t+5x8+a75Jnh5MY5Ov0Wr7/5Mi3XeHDj2BovPPdZbt69zf7By+RT/aDSNCU3mZSYZ/LdvWGP3BiCQFOtNdFKkxtLEos3jrWKXr9Pu9OiVCkThSWnW5R+YcYHGKWBzOlt/GrLa5CsA0aSg/cNSYuu8G4OVx9HcONXiC7WTCgxNQEoIw3v3YG5JWFBvFiUzE3+AajM2eJnsmLVWsBJ5r5juAdZG5YWXFlu38XwQNJFkZaJIgikKmo8hO5YPqdahxknDFahS0+Fku7R2rkTOzfbuTkBLifrIkbej+VzB33YbEMcwUwsAtruIZxdlZTYjoU3XoIXvgrPfgle/6G4FGcuNaGFIWR7UyqqVtbh7ZcFKD31WXh+Fa69CQe78NbrcPeutHb41S/D8Q1hkIYjBwCN7FOpBE89DyvH4fxFKUuu1mVfn31BmKjACsuw9UiOsd123atHAgrCEoV7c6UkIKW4fgij9vABLBwTNmY+kBYMxXV3wK3Vhc37cOq8XNudPWmPkWXueqVw8AAWS0A6qXYKQzG0m/Zk8d2wAbauSff1i5+D059w3jAGPjDW+L+PxppCz9LtwM4j10bBQntfgGClIZVdp86KA3YUCJjavAs335NruHFOtEBvvjxpcnpsFZ57QTRVBy9T9IMCp2nKJiXm3baIko2RcV2bkWM0VkTtOhAg1O8L4KqUHWuGLAK8c/NUrJkI+mGiOfLnwul9fDrLA0IXaz6+4IZgYrrmTP1E66adRZYiJCA+SNi79h7lxSWqjSa6qshtJoLUwJLlCVaFjno30nZAy2fO5X3C1ia2XsUkMTYNJJWVJYRhRBrHBKEmLJUJq1V0FBJUa1DOsZkFowgqNQg6ZHFMWIpI2x2CUkRQKUkLBsAaRW2mwdajRyRpTJRHAATVKnmSEpUDTq0lNEs51VIZS0Zvf5snF9f4Jxdm+Ocv3ubqD/8Dpy5+Gr1ylmZQYn57k4NkjAoCZut1siyjfbBLu7VPVK5hgoCXXv4zZudWOX7sPPOL62w/ukO3f8hrL7/Irevv8KnnP8unv/B51tY3sEoThGXCcoNKtcygN2Tn0SZaR6ysrNDvD8hNztLKMufOX+DY8ePoIMDkGe3WIbdu3eD6tXe5ffsGeZqR5RndXh9sThKPSdOEeq1COdQMR2PGowH9XhetExbmLOVSGZwORWlFGCriYcb777/LaDTizKkLdLt9Wod9xnEi/ZPShIODTUaDfRYuPcOJyFCJSrKIiscCArKMSqnkYrNMVhqIwoC8s0vw/vcx/QPslS9hyw0ZgMqDF0ktiAuyQVlhcpRL+RhrSJMxO3uP2D88wBpLr9+j0+0AAdVqlUsXL3P69Dlm5xaoNeZYXDjG+XOXOHvqHJtbD6jXGsz1Z2i3dzDxe+gg4PKFC5w4cZKDTgutVdHsGaxoapCqtOF4yEHrkE6nI6Je6ZtBboTNEbAqLt67B/vUalVq9QZzs3NuMRZIX62cgu2y1tVGOdrXWOOIDY21+ZQI2bWnKHbNCqhSU8HxY7O5ah2/+vReHYVbn5LXHKRw7T2pOGk0oapk4tGBTMB5IsDDTKUVtFuB5n1oPRRPmjQWMJSnwsIEkWNmlEx81aoAFxdrcLEGF2uIY9HptDvyu1KSFBXI65p16QCexWAiCai1qgCDkobVBEq5rOpVLgBmcQ0uzMCLt+GH/wEufhpWzwpw2N4UgBAEkgbKcwEwrX3ZJx3Ay38Gc6uwcUE6q2/dgf6B6HKuvQ2ffgG+8HlY33D0Ykkm5GpZNEWPNuU8rKxKV3KTSzXV+QuwcUJSR3kGh4dw6zpcexdu3xA2Jc9EMG1z0cskibgzh9qVRw9EYKtTmLMT3ZSFwlhtmMP77wr4OnUBegM47MmknRvRDx1uwmAPLj0DJSMTt0JSbsbpbUolR7yoCXAJQ2jvwvvfl3Ny5UuSmoMi1hzx9vH+Nh4k+X8nsbRaODiQ/e/3xHvIOs3Qxctw+hzML0JjTsDcuYtitrh1X9KE/VnZl/hduZ4XLoiXU6/tLAjckD+SGkP0Oe1D+b6pWCPHnVJUPeW5VPbVqsLWzc45QsqxnDmT4/TAxkyBGxdrCjA3/cPUvnkn6w+5fSTAjWvtKF5EBunyjEUrASZgnVZJkG+WKw7u7tNYv8HM4iJohY5Kcj4toCYW8jLBSV+qUmBZ6x+gsphyWMdkRkBolpB1x2S2T56m2NQQVELKs3NEtTJBrYaulMCOyYcj8mFMqd4kVUPyZIy2KWmvj9Kz6Eg5Y0FDuTFDUK4w2Gszt7JKeW6W8cEh1qacubDBifPHaO3sMOh3WFxZYdDvMT7c5YXVNfQzy/z3b24yPnyH5vITqNUrnFvdIH3zVQ4HffbjA3QkzpcmN8S9HpXZWYajIXFyj4f3bzM7t8KxlQ3m5lZotbYZtNt8/y/+nNdefonT589x8cmnOXnmHDMzM0TlCoeHHfb2NlEqIEsF8M3Nz7Nx/DRLS8tUq2JHnoclFpfL1GoNZpqznDv7BPPzC8wvLpFlCXfv3OTB/bscHl5id+cRd+9cJ893KUUhCws1BsNtwiBEUSGMFDqwlMtVsjThnXfe5tadmyw05qnXZrh79wG9bt+ldBP6/Tb7WzdpzlVZm2uyQQuFIc8zAZV5jrK2aOxsc1NURGkN5Bn5qEf48E0SpdBPfhkVll3Fj8aaDOMAjThmm0J3hDPuGw6G7OzuEscxaZpx2N4jzzPmmvOcP3uBC+cuMtNsYk1OEFgajRJhOEearjKOuwwHI6JQMzs7S3OuSRho1tc2aNSbhFE0CS4gccCnjoyR1gy9NqPxUNgWVWY8Gokp4FhMAfNc/GoGgyG7u3usr2zQaMwShs6t24Suk3ouXcANwnJ6xgonNi5WVw78WPBu4FapggEyJufjszmeXFZTFNUsygVZf8w+iOYK7u7D+g1wsaZYmbpYQ+ZSUuBAjzOsGxwK2Ajr4v2ikZVxdwy277o351IRNDvnjPxqAlzsWCbdYSztFtTQ6XtSmdT1rFTq+N5CjRlXVt2ClTUR9B4cSprkwgacOybme4OOAxM9EaSursEzy/DGJhy+A8uXYfUKrG7AT1+VFXl8IMALJZN+tyf7OxpCcg8e3Ia5FVjZEH3OoStX/o9/Bj/5MVw4D08+DWfOStVUpSops90tXBWIAL65eWlRsbQi58FaAVorZZk0Z+bh3GVxYV5cEvBx56ak5A4uwu4juHsD8l0BRvNVGD6S60FFzpe2ku5KE3j3TQFL9TnRx9x5AN2+jIssFsZn8wbMVmCuCbRw1Q1ubEwJ4QImYwAj35NnMOzBwzflnn7yy2Io6GINTjbh8qBM2g/YCRgYDOS6xbGMlfaefG5zHs6eFyAz0xRgEFholCCch3QV4q70EAsDEYfPNSUorm1AfcYZTE7FGnBAxH3/cCTMzXjo0lRlYYzSRB7z7JZBWMjdPRkDjVn5ThdrCpduN1QF2DEBL4/FmgmL4+9FNWGAfolY85EANziVg0WRExSrQ+2Ee1L6GhUrTIsiGUH7xm0W1tcJ61Uq5ZLL/Tv9hJX+PwpNEJYIg5gVNWZm1CFqzriGr8YZ0ck3x8MRoVZkcUw6zLC5xcQVojQjMg10OUJFMWGtIpUzWULSiwl1SLy/CzogaogbsVIQBAGVWoNRd0BjKaakpJRcBYq426a6tELp5Cn2Hzxgf3uXRqPBwcEOw4NdPn/hFBvzDa62Et4d3CJqnGVkVygvHiMb3SaPE6oAgTOUA0adDosbG8RJTD/pce/+DXbu32Z1cYW142dZWtmg39mhP+jx3ltvcOP9d1laXeX0uSc4ceYsKlAoFWONJU0yMBmVcp1yFBJo0ZnkJifLMrqdNg8fPKDXabNx8hRraxuUqzWMhWPHTpB8JiEZJ7zz1lX+9Nt/wKkT68wtLFKr1tEqBBsIw2BSICIIAl6/+javvfYaWWw4fuk8+wc9sjyXFgFZxmjQZ/fOu4T9NkuXnqLe3caGCbluoKyUPZs8QQXS2DQIJW9rjS0M+aIgwGYZKs8xN64ShzUqlz4LWmFM6lIwxulvlCuCyd2kb7C5odfr0u52MHlOt7vPeDSkWm5w5vQZnrz0FCtLK2gt47RaqRKEIXmeEQSgrGE8GqAJqFdrnDlzjplmk6WVBcIoEKf6o9hGUlTWYNFFZVQQhIzjGIUi1wFpmpKlOVkmDs4+f93rD2l3DllYmEcHFbQNkSaarvQd0EphVYDSmbBBvoGmcxS1NhODP3evWozEeJNS+HZ9bDZPibsZqVgdOpEwORBNJhkUjIAbt2B9XViYcmnyej8RZClYLZNxEIvmYdiWRpdA4RuinHZgOJILPY5hkMnXxmUBPKYhguIoFsCjI2GIek7f42KNeLS4lFoQCADoDmEpFtFw5MTL3bYAhpOnpIfS9o5UXh3sCBtz4ZQY27USGNyA5jkwK8ICDG9TdOENHCMFsprf2BBmoduDezfg3m1YXIETZwUctXdkcv/p6/DeO1Iifv4JOH3W7fdYVvAu1lCui2ePxp2HXCbydltSTO22MA5rx4XhssDGSZls4xR++gp8+w/g+LoA0WpdWDUbuEk4ARUJq/Lq6/DaVYiNdAg/6E2qjLJMxLq33xG9zcWnoLsDYQK6MZlkjUvLRCWZzDET4a0xE+bJ5HDjKgQ1eEJiDSZ1TIUDN4XFgGMv5AYT9qnTkX3r7AsjVW6Ii/Clp2F5xV0SJaAxdHoY5xsm1VFamMHT58TDZ2XBOXAzScf6rXBI1hOAFYQCrlByvGkq5fPZNNjQwr51DqUHWVABG8q9Nt0CQilhdHTGpOzbAxf1GIBR7pwi52sKA32Y7SMCbmT1ZFBkNiLAECjRl4DC2IDMepGnW3TZgOFOzMHNG1SXVqk3ZgX4KN8cETCGQGuX5LIs9ncISxGRCskTg7YxhBpDSlSvkccJYRBis5zMZKSDHjZL5fO0IqJOUGmQMyLvJ2ilCVUoq9gkJ9nbQakVgnIFHcjgKFdLHO7tkQ9i8pomrFfJkoDSLGStNuHiIgtra+zcvcegN2SmMUOn2yEKI86srbM4M2Tx5l3+wzt32C+vsHHsKRrVRe4/fI9hv0NkLWgp+7UKWo8eYVRAd5CQ5oaGNvT2t+i3tplfWGZ54yxrKyuMRm0Ggw7bDx+ws7nF1R/9gJmFZY6fPsvy2hqlcoVKLcTkMZv336d9sEmt3qRUrmJR7G7vcHh4wOzcAvVqlXJZctLpeEiaxIxGfbrdFsoO+OQzz9But1GEhKHkTE2eEgZKbCbGKa++fJWrr75OFFT41Cc/zdLCCuPxSFiT3DAa9Nh7eI1sf4uTawvMtQ4Zbz7i3nxEdPYSFR0SRRFKB8JeIpBZea2IRZgXZVEW4sGINI7pvvRtVLlJePIiOPMocbdW0r8MO2ErDJg8Z9DvMx6NieMxvf4QbSNObpzgyYtXWF9bJwoDjDEEgcKiSUcxrcN9th/dZ3PzHlvbW5TCKvValRee/SwnTp5gfm6eJM4IgwDt8/ZuM3mONcJA1utNjh07SzxO2N/fod/rkMRjxvGYLEtJ8xTfyyWKBMikaUaWWVfcIMBH+Way1guooWiEasXKUP7v2i04DRJWBNbKSvf4wq/rY7P5CKLARgg686WvHvA4TVHxlgB2EmkeuLgqq/ySe8lUrClaDWChtyPpI+3EsDZx7q6p6HfiRIBK5CbwQReysnyeVkBdUjiMoJ/Ifiln4Z/kYt6mVp1viZuIKmXY3YXBEtS0ALEkgFlEPLq4BGtrcPee6G0aM6LnCCNYW4eZIdy8C2/fhfIKHHsKaovw4D1hMTzDlTuW69EjmaiGiWOmDOxvQWsbFpZh4yysrgjIG3QEoGxuwYs/lO7ap87CmjuGWggmhnvvw/6msFWVqkyy29tSzjy34NJ2Tv8SDyUdNXJ6DzuATz4jPZAIHeBwDErgruk4hVdehauvgS7DM8/LNR2PKHoeDbvw4Locy+qCgKqtLZiP4OylSSm/CqZWIm6i9hocz0ZYhD0Zx/DSt6HSFPPDaaM6pVyaZioVYxBA0x+4tFssf9tQ2mdcelK8ikKnZfLAcxTLudp6AFt3YXtLRNnVKjz7WekYPzsv4FFrJl3K3dDNMtkXHcg1WD/jWjrsSMVWPJafLJUUq+8bFYXy/jRzKVWYaG0c8Hsc5MBRpgY7YcPM1GPWMVofT3AzWU8Zawm0JVCWUIufiHF9cGwRmOT1aaI4vLnJzMY9GnMLBGEkZd1oDDlKKUItgTtKe5SzMbVajTxOnUZDLk4ex+jIEIYRgQ4xYYg1ZfI0JhuOxDMnCNG6hAojgnKFrD9ARQHlxXnycUySZdj+AB11YEFBOcLmlubcHOVKlQBDno1QpQa6VEIHEkTtOKFUrzO/vsbe/fsEYYVaVKF/eEAQhswtrvClKxdZKN/jj69vc+tuh9X1y1y++Hn2WnfZeniT/ngk9mpKEaYxg8wysJLK66JYDTUNDTO9Q4JrbdJaAzu3SrOxSmITBv0O3U6X/b02N69fY2FxhZn5OdaPn2Zj4wQLi/OkWUa32yJLdzEY0iRF65hW6z7vvn3AzOwcpVKFMNBS1h2EaGOpVutUqzOkiUW5Jo5ZGpOZhFKlwXA44o3Xf8z2zgFnTjzB+spxSqWyM47V5FlCr9eiff997OEeA2Upz89QerjP0BqSWSXeRpEiMTFREDhPKIsKZLIxeYpKLTaXGzfLDQetfUxuyIDhOy8ys3YSGwoYUFZhyUAFrspIxM7WWLI8ZTjo0+v3GAxG5GnG6vIyT196mlPHT1KtlkUdY8EkIw7ah9y6e4f7D+/xaGuTm7fe5eHmA8ax5dyZM3z62Wc5dfw05UqJ3b0dlFLisI2slqWAwbhmn5p6tUm9Nk+S5iRJQru1z3A0oN/rEScJcRIThhHNxgxrKyvUqzXm5xecM7zFr7yNyWSxYIQLlXYSkCvngmwVSoUFMDS+5NtVQuRO/Dhxc/4YbtZK+kA5QKHVVGphEmsASBTc3IJj96QCKYpEK1PoddRkokv7kI0ktRK7kl4Xa4hjiIyrlArF3K9UFk3OcCwTQRAK8xJGMvH3ByI8XpyXSTLLRbMyFWvILczNCsAB+f5S8//L3p/F2ram53nY8zejmf3qd79P31WdKrLYiWoM9bCAyJEdILIQBNGFEQGBgdzaucqVgdwFCWIg8J3uHCJAYDWWbTkSJVJmUS5RolTtaeqc3a+9+jW70f1NLr5/zLnOYVFkMSR1ijyDXHX2Xns2Y44x5ve/4/3e731FD2ITYKsbMdS7cwceP5LprayUxdBaWeS/8jYUj+CDY/j0Gu68B2//abj8BJ5+JCCgZxq6RhayDbpVAuA0sLiAH1yJ5mPnNoxvCcBbXgsTcXopRn/7R9Jmuv8K3H8Iezvy+eaXwioRRDekG7h8DN8+l5ZYnkCd0XK8QhSmppzCMJ3TmHQzoRWgWNXwP/0aHJ/B/XclYDIv0qKpk7/QFTz+vry3irA3hadn8lpTJY/JlIiJjWGTyZJqjaTBR2Gi+tyky7NtqOi3/xncfkiyZE+Lu9+2F4mJvUivtV7AYiHnu3OSWv/u14SxGpRsQFJbwdUlPPoEnnwqYOzj74kou4ni9/PTPw33X5W25+lJuma3tUYu+/R6WstE3nBXWJq2lc9RrWR/2lbOv8lFi3Z4KJN6u7tbg8bNJJSTayP0q7xO9xeJzYwq6dZ8DwK2+wJshNY/Zq35goCb/j47ZUrhsTpilO5J8M0dZ9+480gYLpeey+9/wGz/iGKQWkIbjxJZEFQITJs5k+mILCtQTsz8IqCzAk2G71pMVqA1ZJSYssDXGa5t8E1LN18m+j1ghwPseER9doVBybVpLTqztFdnqNxCHMsipyS8UA9LQl3jmoasGBJjxJZDyaQKMNrdo63WXJ+eMhmOscGxurxAoRgeHPHT77zFnb0Z/+QHj/gHn3wLNbrN/uGbTN+9y8nFx3z09BGrriPdG9IfrTpEzkOk0ZpMKQ5LwzRWLM+fEK6e4csh5eiQ8eEu67bien7O5fk5Z+cnPP70U6bDPSazGdO9CUd377K7u8twNMRkhrIcS2tDGdZrh+taiiJDlRpjtQwzZCVFWVK0DV1b0zUdq2qJbwMnx0+4vpqT2ylfefshWRIGk/QlTdNxdfaM9sVH5OsFj33g7uGUwfWCetGiC5UMNR06y9FEnHdorXHOo4Nob6KXMedtbEPL9fUFRhm6GHAf/Sb5mz/D4PWvpKstgaLgNg1TetOuGOm6hqvLc9ZVxXAw4P233+ONV15jPBqkBqE8q65XvHj+CY8/+ZD5fEFTrfCuw7Udi3nL4yfPOD1/SV2/TpYZgpPRa2sNWqlNYGnnJGjTda0ADlq6pmG1vGa5qrm4uuT4+DGXlxdUVYc1GV9//6f5yptf4fDWLUbDAcaaxLS4rb2Fkv/pnYlDGn3H2M0UTuhbdCgJ/UUl8z+1FST/RAmKe1amBy8+AZyedQEZwc3YigSQ838Z4Ps/kBbPILWENh4lMU0WBWiuJQE8KxJ1n14jKwArtH6WxprLQn6q5DzctKL7SLWG4UAEvWdXst8eWVQzK1MzuQXGshCoKCBnWMrdflOL+LeL8t+6ko+zuyuL1Mlpys9ycHkhr39wC955Sxb1HzyGT74F49tw8Ca8exfOP4Znj1JS+ee2kO64+3yt0kCs4PwxXGk5ZsNDONyVxXh+Jh4s5ydiHjjaE+PE/QncvSNMzSh5y5RjNizA2gloKTJ5D5vE3XnyJGob0Sc1nXjrtAGOn4oY20zh7YdbYXDPEjQtnD+H5x/KKLr3cDCVltuihSIxB94lzVXcGji6BEYUW+O9XiTctWmE28g5+vhfwZvfgDe+mq6tdN31rsX9Ap5qjYCKixSKOhBzwoevpdHvG0xIvYQXPxQN0XwpbFbXyvd43sLj53DxEuqVHE+fALlJ2pgeoLoEZLoklKcVQL6ci3v31RUcPxImsGoFgH/1p+HN96TtOBxuwfQmLZ1NrdlaMKTvxKbWpHPRfz9D//heh5SA30+ioFgrj0s26DIZFRNjlnQPmymGVPCjFOIsGBaPzrk4+DbFZMYku4cuS2kpKIWOkYlbc29QMDRHGKXJyxlojTbixirmZV5qg3dE7wiuAR/w9RrftEStiDojdIHgIqYcYgc13cUSOyjQucVZQ5h7uqtLtM3QeY7SFm0NKjNoldPNVxhr0cnQTg8KfL3GjEZM9g5omorl9YpxWdJ2Fc1yQVaUFLM9Hjx8yH+0s8NbR4/5u9875oc/PKXcfY1bh29Tljs8Pf6Yi+WC2DlxZCZiFbSt57LzzLXjufccWc2R8hwEzaFu8c0VS5Vznc84OHxAGIxZN2sWyyvapuH0/CVn56d8+vGn2CwnLwuGZcl4NmM0HjMYDsjzgqIsyYuMzBq0UcQQWK5WLJcruqalbRrqpqWpuiRBKJiOj1BYMmulNoRA3dbU62vWx58wvj4h1h0ftB5TZBzOJvhnl3QxMDSR8ahEEWnbNZoxRgtzpGJEeYeyBrRJrR0nTEz6cW2Hzi3t9SXr3/zHDO69is4H9CPRG2gd+n6whGiqqLienxMj/PRXfp63Xn+LyUR0P64TJ2LnOhbzBdVKAgHzPGc8HHGwv4/3jt3dhsFgSNPUXFyc4bzjer6kbmqsSmnlCaBfLea8PD1hOBpjE/17cXXG+cUZ0WsIhuViycnLK9a17Pv+3hN+7qe+waAUTxDnAzF08m3b3P0EYm9kuLFhgBA6SYP3Lgmqwwb8EHrB8Q36/SeqLxXZ+tSo7e963cKPMlvr7yCDgUcXcPBvRBib3U/Ov3G7QLi1TAOZI1nkU63ZBm72UyGkkVsn4tVJkAWsaVK7IOVNuQRMBo1M8gwKATR1Gg2/upAFJs/lLtwm4KNyce21VnRAAXluvRb2Zu9AxqqvV2mkvBKRcVHCbE/0OTu7cPQYvncMPzyF3dfg8G0Y7MCLj2XBc2mRJC3urZf91klsarUc76BBt+I5o3LId+DwobgCN2thTJoGzo8F7Hz0SRrzLmW/pzPRCQ0H4t9SlBJF0SeP96Pdy3QM6wQUqy6JZDMYHyHtqrTshSAgaD2H4x/C9Ym0rVovbaedCTy7lPOvoySIE8UAkbG8b5bArXdpX3p9TxILhwgEAVq5Fa3Sb/5juP+agLENFZEW/Ru1ZvNP8zQp9dM/B6+9lQTEIemSorSI5gth+ED2fTgS3ZHvYLcRYNnU4kbtnTy+Thqu/tqNUa6ps5MUO5JctC/PJOLDazmPiyW8vEzsArD7GL7+DQFfWktrKdWaTdtqY27Jtl7EmB4XtqL82AOfsAWMv8da84UAN318giYBEoVoZVTS2MTkMJxSjcXpOT1HaWIt3jf5bIdsUDA4OBQdDIFZU/Fg/oyyrWQ6M9UxpSEa+fgheHBuA3TQGqMMQWlMMUEPNCq3mDxHZ0WK3AjYwQhfVITo03mLkJeEpqK7uiKb7aAHA7SCbt2QD+ROzq1WZEOFMgqDJRiHr5Zkowmz/X1eLisWq4bpdIB3nm61wOQFJh8wGk/4ufff5dXb+3zzB4/47z/8kKeXjxnvvsrbr/wJFvVLXp4+5nJ+Rev85uZEAc5H5lXHQiueaMXUaG61mltGc5DX5E3FenmC39klH+6yf3SLYrpLUIbLiwsury5o2prVomU1X3B2diYtO23RRqOVuAyj5LwopeTftAUFRhuUVhhlhdnByKKqgni4eEfoGvzFc2bXz9ldr/io8jzqAq1SvHM0ozq94lnd8jDXHE4CBo/Rsjh7L2ZTEtwZBFRqYXaCd+DlOooOrIrU3ZJBuUsxHDBcnRGefUj2+tfx/UJPYifSNUoErTV5bsis5v7RQ958+DrDsmS5muOdo3UdrnM0XcOqqlmt15R5RqYNhTEMyoK7h/fQWpPlOZPxiPn8mnW95uLyktVijTE5Rlt8ynM5Oz3ju9/7Lm3nmO3sUxQDVqsGgmFQlrTdiOFwRF5o6sbjArx4ecrHjz6mKAcMRgNA4X3AuRbvQ5pwUhudDUrAnFJ2426MCvh+xDmmqAUkBmITPJq+iz8x20b9nACJYss0gBRSZRP46Smu/jkaGg3f/1QW/kEpbQKVFqamgvlzAQr6s0/D9AuqT4U8AR2t5a5e6eTGO5NFsM+W0kjRGoygWMv+aeT98kLe8/JKfG4GA/k861rYGzeXBX+okibDgnHCTIwmsvitagmInA6Sad9CXjcfSLvh/Xfh9j784BF8+IG0hnZfhVf/BNQv4fSxCJad3xxWSPtcddt2n9Hipmw05LVEUSxfynEc7srU1nRXjsnFBVyeC5O1aGGOBHYqLYux0fLnVGs28RfapsUaARk6tTtsOsYx3fn75OXSNXD5HK5eyDGpvPjlKAVHMzi9kpiIXMM0ICyf2oKZmBaTXjys2QJWn64vlxjCbgnlroCz9Tk8/QDe+PqN66tnJ9jUGrSWa8EqAYKvvCHneDXfxj64Ljko1yIezrM0sWeEETy8K3/PsyQ4vxaAe3kpYMgkUNxnR52dwve+K8BpZ18my1KtEW3USFqNxZkEzQYkdPXxx7JvqdZsWCsJ00vfg5sERTpfG0CT2KueVo7pu7ihfW4Aot/l9oUANyrR+Fqp5G3jU+q0SR4bbLw2gE1UhzxXnl9dRs6+8wGDnT1sUWJGI0wMTC9fwPkLfApEi74Da5LfRzJl6trkrphaVXlOcE4od+dRRQHOEZqGaNZy59o0kGvsdET14hSDlkVpMqANDr+ao6whyzQ6M/jOo7MMOyoIVYPrKvLBGO8CJi9x9Qq/WlFOpkz3dnn+0SPGaQosdi1+tSY2XWJmNQezHf7iz4yY2A/4x4/n/Kurj7m+esztO+/y5ms/z6p6wenpU66u51SdfBEVKcDVR1ofqVzgyml+qGGnMxxpzSh0lO0ZQZ3y4pMPWOqM0c4e9155nYdfeZfReIYLkbPTMy6vL2malrbt6FwrepZG4im89mitReuoghQFG9FBDBV950E1WKXQBExbMVycMVqckDVrnqw9/6byXPhIq+Ar9w/YtQa/aLlvMw6yAF5RFENi8PggN3KRiO8alpdnaCLFdAhK47tO2j5GQwCbDfDugq5akGWBQu8Tn32f8OBdVGbpR6L7NllI3hNaw97OLt/42s8wygcoo3hx+py6aWi7jtZ1eOdxocP5QF01uKalbhu8d1hlsKMx1mTY3KCVYb5cECNcXF6wrtZiOHlD6LeuGp6/OGY82YFQMJnlGFWyMzvEdR1aKe7cekjXdQwG1zRtR54bXrw8ZjKbsTvbI8st3kfqZk1dNSxXKxYLeaxRZjNtaTDJckEWfhXTYpFac0qr5B2VvrmfYTp+EraeZUhah14v0y9+cjfFpsJsPlrcUuuXCr7zA1mY81LaRjHIInn2fBu+mGqNgJdUa1wrzEa/kOX51gHWeWElnBP2wazlManWMB3B8akAL5MLILlywjxkRliEzMjrWwujQgSmXSULkguyv/VKQM9kCnsr+PDRdgqsa2WsN9UajBbg9DNjyH4Aj+Zw9RFcPYY778JrvwDVczh9KjEKqdb0h2yT1eQCuKTH6RLbEjpoz0CdwicfCFu1sydTPe9/RcaVQxRgc3Upx6F1MjnWt5KUAe0T24WAl1RrCFpAXao1GxDa1bA4hfkpNCvxu6k8m3DH+/sCKo5T2yXVGophYlaQriUxAaQz+XOqNXSdnEuTtCXZANy5tMiyAHpfTP4evpeEuP21lgBO73OjEX3R+9+AfCif5eyFMDBdt32f0AmIqBJb1SYDR5VEwSaDPLFKy4W818UlrNdsPDP6bd3Ci2OJcwgFzHJQpZgDdp18plsP5Dopr+R8ZxpeHsu4+WxPjl2IAqLqVuwEFtdy7jZAlM+2goEtHIk3vqPxxndQ/1il5gsBbmST3r9JNxlGWwEgocVF8LHvDfbC8v7D9/VIs3y25Pw7/4ZyMmNy/wETt2Zw+QK6jmgyaQdnMnUQuxaMJfoW5QU5KiUj3NEl/4lkMR1WK5mYKfKNijsYhSkH2CIj35lQn88pS/G/0MMBAKFa44sMPZrgmxXBD9CDodzkzddoZVFKY/ISZQztaonykcneAcPpGfP5gjv379Jbu/t6JZ49RY5qWkZlwc++8yqt/pTi2vBrj0/5+NG3GBY7HBy9ySv3f4q7d+ecnj7h/OKSVdNJKno6aD5CEwOdglUXOTaQKUXZeQ6NplSR2Dquz16wuDpOsoKcw9u3eeOtd3nrp7+OzXOaxtG0LZEo+hAn0zl1VeG9x3tHiFHykGIgRodu1qjlJXZ9TV5dkbcrOhc4bgMfVYHnXaBJLeXb45LXJgPcD8+Y6JwMRRXg4cGQ3cmEZnFBORhLC0kpLJboO7rViqzI0IXoJ0L0mAgSsRBQWqHJscaQW0N7/gx/fYbev02fQybXWgpeTaLRvb193nntHeaLOWeXZ9RNKwncXtqBIQTx3+pazi/OOb+4YLVe0DlhBiWjq2AwGDIdTynLIcpomqqjazuMUmgdN/cruTWUeQEhUDdzzCpQlkNhN3PDeDLk/r0H7O3tUVcNTbfE6IzRcEL00DRN8smJib3xzBdrPvjwQ54+fyGZU6kjo9L4e98OVoifjd5gGNX/f3ps7+v0k7T1dDlSZLWVhSC0qZiIpQSwvYu8WVSjTtlT3xbX3uyhCHgvjtMCkEz0Uq0R236bGINeO5AK9edqDauV1LYbtQaDtKaK1Co5m4soVCFMAMhde5HJYtaswA+kFRGQ8XBl5T3zlAq9WkoB2D2A6Zm0KW7UGuqVLIZFLu2LsoS3XwX1KVwbeHwKj74FxQyO3oIHPwV353D6RIIs2+6zIKdvKyhEA2SQC65LIEBFWfzOXsDVcWIucpnuevtd+Jmvp2DQLmk0UlvGJZakWm8N5WJkO8rspO21upKprfUVtCsBW22AKghb08tXxgXMhvDxmbx/r//YH8pY/+JSWLRUayCd1+VSjn+qNZ8RwQrlC+TyX2vg/JmMdu/fTo+PbEzuejNArYRde/1dEfFengl46Z2eVWJIAgI2Ls/F22i9SO1CLS3JLJdrYTxNppA6BZcmsbu+ATAyk4JZQ/LJCRKfoZWAlvFADBZ394Qt6lYCSofjtKA0bHRMPp2jxRo++lBiLvqcKPjspNmGPk7/2LOqm69sOh4/Rq35AoGbdE+VWhpaWSKB3hZ+S07F1JGLGEme2oo+nWX+8Qmjg+8yHI2YdtfoqkJnVmh2o4mdI+LkQHmX2JooHl5Gg1YSnhhBG0n69nUNSuHdWq7VwqLyASYTBsgOS8y6olqtycsCtEYNBtDU+GWFGUzEGK+usUVO27Q06xXZQMCOURpCi8kzfFVhjGH31iEvP3lCXbVMd2cb7ZkZlKAVvnW4tqHISt7aHeLtGj+6x298fMJ8fcmjJ/8zZTZiZ+cOd4/e4c7tjvPL55ydn7NcrWl8SEGN4FIbxjtoiKwVLELEGkWmFRmKAo2NUBqDW895/uh7NL6i856PP/wYs1wyGw4xkwl2MGQy3SHPCoLrsFG8WkLXUq/muPNTptWKnA4XIi88nLrIy9Zz7QJNiDiEjd0pLK/tDhk/u6D2imUMOBN55U7Ow3u7+NU1bb1mOJqKf46K5NmAqDXRdfi6QecWtMa7gI5swiQVGSo4iiKjGJQYFVldPEfv34Gkw4LeDaZ36A2J9YucXZxxfXWJ0VYEu0ZadPJoaKqGs4szHj/5hOVyRdu2OO9RGKy1TCdTXn3lTe7euUeeG6w1GK3QKpJpaBJ4n4xk4mk6mmBUpGtrvE+2BVr2cDadMJ1MCTHgQ4eKCq2N6LuUlmxG74leoTHoqGjbhtWyou2t6/+4bRuwZpGpkxv0N9z4c4BNcnh6jLPw8Qnsf1fofnctC2zWj+ZqKew3aw2Jdg8kMTICICICiLyTBUMp0e7EKItlPpC7Y2WkFTaoRVsyKNJUi9QalhUMJ/K4uhZg0rTbrKZBYhZCKwtYtRagc+tQDOyqVsz/ep1rWcqdZuuEDchL2B2CXcPonnz+9RU8+Z8l5HL3Dhy9A7c7afecnwsL5BMLsfEOitt4CoUshCYtXj3ijOnYrK/h0+8JePRB/IaWCxEaT9JiPZ3J1JdP4NQFadesrqXNUq2ALi24pDBML4/rJ3MUsnjvjeDZhTA1vdbmdgb3dmVf6lUyVUzmdFmvM3ECAlOtwSXNTA9ESOe3nMh5U1EATqo1W5vgdH31/kkY2YeLU2GvtJVrTKe2Tv/4qhGX4CefSLup70ZgBFhPptLWun1vyyz2KfeaDVHAcJjcjicJcNZyXI3d6tKmE3m9mLQ1Ucm5sglABxLQVGysFZpWrs8/xFrzhQE3Miel6POJUZrofRqDNSRFwI3Hy5dkAwITzHErOP/Ohxzt7DAYGxlJNqL1UKmHHkEubgX4Dp1nKGPFEC8vIErkg9Dvmlh4XCuJ30prYZhLh9YeyNDaYgcF68s5WW7J8lxGpYuCULXEpsXYjG65wpYlrvPiL6K1tJsGDqMtWhuCyWmWF4xnO9S3aq4urxjt7FCMR8TocW0l3xVrQFt807I32+N9YxlcX7AYBz4KBZVztHHN87OPyE9/yGSwx2T3iKM37lB1cy6uzrm+XrBa1/gQcbG3ghB2zIdI5yOtUVgdaYJnUJQMB1NGO7uUgxHzyzWX82uIijzPiVXNerGkiYFFPmAyGWLynBgVdV1RJW8YvOelUiyd4rpz1D7Q+iAMNvLdKJVmN7c8OByTX1S8qH2SLgR+6m7Ge/dLdL1gvVpItpfJiMFt9Ty6xNcrQtuAFwDZOgdOojpcW6NVYDo7YDQcCQMfI2pxKdorLZoh6VR4uZuPgdhFlosFz18854cffZfL8xcYZSnLCbYYkeUFNivRRtHUDV3tBEwoRfCRpqpo20AIkaapuHXrNgqP0ZosM2gTALe91hUUZc50OmYyGQkzq3rAL0UwRIUORjK8tEWhkiAY2rbGe8+6XlNVNfPFgsvrc05OTjg/P8f3VPwfu62nvJN+w6eppqjht7ibfZ6+SYvwCvjuhzJ9NE56D9N7n/SFhhT6GOUOP8/kMX3sQkTerxdcFl4WlLZvmTsoHehet2BhkMPltTgbF4UsHEUpo851K3fry5WAExe2YGu1hoFL2pTU2lpeSOvjVr3V7oxHwjy0lRgYplpD00rbwVi4PodxlNZF5yCu4fQjOPkhDPZg70hckbtruDqHq4XsX89G3ag1Ajp6gBOl9VOUMJwlbdMQLteiF4kIE7Gqk5twEF3IZCiALWqZCqsqAXz9VJBTKbYhJC+Vm5eCkvNyOIbLSlpUACbAvQweDKBZCCNijQDR4NjoeXRq9aVaI+BGag3RyflUQTLKhiP58DEKC9Sngm+As9vUGroojM3zF5IVdZ58hQYTyEcCNvNCrremhdohfkhKAFxVybUXomizjm6ntp0WIKKl1nCj1jDIYTqWOI8N6EnXf88sBbMFVz175Nm2w5q1gK35XK6T0xOZivtDrjVfGHAjbSHxtzFa5lRQihAVPm7unRNzI9BGb6jzBEIB0IR5x6ytyMOQvMiEWs8tsa4JTYPqrfSNRSlZsLRV2MGo3xVUnoHrksYgR7W1REFojTIWW2YCxbyInrS2FOMh62XFZDKS7yiiUQh1gx6VVOuKwnsZV0cRO4/NMnzTEkpNdDKplRcjuq5h7+iQF+uGi5fH7N+6BQrqtmNxvWS9bGi6Gp3BYDQgL0rePbzFTn7JP/r4km9dKKpoaVWgCYHz9oyL5+fkxyUHu0c8vPU6+Wslq3rO2ekJpxeXrNYVnQsbrYlo5SIuRFRQhK7mfPkct76i6zrMZIrOM5plh84s5WgkoEQbrJLzSetom47LpubJakHTiWeLd5JZ1MXtjaICSgXDomCoDDtji75a4eogmrqh4hv3Mh4cFBShpasqms4xG01FfJ5Yi15UHK1Q+yqKW3RExsu1NngX8HXD+voMqzwqHmALS5i/RIdAwN3IUyK10zxt23B5dc6zJ4949ugHXJ6+IHiSP1IGdkhejCjKEdaWdK6jMLvY8ZQiW6DVOdEvab3DtY7F1Zyrq0uGXcf8ek61WtG1ot/pE7ydc/i2oW1rAf3IVFYXguRJeYX33cY9um0dzjnqtqGqKtbrNatqzWq1ZrVeUzftJi38j+0mY29sjPd67VDsAUy88QNb6pzPagCuOwEBYSiiLxJ93xuv9YJsY2Vh6aJY8A8G27dJtUbYjTwthiQAYtPrJgAGsqiMh8LeTMZpFxOAqRuZ6llX8vje3K31Mv3StFCmxdc7cQXuGjg6EiHyy2MZ6VUIYzNfiOC4rcW4cDQUQHV4G/JL+PgSLhTE9PlCEB3Ns3N4UUocw+034LUCqrlM4lxcyv713i/98exHyYNKuphnsL4UFmIyk+O06kQHMxknYGrSuQzyGZt6O/nVJabM9a2qz18DbKfMJhauVlCn1tlAwf0MDgphuqpKwNFgkp7YsxaJ+bA32ojayP7UnQBZF+W8XJ8ik3oHAkznJ58dHd9ovkICl41Mwz19BI9/IHEVPp1/mwtrlI+FvbKlnFOzJ+2nbAHqHPxSznPrxF/o6lKuteuFaG7aRtpT/Xt3SaDcSa0RkJWAv0uTZ94JuOtf1yVmr6rF2Xm9lp/VWq63Pi38D3n7woCbfv4ChGaPNyjiPjTw5r1TTI/cCB/T/0Fk92CXO7MhmdUyCuwDYb0m1A2xk8TuqC3KtaAC2mliFtB5kaIYpAeqtJURcWvQwyF0jtDJHZVKFJxSWlogIWC0geCplitJKw8RazNi16IZEn0gtC3aaoKT1ogZ5BgtSeKh69DKoHJDRNFVS47u3+bq5Uuq9YpytsOT73zE1cs56ypj7gtaFcnyFdNpZP8gZ3c65j/8ym3eeHHJP/xkwQunscbSBk9nInWseXL+Kcfnz5gWI/b2D3l4eIe33nqLVdNwcnrC2cUVV5dXuCR0jAgpf6ATq9vUBKVZr5awDoTG0zWeVsFUawZKY6zod2IUi6jT6Fi6SNXF5B4iZ7APAbAaptZgTQbOs6M9r6wiZVBkpeX1w8Abt3LGuYEQ6KqWzjuyomAwnAjsVRKuGnwkK61MYvlAbFvUoMBqw7KbS9ijq8mHI0ajqUR3IInai+tPGK7/JdnwfVTMUj5ZnxAeiL6jqdes19esl0tcK/oiTUdLTRMqIlfkeUkxmDIopuisIEQNUWOVIdOaNsJ61fHpp59wcXVKWRa0rePk5JLrZUPt/KYeXFxe8+3vf5unL57ig6fzHV3raLvtj/eOznm8D3gfbwRohhQgG/94g5nPbOqzf/6MS+pv19Pf1prPtKcOdkWjYZOWwkcp7HWTIhmiLEap1uC0iErz1Jrox6q0lQXNGmkNdE4Wmv4uu2eYeqNBbWQxXa6E5QhRGIWuBTUUdqJtBfD0WpRBLixDm8SoyojQVClpXd2/I9EM65WwOd/9CI7n4sHj0/7mK5hGOMilPfGV2/DiAj5ZymczyYzNRIg1nH8q7ZdiJK7ER3ckuLGp4fRU9DlX11tRNbApOCCPU1o0QusgEzqN34I/pWUVuzllEp0Aim7zi8+ed82WgXEeaGGZQFVp4TDArVyOTQjSrvNO2nyjKduJOyXnu0yiYB9kMR8Wcmy7uRwTV8s5HSWARhTt0NUPofpXMHwfYnZjWigmNqTb6oUWiwQkIuJkVkNYA1fC4AwmUEwF5CC1RsTWqcW36uDRp6LzKUt5/9NLAa79pBvA1Ry+/20JNQ0+mRKmuIVN7ILbXlOu31efJqNugLR/x9sXAtxEUg1QnkyJs7AYNmrx1vhMQ+rG+HticdQmqEHcjR++ss8wF/2CCgFfV8SuI9RrorKoEEE7vG8xWosOIs8gasxoiNERSYg20q4iYgYFKsuIjUYPDTo3IjBNpkI+eLqmxWQ5TbWmGI0wdgwJUMWuIytygpf0cqXA+w4bSlBgbCbjudYSO09wgSwf0bYrpns7oDN8hGJSYOcWnOFgTzM7HDCcDgh4dG6puxq3XvDu3piDMvKtp2u+O1dc6ZxV12F1xBlNUJ6z9prTp1fkT0SzsXd0m9fu3uHdN99kVa25vLrk4nLOermg8J5ZjNRdx5qAHY64vJzTOs/QqFSiFWMlZoEmsSe1hyd4ztpIFfqR/8S6acUwNwzT3eW89Zi64adyw/uTjMxmTCfw6p5iVhi06vBtQ3QRFzwexXS8R1EOyIoMozNym1LZ0WiTERE2TMecLLM0rkGjaJuKwg5FQ4OW82Izhm1gcnFGO3tKu7qFIpfR6AgxejJrOdo95J033iW2FR9/+B1OT84JMZIpTTQGrQcMhhPG4yMGwx1MPqDtWpZL0DToNGJdt47FYs1ysU7XUKRy0H0OiCwrxw9++Bylnsv3Jcr0YExfni9AHfnJ2iJyB638DYpSIPdngQ83Dm7P4ujt33WEh3spp0dtJ0Q6J22KPi1cpwkfnYBGJrWG0VBeY5MyLrWGskgsi4aB3gKQ3sAseFlE80yA1GgEqdbInXeXpq66xCIgi1SqNWSZvIa1adEK0uZoV3CwAyoJoscFDKTWsKvhcACzAeCFneqSR8z+BErg6RrmSoS4XSefzWg5zu01PL2CJwqmUwnvvHtXEsCrlRjVXc6T0NnJqXCtHI/hEC6TSNbeoM/6yZuePfHI/3Txcy2QdI5zk5yEjQCFupHfjTM5JmNgDwErKjEYPqaxfQXjPQGSRS4iWpul19cClEiTSzEXXYxLeUzNGuwwtR5N8sTJpWV0fgqzp7C6BeRs/G1iOj87B/DGu8JGffgdODlnM0xjDOiBeAVNbsFwR/RZXQNLgCaxaTGxcGv5Afmd47cCkcrBD5+DfnGDSboBOn+Cti8EuAFQKpJp0R6Y5NDaJdO1vqSkmabUgpK7p034X/pbUWhuH4ww0RO9tD9i5wXYJDFx1ILIFYrg5T2UA9+1sFJQZEm03aHKgRSdGCF22FGJGSYXZCP0owqiz3Bdi7Vyt+9ch3YyTmm0IrYNxmTExqFzsc3umoZsMBC7fZ0AThvwviW0NaYsKfIRrmsIJhJ9zd1XHnBw6zZtFzDWY7IMbXO6rqMLgXVjWQMuePCGt8qMW7rhRch54gZ8clXRukieK7pc0QGti5wsFzy7uib7+EOmoxFHh/scHhxw783XCcbg0XRdQ1PV7LiA8x2zW46mqfFtiw0K07XEGGlVpO1dpJWi7loGixVZiIyKXM5agBgVXddwWTtq3zEC/tTE8hceFLx6a8KgGBB9S9euiF2LazpUSH15pSjyjNFgiFXS0iunE3Gkdg58h9IivFPBy/WV50Qf6JxMGBRFTlGUaK2lXRlgJx/C4xXt3jOqTlPmh3KBxh48K3Z2p7z/3tfYGc/oHDw/+TXWq4bMeJQVjUyWZYzGY2azA4y1tG2DVi1dGShySwTsqqbr2k2KN4BRER/VhrPsl1SXgGHalS+3/382FdmMD/cOrZuE5s888HNMzecYn0LD0TjdtXtZfDsvwGYjJjbbdkVMomJPGrlWslAaqS18rtYwLGGkt/vZN3CVkufbbNsuSLUGrWRRNjaZ0SWL/qaRVliqNdhMFlffSsupLAXgdI3sj68lh+jWbQE/JgEaWwhwCQGaG9493kj7TDcQcnAD0a+ECLmSH5A7/eVcnG4//lCA2eGB/LydjA8xCTjVadTZwS0nWpquS22rJmHRxOn3LJhrZDrHx207L6Tz1bXSKvLJEXds4WEBRxM59r4VgNcHcfYGdCq1GsuhnE/npC1m0p99tz2uPumr+omjVGsocgFGWsu5CAib9XgNB88l3iM/kv3qv+Bawe4U3vuaJG174OTXxHfGBjCdTM3luZjuzQ4EELUNKAdlSA7WiEapa9mkePffg/gjqkrfHvwJ374Y4CZK4ylTYvSmlbSDYlDpPGyaUNw8CTdLTd+yOrw9ZjrMoW3omjoJyKQ/GIMHY5KWTYqFUmYjVA8uAC3RNeg8Q+cZNA3KZqLRKXN0AWaQI/bzaQkKQbKilEzixOhZL5dMRhMBT6lfrpPjo1IRnWW4rsHXrYwk58lFNDq0NcS8IEaPr1psXqIKCyYjRI/NM/KupasbovPYTFFMRjSNI7Oa3CrWzQq3K1+mycrwQGnexfIvreJ785aLZU1UMno/yzS+UPjS0LjAolqy+HTJh588EtO6TMwLy3LIdO8O5XCCNprxbsZEySimNkpu0pS04qq6wvuAdoH9piG7mrOaz6mbmqptqbsWHzxZBB8jYw3//mHGX31zxuFshDaKtlpQr9b4JlHWQRgfr8FYy97sgLLIZX3ShiLLhLUlmT6SxHNpLNMYjbGWenFB8C3EQOgcTiui96gcgvf482Pa0zlqdnez4MUUbBejx9qcyWSXcnjJ2kWeX3fUVcSqiDUBu56zaCJVp1hWDXkxpOs66uYarVtCcGgV0NrJIE1it13sW3Vfbn9gW4zIGC+yUPXtoPCjoOPvUOBvjWCYNDKbWpPGulOtARLD0N+1p+emWoNvUk5VlnKnpNZQ5lAgraSbU1wxbg3jgpfHLpcy3eLSOHnPDpGmfbIU7VC3smDeqDVYk4TNQUSgeSl6EJPJcclTq6tuZJ8zJWLTxqVWnJLR81RrWJr0eZP53HUrC2svjsy0COsw8nrVEj5dwiefyvOzZF5YjmDvjkyiGQ17GeASE0YSWQZhQOpq2yJpWmmtzK+TL06T8qX8jRYBcJDBm1PYGSWt0iK5G29rDSjxs7FWfF6KPK2YaVw61ZpNLtSNWoPRctwX5wJ+ekdhrdL5Qf57cQwnc5jd3oLrTYiml8832YXRlTAt1x1UCcyZIMxZG0W8XDfixdN1UM8T0PRynLRL18wNfc8f8e13BDdKqRL4p8hXzQL/7xjj/1kptQf8v4BXgU+Bvx5jvEzP+T8B/wnyVf4/xhj/+9/pfXLtya2ShQoRifkY8FEntmb7543nEXIdBSIauaO/fWeCDQFfrcE1ydl4i0SVNqllqgSUa6kdsW3xaJQdyLXdiGOushmq8wQVMTrHjnKij3LBROnzKqXQ1pIVBdV8Tp6XLOZXTKc7EAJR6ZSijOh0sgylNMHV+K4h00XSdMhFa5RBFwXNak408mV0qzV2NMYYiy0K8nKEGzR0rkMb0ZcYrTBZSZYVDPMhRVZh9RVtqdgZDHhvcsgb8wX/4vkZ3zxRPJp76qrDuZBa/5FcQ2E1GIULARcjvqtp25r1+prjs2MCGmVyTDbAZAWZybFZgU3aoxCSU6/r6LqWztV0roIQ0DFSAmMUA5U0PFbzVx+O+A/e3mM8KGmbFevrOc26om2kB2mMQluFyXJGgxKbZcymOwQd0UqTZQXGaIKPdAGsVYTgN3YieI+14hC88E0SGgeid5iswAyHckV1FdX1Av+kpCmekttDucqSy2YPsKt6xZPnj/n2Bx8xX/stCx5AdYHz6ppnFwts9imZMcn/xsuxxeFcwPtA6+KmVR1gY1T5o0rPH/Vy9IdVa9CpvWGAVGukHZBk7erGn3/LQU+3UTrCnWnSZEitkWLC9q63H/NW6rOq+baVv9iB/L5Jjrk2RS6oCCqHUS6ot681/WbSlNT1XIDJ9ZVkMvm00PatDWXkNZUR3UfXgC62uggV5d+KQlxvU61htU6gIr1POZL4h67bAjatZPw6K8RgLqtAXwlwGQxgcihi5OencKJg7sWx+EatEQZJas1Gb9LVKRLhWjxv0DLVlQ3kvUzv3GwSKPVp7LlL/61lbPwzcfU9A4ec94cjeHtfxuqbNVxfiMA51RqMksdluTzGWjm+OrFDeZG0TGldsSpNPaX38Ek7VeQCXnsXXu9k3/ta42oR9j4poXgK2dFWb3PzeqtX8PwxfPCRGA7eqDV0AaprOF9A9ukNJtKnFHonx9wHtmnd/Uv/0a4ovxvmpgH+QoxxqZTKgF9VSv0D4H8F/H9jjP8XpdR/DvznwH+mlPoK8DeArwJ3gf9RKfV2FNOQH70pKGyUsW2liQmh9wVfrpmQhL6bp9A3p4ySMe/dg5x79/eJdU10Ak60Upg0atm7zYqFttv0a1VkI9qLMRCNJjovfXgfoGtQmSXS4RudQjJT/zZIQVFWQIcLDmsseTEgKnnPzq3JdI7yXtxvkVgChcF3rbAC6Y5SpS+i7xyxEy8bSoUpcvHfaWp0McAMSvnctiQbjYhtQ1ivAI1vGwajEUVZklnDlZ2zXK8o2xUPbh1w92ift5884x89bVjaEfF8SXO1pg6Rq+BYN46GgCaSq4ThFHgUMVNiAaFafGiIrZyDpoLKJ4CWirtWiiJGRkBmFCOtua0VRTS8cJ4XwbNTGv7j9w75Mw93iK5ieXHK8npF2wlgiAHyQpENMjKTUeZDdma7uK4BPMNyiM4HhM6hrUXjZAIu3UHpCNhMTBgjFNkAomSKFeWIvCgwWGLbYYalOEgv57iXGv3GC2J8fyNuV8khM/rI1dUV3//oA54+O/lsS/qGSaIL/rNivS+332n7Q6k12Jiml1Lx79tGm21bdbarYvpvPxq7n4mTbVOnKZJUTzZj3fyIWiNP3QiEY5Aa8rlaQ2aBTjQ31oqx2o1ag7WJbfGAlVFold7TrUXz4n16naTNwKS2xLbWbLxNOic/qdZQZKl9UstrD0p5rC0E9LSNiI7R8ufRSNpa1oCdy7+1K7h1AEf78OQZPGnEC+d8CVfrhOadMCX9ivuZ7p8SlkgBqoXQSOsGZDy9/xwbnxq1XayNkv3XCqJJx9dDYeC9Q3hlRwDQ5Slcr0WPkg4JhUqZVclfaLYn5wQvbal8ICDPWrl2VNyyNanWbLQq2UCOUUjPLRJmb1PLcZiLc+9LDW+8YOMZ0wsxVPqcV9fw8Qfw9OXniMUbhefLWvNbtt8R3ETpvSzTX7P0E4G/Bvy59Pu/Dfwy8J+l3//XMcYG+EQp9RHwC8Cv/XbvIeaHGcqYJPBM+VExEiU/PenFbt7V9vBma/FntKarltTtijxGYWyUAh0wqbYoLXfQeIfSOi16KTgzKwmdI3qVnIsNKLlbMYUYfbmuFZbEBwE4qGQtoIW9yQqqqoGuoZovGE32cE2b2reyWiutMUUJ6xUuxQLoXMISVQhEa4jRYfIMrQz19RXZaCRTN4i7biQSO7lbMNoQjMXYDJPlaK3RBBrnGJQDIlBnBfN6ialydnf2+fq77zApn/LtRxdUX71Hp0r8sxOql+e0naOKEpXoI1y6gAviZnzSdbQWjo52GcymNO2ST59f4ILCGM2dUc7RYIiuasKyQqnI1CjulIqJ1qxrOK40Fzrwcwcj/vrXbvPKLGd5fcb8fM58HllXhvFEkeWK4Y4hKyzDYsx4NGW9npNlBdHX5MYwnO1wfX1NpjXKaJm0BLxzMr0WtXgcBWkLFEWJNoZQtbRdS03EWI0uMmHYjCYfDmjPVhTNGjdYY/QQhUZpQwwyZv3y9JjvffgBq3Wb6trWaPLL7fe2/WHUGgE3yWumz7Tp2xWp1qS96dEq27Mat3/XRpKY2zWbQL9UazYP1+kO2ju26eGpdZGVyXdFidbjRq0h1Rq6ls0UTp7M0AxbgGNzaSW5RliSyV6KJEifJ6ZWSV6K83GvuTDJn2Tzuk7aT8oICzQayf5t0ptjCsNkK3y2SYSrU0vGOdGtgLAT9RKqXPKJ3n0Hyqfw6QV89R6oUhbqlxdJm5SQRSSNb5PaOJ2sUIc7MJsKYHpxIa0VowUcDAbSjllWqVWjBKBpBbWCysg52R/C127DTiFBlGfXsIiwMjC1AqRmWoBNMZLJptVcPouv5XPPdmScus/K2rQYk7Yq9sLy1IIsBkmXk1gvlsKm5JmcQ6PFYfpsJXeHgzXo4fb6CmnM+uwYPvhAohE21+GX2++0/a40N0oEKv8CeBP4L2OMv66UuhVjfAEQY3yhlEpqKO4B37zx9Kfpd7/tZvICpQIhagHCWhOVlzDXno5VCSRvBMR68/xeVpxZEfXqcoBJ5kI6y1DREb0neifzVSpuMz2USRbyVvyJQhR9DgJGVBANTHAtigHRR0JXS05VLDCZmKaZLMeWBeVgxOr6GqsVWIsZ5mS+pKtrrBGaWsWAMoLQQ3C4uibLcql/CbCbPKddV9hiQLmzR3N1LkzwbFfM/FK0gYoK19REvJgJZhnRB2xq0aAM61AxHoxRSnG1XBBQ7M72ePutB+zNhnzw4YdchZL41uv4dx8wWB4zXlyQGUUMkatly9Ozlsu1YlBF1N6Ev/I3/iNmRw94+uRj/uE/+VXsaMzh4S2U73jj6DaHxZCnf//volZLVISqynjcKp51DY1t+fPvHfCX37lDbOa8ePyYelHTVpqmy7lzZ8DurSF1s2JQDtmZ7LFcLRiUI9arJavFBaO8ZDzdxXWe1fU5e3u3k4zCoq0idulKSREBBNHh2DwjL0vWyxrnFVXssHWDqztUIT3KcjiiO7sgu1b4yRWZmaJSO1QpTdu0vDw54dmLU9yNm/7+nuvL7fe+/UHXGvJ823aKpHHitErdqDVyIjco5eYeyn8ssmCV5Q2gkMzdes1NTOJS2881J/MzZeVlUq3ZgKuQNDCuBQZy155qjUzgJB+dLJeJquHoxmJrZLH3A9GgpFoj7FAqnsGL/06W9yOL22OyrmQx3tkTG38FzHYFiFVJ0xKVsDl40SrlRTLfSy0aZSBUMr2jVMoxUsJ+vPVARuY//BDCAN5+Hd57CIsXYmZn0jFYtnDawVpJ6vTuGP7j/xBuP4QnP4Rf/hWx+j86kuN1dEd0Jn//78qkVURG11uVxNENvHsA794RI77Hj2FRQ62hzeFOCbdHohsqhwIQlwsox/J6iwsBh7MdAV7zC9hJl59JuqJ+5LyPTegZtjwTEfGiFhAbu5RW3rFx7h2OxODuSsHkCsyUTTtUaWF5Tk7gxemXxeXH3H5X4CbRvD+tlNoB/j9Kqff/LQ//UTevv+W0KKX+FvC3AA4nE4rdHeqLK5QpQGl8aJNgV7yLNenLQ5+50/M32zHxycRQX1+Q3dmnHE0geHRhwQyIzhOaDm00WI2ejMF7EfQaTXV6Dm0gHw3RtsAUIuQLXUd0EVQUpidNVUQPMXiCT9NbxmKKknwgAKe6OidORZymlKJezcnzA7TzKGXQNkeZjOBaXFuTdUJbapsJm53nqCzDu5asGKJ3DqgvToghkO8fYfJMjFWbjubqQlKvY8QtjLBeeYGPHm0UVlsGRUnVVIxHI9puzYuTJbPxjJ3plFdffcDl5TnZ+jmtLTkZ7xFef5epazgKFdG3PDg94dnxCQfnkeKNt/ipn/9LjA5ucevVd1GjXRbLa27dvkfb1Jw+e8mrP/tn0Mcfcv6tb+IaTe0CRhnu7mb8+fcf8pWjMSfPnnN+coXrwBjLYFzw4NaY0WxE3a3Js4wyLxkNplR1xXx1hYod7ZXj6I3b6EHJ6uIc5xw2yxG5cYAgYm/RZ6W71xCIwWONpSgHwAWKTtoBIeCbDuU8uiiwWcakzJk/O2f64ILo70PvChxhva54cfyC60WVLu74+1J3NjEif4y3P+haw2QiLryXV5BqjWRK9axM+lGfY3E+z8tNkkvv7X0R8wafhLgDaQ80nSz6Vstkjffil2I1nF6kds5QWj2p1kgQYnovrbcTXB42XiKKpIUpxcZ/MBIH4FRrUEoYh/wg5QsZeQ+dCWhqa0i1RlooCEjJ0r8XQ8mbujiR99w/SknTJG+WCzaJ2IsEoIpS9tVoAT1FKUzEaATdGk6WMu0zm8KrDwQ8rZ+JJ8t0D954T/QnIVn9n53AixM4j/Dam/ALf1lMA199TxLEV9cSI9A28OQF/OyfgeMP4VvflFaeS8zJroWvPoDbE3j2HF5eCRDRRrxoXp/ALO1jlgmIGU4FHK4uBYxcOXjjljBEFxcCNvKCzfzuJlJCbZkyH7aC8nII8QJu1Bqajk1IapbJeXx+Dg/PIdWaDXO4ruD4xXaE+/etPvzRvxX7saalYoxXSqlfBv4K8FIpdSfdSd0BTtLDngIPbjztPvD8R7zWfwX8VwDvvPJq3PnqNzj/1q9D5/HBb6h+CFgVUgzG1uqvF9/3jSqtYFh4RmMR1Cqj0EWJHeXCkmhNbDtiaidpZQhKkY0trq5w1wtmB7u49hqdDbGDQRIjG1ztCLFDWSWGf8k7IoYgxnxKoRA3YzseMDvaJzRJoa8kq8ooTbVeMZyMUxRHupuLyGs4JxNTWnrjKsuxgyHt9SUurMhGYwaHd1ifPKOra/K9A8xwRCysvEaDOBy3HTEE6qrGuQ6Ho42R3FlyYxkUOYulA2tZrFZ457HWMh5PCV3g/sEhu9dXnH16xvLOa9T799iJjlujGcV4wK2jK5b7OYdHt5nducdgtsNiOeebv/4rfP/73yUGmM52MeWAvVffwn/8TfH1WVuKvOBPv3Wbsa/5/m/+kKaNHN7eYzabYDOwVhPxrNbXTEe72HHJfHGJ8y2Z1SyWC5p5B50hGw3wMbJaX2Nsjsky+rHNgMe7Vm5OdQpDVaCix5iMvByi8wzfODrl8cMxXdNi8xxdyLU2GQ85nS/xfklQHSoauRpDZD6/5NmLF9RN9/taHv64A5ub2x9UrVGvvBp5/6fhW/88Oa8m1kal1kivXYk3wIxi++deG1J48YHJC2FGiqShsKkl0jpZ5DIjC61SAoiaSoTAB7vi/ZINZeFUGqIRC/3Yyes4Lc/VJHDT62Q6eY/RQDQtTbOpNZtwwfUqufiShKWkfm1qIfW1pm2TcHYkwtqwEl3N4R04eSZMz96BAJVUa2hIrrRpJLxKuiMS6HE2AbAcUq1htUo+NZk46HYBDg6lDfbpGdx5DfbvSYtsNBNNytE17BUyjn7nvrAnyzn8+q/A978rHbPZjrTDXn0bPv6mfKa1lc/09h0BTL/5Q2GBbu/CzlRWvSyBk+pKANO4FAbJJQC6XMC8g1YLCCWKyNkmPU4/Ih5DYtpgE/qoEcbLZLJvhRVtkQrC1DQp26tI19poCNdLcRNWHcTkdxSinJMXzxPb8/u5/dGvNfp3eoBS6jDdRaGUGgB/Cfg+8HeAv5ke9jeB/yb9+e8Af0MpVSilXgPeAv75v3Un8pw7v/An2XvvPVAe5xt88Ij6Bozyyaav//6KSFinBOOIQhsYTUfs3rrL5N5DxnffZHznDcrD18imO5iy4NFHL/jBtz/GNy1GGzJrMUbhrpYMd3fIp2OU0fjOSdszt2AhGxsG+zNMkWOHBXZQCvOSBMiE3jsgCYuHJdNb+wQXaFdrCW+0OcF5vEt3YBGJYVBagl3TXZkyWsbVtRLRcF7KeHLbkI1GDI/uEn3H6vgxi5dP6JYrYlDoskSPhpjxEF2WZMMh+WiCLUpyrVksLmmqFW1VYZRhNpzguw6jwIUWYxXres7F5QWz8Zg7k4Kv2I43umtW15f8IOYs7r1L8eAtJtSYZo4GJuMRt+7cYzgcorRBZ5YQHKv1nNX8mkqPCK+9zb2vvcFffv8u6uqU48enHB7t8PWffYXJ3i5dcExn0xT4qhmXMwb5gDLPidExX1wQnGc4GHO9hOHODDMc0NQVbduS2ULciEOUcxDBO3F87tm/XnynjKbIBlgr7YnONVTrJa6uMFZ0S9oYhuWI7vQl548e4X2FD50k1Hc1l5eXvDw9xYX4RTHj/COx/WHUGvIcfv5PwXvvyWLjEzDYtKQ8mzOqYCMS3qQUK6ma0yEc3ZOE5Ltvwp034Og1maopS/j4GL79sSxkfaigUWLxvzOT/B5jRHOiSB4ywNjA3kyAwbCQRd7mbATIN2oN1sq/3zoQxqd3Rra5AIm+1gSSmZ5mE2qoUjupz8IalMJceL8VCR/dlTHm48dw/ETckKOSzzccSgREkf48msjztRaQUK2FAVFGXH27js1dmNXSIrq8EH+WSQG2kxyq60uIBdx/Dx68CdTyWJDMq7v35P20SSGlXsahF9eghvDqW/C1N+Br98WN99EJHMzg516Bgz35PDtTNkGexSxlNOUCrBYXcuwGY1F/7ewI+KyqBAQLNsCjH3Bx3TbCQG1rjYyDD4Q5U0HYqfVKjou16ZowMo129hIePQJfCZMYWmlJXl3C6dmPEL1/uf1O2++GubkD/O3UC9fAL8UY/55S6teAX1JK/SfAY+B/DRBj/I5S6peA7yKT+f/pv3V6AdDasPf2+/j5kvXLlyyfPaOXDyuihA5G/blzG1P2jzxmZ5bxztd+loPpPiZqCMmdWG4zaOcLXj45TeGxHWpmUFrTvDwluo7hwT4Q0daKEN916NEQXeSoLJn2aUV0sogqHQm+750GATlKo01BzCGfSC2ql9eMZvuYrsM3Fc1qTXGwKwGHyqTPJC2TmFxDVbJM13mBGY0FFLUdJnNk4wkjHVkdP6eeX9LWK/LxAfl4gh0UojEyBmIkC2A6jdUFqlly1cy5Ws8Z5gWd1hRFKTeXtqTzDR548fKUyWiMzUuaumJvOuPtoebl+TPW1ZCXZkg4fItPf/g99lTGZP+Q8XSX3emM6/mcEMTy//jFJ5xfLwgP3menXvDm2FGfnZCZgoev7XOxmPPDRyfs7e1z/7WH5JnBO4cKGlJauEaRZQVaW8pyyPWyYrVSHN3bJ0TFcrHA+yCRDVpaUDFNXYYQ6HyNNTrZR1iI4oqcZzlZpom+3WRnRWXRuRVvI63J8pzSR04fPeHwfkORDYgh4tqa+fyaq8Uy1ZsvK87v4/YHXmvQBt55HxZLePkSUq2Rrb8b//w9X1qwYvrzzMLXfxamB/LYkHQWqdYwX8LjU7kzb1uYGVn0X57K3w/3t1qciNz5j4YCaDK9nfRxaRHVMRnPJRF0H7JpCsl7miCgZX4tic5dJwzRai0MkbbyQysPDF721+ZgvQCaIk1COS+MTOak3aYjHD+H+aWMJI8P5PeD1FIxZrvw2rRPzRKaOVxcp2BHLSAoqtS2q+V4vjyV98xLcXaezcS08PQpVEOwI2Ftfvg9mQDbPxRNzHQmoYzBCxN1/Il427zyNWgXMPZwfiLPef0BLObw6Qns7cPrD5N7sEu5Wwn8Kb0dMS9HIlBeKbi3v9UP+cTG6MTYBNhGJdRpog2k1pDG5dM59S0bczxlZR/yPAm+08j/o6dwvxFAFKJohuZzEYv3196X2+96+91MS/1r4Bs/4vfnwF/8bZ7zXwD/xe96L5RicLDP3ntfY/XiCd38mvXVdZqkDElJETcaOJOUNhKcKQZy733tdXaHe2iviL1pX5kRWeNWFavnJ8znFa/vz0SMbBWrk1NcUzF+5S4AoW7RWUbsOjY0tNFgMpS+ISQMAejQym5ao70wOSpQQaMzQzEb4VxDs1yhjaEcTWjqJdGTomLEYyOESPDS4upFzmJsGDFFTigK/HqFa1ZkdkI2njE60nB+zGp9Te1f0LULysku2WCcAI6SKSAtIrcYSkaDjivf4lXEKM3QWJquoutELFsUJWVpWDRLxoMRPrTMz55RjqZMy5zbowG7l1c8/+RTPvnwN/jB7CHjd76Kzyf49YrxaEjnPArF6acfYh9/D44vucDwyY5lZ5hhc4dbLhlNRty+fchsZx8yQ7dasbg8Z2e6D1pR1wus6tgdzdBZweXqmh9+csl0WjKcTWiqBavVBSoG8iwJG20qOgpilOPaXynRiAGfipZ8UAqwq1Z0nSN3UYThRkbEVRqV3RtNOF7N8X5NyKZEIp1zLKslVVX/ri/vL7ff3faHVWs42BfX1xdPBBBcXSdJTeC3ahHU9kdFWbC+9hoM90Qk2k+0lBmwFsO65y/FJXd/BhhZ3F6eiqfKq1JrqFsBB23HhkBPtYYfUWtItUZ2yWyZpKCl9TUbJXfelQCO0UQmlnzaZ62TqDiyTcYOm1ojBSAXkLNeCZCxE9HKpFrD+hr8MXQL6HaF3cgy+d71uVdKQShh0MmC3puJGQtdBZ3a6nRKI0BoOJIx6NNn0rIa5NJyu7yE00/gg9+AnVfgna/KXWO1FjDYmxZ+8iE8+b5MUmFgx8Iwg9ylKbIh3NqXKIPMSIvs6hwm+3Lo64W0g0YzATjra/j0EiYl7EwkDXx1Ia2mz9eaXvzr+2tHJ8fpNPU1KFNie3KtdiGNzOvEGKZ26GgiLTe/hmwq12DnJPPry1rze9p+LM3NH9SmlMKWA4Z37rL/tZ9l8eIp9b/8FqprMaiU+CwtKk0S/yNC3hhhZ3fE2++9iwpe2JQYCV2FyjNCV9Fczzl/cc5i1ZGj8M5TnV/SLBbsvfsmCo2vKmLwmNEAaoPKLK6uUa2MB5uskFFjI71aZS3KKGJwqJgRe+MlpSRt3ARi12JNwerqkiwfkhuDtYnWjKB0YoQQ3Q0+yGj6ZkxV2iimyPFNncI2W0xuyXdnqNyiTi3rxRU+Lqh9IHpFPh5jrCFYafkZLfV1pKF1HeuqYhAcg6JEmyGhbah8h3My5n61XjEqh3Suw2hDU1W40BFdC8pxf2dGef2STz/6Na7OHlG/9fO4ELl1715yCAb/vGFxcs7RxHHvcI+96ZS93T1skeE6R905lHNoAs5F1ss5rnP4KFNtRheYfIjJcxaLBY8/veDlceBP/4l90Ib1qqZpGspigs0l8kJHLyaCXu5MQ+hkMs4YgcfRyzFXSlp9ztE0HaNhhzIp6iAqeZxSDIzB+pa2XZKXwiP6EKiahqb1SbT85fYTtSklOog79+BrPwsvnsK//JaMSZMW55uGeX0rqsc8u0P4ynvpbj1pTLoqOfkmPc2LC1gmjUTn4fxCgg/ffQMw0uIIXhZwo+Uuvq6hNWDqZFanUw5S2La0gmMTsNh/FmPFir9rpf1xeSVeLMYIMwOkYrPVhGzATbwxEk9iWPLktuwFnORW2mi5hVMLiytYLVLLS0lbyRpZSfIbU1gaaddUlex3UYIZprymTtiqGGXxLofydz0QAW1I/66cvPf1S/jwf4KTT+DtXxCAdu8e6S4GXrTw8gzGDo72YDKF3T3x63HJw8d1ciwdAiJaJ2DFO9DJiDDPhaH59AJeBPiFfTk+6yblUI2FiQlBnru5BrzopFKtEaGxT4BSJfdkJ7qZgWMTChqVPE4pOcehFeapvCWfLaQWYdeDoC+3H2f7QoCbjeh2OGD04AEH3/g5FidPWX/8SJyHEzhWn/sBhVaRV1+/zTiT3Cbn5UsTo0MHRze/Yn1yyrPHV+zvlZSDAlsWzJ8dU44K/LzGTAaYcoC2VoIydY2rGprrBSE4srLElCXZaIAthiirZZgiJEFYL2v2AYiodBejlUVbw2q+pm6W3Ll3hDWyb1GbrW+El8iGmESMSmlpd8SI1paYFeiixDdrfNuidIYuMrLxhLGx2LxkcX2Kr9e06poQGvLBFFuUxJwN/Z1rzdA5WuckuT5EgpfcJdet6bpK4i+M5XoxZ7a7y3q5Yn9vyGK5ZJCXDIoBbdsxzkfcPay5btb84OULahQ/+PQjfPD4xYLdiyXTFdiZoihzXF2RW2kxuehFE9PWVPO5THUR2T+8hTaaSIEPjqvlnHq95MWTBZ++KDnY0ewf7tJWFYvVNa71ZJMSbTJIY+vRe0IQw0e1sSdOnkZe7rZUEvx1bUezDrTDlmrdYuyKrCySYaKhKEsmoURFYaNQMonmvMeHsJnb+3L7CdpUYjGGA3j4EL7xc3DyFD5+xAbE/LbPjfDabVngGieLf4yi1QgO5leSdP34EvZK0aaUBTw9Fv3MvIHJQMCVTaJbbcWr5nohr1Gm540GMrlktSyGn6s1pFqzCY9UVr7n85VoVO4dsQnlVElXk2pNGvVMn1ezabsZK8CqSM69bStTVkUmrSiTJoquT6WNpK7FXG8wlefcqDVoLQu6c7K/Icp76wQGu2rrmbOYw+6uaHr2hhInkZcymt524jtzWEur7eSFgIJPP5LFf7mAiyWsgJmS2IqmSgDRinDZdTIlNp/LZyfC4a0EHgs57ssFVAt4soDnJexoONoVsLW8EjA0GSSPJLX9PCFKa/JGrZGJqQRcNEBq9a2DOD2vW8hWcm0USdhdFuDLtH/p9SJs0ra/rDU/9vaFADf9zVFUkWxnh/13vs769IT6/Aq3WKWFpP8yy7yUTv8ty4xXH9yim1/gkekYXIfZGeLaS5r5ivn5gstVyxt3J9isgAjVYgltjTE5eTPFjoYoowk+4KqWdrmiWa9o19egNYPxlLKeEcYe02tbFOKPE50YvOFlQQUgEpVCGc1wZ8rj33zEZFywd+soaT+QaSz5MGIuGL18zt43IkJUHlVkGFfIVJV3hK4RcGUMuiwYHN1GWcvq8pSuWkJwqGCSti3DlAUmKwg0jKZTlNG41gnIwBPQBN8RuhZlDIPxmK5bM7/oyHTG9cUpIXZcx0A5HFH5lmAsIXrcesksO+fwlXeo85x8NOXFr/9TsrZBG0XXaqKPKbG8QnspfuNyjB5P0cZivRRbHwJNW1O1K9bLK+rFiqvThpPzAWB54/UJxXDA1dU5q/UCk2XkJmXxKPlv8AHnHSEGLJYYtRRDZUAJMybg19M5R1tHqnXF5dkLgmsYDIbkRYkdDimKklETN63HmNifEEIymPyy2PxEbgoBKrMZvPN1OD2B80tpJYUAN2qNPD7dThUWHt4S/Uk/ru062BlCdyktofM5rFq4O5EFViH6nrYSJqWZSkvFGFm0qk4W9fVK2iFaSSuonol2pNe2KFJrKhnGkXrbkPYlgbadGfzmpzDO4dYtufZ1+gz9NFWvGflcrUH5xHYUbDL5ukbAlTECHI5uCzC7PJVcqOAh9J46WUo0L4BG0r+N3rIkeAECvk1RDl6Yn24FF518hy9O5TPGNFnkWzb5X+slZOfwyjvCsoym8Ov/VKbFtJLJpt5vqKvEGDFG8awZT7fHXER5AnjalYyWz1dwWkOqNbw+EQB8dSFtKZsLuLtRa2QSJDFCWPlsN2pNooLlGDknE1tVDefPwe/D4IYguxjIv2+0Nen8hF7g/mWt+XG3LwS4ASBC8BGVZQzu3GH//W9w9eQTzn7jN3BOxuNiulcWYCP/t3swYWg99fKYPDfYcojKoKvXEFuq5Zz5+QWjsWY8LLHGEpqGGDSZzajOzwmdR1+vJM27qenqCuclFsFkJcp7QlPTIuJU68U/pzcflEKYGIGkpdHaErR46AzHI/YOp5ydL8jLjHJntvnMQHJKTplZIW5aXMokr40Y0EWB6RyhjeJo7DzKyN2c1prB7j42K1hfvKRt17gYwLdYNwKUvJbJMJliOBjiVEPoHEFFQuyICPUZvbAU5XBE9IEyK4hEQhdwTUPd1HTOEdqWblXhlh3j1YfUu/t4Z3n9zTdpL14yyjMefPo9fuGt+0xGA2xm0o2nSkxdf5csURfRe9r1guv1nGY5x63XVNcty4XBecObdxWvvH6XtnMs6yVET5YPsVku9zS+JRqD89K8DMHLEhUEhOhk5qeU3K1Gp9BKY/NI07W09ZquHZFpg3JyR2amIyZql9r3IKlna36HO/wvty/2FlUa087gzh14/xvw5BP4jd8QsNKP4sIW2AAcTCELsHwhzr7FUDyU6zXQSuvp7ALGOk05WdHWBC2L4/m5tBiuV7I41nUKfUwj1VmaVmpq6NOsffLPydPETao12/aPkcVftQIkxkM4nErMQZnLZND2gwsAiiqtnXHb4rpRayiKFMcQ09SVl5BGhTx/d18AzMVLMb+LqYWVag2p1pApWcBVk6bCorRvSMyRT3z8cJzOR2rZd05ynpo6tZVaEfguO1h9ID48TsObb8o+5Dl88h14+4EAkry32bgB6FKtwSUB9XohU1bLhQDL61Z8e7wRWfvrd1MrSWqN5GelNp9vE1BKrI1PgvQ+8LIHkiqxZS4xMXlMIaSVtJu0SdEQEaYjUDvge5CUwNEmkOzL7cfdvjDgJoKkY1sDpmRw9x57X/sG8xdP6R49QykJGATSgHiaomoW1ItHjGYTslGOLhSKQAie5rpmdXZB6Bx3H+xQliWmzGlWNcVgQDYYEOYX+Lqmq2vapsL5Gte1xKixWYZVFrTCuzpRjzJlhRpAFG8bpYQ6FiGxJnSNIHZRDWOynIM7O3z4ncfs7FZpsrT/wtkEbsKmnhJBGStRFEptYgHIM3AdMYgGKXSdgBat0Zkl391BmQxz+ZJuvSLGFT4t5roo0XlM+qFSAIHR0Cpa18l+GE0IaiOqLYwFgvjIRJkq8DEVKa3JbUae1dgYsNfn7NpdfvXv/30Wiwv2cbyZB3Z2Z+SDAdE7gku+MEpL+z9R6pI/GqiamtXVCXSebu2pa4V3hju7ka9+/Q42M5xdnVKtVyhEv2R7HVRUuM7jffIuiUHudHXqHKj0fqhkvthRt57RToHWCmUV4FFoCAFXVahBwVBltFVia4S7QRuD3tw1f7n95G2J6Ui1hrv34GvfEP3No2dyfYcbj+3bP80CFo9gOpFQy0Kx0Vdc1wm8OLi/I62lIpO2RjmQceL5hSxsdWqx+DpFLOjEztg0JbWtNdyoNRsPG0MSEmthVvpa06dq39mB7zyG3Wr7HABsAjcJJMG2HRVDWpCT1ifVGrlDUNvQTJ00Qrs7AmAuXwo4iKttyy8vZSE3OsU4kBgcldpUNk0WJV1JSPtAmuCKBZvU8l6QbDPIatnPqzPIduG//fsyuo2DzMPuTI6z7zU2pOMCoG+AnCBsT6o1rL1ENTgDOxG+fkc+49WpuBST9Eu9DioqeZ672eKz285RX2t6vY1v5fGzIl13UmsEwEbRJQ0KIIMqMUL9ddcHYX65/djbFwbcQNxMJMUAelQyfPiQg2/8PG61YnlyDUQ0YXPTooCj/Yyd2YRyNsIOpLUUfSCsG5rFnHa+IhsW7B/s49aObDRg+eKELBefHKMUUSmCawnBEX0QvxMlE1JGSe5UcCJS9srgshxlDcqYpOuIiCtuwMcObQ3aZhLcqTU+BLz3nCwy8pM1D97xqEKej0rCVJVcdV0gZtvogIg4HCtjMcYQjSUqT1QyTUWMMkKuDERHNhqCuoXW5zTrJbFaAoqgQJkSpXOUEtGysRZQeNdhjIVAmkCTGmVSCJxzHV1by9H3Fb51dHVLVdcMyjFxsofa2ePrWjNQI/715Ut0UTDP4NNV4IGpsc4JQ6MQHZE1aaogppFMS9c1uLpFdVA3nq5T7M4Cb7y1x+Rgl6qqWK9X+ODJbEaRFwKGlRzfPhBTFi+Q8EwBdOKHJHRvDBHvIq4LmKxjMJlQDMYyVRUc2AzfrTHNiLKwsLyUEMz+fBgj7fovt5/QLW4nkgIwKuHhK/CNn5dJmlRrNginX1v2rfjT7IyEkehbOlUrupHrlWhrDvahcsKivDiBotfFJPDgWtF5+CQWVtkWhEQvI+Bd8ojJ8gTCTFowpdbInX2XxLwp9iE5cRM8LDJ4uYZ3nARGGittp97FOCKi4Cx9tt4VtxcpG719Tr/Q9i2WVGsYDUDdAn0uTEiqNYCARp2zEdlaizAnKXQypAOrELDWB066TlgNlHi+tE7Yr7qW9tJkV/Q52oAawcXx1ul3FSRuwXcpXT0xJ32tCdtaQ1fL63ZA42WKaxrgrV3xw6kraYMFn0I0y3QO0vENejvtlDR8AkZ67U1iwWKU89kG8fKZTmTKDC3nzGbikNwMBQwvL9kYMkJyff4D+Ar8Mdi+EOAm9v8bI1rpxJYG8r09jr7+DUK1Zv3L/xi76ohkKDQaxTCHt1/bYzgdko2GEmeQgES3qlhdXhBwTA/2GU9mXC3PMXlB29SMdkby5jYn+CBjw8puvK5UWoRVRJyIo4Hg8G0t+UVGo5RBlWlCIKQrMMifo05gTWuiClR1xycLix0oglIYbdFanJIloiGxtkRhcQCNFq4gpGZIlqEzaeFIC6wvmqIhiUH0f/lkhLaWeGXplld0qzk2AaiAsDw6yyBEbFaQ5S1FXlBnGt8FvI+EAM45fOjwbUd0cucYXaBbVjQ+snt4m9H+Ad87WzPavYU28PDejHB4D28szxfXvFh4Xlmu+WoeuF2YpC9yOCfeQMpobCH+EhJMKQxMDJGdseXwaMrurQOc9yzWS+pqgYqaLCvFvE9ZvI/4RoSLMfoEgRUqpkLcC/RSSymm5O6Yzm27rLDRYkc5WecwWqbfQt2QlQXh4hG8+nXQGUplZLbEWPtlF/wndotbtiMigGBvF77+DbmL/uV/BKsOWfnTnXoBvLYv+UijobAWveZitRZDOhzs74kPy+pcWklNLWPaIHf/PiRfFctn7tK03e4LRtiHtt4CDZU0Lz+i1mD6VoiWxbdysLBQkpiLxNj0Y98bbWpagCHtSGCTsp3l0oLzXsDHjVpDYnHJFExGAlauDCyvJfqhB1AklifVGrJcGKGsSKxTak0FUnumFeFtqjW4IO0oH+DgNuwfwPkadm8LSLk7gYO7AhDm17Bwol/KgwA6rUTA7JLOxmgBQtrIT0gMTIgwsnBrCrcOBVyslyIwjol9soUcRx9TkjlsxL9oAXv81lojx1Ntz+2ykrbnKBc2TKfrqG6E7etrjckE9NpSPh/V7+9X4I/B9oUANz3QFcdfCKHD+w5T5Ow+fJOwbrl49DGX3/shzktrINeKOwclt4/ErVaXpTAftSO0nma5xtVrskHGaDoT3QiiZ/Gtw2YloetwzuN9i/MNGoOxSliZmPoZWqOVJfiOGBW+rdBaQIeEMY7RZGL0F+X1Q9ugYybgJ1l0ex9pA1w3JB+ekOJshCZWqfBIe0qJ7kbr9CXcFiCVW3HoDpEYU+aWVlKAnbjoojNMUTLcP6JWlnpxQbe6JnhPFiJxINMaSgFGY4sBg7ZjVSxp60vaaolVCpUnIKkUyih868BHhrMZu7M98rKEwZjH3zlh13+fbDLk8E/8WR5khm9/+oxyZxet4GVwtFcv+UU3Z2+2I2tKRI6BDwSl0WWONRaCwrmAtYrpbMDenVvY4ZhVvWaxuMT7jqyYkmUDjNYisPZegBJS26OKqd2ebZktL6nrm4UtyiCKDgFfd6y7a0zQ2MkYrRSZMgTXYSOYy49pV59gx2+jtSIvLJn9Qnx1vtx+L5v0wNOC08lPkcPDN0Xg+/gj+O7HSROSvl/7JRzNhLEpS7mGaid3/cu1eK+UmcQBbFiOIMxDnhLAXWpR+AZpdaTW2I1ag7IyMhyViJD71O0QQI0Ry/T8xuvXENPETR8H4FOLu1VJz1Mk8iW1pDbeNlJr+G1qDbkVZiOkz/O5WkNoZREuSti/JYvx4kIEuv0kUao1pFojE1AOiiXUlwIglBJPmt4J2qgUXxFF9D3bk2M+GMN3T8B/X7xrfvHPyT5++kzYHIWwIdcvBWTNdhKrwnb8XWkBiSYTYOhS1MVsAHduialgvZYJKd+Jr042kM/tXZo2S8cokNpmUT47idnydsuE9R5CmgRikhNz0CkeI4FO52Q/Lz+G1ScwflveM88EIH65/djbF+SoJfM7ZVBJbBZixJiMbDBl/PBV9r/+s6zOzmmO10QiVitef3XGeDQAbQgu4LsW33S0a4kZiEpRjifkwwHeBfLxGN+1hNChtSEQCDFIOycrRZxqDdCLT6XHGtoGFTVdtULFSFcv0d6ho0Ibmzy1jEziKEXUovlRRqNsBjrDWkvQkdqHtBhH+bxaiptSpKRxiN6DMdJW8SE9RiVfHJXuhJy0ULT4KkSv0gCE3wxEKK0p9/bRecH68hhXLQi+Iw+7mPEMlRsiCqVysrykHE1ZL+dgwOSKYI2MhqscQo4pI9oMRJ9ic8xgSB09z84WlOMBmYbjf/aPub2/xyhA1dQopbFGc5WP+fj4U5T37O7ukuUyAaK0ktBPBHxEIp2HYWmY7c8oJ7t0vhXWpq5Q2pJnBVliTrq2ISRfGqMtKC2AzFg0auNtgwFcYm1iJLeGYZnTdR2tC1gdaesVjYXCFnJMg0x52CZy9uIfsPP6AyIKow32S3DzE7qlVohKE0exb1dkMtL84BXxvzk9h+M1mwX91ankDxkjTEDXSbTCei1sj1KyWA1K+ffJOLWfus13VPQZTpiAvt0E9No80aU0svD5VQJQy+Sl0reLSgFAPTui+1ZR0qXotBiqmHKkEhujElsRU9ukH9lOtYZUa0i1ZuOSnGqN+MGkz+FVYo28SEdy5PF7e8JWXR4LaPEdhF2Z/spNOva5PGY0Fb8ZA+QJ5Gkj/x5S7pIdJgCYC6gkwNkCxgMBC7/6j4QpCwhDpowAo2wMLx/JZ9vdFYCg2AKUXh9DkP0vjUReTHZkn9dLAavaJtYmtdTaht4klFRrILXvel+aG7VmAyBtYt26Ts6HjskkEWGESAxg9GJy/eIfiLPypq32Za35vWxfkKOWGlMqphsP8V4xWY7ODPl0yu5b77A6e8ny6puwgjJT3Lk9IxRDKIa4rsM3AVc1tKslTbUimojJC8xoSLvqyCcZ7WqNKYeYQUkxm1HszAiuEwABstgbQd0SjBmJRYHPa4w1NOsFrmvAO1y9SLoZjRkYtDVEJQVFRbC6RJkMZTRlmTHMFJ0P8h0wWtjh6GQk3PSCNKGNo9oCrBiimNFZhfIaZQSUhNRi2dDRWqGiFoaqqtA2Qw9LimyG1prq6oymWlBftgy0wdopMYmZsyJn4CeU4xmm80wGO+LWnFjjGEFHSUbXiVrWg4KLpyecXa+5XbeMygFFjLim4f70gI+qDm0C2mSoYsCnjSY/fkJZFhgzIjqPzTMZ3w8K13Z0baBpFQf7IyZ7R0RjWM4XzBdzfIQyG6KNIcRA6zsBNFGhkbvRTStf5wKUVdIhxARAVSC4ji54QvBk2uKVp3EB2zTkwxEuejSQKYVSBhMLrn7wFGZ/j2z4l2jqhqptPnMFb5j+L7cv+JbOUi8aDkm0anNxr51O4a13JOsn1RoyBXdm4rdSDBOwceJPs1qKoNZEabeMh7ByMM6E0SkS0zObyZi267Zti56l6JkZj7RN8loWxGohgmHvxEW3190Mko4k1RoioEsBaEanGAe1bYH1ArHeMO4ztaZvaaW2Vki/swq8TlNUqcXyuVojMRVRwJ3NZEIsSy2wqzPZ/8s+W2uaxMxR9s9PBPS0HgY7qfVy4xT171VkKdizgGencL0WrUw5kMc0jcRg1B3okJikAdQa1k9kNN2MhDXLe0G1knPYBmG39kaSfm6seBUtF7IP2TCBwHBjJB1ItUauI0RbhNvWGmAzDu66pNHxCRB5OWdNI6PufVpIz+DEHH7wFHb+Hgz+koC25kuH4t/L9gUBN6I1CSGJa6OXGyat0MqgMsPw8Ii9d7/K+dNPWH7nBaNxybPlgGffXXNwpyRvrjmcFQxsRhsDXb3GWEtZjrCjMc3ZCaPdAdXlJYPZWMCF1tjhEFRMxnmJSu2FzU7aHaEz6CxH5xJk2SykdeN8K34nSpNrTYyZtD6M0LYhE3SvtcFmBm08PkZ8VxPjKPnaRGGedWKMrBWhcMoxCWmCR/XBeVburCIapdLIakpRB9IXzBFCkDvHyqOznHw8xJZ3sfM59fwUt7zGZhm6LFExYq1lkJfMdm+xuj7DxcgwL4ghEqIwXBFxi9Z5TrCW1nU8+vgpulWslzVuf4diustqecVkZ5ej/RkeOJ9fcHl6zuXFmspEblU1uc3RMZKVBdpouuhYr66p6oA2loPbR2SjIXXXsWxWdF2NthnKZsmFROGjeGxoNGg5Dwo2mU8Rad9tLM437rMS4JFZC52itIrad7hOfIS8a5ITqZeb3BipnoLfrxi/ds3l/Jz1uvncFawSwPkS4vxEbBvre6k1GGRxyQwcHsG7X4Wnn8B3Xkj693II31nB3VLSvGdFEsF6aWNYK8naozGcncLuQEIgZ6MkCtXCPui0aH+u1sjkTYAuiYjzZNu/uBShbm8Y2E9FxWwLjly3BRXaiJ7FpNfvaoj9Ihq2ehMSyIFNrdlM8Hyu1sjv0jRTCGygfKo13Kg1ZLkAvPKu6GDmp6LFybLUzksi6ryE3VsSbinZL+mLm/QxPcOW53KcnYOPnwgYWdawtyMhpcsrmO3C7lQ+y+JSxvEvVmCj+MpkhexjmZyfgxPWqA4COG4fiY6q66BdJ08im44Jsi+p1pBqzWYCrdcukVqCPVvT15pe85dqjYDGLumNnERmZPl2nDxGeBphbw2vX8uE3Y+oNTfe/Mvtt9m+EOAmXRoYbXBBxL0RudNOWQuYIqe4dcjeu19jcXxBMTukfPgV8nLA6ckLHv+LjxnsjvnKu68yy2cwWWJ0IN/bQRc5bbtmokvaumF2dIDO0lheP8qNuNoGpK8qujmXWuEaVcq+KBVA76CUpq0WBO9o11egFDaOsFkuDLQC5VpMluNDRGvFqDAsVh2uTTRzjDJ6nFSFwh71y2NAhS4JkuGm70EkpFaLAd+JB4sCpeWuIQb5XD5EVOtQOhPQlBuK2S7GWOr5Od1qQaYtusjQUZHnljLmhPEOddsyaB02swSliF7hUJKGbi1RBV48ecT1+TV3bMa4a2hRFMGjYyS0La9+5XXe/YU/ycnxMf/tf/NLfPfb3+XYBcpnZ/zFe45JOaVIrFRTVSyvFzSd4uH9XWaHt/BRM19ds6prQohkuZwyo41kZymLijGdRpuypKQtJ8coGSOmO1NpBerkBC0FKJgInZyfugk064ouKyltLjdfVmOtZXf3NrN3/ioX64qzi1OqtvuR1/KXDM5Pwha3+pJeV6NMEu4qWWhvHUr+1PEFTA7h4VeELTg9hm99DDtj+MprkM9gupS79N1deW67FialauDwIIVHbnrFbIIv6TUcpHYJAlDKvu5JrUFpYUGcg1RriKMEwJUwLa7danG0EkHtqksGeol1ualgVkaeB2zaIjq1rD7jsZJYGpPJohzZMjcg76+VAJM2CWStlTbUbE+eNz+TyAZthYmJSliUmMN4R5yQW5faaUraXqR2lLXyfk8ew/m1AJ22kcclRpauha++Ab/wJ+HFMfydX4J/0whDUp7JcS6nW1aqqsURugPu7cLRkbBQq3mKi4iQazY+Qv2EFZGNmWJIwLhvb/XGiD0LthGs949Twu516fw0AVZVanvlqUWVWou7t+Hd/wDWNZyfpvyxL7cfd/tCgBvZ1GZliL2iPznaGC0eA2ZQMLp3n7333uDOvbfYuXsXd3nOgY1kD+9jM8Ozj59j7k4xehczKXF2CK2jrQUtO+fIihK54DJhiRIDsrn3Dn5rqhf7vwusUIMhKivQNodLRdesiV2LqxZoAmE42XwcbQyr1TUf/+BDpuOcaalZLCG4IDXC2ASuQFuT2lCIb4tSRGW2UQyALMiJ+ky1JSKFR+sgbbQ0WRWjRTmXbigCPnjxxSGSTyYE1+K9RxFRUUmrWGUMAlBGGhVo2gqrxxit5J5OGWLyuqhWV7x4/pw88zzci0z2xqy0oT6/oMgM66s5LK6wWvFTP/eL3Lr7kLt3X+PJB/OT9l0AAQAASURBVN/lybPHfPu64qshkhc5tiy4Pj9jOa/Y2R1x/9UHkGUsV2sWqyVt02JNjrYFxgzJszyNY2tMEjpGDFF5CBatA0oNJdYiRAF/WKATX7ToJKg0go9iLaCCwneRZt3hyoY4HKLtQFqAUTG79xZ2NGF9ds7Z2SWu20KYPudscz5+l5lT6sY1vymcUX3J/vyBbzeOu9xFsVGepigPBgXcvS95UHffgLt34fJczOwe3JfF+6PncHcMalfYnWwobZY6aSu6lKmUag19rVH97VzSy4jRE5tR6/56GAyFdUi1hmYtC3m1AALcqDWSgTSH738o7sQDDQtkP1ACEjaBnHoLZHpAp1LL60fWmp4pSGyPjmlSLD02WgFeitSCSW0fIkwmAry8k79vHJMzaZmVUcBLW4Eeb/dRma2vzuoanj8H62EvShtJG8nssgYu59JO0hp+/hfh/kO48wp88D14/gSuE2ApcmFvzs9gvpaR/tfuyzFerWScvUkiaVuCGaQYB7NtqfU0X6o16ACp1gjz1AOhBEj6kX+hkdPvlICcqpM4huEwvV/SQd17S4I0z87FOdvdrAdqS9z0rcIf95q/UWv+KN+KfWHAzQZIJNvpCKLvUCKiNTpDYSh2Ztz6yje4d/tVcC2jwlDsT5ngWD5/QdDwxsEe3k0Z3H9IMclZfPqI6d6Mrm7IByXa6m30ARroEuPq07UirIhSgegcEdGlKG0EgGcZmhGEiJ4runqFb9e0qRlibInS4JXm6aMXPHu8ZPKVHXLjCCHStB68TEbFVFxl/FyhTBo/RX7/mcUyItNUJk1WBaGZlVJJua9ROj1WJVdiIHhP6OQ9dRpPt4MRYXFF9EHYj/5uzkKMQwwa7x1NcGQYPBqvAuCJLnJy/JS2bhlNIjYL7L35gOXBO7z88AP0cErXdewd3GJ+fcGrb32VV19/k//t//7/QLW45pf/9v+D7/7zfwanc75mcszacvz0BYxv8fZf/5uMwor1yydcnF2ybh1RW3RWYmyGsUZMBbVGG7Utpih01IR0N6qVSkMofftBFjAlXvK0IVBkWiZO24DvwDslNcpJK0tnRo6x64hdRXCe+fU1l2eXm4nadKg3DvchCrl/8996alKl3/blZOMplv5nOzWaPI9+v75cX26f3XogIVBXfqdTO0YpYR8wopH56k/D7dekLVQYcSlWDp4dyyJ/sAduBvcfwKSAR4/ETK5qxPPG9q8LN2vNFsTorX9Kn3IdU/tIKWkxpVrDXIkQtV33H0IWRY28x+NjeLSAr+6CTqGe/dRRz3KYxCwoUttlW2s+s1j2i3GqNYQb+xQS8NFx+9xUa/BexqvlbkjA02AkgZt9WOeNWkMcyj64lM+1GadO58ZFOH4qo9KTKOPpb96Ho3fggw9gOBXwdHhLdD5vfQVeexP+1n8q7/m3/0tItQaTQ2Xh6QsYHcFf/99BWMPLJ9LKatwNEXFioGyeRMKfrTUizL7x+TUCXqX4puNqEssT5DwqROfTIYJjj3y+GIW1CkHYsbaWNuV8DmeXbA0luVFY+K245ObvPm/8d/N5qG275McCSD9Z2xcG3CjSQo5OrSCz+bPSCq0zUBqdZezfucd4PKK5rhnjCBFs19HFwGv3DymHJd55jG/ReYnSkd3b+5x/8pjJwS4AsXcG7ZXu/WKixb9G2Jog5nrpLiX6lr4YKAXZVO6cQgj4Zo1rO6KqyArR2fjouLpymCyjsANKMyfESNc6vHN479E6E8dbk6OKnM2VvOnpii5ne4GrTYFQif6MIelytJIIC7Md6YxaEbEyXZXqh7YBZQ2mlKIZ2hZshlKRzJg00m4IweFjIEaV3HkNBs16dc3l+TlaRUZljsotg719xm+9zdmzJxSHB7THL5mOd7h9/xUCEVuUjIgMB0P+vb/2N3j0G7/GB2uNPj1luFpRXdW89Rf+LJN/73/B1WLJOLe84RtWLx/Rnj0nLleEq2N0tUJ3LcoHYuik7aQDRmmCawVARBIQM0Sl8K7FxoFMY8k4WmKzI2Ht6NaRdQddMGJXgUNbi8nKzfF36zltXXN2fc7lfLEFKAmymFT/fAR1I1VabkTjJvqHeGPCOK17km4vx5jYT60q0XPFP8r3Vv+uNrVlayJJg9L/OYEbpWXK5s59GI/EgRgn38MuZSXdPxC7f+fT2PBAFow7+/DJY5nkga0L8Y1aA7D1nvHblkZMjMiNWoNCzN9AvtfNWloVqhKDQG0gOrjsRKOSDcDO5XWa5NbrvXyuPi38t6k1MmV14zhtwEhC7r23i04X+41aIxe71BpclAXc9tNCCaClWrMx94tRtCwh5Ult2IR0TtZzuDiTx5e5tLP2DuCtt+HpE2kfPj+W9taDV+X1ipIN8/XX/gb8xq/BWkuo6XoNFxX8hT8Df/Z/KblfuQVXwfEjOH0mLM7VsQjFXZeE2U6Oca+3cW06JiQgloCfayEO2LSmQmpdtVH8h9YRWuQzp1qDNcIQ9Tdi67mYFl6dw3zx2esWNp1FAaDqc/8ct9gq3vjRN5+Xntzj+5D29Y9YofnCgButwSe/EmkbJ2ZFhQQ8ZKpBGcM4G1BkimxcULQZXduybDuG0zGHB7OUDh3wizmuDFSnL8h2B/jOMZpO0vc0EF1MwwKy8igth0NM8qQYxd4CvD/zMYD3hBhRRUE+Hsn+XXg63xA6jaMSdiglfXfRgI4UxpMlFb1SIs6NRiallEnTUVqneAe1qS0qFZN++jN0HXFzpaqkYRPTQKXNprccjdnqS4JwYgoJl9Q2Q1uPDz45u2tMnouuKAZUVFhl6XyHC46g+++r5/rijLZzlJmlzAtCprDlkDtvv8O3/+F/x/XJMcPZDi+ff4ya5hwc3ZVR7SwnqI6jt77K7Xvv8fRXf4V/Pc24d7XmtftH6MGQdVXx//y//xLGFty+t8/R7QPuPfw6e2/sMBzljMsc062hXhK7GlYLVLPCX57TXp1BNSesl7j1Et+0BFdLC6rve5PAqHe41uFrRRcVqy4jeo1Po7umKNBFTgge7ztcfUl9dc756UtW6zodeWkjWgWFkdZeiFFa9jajKAqGo4LpZMqtW3fY3dmlczXr9ZqqrujalrZrqZuadVXTtA2uCzRtS9N2dE5JXe0vvbQo/hGrQX/4m+azfiU9s6J6ZqGPGDEy2p0pGQNvM1mcm1aygPZ3EhAJ4lBcBjh9LmLi1sFswkbD4uK2Baa1MASwHbE2VhZPPldr+niCohCQFSNcePHK6TRQCTvUO+T2jIL2iWlJRUOpreuwubkf21ojb623rSFI7aVtrZEFMbJJGe91LD1QuWkESEguzJm0lIIX1qIHjlpLmy8qYTh8l+6+0ttFLy2kXo+Tpymwcghvvwv/w38Hx8/Fz+b5xzDN4ehuuvPMQXXw9vtw/z34lV+BWQaXK7h3KJNKVQX/t1+Sx94/gFsH8Mo34J0dGObiW9RKraGrRRhdrwV0XJ1J0Gm1ktHxppU4De/ZcLf9Z3BOPkOlUksqk0m0XudUlHJ+YwLJ7YW8x9mx6HLkIt2cAkzPFKVrymQCVoeFtAGPbov+yzUC5uoqmSO2EvtRNaJb6kISUXcCRMP20vujwOZ8YcBNj0BjSqtVSqf8ntQqihKUmduc3eEYtV4yLkrKO3cIITI8OkCtrxmVFt+1FGWBtrA+eQyuIvqCPLfJrt+g8lLYDNi2DFI/WPX0NFrGu1GE2GyiTiT6IxLXDSrT5OMx0XWEqxO8b1N+mpj4lSW0nadzHueFSShH48QQCQDSSqFC/75s75ZiRMWQPHx8cg6WaYIQRRirjEGllGpl4lYArTVGKbQxoCBok4Y0/KYwRWT8OuLJNp4WAvasFZrU3RjPN0rTNjXXV5eoCMNBTlEM8EaR5Rn7d+4wPTxC7eywd/9NAgsuXj5J8RBKpp3SPr315/99/vX/8A+x2ZonwzEPhgPmL58zadeEWHBy3PDk8acE/zHFYERWZugsMh6V7O8N+IU//T4ms7R1TtModmZ3OHhrl93JgEFhMKHDuBouz+DkMfH4h8SrE0CAbehT1z3UnWbVWSwaFx3aRGxmUVYRncIBbn5O+P6vsTp9IcGlPbMPFEZzuL/LvTt3efPNd3jr7Td55ZVXufvgAXtHh0xne+zu7VMMSkLwuLahrSvapqFeLVmuV6yWK9brJdWy4unzJ/yL3/gNvvnr3+TZ8UvquhbLEq829Uw6Kz/5Bejfydbf7faTOb3PTD85FdMqYjPRtayXsvjcvi3/fnQAqysYZMLKFIWYGZ8+AbeGUEjYZao1pFoDpAVqW2uSSRagk++NgtjIXX2UXZK7+UZaG+OxLICXJ2mCCmRyyoiLcheS22963dFoSxH2o+BBbQHdjVojICw93yfQFoPsW7jB0sQo4tjIZwFSqjUykcVnag2oJIxNv8tS3IJSKY4hsB3PT+xQ00gqdwQGuYzVGyXA6PZtmWrbmcH9t0At4fgxm+gCm9g3Y+Av/BX47/8hZGsBNaMhvHwuDFjM4UUDjz4B/5EAp0EOWZRYjr0B/On3ZYquLqExsHsX3t6F6VC0V6EV8HN1Jv46L38ouVSRrTapZ0k6DV3yzemBXGblDsml625+Bt//Jpwcy7nYaLQQgLq3A7fvwptvw9tvwquvwYMHcHQIO/uwuyeMYvACYupKjuVqKdfyciV/Xlbw4okExn7zm3B8ImPnARF13ywvP4G15gsCblRS3KeJFpI5ntbEoJOSJWC0oQ0dNgUXxtWSNjOMbh0wHBryRsaalVWoGPHtNc35GePdGaFzlOMxQttF8bJJTsByA+eJyktLQfcQuXcMTpBWSX5UH60SfEt0AZOV2OGIrCqJTYX3DTKtYxiVmuAj3nt80OQWykEB9CxN/wVXbCa3ksuoD1FATRJy+KSdieRExoSgccEQQkDh0brDqA5tPco6HGCMxei4YRkk3gHQOl2vUkGD9ymNXCUAYlHGg9NoJaJjF1qW19fUVUtZZAwGA7IiQyFMRVaW3HnnXb79q7/M5YtjhvdmfPXunyJ4J60zY5MhIbz1J36R2e19Sk7IypwPLpbo5RNG5+eUZUGILU3XEKNCxygsy9qxuKr4xT/zNUazGccvrhgOB/yT//Ffcn6yQOlIWWiGo4LhsODgaIc7D/Z5/fV3+fo3/hxX//X/laKr8D6Il5aH2hmqzlC5jIERl+MsLzBpwiXGgHMtrlkyuXzMK25JoRXZeMSrDx/yja//FH/mz/5Zvv4zP839V19lOBoK8DFW9FNJJE5/qMkoipLheIxvazjYR9vsxs26sH3/m6ri7OyU73/vu/zKP/tlvvnNX+PDDz/h7HKO8/8/9v47yNLzvPIEf+/72WvTVmb5KlTBg4SlAQmQhEBSbBlSXhRlt6Vxu6NWa6ZjRuo/JiY2Yqe7oyN2p2Ond2PUZtVSi2oatURSooNIggREECAIwhZQAMrbzKy0137mNfvH897MIkRKajUhQlB/EUBmZd685jPPe77znOcc/y3+Q3/7ys73ctupNdsLexTGqN2Eyw/6Emd2vGWGA1ngFuehGUMZXIrj8DzVloyAT0/LXfpVtYZQa2ShIyzAQUh8Va3hFbVGNC8I0LFVyILKA+vQEBbBluH9ahERWy+gwmqp7s08fOagkbmq1my3xCZ+OLXZEY1NtDOkiOYnkv3jXHi9CpQRRiYOwC2KQydN7bRIJgDoqlojwrYgdJ747oRaI2OqCnwFG1viaZMlMqmWhdHsOPz7hhvhz74Ml5dh3xTc9TZhwpzdOaY+grfcDbvngJUgKB5A/4KwQnkmr1WXO6C3MjAysDkWYDMzDRc3RPj7ha/CSl/2ZaYFADUzca8+MAdHb4K7vg8+8r+HcFQX9icy5l9rMEkQIhPYqDBN552wLdUQNs6CGcjPW20BL7feBu96F9x5Bxw5LOeBDvs91BpeUWvIcjkXQ63ZGW9nhxUsxnLuvvA8/NmD8OjX4MRp2OjL+eSvfs6/PdtrBNz4nc5PqDcqMDXO2eBgq8Qgz3mqYkzH1tjaMLiySrmxxq6FKXxZyILhLMoZaGq01sRJRDUckSYRSsXo4CvgY1BGFl6vtIx+Ky2Fb7LQy7uT75WXKSpCDTAGV1fgFFGrSdqewVmPNwUeg7c1jWZMoqEsa5TydBoxaaq37+SkPaRDO0nuIq312Mpg61qch6MIM8oZjbv0R102xzlbhaY3NgxNLS0ja2gmitlWTDsumZ0ytBqrJGmfJJOB8yiKUMoTwrtI2i2iLMeWhezn2qDzNIxXCzOklcZrhzdQjMdsrq/j8ORpgzhOiKOMJIJUJygdcf3b70FFMb3BOoduv5NGM8cacVNWUQjSA+b2HmDfjTdz4Zsr6KTi3gN7OLVV8Scf/TDnLlf0+y2UbuLQGBtagTiUt0RZwksvXmLP3jnOnrzMTbcf5cuffwpTOKoKtjaHwIDTJzfgq6eYnW3x67/xYywvX+GaXIcbKoUpNEUVMa5jSp+QU6Njj44SdCR5OKayjMdjxmVB1znuOnItu9/6A7zpvT/ALXfeydTcfLASEOA48eiYmEK+AtnITbKTybYoa7CtqwjXgDyHp5mkHOx0OHDoGu5/7/vob/V44YXn+PKDX+QLX3qQZ59/gcFwvK3R/C8C5L/q9opive19pKTY20lLwe0UflvLwr+6KhNTC1Nyh1sXARjU0AoMRhqJ0VwSxKQTD5OYIJq1ApbsxPRtp9bIFt7LZJGfvE9jZQF2CBvTmg4sS9ACWSNMkkbiG5SHPBb3XxdENHESJqV2ag3Wy2Je13K3HmkBTqMOjKaErSi0LPamDoyMCa26GKISpgw0VyHph6R0AijcqTW0W7LQlkVoTxnR0Fw9Mq20LPoGaRmtr8vP04YwPVEWpDihpfX2e6S9N1yD2+6UIM86tLYmtUYhuqmbboFvrEBSwcE9sFXBR34Plg30WqDDtRhqDRNH6TyF5y9I2+rly3DHUfjcU+KRUwGbA6APJ9fhq6dgpgn/+MdhaRXyyXmlZB9WkbA2PpGWWeTDGHjIl6rsTmp8x8E1R+HN74Pv/wG48y6Y38VOwvtOreEvqDUCqJ0YG3L13xI+IwKwOh04dA28932wtQXPPwcPfhG+9CA8f1zS7Sdtq78lLM5rBNyAw8lkS9jURGznTEh6dmLW5uT8j5RkKyU47KBP6fv4JEaF4LUoT3Bjh/YGHSdYa0gaaTB1sxBrtNOoOMYZIz+PgFqiEwi6GxcSeJ014lbsZLpoIv5SeJypBaVHMXGWY12FcR5vLUma0mhGjAYFkdZ0GxFxmmyfJCqMYXonJ2ZdF9TFGJzGVg7jugzKo5y9HHFmy7HuI/ouhUZOe7bLysoARQyqwpUlelRDMWYujdibzXDd3CLz86u0WhvEcdD6RBpXW3SaEKUR3mpcYSTzyiXbE1yiQYuoncO4mvGoz3g0QkcRsVZEcUoSpUSRJtURURTTnprj5nfdR2/9CvuuvZnN1cvSwrO1TDqEyQLlPDe9852c+fqDDIuSKNLcMD/DdXe/i/j5Szzw6YcpzZD9B64DGlgLKvYSeDwYc/jaPezZs4u6KtjY6uPwGOdFH2QMSawxlSXLmgzHlsuX1ynqGhNFGGuoCk85SCisYmhjTACtWmmSvAlRLHpMaykaszSvu4H02tuYvfZmDu/eC3HEseeeRSlFmmakWUqj2STLGnQ6U7Q6HeIs3V6ygCBodgKZo+SqSSq1DephwvSEtqP2xFHEzPw8b7vnXbz5zXfz93/5v+Wxx7/GH/7H/8iDX36ItY1N6m0a+b+AnL94U4guZKfWbAt7J06yTFox4Vvld9o2gz74vrQSJiGPWQJjJ3TuxHAuT3cEuHFgheIwMn1VrdkGVMGlW3QqV084TWpNWFmMEYAQxQIWXCXPZ6y0x5qRmNxpLU7GaTpBv2yPfIdaI8nYUmvEVK4D1VG4FMOWBR+DC+Z7s11YGSJLRhXaHFJryCLIZmB+EeauQHtTtDQTnU9tpZWURsIoFQGMuWTn/AcggC4XIhBGozCGrQQERGkwRAwapak5uO8+WFuB626B1cuBHLqq1kwusne9Ex77okxdRRrmZ+Dud8Hzl+HTD0k7cf9RoCEsSxSo0f4YrtsNexaE/dgayPM5LyDKGDm+lZW22djBpXXRt9SRfM7SwyAR8GjjHTCttYCOidDcWshnRCx93e1w7c2wZ5+0K58/Jp8lzeTcagSw2JmSqI80fcVprnbAT5Rsk4PfWmtCG5EALrWX/T2/C+69T3yDfuW/g68/Av/xD+ArDwubdlWteS1vrxlwsz0t5T1aR4G5+da7F+cdXnnSZhM1cmg1Joo0Gk2MnI8qiVGZ2JBb00dHskjYysii4izOaAHAIbNDJ0HL4CM53mFSCuvxdRVE/Brv6gAAfPi7GOsqnC3xhSVuNokbbUw1xtkCh4NIMz0Vs7XZZ6YR04pzQOMJuVPOoxDhr6kkgdsZjSk14/IwZ1Z2cWIUsWRblM2MXfumuemWPTRaDRb2z/DZjz9PFBfc+74bWTrfZ9fuNo8+8AIbq32eXl/mpQvr3NjbzRt272Gqe4asOUbVhlhr0tjL1FTWFMbJ+dBiFxpZxynejmUi01QUwx7We1IdE8WZHDENUZyIB5AW4JRnTZiZQytF1miBlwRwsbqXKQilNAduuxPdaVGWFTrO8HWNLkccuf5Gph+7gtKen/+vfoQ4bbJ2ZZP2VIapFPOLU3S7bbRWOByzc1Okecx4XOFxkjVlFbFOidIGZdlnZWWLqUYLa8eUlWE8jKiNpnSKwiVYr/DKYzQsFWPOXVnisu6wlExhZg9g0wx35Qpm+Us4BAwbVwvoRclEXJKS5zntZpdWs8XC/B52797H3n0HmNu1SKvTJs0k5FBNCvr2Dbv6ln9ugxwvHj7KO1CWOM/YvXcv7//hH+W+d72bZ555io9+9D/w2c8/wKWlVazzf1turL5H26Syq6taJpO2EDtffdCANJswcqDGsihO7n49AnCy4ItjBmEcDmFCJkyQ0fInk3ygJLxuqDUyEh5YoqoMWtQgNrVmh9VJYgEytoTCyvtqtMUfxhaTOz6YimGzL62zKGN7TGbCDkyiA6qJkFRDqaC6BlYWYKjBtsXnZ9803LJbNCoHZuDjL4AewQ/cBOd6sKcDn39B8p42luD8OmztET1I9zQ0C2FotBa34DgSAGAn4ICdfRanEGoNppKJIe9AZzv5S5oQ0+CDGFnL883Oy/XTaAGT/TmpNUr25613CQgoK3m+upa23g03wWNXZGH/r39EWKLlTZjJoAD2zEC3HZyNnYC8PBZR7kS0ZxXoVP62HMDKlrwXM5ZzYRDJfnYqALoAYhUCVK8sge5IRMXsAQEwq1dg5Uvy/C4A54mXUBwiKfIcWlPSnprfA4v7xJJgflE+a5bu6KHgz9WanS20s7wP54fUGvJM/J3e/2Nw33vgmafgo78Pn/tTWF7d0RK9RrfXBLgJN6woybgGVMg8ssFwLehBQiaLN6F4ICPi3tU4a7GmJs5S8JooT/CbEkPgjcdVNRhLcWVF9HDNFkm7jUriIHQFiCVTzUWYshRGRmnJddLgY49KYqgn49keZR3O9HFFBUDS6hCnLaxxGFtBXTHVbXL5Yp+ZhmG6JSBCBd8ErSM8QVtjPKY01GWbK6vX8NxKyhmbMUy7HLx5kf6g4s3vvYHFA9NcPNen1y+Ic0Wj3WJ9fczMribtmQbv/pk76K2NGW0NOfb4OZ49dYmlM+u8ZfENzE+dptNZJos9UeKJlPT5lRbBoXdW9EJKE0UJsa6plcGEBHXvIYo0UeQkEwphn7QWzwwVilWr1UUpRZKklOMhabPFdo89aKjmDh0l27Wb6PIFAReuxvc3mbv2RpIkobaeU6dX+HsfuIe73nozxhryPOPZZ15gfW2LKytr7Nm7hyTTfOgX38f5c8sU45JHv/oc7XaD6647ynPPvchga8TS8gaLiwcw51+gKmuwwhZWTqbGkrxkS5f82djRW1rFjh3Z3CxJkuC21rDOYmxNZQp8CBZUgFeWJMlJ4pQ6a2EsjEYVWq1xeWWJE2dfpDs1TavRotueZn5uFwsLe1lY3MPU3CxJkkoY6mRhndxhwfadp5SiSIJYEfYwimK6U4q3v+0e3vjG2/jxH/9Jfvf3fpfPfO4BtnqDnSDn/7L9+W1ytzoBOuHcl4XK7rRsUDveMxP/GxvGqk0ti4fXAnCKLfm72gXQYOHKirxEsyW6hyQOQleY1BpcJCxIbaSNpSaLuJfH12EKatLeMX3RoYAYvWUtaU+FWsNUEy72oWmgRWCJAtAKDujUVqa3SgNlC9augeUMbAZJF25egH4F338jHJyBc30YlNBU0GzDxhgWWzDbhA/dAWtj2BzC4+fg9EU4swGLb4Sp09BZDp/Fy2fzbmd/T4Cd1sIu6Fp0PMaEcftwbLTbee8KOQ6TaS+8hHBOJqTGI3mP27UGwMGhIzJFdOmCPK+rJbrhupul5WU9nFqGH7kX3nqLAMs8g2dfEGfklVXYt0d0Nr/4/XB2WVigP3tO2mHXH4VjL8HWEJY3YOEAnHtBputceA8uTI3lJehSWluXV4XtmZuV999bC6DYSMvRc9VntzuOxllLgOCoAnVFBNKnj0uGWbMto/FzCzI9tntPCDVNdpib71BrZIsCkA/nXBTDlIK33QNvvA1+/Kfgd/+diLT7wx05yWtse02AG1Di8+FMmADxKO+DYFLvjPI7h3cWrSGJZQpBOYtyKehKQhgjTZTEkGmi0RaRVigni7cpSlw5xlYFpr+JGU6RdDtEjSZRmgfhH5iypNzc3GZy8UHoHCaOJMNIyVBA6vC2gbEDbDlERzFRlsG4FyarHHlT6NThuKLRCM7HxqDQOO8xRYEphQ0oqynOL13Hc70WS9kM6XSbt731CL2tMbe/cxcXzvT48udPsHZlA2uhDIXuuafP0u7k5HnC/GKHW990iKO37KM13eLcCwsce+IED29s8ebyBuYLxcz8JdzI0WikxGGKzDiPc55oMi5aGyYi6roq5XgoLdNdPgkXnSSHE0WE2MoAdiKcqdFxRFUMBSQ6u61PAUWat5i77kaG6+co6zHUFdXyBWbeMk2eJ5SDkse++gx7DyzwprtvJtIxvV6fLMtY3lhjdn6W2lnOvXyBa687zFvffhsbG5v84AfuI00TqmrMyv9xmdXlLS6c3+TNb9vH6MSTVFWJVQ6bKnSzAFNwCc9q7tlKNK7WzNCiLmqqwUWqqmA8GlGWBcbXJEkDtKfZyOl2d5FGMXOdBQ4fupYDBw4yP7/I1PQsrU6LvJETJZL2bmxNVRY8/8IzfO6Ln6Sdt7j2yE3cePOt7NqzmyT91jbWzgnIzh0ACqXFxViTorWl253inrffy4033sh73/Me/s/f+lc89cxzFKV5Ldac7/GmZHHzJqC/q1CgV9ukjrRHbAAaWhaVhg13w5V4o0SBEck1jLdC/QiLdVFKq7osxExuOCVeNY2mTE+FWiMTQZvhtQNT7X1ovbADsiKk1WIaYAdQDmXRSbPAcoT33Aitm1EFwe5lxxzQi56jDOxz1YWl66HXhGxWcrDuPgqbI3jnghgCPnASVtZlIZ2AqqfPQieX9sjuNtx1CN64D2Za8MICPHFC2hflDVAo2HVJ2K9G8KmJwwi5CwDuqloDbicocmICxU6tQcdh7Nxd9ZhIwGYcyWi20jvapgmAzVsCZFbPQag1LF+At07JyPeghEeehYML8LZbBGj2+tLqW1uDhVnZvy9fgOsOw9tvl+P2gfsENNQF/L+XYHkLzm3APfvhxJNyfHGifWoWwrJ5L87MiRZGh5bopAYXhb0bjaQF5iuIpdbQyKG7Sz7r9C44dBT2HxLzwulZYZfyTPan9wLCyxKOPwtf+gRkbTh6I9x8q4Cd9CphMXzHWiP73wOpTGB0p+Dt98KNN8L3fz/81m/BM8fknHqNba8RcEOoMWGqhzi0DB3eWrz1AfiExyQpeadL3p6i3FylHA3xxKQ33UjUauJOv4TdWBHBZhSD8uSdFvl0F+86+KKiHgwpexv4siSZnsU3HVEjB8AMR5hxIdNMwdDPWqEgvUYEp1p8ahQK1WiJzm40oOr3SKemyfIWtr+JswalY/I84eIVx9QMuNKgdIRXGhMmoJyDcpxzfukIT29lLDV2cf1b9nDjHYfESuKy4vOfeoHLF6/gaqEnVaRxTtp4vrJsbAwAWL68wblTqxy5YYHFPTP4TJG2WxRJwqO9dd7CDVg/Zm52BaUVDaWJ4wRrHMp5cDVKpXJuh5PcWoO1dbACqfHK46xDJQCRuAirOGgIRfexeekcncW9jPs9bF2LSDeE9SkdEcUZNx05zHPfVJR1JVRxb5VUQ6ud0R9WDIc1n/r4Q6wsrfGG229gfr5Nkmi63SZrV66Q5Q2mpqfw3tMfDFCRptURerrZnkbFOVmjw9rGGN/ex6A29MdDytzRrxUrI1jKPJcjR1GCtjGtrM3yygaD4WUGgzHVuALrxGxUKRIFjVbKNYeP8IH3fJC3vO1eDh49RN5qygi9Ujttp1ee5Ch6gx5/+qXPMOxv8c1nv07z8y1uOHozd955N9ff9Aa6MzPCik20Eldv2+0rFaYkIrSqSMiYn9vFB97/o9x5x138+9/7XT78+x/l0srafxkZf+XmYdsOmngHzNgwAu0M28LJJIFOVxKsN1fF2I0YbrxBRLJnXob15R3thPLQacF0F1xHAMFgCL0NWWymZ6HpZLECGI4k6+hq3U+oNeLwG4fJJnVV6wXRpPS3JDQynzgAG1n88wSuWJhRwXU3THxNJqAcMM5g+ShsptBYgDfvhjsPC7jKNfzxC3DhijBQ+NCWCaCrshBqDZfX4eQq3LgIu6flb9tN2W+9NeAG8GOYXWE7WytOhG0KtYZQa7aBp7XB8wbwQRxtnYzbTwCOineOEcClc9KWGfSkjkTxdq3Zzoc6chieQICNMfL+NBKdMazkv48/LMzL7dfDXFuA7XQTVq6IxmV6St73YCjHrN0GLLRnAgDuCLPVPiCArRhCw0ng5wgZ148tlIj+JmvDlQ04swT9EYRaQwzb00+tRJinH/0peNu9cO1hOfdCrfnzbabJSa4kUuLBT0uI6bNfh8814egtcNfdcNMbZLrvL6k1XFVrUJV8iLld8P4fhTvuhH//u/AfPgYra68puvg1Am686DIA5w2eCchRQWQsdzSTFG2Upx700LZCuRrvPcPhmMbGKtm6xW9dwbsalYpPjdaepN1E5wl2aLBViW5m5NEcZX+LqrdOGsyodJajI/HY8cagkmi7beucx1tDVVbbrZskzUgbLXTWxFuHKwaY8Yik2SIpS+qqJkoj2t0Gx84qrnVgjYXIY5E+rvcea2M2ejdybNDkUrbInfcfJW/mbKwP+MbXznD+1DJFWUoURaTxRHJtK/Dao1SCc3UA3Jqirpiba5PlEYeuX+Ct77mWolfxwuNnOf/cWdrVW1m+8gC7F0uU9zTaDTHxqyYjkX7bVNC6IPZ2XqZlA5tDCJ/0CvENCoGekZPFfbBymTiK8doGUbgwchO5g4o0MweOoBLNqByROI3trYEt6E7lLC33UQo213t8+pOP8MTjJ/mB97+JA4d30e/3ieMIrRWbmz3a7YylSwWzu+YZDgZUVcXJU5dYutzDAZubA1Z7lv7WmAsXtljdUqzjuRBblgtH4RTDGpLYsL6+xLgw0hFAdunk5tJ5h4s1rVbC299yPz/xwQ/SmZ0JeWCTR3+nLfzOe1aWLwGSxj4cDbiyvszjzzzCvoX9vOXOd/Lmu+9h1969OyBn+1J5ZfEIYaZaLAq01hw+dIh/+A9+nTvvuJN//v/6Fzz1zDHxR/ovG5NaI99OzGTCXerEodeF7ye6iEFP2j6ulv0/HAcjtyuwuSI/z7QwB5EPqdgJDI1cT80cojkBI711to3vslxAg9Ky2CYTnxjkMbYO12Nok6VZEJI2ZQEsBqEN0xLgVNUhsLIBZ5WAg1BrCLVG7upj6N8E/QZku+H+o/IeN4bwtdNwMvidKC1j40ymcQjj5EkAJchjqlKmhDIN1+6B7zsC/RoePwvPnYH6rXDlAVgs5fXbDRHAXlVrpM008dEJzFIgrbiq1qAQ5msy/u7C4r5yOQBBy3YIaag1gOzng9fIPi5HIqLurUnrZyqH5b48z3oPPvFV+PoJ+MCb4NAuYXDiSIDOZk/A0KVLEoo6HMh+P30ZLvfktbaGIsjeGsP5HmyF9xAbCcy0SswMYyPAuKivcoUOmwmfO1bQSuHN98GHPgSzM+GcmRyQ77RNag3SsvJewNCoL6/5zFdh8QDc+U64+x7Ys2cH5GxfKn++1kgchQtTaxoOHYZf+x9kmuv/+b/DM8/vXF/f4+01Am4CkAn5JwovbQzsts+M3xalepQ1+PGIpBGTdlrErZxNV1GsrpA0RDCnQpo4UYRXBuscKsuJ4xQzLrCDPtmuBVCKsrdK5RSJUiRRRJTmROmYejiWOAOdSOslNF50ZMXl1pThLs8Spw2iZlva9MWQ2DVJmy1qu471Ne12zKoaY6MG3tZU1uJ9jPIaay3D0SFeWM05bbqM/JjmdAZe88XPH2NrsInPHK2W5/0/8SaaTc/6+oiXnr9Eq9Vha7Pm8qUxedZifrHLkesW2H14luvffBDlI4598yJnXlxippVy+I17GO2f5vwXj7F/83bWNh4i3RURVZYsT4hJsFaKunIqZPpNAiiVXIROoYhQRGgVyah+KqfSBHxqFOVgk8Eli16Yoxz2SRut7VFnwqO7uw+gk5TS1igfY8p1zGCLfQcXOPbCBbxXGOtwzrG8sspH/8OX+cCPvY1dC03KwjK3q01dGqqywHrFxsmLfO2R45x++QK9rQLvIhQOVW7y7Ef+Db2Tp9kqoe8d55TjQs8xNJ5hCNJsaEemZMDBek8aNC9KSe0uvSLNM37g+3+En/v7/zWNRuOqG6e/qNjsbHVt2NxcJ01T8ryBDU7WRVXQH/Y4ff4UX3joT3jHW9/LO+9/L3OLi0HfxLcpOOHfOpgkAt4bpqamePe738v+/Qf5f/zTf8IXH3xINFN/vQv0dbQFIDPJWgq1ZkeIOplQCsyCNQIgGjF0muJU7GrR07SCOHeS16Qj0EEEnAVtxLiQCatQa+ithgksJXfCWQ7pWACT9WxHJEyO1ERQWu/UGtKG6CoUwgy4pgAcuy5MRysBtQk639EI+WAcZyyMDsKVHOyUsCrTOXgNn3seBhuQOWh6+PE75OvGGJ6/KIaGWzVcKkTzsdCB6xbg8Cy85RAQw5MXBRw1U7h1jwiRv/gcbN4B61+BhcD85AkQGBwF2+nmVxspWgSEhDw4VJg+SifLVgCJqBCuaWFhTlitZvAZuqrWsHgwjObXsj/KdWG8Di3ACxfldW04B1ZW4fe/DD/2dlhoioh7oSOTXmUh7+/0JXjkOLx0XuI5XIy01TbhI/8WTp6WQuK9gK6eE63TJEhz4nUzYaCubgvpsA+yDN79fvjl/xYajatKzF+t1mBq2FgXMJk32I54qApJQT93Er7yx3D3e+H+98LC4o7I+y+oNSLsRoDo1BS8+70iZv6n/wQefDgwft/b7TUCbrzcETsT7jA9OrQ2POLK65wssDEKNR7jbYGtNEnawBUFftDHo/A6QWU5bjTEUQnI0Qn1cBPTGBN3Gug8o9rcwFtD0ungqpq6HmFGW+g0RjebRM0cZwymGAPBJltHaOWJ0ibO1UQ6whlLPRrga0fSDAyOkSmaOG+RFEOsMTQSTaEqamcZ1kN8FIshX1VRmzZn1+Z4sUjoeY/1ni998XEWb4jZ9caCfRkkSYazhtvecYDYaZI85YY37qIz1WFzo8/SxYru7j0kMzkqjai2Sh76/Ani3LN3poFZ2uTkVsHq8oiqsJT9klztY7p3mGZ+VlyOq5jWVAeUkck0QoHxLvxbAI5TDmssNjFYawBHlDWvoolFP1WPBiwfe4JD7/8ZTF3IGLSfpJbL41qzu0haHarBkMh7NJ6NMyc4cOgIzUbE1HSXza0hReHJ8oxiVPLJjz3EtTft4Y233cC8lVbh2bPLvPzyMs8/f5m6cPQ2N0mynFarwVw2ZnHtKS68fJq+d/Qjx8uVY6X0ov8MF3EqpyLD0A5vR4o0VnjnxQ7EgUfxpjtu58c/9At0Z6apa4Mqa9AyMTVJef/2xUcYyK31dc6cPE1nqsvs7DxJGuOQoqO1pohGDMdDPvqp3+Grj32Rd9/3g7z9HfczPT/PJE9s5xn9ziLtHSgXpv8seRpzyy0388/+yf/GP/3n/5xPfuozlGX1dxzgeETcOZl6vGoBnNiPb/9Oi9+KLaDSYRqmFCanpYLtfS6tKlUGc7wkuBePodOQiZbNDVmUOx25y69HshinsUw9NXNhbl5Ra1Ae0qaAKR0FYDIQ0XIzMDimlsW60RagY4zoO1RgfOqgzaltEDo3YW0expOpIw9f+DrcEMMbC9HpxJm83/sOCcvQyODWXTDdkXbUhVLu9GcawdenhAdOiI5kpiGj0FslLI9ENNsvQe2F3jXQOCP7uIpgqgvKsD2yHGoNboetl0BRC0kYH1dOPvdVtQZnhEF57hvw/g+J/sW7neM6edzsLhFhD4Zs663OnIBD14onzcyUsC5jL/qVYQkf+wrctAduu0Heh1ZwbgVeXoJjl4WJ2diU86CpoDmGtafg5dPyHiInhaP0bLtuXn0qhtOMSMn5c7WbMQpuvw1+7heFsamNaHMmDs/fmrz7589zr2B9Q0DWVFemyrJ4B+BoDdFIdEqf/B149Itw3w/BO++HuTl4Ra3h29QaEi2AOo3hllvgn/wT+Of/HD71GZlM+x5urxFwA9ZJmCROQh1RCm8mjI0cDO8dmapJNWAqae+UNSqJaO9ZIDcD6sEGOs1QeRNbVrKIegUqwo1GuCxGJ+J+bKuSuNkl7U7jt2psXWPGFWmWoeOYuJFj6xJb1+As3tfSFkpEiaKjBIWS7KFqiFKOuNFGZS0xrYsTkryFK0tS5UlihUVhiUjTnDiPsVVOsXkdJzY8W3EXIpg/akl2rXL+Yk252aQaWmlDeUv/3Od4z9+7kf6oh6kMBw8fwtmK7lTN6MoS574+YnH/HIsHOrjBGNvzpN0G11+/n+Go4JnRBV46exlrKp5NNO9o3MLa2mnaTYiVRkUhXbu2sts0YfLL4JyIoV1tMGmJcgna1mA8Pk23fYp8MF20xYjNY09x6J0/iFrcj60rlE5Qk1649+SdGfLOLIONNVKdUpU19uzL7Puhu5nqNHnDG49yeWmVNG2w9+AivY0ex4+f4eSLF1m+uMbCvgXOnl6lrMYSl1Ib8DFlNWJmeoYbrsnhxUdYPXuajcKyphwvGcfQQaYVdUigj8NdU+E9iVLkmsBaKdJGxGBsqbznuiPX8APv/3GyZpPxuCRJUoqyxjlDs9kgzVMs0O/32NhYZzDoMRwMGI2GErcwHvPInz3ExkqPqnAMeyPiNKHZbpE3UpSWdmASj4l0xonyRS589Dx/9sgXue+dP8C9972HZqfNdgjopJ0SqGDnHd7u0MJxFHP40BH+7//L/8r83By//TsfZjwu/m4DHGt2DPVCrcGESZ5J4fcOVFhITCULW1lLW2PPgox+DzaC70hTpmK8FwZERSIKzWJ5vA6tm2ZXcpA2gz/OuJQ78zgWDU5dBhM6Swh8C6ngBGdZFVpVQ1lYGm1hUJyR3+ehPaW8jJzLH0obJ4+FMdm6FjacjB1HwBELi2twuYLNBgwcTJLJz31Wxr5HvbBQHZZ9MVVLG+jREeyfg4NTwjz1HHQbcP0BGBYwOg9nl+RvEg2NW2D1lExxqaCD8VqA14StMC6MwIfedW0gLWXSKNQa8e4JzIALU1XlCI49Ce/8AVjYJ7oaHe848noPnWnozIoRo07lM519GW59u+ik3ngUltbEMfjgbmlBHT8DL16EC2twYAFOrYpQvArvzceSPzU9DUea8NJjEuVQ2ADMPNtZXNtBpTvt6Ynv1zZIaUQwDufgNYfhAz8ZHKlLYZ2qYBHQbIigWynJNdvYENA9HEjwZ1WK8d4jD8NKT0BmbyRC4nZ7x/BRAXEhHkLnXoSPnodHvgDv+kF417tlpHwb5HxrrdkBopNTLRZt0P/yvwo4+ne/J8L679H2mgA3HrBWXGzRXoS6SihHFVT+3ksYZstb6QCHO6x6PMKnKfnCPElhqHoiQrajAaYcUI9GxFmCziOIQ9Bhp0PS7Qi4aTl0MyE2XfxwCHWJr5uoLEKnKXGjJZMu1VBa8hqUikMcTSRhm2mOrYbU4x5KaeK8gbcyQp40OjiVokdD2rFCpRlJnKONxitNVUScXW6x3t5LbR2z14+hu8XGqVlyZjl0YIrd+7vsOTzP8qUhF86cYWn5MpcuneP2O+4iThI6s3NURcHigT28I805d/wyLx5b5fSLK7ztnmtwHjpzOaOq4ta7DwKaY8+cY904LlQZc+Ui43KDJEkwtSOONcrrcPE6jNtJJp/4mTkEkBpTY61D5w2UCm2q8KC6HGOrEt/bRMb8ZdrNB9rTe0fabhN3phhUJXEKyjvawzW67QZzs22a7QZ79i7QaDZodXMazYTK1pw9tcKRaxd54onTdNo5N9x0GFM7RqOSc+fW6U51ufmmNlx4kksvHmersqxrx7HSUTpPK9GMrd+elNUKKifAphnY+4GDPHYkzjM2njxLeeMdt2OVZmnpEsbU9IddFHDh4nlWli9x+vTLnDt/hs3eFsPRgKouMaYO0501g/6A3uYmOkkxtaFvagA21zZJGxntboOsGQf355KoTiiqMU+/2OfE+Zd47OsP8aM/+rPcdOttxIlkdXkdy1XkLcpqGXO3QStlS9JYs3v3bv7Rr/8jsizlt/71bzMaF99yU6aQu8C/E+Jja2VRnMQRhFqDv0pYaQPQmYzDOiO+KEkq2VKFkcXcWllQ6mA6l6VBfxMWsE4Hul1ZEFttaCZQd2UBqitZ2LNgttdoSTGshsJiaEDFwaomCGnTXH4/7kkxyhtijKeciFlJpI0WKVmk41wyi5QWl9ylNrT3yvNfP4LuJpycBT8Le6fgQBcOz8OlEZw5I8GUF8/CnW+ShXFuVhas/Xvg72XwwhI8vwovrMC918j7n8tlEb77EBDBM2el5VanUOyGYl3aGrULoZ87tWZ7sfSv+M+ZnYTuvCHgSEU7DyjHsqBvbYY2Y2gv6clCbGVR70zL41Lk9YZrogGabcnXvbsEaE7l0t5zBk4sw3WL8M3TwrLdfFgYm3Ehk1HdDtzchYtPwYvPQ2nldcvQ2kz0ToxB6IqK7ioAmyDvIg6PN17OozvvEGC8fEkAzbAjn+3S+TD6/TKcOwO9TRj2BRyboN8xtSSeb27KOVuH/QewtilsXLchfkhxAlEhX6sxvNiH8y/BYw/Bj/0svPFWYYqUknOQcCNgdYgGCXouW8rx3L0bfv0fyTn9r39bJvS+pawExulVrjWvCXCjAGtryUhSMagI7w0Q7YjovUV5S2YqdJZCz28zi3Y4gHEDlabiIGwNupPh1nuST1UZ4iQhynNUItb6utHCjIbY8Yi40yVq5nhncabCFiPitCOPTVJ0YkTn42ucMWDH6DiG2KJVjFYKnbapRlsUw02yKCLOmqATooZCe0W1sc5UHNNtNoQZcRZrS8rqWpaqHD87y9HDloXb2sw07qT7jn3MHZ5GRxEnvnGJl05vMDfb5I63HWZhEWZmp6iqkl6/z/MvPsf87CKHbzzC9Pw0U7u67L1uN9fePM/W2oiqtPT6FXEc0Z1pce2Ni/S2Si5fXOWSS5hLruPK+hdptVoU44JGK8N7j9YxjhrnatHcKMSx2YknTawaaKUx3hNlzcB0ynSZczW2qKjrCru5Dji0ioMmh21aOIpSGjN7GPQtSW7p5lCuXubUE4/yIz/2FuJ8CmM1xipGo4IrKxu0Gy1mum2mpjvs3t2ltzXCGIOKYNdil7KsSZIBF154HF78JoO6Ztl7XgrAJlKKwjhqHyZ9A7BpJBGzeYQzhn7licK1O64EXJfjkkcff4Lu1Awbm+sUxZilpUucP3+KpeULWO+IYwlolXNYNGPGGJzx1HXFeDTe1jTVxoYQT9kfo1FNf3NA2ojpTnXI2zlp4sX6IK0xVc1jzzzCibMvct897+MHf/gnWNy3L0xmiQmmjhv4VOFHBSDCc+ssKoqYnZ3hH/z3v4bz8K/+zb9jNBpvX4NRHKNRVOZ7SyX/jWy2kmKsYsS0TGoNEM7NcHdal7LI9K5qFYRaQ5aGgm5kLPpSXxae2gR9Qx7GxVMZ/x4F8W+nKwuks8JoFCNIO7J4JOlO+8XXwi7ZsTA7sWM7ZDNtSyL1cDPodpoi8m2ElXNrQxipZlOAg3Ngh1BdC2UGs3NwyMDtDWjcDvfuh2tm5G8evwxn12Wxf/s1sOBhdkoYoX4fXnoeZhbghiOwaxp2TcH1u+GmOfG7qax45CSReO7cuCgtqourYBNIroP1L0iExLiAVhZaJDFgpAU3Eb+HWiMTUw22YxombSkdpsuckam0upKgTSbH1n/rIqoTmN0DfQu5lRbc2hI88Sj8xN2QTUkbziDvbXlTgFS3KS25xY6MyddGTpfFKZlGS4dw/HF48QkBdd7vABul2M7umpxfzsv+yaOQGB4KEcj3eGFqHn9CpuG21mX/L12Cc6dg+Zw8R5wKO6gmQmwnAMZ42RfjkG2lkLs1H96H8zCqJTqiEUt6fTsXLyINpEY+xzNfhbPH4d73wQ//pBj6KRWuFS1j6qmCUGvEYdrKOTk7A7/6a3Kc/u1vh8eELY5lR7zKteY1AW4EmDusc0SxKKy8U9vtKCH0PNRjomJE1O5gVy7hrEU5j8Jhexu4qRlQMXV/iEpq7KCPjjxuXJN0Gug0QUURaC9TUDrCjMdErSY6jcSfxoM3FluURHmOjsXbRkUxWGnVGF+i6xptUnzkw2M0SdaiGvYYbyyRdmag2cHomHE5YtDbYjbO6GQKFUWY0QB8g/XNjOjwbt79o7dAK2PoLN35JlWv4uE/fIbKFizsnsFsFRw7uUYx2uL9P32EA4ePoFBcWVvlYx/+9/zUh36FOE2w1qJjzcL+WXbtmWbYH3PmuTN85QsvUZdNrr3BsrCvxR1vPsDWRsX6sE8Zz3FlLWJx9xhTGfAtGs0G1jsxUPQa5dxOKnqYZtMuAmuJvCfOUrQSx2DvLHiFM2LA6NavgLXiHGwcWsvF4b20YDoLezGlZugq5lo5LVew/Jnf5vgYisYc2a5ddHYtsLBnL9ccOMQt1x0gue9GkkaLt77pBtZW+4zLkpXVTTY3+hw63OQLn3uYfeMVGmpMT8Op0jG5lGq/E1HgkJZ4GinaCYwrw8h4jBfwvD14Ef535tw5HvjSn2Jqw6C/gdaGJJG09yRJUGosrVR8ALHgXY1xHmvErDFNc0xtKKtqu/5tO/wD46Ji0Fuj1U7pTLfJ8pgoiUkSTWoy6rrkUw98lOeef4qf+alf5o63vJUkFRYHHRHlTVIU4+EI56G2igRhLWemp/m1/9uv4rzlX/+b32U8lqJjJnd1fxe2iWg0DjveTuj2yVkhtYZyDO0OrFwKotyAcHrrMDUrC2h/CEktC7/2wui0c2E5olh+FmoN47G4/aaRtKM8suiMCxGLxhHbQYg2tGp8aFWZVH4ehzZX1hbdzsYSdGak5WUjAUtbPYhy0ZFEkQArn8NWBod3w4/dEoTRFnY1JWfpD58RbdGeGQEjJ9fk+X/6CBw+AihYX4N//zvwM38/xEsE5mX/LOyZlqiC587AF16Csgk3zsC+Frz5AGxUwi4ks7AWwe7g3utb0mLxgQXzOrAX7Fx0KBEW27BAT9oxkxgNTwCCFkKtwVtpcYVas90CWtgLpQZXCbByBXzmt2EMNOZE+L2wS2IPDhyCGw/D990srNqbb5AWT1XClU0BB9e04HMPw+gK+LEcv8rtMBWTi3qyOUK7EQGC5qoL/5VWMefOwZe+EMbW10WsngSAmySgRsIeToQ7lqAXC+2w2grTV5vQNuUqAXN4jaKSqbF2CtOhXVVGwYMnE4D/+Y/Csafgp38F3vKWq1icSFqyKLE08AgYnTAz09Pwq/9AjsW/+V1hcGCHQXqVt9cEuMF7mbjxTjRSYcerEN7ovQLvSGxJ5C1RluJCYrNzlUywVRV2NCDudtEpOF9hRiOyToa1jjjLUToSIKKCk67SgakpiRtNdCqMhbMOFYqLTlOYuJmqCB3JNFFlayJfk6gGzoh7rE4ykmYHM9hksLbKaDQgShpUVUVRlLSTlEin2KoiUglON9gqW6wMO5z+7FeYOejQGwdQccbCvjb7DsyzfHaZrDDEzrF8boOiLvj6Vy9TVymbvRHLq8vsPnA/D31+i5eO/QH7DnR4w+2H2Hd4F412k850k9ZcRqM1pJnP8/lPHeMDP3Erh26YpfP4Msv9HkPVIC7n2RwsM7OrxagoyBs5NiRiOyvKlMlkpSL4DymPD9MOUd4I14tiEiBp61pkDINNGa13LrBw4Tm8FIH2wj4smtHQYOdS8jRmlx9SjTcwFy8wfF6xXCpejBRRHoFKSBstmjPTZFNTdHYtMLt/L/v2HQYX8+CffRM3XGUuHXLGOV6qHCNk+unbEaEeqKznyshyVWf8227GOk6fOksSKeJYEceaqhKxexRV4bwFrZSkuQOxVhjrMdZhLBTlGOd9GMyR/eoDQ42SwYq6hrosGQ5qmq2U9nSDLE+oqpo6FyH3S2ee5//4rX/G+178EX74x36C6dlZqSteEecNGlox2OxhawBDmqZEyjEzM8Ov/nf/gMHWgA9/5OOU1d8hYOO9LBb+qkkV2GEFQq3BhoDHLGM7sdlWYfGqBTB0u0GFXououJPJwprnUvjj4C8Tao0wNWUw8st22l+Tu+tX1BqiJPy+3mEvTCSjwEkm4tj+pqRbjwaQNGQRK0oBVzqVf6sEdBOKljgQf/YrcNDBxn5pW+1tw8Fd4rUyMgK4zm7IwvZnl+GtGfSGsLoCh74P/rQPL3wcDnbgtkNwzYK0dKaaMJ9DawiNefjEMfjJW+HGOfjGsmhDaEA5D4Nl2NWSBa+Rs52IbWvgKnCA2wF6JizkWWNy0OTf3gWtEtDfIPh2XHV8J3oqRI+DljH9uWAq6Icw2oAL5+GYkjiKSAmzohIBNrPT0J2GhQXYvxf2HQZi+LMnYbAK6UBeYwJs/qKWi/Mw+itME1kHp87siI0nGVbOQ6g126OcE98mjbTAJmnk5XhHRzABURM5lkIeUxOE8rWMnU83BORUNeSBSTzzPPyf/xSOfwB+7KeEmVHI9ZI35BrZ7MlzRbWc38oJwPm//gO5CfgPH5Pn/BvaXhPgxntPbUq2QwWDn4HH4ZQVca7TNMohmaspLxxH1T1ZYF0tWi0UvhLxkooUvrLYuiKOmzgNWssJ6714sHjncVYYBm9C/ECm0GSBWhSeUClQscaVFpTHKyXJ4srjXEVtSpRK0bWVOIM4IWu2Mb0N6lGfKjJYpXDe08wg1Z4oEj+LYhTRL3O2YotVWzzz4hm6vQ6DzQH33HctvdOrZNUK13QtN73lFk6dTOgv93j666sce2oDax2NWU86UzHuK158boNTL2xSFynLJ3ocf+kKVlfsWoyY7c6gXUxVWHSkeenZZbY2+6Bj1q3hYLbAuH+eqWYT5x0mmGhpLQGS1jqsU6gotAN1hKtLrJEeeJQ3CVdQsKbwWGOIdIQuxviqkEk4b4gSA0oFhgeaUzMoHVFWhlFR4HxNM0uZmYrwGKqxZ6qUY6cji61qTG9EsbbKwMOWV5yKc16e3sNGkuGrTd44W7O+XvBS4ek7v20s+B3PwVd8/U7bJAxB1hxPWdvtCaZIW7mhDKGjNhS4SCucV9ig8ZnoWq6uNZP6Azu1x2mox45xWTAclrS7Ga1OjjXhuZxGqQ3+5It/wKWlC/z0B3+BQ9ceZeIRFacNOtMw3OpTFiUKR95sAIr5uTl+/dd+nfOXLvHFLz6Ee414U7zqm/eyiE4mdCbeKThQVlpUTosDsK/hwnGoe0GnE7xdUHL3PllMaittgLgZ9DFhcZwo8uUCkn/XThLEMwVkAj7QOydCrEWzoSaUXjAGdJW8b53K6yVeNBLNthgEjvoQyXWFdwK6JkGIChhF0pKKLagtePE09DuweRHedS2cXYNiGboW7r4FTiWw3IPHV+HpDTnhZz3M1NBX8NwGvLAJ4xRO9ODlK6AqWIxE10IiLZtIw7NLsCG1RmINFqF/PrTN3I5hn44JvW9hAKJwgWgdjPesTCU1WkxqzfYxrU0wGAyu0BO/nFBrtkf8p2bC44yAQF8LgJ2KACOTUmU4dlGYMOuNBEB65OdxDtN7ZAEvt2C2ho1iZ+z7u6YlCZXAAXVgYibiXm13gM2k1UU497za0fhsT4xdfQ18m5fSSAxEWciUWDeTdqsJz+U0qA34wn+EpYvwwV+Aa4+yLSJKGzANbPWDiLgQRg4l4uJf+3W4dBG+8BB/Uz44rxlwY42RwEzFtrhRT/J7vMdjaJZbJGYTlkY4J86+6BxFA60aOGtEHNrKoH+F1swUURIT5ynWhB62ilG5lnFtUwebBAdKoTzoXOzLvXFgDF5F4fyI0bEkfTuliLzHeIf1Cu0qmZiqK5JmhzjLyVtTVOWY0tY4xGul1dZoRGEvn7lJFeUY78maEI2bDPsVpoZdTcsefyYAsBTSBqXxRGhMXeBI0FFEXTjauWKsPd54auNZWR5w2xsP0uxO84XPHcMMNUfftZsXjm1QGYe1jlMntxj2JeCz36pRdYvxqMBbR+0ddVETRwleKayzWBMWcKdCLp3FqgpnDWkyTdRsbdOdWoVYieGYdrOFryvccBCYNou1NVrFWCvAIOtOEWnN2CjGI4OpDVmakUSKZgPaDQUWqkpAiqvF5tF6L4MvLmJl8VpOvHSJVlyQlCUnlgsueseWFT3Nd6vceCYARe3o4vBoJTf6k7BLeaxsZVhIfVjB1PZzyf/8xKvjFX/nnNped0fWU1UF5djQmXXUtsJb0UVFcc6xk8/yb/7tv+QnfvRnufWuO4niCIUiSnNaXY/2ciPgnCUJHhX79x/kN/+n3+DKlVWeeeYY7u+CmHjC3OhoB6godrw9XOgPlD0wG7A0kgNbO9AZ0BAGxRr5u04unigzXbG+z9Oge5BaQ67Dv+sAYBzb+T6h1mxPCKlIFiZiyWOyVy1mkt4r7I+tZbFvdmSxb03JHbqtCcm/0NbyOfzEjr8hrSrvZWR53IReJU65DQv+lDjpukQYIBNaHXUBBO+dsYM9CGgy4b+lAbzxIHRn4HPPwUDBfXvg+c0dT5cTW9KysgW0aqhbMk1lHODExC4KrQ5noQ6f2QVGwjhQpeyj9pRMD13NuDlkMqjZFjAy7LMtTra1HAcbQE53So61UcJS1UZASqSggeiWDAImvJevk2vTAC6CxaMyCh6NhfFYDqPnFgEC372TdQdQqat+NmFcrqo1O3/iJr/gqj/a/lNeUWu2t0lSvEM+Q1XA2MBsYCytF/AZ53DiWfi3/1LExnfeKQwlSlpgXS9tKBem/iZ+OPsOwP/0m3KtPHPsuwgAv/P2mgA3E1QdRYm0ohBhsfYe5TXeO+KypFkNiXHoaiT8QFVSl5tUxpO1pmlMz6MbbVSicbUjbjRxtkKhcJUIXF1tUNE0trLUdU2aZRKGqXwQqBlUHKaglMYaaa8IU5zhfYnWiTCDIG2bME7sjSziNFrESYx1Oa4sqKoCpTztdobWseRmOYvXGSZu4NFkSU6exoydI84ylnqedM+t6LJgulGjshb7ds/SSDS9wYCqsjitZSprcj5ZRxwlrFzsMRjWTE81ue/7biLPExrNhPFonapyXFkaMh5XWCwq9dhmjeslFM6hAhCrjSGKY0xdybRP7dGRRzkl5n7e4H2KNY68OU2UZMKGORtYZY8rC6baLXxdijeRV3jrQr6URymNs5as2SWKYoyF4chR1DVZmpHFTeqoJosSUBqTGam51sjPdERtDEvJIsf7moUMXH/MUlFyTnnSdoPR1minDvKXMzN/lU0wnN+uMwA2BKDJuuWZOK/ulJjJ98F/e8Ko40Vv823emfLyWJTHOoWrwfQMZdVneqaJchFKDUjjBnVuWN5Y5iMf/x3W165w7/d9H1kjFwYna9CajShHA9GyoUiTHK0st77hTv7Hf/jr/M+/+Zssr6x+10Dga3ab3MFHcn1vi08nY9zeyYhwNZDfVSNASYum2JAFuzUN0/Myip1oWQAbLVkEULLAFlUQnk5Lq6IODEH6rbVGNDThvVgnoMUjid6+FBHs5KCYim1+z1Qibm60QmJ4LgtSWQAeOmlgQrwsMjoTAShafGyyWPZFnkHfw57b5O/zSkbKd89KK2Qw3En2tmF22CLvNUrgYk/EqVMt+L6bxJyvmcBoXT730kDAC4FtalbQTwJwi+TzGCMi07oKY/deWBunhDHwRm7wjIPmtAivJ2yYQz5vWYieaSKk9Sq0+8KFNomfaE7Ja1kk76oOLZS4Ke2UKJFpN2tkv9taROE6iH+TBUn5ThHAVoTR+3YDtkav0knrX8G8hKqjJr97ZWXzV31VVxU+v/P1z73EVY91SHupZ6Dqi/u0i0AN5BzKjbgcf+x3JL38/vvlPEJJy3A26Lwm+pskF1b0ljvg1/8H+I3fEJDzKm+vDXDjPbGOiOMYhYQ3AnikEHlnSIsNonos/g06xlsjgwNpAjkoN8YVa7i0xg8iBleWaHZbaO9wXqErixuX2LKCSBM3M5K8idaaOMuJshxvDG6iBNcE/Y3BWotD4W0tkQRE6DjFo4jROCtJ0bWpMcUQZ0qSvI2KE9IswxhHEmviKEEpCZRUJDgfUxmHwVEONPMLHZYuRowHNQ89eIY4U0SxZmqmwf15wb5rZvjlX72Ns59+gPP6Bh76+nnG5hy2LlDaS9sMz0ZvyGf/5Cne8vZrmW63QDuubIy5fHmN2fmc6dkm49LgHSRNj7U1VV0RIQJgpT3WG7z11HVNMS7lmFiFswodi6DYO0MUQd6dwuNlzNsLXeytpe5toJ3sUVWO8WF0fJLwLkyOI200iFLxDBoWnnFZ0G21yZIc1RDjP+8dWZRivKSRx2Ek8dKg4kW/gB5uQH+D1q4u7dEAvzVivV9Qh3MpjWOiSDP+LhtL+Vd8t3ND8srf7HyvAvvz7X7/5597pyApL6xZMfasmSFVZXDekyYZSRITRxGDaMDnH/w0q2tX+IH3/widqa40qaKEJMuxlRx3pwxxEpGTcP/9f48PfehJ/uX/97fEJ+j1vE3My7YdVif6jgB6nIFyQwTFodZsq8pDrcGNYbwKaQ3DCFYvi0/KhG2orUy7hFpDM5Oir4OQOAumfVfVGryXVokNt+S2ZnsyJU4J9JKwH14JE1QMpVWVt+XzpNnOeHWUCHgwNZCAi3eYkoGGXV24EInO4sEz0iaLtZjw5QUcnoFfvQ0+/aegb4CvX4D6rLR9Qq0BL1qKP34K3n6dODhHDjYLuLwmI+FzLfEHckATdiIlrHzWyAt4sT5kMZVBM6Lkvzgsui5MKHWn5FhMpoMIx2xrY+fiK0dsj45Poi4m7tONXASxqNCCCiP6SR6YKy/7KErlb1QzZFQ5GFTgF2VKrb8O812JwNgcQb/YaQ3FsRz3V83Ezn/Ll7/4ls3/xb/+To/1So7Z2IMZBvG3F61XEoTt8UByq9auSM7UVAdQO+aWlZHnUEEITQL3vw8+9E34//xWuAZeve01AW68s8Qo8UhxHmcsOlYo5M7eG0fcXxWBapSiVYS3lVy8MehIEWcZkY7w1RjnE2F/0hg3LtBJhHJIS6Ss8SuQzkwzdfQIvq7QiTAJPszjKR1JaCdQlxXe2u32gTMu6Co0HoVxDqciiCJU5sGNMcZih310mqGTBlFm0WWJ8g7Q6CiT69U6YaaMY7iacMPNu1g/WzIeObQegm5ibExRVJSVY1xWTEUF/hufo333z3HfexZIWjll6fni6ireRihlActoOOSJR57m4OFFtrbGrF6pGQ0K3v39b+DlF9dYXtpCeYVOayg1WvsdYaMHWxlsZBiXQ+qqwFsl+zDUWE2E8opG1qE5MwNKySh/SFA3VUnV66HaCWmzEVJu1Y5gWyP72Dk5jlGOB8pSMx7X1Kai2WiSBeGlc7VcJySgPFU8zYVNzdNrFxi2xvSuXGb/jUdoLXbZ+PozNJSmsjuivSzLGI3HvBa2vy474gLLo1DUNWxtlNh6a+cOSQQfOO/52hOP0Nva4id++oPMzO8CIEoyAa/KS91WmiyLmVIJv/QLf5+H/+xhnvjms69vrxsXDGQm47PGBk+awJwYLxEJdbhjV5EwMqHWEKkgMg76Dp+Eoh+LODaNwrhtYIBWgJlp0SdUFeJA6tme/Z3kKaHk8aHWoPxONIGYawWRbBTGv6XWCN3ZF2CTNCCz0ioJtYZQa6SXGlpgqwm8YRecLYW90ENZxG0soKzy8hxxCd/4DLzt5+Hdu8T3pVJwZVUms0KtYTCErz4FhxckhmC1kpTt994CL67D5S1ZLJNanIk1OyJhhyyCkYFyIHXCqh0BmgYZ11cyMh9qDWEiU0BhJcGQ7QRajZ3MqolgO2IHDKkoMFib4jo9NsIWXS3ydhPRayItvngatiJYuwDtQqbnbjgsk2Vff2aHFZpsWSbs0d/qbQJ0lLA4GyW8stb4cC4/8Yj4C/30h2B+Xv48CeJ6Ga+VfZTHoBL4hV+Ghx+GJ599VdtTrwlwY6sKPxpDIhM6AjM03lkxiasL0qKPrWp0Kw8p90pAh1J4rzFlhVNapk4iRTka0NGzOOuJmw28c0RpjqtqTFngNzZQ0RxxuynrubV4W0x6DqLpMRZTFthQfLwVxgEv486lKSntGJz4oCgidJLhTYUd1rhxjU5L4iymMzVH3GgKE6V0uIGsaWUxiUspNmt6ywWHbo54duUS77jvMDOz8zz71AWGA0+aOg4dmaUeDHA6IW7A3oM5R266hbzRph5/ic3VhMXdbWbnm+w/vJfxYJ3Z3TP01/pEjRaf/tjnePjRj7C1cgjlp3GqJpuqSc9GWDukkYSgzLqCJMN6x7AYUlYmTMEKbRnhiaOYRtqk1ezSnl6Q42Um3kOKejzEjmuy+RmiJMENB+Ik4kXIrZUkmjvvZH/EuUToeBgWlmExpNloEic5kYa6TqitIYoTemqeL5xvU156geXNTUbpiOvffhet2Q5PfvXr2I0xZaq5OklpMBq9Lhbtq9ll62AwqLB2Xcb1ibHWY52l0ah56oVvUn245mc+9HPM7hKAk6QN6nIsbUPriJKIJPEcueYI/9Uv/wovvviPGQxGf20A9prfqkr0GUm+c+ePlsXS1KIxKfrSWmrlYTRb7zApPtyRKy01PlIi5l2YEcahmQuQSINYuCzEPTaak0BNkKJvwlisR1iM2go4mgCdq2rNtidOqDVycHRgaioY1jCuxck3i2FqTkZ0fWjHeEBXwjz5VBySL4/h5lgW6ncdEmv+py7AwEPq4MictL1UIknWhxtww80yoTX+EqzEsKcDcw24Zi8M1mHPLKz1pVX28c/D1z8GywfBTwM1TFdwNgI3DFEVQSgcZ6EdOBQR8lW1BryAubQFjS5ML8hnN2E/eCXxAeMa5meElRkOwr4NrauJqDswxsTZjh65sCG5uynnhAbqRNi6OAE9B+e7cPEFMcRLh3D3ncJ8ffVxWB9dBVjDNhq9qov23+g2+RgO8S+y6wHUxEFo7KBRw/NPwocNfOjnJVAUQlzJWJ7EOgHyiYdrroFf+RX4jX8Mg1erlfefAG6UUhHwDeCi9/6HlVKzwEeBw8AZ4Ke99xvhsf8Y+BWks/lr3vvP/0XPbYoRg8sX6aY5Kk1DGnUkWVNGEL0brOOrEu+aMlUVRThbQUigRiucs6g4hdqJAalKMN6jYoUyiriR42ojF5R12LKGqBBn3UhBkkhrxdbSgiklI0raZBbl5T1prahtjXU1piypa3kcADoiTTNUnlCPSmxvQNpo0Jltkjc6WDy2HqN0SqSHTEeeVHvecNdR5q+JWC5PcOT2g5w/22TXrjY/80vvwivNs998mgvnt5hrHiX6gQ8yvbCITh2j/pgszrnnnbcys2ueJE3IWjmNdoNiuI/eeo/OVAeVwK59mg9//BPs2fU+FmfuIe9IRlTXp4zGV5jtptt3jUprhsWA0aiPqzzKgbUKnTniJCFLc1rtKdpZk6wzjcNj6jFaRSjvqUYjfG1odNuydlQFHrWdHeacCTdWAkHSVivoJhVF4aiqkvGoT9xJSXRGTYVHMXQt/vRyhzMnHmOPGVAqzQ333EV7/x6+8fCjrJ6/gvOefmW/pb68HoDNZPPCS24Pk4zHhuXLq5i6pizncNbR6RpazQZPH/8m/vcdP/tzv8jM7Kw4aCeZgHLAWycmgXHE+3/oh/mTz/wJn/70F/jr80v/edurWWcA8YG5fFHEj2nwS5noX0wt7MFgTe7+XZjmiQKrM0mgnqjHo6ADMV5AgPfS2jGh/XFVrSHUmu3YgTTZEbwaJb+3YcwXCz68J61kobWVsCl1vdMm01GIf0hgVEJvIH45s00RG+OlvaZTUENp8XgPdx6BIzGUJ+H2g3C2JaGQ/5f7ZPF/4ilY60HrKPzgz4j3S+JFY5I04R23ygKWJeIV02nCoJBE7W5bWlz7Ivj4H8Hce2H2HdB2gZVKxRNmcafWEGlp7wz7cnfjEPYmcwJW0hzaXYma6EzvfC4VyecZBWO9TjuM6hcINX5V28rDtvtxs70DoAoXogr6QaeUIdkKClwLLk3By4+CHQAa3n4XHNwLDz8mGVPey3j21ZfL66jWTBrp22Tj2MDlwGxWc3JudzsyGXX8m/D7LmRhzcq5lGQCyiEAHOQa+aH3w2c+LW3PV6nW/KcwN/8QeAHohn//JvBF7/0/U0r9Zvj3byilbgZ+BrgF2At8QSl1vZ8ED32bzYzGrJ88TtrpkM8vQprircO6mrIco4ZDqt4mubfbbK60NJSwKHiUj9E6QscJ3hga7SZKe3QINPTa4l1C2m3iTIKTKwgzKkGBjjQqjtGxRiU5Shu00xKGWI5DW8qhlEJHEREe42oxBazG2NpgnMUaQ51kpEkCicfUjqLXJ4oiVNJERRGZjkE54mhEWw/oJHM0OzmUKUvHY2YPlWxQ8sBnz/HS8VXe+e7DvOt97wQ8jz/8KONqxPvuuBdnLJ2ZLo12k5nd86SNjPGwoK4M1caA4VafhQMLPP/sM3zhc5/li5/9AvOzdzPTvY2k26e9Z4v151u0sRT1Klmeyj6xFlNX9McDimGFtwpv1HbtbuYp7e4M7UZXtCyttmSDWSNBpc5T9jfRWNI0Eoa4HOLCY6xxqFhhrcWGxO8kSUN2lWI01ozGNc24oJWXpM0OpU2pqxHPDRd55sSz3Kh7XLCa6++9i9nrDvLEQ49y4fhpEi9rzSR49fW6eS9hnihFpBVFYVhd2Qz71IoztJ0ib6R889gTRB+J+eAHP8j07BwKTRwnOGvEGsGLHmlubp6//4u/xFcfeYyNjd736qO9anUGkIXw5HGJRQi1RoCLket8NBQ7excoddgZTZ4wPT4Od6GJMC6tluhQtgMNrUwddZtgkvB3VgCIQhbzOJaLKcnFnM1paW2VQQM0maqaJIQ7Ld/XY1nInQ3sQhbcjb0Ag15fHpc05WuoNURj0ANI5sR2v0jgRQ2HHFDCZ8/Bi6tw/2H4e++SBfrhr4mg+o57BLDNdAXI7J4T+/5RKaBsfSAjwAcW4Nhz8PnPyqI1/VaYugM6A9i7Cc+HEe56NQhQg+6mroR9GVYC9MxVi2mWBJPCKdlnrbYcK2sEJDoPgy15rixMwJWDnccYJyyRtTueQmkSjqeCkRbWJy4gLwUU2lQ+92gRXn4OdE+M/+65E64/JMDmhVPbLP/36kbgb2zb9qwIwH5sYGUzMJDh+NkpaKRw7An4SAwf/KA4YRP0bdaEVmHQI83NwS/+Enz1UfHHeRW2vxK4UUrtB34I+N+A/zH8+EeA+8L3vwN8GfiN8POPeO9L4LRS6gTwFuBr3+n5nam59NRjxN0uC1lGOj2HihJsbanrAlUOseUIlTfQKrzlCQpXGh2CyJR36EhRFRVJkobHTASDGhVFqCxD6RhlZeTYm1IAURwTxzET9OSBuJnTzmLSZkpdVJSjoKcJbSgdLL6V0kSxRlmHdxHeOMY2BIZ5j7GWK6ub9Ixiz/59REmGNTU6KmjFq8zUu9lYHbKwt8vR/dfz6GNPsXjTJte+ZZoLxwecObXC1GyTo2+4nvf95Pu5fPYSs4u7KIZjrHOMBiN661ukWYbzFmscPvasrq/w5S8/wJ/84Z+wfFkxM/VOFq6ZozNX4tJ1eud30TE5TX+Zgg2ytIFzBlOVmDhha2udqrDbIb1RDHke0craNPMmeRYU8mkqo+HWoJVGWc9ofZNWo0GSZNL2KwtC8DUuCAid9SGbyhBHUagViqpWVIXHdxTNvEWWNxhXY9ZNk6+eusieaIUrY8/+O9/A4q03cPr4C5x7/iSx9+JJ5aXGBUP31+3mARtGT7WGqrJsrvfBK5zz1LZkZmYG14BHn/wqxlT83M/+AtPTM0Q6wto63Dy7YMOgedc73sX9972TP/yjP/kbL9mvdp0BRMT41GNiwJdlMD0nAkhjZCKqHIogNW/IpBJ8S63ZCT0MWo6yuirIcafWiC4m2xEk10HbEcc7/2177iPtrCyGZiqTVqNxCPcMbItK2F7x4wmTFIUx8p1ag7WwuikAYf8+uXM2gTWKV6HeDVeGsHcP7L8BHnsKbtqEt8zACwM4uSLMzy3Xw099AM5chN0LEoyJlzbCxlbQp1h5/QTYvAIPfwH+4FNwyUP3XrhmHuZKyNfh/DyYBvhl8OvSsnBGWJM4CREDVjg4j1y8eQR5R6a3skw+Y5rKgmpN0Lp4WN8U48QkPKYod57H10Gg7EPukgkCYYAApAoPbSWxDnlDtFSmAacuQbQsotrbb4HbboQXj8OxEzvszDbA+TuwTcbcNcJWhVoj510l2rIG8ORX5Vz/uV+UoFgdBZsC5LrRwdzyHe+E+98Jf/gnr8rb/asyN/8C+J+BzlU/W/TeXwbw3l9WSi2En+8DHr3qcRfCz77z5mD9+Esk01O0pudJG60QKjnCupo0lkVUhWwV78KIrLego9Ba9uhUvF90FJG2mqAUOk52lP1KaGVpcyuUj4iyCJ0kO6xNqDcqZCSBJmk2SfKMrJFSFyVlUVIVNjgdR+goxptJmrPFWyUMBQa8pgJGA089HjK325BQop1Ha00UXWJ3dZRTG0KdLiy0abKb048uke5aYm6/o7N7ntk98+SNHFOLUdzKxSXR+jhPsyvmYcvry5w58RLPPPU0Tz/1FCSOztRu9h25k+tvb5PlEUW1yaUzG4zOL0A/4WjmGK2fopUXNJszKKWoXc2w7DEcDMXN2yhUDGnD02l3aE/N0my2iKKYui5xcSxTabbGIgMQW8vLzM10JEFdxyIMDwGc1lYon2Ft0FRZS6wdkQpTs0ZhrRbGOkpRWuOU5vy4Szk4wZSz+P0HOfSmW1lbusSJx5+lKsTjaBRu1BpeUSrova4o4m+/ueBOKi0qi3N92a+uFo3XNLhGg8eeeow0yfjZD/08jWZOHCXUdYmKxZlb6Yhud4pf+Pmf44sPfoXNzf7f9Ef5F7yadQak5XH8JZieCuPcLWlvFGNwVZiSUWznOE2cX0OtEXzhd+IVokhErErJIv2KWgNIi8VHIVAzDZMmegfbTDKS0GJsl2dyF1yUosMpJu2wSF7ThOePbZgqMhBqDSC6mdEQdhvEHya0fqKLUB2FzTDFstACdsOjl2HXZdjvYc+8/NfMhZXSCkKtwXlhfbSCjRU4+TI8/TQ8+aQY3k0twuE74NaOpFtXm5JTdWIR+qm0mTZOyjRWcya092rxFBoMRLhqVAA2TjxtujPCjEWxgM84TC5tL5YKlpZgtitj+dt5UwHd2GDIat0OuNFuR8xslOxDEBZs4iY9noX+SXmefQfgLbdKEvrjz0rExuTvVXgPitdZO+o7bJPrASS93PXDfq0FuEwjrdGnHhNW8md/Xli+KAnHL4i2dSSTbz//8/Clr8CrUGv+UnCjlPphYMV7/4RS6r6/wnOqb/OzP3fUlVL/DfDfAExpTTVyrDz9PN3F/eTdKbLZBUw1Jo4ysuY0sc6I45hIEy6KIKd3MiYscQoqAEkxi/MuoESnxLSvqrenncTcT05KlSh0nKJUhMdha4O3RkTGXpLJvVegY5I8JoozkngcQE6CUTJx5WuInKOyBudqIi0CZ6UcTml645gST6JKMi2Bm418lfl6kzNXphgNFhmNHN3pJv3hNPWVJhev9PjqlRexo5Kbbnkj3dlpdh/cy2g4ZDQcURUVjzzyIJ/93KdYWdqk6Ock+hDN1l3EDYeJNJt1zXhUM+j1mG9P8f1vfRffeOgCK1tLzJkx61vHuPZARBornLUMez0MBWVhMEb2UZZ4ms2MztQMndYUcZohoZAOH6c4Y7DGkGi5oxtevszhuWmZKvMeV5TYqhCG3zqcM9JSdAQnY0ui5eZN4jYUSZri0XjnqVzC6Z5mli3W4jZ33Xsnw3LAy48/xeqV/p9zF3fA8O9AsfGw7fEmbv9KGJyN8fZdpfOOGeZxqeHBr/0ps9Mz/PAHPkAcxSg0xtRkabR9Hd3ztnt561vexOcfePBv7HO8WnUmPPd2rUFrQcBPPQ+L+6XAzi4IWxNlsuhGqSyiij9Xa+TOU+28+mTEeCKYnIxpV/XOtFMSS86TQpB3krHt8VKH9sl2dpWW59CxTJckGcTBT6VIQFXBWwe2gztdHRZlQjtLQxGH3VGG1pSCxhrUm3BlCgaLwlhMN2EwA1dacGULVl4Uh9o3vFHuxA/ulVbecCSTVI9+BT77SVjagF4G+hC07pAx6iiSzzOuJWqh2YU3vwsevgBbSzLGvnkM9mvZD8ZCrweqEMAQag2JFzH31Ay0pwNL5MJkW2BujBF9jLdw+bLEI0zE00UpuhvHTstxEhpprLQBNYHdUQJ+JtEXDmkp9iJgE6IW3HuntKm+/qRkS22faVct9H8Hag0QtEoEFwMlDM7GaIfB8g6Yl/DNrz0g8Qsf+EBgy6Lg9xSF60jD3ffAW98Mn//Sd/2t/lWYm3uADyilfhBxeegqpX4PWFZK7Ql3U3uQoUeQO6gDV/39fuDSK5/Ue/+vgH8FsC+OvfUx1caQ1WeeoDO3yLQCFSsaWYPEWZmQUi5Y+DtUrPFOiaYmTtCRaG4USiISogi0Fg2IRkBMpIiiKKSPK0BJuncS4b3CVAWuMti6xBmB5eFhyJOEn2lF0siJs5iNjXXKYkQSp+IBphSjkaGqFWnmSFNNmkdEpWezr+kNDPMLXbJEguvSXNEfH+OI3c3FE33edP9Brrtljs/+4ctcXtokthHjrRbrq+C8pz3T4ssPPEC72ebgNUfpTk/zxNe/ycljNbOdt9Fq7xImC01cZ9BvUm7WVB7SxPD2+2/h6I27OffygGRpiXrrJfJklYWFBeIoZjDqUbuC0ajGVArnFGniaTQUU+1ppttzZGksYbe1oahGkOVUZSHhp7rGViW6HNCZa4Xz3WGrigyPjiJJwnZ2eyzcWkMcO7LEMzKiJVERRHGK0grwFDbFDMdsVZ7r7r8L3Ug58+TTXDq9wsgLM+6BTgQKRWVf35qbV27ei9GfhJGCMY5Bv8CzgXUWrSI63Q5ZlvHJBz7B3Nw8d9/zNiIdY0yFsTFaK1Qc0+1M8SMf+ABfeegRiqL8m/oIr0qdgW+tNSqOPT6GzSE8/Q2YW9wBHVnjKvAidUZQoxaNhlZyBxrHATCEF4iiwKqE8WaF6EGiMOY9KSJRLKPiXsniW4VWVR28bb5NrRFQElpWG+siiE7SUNOC/qFSMgKeRtLKKT30NQyMCIWThjAQuYLRMbC7JTLh3Qfhljn4jy/C0paMd/fasIYs1nNt+MKfSrvmmqOyUH39CXiugM7boL1LPgsK6gwGTZnEAjHEe9ctcMseODUUdqX3MsRXJJ8pimHUA1eICWClZB8nXlyC29PQng2mh4Twx7Eco3IcQjHrYK44kBRzkONVVWz30SfTZt4HMFgLtTwR53lkoY5TOb44cKkAusrD990lLNZTT8PplZ1FfHKMUXx3XYn/FmwTPycf+v8G6BXARtCqRaJpyzN44BMwNw/3vC20aGtwAWzHMXSmBPx85ashtuG7t+m/7AHe+3/svd/vvT+MCPi+5L3/eeBTwC+Fh/0S8Mnw/aeAn1FKZUqpa4DrgK//xa+hwvSHp7ywzMqzT7B+9gSuLIm0lkRuHQGEHB9ZMJVXRFFKlOXEeUbcbKLSUKS1jIpHSYKKIcoS4kaGjiPiNJVWVJJgvaMaFozWNhiurjNYX2WwLl9HmxsMNzcZb/Up+j2K0ZiqLKhrg7UKH6UMR7C6UlCMx9SVoaxqBv2IUT8OwliPC22WtbLm9JW+LERlKanZtWWqs06rOok9eYGLZzcZ9Wvuefc1NBtCkRfDmG88NOYTH36SS6cu0dvY4I1vvovm9DRf/PxDXDg5z97596KZFmakUiiT4g3UZUE9Lkgiy7vfdyM33naYc6cGXH7pIocYsLXxNPt2p3Q6LbzW9PtDitJRFx7nFEniaTSg02kxPT1Fs9lCpynOOeraMq5KdLtDVYyxxuBMzbi/SYuaOKQhW2OpRmOsqUM7EWnbWSexFaYm1p4088RKhdBbRRTFxHGEIqLQLerxErPXHWH+8H7WLl7m3POn2aotyovfWmuyduDp4//CAMy/bdukw/GdNq3Ujku/A601Ve3obRYMtkZsbm0wGo0wtaE/6vORP/h9Tr18BmMNSmnKIri6ekR7c++9HDq0/2/mw/E3U2fkhcKC5D1cXIFnn4CzJ2USSWspwKHWbMckOCd/F6Wi7cgzaR+lSfib0BpKErldzGKh4mMtQCRJgnGcE1ZkfQNWN2BjDdbW5evmhniFbPVh0BPNTVkGZie89ljBSiG/q4KOpxdBP4ZxJNoQq8BqEfqu9AN5Uwbhp4XOOlQn4dRFOLslCeDvPiJtMK9gGMNDI/jwk3DiIqyuwVvukumXP30YXp6F+fcB08GjBkkst0gLbVyIoPr7b4I7roHTQzh+Qaa11p+CPSl0W7LfBkMRUBf+KmCDjMxPTclUU5rJ/q+tAMJ2WzxkTJhu622Br+TC15GYGI7GO8nTnsCM+Z1YjMiLT9AklylRO4nrRKCaMF6Ca6+BIwfg0mU4dmpnKipMQgdvC153opu/pNbsXBfhPx0mBDcLcWne2oBxmGAb9eEPPgwnzuzopMY7rDJaw733wqtQa/5zfG7+GfAxpdSvAOeAnwLw3h9TSn0MeB7BdP/9XzbBMNGPJUpBYVk79hwmi1lMU7r7DkoGUZyiA2Ah0rJvPZiykv2UpUS+RLmUuNmiGG2gtcK5Gk0SULYT7y4ricvVqKAc9hn3BxSDPlUQDEsgp0OCGiVBXCeKrClOukmakudtkjRHxzEb/Yw8q0lTRzGu8S5GaU81jsBb4sjhXUzpLVdWR1R1SZw1wEgoaBpHZPEzHCznOP7ll3jLT97KwaNzvOHWRZ59+jKjUYkxMBwoSlNy5NrrWFtf4xMf/lOOPV7gqmnqqgrW+rI5Z/BGo7QnTSPeef/1XHfLPk69sMzDf/w8+0ebXLnwKK18icVd80RKMSoGbG4OqCqDtZoo8jRank6zxXR3jnajTZRoWUC9Z1yNGNcVOmtQb22RJJlMRm5uMNcKURrGUY8LijSmaz0qibbHsp11mGBalmgxsYyVItaKSEuIqkJjrGFrLFlWR+94A4OtHuePn+TK5hiD5BC2YgHJpYWh9YxeZzTxX+njeAl2BbDOhWRyR39riI6Q6A8VkWUJl9Yu8vsf/T1+9Vd/jampKayzOO+JrEPFEfv3HuCet72Vl18+te0Y/j3avmt1ZmcLjEhhZbonT6QtsS8MIUzu4kOtQV5wx3E2S8GXcoffbEnUgNbSHlIhh4kgOHbIHem4kFHn3kD0JeORLNguTPGgAlDSAak3whh0Kg7EWUPudHsZZLV40YzDXbD2Am68FYdgF8v3ayNhNtKQheV80Ps8A+UcfPklSe0+OgO3LsLTl2UCygA9RIN07XXi7/LhB+CxEVQzwoy4q1ZAawAt7yPR8H3XwRv2wfEV+ONjMNqEC49Cfgl27Qr7fgAbg+DKrAVwtLzsz6n5nWiLiaC6Hsnr5k3Y2pJ2nUcW0rbEs2Cc7OckCI2TaOfCubr1p70cm8n0j5qIZwJIHSughDvvhq0eHD8Bm+NvBTZesZ0l9TqrNX8lrOb9zh3XhJ10DraGoWUVC4OTJbB2CT7y7+FXfx2mu4FJQ877OII9B+Dtd8PLp+C7WGv+k8CN9/7LyLQC3vs14N3f4XH/GzLx8FfeIu2ItYRXFusjrjz9DElnhqTRJMlT4ihFKcNWv0eWp6Reg7XoLJHWknN45yGN8WlCbS2+cvjhiCSIoJx12LKkGg4YbA0Zbq5RbA2oBmZ7KkiMPT3OyBSWihxoSxRrRtkQlCdpRDTaDZJmgyyHvQc7bK1uMBM54kgzNe2IdURZOkrjsdYTaxg7T2xqTFXishbKy0hnpDUzMwOq5Se4pv82vvGZ49TvuYE33XuQOE745mOn6Y9KstTz/BNP0pia4sP/vy+ztTJDNU6xrg7OszGJjoU11RFRrJjqpHz/D93EvmsWGPYrHv7MMywOBpjVJxlXz3DjkQ7dbpvajBmOxhR1iTGaKPE0ckW3lTM1NUO3M02WN4Q18w5jaopiSAWgNaYq0UQYXcFwk06rEcwVa8qyolTV9jQUeIx1YeJME6mYWCvSzJNFljj2pGlMGmcoNMNixJmzS+y64Sg+VqydPc+F05cpnCdV0IxAewF2tfeU+NfVlFQcRVjntkGhIjCYCEs1ocmV0hIK7MVMMY4UtfMUpUVvjMnTBv2kTxxNQex48oVv8IXPP8AHfuxH0VFEWY5pNJoo78nzBu9993v42Mc/wWD46hltfbvt1awzAKgglPWICdtTT0sbpNEI4scUlIFBX8ItXQA6WWhJOSdFOI3DKLkVxmAw2hFcOiegZjgUQLO5JoW/XwuoCsNVaILWRAkw0VYYn2woi3AeSW5RsyFtpUMdYX0iJ8BrOmh9SheCKsPC7XzwIgnxDCaMj2sNswNY+gb03w6fPg7vvQHuPSig7tFToq3JHDzxTZl2+XdfhuVZGGcC4KwFFVpzwLZ3TyeFH74JrlmQVtOnn5Z4hrWnoHgabuqID44J7FNdgtHC2ORKdDbdmZ1jMdFwmFpGxSGMBZZABLqCwaYAQa9F51SW7CxrUmuwYYpN6R39UealjRiF4xhn8pzFCM4uwQ3XysJ76jScviz7U8lDtrOd/OuQtZm0Uq8GbNu08U6t2TaxnAgdJ2P5pYWNsQDqpA/RFCQOnv8GfO5z8OM/Jq9RjsU40XthQ9/zHvjYH4m267u0/ecwN9/FTREBkYpQiPladUX0N1GzwfSBQ6TBsfibTxxjsDnmuhvn2bNrF3nZRA2GqCQiamQUS5cZDkv8qGZ2fpZ6fY2krEDBaLBFMegx2BhQ9SuqscM4ucOKWxFpEhFFEVEcksCd+LAo67GlA+uxtaMoDfVwSJSMINdMdXKyrM1grUcj0XSaMXkjoyotV9aGeK8ZOYXzsLthoaywbYX2Pvi7ePJEMdU9jVlL2Lv0Jp78nMPcf4Sb75xnYW+Hz3/yOaZmCp5+4jk2rsww7s0Gqwtx7QUtbKEFrSzzcx1uuX0vB4/MMzufc/rEKl974AUWez0aw+fZHH+NO29sc/2R/cSxZnO4xtraJsY4tPakqafVTGm3Oky1Z8jTBkpNkrhrirKgrkssWXBc9njlsHWJHvWJdYS3jqooGBUjTBRjjYSVqkRaVdYJS1ZWBRrIY00aO7HpiBOSQOUvra6xWXm6R/fR29jg/Etn2BoL7dyJFRqPwVM7GQP/2258/sot0uL/4wGUQoeoC60lBFNE7xPGxm+3qGrrt+Uew6JGra7jtCGJNa1mC7Tljz//R1x3/fXc/IZbsCH7K/JidXDnnW9m954FTpw48z389N/tbaJtiQTkgIxGP/OEAIiDh2DiWPz4c3LHfuO8MA5lUwBMogUELS0J0zEsYX4O1teCezHivTLsy7hsv5JEbeuk4jajQFPqoAuB7awlmwhQsV4M5gojACnUGjo5ZG0x2Us0NEMLrLSwNpRF3gbg1rSy2E/U9kki38cKumdgLYWlN8HnHNx/BO6cg71t+ORzMFvAE8/ByjT05gSMGRMyucLCZpF9ONeB2/fAkV2wqwEnV+GB48J6DI/D8BG4qSUtnljDcA3Wt4JuxkPqpS3W6oinTdbYaX2YWlye6xKJQwhsjHKSqzXuy89sAJPFSMCesQLukvC9C/u3KuUciDXEgV1L4p224dqa7P+j+6RV+NJZAWoQ2P8AaByvO1wDBNAfwMxk4s8FHdqknTvpWzm/c5ys39GMFTWsrotwO9bCxmnggT+CG26AN9zCtmmmD8zXHW+GPQvSvvouba8RcAM6NCEm7iTeRayfXqPOH8dHmoaDJNG0Gm2WT25x9qUlojxlpqtRxkKkqNY22by0ymhzk30HdtNfAzsYEhVDyqpitDGgHNZ460maGdNzKY1OizxvESUJkVYoF0wBowRTiUW6R2GqMeWoZLQ1oBrX1KWh6jsYG1RREXVSunNtBptj7KiS8WUDg1HCZhFxfORpRrAwFWOLAluMidI4THd5IgXdVoKzL6J7nmjtDp7+VJ9Ltx0gbbZpt2OuOXQdebSILtfZrAdUtcdFGmMt3amcRp7SnmpQ1Z4f+onb0EnMqF/yyJfOc+GFk1yPJ6tPsLL6Bd5wXYP9+3ahHZTjgv7WmPFoLPU29WRZRLvVod3u0GjkqDjCeA9WpqJqU1HWBhvl24JJZxxOedRY1PPj4YCl5Uusrl1h6sARvHMYY8jSmLo2IYJBWKBYaeJkMk4PWZoQxQl1XXFuuUfjxjdSmprVy5e4eGkdg4iHpSRJ0al8ADevI5pYtJQWpRRRJFeJxxPHO+09rRUuABkV/u29x1hPFKmJnp5ibCmGJf10QJJkJFnMxnCdT3zyDzh46BDNVoOiKGnk0o7dvWuRO++4/duCm8n7+Nu5TQp1jCROR3B6FbLHhQ2ZaAGabTi5BS8tCWszpWWhjIA1J06tG5twYDesK9GQFKF9stGXWATjxbtmLoN2S9oqaXrVFJYXkXKoNYB8PyphaxDEtgZCraGohCGZawvwGlVB86BglEARwSiwN1NRWPDHQZirhAlRSE6UfRF6HtbugE/24fYD0O5Ij/fgtRAtQrEuydCG4NRsoZtDI4Gphohuf/J20R/1CnjwHDx/EnBgTsLqA3BdA/btkv06LuRxw5EseKmX6Zl2R/5r5MKYeB/cm68SXet0R5w9AUYTRmc4gKVLEuK4/xrZt8bI566D1sM5ATwqsEVKyX5KEwFtpoblHtz4Bvn+0iW4uCbPH4XTZsIGTUib11GtAeT8Viq0Y8NnnRwPCO1av6PL0QHwWB/AX9jGVvLF0oG0ELMYhhvwiY/DoUPCthWlMHaRhl2LcOcd3x7cKPXX2s+vCXCj8CRaESklLUw0tY8Yl4ri+GWa3eNML3QgUxw5vI/LF1bp9RzLlwesnR9ycSBag3pYM5MYbrl2jjjLsKZkY22LXBtM5dHEzO3ZRXtmirzdJkoTmbDyHm89OGkZVWUB3kubTEcoFZEmMa32FN3ZWcpyzHhzwGhrSF3U2NrhhjVRWzM116a/PmRlqcB5zdqwy8tjy/l6yPWNlDxLsNaQeINXsbDYWhN5hcpiZqYilHqR8soqt7j7OPlYyVLUZtc1c8wuTLOwZ5a3vONattYLtPZUleXxh8/w7g/cwOryiLp2fOZjz3HsyYtsrdb01jboFDV3UbO1/Bgbva9xy7Up+3fPkCioTMmgGLKxcYW8YQRoRYpuq02nHca+oxhnxfTf46mtw9RGboaCLkaraHssX5djRoNNzp46zZkTKzSaivl9MuJqjMV7hTU16ARTGaqiRFvRiCjlSSNNokWz0xv0GORT6F1zjDaucPHEeQpjSRW0lGLLeJJIkSpF7T2j11FLSim5JpRWxDoSiYAWMAvhxjHUkziJsdZcJQZUxLGY+UmUiRUz196YOE5oNtporfE4nnz+mzz6yCPc9+7vAxyoFK0S4iTl7Xe/jT/8oz/GmG+Vs/ztBTY+6CzCHSdawE2p4MXL0D0Oi11IEZHj+VXYcrA8hIsj8ZBBCeiIDFw3JwZzdSVsiq5lwSeG3btgdkpATZqGUXEvd7w2GNiV46ADUaFlooVFaE+JiLcciwfI1kjuiGsnoKmthTFZH8BSIYzNsCuLSj0UNidLgzOskTbSBLR5FTKoItAvwsoquPvgsRKiNlwzC4szsHcO3nEtrI93jNseOg0/ciMsjwS4ffRZePIirBlplxUVYGDlMdh6BI4msHsmoPRScpzWV6Bh5HNHSlyHW9PQmhImy3q2qRE7GZf3bIc2hlojsRaFsGSnT8HLK5I8vjewD8aGr0b2bWWCwV/QiCgf/IZS2e+DLUi7sLALNlfg5Pmw2COPt35Hp/N6a0lNWBqt5DyVuyS+JRB0UluSOLQm3c4v4tCWmvgMeR/iOmLRT+kwAfjCk/DII3BVrUEFcHn32+APPyX7/OrtrwkgXxPgBoUUcaXwzki72Gsq74kLTe/FU/TSw9SNjPnZKW677TAnX1hh/cyIjSGcGDmU8ty6N+KNN+4mdVCs9XHGkadNZuZaxHmDvNUkbuZiujfxprCyZIOT1OU4xhceU5foyKMqOaGVVqgoJtIxrUaTVqNNPVcy7vUYrA0YFCPqtZKobWh3c4Y+4cz5mOPjmjN1n4RIXMDxGBy2GhEnDWE6nAUiudYimGqnKLXExeWPcUDdye70ei6+OOTPNgfMHZqn0Y6YXWzT6mY4r7jupnmSRsTJY8sMhjXe1Lz46BkWGzE36pK0OMP5c1+i27jCrTdMszg/TRw5jK0Z1zX93oBmIyfShsrU5HHM9NQc7WaXNG0AXlgXa2QoohpSmwpvK6LEhzFkAT7WVNj1VS4+f5ITL6+RKDhwoEWz2cTjqcoa25L2h9NgjDgiY50YK+LF2iNOcN6yvNmnPnADpa3YXF5iZbWP9dCJFFtOMUg65K4AXxMpKF8nd1IqxCrEcUQUabTSxJFGa01spPh4Jg7F4oIdRTHeWnSkQqyFx4bsqCgWIXhdw3BYkG5toLQnSSIMNX/82U9y+513MDM3jXMOq0TQ/aY776Lb7bC+vvk93iPfpW2yUCnFduaQ11JACw0vnYTsGgEHs1247TA8vyxTP0MlHjnKw14NN+2RNXitLwU5ySUVOcsF0DRzWaydZzs3aqIjIYgpCy+LfuSFsVFagESUyELRaMriMFeKJ8zaQNihtRLaRlgUn8D5WJiduodM/EwWXyceLUlDfhZqzfYIdCuFhSVY/iioN0F6Hbw4lFH5w/PQjmGxDd0wTXXzvLTCnl8JzFQNj54R0z5dQ3kGzn4R8itwwzTMT8tns7WcfL2hsDPaBsfmCKZmBdiEWrPt3wMC1EwlWp/U7/weLz9fX4UXTsBLa3Js97dlkg0vE2Ot8DraC8ipynAsAiuRIjoqbwVEHrheHJ+Xl+FK7yo9CRB1wUuteV2Z9k1ATRRapQQfIh1BqDVAEL4T2MtI2pKRCl5CAWxqgnUC4sU0LEX0rb20CKnhM58QlmZuOoiRg6D7zrskp+q7VGteE+BGEVp63uO8xxJTh2ygRHnMesHa2fOUMwdod1ocPrSfffNzbG32OXfuMvpEH4Pn5oM5U3mDJIlJ5maJsxjlFYTJG5RGWSsOxx5w8np4QZo6inGRJ85yvB+Ac1jnxMTPepypUd6DV2jtiOKMztwMjaku7f6QUX9EUZZ4qzhy3V7ODlY52dvEe0eqImI0xlT4vEE56tPs7MKoCOMqIiUMlgbSJGa22yVPS5ZWv8b65nMs6huZat7O1jNDLo0KXjQ1FodKY7JmzPEvRZT9Ee2owT0zCVNRTbH1MkuXH0PbM1y7N2H/vt208xSNwVlLaS2jUUGWJVjnKMs+WsFUZ4pOa4osTVA4jLHU1lJbqG1FbWR8GyZsd4StK7yKKHqbPPPYcS6f6DPdjLj+hl0sLsyTd+dQSlMUA7zrYIwIqeuqwpRFcIj1aK/IEkWSpJTFmDUfUXW7jLbWuXJ+iWFlycJN1FC1mZ7bTb1xgbKsqJSsFd/tc1MFOnq74+7h1eQupDWnydOEJIlJJ7byCB3sYh9aTzINZepa3o+HTMfUVvi0SOvtP5M/lUW93y9J04gkjelMdcB7zlw6yZcffJAf/Ykfl4lNLDqK2L/vAAcO7H39gBu4SggZGJbJIqU8rJdw9jzMHIBOS9ib+TlZ+M5dhpN9efyBXLQhSQxzs8KEhFrDZPJpMp3j2Jn68WFSJIrDSHIOvh9EygF4TMaWQ61BOxG8zs3AVFdEur2R6Gmsguv2SthnbyW0nSJAy6KeN0Io5LzcIbugCZqcvUksURRpCVcega1nQd8EzdvhmSEMizBW7eRibybw4PPy+lEDZhKIDWydgEuPgT0Ne2LYv3hVflSYVBoV0oJyGZR9eR+daWFt0qB5MXb7phNXhaBQOb+lNRQJS6YiGQN/9AU40RdwdcMuWJyH7pyAxGIArhMWYy3twqqQkXUb9m2qpG1SjsFpGUHfWofzS8JUTS561YH5PbBxfkdX9WoUgO3WV9j8Vcfq1dgmLagsCdqjb601xH6nFThp603acjowOJPzffJWJ5SyUtAvZUw/jSHUGi6fgi89CD/54yEfJ4ClfQfgwN7XH7iReuPxaKyXwh0rT67AO82VSyP61w2Ymemg0UQ6Ik1jGg1FOzE476mqkrzTIIslTqHu9/Hh7sxbi04idJKDEpbEK4/XSgpOUP1IdEOHKM2wtYx+eutx3uCsw1uDcQ7jKnxZoGthDBqtlGangVMS1Jk2OhzctUl6Tjy1IqXJtOQp4RV1bXF2RN6eYzC2GFMQa83/n73/CrI1O88zwWet9bvt0mceX75OoQAUPEmAMARFUhLFkMRow5Y6Qiaa3Qp1RPdEzKhjpBmpW5q+mpvpe3W0ZqZ7biSKRhRBJwIkSBGGBAhXMIUyx5v0mdv9dpm5+NbOfQCCYAF1iixA+iOy8lTmzm3+/e9vvev93vf9VAioEDBJyiBPuXJ+la31joPjP2T/7qep7A6PbDxLkq/hg8ZjMKVGaYXJHEfjm0wO73Bc7VEkYx7fLtjZ3mRYpOSpQnlLUJrGBU5Pj1Fas7a6wXQa8AH6eZ+10SZFnqO1wrpA6zyNdTRdjXUNdT2naz3OtiRaHDpdXWJMSjWf8+WbMx4ZKd7z1ktsbaxjTIrJU4KWNFzrOubzKf3+AO8drioFOEZmvsgMSgXGszGzzcepvaM8OOTkcI4nkCnFhJTB+jbzqsbYjiZqbl6lF/hVHVopeqkhTTTGSMu0cw7bedEovg7DORWQJpp+kVFkBXnRl7lbIZCkKUma0lQVedGjaRuqqqbf6zObzzFK09pWLN1GYa1FRdZRuiFeLvUA5awmzRKyrCDNDa2t+Ojv/Bof+MAH2D53DnBkumDQH/LM1Wf44he/+pBf6Z/z8WAacIgtCoUscPdKeHoG6yO5jTay+PaULOQhsi0rPQEpaSqJvAs63nnZpcZaI4tjbD3FWgMmjm4YScuqjWyAC9JGcpG9kOCqKKqNtxlkMIqi2zSF3gh2TsUoH4jsT3weQYtexVUw3JS2la1jeyoCriSVxe3CKmx0cPxpuPMpcDuw+WYo1uS8KANVzPXJHEy+AId3JBMmGcNWAdsbIg5OtTBji/lP42N5vmub4h4LCDgcbUiWjY63c1Er09Uyr6iexZksrbTiFLIRMomMmLg1k7lQz12UQY0mlXac1suxAPOpiFqDEwu+jeAkQRZeFeT923hUbnN4CIczOZkq3nB9S/RC1nK2uD/UQ8lzSbSwIYGYxOxjkvLrBHASLY7ArBA9mImt00U2U1XFeVuN/LvXF4G7iuB50Vq09oGWHQKyY61hVstrSwtx/9kKPv6r8MEPQKw16EJGoVx9EzykWvOGATcacX74IE0ipcJZFIELmlkNR+OSy+cdKhExowqeLElYX3XkhcMEza1rL7N9/iKD1TXynS1MkuHbGltWuLomBGl/oQEtgXHKZKgkk8GaWmg5HQqSppMFzLmz7yEEEmtp6jllPYcQRci2lSwoY3CupapKBqbkbasJf3TakUbmpmsa0T94S1NW9LcS+j6j8g6PRysv+TBBWm15akgSTa+XsrPjKOdTDo9+h5PTlrpTNB2Ax1tPZgJ56rm0WbB6sWBl5RyDXp9UG7Ry+OCxrqUJivF4Qr8oGK2t0bkOpSyJTthc32IwWAE0rbVUbUtZzynLMW3T0taNjGXoNG0dGCBhfF3bQqLoyopR6nj702usrPaZlifM53O8CzwaHM46vIe2bcmzQpisZo61Da0DVEAlgaocc9TC7PIGs/EJs71dTuuORClaIOQrpLlhMj9Fe0cbYP4QK45RipV+n5/56f8C6zteeull9k92qdsS23bMy4qybmg7/1DrnNKKxGiSJCFJJcSw1xucBVMmSUZiDL3ekLRu0EqTpjJ7zVlL5zqyLI2BrEIjLyavJ0bAu1bQtI6mbqjrCm0KlA7cuHeNT33yk/zUX/trOC1J0nlRcPXpqxijcQta+nv+iNupEF/PYvq3QsBAjWhczjuh54mMS5LAqoPCye2uvQznL0py7862WKnbWoZMNnUETctaI1biTMCESeJuV0MopIUSwpLtWXy3VnQq9VyeoPPLxdkYAQBVCaaE1UQSgpWR59c0xOFwYr3eSgWA+bhAL0Y1hNhqWzi4einsOAEFR78Nx3Fad0dctKKYN/WwWcCFHFZ2pB2kE1AxU8O18jwmY2Go1tYEbCgrgHF9GwYrcaG0wqzUcyjHAvaqGhoLrZYd4gL0NY04CcpK7NxPr8LqUPKG5mXU2kSQFJD7zQoBSM1cXFax1pCE+HjA5Q0JUtzdlQyhhQU6W42C2PGylfkwP/VKifX9r/2MtLxefgVOdmUCfNvJ66wb0Vs9zENH1iZJhLVJjAAMHUFKsmiNDuXxlY7MjloCxyyN3c/43JyXfy8SuhXCgNWtsGNJIdfOveuivflrfy1q0bxYwq8+HYXrr/21viHADYDC4KTRQojOKaMCPii6oKmdZ/+kxNlOtAWA0pr+YMCFnVVCkHyWcjrn+uRFer2M9XM7rJ+7SH91lSwr8F1LsA5tkjNRYQA5mR5C8IQ4K8Y7R9BCKes0EUYlTQgEQsiYzsZMpmOUMiglehOtDMornG9pbUtdN7xzM7BXptRWE4KmrgPWOhJjaMox7fSYfGUThaaazwg6wVuLUVru22gIjkSnGAX9bMDaSoH1DmsFVCijsa0nzVK0cuRZSp5my8wTX2MRBrB1gdm4ZHV1lcFwgAsesGiTsjIc0SsG2BAoqymTyRGTkzmzcUdVBuZNQmVTSltQOvBBsaoM7+8cruvE/eQ8j2wmrKwO2D/e4/RowtF+S08/zUUvgzLlPAestVKIm4rOVnRdiKGXjnEz47T3KFPvmR4dUB7OqWOLvAyGfn/I+maPk+OO2js6pP49jMMoRZFqPvhDH+Kf/LN/ysrakOPDU77y/Ff59Kf+gM9+7g+5fvsVjo73GE/n2Ic46iEzhn6vR6/fZ9Af0i8G9PpDFIEsz+X6c4F+v09ZzdEqkGU90iRhPD7BxIGPzkt7xMcwv4WV0zpPGocDNo2jrmuMUeR5SmVLPv57H+VDH/5RVtdWSF1CmmY89cQTJEmKW0yf/p4/DHF1W36p2KZYDFk8KeM07VgitZYBjjuroruwJraHXhSm4twOnLsobY2skAXVuQhi1HKhjLXmLEp6occxkXZMY5ssNXL7kInQdTqWz4qKepOFQNh1sljXDWwGcUzZCJrqsNRHlGOYHknLBi3uIp3EHXdkZWKtwaRyWrKBaHp8ZBDaNrZ3nCxqysv3NIvAUIGvly0bFyRxeWVVWnzBy3k3qYCaoi+3q2YwOYKTOUxamAdoErAp2ILlDKhEHtvGWVrOw1YCa0M43hVB90ELb3o8Wo1tPM8RJMZag63EVrnwszcz6D0itzs6gMP5ErsEI4Lnrb48xmIRf1gfeKUEQP/AB+B//mewNoKjE/jSV+FTn4bPfQbuvCIi7OmchzrqwZiY7dQTBrEYCMMFwqapyL70++JKOw0xvyYRm/zZcNnYil2E+S1s485zNoi0cdIONEpYQlvC730UPvyjEuznErmOnnhSGKOHUGveGOBGCRPjQ2y1nvUcFR5NGzw2wMFxR1nO48A/T5qmjPp9cr1NNZuSDQoKkzGbzpiNpxzeuk85mXL56lUG6zskSUZArIDBB7wVJia0Fu+DTAEP7mzHpY2RKeEqzqiKrirXid7ENo1MBlcG17Y0TUvXOgm5UwG8IjeKH1gz/NGxwXpF02g6a6FTGOepJmOy0TrFqEAbmE/HhMTEGX0dyhu8c2jt0XEwnNaQmQyfOFQvAxZZJ0S3k9CpKgScb3EEOutAJaigufToJZwLdK7GOUdVzcSabTSn8xnl3hGHhyXjsWVSppS2R+s1XVDYAODJjGej53hqW5EnGm8dTlls2xJcxc2bN5gcWqYzw6lNee78OeqmxvrYKsFgnSdLU5Igrp7GAgq64Gnmnsm5LaazCe3xCZNZiw2BVClanZO6lsPjA7xrJQH+IdG2WkEv0WyurvMz//nf5MIjF1BGM9xY5ZGnHuUn/upPcLh7wKd+99P8wr/5eX79o7/CeF4+lGJntKLIM/q9IXmeU+R9hisrDPpD0jQhMRmDQY/JdEqayqLZ7w+FgakqRivrEDx1055ZxZuukfdWS84SIRBiWnddW7KyJkmNzF1Tmhevf42XXniJd/7gO7HWYtKMy5cu0+/nNM33AbhRCyaGpTaAxffIYgTguJO2h0kALwW33we9LeMRBgWYHKYzWcBv3YfJFK5ehfUdYXFirfkGQXEbk4K/qdac7XLVoi0Ri2GsNTTNEoS0reg+WseZq8gr+bs1A8dG/r+JjEgXF5rJqeTIjAqp/JNxtPkijIE38jz1gtEhdtAymUAea82ZUyggoGxh1fWN/LyL2iGUaJZcAFfHLJqZvKZES3tj/xgOS5lUXqZge9ICi6NAZHfpoedgC/k764T9aVtpt926CYetjKGwKZw7Lwya6+L7GnNw0jQCsCA7PRXbcnMP57alNXV8ArPYblEKdC5M2dG+MFGEh9ciUvH1rK7Bz/yX8OhFAY+bq/DUY/BX/yLsHcDHPy0W6o99RJiph/HwWkn7rjcUbVTeg9GKgJssjQC0L+ckTeX2/cjgVJWELQYv12GSLFu1nX2gNRXOJgNQW9FcpUZ+pjRc/xq88CL84LvkOk0zuHRZBOcPYc7UGwLcyKIMEPDIEEtFrAVBduQuBE7HgfFsRj8fYJQiyRMSM6BIU4o0p3YVQWnWt3fY3Nqims9xGlzrsW0rdS1S9La1YL20wXyHNqnkiCQpSgVUmsoifCYIUgRncU2LbTqU0vQGIwiO4B1BZxitqGlpW4vqgrTLk8C5XscjeUHjNE1rqGYNPgXXaLJiQn9thhquYIwmTzJaJy0kF4K4x6wjSTQE0dZIbJ0M/9RaEbyKICvIzCavcciuRa45R17krG5tYpuGeT2n6hratmY+m1FOasraMq8MszphWms6m+FCToh5JkYFCu3JjWO9bzm3mXJ+Z8jqziqZVgLougZXN4z3LU0I1NZgisBbHl/juXdeZVw34GXyuIA0CU0M1kqchY3mkg5qPWKW9qiP97GnJXMn4K0OQKLprKOddJRdgwnwMJZdrSDViiJPeNMzb+cDP/Yjkn6t5NpEQ5qlXHjkIj/9N3+aq889zRe+9AdMb9zEvcaCp4AiS+kP+vT7PXr9AaPROqPhSGIIBj3azmGMZnNjHW00vV6fqirpupbeoE9VVQxHa4QwoWxmWNfFjYB8lowS5iZLUqq6BhWwdYfNWzodMEVO2c7597/3O7ztXW+lVYY0C2xubTEajTg5mTyEs/wGOM7aCoZl2uyDXwHGQcYk5ANZ5PIEzCBqEXJZVJWG7R1xSM1jonATGY5Ya2QBkFojTE0nC4fRQvurqG9YhBQtGBBnZeFoIkCKtUZShuNiQxtnTIUYzheg10kLyBlojWSNpAjQKaawNoPhiuyQkuwbRc+hk+cZa408RrTwLnbkXsV2WmRDQtTWLEBh42TR3N4SQFaXop9pG0l8ntbi6qqMTC6vtcymCvnixUd9kpeWU89KO217CNtrEfhFDU7dwH7UQNlEUocfW4V3X4WqXbJwAXnOxshzdgi4SZBWmxqKm+x4X1xiC3Yk1hqclyDGrnmIjA0RYCRw9W3w4x9eTqKPtYY8lans/+VPw9ufgS9/Bq7feDjgKovgpV8IaBmty9yuNJGfd1au0Y0N+V7043vZCsivKxGDh4kwX+4BljMQ9SRervGmlh9WHeTRuVbk0M7hd38H3vWcgPYsyGdpZQQn49f8Et8Q4AZgEQrqgkfUNuAJ2ACtl3ZF1SgOTiZsDNYkWM4TPwgJaWog6WGbDtt1DEZDstEAh0YpTTebCTtkPa5r8dahSTBpis5T0jxHGdAmBS2WW5SEygWlZNaUtXRNg+06tFb0ByO8swTbYnUlwlljSKqOLm1EdOsgqMDFouWVWUbVpcwmlt66JsEwn1QMx8ckeYEyhnxlSAG0TUdTzqV1kyhaW4NSGKT1E5TCJIU47roKbTTBecIZva4gWJK0YOv8JjpNmJdTTo8POR6fUM0s00lgXCpmTUrtcqzXLAqMUdIW1MrS055R0bE5CmyupaxvrNHvjwRoxVhkpWXOl52doDqoVGB13fP44+d45PIjjM6fZ7eqCUHoGZMaGayJJB63rj1LtG/aQLW9xcw56ukpdtZSx5kjDYr19RWOx1MSb+iFgIubsddySBkXFmq4MuRD7/9Rzl8+v9zYo5b/DgGdaE5Pj/B6yTO+psdXijzP6Pf69Icj1lbWGAxHDPoDBr0BWZGQmlTWYrH6YRZi7k52ml3X4nxH1svoXIZNHGmaMi89BIfWCb00xXkHWsBO3XhUWRK0CMhVgM9+4VMcH/4tNrc3sV3H2uo6a2tr3Lp19yG80jfAoYmtDg+x1pwxEYsLqVFwPBEnT6+QxV+FKCCWWkMT7c2jobRdiBT8LIpRbVyErQOi8DhPJRfHEO3eOlL3kSlY0PzWxsGZnSyCg5EAHtuCrpaahqqDtBHR7UJHUrQwy6BLYWJhPQqYxxWMjwT8GCOjEEBeRzmPCcRaBMcqAptFJkxSyG27aqmJUEFYoVhrSHM4f04WyHIKJ4cyl2rWwTSIlb5JweXCzpyBmdgWVE4s4kUHowBrqeQE9VeWOpB47dI0MDuJ4ARYd/DYDlx5FM5dEHbBRzt5agQ4EOLwzDgjLEF2z1vbAvKmp8LanBUTBesrwsz5KLRdtNxe86HkXI8G8P4flSDIP6HWkGh537RbMo+v6aFVFMj3pT24uibApj8UzU2RLFuTsdbIdYpcjyEs7fm9DHwWoxBSiUoITlqeabZ8D7SSa7QsQeVLQfsXPw0Hfxt2NuW+V9dFm3Xzzmt7jbxBwI3UlBBbUnEoJpIR1YZAh6Bv7zRH45bx+gkm2SQzCa6eSwaWNjLOIIm0V6oJxhA6T1dV2K6m62q0UiRpRpoVJFlKkueYPEVphU4SlElQCxucEnubUvGN0IokN9H40KdwGa6zBO/pbA9ra1znyQtPM6+oqXDe47rAeuEYVFD5jLrrwMD66gjXdZSnpxSjNbLRCuDwPpANcophj67tqOYltk6w3tFGQXJQgaZu0EaLPkfr2O5RmCShP1oh6/fwwTGdTti/vc/u3oSDk45ZmVDZHOul/SVaR2FnDGCUJdOOPPGsDizrI8P6eo+VUZ9e3sckCV4bnLW4psI1LWmWUY8nNKdT5s7RGzouX9nk4vmL5P0BDNdoxjN0avC+I0lTjNaEaLfvXIgiWKhbQ7u2Qzmf0U4qXOvOmBmT5gxHOXQNzawk13CCfJ5ey6FQJBqy3LC9fpH3f+hDpHn6J9xYtCzXbrwSAd5re2wQZ5aSJ0JiMopen+Ggz3A4ZDDok5iE/mBA2zTYzlL0Mo6OTwhek5qMlZWEpunQytC1LdpIovG8LLHOoxVY11G3njQ1Zy7jznl0HTBJJ+3ONGPv8B4vfOWrvO/D76dtG3pFztbWxmt/kW+UI0Qgg37gZywLeQCchnELGyeQbAqoqaMWQwso54FaQ2KkeNc1tHFukkIKfFbIYpJn0cmjZLE1ccGFpZX2gVpDvnBa9cFlspv2Xlo3thaBaeFFwEwVrbpBBM8Vsuh0nbzMtZH8+3QsO+7RKhBbZYNc5le1nYyXqKPAs2kETKgQ9RImtsYWi28Uow5XJHEWJ1k8t/cl6fekgyqBLo/ggCUzcSbitrJoJx76VmLH1wuZHJ735f51ZFzaWtisLJfRDqdTASUDB1c24cIlaausrEu6c6plAU4jU3aWbQZnE61bDWvbokGa1sI8LY40h1EumqZpubxcXrMlU0VmxsD6RfjQj8h18S1vGlt+N15ZMmav+eHV8j1MFiCnL9qiYXRMDYbLqfS9TNp1XgvoWVmJjKKR92MhTK7KCHoRJqdtltoxiG3JAEknAvg0g8N78JWvws775fZ5JtELD+F4Q4AbybfxAm6CwocgAxBDoImtlST2hyZTx3hyBN6xsbZFVgykPQO4psQSyJKMzgZoHfV8gm1KglKkeY88L0j7OWneRyVKEopjSNrZQqX1Awg9rlwKdJKQFjnKWBKb4mx7xgRpm2Bsgk08SeFJexl51aeelnR1S+gsW1nHQZuSpIE0T8kHPfr9TabHx5THRyRZgc5TVKalHZ8o0qIgLTIIAWcDznWykKuA61pU0GgTQwa1EaeVCtRty/7+fe7fP+TO/Zq9MczbBBdSDBqtPBqP0R6jnExlN44idfQzT7+AtVHK6uoK/dGAPM1Jkhyd5FjbUZUTmqaisY6d02N6ozUme/t0roXUMhgZRqvrJFmKLvrY/gB7fEq/kDCwNM3IkoK2FQDovRbNTQMuy+mKPvXJEd28prU+an1UBJ9QtS20FZ2StPnXcihkjcoSTa/ocfXJ53j2uTd9W9BSVxU3b92gnpfLbsJreA5FltLr9TEmWYb2JSlaK1KTMRj1xbad5hgNTV0zKPoor8VaX0rycJZZirzHZDrBO5nRpZRoylorom8RmQcCCqPBtp6utrjU4LSl8oHnv/Q87/3gD9PSkiYJ21s7r+HVvYGOEJYtlBAXjrMvv6TUUTBzInT1Dta2RHC5uCiaEgE4mezCOidanKaMbayegJp+LlZao+NXBAgL99SfUGtIEqHujY3C2vYBJiiRrySCm14GVV8W4LqVBSnroM2kVVWkohHqbcLJERwfizA0TyHTslgnStwqsdbIEM5uyQa1LZHuiy0qs2Sc2hYOdmUcxf0KToE2gZDK36iIJHQAIlgyDlIn080LYJRKDspwKOAlyYQtchbKSWyJWDg9FnC2tyei09TCihFAk6Vy3vsDyUrJ+/Iep/G+2iq2BpW8rgaxJ/cGsHsbZlVsH8Y3YdFmaaTWPLRDES3YPXjyLfD2Nz3A2nyLo6rg5nVpfT6MY8HamESuSRVblEaBjjEDWU/AnUaAbdEXcOOieytJIbMiRp5NYqBfCiyiErolUF8Mk9XEDYAV0KMjWP/Sl+BDPwy0wvptP5xa88YAN0rF8D6FQ2L02xBovBc2GHW2AOWDhLJuqZo9gvKc336EtNcD61D1HIXGdi1pkuHaBuUDeTEg7w9Iez1MkaGNRhlReivl0VqYm2VhCxEkiHtAoQmxqPlYA63tJICu62jaCm8dtrPYrpMYfGcBjco9ygf6g4RHdIs78gz6nkRDGywba2tk/SEnu/do5xOKbFM2NXoxuyfmYijQuUZ7HXVwHoqU4BVBeWznqNuW6WTM4eEpu3sz9o8dJ1VC7YSBMEpRKIfRHZkOpLojTwJ55smMYjDUDHopwyKnNygoegMSk5BmGUol0hps50zHJ8xmY6pZQ9NoLuzv0btwAaUCK6sFjz/ew6SQ5T1MkqJHq9isR2JSaZ/FZFxlvKRFJ5qmc4gMSmG21qgTqOZTZjMZhRGQMQKNdXSdo2kbhgHyYR/dNNB08p47i19YfF/95YfRkGUJw+E673nXu9nYWf+2f3N8dMitO9epmtduQJcNlCHPe4yGa/R6PfIip8hzsjSjP+yR5xlpkmB6Bh+tvJ3taLqOJJHRDE1T0TQVs/mcIi+kVeUcTdditEHFzxnOy+gF5UXb6gN17UhTK+uVCly7/hJN3ZIXGSQJ6+ur0qL9Xk9lPZtT8wAkXVCGcoPlt34SLax7skBvPyLF3LpozdYCNpJMdp3eCwDqDeIU71TATKw14GMrSsU216ItExeYRQbOAkCdUdhRPNt1ssg6L//u4uwlZwEjk7x9kNlQupX5VwMvi0pwsL4mO/LdezCfQLYZmagFulrWGnIdhb1IwStSAQXKC5DrWjiZwOEp7E3hyAlLE2uNMAMOdBfBTBdDC70U8oESy3kvj7qPgSy2WQYqak+aUvJxZhNJuq0V7O/BhQtynys9eLwXAVxPFtzhqizMJo2jFUIUsXoBjAtBcocEIG6tiiZpNpXAwoVYWi9u55Zam1E/6qBaEVkvtEbf0fUnp5jMwGAd3vke+FNqDUeHcOe6ALyHcaRagPdwTUBLkUurNI3AJs/lveiZZWyAjddbEoXvTSVfs3kMogzConWtAN/F5+zMMeWXbd/aCSjVCPtz/aU4ZyqX92h99YHP6Xd/vCHATQiirXFh0YqC2nsscuEkaFKlSZNAb6DpgkV7OBwfszraJMkyguuo2pYsSdFak+YZWZ6hRkNhZrJUdv1akKQioBMjwElp0TJoEGBjBFgoIGgJmrOerq6oZyXVeEI5mdK2MecmIIu40aQmJUsydCKKf8cKUzXB65pR7jFjTcj6bJ7fxrU1XVNTDFYYrG3SzCdk/aGImhf29CjkU4kE/IFoeNBanE71jJOTCffuH7N7WDGZBGYVdE7jgljmU+XJtaVnLL3UUaSeLAv0+4ZekdDr5RR5jyLPyLMMozUmSaRNpwyeQOcDZTVhfLTP9GRGW3usU6hEYSdjRk9cJUlSRitrhNU1rPckMe1Sre8wj62r+IaTmCw60Rw6H2A7JWNxOji3sU3VdJSzOSeVYxAgQeEwJCbFOUewlqDgeFbSeE+e9PnJD/6n/N7nfp3j8eF3dP0pFJnW5FnO+uom7/qB92Ay823/5t69u+zev4/t7LLL8V0eSgmTZdKEJM3oFX2KPKfXy8mLXH6XpJJ7k6Y0NSSJ5CFJO1GTmITBcEDdVPR6hUyL14bdg10BPm2LXrAFQOcsidaSwK2g6wJN2ZFlBpPC/tF95tMpabaO84HVlbXX8ArfQMfizVp8eSKwWSxSi51skNC4YOVX42MYbcri67oIaqJmZtFuGg0jSl7k2Cx2rbGFhYpAhlh5gxT3B2rNme26rqRFNJ7AdCr5LB65jyRd5pDkcceNBkagJqBrARFjDVlfnEBdXIwGqxKkN5+IxiJZtGzgTDSc6OXCEmsN3slzOJnA/WM4KGWYZ6mkhRfiUqK87MhNXMBSL0LRvhHxbD86c/J0Gd6XJFFMGz9zPghbc7wvs7NqL0DEGHF4PXlVnvfqmugzrJcEZ4CNndi6WtYaTBZruxN7exeZmw7Y2JaZXbM5lO4BBs0IQPIuDt5E3g/vRW/1gf8UPv8b8B3WGtmlannta5vwAz8gQsNvd9y7C/fvR73Ld/hwf+zhlZyrhYW/15fn0ssFXKSZvO4siWJghCFUD7RNTSIMW1OJHs1aeW/2d+U8te2SmQQB3zq2BRXSOi27GOwHHN0X12GWynv/kGrNGwLcQHRLYsT9GDyOsHTjKWEdksQTdEflHUOdULctx9MT+sUQ4oQoTEoIDp0qjMmBII4XPAFxBmiTSFqxTsTpFBMhA8SWu7ioXFvR1Q31fEJ5OmV6MsN3Vmy6wyFr585hUoO3js47umpOZ4W98bYhBI1ONL3VAX6Q0lUVO1stszohywdk/RG2qQm9IcVwSFPNaKuSdLCC8kLvKZNA4iRcUEk7wStFOZ9x69YuL9085c6hpaoVSVAkSoZPSsu+JTeOUWEZ9BxFFlO2M0O/P6DfG1IUPdIsPXPnCbjL0GlGCNC0NZ2zVNWU2fiY+bjEdYG8lzDKU/qjEXk9RSWG3miVrpzhkoJBb0iW90AlmEuPU3c1Smtc18iQ0oVF1gdU1mPcwGEXJKV5Z5PZ0SHTsuG089IyU9DK5EhOT8YY50iUYmUwYDyf89ZHf4D/6f/+T/g//4/3+N1Pf+xVswyK+Dk0AuguX3icq2955tv+jXOO27ducXR4jHP+NbMZxkgvPUtzcY+FQJqmKGXI8oIsy8iznCxNybIMby3OKnQEoVmekDSafn/AfFYyn88IwTOfz9Da0HUW7z0hKIwxcS0V3ZBS8jaoIELuog1oEzg6PeT05JTVjTVs17GzvYWOgPp7/pBCsWQlFh/+BZmjlIAb3UYBayL6g+kJxFojZqu4+KVKFlCIwlUPsdZgTKTgE7ntIn2WeLOFlbupZFGejUVLcjKTRTXPZE7Vzo5Q9jY6puq5/N52oivxejGYThKMqwq2GnEkFQPRxdQV9IIsTNVMNBKDleXuXEutOWuV+ViAyxnc2oUbp3BohUEJSsDIItnZtKKd6VmxbadIKFVmxF1TDONCmi7ZCwKoTBbUQLRvW6in0n6alFFDlAhzNBxBPZFzOlqV12AKyR8qpNZw6fFlAnPXyo55UWtCEGDVIPerFexswfGRTGFfhOQpYutQi2vHRSHvYCCtoSvvhn/8P8I/3YNP/tZ3xjIolk6584/CW799rcE5uH0LDo5jevVrRDcmthLTnLM04iyV9zLPBRTmuVxrWR5F7PFcJBGgNlre09lAtErBi4hem6UuLEQwugCLC2Cz2FS0kcUwAU6PRNOzsSYAbnubPza087s43hDgJgA2KJyXlpSD2FpQaBQp+iyt2IZAZy39JCFLC46mp6wNVukXPaxvodMUaSYMbwpKa8mv0fJvnRhhJNBn8fnKyowpbzvaqqKcTJgenVDNGrJeTr9XkKiEC49eolhdRWlNW5dMjo45uHbE+PAEug7tFUp7jFFggixaMeHUWYcKMFKalcIxOdxn59IVuraR1F7bYdKUZj5BJTGAz4OnFUdSbvDWUpUld/YnfPn6lDtHDuc0GkNfO/qJozCePLH08sDKAEYrGUmao7QhMZCmCf1sSK8/lOcZwPkOpYVOVjojoGjblqqrsV2LdS2z8TH1tMRow2A9Jc9zaff1hujJKV0zZ/3CFY7Kikd+7O/w5Pt+BH2yx+QzvwXnL+LLBuc8TTkTt1fwOCti4hbDzTEces+w3ycMh1S3buA6z8wHhkpJ7FqQ8+hsQ4IwHlm/hypLrlx5jIoZd+/fYjQc0u8V7B28ul2VWtxX0uNNV9/MxrlvTxM3dcX1Gy8zGZ/EwZXfneJmAcB0HJAZvMcYLWGMWmN0QpZKAqgxJgZGKuqmwfvA6uoaTdMSkEwmEO1a09YYZSj6PWZ1iYqp3Hma4YPnLFNZqShCDzJk00NVNigNUzVlf3+fK088SnCW1ZWVmFL8/QBulLRYFgtFrDUPrLqcZaBYGxNce+KmGaxG/YHUGtIshu+pb3TzLBaDJJH7XDyWXdxvJwBkOoXDY7FsF5m0s5SBRy7B2qosRnUpE7ev3ZPbdl20ZMcWjwlxwYxb5UUyr9IiLj7cl7k9KM4yF9JU2JskBvB5gDbqhYyAqLKU4ZHXJ3DohKHBRAGwi60eKxbsATDKIhtjxA2WJMKUDEZLUOc7sbKD6DtQy3Zb10qWzPhEAuuUkdlVeS7nvDeUBOFmDheviPbjL/wteN+HZYr3Z/4dnL8EVZz8XU7BnYs6gigmxogmyHs518Mh3L4hwGYB5iBm4TgRE0MENz05J1ceB13C/Ztxonkhk9Vf7bFwnz39LJz/U4T6dQ3XX4bJMWdhed8NfbMAYIsBmd4tWcbFJPA0WwJyFcMnF+3W1TUB3yC/X7Qx21rep360ii9ym9JsuXFYPP6iDeuDXG9lE1tTE9g/gCcfEzC1shIded8H4AbEJeViYF8bPGGhs0HYCE08D97RWM80lGylhqZrmcyn5HlBPx/hbYtfDJ1TioD0nEU4LB9kCe+zIgZ2lq4qmY8njI/HlNOGrChY3Vxl69IlimEfpU20kVvaumV6tMv+rfvs3pkDKcORJhsa8jQV19YCHcc6prQiYEjzjCRJSZIEnSrqrkQZRdlO8bW0Dep5RVrUWKPwVpKSW9cwnU25f1hx7dBy5yShcgqjFLkKjNKOzV7D6tCz2oc8TVldW6PopfgQmM+m9AthU/I8J9GJ6C0IoBLSZCB2+a6jsQ1t21I3M5xtsW0jrqjKUmQ5g7UVScENjtQkFFmPrCmpyzk673HhTe/hyb/wl1BpilYKff48++2EyXSf2WyKraZ4a/EqAaWjgNswCYGpDxSjEVZruqYmt56OwBzFKG4WV4ZDJpNSwI4P3D08xDrP5176JP/on9zlxp3roqlS6jsqAx5Pkqa89e1vI/lTaOKT42Nu3LzOfDbDvYZ0YmM03gXSCNSVCoTgMdpIa9AImJELX4BL3TYQNMNhQde1pKkhzwtOTyYEH+hsS57mlNWcyWx+JkwOgNYa6xzWulhrVDQJCUtqXSAEI8xy17G3twcIW7i5sSmsD913+WrfSEesJouU4DP+XC0Xt8CyRRRKYV+6VkYS5D3IR1Hku6w1xFoji3sEDdZJa8t6zsYgTCZwdCpDBfMCNlfg0iVxqiycWNaJDuFoD27dg1hrGCkYmLgo6QcWGpb6maAFKCWpfKVAVwrAaGdyv1qJy6qIqbHWy2LiYh7NUQUHFk4SaQkt7NpJB/1GtDwDZIe/ti76mRDkb4tc5l3lubBBKp5nk0IyENDVxWTlrpVgP9vKQmqt2NuzXIaEaqk10irpiw6nmouu5pl3w4/95WXI3Pnz0E5gti+gsZrGZOJk2Q7Uka3wQZggo+V8uMVC/EA7ZTgU9gjk9geHcrtXPgX/+B/CrWvx7xd/8CqP4GXxf/vb//SW1MmxiIlnc6Kr4rs7dGSvTCJ6GxWfhzbxek2WbRIVWLrltFyXtpXPQN6Dk6ncV9cKA1TPIxiNjNTi8ZyLgYs88LmKLKkLEGIbsrOwt8sZ8NnYiNf1a6s1bwhwI2GcCkvAxp1liFqCNAbpqZi4q/H00pR53VEkM1LT52B6yGgwIlhHkRYCRLzHdY6AkxgqFQihI3iHbVvqas58MufkaMzxSYUxORevbPL4Wx+jNyhE+ApgDN47bN0wH58y3tvn+O4B41nHzoVtHn3yCvmwoJxOcV2DCh6dJJgsE6CTaEwiwkKlxPocnMM7j3cdrqlxvsNpj/ZgraOs5wStcV1NVZUcn864se+5dpIztxkKATU9E9joN+xsejZWhWHSBIosZWV1jaapaJuS1dEK/d5InIQRVSdZjtc6Xs8ps+kpp+N9bHB0VY3vLCC7GRMgGwzpD0dkWUbXzFEoer0hvcEIFVrytubO/i7v/sm/hUoT5gdHjM5vM85T9u7c5/7dO1jbYJoa21m80YAEKjqTcGADMw+P72wxmU3wXUfaQUBRhsAQhfcdJ6e7uCBC876CJGZS3Lr7ErfvvSwtIiezq76T608rzWiwxlPPPPWn3v7u3dvs7t6nqdoICL67oqOVImgBOcYkcp2gSNIEpRWdbUU4jiQ4t21FmiUUvews/gA8dVOhjaKzTkL7TIL3nizJ0XpxLpSAPtuePV/vl8BG3MmaIs/pmgaXBO7fvXeml5zOpoyGI6qq/q5e6xvmCBDDgh7YWcbWxVmQ3gO/T1PRZCQzMH2YHAoTYZ04bQjRgu048wirgCT+OtEfVHNZJI/HcFyCzuHKBrz1UWEDTGSLFjvqupU04b09uHMgOTHnt+GpKzAsZOHuanl+SdROmAVTlC4dWX4BWLzohJo6Mic+CpVje0trub+qhNMZ7Hs4zaGLzIoKoh/qN7DlYTUXZ5UKcdrzutx3M5eU295oeR7TbKmtUYBKhQEb7wtoqWpZ3GKtISDi4tGKtEiauTyH3lDOO6081t59+Mm/LeDq4BDO7wigu7sLd++ICLiJ951EIOu8LOIuMgc7WwLGulZmS7Fg85S8f6e7LOePscy/ufsy3HslLlxEJ9l3cP0pBf1VeBW1hrt3YPd+ZKNeQ1tKR3CRRM1MrDXEpHO6dgn0fRAmLUvEiRfgTBvWxIwl66LbKolhfdFZFWtNtGEun69nCWxUfB55LgAq8XD33lL2NpvCaCTXxms43hjgBhmzsGCriKMEFqyNATQSLJfqlEwrdA7TzjLyHVWoOZ2dkCc9acEoTVuWaCt9b+8CXVfSNTWTyZSjwxl7xx1Np9jaWuOpZ57g/OUtycjROnJGCu887WyKrefMjo852TuiOinxecLTzz3J+cuXSAYDVJLQW18X/UxwMqohApnF65NaGRkppSWxmujcamo8iratGJclmW1J0oT5bM7BuOH6UcqdWY82yHkYmMBKYlnvd1y8ZNja3KA/WBXAUfRZGa0ynRwzLg8JrgXlSUKfXjFCqwJMoGyF4SqyAt1Pads55XiMMiJSTaLdU8L2crI8J0sKEm1Q3pFlBb3BKjo1hK4jPTmmLufU9ZxBkjA6tw1KkZicuuo42L9PL8+gnOJDiO3CQJYXJHlGFSQ0dLi1xtHRLt5rjAsSropcFyvALHhhlYEmXidn19F3CzK0InjYXN/kwqWdb+vKDCFw/do19vf3qNrmNYUHKq0xeJJEtAtaG5nh5B3BB8kT8sLm1HVDv9fDJIaqqiWj2gfqxhJCIMsyekWORuG7lpWVVSaTyZlgOE0TmqbBOn/G1ixkD/K6oLOe6awiTRUplpu3rtO2DXlRcP36DdwikOt7+oitp8X7dnbNPMDaEJkYExeAnNgK6sDXEh6XRKus0sLG2ChGdT4OPKxk+vXhFI462YRursPVx+Hy9nJRWbTDnJeiXs9Ff7B/KEAoS+CtT8DlS8IkJAmsRzARooZnAWQWryOwbGEoHat8FA43tfy8raTFYqP9djaHcQNHKcx68fxEUJNa6HdwycDmhizMSkmraLQK02MJ7Iu1htCH/ghUIdqlNjJcaQ6DVJJpx+MI6uK51lqeRxqdO0khjIJ3wjQMViN7ZoXNKOdyrpJE5nopBSYX1mfvvmiVyumCOpfvRSE/X2DarTU42o0W52/xQX7QCfXNteW1gIwArG3A5XPf/rYhwLVXRKjbtN9VN2r5uLKZFOAb5NwmUQfmg5z7hRW4bsQVmJgIMCKoWgx3zTJh54igaGVV2MiFriaNGrXF8Muz9i/L79aL9T5VgIOb14S5Kwq4fj06AF/b8YYAN/LxDnRBxMQeybVJlbReEgWZAqMdQWtyCpIMZi5gncOElNOqZGe1R+cdwUMZF9GmqZjPK05Oa/Ymnt2pwjjD1lrC25/b4bEnHiEvMuGKgtiNvQ90VUU9nXJ6sEd9PKaZNoBm/cI2249dYbQyQqUGjDivVJaSJgpnZWEKwUHwBK0ITuGDFTFw8GgENCgdMFqDMtggLbdk2OferRPSNHA4DdweF0y6NBLpgaHxXBrVrA8tayPNynBAlhoUjsTkjPojQDKDVkZbDHp9nKuw3jIdH1PkQ7wGaz2Doi82by0jL6xrMN6QxynUiUnJkhQTv1KdYrQiz3JMquP4GbHNc3CXc8+8h7Q3lHc0ZgZtnL/A+BMTqnKO9hZ3dID2Tpw+xkQNiMICOk0o+gX3b4qlH+cZKDj2MpQ4IYr3g8yYehipDwHofMA4x872BVYWqa1nW4wHbxyoypJXrr3M8eExTePOdFvfzaEQgCMA3ON9R/Ae70SL5GxH13XUVUV/METmhhl6RcF8NqftOtI0Y2W0ypE9wgeH8xZtEqqyZDqb4rywoNZa2TAlBt/K6I7Fq1wsMFrsa3gvQOt0MpZ5Ulrx1re8hV7WI01mWGe/xy3hcQd5titXD3wRv6KwlkKEsS5EDUAqoGCtFxcGZBEFaZnMKhjXMPEwUTIGYTWBt27DE4+IK4UgwETnsqBUtQCb/T3JZ4m1hvNb8Ngjkv8Saw0EaUklcffs430FLwuni4uFX7TcFoLmuKAps2y5Dftw6wTSIAnC40JSjRfnyHgY1jCyMIrtidTIuTGx9YQX/c9oUyzwLiYDj48hH8pu3noBQnnU4wQl7S9vllOoTbpsoyUpZyMmslysy2cCZA37d+GZ94hQmkUrBZkpNZsI8PFWhmA6J39jzDe2INNENDe37so5WYTPPdilhAdajg/p8EEea/u8vK+Lc/0tag1lKZPnD05kzMZr+cwFOAsBdD4C9XhNe7+0eleV6IgW2puiEJdY10ar+CrYI+R9t8LclKVcvwtnoI3AJNGSa/MN5y+ez1hrJEXWyAyrRSDgW94qrKhJXhPIeUOAGwhxkVBR7BgwaDKtSVUgVwLwFOCCw6tAYTKU1lhtSYyAk6aradtGtGQnJ8yOZ9w8ghtzuNcIqHh2NeFdT2dcubhNf9jD1TVWIdZtk9CVJeXJCZPjPeYnE5pZR5ZkrOxssHbhHKO1dYxWBG/BB7RX0tMO4kYJzuO9wzuLdwGlFS62oWR34GN4YILWhpAqEpeRxr8brq4QspqX7jXcaxI6b+jrQE97itSxMWjZ2QysDgb0egVZlpMkfYxJ6RdDgg+0TUNnO4aDEcPhEG02JNivmjIbn9LOS9ZWt+iNRmdsq0lyjEmxTUney8nzNYq0INEJJjGYVMLziEwAQFDLYZ3tyT47eY/++gZtOUcpTdbvYa3lzs2b2LbmaLzH/JWXqJqawUByU3DqbD3J8hyViKhVT0pcCIyU4hhPh4BcF2CkFAkSwto9hDXWB7G6t67i2vVXuPTIFfqDAclivhicfUCPDw955forHB2fiDHgtdSbAMmZU8/jbcA6K7lJfohzjraRVO3Qc3jvaZuWsizxPmBiSrS1HbbtqGsZ5JomGTM3I01TQtdSN5L9k2ixI6soJCYKkBXSljNGUXeOLCgy57l7/yYf/73f5t7uHi9+9Rp//+/8fQwJX3vpK/yrX/nXNN8JHf+GOWIB/gbrRnSDLJw/i6+wCJzL5PfaRi1NWM5L8kqYhOMZHAFzZL4UBlYSeCqDS9uSAByB4llroCxluvLRPpxOBNQkOWyvw4VzsL4hzEysNTxQawQgeAEpzsoHQ6sH2lBSa0iUaE60kSLqsuXfra5AVsO9RqZw+wUI8iIYHrYyaXwwkEUuyyHpCxAp4gJYNcL+DFaEWTIbch/lVFpr0xJWtqTNsDj9SS730ZQC9vJVEWzrRNiCNC5LCyYAOEs0DgFO9sUdtb4R4/yVABXn4OZNEblO9uHlF4WpGkamycY7U0TbsxJR67h8AMQsGK/FZfLAwvww8PxC7+MbuHEdHrks5zdJlo+1+H50BNdfgZMTYf5e0+MHuYYDgI8hjTa2Kq2cuyaO3ehFwNO0cn59BDo2uvNaK4B8Ef7nZ9K+7VqZo+YjQ7RgQx9s8wJnw2E7t7yO79+Cf//bsLsPX30Z/u5/CyTw0lfhV37uO2v9xeMNAm4AFXBBQI5GkSpxSKVKkWsLiLPEuo7GGAwpqc7JdIrSBqM0zjZUdUPTdewe1Ly4Cy/MLKV3DHXK2zcUH3rbOlfOXyQvMrz3mGRhZzQ085rTg3uMD3axjaU/XGHn0hbD9TWyIoMo9HOtw/QydCaWaQ8CaKzD2Q7XdWdZUM5KkjAukJgEU6SkmUGpWGCkRyBulQDKaM5dGnDzqGNeajSefmpZG7RsrgUGhWbQ75MlhqRISUxGohVFPsCkOc5ZWttijKaX9kRk2rXIbs6gTUHR1+RFX9pkSuORqdFZkdOVFcF68iInS3skJhHrvArgLV5S3gjKEDAx1NWjmhZ/9yYm0ahgYmsPsqKHt5bJ6SHjOzc5vHlAZ2NIYhR0OgUToF9kVFVFW1uKqqEOMIwM3jwEhnGy9QRYlVdE9VAqjoiTP/a7/47rP3uNZ9/8Nq6+6Skee/wxrly5wrnzF9jY2GDQ6/HKyy9x48Y1JuPyNQ/LDMHjfBS9x4JaNzW9rkdZ15LXlCQkWYbzokSrq4bhYMS8nFFXFdZ2TCYT5vMSay1N09DajiRLCBW4KJQ0RmOti21vYS587IGraM1bbLhQBu8Vd/fu8fO/+EvcuHmb6WTG8y98icsXL3F+4zwroxEHR0ev9bT/OR2RZl/oK84yPJQAmIX2wnWxSKfCsug0sh9RT1DXUuwPa9gFZnGR0CmsK3jbmowEKDIp+A/UGsoaDu7D/n1ZEAYrcOERCdrrxVrjnAyZ7MX8kUV2i49CzcVue5G0bIMsMD4IUChSsWJ/U60507YYDZcG0jYrY9sitTBoYS1AES2/iRHBsImjI/J+dIlZeTyjBZx45P/xESgV0NfS4vA+nmcr91HksZ3nBTilvajhMJFBidkoSkW9h+HMOt+2cPeGsEhhgUQRcba1Yi2+ewNu7ss5WbSl8EvQkmfi7qmtALQFkHnQVfTHPt4Pia30AX7vt+C/ugFvfhs8+xQ8/hhcuQLnL4igtteDV16SsQun89fG2gDLoMoHWm1NLaM86midT5KYNRP7dlUjOqdyLoyO60TvNZ/L9dc2sd2YQMlSlL0ISlxcb4vHD3BmA36g1uAV7N2DX/wluHFLMm9e+BJcvAzr50V/dfSd5gm9gcCND9CFgCeQKx3bUpDFMQEejfca5QNOB6ztMNqSpwNMXhBcSzkvGY9LXtr1vHKiuNO02ODZSXo8N1S89bGMnc1Nev1eFAwHlJEk4mZecXq8Sz0fMxxtsPL4NsP1FXGIeAhWWgYoSEZ9TC9HJSkemXLtmhZbt7imoZqOUSqQ5X2xmHtPlqakhcFkWnbiKHzwdJ2lbmuqrqbzHq8MvUHBk48WHM47GgsrvZbNjcBKP2UwGJEXPWnTBzBZQZKJKFGuJYcj0C9GKKNoqgblLS54dJKyub6NShX1fE5bzkmTDJWnJElGlg6Y+TE+JOTFkDztoVRABSdDOc/aTYmIvrXBKslLSTBRha9JshTvHN5akiwjTVIODu4zPRkzbRrqeYnzDs0iKVoLG7cy4vR0Rtd5Bq3FBUmHHwCTEJgHhQ6ivdJxAfJ/2oX1qq+/wHg+5+VXXmEynfP8V55nNBoyGIwYDQesrI3Y2d5m/+g+t27doulee0/YOkeCxlovekfrsJ0Mfq2rhjzN8QTaWoTFXdvR7w84HZ8IQ9dauq7DeU+appSlRMQXeUFVz2jaRoL7UDFbiNhOUss2LJzpIoU7VfF+ZVHY391nMp7QdJb79/e4e+8+ly9coGq+14XFcffxDULiRfHXosPwQVgI2wnoSQdx4nYrBX5Swq6HYxU1EV60OAMFj2cy4bi/EAwHzqLu5xUc70qmzWgDHtuSAZGx1kh2TbyyRwMBN0kCmLjb7kQX0bQwO5X7LgbyNz6KjAsTgU1c/IOPibu1fPkIsgYFPFbAvJMFp2hh3Ys2pr8ShcPyEDIjq7fclQcXHztavavIAgQftUFb0lKaz2WBTGLQVpKJRdyPIRhhgdKeAL8QmaezdlMij7FIvfXx/Uml1pClka1yAliSVOYVHY/l/MznAuzQS6G1CjJ5+nQmFvDWnhF4Z9fGAjAuzt/DAjaL+5/PpeU0ncNXvySs12AkQZBrI8l6OdqFW7ei4Po1Hi6eAxvF5M4tU66rWsAqYamraTsRdo9PosC4ky/nBGQfHkaQ2JOp4G2z1JDFWrM8f4uNBA+cxrixWEy1R8P9XQmt7Czc24O79+HCRRExfxfHGwLcKBXPN1FIHF1S0o4SfUDwGrxDO7CJJagEFS3NwTvaas7hUcUr9xWfnzgmUfy4ZXLeNjI8e9Fybr1P8I1kdSwi0ZXkxzRlSWpSRuceoRitkPZ70qJ0TuLutSzEJs/QueTGeOfp2oq2rOnKiq4qsW2JcqJZaLsZSZpQ9PsyJiAR663XBt85qnlDWU2pWoe1rbQOkhyTFOzsDHny9IT9w4aiFxiuDiiGG4y9YtxA4wO9JGG19axqSxEsoyyQBEjSgqLfg6AZrPRkX5MajNEE50SnpLMYKuokw0tB1uuj0CRJTp6mBNfgbSc7e52gjEFpgwVa54StQqHSDK8UrG6IjsZaTq7dprEdG1cuMhpuUJYtw7VzjA8nzOcTnLWSxKy1WJ9RDPs9jk4mpCYhixqRLshF6oBZzECSGhTwD7nmtNYznk2xtiPPU7K8kHRgI3oU661MVh/PX/MUckDYugjPrK3pbEauetR1Q9FrpUXVdGhdge5BApPJKd57RkNxv2kl0QPWOZLEYEzCZDqhqioSY+isFYYmFpilViac6W78A7vCMwVRgJVhn0cee4SqaciSAu8dk9mUm3fu0tmHUHD/PI6zaya+zm8GN0pFYOPlokuilVinSwaknsNRDfeBseNs8rHJZPDjBQvrfWk9fFOtOcuPMSmce0TC9fo9yYVxbslYGBOTj6NOxXkR4pa17KLLSv5/AVK6adSR9EUbkywYiETo/7KRML7OLp0xSRTubg/h4gkcNNAPsDoQDU1Qkua7AEydF5AXnKQOBwRkxFrDSk/OQxqf/wJ06CyuNE4AlCLqZbRod9JUNDi2i5krkcGJbVQ5L07+nWZyLlc3lq2Sa7flb69cErA4b2HtHBxOJMvHWnn+C+0NSlxqJ1NhixbX8oOf6W9gSh5ikVkc1kfXWxcnxRcipk6UnJdgJXZgMns4D+8jcwViwbc5qF4UD0fQ0nSgK/l5gqRBeyctxS5evyZew0m0j08nci0u3osHag0P1BphxPjW5zUggzsfe0yeTxL1bLMp3LmzfH++w+MNAW4CsQUYW1KJUmQR2GhEy+JQ4BPwigQZrJmpgEoT2rbidNZyb8/w4swz8cJebOqcdwwNb7rScn5rnWGxgnWepqnJ4/A65UVvkPcKBisrpL0CHQtDiL1ppQMqzWSEg9agDbZraOcV5XhCNRvj6gbX1ihnZeJ4r0+iNflwSNbLUakGnYorpW2ZjcdMphPQmhAkbTZBobXCeY1JMh653KO1FfQUXzr23LxzhB9scenJZzh36QpJv+Cgq7l9cki9f4stTnhqfcC50QBvFEXWO6vdKEXwDucdrpMiUvRGVLMxXVUTQqAoJNNnMByS5JKEG9I0ghqNRzOenXI0OSJgGI5W0UlG3XoYbLN1/rGYnaKo64bjgyM2H73C2vYOVV2TDQs6YyjrFrUY9okSJktBVqQcncwZJAJuIZw5GANSF3tK0QEzZGL8wz6sD8zqmraTfvPZyLEgv7PO4x4GsomH5MQ52qYjSWtUKRk9VVlSZDkznZAYTZ4JqO7inKjT02Nms5KyrKjKGh/za5x3ZFlKmqR01p6xM8LaKGm7nw3NlJNrv5VTBMWF8+c5OTnl3PZl1kZrvO255xiuDbh37w6/8G//DScnpw/tPPyZHmdFNu40FVHT4ZdtDh/p8kWhVpGN6CqYtrCrZfyAj+yFzmGYwOVWNDPFigCSJmoTHpwnVRQSVNYrliBkwbroIAv4YpK1NmJrLivR5czGot1pYppvlkdRrhbtRq+IAlwJf6TtJPhuOllm4Ogo5tQRyCUZXO6BraAHnAB3j6C/CU88JYF5g54wPieHcHAL1AmsD4RZMkoYHb04pSqKrSM7oJWIj2djYQlCEM2MNrJw5pmArjRai7XYJ5ifijAZLULWJBOBan8Lzj+2ZFXqVkLgHrkCW+dkgRxGhqnp5Plptby9QgDFaSktlAW7oL7pOvkGvc3rAHB8kJZQrDVnjx9YCo8fYq2RIhpBTFpLK1IpeewsZhLJkD0B1Ys5USfHIiouI6h2dgk4sygAPwM2LIGMjq9jca3Bt3algWQUnZzA9hV5r597DtaGcO82/NtfhtPT7/jlviHADcg5sGGZbZMqRaJEZ+Bi2E/w4L0mQ+ORHUHwmrqq2Tu03Jv3OHBTmQyO5pEs5VyvFWNCmqKThJXBgM46mrpCGU2a5QJE0gSTCTtxJiRUWtjQtEAnuQiavcO1Nc2spDwZU5czXDsX23LWJ89S8v5AJnxnGtPPUan0ql1QtPOayWTCbDohTRPyrEApg9Ya7zuc9bTKkQTNcNinv17xGzdrLr/tHfxXf/dnee6H38/K9hZpKrOZgvfYpqY8Oebu11/gq7/329z7+md5aliyOYTUpGAdOlr96ukU7xxJltNUFU3T0TZzhoMVYQGUJssLCBrT64llW2mc9Ryf7PPC9a/T2Y4LO5eorcUNNhg89wGa/pBk5yJBKVRiOP/sU5x705MkWcpwdRVjEnSW05qEsq5lFpeSHW1W5CTKMMoL7jYtripZDeEb8tQWAHiooI9iTFikijz0w/lA7d0Zs7G8Rh9+gQuEqKlz1HVFXhRY2+Gso2pKBoMeTdtgKo1zHu+trFlNR1lWwkIqybhRGpq2oW0EnDVtQ2utJEITJSVapsaLc+9Prtmj/oDRaMDde3d47tl38mMf/nEuPXYBrQ3vfNc7yPKUf/4v/kXU9HwPHguL8GLRU3EEwSJYzMeFHw2x1hC0LM6HFuY9cFPOqniWQq8VAJOmAoQGg5glU8VFI5cRBGkiFu8Haw1axMKLCdYgi0dbiwPr5FSYl3YuC0TWl8fpx1ZZpmVuUxrD/YKSYZOTiQCbdBHeJnEX+E7YA+XkdQ0HsFHBjRre+hz83Z+F938QtrdksdNEkWkti90LXxMB6Nc/C8MShggbZd3SVjybyaKX5cI2NZ2wXsMVzoL1Yq2h34saG3FJcnwA118QbdP2Zbmf/jo89wH5+3OX5H1LDDz7JLzpCXkP1lblZ1kmQKmqImsTGZsil38XBTT7MVX3WwCbBfZ92C2pbz58kPf5mx1Zr4sbMd6nj9dkUQjjZZ2ch35P2ktVfA9CbNc1XQQ18XkugvnaCLIfDGBc1APFUqS/0Hj9SS+pPxC28O4dePad8CM/Bo9fkr9/9ztEg/a//Yvlfb/K440BbgLY+MqNgkwpUuXQBDqMTAsPGk+g6QKJLtAqoJKUrqs5njQcneYcWUk3VsCqzllLQOtAqg153meRYZMkCZ21kn1jW0yWkvQKmeOkEQePMZg4+HHRm3fO4toO11l86zFJwmA0QusVTBAGKDEGkxl0r0AXBR7Ju3HO0cxL5rM5XduyOlqlN+jJZiqIWNpZjVUdSUhwRpMlOU9czvlLb32Kn/hv/juefOcPorL+N37mjMzOyrKUlY11nnj7O7j7yjW++Gu/wPGNz3Mx8/SSjNRmtE2Ntx29fh8fFHU1I8sLekUPjcc6T5KA1pKVErzC9PuEAJP5lJduXePu3YqtrYQKRfbUu6jWdvjYr/4Kk+MT/q/v+jC+6/DOkRZSoL33NFVN0RvKiACtKWdzsjRDmwRCYNAfMigy8iKja1tcWzOO2j/N0ijgEfYmBXIU5etYdGRz/zoWtcXjBOg6T/CttKCbBpn75LCuI01ylE4wRgubFITxwkOSJFjXoaI+wLYWhce5jq6zWCvwT2ktl7XzWL+EhP7b7AoHgwHj8SlN47h04QqPP/0oX3/hK2xvnyNJt3nnu97F+Y98hLv37r/ep+jhHg9S4wuWQUX2hYWWJGpk2gCjGNSXpMKgTFs4jY6jhftD51JJdZCCHGuNCPSinbWOmTJZKuzKA7UGY6RFpOITVFr+pu3iVGon9zMagV7hDKmaRHQ1vUJAwoPBffNSsmvaRnbCg16sGZEpshpUByHu1hMHlzJ485Pw9/47eOcPCYBanKdYa85Epxvr8I53wivX4Fd/AW5+Pk78zqTlsVj0+n15zGom4KroAT4Gv8XX0bUCJvt9eZzZFG5fg7sVbMUl6sl3wuZ5+I1flTlL7/hQdO+4mLmCvPaylsC/WGuYzWPIodQa+kMReBeZsEpNzZ8u3HudAQ68TmDmmx+DmLgttYamQVhKJ2LhNI+ibh1blwt2j+V1vLh+2rgZcF2ccRbrio7CpYUjb3F8OwZqMBBmprZw/jJcfQxe+IqwcOk2vOvdcP4josH5Do43BLhZ7Mo1MbiPQKIk78YHjQsmAj9F3WgsllwZrHNMpqccHBgmXUYdKiBQYLiUFvR0g8k1O5fOMxquxfdFgw6kWYbuFNZ1VLMJ2miyXooK0cZmtLQNI1Uc4qIbnPTls1GPtC9iNuUDyge8bSWZOElQRY+gtbR2OhdnIskk57XVNYp+hjZGAJML4EK0HQtrFVxG6h1J3qMuAke793mkrsmy/hLlqweo9SRFeU+SpGw/cpn3/62f5cVPf5LrH/vXPKIaetailWF1e5ugFF3VsLq5FY0EgbqcYduKtJcT2hq1soq3cjFXZcnNu7d46dqcaanpij7b7/5LPL9/jc/93M8x2S85/+RjpFmG7xy2aUmLghDgeHeXXBc8efEtvHLzeaztqOqSoldE7aClNxyysjqiPxhgW0uqoFIBg+TatEaBFSZH8i/D0q37Z3+5PvTDL5w0QdKElVL0en1s11KWc5LUUNc1K6MhaWJkQxWvgboWhsYHR1VVVHXNZDqJDjnJUQoxNNHHPvjC3v4ntde0Uqytjji3s8kPvPMHeNvb30JrG77whc/x7re9l7XNdYaDIU8+8fj3HriBBy6aRTsirm5BL5kbFLQLd0/Uj0xPYF9Dl4OvOANESQG6gVzDxfMwXIt3rZdtJpQsBLOJLB6LcQWx1gCyIOggbqC2jtkrSlosvSicjcNmBShlct0UkfWwVoCQdZGV0RKwNohDEheWcRceaNEosYd7J+LQXpAJ1M/WAm7+hFpzpsN55DL87Z+FT38SPvZzQBt39lpEsUqJ62Zza+mUKWcSItjLpc1nVmNbI7ZI7t2GazOYa3lt7/nLcHgDfv5fw14JTzwqr72zULUCbgKS6KwzuPBmuPllYSXqUsCfQ/RMw6HkywwG4lI7a0nGI9aaJZPz/VBhHjgeqDW0cZZYrx9bY3NxoNW1CJsTEzVS8WTUjYDl4IX5qSu5nlupNcTMrrPvD2YE/UngRilp0Z7bhHe8B97+FhHsf+Hz8LYfhK11yd154onvTXAD4AlxVpLUCE0QxgZ9FigZQqDtNK0Sa6trKiYTz7js0XiFQzQ7KzpjM/Fs9C3rm32CMdy4d5fV1RUGvRGZzkiURucppqtpmoZqOsN3nYxMSNM4ZLNBoUXPULcE79HGoJMUlXh0YjB5CpGdUU2Kzgw6ywlK4TqP76y4qay4CHr9nox3iMIxDRAcQYUHdhABrz26E2V7Mj3i1le+xONvfTs7ozVAL4sTyEwibVBJgklTTJdg0ownfuC9hDTh+V/+//LWomVztEZALNj5ICcEi/cKb1u6rqNtWoarW7RNSawGuLbh1r1bfOFre9w6VlTGcPVHf4rnr32Rr/zRHxCmDu/g9PiIO9de4OLVp0l6OcF7Tg/2+LWf+z+4ffsmP/zjP8r4I0fcOTygnJcYY7AhoLwmS3NWdnbAaFSQ8RSVl4wb8oSBhvmkQSNhsYpXsdn6njoC1npK3xAI9Io+XdehVBy7ULeQw3xekqUJIJb4sizJc4nBPz09oW0bgvMYk5Gkni4GYBkjk8El+Vs0Tt9eN6Som5qbt27x5qvPcu7CDrNyyng8Jh8meGfRJuPChQu82unrb6wjFt0FNXjWg9AP3CTIYMyFy6mpRGNT9pZaHJQspqmHvoXNvuxw792F1VVhEHQW2y+paFaaRqyutpP2yKKNlMTgPudEQ7KY+5OkEk+fGLkPIjvTRJt3Gu+/87LYOxeBgpc2w6BYilRh2QZ7oNagfRwciaQNf/V5eO4d8C1qzTek22YpdIk8hx98r7Sjfvn/A0UjAG8xv2uQS4vDI6Cs68TJtLoVnTBSa2gbuH8bvrYLR5HR+vBPwfUvwWc/DRMnNz0+hutfh2euCrDxXgL7fu7/kDlMP/Hj8JETODwQV9Ji+rXX8lxjrZHdVQSMsdZgkKTm79sjRMdUE7VPfXk/lIoaIKk1zMuYNxT1M2UZ2UHEQbVIIF5c/4uwPWPkOjyLWVB/um6orcUVdvVZuHhOwO94DMNU7tdkcOECZzb9V3m8IcBNiP9VBFItLSmlwHl9NgaEAA5F1Ukui/We+XzOZKxpbRaTQsRGvmoShqlluBro9Qz7h8fcuDlnbeOEdz13lV7SkxaMBpVmZASwFt8YghE9gtIK13phXTpJ1BW3hMZ3MsVbYdGJuKbsvKQ3HJKubOO9wrUNIcgIBx8pu7SXk2QpOkvkQx8CyqRopfHOorxHGX3mQgpxh53ZhpsvfZUXv/hZVnfOk482otNOovnPtCHR0ZWkGTpp0Sbhkbe+ndnkP+Hlj/8Cg15LCIY0T0SHEQtcW7dolZAVA0gt9bTB2hZjMg4nUz79/B5f3fccOse7fvh9TMyEV176Kjak9FJFrSzteMov/i//Dw7v3WLnyuP0kh6/9gv/G6Nzl3jrO97NV5//HF976QXmVU3Z1BI814kDIstyts6dB2VZW+kxPqyZes9IKzZ2dqjqOUwaFgO4CxQemPDqrODf4Wfiz/xYPDetBSgEJQtQ29XMYoS8UhqFgJQsy7DORvv3nLKssJ1HaYVXgSQx1C1kaU5nO2wUFvsgE8hlpMOffEKSRKNMYD5t6TqF85bdu7vcu7fHZz/7GX584y+SF5rV1VW0/l6cFB4FADq2pBSy8IUHfr1gblQECuUcxhpstrzRojWUWFgJ0DNwdAI3ZrBxAs9dFeeH84ItskVWVge1kTaPj8+jDdHJFFkP5WN7ILYMiGmwi5bTcAgr2wK02hjN7/yyPdDLBXw8UGsw6bLl5eP9L1xIixpiawlO++JnYOe8uI8g7sT98nbRWCEaoVZAzlvfDtP/DH7n50V/1BgBDN5z9uGtO9HbxFrDNIYAmkzcQ8/vwl5srb33vTLT68WvSPssjdqoyRT+X/9MgNCVxyVY8Of/V9HhvPM98Pzn4cWviT6qji6sWGvIckkyVhZWCsko8l7eg51tCRYcL3JvWPyH5cXxpxxvdDp58dz04olGsNvV3ziugghSsphnlKbyGSgraB1nAzYTI/R6mkf9zkK7Fq/rbyfsg+i6CnIdtAi7dncX7t2Hz3wGNv6i5C2trXE2jPNVHm8IcKO0wqDINBQqkCoZH2CDipZ5udJsCMwb6KxC65aqttR1Acg8pJSEkVKsaEOeNPT7GT54dvfnNI1GqYayKen3BjgvwXmpTsjyAdbWELyENdoGggxq9NaiUJisQAWPrS1tM8dWFb7tCE7aJysXz5Nvb+IxuK6WMQwBCA6lNUmiMWkqzM+ZQ0NLcnFMjFVGoWyAswxwGbo5KhTb3YQbX/gsl558iktPv4WmbTnav8/RwS69/pCLlx9hNFxFBzDakKYZXddhXMrT7/lBPnXrFe7c+iyXB4A3wlBpTds0WBcwOsFpi/KaNBtIC017dg+P+dJhzTVrGayv8/i73sytmy9w4Yl3YkxOd/c2/o++hlKB/a9/hf/3P/1H5P0B7/jwj1HZmv2vfpl3ffAvsL59jjv39vj9T/we5WxOXZUonYl2ymgund9m/2CXc+e2GR+NaYLDK9i6cJ77t29FzU2gjm3LDPXgPvvbHm9kYAOcOZMXmUh5L2W40osxHhoSizKevEgYDoYS3DdtaG2L9440TTFGkZqUtdVV7t+/z8pgSFXXBO+orTsTQ387nc3iSJIEa1s21jc4d/EcL730AikpH/6RD3Lj+k3Ge6fY5Jimrv+Y6PoNfyxYCI0UZ+Uj1lHLN4KIhhsk1dZ3EqYXa43cJibKagNpA/1MFv+9OTQaVBNbIoNlK0knkA+WQy8tYssN8TEWmoasiNS/lcGRVRUzRuJ7d+EcbG8iC1AdmRqEidA6ipfTB1Ji4UyouwiqW7RfHqg1JBkUSiZrf+GP4Mmn4em3CHg62JWv/gAuPSqi3sAS4HQduBTe84Nw8xW49RkJqPLR0q01tGUEeolYyr2WvBvrhD06PBawYa0sZu95C9z8Gjz+DtEk3b0Df/Q1Of8vfhX+p38oz+fDPy6tjK98GT74F2S0wf1d+P3fE81NVUYGLbZMLuxIgOK5HTiaRDYLuHAebt+JF8oC3ZyhnFd3vMFrDbBogwio66di4dcIeEysjN0oFoL4CEC7VoBwmsq1Y1JhJ+/fF6Bd15yFSy4K7qtxeiVGwPv6Blw6Dy+/ACGDH/kQXL8Je6eQnshn4DusNW8IcGPynNwoEgupsijl8SHBxh26id9t8LRtkJZu29DWisbKcDsN5Coh1wkj40gLT5ppJrOW8UkG2lPkURhe12RZBg5MajBZgskGONvh65amnmG7Dk+H0YYkyQmNJ3QtTTmjmc/xjSU1CflgyOqVS/Qv7KB0iusqgrPgLVonqCRBGS2tLK1QWktWVexJBg3BKWFdVIrCojqwvqbuWjrvsN6ypTRHuy/z0V/+1/Q3P07dttRNTVPXeAUXL1zmne95H48+9hRJkmESHRcpR1b0edP7f5RPfOUPWE9qkmxAkmlc52jaliTJUQrSJAftsLYDnWADHE8rbltHncJzb36KYjTine/7CVbWN1CJ5vYffZa7n/86g8TRdIGqavFlx+/80i/QKMXK1g7z6YSVzW2ee/u7+MTv/zZGB5y3GDTBSEjXpYsXOTo+QGnYPDeivT9BW2kJ1J3wM4usmxrYUFAo9brYwf88Dh88vos6mrYiazP6xYC86MXwyEDRy+j3c3q9dVbX1ijLGXXVsrd/SJJmrOU9jk4O6KxlOpuLs897fJypY4x+Ve6mXq9HWTb004D1DR/72G9ycjTlzc88y+H4mN2Du3zuS58nSRNJmf5eOnq57CgtsntXXliBswUsfg9eQpYcQpvXCmKtkZsl0TrrofDSS5+1cJKJbiaLbZi6jrtfRM+QJXFB76QFUM8EGNDFdk8u4xu6OE18Phe2wySykD9yScCNTkWv4m3MxkmkVWR0nM2kOIvbX+gfFgJmrUFl8pgd0qLommjfjjk7u6/AL/9r2PpdATd1Ja9FARcuw3veB489JYAoiW0qG3U7H/hR+OefhqSW4MN+ZKCaRvRJCnmdOrJSC9v6tJbbpcCbnxIB9Xt/AtY3pbX2hc/B578OqZP3pm6h7OCXfl5e7+Y2TMewuQNvf7e4uXSIOURaziEBLl6UkRcaODeE+1MBesZEhice3yw8/z6pNXJtx+u4raDNhEkr+gJ4VBCHUr+QpOS1NWkV1S3sHQqYzXtwciDgZxaDEs/mmSm5Dl+Nu6now7yGZAS+hY/+pgDOZ56VGIDDe/DFzwlY/w5rzRsC3KSDAes7O0xv7mJUwAVNFxRtRH5KyaalCQFvFY0NeOupG03rZXeSqMDIaAYa+klL3gNlFONTT90NGA3mcSJ7RZ2l5HlG3s8lldxbEpOSZBld3eI7i2tqCRVMFNa3dNUJzekc33m0VuR5zuqFHUaXLpGuruC9x9kW37nI3pq4sTPoNI+ZLjEiTWlhwoON75cCDMG2NHXHeHrC3skhR9M506qjsmB0IO/nPP/Kdexom43t84xW1hitrjHI+hztH/GFz/0BXdfx+OPPoLS4wpLEEnzCzuVHUBef5eu3Psvbzyl0WRBQDFdXBHgpjbcdVTUjMQatFdbDyayi8gFr4NEnHudN73gbK2vnSZIM61tO795j7A1952TOVicbMtsFWgL7Bycc3N9lZWObuql4+3NvY3NtTWb9KUQDgmJ75xx5luKsYzjskxU1btZwcHxE09RnDCfIunQcRJPzRmeBX+2x6E4YLRqvuqpJVMbUT1hf26LIeyg0WhnqumUynTAv59jWiROvbjipZxwfHdC0LW3XPbDhlH/4V2mlHA0GnExOGQ6HOO8Yjytu3dnj6Seucuvubf7tRz7Ch37ogxyXY7Q231t28P5ANBc3d6WIh2ib9g8sZAtAYCO7Yb2wMW7BhEQdjgZMCwWymx176AYwmMv9tJUU5TwTm/ZC1Griz5o2Lvq1PGiipMBXJxK5byPTkudwfhsuX5Z5UN5H7UrUoCgTS4iR9oB+4FOxGC2x0LzEWoNrBTRNTyS7ZjaXidoWeX39W+KEGm0LE7KyJuLkfCATyz/3BwLKnnhGnmMS23M+gctX4NKb4eZn4JyCqpBzvLIqO3+lI7ibSetq4ciZLeYYAU88Bu94G6ydj/OLWri/J0yQc7EdR7RTxjajO5HbbOzIOX3rczLOInakWAiid84tk42HA9EIzWo4Poq5RHxjUXlQGPv9cCzIqMUssqoWsOsnsLYpwAUt11XdxaC+ubSjnIvp2DPRNLVRQ/VNtWY5pf5POYZ9CQscDOWzMS7h9h48cRXu3oZf+RX4oQ9CNeEszPJVHm8IcGPygnPvehd+9nHC8QQbNF3QxPxbscYiOTidDYzngRUNdWWihDhQaEiUZqBrBlnLYCAtn6Y2hKBJtEcHzWk5pmzmONtx4fxlCI6manCJRwPV+AS8J+sN8bahOj3FNhY7k+fSG+T0Rn2GF8/RP7dJ0h8CopMJMTZcG6F9tUnQWkdgswT+IcSWldIoHQje07YN+weHfO3Wfb54+5hrJy1HDUytp/GONaN453bJ4XqHchlPPv1Wfuwn/zqPPfUsSZJw7/Z1blz/Oreuv0h/MGRn+wJKabTRkcUpePMPvY9/8/v/jqfX+mS9Hnm/h9YB5R0ej+1agndoI06Oqqk5mpYx8dxw6dFHGK6uMJufkGV9fLBsP3qZ9MI287t3z7SZjZO6gwJbt7zy0otcevxxXn7hBX7gvT/M+ooMzTQmzqBSitFoRJHnVI3FGMkcanzN8fERXdv+MQBjgfn3y04KUEoCHLM8pSgG9Pt9ev0+trNU9RyTgPeOm7deIc/7ZGmBc57T01Pmsznj6ZjdvV3atiUQzuZGQfjON5xaUVcNa6trGGNYXdnA+zvcunuH+bxiNq146fp1/rOf+S/4/Jef55Vr11+HM/I6HXkB73oXzD4Ox5MIbjTL9syCuQkCbOaR8agMZy0pjSzQuoG8hWHcpdZG7kt7+V6ORcNhO7G4BifOoSQW6FOpNfQGAlZOT+XDM4ur8SCHUV/aKOe3xMa8EBQvRhSYxVcMv3sw9RLkMcPi+cZWRNvA4RHcug+3j+C4jS24aN81CrZLWO/ESfXUW+An/zo8/aywQrevw7Wvw/UXZVHavrBshyVa2Jn3vg/+/W/AWh90L6Ywh6jx8cs2R6w1NI2Ms/DxuT76qAC5+YlY672FRy/BhW24e3f5GhdEi0LyWF78Ojz+BHzta/De98t9KPWNgxxHIwGMddQxZSn4CG7a7ltfN99HtUZ23UoYxaIvgL/fF41NU0oIZPBix896kkLtPZyMJbtoOoG9+0uX1AO15jveaWotn4nVNWEAVzYg3JEWZFkLm3f9GvzM34Dnn4dr1171Xb8hwI0yipUnH8fPZ+x98pO0U3umQ5LRDAEb5LsLco7zgXy+s2jjzLSjp1sKY+nlgdQYutbRtbm0EgGjFF1Tcb/uaK1le+sCqTGkmaEpS7pyQj07ZePCo+T9AeXJMa2ag0oZbBWMNkdkgx7JaEgy6pPkBSQpznZiDFABlWi00uK2MonwEhrhbDwyMDL6v4ILtE3L3d09/uClPf7gxhEvnTaUPhAwKCUW+JaGsXUcdgplCs5tnGM+PkUHw9rGNi999Uvcv3ObZ970HDduvMCtGy+zsrJOlhVx2rOBoHjk6acZ0+OgbFnrBWzTkKYSJuZcg20aQoj2YW04nh1wMLXIVCnFaDQkMT2KNCHLC7Q2JJua/toah9fuMlSQBcWUQA9FF4S92b19h9//vd8hWLj4yCV810SthpeQwODJsgSjDKurq1R1TV70sGFKNZtTt/Zb1pbvxZnU3+7QGtqu4+joiKqqKcuSrmsp5xVV2VDVFu8deZbRHwwAR1N3NE1D17mHwmApFE0tbpHRyhClDGVV0lnLZHqKc46ybLi7f8Da2gb/4L//H/i1X/8NPvLvfuUhPPqfwWEUPPk4zGfwyU/CdKFXIeKabyrUp0hAnYczy7h2oFswHeSxndE6aPLlDlYpcQLVE1nIt84vc2nKUsSbsxM4/4gAhJNjiLWGrRw2VsTptDISgBNrjYwoCFHMqSNoWbRc9NL9tQAJC6+pC8IU7e3DS7tw4whOmshYGdmlA9DEGVQKTAEb52RnHYwwIl97Hu7chmffBje+BjdehpX1s7lyxFrDU08DfShbsZc3TUwgNjJqoYlunYUweXYo74UIecSKbHqxlRfDBzcNrK3DtbuRXXlAE7OI/b91G37/4+L+evSStNtirYnx3NIaVEY0I3UNvQrCROY8LeZMfb8fWsm1dHQs4KIshYEpSxnVUVkBn1km7Fbw0pZqmuVQzNd8qJi1A6wM5T2pSml1TU7jqJIa9g7kff/v/wH82q/Db33kVd37GwLcgKK/fR79JqhPTjj84lcJdSDEPBNQeHxcZGE80Wz2A8YEki6QakvPNOTGkiSeNJfdlXcaQyBRCqMURgfSJGGmLa2ztM6RZhkJGd5YaqcYrG6T9Xp452jGY3qrI4rBgKI/QCuNzhLUIEdn+bKHG4isjYh5tRaqVfQ1sRm1+Ax6T1AK23XsHx7yqa/s8jsvT3hlOqMNliIruJJA19b4pKPYMezvafq6YBYa9OmEo/4dqrrl7u49npiO+cqXv8be/VtY3zHaWGN/7z6TyZjNTZnDImNFAoOVVda2z3N7fMgTG55UJ6jE0DYtznYolWJ0wLYNbVeze3TMSRVIULGIQn84YnNngPfCDoxWV3jT297Jv/3sl0EpdnqGx9d67Kz1yLKEYAJH97/Ol4+n/Nhf+ctkWUET52j54NE+gPIo50hcx+rqkFu3bkmyLmBbS3iYEeRv0ENiDgJt5ynLjiM1xxgtBgEbvkEIXFYNZfX62FXFseXp5ZkwafWck5NjQJRtvV6O97B7cI9PfuoP+Ht//7/mfe9///cOuEFJm+VNSNz7F74KzQLdxN+fhU8AUw2DIKxDF0QIaxowUXiZBQEbzsjfLAS7OkirRttlXH2WC/1vYt7M6pbsmJ0TALEyFHFmvy+FPkuEvfmmWnNGzeuFWHehr1HL2yiifkLJonV0BF/ZhZfGYkUPVlpYqRJNkelgx8CeAjOA0Mi4h/4dWfx270mmyfNfg/s3RQC9uQ67d+W5x1pDrDWMVsRtNT6EjSgiTpOle0mlMdOnEVH08RFU8YkvGKjhCHaiIDt48Gvw9nfCZ5+Xx+oZWO3BWi/auD3svwTHU/ipnxRQZFthr7xZCshd1PqsDeFLt5azi84szN/nRwjLcMiyE1C9aLPa8I1C4KqRr9fj0Equ0cUMtaqUzyTIetPL5PeH9+GTn4b/9u/B+9//vQZuQBlNcX6b7Xe+h9Ba7n3pRVSQ7BuFzJ3yQQBP2xqqMiHxnsw0pHRkxpNnjizzJJkUK+UdJqQCbFAYAqnJWSsCTsfEYdsxOzlmcrjLcG2TwcY6zlmm9/eBlPXzF2VqsrU4OlKTYLQhpt9Fq3cnbHWSoLWJtnEtLI1fQLJAQB5zMpnx5WtHfPxFz9dOwScFTz99hZ2NTfJihfpoHz+5zWl7ypMfyPF+g/H9TW5df4G7x8fM7u7zU//5T3J8fMLv/uYvMRnPSbKCw737HBwfYLRmOp2yvrGF8x7bdTjX4bxjuLrCvZu3JAHXOrp2htIJSZJKK0MlBFXTNCUHJxV1J9PZlVIc7N/i8OAuFy49iVIKazu8Czzxpmchy3hi5Pnwc5fZ3ljFB8d0OuGVgxNeOmz5O//4f+Dw+Jim7uiP1nDWkqb50ryhNbrzGA1VVXJ4WjMKAWXVd+JV+P45AjjrX7cRE3/SkSSG4bDg6qNPcOH8OU5OT1lbHXLv/gEqpHLtB4ltuH3nNvfu7rG2vvpn/Cxf42G0aFje+R7ZqX/pRZazplgKcAnQGiijndo0QBdBjYPMC3MDsssNaVzgI8gwORSRnbBOFvXTE3HqrG3CxoYAn90D0apcuBTbYS4+TiLgJdYasXpLrRHgFH9HZHC8X74GlNz3dA7XDuHrXlgok8NTl2BjC4pVON6HyW1oTuFDObgN2N2Ca1+TPJk7e/Azf1nGP/zGL8J4Lm2K/V0ZkaC1jHjY2JLH7zoBDt4JM3L9FjwaXTSTaRQ+x1aUSkHV4qI6qeJwxvgS9m/BwR249BRnkf/OQ6w1jDw8dwk21gS8TKfitjpo4R//A1kk606yeqyL87biqdFamB2lZEE9rZcaq/8Qj4C0JP+sj8RIAvijj4tT7fRUxjDcVyLyN2bJot6+I9fi5quvNa8K3CilbgBTpMNpQwjvUUptAP8KeAy4AfxMCOEk3v7/BvxsvP3/KYTwm9/u/kMIWN+RDQrOPfMWkmA4PTzA3j4iUVFrQzibGq5R1HXKUEUhHh5jPFkmXzr1BN8RXI5WAUMUoKFQOPppQachOMf46JDJ/Xt451HrirYsxcrd1GxcuIT3DpXkpJlB5xneWULwBOcJSD5NcB5tEkySnDFNAWL+hyjIvdfUVcn127t84pXAFw8y7s9uceHyef4v/+R/5pGnHuezH/0EX3vheb5yesD9suVoXPPZfzUh0QfkIbAxLBj0hhxMSo7Gp2TDFa4+/kNsbcK1m19n995LvPTKSzz61FUee/wZgpeMnc522LbF2ZYkz5hUXvJwkizqDYMwY520Pbz3zMo5JzNHGxQGMHiOb+yyf++A/mAD732c7u1Y3VzhzVefYX38EqN+TlvOODjc5/Zhyefmip948xU2Byn37s/5yheu8UMffB9NXZKkGSoojDY4F5jXM7RWtK2X7CA0ReA/THDz53Q47zkZTzg+mnD+4jmyfo9zm4+wuzHGGHkngg889ugj4BsmkzG9fvan3OurP17vWiMW2E4YkWfeIu2WwwPRnpwJ476JyalTYFlrBNzEr9TL/fmcbxy+iTyltIhaFyfsxL17whysK2kB2GgZv3BZbpPkwnAUMV8kLPQ1MePD+ZitkyyfH8T8j+hW8Vqss3d24eUABxnMbsPFbfgn/ws8/SR87BPw9S8Ls1J1MK7hX05AH0J4AYaFDLuczoWZOT2Fx34QNhXcfBHuvgjXXoInr8LjV6PIOQK4thXBcp5B5eJ4iWzZMsMLSyJuDsntmbrleQsebtyHu4cw3BQmYTaR+99cgavPwPglcfOUczjcg8MSZgrefAlGGeyW8IVr8MEflvObZnL/2ghrVk1FuNw+cH7/AyBt3lCH98IOHk4kvK/fh80rsDFepnb7AI9eESZxMobhq6813wlz86MhhMMH/v8fAR8LIfw/lVL/KP7/P1RKvRn4G8BbgIvAR5VSV0MI32YTGkBpesUK/d6Atq7YfNtbaGd/SHfS0oWAC4s2lbhrujbHFR1F4hmmgUEvkGUek8ogQu8hTTyJcWICcNB1Qdq3KtAvRjgUs5NjXNMxWB1RFEO6+Yzm5JTBxgoqjX1oZ9H9PmiPyXoEp7BtRZJnEIIIh41k1Uh2zfKleudxtuP0ZMInvnKPPzrc4dp4zrR7iatvejM/8Vd+hs1zl1C54mB+wMd//7d45eYrHDc1ZdQYaQJrRtP6kpVRTrCO3//4x/grP/03eertbydLDV/4w4/xR3/4aW7evk1A4X9EPqkheBmk2DR421GXldiDfbTBIiMiPAFvHd4HbPBM53MOp4oyOKoA50frDMyA09snfOL+bzGfT6jKuQih9/bZeewx6s/f4OT0iLqasXvQ8bk5fPiZy/zA5Q32dm+xsrnO8cEJf/iJT/Gu9/4gSZpDHghJivOWclrSXx+QJDIpvVCQAd9nccRv6MNoQ5qkHI1PuL+3xw+9971cufIolZ2yd3+fLM1w3pOahFF/gO88bWcf9tN43WsNxYokCNcVvO0tMP1DOG2/kbVZ0AhNDr1OhMBpEA1JFv+96GIlHoxb2sc7xEWlAhRDuZ/jo5jMO5SfzWfCiGyMRFsCAmhirSHriXW7rQQohBBn/0S6U+lvDDVbMDunU/jKXTjYEfdJ+yJcfTP81M/AhSvSzqmP4fd/C26+LLqTB7VGRkMoYRgZl9/5GPz034B3vENaZZ/5bfjMH0iqbFDwob8cT62PE8tjMF9VSSF+oNachbxZF/N/vJyHmVqKn0frkAzhzinsf1SATTkX/czuPjz+GHzuOoyPxKJ80MEMeOYSXN6C+7eE0Tk4gk98Et73g9KCy0McHeFkGOn6II4iUMsd1H+sNX92xyKBe3wCu3vwvvfBlcfAzeHu3nLMh1lk7vg40+rVHa+lLfXXgQ/Hf//vwMeBfxh//i9DCA1wXSn1MvCDwKe+3Z3leY8szwlKY4YFG08/i52W3PvM5+nmDqWCZDAR9TNeo32CSRswQsxoE0Rjlxic9QTj0cbHNrCiaS2ZN6TZkDTJ8U2JKys0iqzICN6CD4w2N+mvrRJSTdLvgZZBhkqnaJViCoNtpN2jTYoymqBUtNrG9lkQJqQq59y6t89vPr/Pi90THEwPSIqWd73t/Tx59a1orfnYr/9bfutXfpGv3HyJvfmMOvizrr9GoTF0PmduU9IWiixwcnjI9a9/mV/5uf+duzdv8MlPfJyDwwPQLU1VMxgMAEVnO5qypq5KbDPn+PCIrUSjYnKy0rGoeR81egHnPccTy7wxaDR9FRhMTvjSb/86Khh+8RMf42A6RqEZpCnDYY9nn3gz2+eu8sqdL5Bpz1dazVuubPFDj20TNPimJh9u8Z73/xAvffkFPvqrv8kH/8KP8+hjj+EiIJxN5+xc2CRNEjyi9emh2NFwx71+U8D/47E8vPdkaUJeZOzvH3I6PmE0XCUzhne/4x3Mqzm/9du/x8nkhBde+To/GQJVNX29n9ZDrTXkDwyaHPbEBTQt4TOfh3lMbA1w5q4JWtpGsdaIm1p0fTJ/J7I5Jq6MQUkR9gayoQhz21IWe5QAlVhr2NiA9VW5n0Ev6hCcZL+oFAoTc286cRYZTYxvZ+lUiUxIWcL9ffjSHnRPwPQA8gbe/X545jlhUH7zV+FXfkGcTvMp35gdopBimkGXiYMqC8JsvfBl+Pn/H9y8Ab//O3CwL6LqspKFByXtqLISpqSZC7hI9TI5+azWRIpkMTF6asVphhYQNDmF3/51YdU++TFpe6GErRr24Im3wLk3we3PCwhsNVzZhMd35P2paxhuwfvfKxqhj/wm/NiPw6OPxfadhckMLm5FBuwBIKtZhiX+x+P1PbxbspT7RzA5gcGqXOPveIdcR7/zu3I9vPx1uVa/g1rzasFNAP6dUioA/zyE8L8C50II9wFCCPeVUjvxtpeATz/wt3fiz/7EQylNmuWYVHqxwSj6O5usvulpTvbuMPv6XbRVpEoDogHJlCJxOT7tyHLP6siQJQnOt7Q+4IMixZNkFj23OK9oK6j7liQPJFlCM5/hSkevn9EbrlD0+pjVFZJ+jkoS8DJxm6g5CUGs1SFYlNa0VQWhIy1yggoYlRBQOGdpq5LjwyM++8pdfvNaTVk8S9UdsX1hnSefelYs1bMxz3/hNh/96K9x6/SIqbcR1EjP3qApVI++WmGQbDDI1xlmOU4fkeeHpH3NR3755xiurGKDpd9PadvAY48/zfa5c4CibRvarqIpJ8xPDtm7v8fV7Zw0FydVCAHvHCoEgnMEOqp6xv0Dy9R6Uh14+zDlmS3NDZ+icsNTj10l2b3O+voKRZ6gCOQDzfWDMWYP9CjBGMV7dvqkyuDR5Frjs4Q0TfnAX/wwO18+R1fVWG8JFrquZXI65nKWsr25yuHBFBcvvD6wrhSH/yGI/f6cD+ccdVvTNB27+3vcu3eLRx+5KoJn1+KCi1jYkyQJIVhu3Lr7MJ/C61prJPa5kLyVEGQx3NmEN12FvTvw9buivYi15izAzeWQdDL5ehRD63wbxa6RvskszK3stCqE7cmDiF3nMyidiCSHqzKscHVFQgVTqTWio0EeN0RrdYiherHWUMT2l4rBg94KoDg6hFfuwisVFG+G7ggurMFTb5bHmY3hi3fgo78KJ0cx2C4+1sKhpHqgViDZgHxdRJ76CLIDGBr4pX8pWTW+k2Tb1sNjT8s4g4XzpatgPoHTI7i3C9v5EkiGIEzT4jsd1FM4sAIQdYBBBtsRTGYaHn0G7l+D9RUoUjnPQwOHp7AHjOI5O9df6o+0FoYpTeEv/Sh8+TzMY+ChRdpmpxM575urcDD5pmtk4b76j8frejgvYvamk/Tru7fgkauR0WuXTJ7z8fPmJIbgVR6vFty8P4RwLxaV31JKvfBtbvutJBJ/7EpRSv094O8BbG9undmWre2iziUh21hn9ZlnqMZT/P0ZzonA2Chp1egQ0DbD5BWDgUGHQNVI+J9qPd5o+j1POe3ovJIJ49bhnBXdzskUg2L13CZWGW7uHXD+0jY9lxOaNjK/liRL0MagEkkO7soO3waUEQV+V5eoEHA6oas75rMxL92+x8deOuJTh4717feAKnnvBz7AI088y3R6QtuV3L9zjU//0ae5drxPGx6Yk6SkYCak5GpIwoAQNNPqhHnj6ecjLqy9GW9TZrM5/ZU+o2HBaNDn4sXH+Mm/+p8wGq5QVXOa+ZxuXhGahsNbdxgfj3nymcdQPvbCCRgTnWXa0LYl09OSV04c6wPFX396nUHhcDpQhy1Wdla52Gywt/8y85Mj7o9ntE3HF/3XWTWGXBvWreJ9CjbyHpk2TL3HGEOSGEwioyEee+opOmdxXYe3nq6zTE7GEDyraysYAzMbyIEERQbLEMT/eLxuxxOPXcGGjoODCVNbsntvj8uXHkPHrCalPEYrnLV0cdr9H37mDx7mU3hdaw2bW0vbso3C1/9/e+caI1la1vHfcy51r+7q6ttcei47PcPeYC+Iu8QlRIUI7iIQREUhIZFEY/wgamJAE2+JRv0gfCZiQgKoJIpsCCIryjLIZped2V12bgszOz3XvndXdd3rXF4/PG/PNOssO+vObHWN7y+pVPXp6qr/6Tr1nOc873MJAl3GuP12qDfgcpMrwxTFvmRqtOdLtgNFTaqmZ0+C/dRO+k6h0decF2MjFkmsMtca6vRMjWs4fnEZdk9qrk6rr+/jxXpS9n21zGlXq1n65sp3lW5b39MLNGG2tQHnL8EPV2Elgcmf0OqXhx6C2bu0SV/UgUtzcOQJ7cy79cQtm85ZAFICiqq9s64Ro2wZKndDFGqjv5GC5uMU87BzH7z3A1oZtdlNudVRJ+fCRe0jdPs+28/Gv+pMJrb8u9+GWgfWEigIHBqD/GaEZxJ2VCBqagVUbU0TkrsRpC/o63m+OqIh2gvHC+wyhm9nFtlcn4OHNKoURepExbEuB5oUxsqqKd6SY3Xtw8hxo9k3A8TqXMYduLwIu/dr9NKgUTnPJsZvTrt/FbbmupwbY8xle78kIl9GQ7+LIrLTXkntBJbs0y8Ce7b8+Qxw+Rqv+RngMwBvODBrPN8jTmP6vQ69bpt2p0FESmHXNNP3vhETP4dZaml7BwFPjLbUigKW1gJCv0u1GOAFgmcMRDp4Mlv0yRUi4maGfuSTMwmxSUnaHUwvYnzPJFHo8dzxeV6c7/H2ByOmJ6bxjQF88A0iqV7E+T65fJ6kq8lvuXwR8YRWvU3U2iCODUvLKzx1fp1vXGgzH3lMjt9NoZjhHY+8l9k730y9tsJGc4Xv/MejnLhwhrXU9vThanAUBF8CMpTIBxOYNCU2htArkMsU8DyPlYUOhUrCnn37Ga1UmLjzPmZn7+AnH3qI3TN7iaI+nXaLbrtJ3GmS9Lsce+YoY6Gwf6ysVS9o6S/GRqNs8qJJY3bnfN40W+bg/gn6SUqz26WaqXLs21/l1PkVzq+0yRczlEdHuG12mrXVNZbPLpLEhoNJiD+WI5vNY8Qn6nXIZLKYbFYbC4rghT6SpERJF4NHv1WHVpu43aNcKhD4PrUoIYehbKtDSwgNFzK+aYSBcNu+CrlSlfn5ZXq9mMuLy0RRT8v2xSMTZqiMjmIwxFGPRqvG00eO3DANN9vWyIFZg+fpCbdvl1A6TSDVpMZ73wjxc7DU2rJaYXNrogDWAvC7UAzUEBnUAIuo01OMoZGByNcrz9R2gO1FsHdSoxEn5uFyDx6MYGLaOhs+BMa+l3VmcnmwtoZ8Ud+n3laHJjawsgLn1uFCWyuNxu/WGVcPvxfu/gmorUBrDb75KJw/rZGL/+362ShQGQJb8WRSbbyXKdpRDB2oJNpYrzIGd9wLs7fDQ2+DPfu0j0+7ZVv0N/Vq/OgzenYZK6sTAporpPNmriZKm0iX3mbLsH9cl4S6XchU4fGvwvlVWGnpflXKcGCH9mY5u6j/gySESg7bkl57C2VsafFmSXnoqUOVdAFPo1jtjvZzKRa3jF2wn/Nm9MzZmptHILBvTAezzi9DL9Z8qqhnjz/RJPDRUcDo9k4dXoWteUXnRkSKgGeMadjHPwf8OfAo8FHgr+z9V+yfPAp8UUT+Fk3yOwQ89QpvopHKfkK71aTVatBuNojjHplyiezBQ/gG5Mln6Kz37TFogJTU+LTaJZbqDQq5VC8MjI/nRcQJBGFKrmRotROtUuyCjHiEBkZ3TWHyAXMXlnnyxYT9UwbxYaW2jCQJ3X5ErdFhdSOi1jSY1OP2fQXuOrSXfK5A1O/Q67RZW1xgdXWF1XrEYxcijjYiEt9jeuoeRkYqfOhjH+E9v/IBLr64wvcOn+Xfv/IFTs6fo2nSK8vPV5wb8QgIKTDKSLCTUm4vhpQwyDKSr1AuFQkDn253g3ijRWXvJLN7DvAzj/wUB++YJcxk6HU7NBsNNtaW6W1skHa7rC/Nc/TIMd59cIrRYg5fApLEhtBNgkljkqSPH/hAwv37A/buHcP4Hr0oZr1VI1pcIFlM6HYNpXKWHTPjZHJ5vECnr1dG8hSimMgPSAOhl0R4JiIMAvx8kcjztTQ+TXRQKCmkhjSNSVsNxqI+3VqdUqmAlwmIuzE1hBBdlg1FoIdzcG4CmSDDgdumWFq+xB0TE+ydmeTs3AL1+ganTp4gTiLGRquIL3gChXye8eoYJ154nrlz52+IhtfL1gCaE9Nsad5Jq6HGs1zSq3wDPPkMWFtzpcLH+NAuaXQnt5lf42lTvwRNMC4m0PI1obiLLmGlRiuV8iFcXIYXE5iwUYzasi7R9GPN+2lE0DR6Mt5XgEN7tYtsv6NLU4vzugRVj+BiBBuRRo2m7tFE3F//NfjVD2r593fm4Cufh8s1BvziAAAOk0lEQVRzesJ46ddGPDTsMQLBLsjtBRLtMJyrQNkm3HY3YKMFeyZhzwF4+Kfgzll1IrodLcNeW9HcmE5PlxiOfB8OTmojQgnsJHKbNJxGWk0VWAdwXwB7x9TJiPvQqsHiAiwm0DVa/TQzrv+HwGhCdDmvERjf1xNlEqmjFATWEfRtMnPClSZ+qVEHr9VQh6xW1/b/2UC7FW9GbTL2OOnhHJybgR9qftTyJZicgJkpODuv36uTJ/SzHK3axHmj862qY1rdN3fuut/meiI308CX7fTfAPiiMebrIvI94Esi8jHgPPBLAMaY4yLyJeAEusL52z++egGN+iYJvW6bVqtGp9WgF/XwMPhBQHG6SjYskPb6XHryWUwXDCmJEXrGp5UIzVqOkUKbyYouPZkUPC+l2xe80BBmY+K+T2sjoFQRyrsm8CXlwuULnDjbpR57jFeExdUalxY6LDUM8+2URj8lIGA8EzBb9cgGPq12myRO6fW7rC0tUq/XWW9F/Pslw/PtBC/wmazeS3l0mne+5x38/Ad/kVwuS692iX/67Kc4fnmOBuZq12qLJx4hOYpUKfmTFHM7yIQ5wjBD3i+Qy+UIvDzZXJ6x6hRh1ieueTx7eJmlc1/jt/74w4yOjbCysszq4iLNtVW69XXidpvvPn6Yiol4+x17yOWL2kE+FUwcYYzgexniJCEIQyrVCfI7c8T0ieKETCZDYoRdpRJhvsR6kqHZaZHJF4hTTZpGDMUdOk38UrfHRA56JqHkZ/CyIWmQIY1ifJvngzFXujinSZ/ueo1xgfzaGt6BGcrlLEsbXV2uy0IQCiRQ8cEzQj01m+mP3PBanf9nCML9b7qHu+7ZzxPffZxTJ44xOlJirBwSBBkWlxbwPI9dO/YhApMTVW7bc5B2s863Dx+m171hvaJfF1uj83E62tq/1dRGcticl+kqhAWtanryWXVQNsu7ja/VS7UcFNpQ8ezIAmxiq1EHJxtrf5yNACoClQlNlJ2/AC92IfJ0+2pNoyINA+1Ul7cIdGlqTPTE3W7bKpEuLC1qOWwzgstGk58DD8bugdFpePhn4Zc/CLkcbMzDZz8Fl85ytRJqC+Kh5VxV8Ccgt1PL1sMM+AV9DS+n0aPqlHZWrntweAXmvgZ/8mHNg1ldUUdkbUWrXjptePywOi933q6OBqhjE0e2HDujn0EYan+cnTmgb/vR2JLtUkmr2ZKMLnnlC+ogWVvDTtuivtPT3TAJ+BkdpRBmNcF6M8/HGHUA/UB1rdfUj1lbgwN7oJTVUnhj1LGxtgYffmTumOMGIPCme+DeA/DEt+DEMa0eHAl1CXFpQT+36b0aQZuowsxBaNXh8Le1S/J18orOjTHmReDea2xfBd7xMn/zF8BfXLcK0YTSdqdJu7VBr6ehKc/38AKfIJvDGw+ovuFO4kaL9eNnIEow+MTGo2tS2v2AC+sZRkdiYgTfE8IUMhmPOEnJ5lNM4hFHPr12goQeK6srLK02Ob0R0E4TnpyLqfUMy70EAfbkA+4Zz3JgMs/e6VEmqqPkink2WhssLZyj1WqzuNhhvSP8dx2e7yT4vjAycohicZpDd+zlbe96hH4v5dLJZ/nLP/xdjp5/gQ3zo7kjms7nW8dmjIJXJZsZRwgRfLJ+nny+SKFYJpvLksnm8EOfOOqxOH+apaXnOPPDLm99+A72HJihsb5Op16nt1En6bZ44fj3eeqJI/zmm/cwls9h4pjY6Fq7+HplGfc6JElClESaMuCHdnlPB4Wub/QplCq0SwVoRoTZLJ7n4xmb7GVgpdagVmuCSUlCj/35RR44lKNYGScWwZgE8TTqliYxkhp8AggMfq/FXTNCIKtcDg+xs1qmnJlgaW2ZYtTUkTk297HsQSfVAycj2gepe90Hm+OllIoFHnjwPsKcMFqZYGH+Esb0CDM+YZDBpKlG2kR7IHV7HerNGnHU5vSZMzdMx+tla3TidkOXd3pdGwb3NJKQzcJ4VacSN1pgbQ34dkklhX6g079HrFvtizo4GZtnk0818hL56oCEnpaBrzahYRMjz8XaGblvkybzgXb5nSzA1KgmuhbzqnHhvOazLHZ0OnkN2z9GoHwISjvh9hl49y/oa576Pnzy43Du1Mskxm5xbLwqhBNoBMfXkQf5IhTKmuyczWmZetzTSeFLz8EP2vDIHTA7o83y6nUbtWnpeIbvPg33z0A+p9EVa2uwtoZexw6/1LE1V+ZLRfZzaPShWNGoSjOyS0y+/ZzU1lBvwLraGkIP8gtwKAej4zYhOLnatC+xHaGtraHXgt0CrEDmEIyXITOuDlrUvFI4tZlnfWXgqOASjV8rhTy89T5dihydgPlLUO+p8xzYjsS+6MVCap36Vl1zcs6cflVvtT06FBtDv9ej3dig3WlpDxaTImEe8TziNCKVlMLOaXbd/wDS79E4dZZe6tNJDf00JTGGxUaOar1FmIN8DISGVAx+kCGT7ZNECaTQ2kg4fe4HdDs95leEk/0Oa2lMsK5VWLuDgAd3BNx3oMpEZZRSoUQmGyJ49KIO66vz1FbX6LRgrubxb/WYlSQh9ATjjzI6doB+usjBuz/ARr3FfPcMn/rT3+fwqaPUUh0jcfXbo6XeOSlT9qYphOPkwyq57Ai5IE8ukycIfUqlUQqlki0IMLTbDVaXLnBx8Wla3TmmJiocf/4oSyvnCQ34SYKXRixenONf//XrvH1HgbsnS5g4IvFEnUdPu5x2u22SuE+YydKP+nh45MMMzW6fqN+n2+uwEOVpl3ax2mqwsd4iW8pj0j5iEo3AhAGVaonV9SaddkpkDE/MrbFzIiDu9NgdJ5CDwNfZWoIdT+HHeJ5P0etRnirTTVrUkj7Tk1Xq6wt4SawXYb61g3Z5PO8JrVSTsLO27Xt3yJIAg9AnjgZb4O6JcGjfDOPjVRqtOiOlEZaDZTrNBmGYoVQqaX5NHOmxZwztTovnjx/nwZ98C1NT41y4uDDQfXhVbA5pbNiTsbU1hPmrZcKSwo5puP8BjeqcOqtl3Zt9WYyBRh7qTfURrK3RhMCMDtO0toZGok3vOn1YFj2xpzGsw5Vp2jsCmK1CZUSHY2YzaE+YLqwu6OiEFlDzoG5HOXgC3ghUZyFZgDe+X5eOzrwIf/r7cPKI7Vj8o7ZG50iVwZuCcFxv2REI8nZIog+lER19YG0N7QYsXYTFp6F7FiZG4fmjsHL+aiQsjeDSOfjy17VyaapsxyzYJSFra+i2dekpk1UnE0+jNd2+VjH1OtDPw/QuXT5ab2sC82b1jOdpldNYGdaaGvEyBubWYSLUSE6U2EntHldGgnuejr3wfPB6MF3WfipxHybGYW1enaBY/0Vg7xNseb61LZvLmsPm5ISbeUUDRESTiKtVaG/ocRYsQ7Ohx0CphObXRFcdyXYLjh2HB96iyfgXrt/WiNkGH5KILKNf35VXeu42ZQKnfRA47YPhWtr3GWMmByHm1SAiDeCFQev4P3KrHTPDgtM+GF5O+3XZmm3h3ACIyNPGmLcMWsf/Bad9MDjtg8FpHwxO+2Bw2gfDa9XuvfJTHA6Hw+FwOIYH59w4HA6Hw+G4pdhOzs1nBi3gNeC0DwanfTA47YPBaR8MTvtgeE3at03OjcPhcDgcDseNYDtFbhwOh8PhcDheMwN3bkTk3SLygoicFpFPDFrPSxGRvxeRJRE5tmVbVUQeE5Ef2vuxLb/7pN2XF0TkXYNRfUXLHhH5LxE5KSLHReR37PZtr19EciLylIg8Z7X/2bBot1p8EXlGRL5qfx4K3VbPnIg8LyLPisjTdtvQ6H85nK25OTg7M1iG1dbcdDtjjBnYDW2TdAY4gDa+fg64a5CarqHx7cCbgWNbtv0N8An7+BPAX9vHd9l9yAK32X3zB6h9J/Bm+7gM/MBq3Pb60TZOJfs4BJ4E3joM2q2e3wO+CHx1mI4Zq2kOmHjJtqHR/zL75GzNzdPt7Mxgj5uhtDU3284MOnLzAHDaGPOiMaYP/CPwvgFr+hGMMd8G1l6y+X3A5+zjzwHv37L9H40xPWPMWeA0uo8DwRgzb4w5ah83gJPAboZAv1Ga9sfQ3gxDoF1EZoBHgL/bsnnb634Fhl2/szU3CWdnBne834K25oZpH7Rzsxu4sOXni3bbdmfaGDMP+sUGpuz2bbs/IrIfuB+9MhkK/Tbc+iywBDxmjBkW7Z8G/gA7lcYyDLo3McA3ROSIiPyG3TZM+q/FsOh8KUP1f3d25nXn0wyvrbmpdmbQs6XkGtuGuXxrW+6PiJSAfwY+bozZELmWTH3qNbYNTL/RCc/3iUgFnRb9xh/z9G2hXUTeAywZY46IyE9fz59cY9ugj5mHjDGXRWQKeExETv2Y525H/ddiWHReL9tuf5ydeX25BWzNTbUzg47cXAT2bPl5Brg8IC2vhkUR2Qlg75fs9m23PyISogbnC8aYf7Gbh0Y/gDGmBnwLeDfbX/tDwHtFZA5d+vhZEfk821/3FYwxl+39EvBlNPw7NPpfhmHR+VKG4v/u7MxAGGpbc7PtzKCdm+8Bh0TkNhHJAB8CHh2wpuvhUeCj9vFHga9s2f4hEcmKyG3AIeCpAegDQPTS6bPASWPM32751bbXLyKT9koKEckD7wROsc21G2M+aYyZMcbsR4/n/zTGfIRtrnsTESmKSHnzMfBzwDGGRP+Pwdmam4SzM4PRPsy25nWxM69XZvTL3YCH0ez6M8AfDVrPNfT9AzAPRKj3+DFgHPgm8EN7X93y/D+y+/IC8PMD1v42NHT3feBZe3t4GPQD9wDPWO3HgD+227e99i16fpqrFQxDoRutJnrO3o5vfieHRf8r7JuzNTdHt7Mzgz92hsrWvB52xnUodjgcDofDcUsx6GUph8PhcDgcjhuKc24cDofD4XDcUjjnxuFwOBwOxy2Fc24cDofD4XDcUjjnxuFwOBwOxy2Fc24cDofD4XDcUjjnxuFwOBwOxy2Fc24cDofD4XDcUvwPO0PIQw46HXUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, axes = plt.subplots(1, 2, figsize=(8, 4))\n", - "ax = axes.ravel()\n", - "ax[0].imshow(images[0])\n", - "ax[0].set_title(\"Original\")\n", - "ax[1].imshow(images[1])\n", - "ax[1].set_title(\"Modificada\")\n", - "\n", - "fig.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Trasformaciones afines" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En este ejemplo usaremos la librería OpenCV.\n", - "\n", - "Esta es la imagen original tomada de [omes-va.com](https://omes-va.com/trasladar-rotar-escalar-recortar-una-imagen-opencv/). Código tomado del mismo sitio." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import cv2\n", - "image = cv2.imread('../Imagenes/ave.jpg')\n", - "cv2.imshow('Imagen de entrada',image)\n", - "cv2.waitKey(0)\n", - "cv2.destroyAllWindows()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Translación" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$\n", - "M =\\begin{pmatrix} 1 & 0 & Tx\\\\\n", - "0 & 1 & Ty\n", - "\\end{pmatrix}\n", - "$$\n", - "\n", - "- Tx, representa el desplazamiento en x.\n", - "\n", - "- Ty, representa el desplazamiento en y.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Translación\n", - "ancho = image.shape[1] #columnas\n", - "alto = image.shape[0] # filas\n", - "# Traslación\n", - "M = np.float32([[1,0,100],[0,1,150]])\n", - "imageOut = cv2.warpAffine(image,M,(ancho,alto))\n", - "cv2.imshow('Imagen de entrada',image)\n", - "cv2.imshow('Imagen de salida',imageOut)\n", - "cv2.waitKey(0)\n", - "cv2.destroyAllWindows()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Rotación" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$\n", - "M =\\begin{pmatrix} \\cos \\theta & -\\sin \\theta & 0\\\\\n", - "\\cos \\theta & \\sin \\theta & 1\\\\\n", - "0 & 0 & 1\n", - "\\end{pmatrix}\n", - "$$\n", - "\n", - "- $\\theta$ representa el ángulo de rotación. En este ejemplo $\\theta = \\pi/4$ 0 lo que es lo mismo $45^o$." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# rotación\n", - "ancho = image.shape[1] #columnas\n", - "alto = image.shape[0] # filas\n", - "\n", - "M = cv2.getRotationMatrix2D((ancho//2,alto//2),15,1)\n", - "imageOut = cv2.warpAffine(image,M,(ancho,alto))\n", - "cv2.imshow('Imagen de entrada',image)\n", - "cv2.imshow('Imagen de salida',imageOut)\n", - "cv2.waitKey(0)\n", - "cv2.destroyAllWindows()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(426, 640, 3)" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "image.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Referencias" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. [Alvaro Montenegro y Daniel Montenegro, Inteligencia Artificial y Aprendizaje Profundo, 2021](https://github.com/AprendizajeProfundo/Diplomado)\n", - "1. [Alvaro Montenegro, Daniel Montenegro y Oleg Jarma, Inteligencia Artificial y Aprendizaje Profundo Avanzado, 2022](https://github.com/AprendizajeProfundo/Diplomado-Avanzado)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - }, - "toc-autonumbering": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git "a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Conceptos_Basicos (Conceptos b\303\241sicos de probabilidad)-checkpoint.ipynb" "b/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Conceptos_Basicos (Conceptos b\303\241sicos de probabilidad)-checkpoint.ipynb" deleted file mode 100644 index 4593ae85..00000000 --- "a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Conceptos_Basicos (Conceptos b\303\241sicos de probabilidad)-checkpoint.ipynb" +++ /dev/null @@ -1,604 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - " \n", - "
\n", - "\n", - "# Aprendizaje Profundo" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "#
Conceptos básicos de probabilidad
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
Proabilidad básica
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Autores" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Alvaro Mauricio Montenegro Díaz, ammontenegrod@unal.edu.co\n", - "2. Daniel Mauricio Montenegro Reyes, dextronomo@gmail.com " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Diseño gráfico y Marketing digital\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Maria del Pilar Montenegro Reyes, pmontenegro88@gmail.com " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Referencias " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Contenido" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* [Introducción](#Introducción)\n", - "* [Espacio muestral](#Espacio-muestral)\n", - "* [Evento](#Evento)\n", - "* [Probabilidad](#Probabilidad)\n", - "* [Regla aditiva de la probabilidad](#Regla-aditiva-de-la-probabilidad)\n", - "* [Probabilidad condicional](#Probabilidad-condicional)\n", - "* [Regla multiplicativa de la probabilidad](#Regla-multiplicativa-de-la-probabilidad)\n", - "* [Independencia](#Independencia)\n", - "* [Ejercicios](#Ejercicios)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introducción" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En esta sección se introducen los conceptos básicos de probabilidad requeridos para entender la inteligencia artificial. \n", - "\n", - "El propósito es presentar el lenguaje utilizado. No se hará ningún desarrollo matemático formal. Solamente se presentar los cálculos que se consideran necesarios para entender el concepto." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Espacio muestral" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La siguiente gráfica representa un ejemplo de un `espacio muestral`, el cual denotaremos como $\\mathcal{M}$. Cada objeto dentro de la bolsa es un elemento del espacio muestral. Esto significa que este espacio muestral tiene $N=20$ elementos. Se supone que cada individuo puede identificarse de manera única. En este ejemplo hemos usado un identificador $1,2,\\ldots,20$, para cada uno de los elementos del espacio muestral. \n", - "\n", - "Adicionalmente, cada individuo tiene un atributo de color. Hay tres colores diferentes: rojo, azul y gris." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "
\n", - "
\n", - "

Ejemplo de Espacio Muestral $\\mathcal{M}$

\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Evento" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Un evento es cualquier subconjunto del espacio muestral. El lector interesado puede verificar, si lo desea, que el espacio muestral $\\mathcal{M}$ tiene exáctamente $2^{20}$ subconjuntos. \n", - "\n", - "Consideremos ahora seis eventos (subconjuntos) especiales de $\\mathcal{M}$: \n", - "\n", - "1. *azul*: el subconjunto de bolas azules;\n", - "2. *rojo*: el subconjunto de bolas rojas;\n", - "3. *gris*: el subconjunto de bolas grises.\n", - "4. *pares*: el subconjunto de bolas pares.\n", - "5. *impares*: el subconjunto de bolas impares.\n", - "6. *pares azules*: el subconjunto de bolas pares azules.\n", - "\n", - "La gráfica muestra los 6 eventos (subconjuntos) del espacio muestral ." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "
\n", - "
\n", - "

Ejemplos de eventos del Espacio Muestral $\\mathcal{M}$

\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Probabilidad" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La teoría de probabilidad se creó para poder medir los subconjunto de una espacio muestral. El concepto de medida en cada caso está asociado a la naturaleza del experimento que se desa modelar (representar de manera abstracta).\n", - "\n", - "En el ejemplo de las bolas presentado arriba, la medida que usaremos será la proporción entre el número de elementos de un evento y el número de elementos del espacio muestral $M$. \n", - "\n", - "Esto significa que:\n", - "\n", - "$$\n", - "\\begin{align}\n", - "\\text{Prob}[\\text{azul}] &= 5/20\\\\\n", - "\\text{Prob}[\\text{rojo}] &= 7/20\\\\\n", - "\\text{Prob}[\\text{gris}] &= 8/20\\\\\n", - "\\text{Prob}[\\text{pares}] &= 9/20\\\\\n", - "\\text{Prob}[\\text{impares}] &= 11/20\\\\\n", - "\\end{align}\n", - "$$\n", - "\n", - "Por favor verifique estos valores. Observe además que $\\text{Prob}[\\mathcal{M}] = 1$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En las siguientes secciones presentamos las propiedades escenciales de la probabilidad, que usaremos a lo largo de nuestro estudio. Son conceptos relativamente sencillos pero muy importantes." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Regla aditiva de la probabilidad" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La probabilidad de la unión de dos eventos (subconjuntos) disyuntos (que no tiene intersección) es la suma de la probabilidad (medida) de cada uno de ellos. En símbolos, si $A$ y $B$ son eventos disyuntos de $\\mathcal{M}$, entonces\n", - "\n", - "$$\n", - "\\text{Prob}[A\\cup B] = \\text{Prob}[A] + \\text{Prob}[B].\n", - "$$\n", - "\n", - "Por ejemplo, observe que $\\text{Prob}[\\text{azul}\\cup\\text{rojo}] = 5/20+7/20 = 12/20$. ¿Porque decimos que *azul* y *rojo* son eventos disyuntos.\n", - "\n", - "\n", - "Sin embargo \n", - "\n", - "$$\n", - "\\text{Prob}[\\text{azul}\\cup\\text{pares}] \\ne 5/20 + 9/20.\n", - "$$\n", - "\n", - "Esto se debe a que los eventos *azul* y *pares*, no son disyuntos. Como se muestra en la parte inferior derecha de la gráfica arriba, se tiene que $\\text{Prob}[\\text{azul}\\cap \\text{pares}] = 3/20$. ¿Cómo afecta esta situación el resultado el cálculo de la probabilidad de la unión de dos evento?\n", - "\n", - "Lo anterior conduce a la regla aditiva general la cual dice que\n", - "\n", - "$$\n", - "\\text{Prob}[A\\cup B] = \\text{Prob}[A] + \\text{Prob}[B]-\\text{Prob}[A\\cap B] .\n", - "$$\n", - "\n", - "En el ejemplo se tiene entonces que\n", - "\n", - "$$\n", - "\\text{Prob}[\\text{azul}\\cup\\text{pares}] = 5/20 + 10/20 - 3/20 = 12/20\n", - "$$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Que piensa de la siguiente afirmación. ¿Verdadero o falso? Justifique su respuesta.\n", - "\n", - "Si $A$ y $B$ son conjuntos disyuntos, entonces $\\text{Prob}[A\\cap B] = 0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Escriba aquí su respuesta. Discuta con sus compañeros." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Medida de todo el espacio muestral" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Vamos a denotar por $\\emptyset$ al conjunto vacio, es decir un conjunto que no tiene elementos.\n", - "\n", - "En nuestro ejemplo tenemos que \n", - "\n", - "$$\\mathcal{M}= \\text{azul}\\cup \\text{rojo}\\cup \\text{gris}$$. \n", - "\n", - "Además se tiene que\n", - "\n", - "$$\n", - "\\begin{align}\n", - "\\text{azul}\\cap \\text{rojo} &= \\emptyset\\\\\n", - "\\text{azul}\\cap \\text{gris} &= \\emptyset\\\\\n", - "\\text{gris}\\cap \\text{rojo} &= \\emptyset\\\\\n", - "\\end{align}\n", - "$$\n", - "\n", - "Se dice en esta situación que los conjuntos son `mutuamente excluyentes`. De acuerdo con la regla aditiva tenemos que\n", - "\n", - "$$\n", - "\\text{Prob}[\\mathcal{M}] = \\text{Prob}[\\text{azul}] + \\text{Prob}[\\text{rojo}]+ \\text{Prob}[\\text{gris}] = 5/20 + 7/20 + 8/20 = 1.\n", - "$$\n", - "\n", - "Esta es una propiedad general de la probabilidad. El espacio muestral siempre tiene medida de probabilidad 1. \n", - "\n", - "Además observe que si se tienen eventos disyuntos entre sí (mutuamente excluyentes), cuya unión es el espacio muestral, entonces la probabilidad de la unión de todos esos eventos tiene probabilidad 1.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Probabilidad del complemento de un evento" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "El complemento de un evento $A$ se denotará por $A^{c}$. Este simplemente el conjunto de elementos del espacio muestral que están por fuera de $A$. Entonces, es inmediato que $\\mathcal{M} = A\\cup A^c$. Por lo que \n", - "\n", - "$$\n", - "Prob[A^c] = 1 - Prob[A].\n", - "$$\n", - "\n", - "Una consecuencia inmediata de esta propiedad es que como $\\mathcal{M}^c= \\emptyset$, porque el espacio muestral contiene a todos los elementos, entonces $Prob[\\emptyset]=0$.\n", - "\n", - "\n", - "En nuestro ejemplo $impares^c= pares$. Entonces $Prob[\\text{impares} ] = 1- 9/20 = 11/20$. Por favor verifica este resultado." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Probabilidad condicional" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "El concepto de probabilidad condicional es de vital importancia en el estudio del aprendizaje profundo y la inteligencia artificial.\n", - "\n", - "Como el nombre parece indicar, es trata de calcular la probabilidad de un evento sujeto a una restrición. En realidad es así y la restricción normalmente está asociada con otro evento.\n", - "\n", - "Para ilustrar el asunto, supongamos que se pregunta por la probabilidad que una bola extraida sea par, dado que la bola es azul.\n", - "\n", - "Se observa entonces, que se da una información antes de calcular la probabilidad de ser par. Esta información corresponde al evento *azul*. Escribiremos\n", - "\n", - "$$\n", - "\\text{Prob}(\\text{par}|\\text{azul})\n", - "$$\n", - "\n", - "\n", - "Para hacer el cálculo correcto, se procede de la siguiente manera: Primero se reduce el espacio muestra a *azul*. En el ejemplo se tiene que \n", - "\n", - "$$\n", - "\\text{azul} = \\{5,7,8,10,16 \\}.\n", - "$$\n", - "\n", - "Ahora que se ha restingido el espacio muestral a *azul*, se calcula la probabilidad de interés. En este caso *par*. Observe entonces que \n", - "\n", - "$$\n", - "\\text{Prob}(\\text{par}|\\text{azul}) = \\tfrac{3}{5},\n", - "$$\n", - "\n", - "porque en el evento *azul* que tiene 5 elementos hay 3 *pares*.\n", - "\n", - "\n", - "Puede verificarse que \n", - "\n", - "$$\n", - "\\text{Prob}(\\text{par}|\\text{azul}) = \\frac{\\text{Prob}[\\text{par}\\cap \\text{azul}]}{\\text{Prob}[\\text{azul}]}\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Imagínese como se podría verficar esta última ecuación. Calcule $\\text{Prob}(\\text{par}|\\text{azul})$ usando la dicha ecuación.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Escriba aquí su respuesta. Discuta con sus compañeros." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Esta es una regla general, que se enuncia a si. Si $A$ y $B$ son eventos del espacio muestral $\\mathcal{M}$, entonces se define $\\text{Prob}[A|B]$ como\n", - "\n", - "$$\n", - "\\text{Prob}[A|B] = \\frac{\\text{Prob}[A\\cap B]}{\\text{Prob}[B]}\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Regla multiplicativa de la probabilidad" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "De la definición de la probabilidad condicional $\\text{Prob}[A|B]$ se desprende que \n", - "\n", - "$$\n", - "\\text{Prob}[A\\cap B] = \\text{Prob}[B]\\times \\text{Prob}[A|B]\n", - "$$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Ejemplo" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Con nuestro ejemplo supongamos que se pregunta por la probabilidad de obtener una bola par azul en un experimento.\n", - "\n", - "La solución es sencilla, por que ya hemos obtenido que $\\text{Prob}(\\text{par}|\\text{azul}) = \\tfrac{3}{5}$,\n", - "y $\\text{Prob}[\\text{azul}] = 5/20$. por lo tanto\n", - "\n", - "$$\n", - "\\text{Prob}[\\text{par}\\cap\\text{azul}] = \\text{Prob}[\\text{azul}]\\times\\text{Prob}[\\text{par}|\\text{azul}] = \\tfrac{5}{20}\\times \\tfrac{3}{5} = \\tfrac{3}{20}\n", - "$$\n", - "\n", - "Esto está de acuerdo con la ilustración de los evento del espacio muestral exhibidos arriba." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Independencia" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Dos eventos $A$ y $B$ del espacio muestral $\\mathcal{M}$ se dicen independientes si\n", - "\n", - "\n", - "$$\n", - "\\text{Prob}[A\\cap B] = \\text{Prob}[A] \\times\\text{Prob}[B].\n", - "$$\n", - "\n", - "\n", - "Esta definición es bastante tećnica, pero intutivamente puede entenderse como que la ocurrencia de un evento no afecta la ocurrencia del otro. Observe que en este caso se tiene que\n", - "\n", - "$$\n", - "\\text{Prob}[A| B] = \\text{Prob}[A].\n", - "$$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Por favor verifique esta última afirmación.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Escriba aquí su respuesta. Discuta con sus compañeros." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ejercicios" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Considere el siguiente experimento. Se lanzan dos dados no cargados de seis caras cada uno. El resultado del experimento es una pareja de números. Por ejemplo $(5,6)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "
\n", - "
\n", - "

Dos datos de seis caras

\n", - "
\n", - "
\n", - "\n", - "Fuente: [dados](https://buquedearte.cl/productos/dado-6-caras-25mm/)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Haga una tabla, usando Markdown con todo el espacio muestral $\\mathcal{M}$. Ayuda: son 36 elementos.\n", - "2. ¿Cuántos eventos son posibles? Use Python para hacer el cálculo\n", - "2. Calcule la probabilidad de obtener 2,3,... 12.\n", - "3. Calcule la probabilidad de obtener un número par.\n", - "4. Compruebe que la probabilidad de obtener 5 en el dado azul es 1/5 y que este evento es independiente del valor obtenido en el dado rojo.\n", - "4. Escriba un programa Python que construya un tensor de dimensión 2 y que contenga los 36 posibles resultados. Consulte sobre como se hace un ciclo for en Python." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Escriba tu solución aquí" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Súbala al sitio que le indica el instructor." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "## Mi nombre es:\n", - "## Esta es mi solución\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "- [Regresar al inicio](#Contenido)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - }, - "toc-autonumbering": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Conceptos_Basicos-checkpoint.ipynb b/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Conceptos_Basicos-checkpoint.ipynb deleted file mode 100644 index 22d02e32..00000000 --- a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Conceptos_Basicos-checkpoint.ipynb +++ /dev/null @@ -1,504 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "#
Probabilidad
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
Conceptos básicos
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "
\n", - "
\n", - "\n", - "Fuente: Alvaro Montenegro" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introducción" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En esta sección se introducen los conceptos básicos de probabilidad requeridos para entender la inteligencia artificial. \n", - "\n", - "El propósito es presentar el lenguaje utilizado. No se hará ningún desarrollo matemático formal. Solamente se presentan los cálculos que se consideren necesarios para entender el concepto." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Espacio muestral" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La siguiente gráfica representa un ejemplo de un `espacio muestral`, el cual denotaremos como $\\mathcal{M}$. Cada objeto dentro de la bolsa es un elemento del espacio muestral. Esto significa que este espacio muestral tiene $N=20$ elementos. Se supone que cada individuo puede identificarse de manera única. En este ejemplo hemos usado un identificador $1,2,\\ldots,20$, para cada uno de los elementos del espacio muestral. \n", - "\n", - "Adicionalmente, cada individuo tiene un atributo de color. Hay tres colores diferentes: rojo, azul y gris." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "
\n", - "
\n", - "

Ejemplo de Espacio Muestral $\\mathcal{M}$

\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Evento" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Un evento es cualquier subconjunto del espacio muestral. El lector interesado puede verificar, si lo desea, que el espacio muestral $\\mathcal{M}$ tiene exactamente $2^{20}$ subconjuntos. \n", - "\n", - "Consideremos ahora seis eventos (subconjuntos) especiales de $\\mathcal{M}$: \n", - "\n", - "1. *azul*: el subconjunto de bolas azules.\n", - "2. *gris*: el subconjunto de bolas grises.\n", - "3. *rojo*: el subconjunto de bolas rojas.\n", - "4. *pares*: el subconjunto de bolas pares.\n", - "5. *impares*: el subconjunto de bolas impares.\n", - "6. *pares azules*: el subconjunto de bolas pares azules.\n", - "\n", - "La gráfica muestra los 6 eventos (subconjuntos) del espacio muestral." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "
\n", - "
\n", - "

Ejemplos de eventos del Espacio Muestral $\\mathcal{M}$

\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Probabilidad" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La teoría de probabilidad se creó para poder medir los subconjuntos de una espacio muestral. El concepto de medida en cada caso está asociado a la naturaleza del experimento que se desea modelar (representar de manera abstracta).\n", - "\n", - "En el ejemplo de las bolas presentado arriba, la medida que usaremos será la proporción entre el número de elementos de un evento y el número de elementos del espacio muestral $M$. \n", - "\n", - "Esto significa que:\n", - "\n", - "$$\n", - "\\begin{align}\n", - "\\text{Prob}[\\text{azul}] &= 5/20\\\\\n", - "\\text{Prob}[\\text{gris}] &= 8/20\\\\\n", - "\\text{Prob}[\\text{rojo}] &= 7/20\\\\\n", - "\\text{Prob}[\\text{pares}] &= 10/20\\\\\n", - "\\text{Prob}[\\text{impares}] &= 10/20\\\\\n", - "\\end{align}\n", - "$$\n", - "\n", - "Por favor verifique estos valores. Observe además que $\\text{Prob}[\\mathcal{M}] = 1$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En las siguientes secciones presentamos las propiedades esenciales de la probabilidad, que usaremos a lo largo de nuestro estudio. Son conceptos relativamente sencillos pero muy importantes." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Regla aditiva de la probabilidad" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La probabilidad de la unión de dos eventos (subconjuntos) disyuntos (que no tienen intersección) es la suma de la probabilidad (medida) de cada uno de ellos. En símbolos, si $A$ y $B$ son eventos disyuntos de $\\mathcal{M}$, entonces:\n", - "\n", - "$$\n", - "\\text{Prob}[A\\cup B] = \\text{Prob}[A] + \\text{Prob}[B].\n", - "$$\n", - "\n", - "Por ejemplo, observe que $\\text{Prob}[\\text{azul}\\cup\\text{rojo}] = 5/20+7/20 = 12/20$. ¿Por qué decimos que *azul* y *rojo* son eventos disyuntos?\n", - "\n", - "\n", - "Sin embargo:\n", - "\n", - "$$\n", - "\\text{Prob}[\\text{azul}\\cup\\text{pares}] \\ne 5/20 + 10/20.\n", - "$$\n", - "\n", - "Esto se debe a que los eventos *azul* y *pares*, no son disyuntos. Como se muestra en la parte inferior derecha de la gráfica de arriba, se tiene que $\\text{Prob}[\\text{azul}\\cap \\text{pares}] = 3/20$. ¿Cómo afecta esta situación el resultado del cálculo de la probabilidad de la unión de dos eventos?\n", - "\n", - "Lo anterior conduce a la regla aditiva general la cual dice que:\n", - "\n", - "$$\n", - "\\text{Prob}[A\\cup B] = \\text{Prob}[A] + \\text{Prob}[B]-\\text{Prob}[A\\cap B] .\n", - "$$\n", - "\n", - "En el ejemplo se tiene entonces que:\n", - "\n", - "$$\n", - "\\text{Prob}[\\text{azul}\\cup\\text{pares}] = 5/20 + 10/20 - 3/20 = 12/20\n", - "$$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "¿Qué piensa de la siguiente afirmación? ¿Es verdadera o es falsa? Justifique su respuesta.\n", - "\n", - "Si $A$ y $B$ son conjuntos disyuntos, entonces $\\text{Prob}[A\\cap B] = 0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Medida de todo el espacio muestral" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Vamos a denotar por $\\emptyset$ al conjunto vacío, es decir un conjunto que no tiene elementos.\n", - "\n", - "En nuestro ejemplo tenemos que:\n", - "\n", - "$$\\mathcal{M}= \\text{azul}\\cup \\text{rojo}\\cup \\text{gris}$$ \n", - "\n", - "Además se tiene que:\n", - "\n", - "$$\n", - "\\begin{align}\n", - "\\text{azul}\\cap \\text{rojo} &= \\emptyset\\\\\n", - "\\text{azul}\\cap \\text{gris} &= \\emptyset\\\\\n", - "\\text{gris}\\cap \\text{rojo} &= \\emptyset\\\\\n", - "\\end{align}\n", - "$$\n", - "\n", - "Se dice en esta situación que los conjuntos son `mutuamente excluyentes`. De acuerdo con la regla aditiva tenemos que:\n", - "\n", - "$$\n", - "\\text{Prob}[\\mathcal{M}] = \\text{Prob}[\\text{azul}] + \\text{Prob}[\\text{rojo}]+ \\text{Prob}[\\text{gris}] = 5/20 + 7/20 + 8/20 = 1.\n", - "$$\n", - "\n", - "Esta es una propiedad general de la probabilidad. El espacio muestral siempre tiene medida de probabilidad 1. \n", - "\n", - "Además observe que si se tienen eventos disyuntos entre sí (mutuamente excluyentes), cuya unión es el espacio muestral, entonces la probabilidad de la unión de todos esos eventos tiene probabilidad 1.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Probabilidad del complemento de un evento" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "El complemento de un evento $A$ se denotará por $A^{c}$. Este simplemente es el conjunto de elementos del espacio muestral que están por fuera de $A$. Entonces, es inmediato que $\\mathcal{M} = A\\cup A^c$. Por lo que:\n", - "\n", - "$$\n", - "Prob[A^c] = 1 - Prob[A].\n", - "$$\n", - "\n", - "Una consecuencia inmediata de esta propiedad es que como $\\mathcal{M}^c= \\emptyset$, porque el espacio muestral contiene a todos los elementos, entonces $Prob[\\emptyset]=0$.\n", - "\n", - "\n", - "En nuestro ejemplo $impares^c= pares$. Entonces $Prob[\\text{impares} ] = 1- 10/20 = 10/20$. Por favor verifique este resultado." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Probabilidad condicional" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "El concepto de probabilidad condicional es de vital importancia en el estudio del aprendizaje profundo y la inteligencia artificial.\n", - "\n", - "Como el nombre parece indicar, se trata de calcular la probabilidad de un evento que está sujeto a una restricción. En realidad es así y la restricción normalmente está asociada con otro evento.\n", - "\n", - "Para ilustrar el asunto, supongamos que se pregunta por la probabilidad que una bola extraída sea par, dado que la bola es azul.\n", - "\n", - "Se observa entonces, que se da una información antes de calcular la probabilidad de ser par. Esta información corresponde al evento *azul*. Escribiremos:\n", - "\n", - "$$\n", - "\\text{Prob}(\\text{par}|\\text{azul})\n", - "$$\n", - "\n", - "\n", - "Para hacer el cálculo correcto, se procede de la siguiente manera:\n", - "\n", - "Primero se reduce el espacio muestral a *azul*. En el ejemplo se tiene que:\n", - "\n", - "$$\n", - "\\text{azul} = \\{5,7,8,10,16 \\}.\n", - "$$\n", - "\n", - "Ahora que se ha restringido el espacio muestral a *azul*, se calcula la probabilidad de interés. En este caso *par*. Observe entonces que:\n", - "\n", - "$$\n", - "\\text{Prob}(\\text{par}|\\text{azul}) = \\tfrac{3}{5}\n", - "$$\n", - "\n", - "Porque en el evento *azul* que tiene 5 elementos, hay 3 de estos *pares*.\n", - "\n", - "\n", - "Puede verificarse que:\n", - "\n", - "$$\n", - "\\text{Prob}(\\text{par}|\\text{azul}) = \\frac{\\text{Prob}[\\text{par}\\cap \\text{azul}]}{\\text{Prob}[\\text{azul}]}\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Imagínese como se podría verificar esta última ecuación. Calcule $\\text{Prob}(\\text{par}|\\text{azul})$ usando dicha ecuación.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Esta es una regla general, que se enuncia así: Si $A$ y $B$ son eventos del espacio muestral $\\mathcal{M}$, entonces se define $\\text{Prob}[A|B]$ como:\n", - "\n", - "$$\n", - "\\text{Prob}[A|B] = \\frac{\\text{Prob}[A\\cap B]}{\\text{Prob}[B]}\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Regla multiplicativa de la probabilidad" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "De la definición de la probabilidad condicional $\\text{Prob}[A|B]$ se desprende que:\n", - "\n", - "$$\n", - "\\text{Prob}[A\\cap B] = \\text{Prob}[B]\\times \\text{Prob}[A|B]\n", - "$$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejemplo" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Con nuestro ejemplo supongamos que se pregunta por la probabilidad de obtener una bola par azul en un experimento.\n", - "\n", - "La solución es sencilla, porque ya hemos obtenido que $\\text{Prob}(\\text{par}|\\text{azul}) = \\tfrac{3}{5}$,\n", - "y $\\text{Prob}[\\text{azul}] = \\tfrac{5}{20}$. por lo tanto:\n", - "\n", - "$$\n", - "\\text{Prob}[\\text{par}\\cap\\text{azul}] = \\text{Prob}[\\text{azul}]\\times\\text{Prob}[\\text{par}|\\text{azul}] = \\tfrac{5}{20}\\times \\tfrac{3}{5} = \\tfrac{3}{20}\n", - "$$\n", - "\n", - "Esto está de acuerdo con la ilustración de los evento del espacio muestral exhibidos arriba." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Independencia" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Dos eventos $A$ y $B$ del espacio muestral $\\mathcal{M}$ se dicen independientes si:\n", - "\n", - "\n", - "$$\n", - "\\text{Prob}[A\\cap B] = \\text{Prob}[A] \\times\\text{Prob}[B].\n", - "$$\n", - "\n", - "\n", - "Esta definición es bastante técnica, pero intuitivamente puede entenderse como que la ocurrencia de un evento no afecta la ocurrencia del otro. Observe que en este caso se tiene que:\n", - "\n", - "$$\n", - "\\text{Prob}[A| B] = \\text{Prob}[A].\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Por favor verifique esta última afirmación.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ejercicios" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Considere el siguiente experimento. Se lanzan dos dados no cargados de seis caras cada uno. El resultado del experimento es una pareja de números. Por ejemplo $(6,4)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "
\n", - "
\n", - "\n", - "Fuente: [pixabay](https://pixabay.com/es/photos/dice-spotted-dark-reflection-5976757/)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Haga una tabla, usando *Markdown* con todo el espacio muestral $\\mathcal{M}$. Ayuda: son 36 elementos.\n", - "2. ¿Cuántos eventos son posibles? Use Python para hacer el cálculo.\n", - "2. Calcule la probabilidad de obtener 2,3,...,12.\n", - "3. Calcule la probabilidad de obtener un número par.\n", - "4. Compruebe que la probabilidad de obtener 5 en el dado blanco es 1/5 y que este evento es independiente del valor obtenido en el dado negro.\n", - "4. Escriba un programa en Python que construya un tensor de dimensión 2 y que contenga los 36 posibles resultados. Consulte sobre como se hace un ciclo `for` en Python." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Referencias" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. [Alvaro Montenegro y Daniel Montenegro, Inteligencia Artificial y Aprendizaje Profundo, 2021](https://github.com/AprendizajeProfundo/Diplomado)\n", - "1. [Alvaro Montenegro, Daniel Montenegro y Oleg Jarma, Inteligencia Artificial y Aprendizaje Profundo Avanzado, 2022](https://github.com/AprendizajeProfundo/Diplomado-Avanzado)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - }, - "toc-autonumbering": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Distribuciones_continuas-checkpoint.ipynb b/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Distribuciones_continuas-checkpoint.ipynb deleted file mode 100644 index 9d2e2b69..00000000 --- a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Distribuciones_continuas-checkpoint.ipynb +++ /dev/null @@ -1,515 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#
Distribuciones de probabilidad continuas
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introducción" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En esta lección se introducen las distribuciones de probabilidad continuas. Además se introducen los conceptos de información en distribuciones continuas y la entropía diferencial.\n", - "\n", - "Al empezar se introduce el concepto de variable aleatoria continua y la distribución normal. Si no recuerda el concepto de integral de una función en un intervalo, puede imaginar que una integral es aproximadamente un promedio de los valores de la función en un determinado intervalo." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Por ejemplo si una función $h(x)$ está definida en un intervalo digamos $[a,b]$, entonces la integral de $h$ en ese intervalo es aproximadamente una suma pesada:\n", - "\n", - "$$\n", - "\\int_{a}^{b} h(x)dx \\approx p_1f(x_1) + p_2f(x_2) + \\ldots + p_nf(x_n),\n", - "$$\n", - "\n", - "para algunos pesos $p_1,\\ldots,p_n$ y algunos valores $x_1,\\ldots,x_n$.\n", - "\n", - "Esto es todo lo que necesitamos saber para seguir la lección. Calcular una integral puede ser muy complicado, pero en esta lección solamente requerimos tener presente la ecuación anterior." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Variables aleatorias continuas " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Supongamos que se mide con una herramienta de precisión el diámetro de la cabeza de un tornillo salido de un proceso de producción. Es conocido que cada tornillo producido puede tener pequeñas diferencias de tamaño. Esto se debe en general a la forma como cada tornillo es procesado. Las máquinas que los producen por lo general pierden precisión por el uso. \n", - "\n", - "Otro ejemplo menos preciso pero más cercano a nosotros es medir la estatura de las personas. En este caso los instrumentos son mucho menos precisos." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "¿Puede indicar otros ejemplos?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Si se define $X$ como la medida en cada caso, es claro que $X$ es una variable aleatoria, puesto que al realizar los experimentos (en este caso las mediciones), no se puede predecir con total precisión, cual será el valor medido en cada experimento. \n", - "\n", - "Por otro lado $X$ tiene una característica diferente a las variables aleatorias discretas estudiadas con anterioridad. Sus posibles valores ahora no pueden enumerarse. Dentro de un rango razonable es posible obtener como resultado cualquier número real dentro de ese rango. En este caso se dice que la variable aleatoria es continua.\n", - "\n", - "Para las variables aleatorias continuas no existe función de probabilidad, debido a que ahora para cada valor posible no es posible asociar una probabilidad diferente de cero. En este caso se toman intervalos tan grandes o pequeños como sea posible y a estos intervalos se les asigna una medida de probabilidad." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Función de densidad de probabilidad " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La función de densidad de probabilidad, en adelante función de densidad, es el homólogo de la función de probabilidad. Se trata entonces de una función integrable no negativa, en donde el área bajo la curva es 1.\n", - "\n", - "El ejemplo más simple es la distribución uniforme en el intervalos $[0,1]$. En este caso la función de densidad es $g(x)=1$. Note que en este caso se tiene que\n", - "\n", - "$$\n", - "\\int_0^1 g(x)dx = \\int_0^1 1 dx= x|_{x=0}^{x=1} = 1-0 =1.\n", - "$$\n", - "\n", - "Esta distribución se llama uniforme porque cada subintervalo de $[0,1]$ tiene exactamente la misma probabilidad. Por ejemplo los intervalos $[0.1,0.3]$ y $[0.5,0.7]$ tiene cada uno medida de probabilidad 0.2. En este caso, la medida de probabilidad coincide con la medida de longitud que usamos a diario para medir longitudes, como por ejemplo, el frente de una casa." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Esperanza matemática y varianza " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Las definiciones en este caso son generalizaciones a las estudiadas para el caso discreto, cambiado los promedios por integrales. Entonces se tiene que si $X$ es una variable aleatoria continua con densidad dada por $g(x)$, se tiene que la esperanza matemática (o valor esperado) y la varianza son dadas por\n", - "\n", - "$$\n", - "\\begin{align}\n", - "\\mathbb{E}[X] &= \\mu_X=\\int xg(x)dx\\\\\n", - "\\text{Var}[X] &= \\int( x - \\mu_X)^2g(x)dx\\\\\n", - "\\end{align}\n", - "$$\n", - "\n", - "Los límites de las integrales dependen del tipo de distribución. De acuerdo con lo mencionado en la introducción, en relación con el concepto de integral, podemos conservar las interpretaciones de la media y la varianza del caso discreto.\n", - "\n", - "La media es aproximadamente el valor promedio de la variable aleatoria que se obtiene si se realiza muchas veces el experimento aleatorio y se calcula la medida dada por la variable aleatoria.\n", - "\n", - "Por otro lado la varianza mide el grado de predictibilidad de la variable aleatoria. Entonces, aunque no son conceptos exáctamente equivalentes podemos mantener las interpretaciones. Lo mismo ocurre con los conceptos de la teoría de información." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Verifique la afirmación anterior. \n", - "\n", - "**Ayuda**: $\\text{Prob}[0.5,0.7] =\\int_{0.5}^{0.7} g(x)dx $." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Distribución normal " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La distribución normal es la distribución más importante de toda la estadística. Esto no solamente se debe a su aplicación en gran cantidad de problemas, sino porque es la distribución límite de muchas sucesiones de distribuciones que aparecen con frecuencia. No entraremos en detalles técnicos. Solamente vamos a indicar la expesión de la función de densidad y veremos como calcular algunas probabilidades.\n", - "\n", - "La densidad de la distribución normal tiene la expresión:\n", - "\n", - "$$\n", - "g(x) = \\sqrt{\\tfrac{1}{2\\pi\\sigma^2}} e^{-\\tfrac{(x-\\mu)^2}{2\\sigma^2}}\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La expresión es un poco intimidante, pero su uso con la ayuda de Python es muy fácil. Vamos primero a dar las expresiones para la media y la varianza de la distribución normal\n", - "\n", - "1. Los parámetros de la distribución normal son $\\mu$ y $\\sigma^2$.\n", - "2. La función $g(x)$ es simétrica alrededor de $\\mu_X$.\n", - "\n", - "Además si $X$ es una variable aleatoria con distibución normal, que escribiremos $X\\sim \\mathcal{N}(\\mu,\\sigma^2)$, entonces\n", - "\n", - "3. $\\mathbb{E}[X] = \\mu$\n", - "4. $\\text{Var}[X] = \\sigma^2$\n", - "\n", - "El siguiente es un gráfico de la densidad de una distribución normal. Por favor revise el código Python cuidadosamente y haga cambios en los parámetros para ver el efecto en la densidad." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAt7ElEQVR4nO3deXRV5b3/8fc3M5kIkEAgM2MIM4QwKYojooJTFRxQiqVYrfX2Z1tvJ9vbejv3tr1VFBxRK2KtLV5UUCsIMoREZsOQkQyEhISQiYzn+f2R0KZpQk6Gk32G72stlpyz904+e0k+a2efZz+PGGNQSinlvrysDqCUUsqxtOiVUsrNadErpZSb06JXSik3p0WvlFJuzsfqAB0JDw838fHxVsdQSimXkZ6eftYYE9HRNqcs+vj4eNLS0qyOoZRSLkNE8jrbprdulFLKzWnRK6WUm9OiV0opN6dFr5RSbs6uoheRhSJyXEQyReSJS+w3U0SaReSO7h6rlFLKMbosehHxBp4GbgCSgGUiktTJfr8AtnT3WKWUUo5jzxV9CpBpjMk2xjQAG4AlHez3deBtoKQHxyqllHIQe8bRRwH5bV4XALPa7iAiUcCtwFXAzO4cq5QzO1fTQFreOb4oqqTZZgPAx9uLiVGhzIgdzMBAX4sTKtU1e4peOniv/ST2vwO+Y4xpFvmX3e05tmVHkVXAKoDY2Fg7YinlGDX1TbyReoqNafmcOFP9j/cv/tO+uISDCIwbFsKylFjumhlDgK+3BWmV6po9RV8AxLR5HQ0UtdsnGdjQWvLhwCIRabLzWACMMWuBtQDJycm6Gorqd5V1jby4M4eXd+VSUdvIzPhBfOv6ccyMH8zk6IH/KPK6xmb2n6pgX245fz9WwpObjvK/fz/JinkJrJgXT6CfUz5wrjyYdLXClIj4ACeAq4FCYB9wtzHmaCf7vwz8nzHmz9099qLk5GSjUyCo/rQ3u4xvbjxIYcUFrk0axteuHMW02EF2HZuaU87Tn2Sy/UQpCeFB/M9dU5kaE+bYwEq1IyLpxpjkjrZ1eelhjGkSkUdoGU3jDbxojDkqIqtbtz/b3WN7chJKOUJDk43ffXSCNduziB0cyNsPzWVGnH0Ff1FKwmBSElLYlXWWxzce5PY1u3js6jE8dOUofLz1URVlvS6v6K2gV/SqP1TXN7FqfRq7ssq4KzmGH9ycRLB/7267nL/QyA/+eoRNB4u4OnEoT98zXe/dq35xqSt6vdxQHulcTQP3rNvD3pxyfv2lKfzijsm9LnmAgQN8+cOyafxkyQT+fryE5S+mUlnX2AeJleo5LXrlcYrP1/Gl53aTUVzFc/fO4I4Z0X3+Pe6bE8/vl07j87xzLFu7h7PV9X3+PZSylxa98ijnaxu594W9FJ+v45UVKVyTNMxh32vxlBGsW55MVmk197+YSk19k8O+l1KXokWvPEZ9UzNfeTWNU2W1PH9/MnNGDXH491yQOJQ198wg43QlD//pc5qabQ7/nkq1p0WvPILNZnj8rUOk5pTzqy9NZvZIx5f8RQsSh/LTWyax7Xgp3//rEZxxAIRyb/pkh/IIv/3wBO8eLOI7CxNZMjWq37//3bNiKayo5elPsogPD2L1FaP6PYPyXHpFr9zeJ8dL+OMnmdyVHMPqK0ZaluPx68Zx4+Th/PKDY6TmlFuWQ3keLXrl1orP1/H/Nh4kMTKEHy+ZQLu5mPqViPDz2yYROziQR9/YT3lNg2VZlGfRolduq6nZxqNv7KeusdlpHlwKCfDlj3dPp7ymgW9uPIDNpvfrleNp0Su39YePT5KaW85Tt05kVESw1XH+YWLUQH5w03i2HS9l3Y5sq+MoD6BFr9zS4YLzPL0ti9unR3PrtL5/IKq37p0dx8IJkfxm6wkyS6qsjqPcnBa9cjsNTTa+9eeDDAny44c3O+fKlSLCT26ZSKC/N9/+8yGa9RaOciAteuV21mzL4lhxFU/dOomBA5x3BaiIEH+evDmJz09V8PKuXKvjKDemRa/cyvHiKv74yUkWTxnBtQ6c3qCv3DI1iqsSh/KrLcfIK6uxOo5yU1r0ym3YbIbvvH2IkABfnnTSWzbtiQhP3ToRXy8vvvvOYX1qVjmEFr1yG3/+vIAD+RV8b9F4hgT7Wx3HbsMHDuBbC8fxWWYZ7x8ptjqOckNa9MotVNY18ssPjjE9Nozbpvf/FAe9dXdKLImRITy1OYMLDc1Wx1Fuxq6iF5GFInJcRDJF5IkOti8RkUMickBE0kTksjbbckXk8MVtfRleqYt+9+FJymoa+K8lEy19+rWnfLy9+NHiCRRWXGDN9iyr4yg302XRi4g38DRwA5AELBOR9jdAPwamGGOmAl8Gnm+3fYExZmpny1wp1RsnzlTxyu5cls6MZWLUQKvj9NjskUO4ecoInt2eRX55rdVxlBux54o+Bcg0xmQbYxqADcCStjsYY6rNPz9FCgL0EyXVL4wx/PjdowT7+/Ct68dZHafXvrsoEW8Rfrr5C6ujKDdiT9FHAfltXhe0vvcvRORWETkGbKblqv4iA2wVkXQRWdXZNxGRVa23fdJKS0vtS6883vYTpXyWWcZj14xhcJCf1XF6bfjAAXztylFsOXqGtFyd4VL1DXuKvqMbnv92xW6MeccYkwjcAvykzaZ5xpjptNz6eVhE5nf0TYwxa40xycaY5IiICDtiKU/XbDP8/P1jxA4O5J5ZcVbH6TMrL09gaIg/P3v/mA63VH3CnqIvAGLavI4Gijrb2RjzKTBKRMJbXxe1/rcEeIeWW0FK9drfDhRyrLiKx68fh5+P+wwgC/Tz4bFrxpKed44PvzhjdRzlBuz56dgHjBGRBBHxA5YCm9ruICKjpXWog4hMB/yAMhEJEpGQ1veDgOuAI315Asoz1TU285utJ5gYFcpNk4ZbHafP3ZkczcjwIH655biuM6t6rcuiN8Y0AY8AW4AMYKMx5qiIrBaR1a273Q4cEZEDtIzQuav1w9lhwE4ROQikApuNMR844DyUh3ltTx6FFRd4YuF4vLxcbzhlV3y8vfj2wnFkllTz9ucFVsdRLk6c8R5gcnKySUvTIfeqY1V1jcz/5SdMjBrIqytnWR3HYYwx3LZmF6cr6tj2rSudYuEU5bxEJL2zIezuc2NTeYxXduVyrraRx69z/eGUlyIifOu6cRRX1rEh9ZTVcZQL06JXLqWqrpF1O3K4OnEoU2LCrI7jcHNGDSElYTDPbMuirlGnRlA9o0WvXMrLn+Vy/kIjj10z1uoo/UJE+I9rxlJSVc8belWvekiLXrmMyrpG1u3I5prxQ5kU7bpTHXTXnFFDmKVX9aoXtOiVy3hpZy6VdU0eczXf1n9cO5bSqnpe36tX9ar7tOiVS6isa+SFndlcmzTMpScu66nZI4cwZ+QQ1uhVveoBLXrlEl7bk0dlXROPXjXG6iiWefTqMZytruettPyud1aqDS165fTqGpt5cWcO88dGeNS9+fZmjxzM9Ngwnt2eTaM+Lau6QYteOb2NafmcrW7g4StHWR3FUiLCwwtGU1hxgXcPdjrdlFL/RoteObXGZhvPbc9mRtwgUhIGWx3HclclDiUxMoRntmVhsznfU+3KOWnRK6e26UARhRUXeHjBKJdcIrCviQgPXTmKzJJqturMlspOWvTKadlshjXbs0iMDGHBuKFWx3EaN04aTuzgQJ7Zlqnz1Su7aNErp/VRxhkyS6p56Eq9mm/Lx9uLr14xkkMF59mdXWZ1HOUCtOiV01q3I5uosAHc6IbzzffW7dOjCQ/2Y+2n2VZHUS5Ai145pc9PnWNf7jlWXpaAj7f+M20vwNeb5XPi2Xa8lOPFVVbHUU5Of4KUU1r3aTahAT7cNTOm65091H2z4wjw9eL5HXpVry7NrqIXkYUiclxEMkXkiQ62LxGRQyJyQETSROQye49Vqr28sho+OFrMvbPjCPL3sTqO0xoU5MedyTH89UAhZyrrrI6jnFiXRS8i3rQsD3gDkAQsE5Gkdrt9DEwxxkwFvgw8341jlfoXz+/IwdfLiwfmxlsdxemtvCyBZpvh5V25VkdRTsyeK/oUINMYk22MaQA2AEva7mCMqTb/HOcVBBh7j1WqrfKaBt5Kz+eWaSMYGhpgdRynFzckiIUTI3ltTx7V9U1Wx1FOyp6ijwLazqJU0PrevxCRW0XkGLCZlqt6u49tPX5V622ftNLSUnuyKzf0p7151DXaePDykVZHcRkPXj6Sqrom/qyTnalO2FP0HQ1g/renNIwx7xhjEoFbgJ9059jW49caY5KNMckRERF2xFLupqHJxvrdeVw+Jpyxw0KsjuMypscOYlpsGC/tytVpEVSH7Cn6AqDt0IdooNMZlYwxnwKjRCS8u8cqz7b5cBElVfV8+bIEq6O4nJWXJZBXVsvHx0qsjqKckD1Fvw8YIyIJIuIHLAU2td1BREZL66OLIjId8APK7DlWKQBjDC/szGFURBBXjNHf6Lpr4YRIRgwM4MWdOVZHUU6oy6I3xjQBjwBbgAxgozHmqIisFpHVrbvdDhwRkQO0jLK5y7To8FgHnIdycftyz3GksJIV8xLw8tLpDrrLx9uL++fGszu7jKNF562Oo5yMOOOkSMnJySYtLc3qGKofrX41nd3ZZez5z6sZ4OdtdRyXdL62kdk/+5gbJw/n11+aYnUc1c9EJN0Yk9zRNn0yVlkuv7yWrV8Uc/esWC35XhgY6MuXkqPZdKCI0qp6q+MoJ6JFryy3fncuIsLyOXFWR3F5D8yNp6HZxp/2nrI6inIiWvTKUrUNTby5L5+FEyMZPnCA1XFc3siIYK4cF8Hre/NoaNJ1ZVULLXplqXf2F1JZ18QKne6gzzwwN56SqnreP3La6ijKSWjRK8sYY3hlVy4To0KZETfI6jhuY/6YCBLCg3T+G/UPWvTKMruzyjhxppoH5iboClJ9yMtLuH9OHPtPVXAwv8LqOMoJaNEry7y0K5fBQX7cNFlXkOprt8+IJtjfh1f0ql6hRa8skl9ey0cZZ7g7JZYAXx1S2ddCAny5Y0Y07x7SoZZKi15Z5LU9eXiJcM/sWKujuK3lc+JobDZsSNWhlp5Oi171uwsNzWzYl8/CCTqk0pFGRgQzf2wEr+3No7FZh1p6Mi161e82HSzk/IVGfUCqH9w/J44zlfVsPXrG6ijKQlr0ql+1DKnMIzEyhJSEwVbHcXtXjhtKzOABvLI71+ooykJa9Kpfpeed44vTlSyfE69DKvuBt5dw3+w4UnPKyThdaXUcZREtetWvXtmdR0iAD7dMG2F1FI9xZ3IM/j5erN+dZ3UUZREtetVvSirreP/wae5MjiHQz8fqOB4jLNCPW6ZG8df9hZyvbbQ6jrKAFr3qN39KPUWTzXDfbP0Qtr8tnxvHhcZm3krXBcQ9kV1FLyILReS4iGSKyBMdbL9HRA61/tklIlPabMsVkcMickBEdDURD9XYOnXuFWMjiA8PsjqOx5kwYiAz4gbx2p48XUDcA3VZ9CLiTcvygDcAScAyEUlqt1sOcIUxZjLwE2Btu+0LjDFTO1v9RLm/LUeLKamq1yGVFlo+J47cslo+PVlqdRTVz+y5ok8BMo0x2caYBmADsKTtDsaYXcaYc60v9wDRfRtTubr1u/OIHjSAK8cNtTqKx7ph4nDCg/15VT+U9Tj2FH0U0PbGXkHre51ZCbzf5rUBtopIuois6uwgEVklImkiklZaqlcc7uRYcSWpOeXcOzsOb1342zJ+Pl4sS4nh78dLyC+vtTqO6kf2FH1HP5kd3uQTkQW0FP132rw9zxgznZZbPw+LyPyOjjXGrDXGJBtjkiMiIuyIpVzFq7vz8Pfx4q7kGKujeLy7Z8XiJcJre/Wq3pPYU/QFQNuf0GigqP1OIjIZeB5YYowpu/i+Maao9b8lwDu03ApSHqKyrpF39hdy85QRDAryszqOxxs+cADXjh/Gxn351DU2Wx1H9RN7in4fMEZEEkTED1gKbGq7g4jEAn8B7jPGnGjzfpCIhFz8O3AdcKSvwivn95f0AmobmvVDWCeyfG4c52obeffgv12vKTfVZdEbY5qAR4AtQAaw0RhzVERWi8jq1t1+CAwBnmk3jHIYsFNEDgKpwGZjzAd9fhbKKRljWL8njykxYUyODrM6jmo1Z+QQxgwN5tU9evvGU9j1eKIx5j3gvXbvPdvm7w8CD3ZwXDYwpf37yjN8lllGdmkNv/mS/hNwJiLCfXPi+OHfjnIgv4KpMWFWR1IOpk/GKodZv7tlqcAbdalAp3PrtCiC/LxZr7NaegQteuUQhRUX+CjjDHfNjNGlAp1QSIAvt02P5v8OnaasWpcadHda9MohXm+9/3vPLF0q0FktnxNHQ5ONN9N0/ht3p0Wv+lx9UzNv7svnqsRhRA8KtDqO6sSYYSHMGTmE1/ecolnnv3FrWvSqz713+DRlNQ3cP1eHVDq75XPiKKy4wN+PlVgdRTmQFr3qc+t35zEyPIh5o8KtjqK6cG3SMCJDA/RDWTenRa/61KGCCvafquC+OXF46bw2Ts/H24t7ZsWy4+RZskqrrY6jHESLXvWp9bvzCPTz5vYZOoGpq1iaEouvt+islm5Mi171mfKaBjYdLOK26VGEBvhaHUfZKSLEnxsnDeft9AKq65usjqMcQIte9Zk39+XT0GRj+Zx4q6Ooblo+N56q+ibe2V9odRTlAFr0qk802wyv7cljzsghjB0WYnUc1U3TYsKYFDWQ9btyMUaHWrobLXrVJ/5+rITCigs6pNJFiQjL58RxsqSa3dllXR+gXIoWveoTr+zKZfjAAK4ZP8zqKKqHbp4ygkGBvryyK9fqKKqPadGrXjt5poqdmWe5d3YcPt76T8pVBfh6szQllg+/OEPBOV1q0J3oT6XqtVd257auR6rz2ri6e2e33HrTuerdixa96pXzFxr5y+eFLJ4ygsG6VKDLiwobwPUTInlTlxp0K3YVvYgsFJHjIpIpIk90sP0eETnU+meXiEyx91jl2t5Ky6e2oZkH5sZbHUX1kfvnxlNR28jfDuhQS3fRZdGLiDfwNHADkAQsE5GkdrvlAFcYYyYDPwHWduNY5aKabYb1u/NIjhvExKiBVsdRfWRWwmASI0N46TMdauku7LmiTwEyjTHZxpgGYAOwpO0OxphdxphzrS/3ANH2Hqtc17bjJZwqr+V+vZp3KyLCA3PjOVZcRWpOudVxVB+wp+ijgLYrExS0vteZlcD73T1WRFaJSJqIpJWWltoRS1nt5V25DAv1Z+HESKujqD62ZGoUYYG+vKxDLd2CPUXf0RSEHf4+JyILaCn673T3WGPMWmNMsjEmOSIiwo5YykonzlSx4+RZls+Jx1eHVLqdAX7eLJ0Zy5ajxTrU0g3Y8xNaAMS0eR0NFLXfSUQmA88DS4wxZd05Vrmelz7LxV+HVLq15XPiEBHW66yWLs+eot8HjBGRBBHxA5YCm9ruICKxwF+A+4wxJ7pzrHI952oaeGd/AbdOi9IhlW5sRNgAbpgYyRupp6jRWS1dWpdFb4xpAh4BtgAZwEZjzFERWS0iq1t3+yEwBHhGRA6ISNqljnXAeah+9Ma+U9Q12lgxL8HqKMrBVsxLoKquibc/L7A6iuoFccbhU8nJySYtLc3qGKoDjc02Lv/FJ4weGsxrD86yOo5yMGMMtzyzi6oLjXz0zSt01TAnJiLpxpjkjrbpp2iqWz44UkxxZR0r5sVbHUX1AxHhy/PiyT5bw/YTOhrOVWnRK7sZY3hhZw7xQwJZMG6o1XFUP1k0aTjDQv15YWeO1VFUD2nRK7ul553jQH4FX74sQX+F9yC+3l4snxPPzsyzZJyutDqO6gEtemW353fkMHCAL3fowt8e555ZsQzw9eb5HXpV74q06JVd8spq2PJFMffOjiXQz8fqOKqfhQX6cWdyNJsOFnKmss7qOKqbtOiVXV7cmYOPl+jC3x5sxbwEmmyG9btzrY6iukmLXnWporaBjWkFLJ4SxbDQAKvjKIvEhwdxXdIwXttzitoGfYDKlWjRqy69vvcUFxqbefByfUDK033l8pGcv9DIn9P1ASpXokWvLqm+qZlXduVy2ehwxg8PtTqOstiMuEFMiQnjhZ05NNuc72FL1TEtenVJf91fSElVPavmj7Q6inICIsJX548kr6yWD44UWx1H2UmLXnXKZjM892k2ScNDuXxMuNVxlJO4fkIk8UMCeXZ7lq5A5SK06FWnPso4Q3ZpDV+9YiQi+oCUauHtJXxl/kgOF55nd1ZZ1wcoy2nRq04992k20YMGcOOk4VZHUU7m9unRhAf78eyn2VZHUXbQolcd2pdbTnreOb5y+Uh8dAUp1U6Arzcr5iXw6YlSjhadtzqO6oL+BKsOPbc9i8FBftyZHNP1zsoj3TsrjiA/b57brlf1zk6LXv2bY8WVfJRRwv1z4hng5211HOWkBgb6cvesWDYfPs2pMl1X1pnZVfQislBEjotIpog80cH2RBHZLSL1IvJ4u225InK47cpTyrk9/UkWQX7e3D83zuooysk9ePlIvEVYsz3L6ijqErosehHxBp4GbgCSgGUiktRut3LgUeDXnXyZBcaYqZ2tfqKcR87ZGjYfKuK+OfGEBep6sOrShoUGcOfMaN5OL6D4vE525qzsuaJPATKNMdnGmAZgA7Ck7Q7GmBJjzD6g0QEZVT9asy0TX28vVl6m0x0o+3x1/iiajWGtjsBxWvYUfRSQ3+Z1Qet79jLAVhFJF5FVne0kIqtEJE1E0kpLdckyKxRWXOAvnxeyLCWWiBB/q+MoFxEzOJBbpkbxp9Q8yqrrrY6jOmBP0Xf0pEx3HoebZ4yZTsutn4dFZH5HOxlj1hpjko0xyREREd348qqvrN2ehQg63YHqtq8tGEV9k40XP9OFSZyRPUVfALQdYxcNFNn7DYwxRa3/LQHeoeVWkHIyJZV1bNiXz23TohkRNsDqOMrFjIoIZtHE4azflUdFbYPVcVQ79hT9PmCMiCSIiB+wFNhkzxcXkSARCbn4d+A64EhPwyrHWbM9iyab4eEFo62OolzU168eTVV9Ey/qIuJOp8uiN8Y0AY8AW4AMYKMx5qiIrBaR1QAiEikiBcA3ge+LSIGIhALDgJ0ichBIBTYbYz5w1MmonjlTWcfre09x+/QoYocEWh1HuajEyFAWTYrkxc9y9areydi1+Kcx5j3gvXbvPdvm78W03NJprxKY0puAyvHWbMvCZjM8smCM1VGUi/vG1WN573Axz+/I4fHrx1kdR7XSJ2M9XPH5Ov6Ueorbp0fr1bzqtXGRIdw4aTgv78rlXI1e1TsLLXoPt2ZbZsvV/FV6b171jUevHkNNQxPP79Rx9c5Ci96DFVVc4I3UfO6YEU3MYL2aV31jXGQIiyYN5+XPcnVcvZPQovdgv//oJIBezas+9x/XjOFCYzPPbNM5cJyBFr2Hyiqt5q30fO6eFUv0IL2aV31r9NAQbpsezat78iiquGB1HI+nRe+hfrv1BAG+3no1rxzmsWvGgPnnb47KOlr0HuhI4Xk2Hz7NyssSCA/WOW2UY0QPCuTuWbG8lZ5PVmm11XE8mha9B/rlluOEBfryFZ3TRjnYI1eNJsDXm99uPWF1FI+mRe9hdmWd5dMTpXztylGEBvhaHUe5ufBgfx68LIHNh09zML/C6jgeS4veg9hshqc2ZxAVNoDlc+KtjqM8xFfmjyQ82I+nNmdgTHcmvlV9RYveg/xlfyFHiyr59sJxBPjqWrCqf4QE+PLYNWNJzS1ny9EzVsfxSFr0HuJCQzO/3nKcydEDuXnyCKvjKA+zdGYMo4cG8/P3M2hoslkdx+No0XuI53dkU1xZx/cWjcfLq6O1ZJRyHB9vL767KJHcslpe35tndRyPo0XvAUqq6nh2exbXJQ1j1sghVsdRHmrBuKHMGz2E3398kvO1urx0f9Ki9wC/eP84Dc02/nPReKujKA8mInxvURKVFxr5n490uGV/0qJ3c+l553j78wJWXjaShPAgq+MoD5c0IpR7ZsWxfncuGacrrY7jMewqehFZKCLHRSRTRJ7oYHuiiOwWkXoRebw7xyrHabYZntx0hGGh/nxdpzpQTuL/XTeWgQN8eXLTUR1u2U+6LHoR8QaeBm4AkoBlIpLUbrdy4FHg1z04VjnIm/vyOVJYyXcXjSfI367FxJRyuLBAPx6/fhypOeW8e+i01XE8gj1X9ClApjEm2xjTAGwAlrTdwRhTYozZB7T/hKXLY5VjVNQ28Kstx0hJGMziKTqcUjmXpTNjmRgVyn9vzqCmvsnqOG7PnqKPAvLbvC5ofc8edh8rIqtEJE1E0kpLS+388qozP3//GJV1Tfx48QREdDilci7eXsKPF0+kuLKO//lQP5h1NHuKvqOWsPfGmt3HGmPWGmOSjTHJERERdn551ZG92WVs2JfPg5clMH54qNVxlOrQjLhB3D0rlhc/y+FwwXmr47g1e4q+AIhp8zoaKLLz6/fmWNUD9U3N/Oc7h4keNIBvXDPG6jhKXdJ3FiYyJNif/3znEE3N+sSso9hT9PuAMSKSICJ+wFJgk51fvzfHqh5Ysy2L7NIafnrLRAL99ANY5dwGDvDlRzdP4EhhJS/vyrU6jtvqsuiNMU3AI8AWIAPYaIw5KiKrRWQ1gIhEikgB8E3g+yJSICKhnR3rqJPxdJklVTzzSRaLp4zgynFDrY6jlF0WTYrk6sSh/GbrCfLLa62O45bEGcexJicnm7S0NKtjuJSmZht3PLub3LIaPvyPK4gI0ZWjlOsorLjAdb/dztTYMF798iydj6kHRCTdGJPc0TZ9MtZNrN2RzYH8Cv5ryUQteeVyosIG8P2bkvgss0wnPXMALXo3cLy4it99eJJFkyK5efJwq+Mo1SNLZ8ZwxdgI/vu9Y+SV1Vgdx61o0bu4xmYb39x4gJAAH36yZKKOmVcuS0T4+e2T8PEWvvXWIWw257ut7Kq06F3cHz4+ydGiSv77tkkMCdZbNsq1DR84gB/dPIHU3HLW7ci2Oo7b0KJ3YbuzyvjjJ5ncMSOa6ydEWh1HqT5x2/QobpgYya+2HNcFxfuIFr2LKq9p4LE395MQHsSPF0+wOo5SfUZE+PltkxkWGsDX39hPVZ0uUtJbWvQuyBjDt/98kHM1jfxh6TSdmVK5nYGBvvx+6VQKztXy/b8e0emMe0mL3gW99FkuH2WU8MQNiUyMGmh1HKUcIjl+MI9dM5a/HSjirfQCq+O4NC16F5OaU85/v5fBNeOHsWJevNVxlHKohxeMZu6oIXz/r0c4UqgTn/WUFr0LOVNZx9de/5yYwYH89q4pOpRSuT1vL+F/l00jPMiPr76aTnlNg9WRXJIWvYtoaLLx0Gvp1DY08dx9MwgN8LU6klL9YkiwP8/eN4PS6noefWM/zTq+vtu06F2AMYYnNx3l81MV/OqOKYwdFmJ1JKX61eToMH66ZCI7M8/y8/czrI7jcnS4hgtYtyObN1JP8dCVo7hRpzhQHurOmTEcKTrPuh05JIQHc/esWKsjuQwteif3wZFifvb+MW6cNJxvXTfO6jhKWeqHNyVxqryWH/ztCNGDBjB/rK5GZw+9dePEDuZX8Nib+5kaE8Zv7pyiU7cqj+fj7cUf757OmKHBPPz65xwvrrI6kkvQondSmSXVrHh5H+HB/qxbnkyAr7fVkZRyCsH+Prz4wEwG+Hmz/MW9uliJHewqehFZKCLHRSRTRJ7oYLuIyB9atx8SkelttuWKyGEROSAiupqIHQrO1XLfC3vxEuHVlbMI18nKlPoXI8IGsH5lCnWNNu59YS8llXVWR3JqXRa9iHgDTwM3AEnAMhFJarfbDcCY1j+rgDXtti8wxkztbPUT9U+lVfXc+/xeauqbeHVlCgnhQVZHUsopJUaG8tKKmZRW1XPfC6lU1OoY+87Yc0WfAmQaY7KNMQ3ABmBJu32WAOtNiz1AmIjo8JBuuljyZyrreWlFCuOHh1odSSmnNj12EOuWJ5NztkbL/hLsKfooIL/N64LW9+zdxwBbRSRdRFZ19k1EZJWIpIlIWmlpqR2x3Evx+TruWrubU+W1vHB/MjPiBlkdSSmXMG90OM/eN53jxVUsW7eXsup6qyM5HXuKvqOhHu0fTbvUPvOMMdNpub3zsIjM7+ibGGPWGmOSjTHJERGeNWSqsOICd63dzZnzdbzy5RTmjg63OpJSLuWqxGE8f38y2aXVLFu3h5IqvWfflj1FXwDEtHkdDRTZu48x5uJ/S4B3aLkVpFqdOFPFl9bsorymgVcfnEVKwmCrIynlkuaPjeClFTPJL7/Anc/u1nVn27Cn6PcBY0QkQUT8gKXApnb7bAKWt46+mQ2cN8acFpEgEQkBEJEg4DrgSB/md2l7ssu4Y80uGm2GN74ym+mxertGqd6YOyqc1x6cRcWFRm57ZhcHdIUqwI6iN8Y0AY8AW4AMYKMx5qiIrBaR1a27vQdkA5nAOuBrre8PA3aKyEEgFdhsjPmgj8/BJW06WMTyF1KJCPHnLw/N1XnlleojM+IG8fZDcwn092bp2t18+MUZqyNZTpxx5Zbk5GSTluaeQ+6bbYbfbD3OM9uymBnfMmIgLNDP6lhKuZ3SqnpWvrKPw4Xn+X/XjuVrV45266fLRSS9syHs+mRsP6qobWDFy/t4ZlsWy1Jiee3BWVrySjlIRIg/b66aw5IpI/j11hM89Ho61fVNVseyhBZ9P9l/6hw3/3Ene7LK+Nltk/jZbZPw99FpDZRypAF+3vzPXVP5wU1JfJRRwuI/7uRokeetVKVF72DNNsP/fnySO57djc0GG746m2UpOr2qUv1FRFh5WQKvrZxFTX0Ttz69i+d3ZGPzoAVMtOgdKOdsDcvW7uE3H57gpsnDef+xy3VkjVIWmTNqCB98Yz5Xjovgp5szWP5iKgXnPGNCNP0w1gEam22s25HN7z46ib+PFz9ePIHbpkdbHUspRcuKbW+k5vPU5i8wwOPXjeP+ufF4u/gHtZf6MFaLvo/tzS7jR+9+QcbpSm6YGMmPF09gaGiA1bGUUu0UVlzge+8cZtvxUqZED+RHiycwzYV/49ai7wenymr52fsZvH+kmOEDA3jy5gksnBhpdSyl1CUYY9h0sIifbs6gtKqeW6aO4NsLExkRNsDqaN12qaLXpQR76UxlHc98kskbqfl4ewnfvHYsX7l8JAP8dESNUs5ORFgyNYqrxw9jzbZM1u3I4YOjxdw3O46vXjHKbdaC0Cv6Hjp9/gLrPs3htb15NNsMd0yP5rFrxzB8oOtdCSilWuSX1/LbD0/wtwOF+Pt4s3xuHCvnJbjE7Ve9ddOHjhSeZ92ObDYfOo0BbpsWxdevGkPskECroyml+khWaTV/+Pgkmw4W4evlxeKpI3jw8gQSI513jQgt+l6qqW/i/w4V8UZqPgfyKwj29+GumTE8MDeemMFa8Eq5q5yzNbz0WQ5vpRVwobGZlPjB3DUzhkWThjvd7Vkt+h5obLaxM/Ms7x4sYsuRYmoamhk9NJilM2O4c2YMoQG+luZTSvWfitoGNuzLZ0PqKXLLagkJ8GHRxOHcPGUEs0cOxsfb+keStOjtVFPfxI6TZ/k44wwfZZzhXG0jIQE+LJwQyV0zY5gRNwgR1x5rq5TqOWMMe7LL2ZiWz9ajLReA4cH+XJs0lKsThzFvdLhlV/o66qYTTc02jhRV8lnmWXZlnWVfzjkamm2EBPhwVeJQbpo8gvljw3VOGqUU0DJKZ86oIcwZNYS6xmY+OVbC/x06zbsHT/NGaj7+Pl6kJAxm3uhw5o0KJ2lEqFM8iOUxV/TGGM5U1nOk8DwHCypIzzvHgfwKahuaAUiMDOGy0eFcPX4YyfGD8HWCX8WUUq6hocnG3pwyPs4o4bPMs5wsqQYg2N+HabFhTI8dxNSYMCZEhTI0xDEjeDzq1o0xhrKaBnLP1pBZUs2JM9WcLKki43QlZ6tbVoj39hLGDw9hRuwgZsQPZu6oIW4zXlYpZb2Syjp2ZZWRlldOel4Fx4sruTiH2tAQfxKHhzJ2aDBjh4UwamgwCeFBDAr07dWt4V4XvYgsBH4PeAPPG2N+3m67tG5fBNQCDxhjPrfn2I70pOibbYZbn/mMnNIaqtrMOR3g68WYoSGMiwxh4ohQJkYNJGlEKIF+Hn3XSinVj6rrm/iiqJIjhec5UnieY8VVZJVWU99k+8c+oQE+JEaG8uZXZ/eo8Ht1j15EvIGngWtpWQR8n4hsMsZ80Wa3G4AxrX9mAWuAWXYe2ye8vYSR4UFMiwkjPjyI+CFBjIoIJnrQALdeVUYp5fyC/X1ISRhMSsLgf7zXbDPkl9eSfbaanLO15JXV0Nhsc8iAD3sua1OATGNMNoCIbACWAG3Legmw3rT8erBHRMJEZDgQb8exfeZ3S6c54ssqpVSf8/aSlovS8CCHfy97PnGMAvLbvC5ofc+efew5FgARWSUiaSKSVlpaakcspZRS9rCn6Dv6PaL9jf3O9rHn2JY3jVlrjEk2xiRHRETYEUsppZQ97Ll1UwDEtHkdDRTZuY+fHccqpZRyIHuu6PcBY0QkQUT8gKXApnb7bAKWS4vZwHljzGk7j1VKKeVAXV7RG2OaROQRYAstQyRfNMYcFZHVrdufBd6jZWhlJi3DK1dc6liHnIlSSqkOud0DU0op5YkuNY5en/NXSik3p0WvlFJuzilv3YhIKZDXw8PDgbN9GMdK7nIu7nIeoOfijNzlPKB35xJnjOlwbLpTFn1viEhaZ/epXI27nIu7nAfouTgjdzkPcNy56K0bpZRyc1r0Sinl5tyx6NdaHaAPucu5uMt5gJ6LM3KX8wAHnYvb3aNXSin1r9zxil4ppVQbWvRKKeXm3LLoReQnInJIRA6IyFYRGWF1pp4QkV+JyLHWc3lHRMKsztRTIvIlETkqIjYRcbmhcCKyUESOi0imiDxhdZ7eEJEXRaRERI5YnaU3RCRGRD4RkYzWf1vfsDpTT4lIgIikisjB1nP5cZ9+fXe8Ry8iocaYyta/PwokGWNWWxyr20TkOuDvrZPD/QLAGPMdi2P1iIiMB2zAc8DjxhiXmcyodUnME7RZEhNY5oglMfuDiMwHqmlZFW6i1Xl6qnUVu+HGmM9FJARIB25xxf8vretuBxljqkXEF9gJfMMYs6cvvr5bXtFfLPlWQXSy2ImzM8ZsNcZcXOl8Dy3z+bskY0yGMea41Tl66B/LaRpjGoCLS2K6JGPMp0C51Tl6yxhz2hjzeevfq4AMOlnBztmZFtWtL31b//RZb7ll0QOIyFMikg/cA/zQ6jx94MvA+1aH8FB2L4mprCEi8cA0YK/FUXpMRLxF5ABQAnxojOmzc3HZoheRj0TkSAd/lgAYY75njIkBXgcesTZt57o6j9Z9vgc00XIuTsuec3FRdi+JqfqfiAQDbwOPtftt3qUYY5qNMVNp+c09RUT67LaaPUsJOiVjzDV27vonYDPwpAPj9FhX5yEi9wM3AVcbJ/9ApRv/T1yNPctpKgu03s9+G3jdGPMXq/P0BWNMhYhsAxYCffKBucte0V+KiIxp83IxcMyqLL0hIguB7wCLjTG1VufxYLokphNq/QDzBSDDGPNbq/P0hohEXBxVJyIDgGvow95y11E3bwPjaBnlkQesNsYUWpuq+0QkE/AHylrf2uOKo4cARORW4H+BCKACOGCMud7SUN0gIouA3/HPJTGfsjZRz4nIG8CVtEyJewZ40hjzgqWhekBELgN2AIdp+VkH+K4x5j3rUvWMiEwGXqHl35cXsNEY81999vXdseiVUkr9k1veulFKKfVPWvRKKeXmtOiVUsrNadErpZSb06JXSik3p0WvlFJuToteKaXc3P8H5U1S4GJeGygAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import scipy.stats as stats\n", - "import math\n", - "\n", - "mu = 0\n", - "variance = 1\n", - "sigma = math.sqrt(variance)\n", - "x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)\n", - "plt.plot(x, stats.norm.pdf(x, mu, sigma))\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Consulte como calcular usando Python la medida de probabilidad de los siguientes intervalos, si se asume una distribución normal con media 10 y varianza 1.\n", - "1. $[5,15]$.\n", - "2. $[0,\\infty]$\n", - "3. $[8,11]$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Ayuda" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$\\text{Prob}[a,b] = \\text{Prob}[-\\infty,b] - \\text{Prob}[-\\infty,a]$." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.022750131948179195" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Prob[−∞,𝑎] .\n", - "import scipy.stats as stats\n", - "import math\n", - "a = 8\n", - "mu = 10\n", - "var = 1\n", - "sigma = math.sqrt(var)\n", - "prob_inf_a = stats.norm.cdf(a, mu, sigma)\n", - "prob_inf_a" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Función de distribución acumulada " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Dada una distribución con densidad $g(x)$, su función de distribución acumulada evaluada en $x$ se define mediante la función $G$ dada por:\n", - "\n", - "$$\n", - "G(x) = \\int_{-\\infty}^{x}g(x)dx\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Observe que en consecuencia si $G$ es una función de distribución acumulada se tiene que para cualquier intervalo $[a,b]$\n", - "\n", - "$$\n", - "\\text{Prob}[a,b] = G(b) - G(a) = \\int_{-\\infty}^{b}g(x)dx - \\int_{-\\infty}^{a}g(x)dx = \\text{Prob}[-\\infty,b] - \\text{Prob}[-\\infty,a].\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Información de distribuciones continuas " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La siguiente gráfica muestra las funciones de información (diferencial), definida por $-\\log g(x)$. La información diferencial representa el **grado de sorpresa** de observar el valor en cada punto.\n", - "\n", - "\n", - "Tanto la distribución de Student(0,1,df=10) como la doble exponencial(0,1) tienen valores sorpresa muy por debajo de lo normal(0,1) en los rangos (-6, 6). Esto significa que los valores atípicos tendrán menos efecto en el log-posterior de los modelos que usan estas distribuciones. Una línea de regresión necesitaría moverse menos para incorporar esas observaciones, ya que la distribución del error no las considerará inusuales." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAH1CAYAAAAu1ZIJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACL8UlEQVR4nOzdd1Sc17X38e9BIKGCKuoFUO+9V8BWc7fjXuIWt8TpzU5yE8dvipP4JrFjpzg3ju24xr3bkg3qvfcOSAgJSaiA6Ijz/nFmAEmAhAQ8M8PvsxaLacxsGGlmz3n22dtYaxERERERkboX5nUAIiIiIiINhZJvEREREZF6ouRbRERERKSeKPkWEREREaknSr5FREREROqJkm8REZFaZoy5yhhzi9dxiEjgUfItInKRjDGpxpgfeB1HTRljoo0x1hgTf5H3Y40x19fwZyYZYzYYY4qMMfMu5vG9YIyJ9/3e0ZVcNwZ4BlhW/5GJSKAL9zoAEZGLYYx5AbizkqtGWGvX1VMYY4DcenqsQNQZOFbDn3kKWA9cTnD+7Zbgfu+sihcaY9oC/waus9ameBGYiAQ2Jd8iEgq+AO4447Ij9fXg1trD9fVYgchae/ACfqw38Ky1dt+FPq4xprG1tuhCf/5i+B73rN/bWnsUGFz/EYlIsFDZiYiEgkJr7cEzvkqMMY8ZYzZVvKEx5i5jzMkK5x8zxmwyxtxsjNltjMkxxrx3ZjmBMeZOY8xGY0yhMSbTt+Luv+60shNjTA9jzLu++8oxxrxjjOl2AY95tzFmizGmwBizwxjzXWNMWIXrH/BdXmCMOWyM+dwYU+WiijFmjDFmte/2a4FxldxmoDHmY19Mh4wxrxljOlX3x69YdmKMifWd/4oxZq4xJs/3O0yveD3QCnjed9u7fNdNNcYs98WXaYz5kzGmcYXHmWeM+Zsx5kljzGFgcYXyj9m+3y3fGLPQGNPNGDPNGLPeGHPSGPORMabdGX+LOcaYI8aYbGPMImPMhDN+r5a+xzvgi2mrMeYm33VnlZ0YY66r8G9knzHmp8YYU+H6VGPMz4wx//A9Zrox5ofV/W1FJPQo+RYRgVjgJuBaYAYwAvi1/0pjzAPAP3DlBEOBy4DNld2RL9l6D+gIJAIJQBfgvYqJ2Hk85n3Ab4CfAwOA7wM/Br7uu3408CzwS6AfcCnwWVW/oDGmOfAxsAcYDTwCPHnGbToDC4BNwFjffbYAPqiY9J+nXwNPA8OAlcDrxpgWwD5cuUYe8B3f6TeMMV2BT4G1vr/FvcAtwG/PuN/bAQNMAb5a4fJf+u5vHNAGeAP3t7sfiAcGAY9VuH0U8B/f/YwF1gGf+JNp33P1KTANuBsYCHwPqHSl3RgzCngTeAcYgvv7Pgo8fMZNvwtsBEYCvwN+f2bSLyIhzlqrL33pS19B+wW8AJQAJyt8feq77jFg0xm3vws4WeH8Y0AB0KrCZT8FdlU4nw48UU0MqcAPfKenA6eA2ArX9wRKgUtr8Jh7gTvOeJzvAFt8p68DTgBR5/l3uh84DrSocNntgAXifecfB7484+fa+G4ztpr7tsD1vtOxvvMPVLi+q++yyRUuOwncVeH8r4FdQNgZz1Uh0Mx3fh6w4YzHjvfd98wKlz3su2zkGc/zpmp+BwMcAG6v8DyWAgOquL3/caN9518Bks64zWNA+hn/Tl474zY7gZ95/f9IX/rSV/19aeVbRELBAmB4ha+v1fDn06y1JyqczwA6ABhjOuCSxy/P874GABnW2lT/BdbaPb77HHiej9ke6A78w1cycdK4UpkngF6+288F0oAUY8wrxpXFRJ0jrg3W2pMVLlt6xm1GAVPPeEx/TXYvambDGb8b/t+vmviWWmtLK1y2CGiMqw/3W30ej5fp+77xjMvKHt8Y08FX/rHDGHMCyPFd38N3kxHAAWvt1mpiPjP+xWdctgjoaoxpWUWcUOF5F5GGQRsuRSQU5Flrd1VyeSluRbOiiEpuV3zGeUt5Wd6ZP38uxvfzlal4eXWP6f/+IK6rxtl3ZG2OMWYkMBW3Svso8BtjzBhrbUYlP3I+v0cYrjSlsraJmZVcVp2y389aa30VN9Ut+Jzv362qzigV/57W97hnXlbx8V/ElQZ9F7ciXYj7gOWvMffieReRBkD/4UUklB0GOp5Raz28Jndgrc0E9gOXnOePbMGtdsb6LzDG9MTVfW+p4WP2stbuOvOrwu1KrLVJ1tpHcbXozYErqolriK/222/8GbdZg6uNTqvkcXPOJ/aLsAWYcEZt+WRcjfXuOni8ycBfrLUfW2s341a+O1e4fg3Q2Rgz4Dzvb4vvPs98jPR6+NuJSBBR8i0ioWwe0Bb4iTGmlzHmXqBGw2B8fg18x9dtpK8xZrgx5vtV3PYLXP/qV4wxo3wbI1/BJXNJNXjMx4Af+R6znzFmsDHmq8aYRwGMMVcYY75tjBlhjIkBbsVtIqyqTOJVXG3888aYQb7uIz894zbP4rqQvGGMGWeM6WmMudQY89w5Slpqw19xH1D+aowZYIy5HFdm84y1Nq8OHm8HcLtx3V3GAK9z+mbKL4HlwNvGmJnGmDhjzHRjzDVV3N//AtOM62TT1xhzG26T7O/rIHYRCWJKvkUkZPnqdR/CbTbcgCvP+M0F3M/fgG8A9+E6gXyGWyGu7LYWuAa36j4PSMb1g77Gd935Pub/Affg+pevBxb6fg//4Jbjvsf5AtiGKxX5mrV2YRX3dxK3Kt4H90HgSVz3lIq3yQAm4cp1PsN1dHkWV5JReL6xXwhr7X5gNq7Weh3wPPAa8JM6esh7cJ1cVuMS7+dx5Sf+eEp98SwGXsZ9qHmK8rKUM+NfA9wAfAX3b+QJ39czdRS/iAQpU4P3AhERERERuQha+RYRERERqSdKvkVERERE6omSbxERERGReqLkW0RERESknij5FhERERGpJw1qwmV0dLSNjY31OgwRERERCWGrV68+Yq1tX9l1DSr5jo2NZdWqVV6HISIiIiIhzBiTVtV1KjsREREREaknSr5FREREROqJkm8RERERkXqi5FtEREREpJ4o+RYRERERqSdKvkVERERE6omSbxERERGReqLkW0RERESknij5FhERERGpJ0q+RURERETqiZJvEREREZF6ouRbRERERKSeKPkWEREREaknSr5FREREROqJkm8RERERkXqi5FtEREREpJ4o+a5r+/bB8uVeRyEiIiLScFgLX3wBx497HclZlHzXpaws+NWv4OWXoaDA62hEREREGoZt2+DNN+EPf3CJeABR8l2X2rWDvn2hqAhWrPA6GhEREZGGYdEi933CBDDG21jOoOS7rk2Z4r4vXOhtHCIiIiINwcmTsG6dS7onTfI6mrMo+a5rI0ZA8+awd6/7EhEREZG6s2wZlJTAoEHQpo3X0ZxFyXddi4iA8ePdaa1+i4iIiNQda8tLTiZP9jaWKij5rg/+J3/FCigs9DYWERERkVCVkgIHDkBUFAwd6nU0lVLyXR+6dIGePV3Hk9WrvY5GREREJDT5qwwmToRGjbyNpQpKvuuLNl6KiIiI1J2CAli1yp0O0JITUPJdf0aNgshI2LMHMjK8jkZEREQktKxc6do79+0LHTp4HU2VlHzXlyZNYOxYd9q/EUBEREREaoe/uiCAV71ByXf98peeLFsGxcXexiIiIiISKtLTIS0NmjWDkSO9jqZaSr7rU48e7is3F9au9ToaERERkdDgX/UeN861eQ5gSr7rmzZeioiIiNSewkJXVQDleVYAU/Jd38aOhcaNYccOOHTI62hEREREgtuqVa7TSc+e0LWr19Gck5Lv+hYZCaNHu9PaeCkiIiJycfzVBEGw6g1Kvr3h/8exZAmUlHgbi4iIiEiwSk93Uy2bNi1f3AxwSr69EBfnpl7m5MCGDV5HIyIiIhKc/Kve48e7st4goOTbC8aU96BU6YmIiIhIzQXZRks/Jd9eGT8ewsNhyxbIyvI6GhEREZHgEmQbLf2UfHuleXPXBN5aWLzY62hEREREgkuQbbT0U/LtJf8/lsWLobTU21hEREREgkUQbrT0U/LtpT59oEMHOH4cNm3yOhoRERGR4BCEGy39lHx7yRiYOtWdnj/f21hEREREgkGQbrT0U/LttQkT3MbLzZu18VJERETkXIJ0o6Wfkm+vtWgBo0a5jZf+QygiIiIiUjl/vuSvHggySr4DwbRp7vvixZp4KSIiIlKVihstR43yOpoLouQ7EPTs6SZeZmfD+vVeRyMiIiISmIJ4o6Wfku9AUHHj5YIF3sYiIiIiEoiCfKOln2fJtzHmeWPMIWPMpgqXvWGMWef7SjXGrKviZ1ONMRt9t1tVb0HXJf8nuG3bIDPT62hEREREAkuQb7T083Ll+wVgVsULrLU3WWuHW2uHA28D71Tz8wm+2wZXZ/WqNG0KY8a409p4KSIiInK6IN9o6edZ8m2tXQAcrew6Y4wBbgReq9egvObfeLlkCRQXexuLiIiISKAIgY2WfoFa8z0FyLTW7qziegvMMcasNsbcX49x1a2YGPeVmwtr1ngdjYiIiEhg8A8jDOKNln6BmnzfQvWr3pOstSOB2cA3jDFVHn8wxtxvjFlljFl1+PDh2o6z9mnipYiIiEi5ggJYvtydDvKSEwjA5NsYEw5cB7xR1W2stRm+74eAd4Gx1dz2OWvtaGvt6Pbt29d2uLVvzBiIjITduyEjw+toRERERLy1fLnrdNKnj2vNHOQCLvkGLgW2WWvTK7vSGNPcGBPlPw3MADZVdtug1KSJO6QCajsoIiIiDZu1MG+eO+3fGxfkvGw1+BqwFOhnjEk3xtzru+pmzig5McZ0McZ84jvbEVhkjFkPrAA+ttZ+Vl9x1wt/78qlS90nPREREZGGyF8JEBUFI0Z4HU2tCPfqga21t1Rx+V2VXJYBXOY7vQcYVqfBea1bN+jVy/2DW7UKJk3yOiIRERGR+uffAzd5MoR7lrbWqkAsOxHQxksRERFp2HJyYPVqNwk8iCdanknJd6AaNQqaN4e0NPclIiIi0pAsXgynTsGQIdCundfR1Bol34EqIgImTHCntfFSREREGpLS0vL8J0Q2Wvop+Q5k/tKTFSsgP9/bWERERETqy+bNkJUF0dEwaJDX0dQqJd+BrGNH6NcPiopg2TKvoxERERGpH/49b1OnuprvEKLkO9DFx7vv8+e7XpciIiIioSwrCzZtct1NJk70Oppap+Q70A0bBq1bw4EDsH2719GIiIiI1K2FC92C46hRrr93iFHyHegaNSpvr+Of8CQiIiISikpKYNEidzrENlr6KfkOBlOmQFgYrF8Px455HY2IiIhI3Vi71vX37tYNevb0Opo6oeQ7GLRqBSNHurY7Cxd6HY2IiIhI3fBvtJw2LeQ2Wvop+Q4W/o2XCxe6QzIiIiIioWT/fti5E5o0gbFjvY6mzij5Dha9e0OXLpCd7Q7JiIiIiIQS/1Cd8eMhMtLbWOqQku9gYUz56rc2XoqIiEgoKSgon2kSohst/ZR8B5Nx49wnwV27ID3d62hEREREaseKFS4B790bunb1Opo6peQ7mERGwoQJ7rRWv0VERCQUWAvJye50iK96g5Lv4OP/R7l8OeTnexuLiIiIyMXauRMyMqBlS9fdLcQp+Q42nTtDv35QVARLl3odjYiIiMjF8a96T53qRsqHOCXfwajixktrvYxERERE5MIdOwbr1rlhgv6J3iFOyXcwGj4cWreGzEzYts3raEREREQuzIIFbojgyJEut2kAlHwHo7Awd2gGtPFSREREglNxcfnk7oQEb2OpR0q+g9XkyS4JX78ejh71OhoRERGRmlm9GnJyoFs36NXL62jqjZLvYNWqlTtEY235p0YRERGRYOHfaJmY6IYJNhBKvoOZf+PlwoVQUuJpKCIiIiLnLTXVfTVrBmPGeB1NvVLyHcz8U6ByctyhGxEREZFg4F/1njwZGjf2NpZ6puQ7mBlTvkFBGy9FREQkGOTkwKpVLo9pABMtz6TkO9iNHesO2ezZ4w7fiIiIiAQyf7nskCEQHe11NPVOyXewa9LEHbIBSEryNhYRERGR6pSWwvz57nQDai9YkZLvUBAf7w7drFoF2dleRyMiIiJSuXXr4Phx6NgRBgzwOhpPKPkOBe3awbBhcOqUmxQlIiIiEoj8Gy0TEhpUe8GKlHyHisRE933+fLUdFBERkcCzfz/s2OFKZidM8Doazyj5DhV9+0KXLq7sRG0HRUREJND4V70nTIDISG9j8ZCS71BhTPnqtzZeioiISCDJy4Ply91p/5DABkrJdygZN861HUxNhZQUr6MRERERcZYsgaIit8myc2evo/GUku9Q0rgxTJniTmv1W0RERAJBaWl5yUkDX/UGJd+hZ9q08raDx497HY2IiIg0dBs3wpEjbqDO0KFeR+M5Jd+hpl07GD7cfcpcuNDraERERKSh+/JL9z0hAcKUeuovEIrUdlBEREQCQXo6bN/u2gtOmuR1NAFByXco6tMHunWDnBxXfiIiIiLiBf+q98SJ0LSpt7EECCXfoejMtoPWehuPiIiINDw5ObBixel5iSj5Dlljx0Lz5pCWpraDIiIiUv8WLHDlr0OGQIcOXkcTMJR8h6qICLUdFBEREW+UlMC8ee70JZd4GkqgUfIdyqZNc7uKV69W20ERERGpP6tXQ3Y2dOkC/fp5HU1AUfIdytq2LW87OH++19GIiIhIQ2Bt+UbLSy5xNd9SRsl3qKvYdrC42NtYREREJPTt2eP2nDVvDuPGeR1NwFHyHep694aYGMjNhWXLvI5GREREQt0XX7jv06a5PWhyGs+Sb2PM88aYQ8aYTRUue8wYs98Ys873dVkVPzvLGLPdGLPLGPNI/UUdhIyBSy91p7/8Um0HRUREpO5kZcHatW7P2bRpXkcTkLxc+X4BmFXJ5X+y1g73fX1y5pXGmEbAs8BsYCBwizFmYJ1GGuxGjYLWreHAAdi82etoREREJFTNm+cW+kaPdrmHnMWz5NtauwA4egE/OhbYZa3dY60tAl4Hrq7V4EJNo0bltd/+Q0EiIiIitamwEBYtcqfVXrBKgVjz/bAxZoOvLKVNJdd3BfZVOJ/uu0yqM2UKNG4MW7dCRobX0YiIiEioWbYM8vKgZ0+IjfU6moAVaMn334BewHDgAPC/ldymsn41VRYyG2PuN8asMsasOnz4cK0EGZSaNYOJE91prX6LiIhIbTqzvaBUKaCSb2ttprX2lLW2FPgnrsTkTOlA9wrnuwFVLuVaa5+z1o621o5u37597QYcbBIT3QbM5cshJ8fraERERCRUbNkCmZnQpg2MGOF1NAEtoJJvY0znCmevBTZVcrOVQB9jTJwxpjFwM/BBfcQX9Dp2hCFD3MhXDd0RERGR2uJf9U5IcHvNpEpethp8DVgK9DPGpBtj7gV+b4zZaIzZACQA3/Xdtosx5hMAa20J8DDwObAV+K+1Vi08zpe/7eC8eRq6IyIiIhcvI8N1U4uIgMmTvY4m4IV79cDW2lsqufhfVdw2A7iswvlPgLPaEMp56NsXuneHfftgxQqYNMnriERERCSY+feSTZrkplpKtQKq7ETqgYbuiIiISG3JznZ7yYzRRsvzpOS7IRo9Glq2hP37Yds2r6MRERGRYJWc7PaSDRsGHTp4HU1QUPLdEIWHuw0RoLaDIiIicmEKC8sbOEyf7m0sQUTJd0M1darbGLFpkxs7LyIiIlITS5dCbi7ExUGvXl5HEzSUfDdULVrA+PHudFKSt7GIiIhIcCktLW8vOH26q/mW86LkuyHzb4xYuhROnvQ2FhEREQkeGzbAoUPQrp2G6tSQku+GrHNnGDzY9ftesMDraERERCRYzJ3rvl9yCYQpnawJ/bUaOn/bQf9uZREREZHqpKbCrl3QtKnmhVwAJd8NXf/+0K1beZ9OERERker4V72nToXISG9jCUJKvhs6Y2DGDHd6zhwN3REREZGqZWXB6tWu1MTftlhqRMm3uKE7bdrAwYOwcaPX0YiIiEig8k/HHjPG5Q5SY0q+BRo1Kq/9njPH21hEREQkMOXlwaJF7rSG6lwwJd/iTJ7sNk7s3AkpKV5HIyIiIoFm4UI31bJ/f+je3etogpaSb3EiI93GCdDqt4iIiJyupKR8KJ9WvS+Kkm8pl5joSlDWrnWN80VERETAbbI8ftzNCBk0yOtogpqSbynXujWMG+c2UnzxhdfRiIiISCCwtry94KWXapT8RVLyLafzH0pasgRycryNRURERLy3bRvs2wdRUW6RTi6Kkm85XZcu5SPn58/3OhoRERHx2uefu++XXAIREd7GEgKUfMvZZs5035OToajI21hERETEO2lpsHUrNGkC06Z5HU1IUPItZ+vTB2Ji4ORJWLrU62hERETEK/4OaFOmQLNm3sYSIpR8y9kqjpyfOxdKS72NR0REROrf4cPlo+T9w/jkoin5lsqNHAnR0e4/3rp1XkcjIiIi9W3uXNfpZNw4jZKvRUq+pXIVP+XOmeP+84mIiEjDkJPjOp9B+V4wqRVKvqVqEydC8+Zu3PyuXV5HIyIiIvUlKcl1Phs61A3WkVqj5FuqVnFns0bOi4iINAyFhTBvnjs9a5anoYQiJd9SvYQE19NzwwbIyPA6GhEREalrCxdCXh706uW+pFYp+ZbqtWwJkya50/4m+yIiIhKaTp2CL75wp1XrXSeUfMu5TZ/uNmCuWAFZWV5HIyIiInVl5Uo4dszVeQ8d6nU0IUnJt5xbdDSMGeP6fc+d63U0IiIiUhesLT/KPWOGm/shtU7Jt5wf/6GnRYtc+yEREREJLRs3uv1drVvD2LFeRxOylHzL+ena1R1+Ki527YdEREQktPg7m116KYSHextLCFPyLefP324oORkKCryNRURERGrPnj2wcyc0bQpTpngdTUhT8i3nr1cv6NMH8vNh/nyvoxEREZHa8tln7nt8PERGehpKqFPyLTXjX/3+4gtXgiIiIiLB7cABWL/elZokJnodTchT8i01M2gQdOsG2dmwdKnX0YiIiMjF8q96T5zo5ntInVLyLTVjTPnq9+efu/aDIiIiEpyOHHFzPMLCNFSnnij5lpobNQrat3f/YVev9joaERERuVD+hbSxY91cD6lzSr6l5ip+Ov7sM9eUX0RERILLiROwZMnpR7Wlzin5lgszfryrC0tPh82bvY5GREREamruXCgpgeHD3Th5qRdKvuXCRETA9OnutH+jhoiIiASH3FxYsMCdnj3b21gaGCXfcuGmToVmzVxT/t27vY5GREREzldSEhQWui5mMTFeR9OgKPmWCxcZ6ZrxA3z6qaehiIiIyHkqKHDJN2jV2wNKvuXiJCa6EpSNG139t4iIiAS2+fMhL89Nre7Tx+toGhwl33JxoqJc+QnAxx97G4uIiIhUr7jYbbQErXp7RMm3XLwZM9xI2rVr3YhaERERCUyLFkFOjqvzHjjQ62gaJM+Sb2PM88aYQ8aYTRUu+4MxZpsxZoMx5l1jTOsqfjbVGLPRGLPOGLOq3oKWyrVuDZMmuX7fqv0WEREJTCUlbqgOuFVvY7yNp4HycuX7BeDMju5zgcHW2qHADuDRan4+wVo73Fo7uo7ik5qYOdMN31mxAg4d8joaEREROdPy5XDsmOvpPXy419E0WJ4l39baBcDRMy6bY60t8Z1dBnSr98DkwrRrBxMmuNVv9f0WEREJLKWl5e/Ps2Zp1dtDgVzzfQ9QVQ2DBeYYY1YbY+6vx5ikOv7/zEuXQlaW19GIiIiI35o17sh0dDSMHet1NA1aQCbfxpifAiXAK1XcZJK1diQwG/iGMWZqNfd1vzFmlTFm1eHDh+sgWinToYP7D13x07WIiIh4q+KeLH+ZqHgm4P76xpg7gSuA26y1trLbWGszfN8PAe8CVX6Es9Y+Z60dba0d3b59+7oIWSryb+BYsgSOH/c6GhEREfHP4mjVypWIiqcCKvk2xswCfgxcZa3Nq+I2zY0xUf7TwAxgU2W3FQ907gwjR7od1XPmeB2NiIhIw2YtfPSROz1jhhuMJ57ystXga8BSoJ8xJt0Ycy/wDBAFzPW1Efy777ZdjDGf+H60I7DIGLMeWAF8bK1VjUMguewy933BAsjO9jYWERGRhmzzZkhLO30onngq3KsHttbeUsnF/6rithnAZb7Te4BhdRiaXKxu3WDYMFi/3k3R+spXvI5IRESk4bEWPvzQnZ4xAxo39jYeAS5g5dsY08QYE2eMGWiMURG1VO7yy933+fMhN9fbWERERBqiLVsgNdWtek+b5nU04nNeybcxJsoY85AxZgFwAtiFq7M+aIzZZ4z5pzFmTF0GKkEmJgYGDYLCQvjiC6+jERERaVgq1npPnw5Nmngbj5Q5Z/JtjPkukIrruz0XuBoYDvQFJgC/wJWvzDXGfGaM6VNXwUqQ8a9+JyVBXqX7Z0VERKQubNsGe/ZAixYQH+91NFLB+dR8TwSmWWur6iiyAnjeGPMgcC8wDdhZS/FJMOvVC/r1g+3bYd688o2YIiIiUncq1npr1TvgnHPl21p7gz/xrq7G21pbaK39q7X2/2ozQAly/tXvL76AggJvYxEREWkItm+H3buheXOtegegmm64XGKM6VknkUho6tvXrYDn5kJystfRiIiIhLYza70jI72NR85S0+T7E1wCPrLihcaYqcaYxbUXloQMY+DKK93puXO1+i0iIlKXduyAnTuhWTNISPA6GqlEjZJva+23gSeBZGPMDGPMcGPMZ0AysLcuApQQ0L8/9O7tVr+TkryORkREJHT5V70vvVSr3gGqxn2+rbVPAr8BPgJWAjnA0CqG5oicvfqdn+9tPCIiIqFo50638t2sGSQmeh2NVKFGybcxprsx5h/A47jEuxA33n1zXQQnIaRfP+jTx7Uc1Oq3iIhI7fOvel9yCTRt6m0sUqWarnzvBEYAV1hrJwFXAX8yxvy01iOT0GIMXHWVO/3FF+r7LSIiUpt27XK9vZs21ap3gKtp8n27tXastXYugLU2CYgHHjLG/LW2g5MQ07ev+9Lqt4iISO2quOrdrJm3sUi1arrh8q1KLlsPTMIl4SLV0+q3iIhI7dqzB7ZudRssteod8Gq84bIy1to0XAIuUr0+fVz3k/x8l4CLiIjIxfngA/c9MdEN1pGAds7k2xgTdz53ZK09ZpzuFx+WhDR/55Mvv3TtB0VEROTC7NjhVr2bNnVDdSTgnc/K91JjzL+MMROquoExpo0x5iFgC3B1rUUnoal3bxgwwA3c0eq3iIjIhbG2fNX70ktV6x0kws/jNv2BnwAfG2NOAauBA0AB0AYYCAwAVgDfsdZ+XkexSii58kr3Sf3LL90Lhg6TiYiI1My2ba63d/Pm7r1UgsL5rHz/FngM6Ao8CGwDWgNxQAnwIjDCWjtJibect169YNAgKCx0g3dERETk/FkL77/vTs+YoWmWQeR8Vr7vBX5hrT1kjLkVuNNae7KO45KG4MorYfNm13bw0kuhRQuvIxIREQkOGzdCSgpERUFCgtfRSA2cz8r3PmC87/Q1gEYmSe2Ii4PBg93q95w5XkcjIiISHCrWes+aBU2aeBuP1Mj5JN9PAG8bY9b4zn/NGDPVGNOyDuOShsLf+WTePMjJ8TQUERGRoLBuHezbB61bw7RpXkcjNXTO5Nta+09gMPA6YIA7gS+AY8aYPcaYd4wxPzfGXFW3oUpIio2FIUPc6vdnn3kdjYiISGArLS1f9Z49GyIivI1Hauy8huxYa7dba38P7AQmA1HAWODXwH5gOvBSXQUpIe5qX3fKefPg2DFPQxEREQloq1dDRga0bQuTJ3sdjVyA89lwWcZa26/C2dW+L5GL0707jBrlXlA++QRuu83riERERAJPaSl8+KE7ffnlEF6jNE4CRK2Mlxe5aFddBcbAokVw+LDX0YiIiASe5cshMxOio2FClbMPJcAp+ZbA0KmTeyGp+KleREREnFOn4KOP3Okrr4RGjbyNRy6Ykm8JHFdc4V5MVqxw9WwiIiLiLFkCR464xaqxY72ORi6Ckm8JHO3awdSpp/cvFRERaehKSuDjj93pK6+EMKVvwUzPngSWyy5zbZPWroXUVK+jERER8d7Cha4bWNeurkGBBDUl3xJYWraExER3+v33vY1FRETEa4WFrhMYuFVvY7yNRy6akm8JPDNnQmQkbNkCO3Z4HY2IiIh3vvwSsrPdULrhw72ORmpBjRpEGmOer+IqCxQAu4A3rLXaLScXrnlzmDHD1X2/9x788If6pC8iIg1Pbi58/rk7fd11ei8METVd+W4PXAdcA/T2fV3ju6wf8CNguzFmeK1FKA3TJZdAixawezds3ux1NCIiIvXv00+hoAAGDoR+/c59ewkKNU2+FwOfAt2stVOttVOBbsAnwBwgBvgY+N9ajVIanshImD3bnX7vPdcBRUREpKE4dgySk93pa6/1NhapVTVNvr8NPG6tzfNf4Dv9a+C71toi4HfA8FqLUBquadOgdWvYt8+NnhcREWkoPvzQtRgcPRp69PA6GqlFNU2+WwCdK7m8k+86gGxqWEsuUqmICLj8cnf6gw/c9EsREZFQd/CgG6oTFgZXX+11NFLLapp8vwv8yxhzgzEm1hgTY4y5AfgX8I7vNmMBtaiQ2jFpEkRHQ2YmLF3qdTQiIiJ17/33Xbnl5MnQoYPX0Ugtq2ny/SDwOfAysBvY4zv9GfB13222AvfVVoDSwDVqVP6p/8MPobjY23hERETqUmoqrFlz+tFfCSk1Sr6ttXnW2geBtsAIYCTQ1lr7kLU213ebddbadbUeqTRcY8ZA9+5u80lSktfRiIiI1J1333XfExPdvicJORc0ZMdam2ut3WCtXe9PukXqjDHwla+4059+6vqeioiIhJqtW2HbNmjWDGbN8joaqSM1Tr6NMR2NMY8bY94yxrxpjPmlMaZjXQQnUmbAAPeVn+8ScBERkVBibfmq98yZLgGXkFSj5NsYMwk3xfJWIB831fI2YKcxZkLthydSwXXXue/JyZCV5W0sIiIitWntWkhLg1atXMmJhKyarnw/CbwG9LXW3mGtvQPoC7yOButIXevRA8aOdX1PP/jA62hERERqR2mpGygHcMUV0Lixp+FI3app8j0c+F9rbVnDZd/pP+I2YIrUrauvdh1Qli+H9HSvoxEREbl4ixe7lrodOrgWuxLSapp8nwDiKrk8Djh+0dGInEt0NMTHn14bJyIiEqwKC10rXYCrrnILTBLSapp8v44bsnObMSbON2jnduCfuHIUkbo3ezZERsKmTbB9u9fRiIiIXLgvvoATJyAmxo2Sl5BX0+T7R8BbwPO4jZe7gf8D3gQeqckdGWOeN8YcMsZsqnBZW2PMXGPMTt/3NlX87CxjzHZjzC5jTI0eV0JAVJTbCQ7w9ttuFVxERCTYZGfD55+709df71rrSsir6ZCdImvtt4E2uPrvEbghO9+11hbV8LFfAM5sYvkI8KW1tg/wJZUk9MaYRsCzwGxgIHCLMWZgDR9bgt0ll7gd4WlpsHq119GIiIjU3IcfurKToUOhb1+vo5F6cqFDdvKstRt9g3byLvA+FgBHz7j4auBF3+kXgWsq+dGxwC5r7R5fwv+67+ekIWnSBK680p1+7z3XAUVERCRYHDgAixZBWFh5K11pEMLPdQNjzHn3dLPWXnVx4dDRWnvAd18HjDEdKrlNV2BfhfPpwLiq7tAYcz9wP0CPHj0uMjwJKJMmuVq5gwfdC1h8vNcRiYiInJ933nEtBqdOhc6dvY5G6tH5rHxn1eCrPlRWEFVl0a+19jlr7Whr7ej27dvXYVhS78LC4Npr3emPPoKCAm/jEREROR87dsCGDacfxZUG45wr39bau+sjEJ9MY0xn36p3Z+BQJbdJB7pXON8NyKiX6CTwDBsGvXrB7t0wZ45r0yQiIhKorIW33nKnZ86Eli29jUfq3QXVfNehD4A7fafvBN6v5DYrgT6+VoeNgZt9PycNkTHwla+403PmwLFj3sYjIiJSnZUry8fIX3qp19GIBzxLvo0xrwFLgX7GmHRjzL3AE8B0Y8xOYLrvPMaYLsaYTwCstSXAw8DnwFbgv9bazV78DhIgevWCUaOguLh8PK+IiEigqfg+dfXVruxEGpxzlp3UFWvtLVVcdUklt80ALqtw/hPgkzoKTYLRddfB+vWwbBkkJrphBSIiIoEkORmysqBLF5gwwetoxCMXvPJtjJlqjImszWBELlh0tEu6Ad58U4N3REQksOTmwie+dcPrr3dNA6RBuphnPhlQ7z4JHLNnQ4sWsHMnrFvndTQiIiLlPv4Y8vNhwAAYqNmADdnFJN+agSqBpVmz8pZNb7+twTsiIhIYDh+GefPKmwRojHyDpmMeElqmToVOncpf6ERERLz23ntw6hSMGwfdu5/z5hLalHxLaAkLc7V04A7x5eZ6G4+IiDRsu3bBqlUQEQHXXON1NBIAlHxL6Bk82NXU5eW5yZciIiJesBb++193esYMaNPG23gkICj5ltBjjFv9NsaVnmRmeh2RiIg0REuXuoE6rVu7aZYiKPmuc5s3K/fzRLduMGkSlJa6zZciIiL1qaAA3n3Xnb7uOg3U8cCWLXDggNdRnE3Jdx3KyYH/+z94/HFX/aDmG/XMPz1s/XrYts3raEREpCH57DPIzobYWBg71utoGpTjx+Gf/4SnnoJXXw280R8Xk3z/GjhSW4GEorAwGD7cJd0ffuiS8B07vI6qAWnZEmbNcqffesutgouIiNS1I0dg7lx3+qab1FqwnpSWuiGiv/hF+R7XwYMDL/m+4PHy1tr/qc1AQlHz5nDnnW6C7CuvwMGD8L//C+PHu5LkqCivI2wApk+HBQtg3z5XezdpktcRiYhIqPPPmhg3Dnr29DqaBmHfPnj5ZUhNdeeHDoWbb4Z27TwNq1IqO6kHffvC//yPq4IID4dly9ynssWLA+/TWMiJiIBrr3Wn33vP1eCJiIjUlR07YM0aaNy4/P1H6kxhoTu4/ZvfuMS7dWt48EH4+tcDM/GGi1j5lpoJD4fLLoPRo1390dat8NJLbjH2ttugc2evIwxhY8e6rid79rje31/5itcRiYhIKCotLW8tOHOmWgvWsQ0b4LXX4OhRV9mTmOgWOiMjvY6selr5rmcdOsC3vw333uvKTnbuhP/3/+D996G42OvoQpQx7tiTMfDll2o/IyIidWPJElf/0KaN6+stdeL4cfjHP+DZZ13i3b07PPKIK68P9MQbtPLtCWPcYuzgwfDOO7BwIXzyCaxcCbfeCgMHeh1hCIqJgYkTXa3Pf/8L3/ym1xGJiEgoKShw5Y3gjrA2buxpOKGotBTmzy+vIm3SBK66yq14hwXRcrKSbw81awa33+42ZL78MmRkuLY4Y8bAjTe6Zh1Si669Flavhk2bYONGGDLE64hERCRUfPKJ6zHcq5erMZVadeaGymHD3EHttm09DeuCBNHnhNDVqxf87GeuB39EhFsB//nPXZMObcisRVFR7iMyuNVvNV4XEZHacPiwK2sEt3qm1oK1prINlQ895DZUBmPiDReQfBtjJhljmpx5Wi5Oo0Zub8Zjj7lylPx8157wD38IzOlMQSs+3u1uPXSo/IVSRETkYrz1llvQmTDBDdWRWrFhg8uL5s51i5GXXAK//KWboRLMLmTl+1OgayWnpRZER8PDD8P997uyk9274Ve/0oTMWtOokduRAa7zyfHjnoYjIiJBbutWWLfOFSBfc43X0YSE7Gx47rnyDZU9esCjj7qDCsGwofJcLqTm21RxWmqJMTBqFAwYUL4h88MPXbnyHXeoX/9FGzDAfWxetw7efRfuvtvriEREJBiVlLhedwCXX+5qIuSCWesaxrz1FuTluc8zV18NCQnBtaHyXLThMoD5N2SOHQv/+Y/bkPn738O0aW7vYCh8+vPMDTe4jZfLlrk/qD7RiIhITfnb13bs6Goi5IIdOuTKbbdtc+cHD3Yd4AJ1UM7FCKHPEaGrb1+3AXP2bLcqPm+eq4HasMHryIJYdHR5D9bXX9fOVhERqZljx1z5Iri2G+Faz7wQpaUwZw48/rhLvFu0cLNQHn44NBNv0Mp30IiIcKVko0e7VfDUVFcLNXq0K2FWW8ILMGuWGzGaluaOc02a5HVEIiISLN56y7XiGDFCAzou0N69btr3vn3u/Pjx7sB0ixbexlXXtPIdZLp1gx//2G06aNwYVq2CX/zCzY7R4m0NNWlSPmr+3XddgZmIiMi5bN/u3oAjItwbstRIUZHb0/bb37rEu107+Na33BasUE+8Qcl3UAoLc6Vljz0Ggwa5nPGll+DPf3Y1U1IDo0dDnz5uMMJHH3kdjYiIBLpTp8o3WV52WfA2m/bItm2uxOTzz8vbB/7iFy6faSiUfAexdu3clPR773WfFCv+gz51yuvogoQxrlbPGEhOhvR0ryMSEZFAlpTkBnB06FC+d0jOyb9Q+Kc/uZlEXbuWH8lv0sAmxlxI8v0b4Gglp8UDxrhuKL/8pauVKi52h3KeeEJ55Hnr1s0N3ykthVdfVf2OiIhU7vhx1/sX3IYrbbI8J2thzZryEtnwcNc+8Cc/gbg4r6PzhrENKNEYPXq0XbVqlddh1KktW+DllyEry5WnzJ7tjorp9eEc8vNdS5nsbLjzTpg40euIREQk0PzrX7BiBQwb5uabS7VOnHBrWuvWufN9+rgWyp06eRpWvTDGrLbWjq7sOpWdhJiBA92ny4QEt5D78cfw61+77ihSjaZN3RZrcDvYc3O9jUdERALLjh0u8dYmy3Oy1jUTe+wxl3hHRsJtt8H3v98wEu9zUfIdgpo0cWXMP/iBK0nLyHBlKG+/7cpSpApjxkC/fi7xfvddr6MREZFAUXGT5axZblaEVOrYMXjmGXjhBVfnPXiwS8KnTnWlsqLkO6T16eMqKfz7QfxN7Hfu9DaugGUM3HILNGoEixbBnj1eRyQiIoFg3jy3khUdDTNneh1NQLIWFi50ifamTW5K9913u2E5bdp4HV1gUfId4iIiXCvrRx6BLl1cK8Inn3RDHQsLvY4uAHXu7D6tWOsK1UpLvY5IRES8lJ0NH3zgTt90k3tjldMcOeLaHb/8MhQUwPDhLgkfP16r3ZWpcfJtjGlijIkzxgw0xrSvi6Ck9sXGwk9/Cpdf7jZiJie7Dilbt3odWQC67DLXx3HfPpg/3+toRETES//9r8sohwyBoUO9jiagWFueT/hHw993Hzz4ILRq5XV0geu8km9jTJQx5iFjzALgBLAL2AQcNMbsM8b80xgzpi4DlYsXHg5XXeWS8O7dXUeUP//Z9d3UcMcKGjd2qxsA773ntmuLiEjDs2ULrFzpVrtvvtnraAJKZmb5kfSiIjez7rHH3HetdlfvnMm3Mea7QCpwDzAXuBoYDvQFJgC/AMKBucaYz4wxfeoqWKkd3brBo4/CNde4hHzxYvepdcMGryMLIMOGuRWOggLX/URERBqW4mJXfghwxRXaZOlTWur2kP2//we7dkHLlm6l+777ICrK6+iCw/l0f54ITLPWbqri+hXA88aYB4F7gWmAtvQFuEaNXA/w4cPdyveePfDsszBunFv0bd7c6wgDwE03ubqcFStg0iTo39/riEREpL58+qkbxdilC0yf7nU0AeHAAdfFxN++eMIE16VXOUPN1GjIjjGmvbX2cB3GU6cawpCdC1Fa6mq23n3XfdBv1co1wVdpG+7F9733oGNH1zpG04pERELfwYOuPdipU/DDH0Lv3l5H5KnSUvj8c/joIygpcd1Lbr/dtRGUytXmkJ0lxpietRCTBJCwMLjkEpdb9urlSpyffRZefFG14Eyf7hLvzEyYO9fraEREpK5ZC6+84hLvSZMafOJ94ICbFfLeey7xnjLFDfNT4n3happ8f4JLwEdWvNAYM9UYs7j2whIvdOjgBvPccINb4F2yxH3w37zZ68g8FB4Ot97qTn/8seunJCIioWv5cjfNskUL16u3gfLXdv/qV5CWBm3bwne+41a8mzb1OrrgVqPk21r7beBJINkYM8MYM9wY8xmQDOytiwClfoWFwaWXwv/8D8TFuUlVTz9d3ruzQerf3xXDFxe71ZAalGqJiEgQyc0t32R//fUNtpjZPxPk7bfdavekSW61e8AAryMLDTUuYLXWPmmMaQR8BBjgPWCotbYhr4+GnE6d4Ec/cpUWH3zgplZt3gx33tlA9x3ecIMb2bVli9uAOW6c1xGJiEhte/ddyMmBvn3dhJgGxt+3+5133HpT69Zwxx0qMaltNVr5NsZ0N8b8A3gcWAkUAh8r8Q5NYWFuiu5PfwoxMXD0KPzpT67zUoObjhkV5VZBwA1cyM31Nh4REaldu3e7laZGjVy5YQNrVn3kCPzxj/DGGy7xHj9etd11paY13zuBEcAV1tpJwFXAn4wxP631yCRgdOkCP/4xXH21e02aP9/Vgu/Y4XVk9WzCBLcacvKken+LiISSkhLXdxfcqlPnzt7GU4+shQULyt/Xo6Lg61+Hu++GZs28ji401TT5vt1aO9ZaOxfAWpsExAMPGWP+WtvBSeBo1MhNXf/JT9x0zCNH4H//131CLiryOrp6YozbaeLfjbptm9cRiYhIbfj0U9desGNH92bXQBw7Bk895bYzFRaWT6kcNszryEJbTTdcnrXcZ61dD0zCJeES4rp1g0ceccO+wsIgKclNudq92+vI6knHjnD55e70K6+4Y3MiIhK8MjJc8g2uwDkiwtt46oG1bg3pscfcLLnmzd2Eyvvuc01epG6dz3j5uHPdxlqbBkwyTveLCcgY088Ys67CV7Yx5jtn3CbeGHOiwm1+fjGPKTUTHg5XXulG1Hfp4nZF/+EPrhKjQeSiM2aU/+Iff+x1NCIicqFKS+E//3E9vadOhT59vI6ozh0/Xj7Lo6DATbp+7DG36i3143xWvpcaY/5ljJlQ1Q2MMW2Am4EtwNUXE5C1dru1dri1djgwCsgD3q3kpgv9t7PWPn4xjykXpkcPtxlz9mx3fu5c1w/UP3Y2ZIWHu9URY9zIr/37vY5IREQuxPz5sGePG+183XVeR1OnrHUtzH/5S9i40dVz33MPPPggtGzpdXQNy/m0GuwP/BT42BhzClgNHAAKgDbAQGAAsAL4jrX281qM7xJgt29lXQJQeDhcc4375PzCC24S1u9+5yozZs92teIhqWdPmDYN5s1zqyY/+pGrwxERkeBw9KhrLQhwyy0hPTkmJ8dVSq5d684PHuzWkFq39jSsBuuc2YK19ri19odAV+AhYBvQGogDSoAXgRHW2km1nHiDW01/rYrrJhhj1htjPjXGDKrlx5Uaio11q+CXXuqO4n34Ifz+924qe8i65hr3ypWS4hqjiohIcLC2vG/uiBHuK0Rt2OBWu9euhchI+OpX4eGHlXh7ydgAndZnjGkMZACDrLWZZ1zXEii11p40xlwGPGWtrbRQyxhzP3A/QI8ePUalpWkRva5t3w7//rfbRR0R4abzxseHaMvU9evhr3+Fxo1dQ9ToaK8jEhGRc1m1Cv75T7fa/dhjIZmJFhTAm2/CokXufL9+blBeu3bextVQGGNWW2srraQ/r+PkxpiXjTHfNcZMNcZE1W54VZoNrDkz8Qaw1mZba0/6Tn8CRBhjKs16rLXPWWtHW2tHt2/fvm4jFsD9B//FL1yD/uJieP1118ro2DGvI6sDw4bBmDGu3+J//qPR8yIigS43170xgVsdCsHEe/du14ls0SJXHnrDDfDd7yrxDhTnO16+C3AZrtyk1BizC1iDq/9ejUuSs2s5tluoouTEGNMJyLTWWmPMWNyHiKxafny5CE2bugb9w4bByy+7VkaPP+6Gho0Z43V0teymm9wvuG2be6WbMsXriEREpCr//a8rgu7TByZP9jqaWlVS4so+P//crQV17+42VXbp4nVkUtF5Jd/W2kQAY0xPXAcS/9ejQFvAGmN2W2v71kZQxphmwHTggQqXPeiL5e/A9bjBPiVAPnCzDdT6mQZu5Ejo3dsNDtu4Ef7v/2DdOpeEN2/udXS1JCoKbr7Z/XJvveV2srRp43VUIiJypg0bYNkyVxPp71oVIjIy4PnnYd8+92vNnu1mcoSf7zKr1JuLrvk2xsQCo4GR1tqf1EZQdWX06NF21apVXofRIFnrFoXffNPtb2nVytWeDQqVrbLWwt/+5mrABw92u1lC6EVdRCTo5eW5nYfHj7s6jEsv9TqiWmEtfPmla9xSUuK2Ht1zD/Tq5XVkDVt1Nd8X/XnIWpsKpAJnTb8U8TPGVWP07+82Y+7eDU8/7br1feUr0KSJ1xFeJGPccv6OHbBpE6xYAePGeR2ViIj4vfmmS7x79oTERK+jqRVZWa7N744d7vyUKe5zRdC/p4Y4NSaWetW+PfzgB3Dtta4H+Pz5bjDPnj1eR1YLWrd2r3oAb7wB2bW9DUJERC7I5s1unnp4uDvsGuRzGax11TOPP+4S76go+MY34PbblXgHg+D+1ydBKSwMZs06fTz9738P77/vJvwGtYkTYcCA03fTi4iId/LzXTcqgKuugk6dvI3nIp08Cf/4hzuKXFDgWpT/4hcwdKjXkcn5UvItnune3Q3mmTHDnf/kE3jiCTclM2gZ4zbxNGkCq1fDmjVeRyQi0rC9/bbrdRsbC9Onex3NRdm06fSBOXfdBQ884Fa+JXgo+RZPhYe7mu/vf9/1H927F379aze1PWj717RrB9dd506/8orKT0REvLJ1KyxcGPTlJoWF7u3kL39xbyl9+sDPfw4TJmhvfzAKzn+FEnIqvpAUF8Nrr8Gzz7pWrEFp2jRXfnLypHvFDNpPEiIiQaqgoLzc5IorgrbZdWqq2xu1YEH5gtX3vqeBOcFMybcEDP8htPvug2bNXF/wX/7SHWYLOsbAV7/qfql161z3ExERqT9vv+3agfToUV7fGERKS+HTT+F3v3N7o7p2dXulZswI2gV88dHTJwFn9Gi3Ct63r1v5/stf3Ep4UZHXkdVQ27Zw443u9OuvuxZXIiJS9zZvLl8qvusu114riGRlwR//CO+955LwSy91iXe3bl5HJrVBybcEpDZt3GG1r3zFvWbOmwe/+Y2b3BVUJk6EIUPccIeXXlL5iYhIXcvNda+34LqbdO3qbTw1tHIl/L//Bzt3QsuW8O1vuy62ERFeRya1Rcm3BCxj3OG1Rx91naEOHIDf/hbmzAmiHNbf/aRZM7cSs3ix1xGJiIS2115zRxp79Qqq7ib5+W48/P/9nzs9bJhrIThwoNeRSW1T8l3HSkpLvA4h6PlbEsbHuz7gb78Nf/qT6xwVFFq1gltucaf/+193PFFERGrf6tVu6bhxY1duEiTF0bt2udXu5ctd6LffDg89BC1aeB1ZcLPWBmQeFhz/KoOUtZY/LP4Dz6x4hi2Ht2CDZrk28DRu7PLXhx92/Uy3b3eTvVav9jqy8zRmjJuEUFgIL74YREv3IiJBIjvbdZcCuP566NDB23jOw6lT8MEH8OSTbl0mJgZ+9jM3Jl4tBC9c8aliFu9dzK8W/IoPtn/gdThnCfc6gFCWlZ9FenY6JaUlbMzcSMcWHUmMS2R8t/FEhkd6HV5QGjLEbcZ88UXXBeW551x7wptvdo1FApYxcNttbnlj+3ZISoJLLvE6KhGR0GCtayuYm+vqNKZO9Tqiczp0yJWZpKS4t4hZs+DKK90eUbkwR/OPMj91Pgv3LiS3KBdwFQjX9r8WE0CfZkxDWo0dPXq0XbVqVb0+Zk5hDov2LmJ+2nyO5bs6icjwSCb1mER8bDwdmgf+J/NAZC3Mnw9vveX6gkdHwz33uBK/gLZuHfztb+7V9ac/Ddq+syIiAWXxYrfJsmlTVyjdpo3XEVXJWli61DXBKix0od5zj+vwJTVnrWXX0V0kpSSx9uDasiqDmNYxJMYlMrrLaMLD6v8TjTFmtbV2dKXXKfmuH6W2lHUH15GUksTOrJ1llw/uMJjEuEQGth8YUJ/KgsWBA/Cvf7kuKMbA5Ze7r4Au83vpJfdG0b07PPKIljlERC5GVpYbClFY6LLYceO8jqhKubnw8suwZo07P3q0OyjarJm3cQWj4lPFrNi/gqSUJNKz0wEIM2GM6jKKxLhE4lrHeZpXKfn28TL5rmjfiX0kpyazPH152UaAji06khCbwITuE1SSUkMlJfD++zB3rltR6NkTvva1AJ7+VVDgdtYcOQIzZ5aPohcRkZopLXUNsXfuhJEj4f77A7ZYets2+Pe/XSOWyEi3j2ncuIANN2AdzT/KvNR5LNq7qKy0JKpJFNNipjElZgqtI1t7G6CPkm+fQEm+/U4WnWTR3kXMS513WknKxO4TSYhLUElKDW3f7urn/C9st9/u9jkGpD174Pe/d6e/9z0dbxQRuRCffuom0bRs6TYERUV5HdFZKlsguvdeVy4p58day86jO0lKSWLdwXUBU1pSHSXfPoGWfPupJKX2+GcrrFvnzk+c6DZjNmniaViV++AD+PhjNwnz5z93tYoiInJ+UlPd7PXSUvjWt2DQIK8jOsuhQ65vd1qaK4e8/HK47LIAL40MIEWnispKS/Zn7wdcacnoLqNJiEvwvLSkOkq+fQI1+a4oPTudpJQkVuxfQfGpYgA6NO9AYlyiSlLOk7WwcKFrqV1c7LpN3Xcf9OjhdWRnOHXKrX6nprpjj/fc43VEIiLBobAQfvUrl91ecgnceKPXEZ1l2TJ49VUXart2brU74JsCBIisvCzmp80/rbSkZZOWTI2ZGlClJdVR8u0TDMm3X1UlKRO6TyAhNoGOLTp6HGHgy8iAf/7TfW/UyJVWX3JJgNXXZWa6N5CiIvcJYXSl/09FRKSi//wHFi1yo+MffTSgZq8XFLike/lyd16bKs9PVaUlsa1jSYxLZFSXUQFXWlIdJd8+wZR8+/lLUpJTktmRtaPs8kEdBpEYl8ig9oMC9pBLICgudu0I581z5wcNckPPWrb0MqozLFjgBkM0a+bKTwK4RZaIiOfWroW//z0gW7amproyk8OH3XC4m2925Y96m65a0akilqcvJykliYycDAAahTViVGdf15I2cR5HeGGUfPsEY/JdUVUlKQlxCUzsPlElKdVYv94N5snNdftx7r47gMoDrYW//hU2bHAbL7/7XRUEiohU5vhxN944NxduugkSE72OCHAv43PmuL2fpaWuk+zXvgadOnkdWeDKyssq61qSV5wHlJeWTI2ZSqvIVh5HeHGUfPsEe/Ltl1uUW1aScjT/KABNwpu4LikqSanS8eOuG8r27e78pZfCtdcGSJvtnBz3hpKdDVdd5XbliIhIOWvhqadg61a3evLNbwbEkvKJE66F4Nat7vwll7gyx4B4bwkw1lp2ZO0gKSWJ9Znry0pL4trEkRCbEHSlJdVR8u0TKsm3X6ktZf3B9SSlJKkk5TyVlsLnn7tGI/7Vifvug46B8Hll61b485/dm8kPf6idOSIiFX3xBbz5JrRo4aZYBkD94KZNLvE+edKFddddMGSI11EFnsKSwrKuJRVLS0Z3GU1CbELQlpZUR8m3T6gl3xWlZ6eTnJLM8v3LTytJiY+NZ2L3iTSNUBu7ivbscZMxjxxxdXm33AITJgTAIso777hPB23bwv/8j3boiIiA69X3u9+5LlFf/zoMG+ZpOCUl7uX6yy/d+QEDXDljq+CulKh1VZWWTIudxtSYqbRs4v0HqLqi5NsnlJNvv6pKUiZ0m0BCXAKdWqgAzS8/3+1IX7HCnQ+IHekV2w8G+LQ2EZF6UXEqcEKC28XoocxM10lr3z63Peeaa2DGDL1U+1lr2Z61naSUJDZkbjittCQxLpGRnUeGTGlJdZR8+zSE5NuvqpKUge0HkhiXyOAOg1WSgishXL48wHqxHj7s2g8WFLgxnVOmeBiMiIiHrHWHKVeudHWCP/6xZ20FrYUlS+D111132Pbt3abK2FhPwgk4hSWFLN+/nOSU5LNKSxLjEoltHettgPVMybdPQ0q+K9qfvZ/k1GSWpS8rK0lp37w9CbEJKknxOXMK2ZVXwqxZHjYdWbHCveFERMBPfhJQrbREROrNokWup3eTJq6toEcbdPLyXEdYfwoxbhzceitEqskYR/KOMC91Hov3Lm5wpSXVUfLt01CTb7/colwW71vMvNR5ZOVlAeUlKfGx8XSO6uxxhN4qKYH333ftosB1/bv3Xmjd2qOAXngBli4NyCESIiJ1LiMDfvMbN7Dh7rth/HhPwti9262FZGW5zwC33upZKAGjqtKSnm16khiXyIjOIxpEaUl1lHz7NPTk26/UlrIhcwNJKUlsP7K97PIB7QeQGJfIkA5DGnRJytatriVhdrbbvX733TB4sAeBVByfPHWqK0gXEWkIiorgt791CfiECa6NSD0rLYXPPoMPP3SnY2JcmUmHDvUeSsDwl5YkpSRxIOcA4EpLxnQZQ0JcQoMrLamOkm8fJd9nq6okxd8lpVlEw+y2kZ3t2kdt2eLOT5/uNtXUe9/WvXvdDv+SEveqP2ZMPQcgIuKBl1+GhQtdmclPf+qWnOvRiRNuEWbbNnd+5kw3gqGh9u4+kneE5JRkluxbUlZa0iqyFdNipjElZkqDLS2pjpJvHyXfVauqJGV8t/EkxCY0yJKUMyeWxca6nuDR0fUcyPz5bkeoxzWPIiL1YtUq104kPNyV3HXrVq8Pv2WLS7xzctxE5HvugYED6zWEgGCtZduRbSSlJLHx0EaVltSQkm8fJd/nVmpL2Zi5kaSUJLYd2VZ2ub8kZXCHwYSZhjX6fM8etxkzK8ttrrnjDteWsN5U3O3ftSs88ohrTi4iEmoyM12dd0GBG8AQH19vD11a6gawffqpO9+/v9v3EwCzfOpVYUkhy9KXkZyaXFZaEh4WXta1JKZ1jMcRBgcl3z5KvmsmIyeD5JRklqYvLStJiW4WTUJcQoMrScnLg5degrVr3fkpU+DGG+sxBy4ocG9ImZkwaRJ89av19MAiIvWkqAieeAL274dRo9yhxnraf3T0qFtk2b3bPeRVV3nc8coDh3MPu64l+xaTX5wPuNKS+Nh4pvSYQlSTKI8jDC5Kvn2UfF+YvOI8Fu9dTHJqcllJSuNGjRnfbTyJcYkNpiTFWlcB8uabrgS7Sxc3A6dzff366enujcnjnf8iIrXOWnjxRdfhqWNH12K1nvr4rV/vmkvl5bnuVl/7GvTpUy8P7bmqSkt6te3lSks6jaBRWCOPowxOSr59lHxfnOpKUhJiExjScUiDKEnZt8+VI2Zmuu5/t9wCEyfW0wLN4sVuCb5xY1cLqf7fIhIK/K9tERHuta1r1zp/yDNHxA8Z4pqqtGhR5w/tucKSQpamL2Ve6rzTSkvGdB1DQmyCSktqgZJvHyXftcdfkrIsfRlFp4oAV5ISHxvPpB6TQr4kpbAQXnvNLdKAa0Jy++31sFBjrVuiWbbMLbk/+mi9dwEQEalV+/a5o3olJfV2VO/wYbeI4h+s9pWvwCWXhP6I+MpKS1pHtmZa7DSVltQyJd8+Sr5rX15xHkv2LSE5JZkjeUeAhlWSsmxZ+Wj69u1diWJMXS8YFBa6/rcHDsDYsW4rfqi/Y4hIaMrLc/tZDh92m2luv73OH3LlStfJsKDAda+6777QHhFvrWXrka0kpySrtKQeKfn2UfJdd0ptKZsObSIpJYmth7eWXd4/ur8b3BPCJSmZmfDcc64ku1Ejt4KSmFjH+fCBAy4BLyyEm2+GhIQ6fDARkTpgLfz977BuHXTvDj/+cZ1O8i0uhjfecO3DAUaOdN2rmoXogVp/aUlySjIHTx4EXGnJ2K5jSYhLoEerHh5HGNqUfPso+a4fB3IOkJyazNJ9S8tKUto1a0dCbELIlqQUF8Pbb0Nysjs/dKirHWzevA4fdPVql/WHhcH3vw+9e9fhg4mI1LK5c+Gtt6BpUzfDoH37OnuoAwfcy2VGhmsfftNNbqE9FA8aHso95EpL9i6moKQAcKUl8bHxTO4xWaUl9UTJt4+S7/pVXUlKQlwCXaJCb7Pg2rVuz1BeHrRp43rE1umu+bffdpOAWrZ0b16tW9fhg4mI1JLt2+HPf3bNtb/+dRg2rE4exlq3N+e111wnw44dXZeqep7bU+f8pSVJKUlsOrSprLSkd9veJMYlMrzTcJWW1DMl3z5Kvr3R0EpSsrJcv9g9e+qhX2xpqXsD274devWC732v4c4/FpHgcPQo/PrXcPKke3G89to6eZiCArcnZ/lyd378eLj11tDao15QUsCy9GUkpSSReTITKC8tSYxLpHur7h5H2HAp+fZR8u29AzkHmJc6j6XpSyksKQRcSYr/cFiolKScOuUmpX32mTvfv7/bF9mqVR08WE6OeyM7dszVft98cx08iIhILSguhj/8wbUZGTQIHn64TlYmKraEbdzYJd0TJtT6w3imstKSNk3bMC1mmkpLAoSSbx8l34EjrziPpfuWkpSSVFaSEtEooqxLSqiUpGzZAs8/7/LjqCjXRWvQoDp4oNRU94ZWj626RERqpGKr1OhoN0inljfGnDkMrWtX182k3oah1SFrLVsObykrLfHr065PWWlJKB1FDnZKvn2UfAcea21ZScqWw1vKLu8X3Y/EuESGdhwa9C8m2dnwr3/BNt9copkz4eqrXWeUWrVwoeufFRHhugZ01+FGEQkgycnw+utuKfrHP671wuu8PLfnZu1ad37qVLjxxjptoFIvCkoKWLpvKcmpyaeVlozrNo6E2ASVlgSooEu+jTGpQA5wCig5M3hjjAGeAi4D8oC7rLVrznW/Sr4D28GTB0lOSa60JGVS90k0b1yXrUPqVmkpfP65K0UpLYWePd0I43btavmBXnrJTYpr184N4InSoUcRCQA7d8If/+heAO+7D0ZXmpNcsJQUV2aSleWGnd1xR60/RL07lHuI5JRkluxbclppib9Ms0XjBjCKM4gFa/I92lp7pIrrLwO+iUu+xwFPWWvHnet+lXwHh/zifNclJTWZw7mHgfKSlITYBLq2rPuxw3Vl1y63GfPYMddb9qtfhREjavEBiovhySddGUqfPvCd72gDpoh469gxty8lJwdmzHDDEGqJta5j4bvvurw+JsZ1M4mOrrWHqFcqLQkdoZh8/wOYZ619zXd+OxBvrT1Q3f0q+Q4u/pKU5NRkNh/aXHZ533Z9SYxLZFinYUH5IpSb68oeN2xw5xMS3HtRrR0aPX7cTYw7ccIdd73ttlq6YxGRGqq4IDBgAHzrW7W2wfLkSfj3v2GTL0e99FLXOCUY1xv8pSVJKUkcyj0EuEUnf9eSbi1DrDdiAxCMyXcKcAywwD+stc+dcf1HwBPW2kW+818CP7bWVptZK/kOXpknM0lOdYff/CUpbZu2LTv8FmwlKdZCUpJr033qlCvPvv9+6NChlh6g4gbMW2+FadNq6Y5FRM6TtW7Dy8qVrhTupz+ttQ2WO3a4uz5+3N3lXXe54WbBxv/etnTfUpWWhJhgTL67WGszjDEdgLnAN621Cypc/zHw2zOS7x9Za1dXcl/3A/cD9OjRY1RaWlq9/A5SN/wlKfNS5522OjCu6zgS4hKCbnUgLc1NXTtyxPWevf12GDu2lu58+XLXaiUszJWf9OtXS3csInIePvkE3n/fvbj9+Meu9chFKi11d/vRRy6379XLlZC3aVML8dYTay2bD28mKSXprKO6CXEJKi0JEUGXfFdkjHkMOGmtfbLCZSo7aeCqe/EKtpKU/HzXpMT/T3PSJDf6uFYGQfgnYDZv7tp6BWshpIgEl7Vr4e9/d5PGvv71WlmWPnHCrXZv3+7udvZsuPLKOhpgVgcKSgrKpj6rtCT0BVXybYxpDoRZa3N8p+cCj1trP6twm8uBhynfcPm0tfac64VKvkNTKJSkWAuLFsEbb7gSyc6dXRlKl4ttd15aCs8+64oiu3Rxq0+RkbUSs4hIpfbtg9//3s1zv+4611/1Im3e7Oq7/TMT7r3XlZAHg1B4j5KaC7bkuyfwru9sOPCqtfbXxpgHAay1f/e1GnwGmIVrNXj3ueq9Qcl3qAuFVYX9+10ZysGDbgPmzTe7lXBjLuJO8/Pht791o96GDYMHHwyepSIRCS7Z2W7D97FjbtjXXXdd1AtYZdOC770XWrasnXDrSigdnZULE1TJd11S8t0wBHs9XWGhm0OxZIk7P2aMqwW/qAXrzEx44gk3hWL6dLj++lqJVUSkTHGx6+W9Z48bZvD9719U65GjR13v7j17XP5+1VUwa1Zgrx2E2r4kuXBKvn2UfDc8wbyTfPlyeOUVl4y3b+82FcXEXMQdbtsGTz3lSlFuu821IRQRqQ3WurqQ5cuhbVs35OsilqfXr3ctWfPyoHVrN5SsT59ai7bWVTYkTqUlDZuSbx8l3w1XZeN5/SUpgTyeNzPTlaGkp7tx9Ndf7/qCX/BR3CVL4MUX3dLRww/DoEG1Gq+INFAffQQffuh2iv/oRxc8Or6kxO0TT0py54cOhTvvhBYBuE4SqrMopHYo+fZR8i3BOD2suBjeegvmzXPnhw1zb0YX3C73vffg009dHcuPflQr7b9EpAFbtsytehsDDz3kXqQuwKFDrsxk71632HDddXDJJRe556UOVFVaEgpTmKX2KPn2UfItFWWezGRe6jyW7FtyWknKtJhpTImZEnAlKWvWwEsvuf2Tbdq4MpRevS7gjqx1M+5XraqVw8Mi0oBt2wZPP+12Rt58szs0dwFWrnQtVwsKXEfU++6D2NjaDfViHcg5wLzUeaeVlrRr1o742HgmdZ+k0hI5jZJvHyXfUpnKSlLCw8LLuqQEUknKkSNuZSg11VWOXH216+JV45WhihujYmPdxqjGjesgYhEJWQcOwO9+51YELr0UbrihxndRVORarC5a5M6PGgV33AFNm9ZyrBfIWsvGQxtJSkli6+GtZZf3i+5HYlwiQzsODbijpRIYlHz7KPmW6lRVktK7be+ykpRGYY08jNApKXFD4+bMcecHDoS7776AxeucHNcB5cgRGDHCNRYP5DYCIhI4srPd60dWlnv9eOCBGq8CHDjg9rRkZLimKDfdBFOmBEaZSV5xXllpyeHcw4BKS6RmlHz7KPmW83Uo9xDzUuexeO/is0pSJveYTFSTKI8jdHNznn8ecnNd4n3vva4Hbo0cOOCGYeTlQXy8O2wcCO98IhK4Cgvhf/8X0tIgLg6+970aHTmz1u39fu01dxCuY0f32f8C92jWqgM5B0hOTWZZ+jKVlshFUfLto+RbaqqgpIBl6ctISkkKyJKU48dd+fbOnS5nvuwyuOKKGi5g79jhWhCWlMA117iZzSIilSkthb/9DTZscMXZjzziRk6ep4ICePVV15EQ3ByeW291TVK8UmpL2XRo01mlJf2j+5MYl8iQjkNUWiI1puTbR8m3XChrLVuPbC0rSfH/v+ndtjcJcQmM6DTCs5KU0lL4+GP3Za3rhfu1r7neuOdtzRp3/NdaN5FuwoQ6ilZEgpa1bvjAwoXQrJlLvDt2PO8f37fPvcwcOuQWym+91duXGn9pSXJKMkfyjgCutGRCtwkkxCXQJaqLd8FJ0FPy7aPkW2pDZSUprSNbMy12GlN6TPGsJGXbNvjXv1wpZvPmrg58yJAa3EFyshutqR7gIlKZDz5wn/IjIuA734Hevc/rx6yF+fPhzTfdAbauXV2ZSadOdRtuVQ7kHCApJYll6csoOlUEuNKShNgEJvWYRLOIZt4EJiFFybePkm+pTf6SlOSUZA6ePAi4kpQxXceQGJdIj1Y96j2mnBxXB75lizs/fbqrJDnvCc/vvguffeaOAX/ve4HX60tEvFHxw/mDD553L++8PNcide1ad37qVLjxRpe/16dSW8rGzI0kpyartETqhZJvHyXfUhestWw7so2klCQ2HtpYVpLSq20vEuMS670kxVrXCeW991xJSmys65kbHX2eP/zCC25oRlSUG8LToUPdBiwigW3VKre5xFr46ldh0qTz+rE9e9yPZWW5mV533AGjK01F6k5ecR6L9y5mXuq8stKSxo0au64lKi2ROqTk20fJt9S1w7mHmZc6j0V7F3lekrJ7t3vjO3rU9cz96ldh5Mjz+MFTp+DZZ2HzZpex/+hH0KpVnccrIgFo61b4y1/c68K118KsWef8EWth7lx3IK20FGJiXJnJeS0A1JLKSkuim0WTEJfAxO4TVVoidU7Jt4+Sb6kvhSWFZV1SzixJSYhNIKZ1TL3EkZsLL74I69e789OmuTkY5zzkW7GVWJcu8IMfXMQ8exEJSmlp7nWgsNDNeb/hhnO2Is3JcQfPNvlGJVx6qcvZz7v07SL4S0uSUpLYdmRb2eUD2g8gITZBpSVSr5R8+yj5lvpWXUlKQmwCIzuPrPOSFGth3jx46y232albN7cKdc4mBSdPwpNPul7gsbHw3e+6Y8ciEvoyM+EPf3DZ9Lhxbgf3ORLvHTvcpu/jx91n9bvugqFD6z5Uf2lJcmoyWXlZgCstmdB9AgmxCXSO6lz3QYicQcm3j5Jv8ZK/JGXxvsXkF+cD9VuSkpbmRtMfPuz2U956q+uxW63jx90Qnqws6NcPvvnN+t8pJSL1KyvLJd7HjrmuR1//erVL16Wl8Mkn8NFH7sN+r15un0mbNnUbZkZOBskpySotkYCk5NtHybcEAn9JSnJqMgdyDgCuJGV0l9EkxiXWaUlKQQG8/DKsXOnOT5zohlpWO+Di8GGXgGdnuw4HDzwAjbzpaS4idez4cZd4HzniWgl+61vVvkCcOOFWu7dvdwvjs2fDlVfWcNBXDVRXWpIYl8jgDoNVWiIBQcm3j5JvCST+kpTk1GQ2ZG4oK0np2aYniXGJdVaSYi0sXuy6hhUXu1679913jtHOGRmuBCU397wPQYtIkMnJcTXeBw64XZLf/a7brV2FzZvh3/92PxYVBffeCwMG1E1oecV5LNq7iHmp88pKS5qEN3FdS1RaIgFIybePkm8JVEfyjpCcknxaSUqryFZMi5nGlJgptGzSstYfMyPDTZs7cMBVktx4I0yZUk1OnZoKf/yj23w1daqrW1ECLhIa8vLc/+99+865ybqkBN5/37U0Bejf3yXeLWv/ZYqMnIyyriXFp4oBlZZIcFDy7aPkWwJdYUkhy/cvJykl6aySlIS4BGJbx9bq4xUVuRXwxYvd+dGj4fbbq1ns2r4dnn7avfueZ/cDEQlwBQXw1FOuMXeHDvDDH1aZSR865FqYpqW50pIrr3TdB2uzzKTUlrIhcwNJKUlsP7K97PKB7QeSEJeg0hIJCkq+fZR8S7Cw1rI9aztJKUmVlqSM6DyC8LDa6921YoWrBS8sdL1477/fHXWu1MaN8Le/ub6/06fDV76iBFwkWBUXuw/UO3ZAu3Yu8a5ip+Ty5fDKK+51ol07t9rdq1fthZJblMvifYvPKi2Z0G0C8bHxKi2RoKLk20fJtwSjI3lHXJeUvYvJK84DoGWTlkyLncbUmKm1VpJy6JArQ9m3z+2nvO46t7hdaV69fj384x8uAZ850zXyVQIuElyKi91Ara1b3SCtH/4Q2rc/62YFBfDaa27wLcCoUe4IWbNaqvjYn72f5NTk00pL2jdvT0KsKy1pGlF13blIoFLy7aPkW4KZvyQlOSWZjJwMABqFNSrrklIbJSklJa4feHKyOz90KNx5J7RoUcmN16512XppqWtxcPXVSsBFgkXFxDsqCr7/feh89spyaqorMzl8GBo3dt2RJk68+P/qpbaU9QfXk5SSxI6sHWWXD2w/sKxridHriQQxJd8+Sr4lFFRVkhLXJq6sS8rFlqSsXQsvveT2YLVq5ZqbVNrFYM0a1zy8tBSuuMIVgIpIYCsqgr/+1SXeLVvC9753VuJ95oj4bt1cV6ROnS7uoXOLcsu6lhzNPwqUl5YkxCXQqcVFPoBIgFDy7aPkW0LNkbwjzE+dz6K9i2q9JCUrC55/HnbtcudnzHCL22fN2li1yi2NWeuS7yuuuODHFJE6VlTkVry3basy8c7Odv/3t2515y+5xFWWXcx8rfTsdJJTklm+f7lKS6RBUPLto+RbQlVhSSEr9q8gKSWpVktSSkvh00/d5LrSUujRA772tUpG069c6SZtWOuS7yuuUAmKSKA5j8R70yZ44QXXu7tFC1d2dqEj4qsqLRnUYRCJcYkMaj9IpSUSspR8+yj5llBnrWVH1g6SUpJYn7m+rCQltnUsiXGJjOoy6oJKUvbscYvbWVmu7vOmm2DSpDPy6+XL3cQNa90y+XXXKQEXCRRnJt7f//5pNSQlJa7E5Isv3Pn+/V25WevWNX+oqkpLJnafSEJsAh1bnPnpXST0KPn2UfItDUlWXhbzUuedVZIyNWYqU2Om0iqyVY3uLz/fdTxYvtydHznSdTw4bQ5HxRrw+Hi3O0sJuIi3CgrgmWdg585KE+/MTPffdt8+16/76qtdE6Oa/tdNz04nKSWJFftXlJWWdGjeoWwgTmR4ZG3+ViIBTcm3j5JvaYiKThWxPH35WSUpozqPIjEukbg2cTW6v+XL4dVX3ft5mzZwzz3Qt2+FG2zY4NoQlpS45fHbb6/dCRwicv5yc90AnbQ0t4z9ve+V1Y1ZC0uWwBtvlPf4/9rXIK4GLwmltpR1B9eRnJKs0hKRCpR8+yj5lobMWsvOoztJSkli3cF1F1WScuSIK/Hes8etjs2a5fZaNmrku8HWre4Qd3ExjB3rjl8rARepXydOwJ//DBkZLrP+7nfdd+DkSTdYa+1ad9MxY+C226qZbnuGk0Uny0pLjuUfA1RaIlKRkm8fJd8iTlZeFvPT5rMwbeEFl6ScOgUffwyffOJW0GJj3apZ2YyOnTvhL39xS2ojRrgrz2qVIiJ1IisL/vQn16C7c2f4znfKCri3bHGbKk+cgMhIuPVW9xn5fBao953YR3Jq8lmlJYlxiUzoPkGlJSI+Sr59lHyLnK7oVFFZl5T92fsBCDNhjOriK0lpHXfOQ8Y7d7pV8GPHoEkT90Y+bpzvjTwlxY2uzstzjcIffNC924tI3cnMdIn3sWMQEwPf+ha0aEFxMbzzDiQluZv16eMOSrVrV/3d+UtLklKS2Jm1s+zywR0GkxiXyMD2A1VaInIGJd8+Sr5FKlddSUpCXAKju4yutiQlL88dwl692p0fM8Yl4c2a4XZxPfWU610WEwPf/KabqCcita/i/7feveHhh6FpU9LT3YfkjAxXAXbVVW5TZXXVYCeLTrIwbSHz0+aXlZZEhkcysftE4mPjVVoiUg0l3z5KvkXOzV+SsmjvInKLcgGIahJVVpLSOrJ1pT9nLSxdCq+/7ipN2rSBu+5yLcs4dMglBEeOuM1e3/72uZfbRKRmtm2Dv/3N7YYeOBAeeggb0Zi5c+H9990e6I4d4d573efgqvhLS5anL6ektASAji06khCboNISkfOk5NtHybfI+Ss6VcTK/StJSkkiPTsdOL+SlEOH3HS8lBR3vmw6Xn62S8DT013t6be+BV271uNvJBLCVq50ffZPnYLRo+HuuzmWE86//w3bt7ubTJsGX/mKKw87U6ktZe2BtSSnJqu0RKQWKPn2UfItUnP+kpTklGTWHlxbVpIS0zqGxLjESktSzpyM2bmzW23rHp0Pf/0r7NjhalK+8Q13aFxELtwXX8Cbb7rTl1wCN9zAqtWGV15xJWFRUfDVr1Y+qbKq0pJJPSYRHxtPh+Yd6vEXEQkdSr59lHyLXJyj+UeZnzqfhXsXnldJSlqaqzPNzKxQZ5pYTNi//+V6nEVEuC4ow4fX/y8jEuyshbfeKh9L+ZWvUDBlOq+9bli2zF00ZIhLvFu2PP1H953YVzYQp2JpSWJcIuO7jVdpichFUvLto+RbpHYUnyou65JyZklKQmwCPdv0LDtEXVTkOiwkJ7uf7dUL7r6zlPZzX4WFC11blOuvdyt2Oqwtcn5KSly/wJUrXYP9u+5iW8uxvPgiHD3qPtfeeCNMmVL+3+pU6amyriW7ju4CwBhTVloyIHqASktEaomSbx8l3yK1y1rLrqO7yrqklNpSwJWkJMS6LikRjSIAN3fnhRfg+HFXc3rD9ZbJJz/DvP+eu7P4eLjpJg3jETmX3Fz4+99d+VZkJIX3fp13t/Qr+4AbE+Mmz/onyOcU5rBw70Lmp87neMFxQKUlInVNybePkm+RunMs/xjz0+azIG3BaSUpU3pMYVrsNFpHtiY3F157zS3WgatBvWPQGlq++S+3kjd4MNx3n3qBi1QlMxOeecbtbG7Vit1XfocX5nTh0CH3ufXKK10LwUaNYO+JvSSlJLFy/8qy0pJOLTqREJeg0hKROqbk20fJt0jdKz5VzMoM1yVl34l9gCtJGdl5JIlxifRs05NVqwyvvuo2gzVvDrdMSWf0wj9hck9Ct26uN3GbNh7/JiIBZts2+Mc/IC+P4i4xfBj3LeYsaYG1rnHQ3XdDl66nWHtwLUkpSew+uhtwpSVDOgwhMS6R/tH9VVoiUg+UfPso+RapP9Zadh/bTVJKEmsPrC0rSenRqgcJcQn0bjqG11+NYPNmd/vhvXK4LetpWh7fC61auU4o1TUjFmlIFixwh41KS0nrPpkXCm8h41A4xsCsWTBteg5LM84uLZncYzLxsfG0b97e2/hFGhgl3z5KvkW8UVlJSovGLZjcYwqRGYl89kFLCgqgeeNibgl7g9H5CzGNI+COO9ysepGGqrTUdTT58ktOlRo+if4qnxybQKk1dOwIM76yn1127lmlJf6uJU3CK2nqLSJ1Tsm3j5JvEW9VVZLSr9kEDi+bzeHUaIy1jChZwa28RsvGBTB9Olx3nTZiSsOTl+d6dW7aREZBW/4d+SB7icHaUmJH7oH+75GW4wbiqLREJLAo+fZR8i0SGPwlKckpyaw5sIZSW4q1UJo2key102nVqCNRxzO4pfQVRrdLwQwc4DZiNm/udegi9SM9Hf72N0oOHeWzw6P4pPn1FDRtRm74XlqOe5ewaNcqsGlEUyZ1n6TSEpEAo+TbR8m3SOA5ln+MBWkLWJC2gJNFJynIacbeBdNofGwYXUpbMO74Am7ttoCWXVrA17+ukfQS+lauhJdeIi2rBS9mzmJ7h0HsL8oiIm4pPSasJLxxCZ2jOpMQm6DSEpEAFVTJtzGmO/AS0AkoBZ6z1j51xm3igfeBFN9F71hrHz/XfSv5FglcFUtS9h7fx8EtvUlZPJpo247+h49yV+cljO1+EHPXnTBqlNfhitS+U6fgnXconpPEe6nDeDd3FHvahVPU7AB9EpbSptthhnYcSkJsgkpLRAJcdcl3eH0Hcx5KgO9ba9cYY6KA1caYudbaLWfcbqG19goP4hOROhDRKIKJ3ScyodsE9hzbQ1LXJJb0+JjtSWNZUNSRlNRRTEnfy30n/kOHy3a6qZjhgfgSJnIBsrPhn/9k87LD/GPLVNZGtSerdR5dB22j/6QdTO05noS4BKKbRXsdqYhcpIB757LWHgAO+E7nGGO2Al2BM5NvEQlBxhh6te1Fr7a9uH7gMeaPWMDrn25k87z+fHSgG+sWNufqvWu5dttWmn/zW9Cundchi1ycnTvJ/PNT/GdlR+YdHs3+7q1p1C2fGVdt4roJIxnX9S6VloiEkIArO6nIGBMLLAAGW2uzK1weD7wNpAMZwA+stZuruI/7gfsBevToMSotLa1ugxaRWld8qpj529fyzPNHSFvZhM77jtE9fB/XD1xG3+/eRo+pV+oQvASdkpIi9rzyDGtfWMMHadM4HBHNwR6tmDQ7n2/c2otBHfvp37VIkAqqmm8/Y0wLYD7wa2vtO2dc1xIotdaeNMZcBjxlre1zrvtUzbdIcLPW8smidJ79xyGK1qTT/GQ+Y9stoteVx+h+9wOM7TGBiEYRXocpUq3swmyWbPqUY395mRUrxrA7pz8nOrSk66QuPPqtbgzp3dbrEEXkIgVd8m2MiQA+Aj631v7xPG6fCoy21h6p7nZKvkVCQ0EBvPLfk3z4/DZISaVV+GFGDUnmyC1tGTF0JtNip9G2qRIYCSypx1Ndj/vFc2nyWhQr06dwKjyKyGH9uPvrvZie2Fjt7EVCRFAl38YdY3sROGqt/U4Vt+kEZFprrTFmLPAWEGPP8cso+RYJLXv2wAt/PsyeLzeSf/I4sa3X0/K6HRwY2ZIRnUeSGJdI77a9dehePFNSWsKaA2tISkki7chuun1eQMoXo8kuiSUyuhMTbxvKzXc1pXVrryMVkdoUbMn3ZGAhsBHXahDgJ0APAGvt340xDwMP4Tqj5APfs9YuOdd9K/kWCT0lJTD3wwI+eno3eRkHKDl1nO6DFpFzSw5FzcPp1rIbiXGJjO06ViUpUm+yC7NZkLaA+anzyS7MpvmBIiL+0519GWNpGtGcjsO6c8tPejJkmJa6RUJRUCXfdUnJt0joyjpieeN3qaz/LINTxUW0aH6QyOvWcmzoCQCaN27O5B6TiY+NV0mK1Bl/acmqjFWcKj0Fpyydv+jCoeRhlJS2pVHTSKZ/LYbL7+1EEzUwEQlZSr59Kku+i4uLSU9Pp6CgwKOopKLIyEi6detGRIRWKOXCbFhwnDd+uZUjGcVYLL1GH6fwxq3s983kMsYwvNNwEuMS6dO2j0pS5KKVlJawOmM1SSlJpB5PBdy/s97Hh5H9Qg8O7o/CAD2HRXHbrwfSrZeybpFQp+Tbp7LkOyUlhaioKNq1a6c3YY9Za8nKyiInJ4e4uDivw5EgVlxYyqe/Wcvnb5+k5JShaYswJt7dhONj17P24GpKrato69qya1lJSuNGjT2OWoLNiYITLEhbwIK0BWQXum64zSKaMardVPLeimXNJ7nYklJaRlmu+1Y3xt/WC73NiDQMSr59Kku+t27dSv/+GtMbKKy1bNu2jQEDBngdioSAQ2v38/rPNrJ5TzMAuvRvyYwfduFIu+XMT5tPTmEOUF6SMi1mGu2aaWiPVC/lWApJKUmsPrDalZYAXaK6EB+TSOHq/nz69F7yDucSZiyXTC3m8l9NoGl0c4+jFpH6pOTbp6rkW4leYNFzIrXJlpxi3d+W8tYLJzmS1wyaNGHwrG5c882OZNizSwVUkiKVqaq0xP/vxR6M440nUtm/JhNKSxnY6Sg3/SiGTrNHeBu4iHiiuuQ74MbLN0QtWrTg5MmTF/Sz8fHxPPnkk4weXenzWy/mzZvHk08+yUcffURhYSGXX345R44c4dFHH+Wmm27yLC4RABPeiBHfnMyQaw6Q9NgCPl4Rzab3d7NlWTbTvjqEb900jkNFKWWb5NYeWMvaA2vp2rIrCbEJjOs2TiUpDVhVpSVTYqYwLWYaJTnteOevR1j3/gbIzSU68iQ3XlvM0O9Nx7TQareInE3Jt9SqtWvXUlxczLp167wOReQ04d07M+OfNzDh4wV88PQeFu63JP/pKMs/7s4VD8ZwZ8K9XD/w+rJEa3/2fl7e8DLvbH2nrEuKSlIaBmstKcd9pSUZle8RKMxrzEdvFrHg5Z2U7j9Ak7ASZg3dx/SfjiViqI7ciUjVlHwHkJMnT3L11Vdz7NgxiouL+dWvfsXVV19Namoqs2bNYty4caxdu5a+ffvy0ksv0axZs9N+/qGHHmLlypXk5+dz/fXX88tf/hKAlStX8u1vf5vc3FyaNGnCl19+SbNmzXjkkUeYN28ehYWFfOMb3+CBBx447f6qe9zPPvuM73znO0RHRzNy5EgADh06xO23387hw4cZPnw4b7/9Nr169aqfP57I+QgLI+rKeG6bcIT45z7mzY+asnXLKf776GHmjYvlmnvaccXIK5ndZ/ZpJQZzds9h7p65DOs4jMS4RPq266uSlBBUUlrCqoxVJKckn1ZaMqLziLJSpOJiw5efWz77dwYFO9IwxUVM6byHq+5uR8sbb4HGOkoiItVTzXeF+uIHPnygsh+7aP+48h/VXu8vOykpKSEvL4+WLVty5MgRxo8fz86dO0lLSyMuLo5FixYxadIk7rnnHgYOHMgPfvCD08pOjh49Stu2bTl16hSXXHIJTz/9NP3796d///688cYbjBkzhuzsbJo1a8bzzz/PoUOH+NnPfkZhYSGTJk3izTffPK3LSGpqaqWP+/DDD9OnTx+SkpLo3bs3N910E3l5eXz00UenlaBcKNV8S32x6zew8Zl5vLWmJ5l5LaFjB3pMieXaWyIZMACMcZvrklOTy/s24zbXJcYlqiQlRBwvOF52xKOqTbinTsHSpfDRy8c5tiYFcnIY0nY/1yUco8sDV0L37h7/FiISSFTzHSSstfzkJz9hwYIFhIWFsX//fjIzMwHo3r07kyZNAuD222/n6aef5gc/+MFpP//f//6X5557jpKSEg4cOMCWLVswxtC5c2fGjBkDQMuWLQGYM2cOGzZs4K233gLgxIkT7Ny586wWf5U97qWXXkpcXBx9+vQpu/y5556ro7+KSN0xw4Yy9K8DGPTJ5yx5YRUfpQxi73tZPLW6O/3iu3DtDeHExcUR1yaurCRlfup8MnIyVJIS5KoqLfFPRB3TdQyNGzWmtBSWL4eP3irg0Mo0yMyke4tjXD9pJ/3vnwpjxqD+gSJSE0q+KzjXCnVde+WVVzh8+DCrV68mIiKC2NjYsuE/Zx7iPvN8SkoKTz75JCtXrqRNmzbcddddFBQUYK2t9PC4tZa//OUvzJw5s9qYqnpcHXKXkBERQaOrr2DKpCOMe+VNkj8v4rN9+Wx/9QBPLIlh+PQOXHl1GN26teSKvlcwq/cs1hxYQ1JKEinHUk4rSUmIS6Bfu376/xHA/KUlSSlJpB1PA9zr2cjOI0mISyjrcmMtrF0LH7xTQsaq/bAvnY5NjnHloM2Mvq0f5rJvohGVInIhlHwHkBMnTtChQwciIiJITk4mLS2t7Lq9e/eydOlSJkyYwGuvvcbkyZNP+9ns7GyaN29Oq1atyMzM5NNPPyU+Pp7+/fuTkZHBypUrGTNmDDk5OTRt2pSZM2fyt7/9jcTERCIiItixYwddu3alefPTd+dX9rj9+/cnJSWF3bt306tXL1577bV6+fuI1KnoaBp/+yFmztzGlFffY87ylny5K491+/ezbn4cw+LbcsUV0KNHOGO7jmVs17GnjRJfd3Ad6w6uo0tUFxLiEhjXdRxNwpWcBYqqSkum9JjCtNhptG3aFgBrYcMG+OiDU6QtPwh799I27DhX9NrIhOktCLvpHmjf3stfRUSCnJLvAHLbbbdx5ZVXMnr0aIYPH07//v3LrhswYAAvvvgiDzzwAH369OGhhx467WeHDRvGiBEjGDRoED179iwrFWncuDFvvPEG3/zmN8nPz6dp06Z88cUXfO1rXyM1NZWRI0diraV9+/a89957Z8VU2eNGRkby3HPPcfnllxMdHc3kyZPZtGlTnf5tROpN//40++WPuWbFChLf+JTPN3Zm/uZs1qdHs35hDEMnt+SKKyAmBmJbx3LPiHvOKkl5ZcMrvLv1XVczHDuN6GbRXv9WDZK1lj3H9pCcmlxpacnYrmOJaBQBQGkprFkDn35SSvraw5CaRsvS41zeYyOTJ5wi/PproG9fD38bEQkV2nAZBJv7UlNTueKKK+o9wfXqcYPhOZEGorgYkpLIfi+JObt6Mi+jL8Wto6FHDIMntmTWLOjdu7zkt6S0hDUH1pCcksyeY3sAV9IwtONQEuMSVZJSTyorLQkzYWUDcXq37V32PJw6BStXwicfWzK3ZEFaGq2KjzCj2xamjjxJ4+uvgqFDVdctIjWiDZciIhciIgJmzqTl5MlcP3cuMz/7hDm7ezFv4xE2pUWzaUkPYoe2YuZMGD4cwsNOL0lJTklmZcZK1h9cz/qD61WSUseOFxxnfup8Fu5dWG1pCUBhISxZAnPnWLK2HYK9+2hXephZ3Tczod9RIq69AsaPh7Awr34dEQlRWvnWKmvA0XMiASs3F+bOJeezxcxLjSU5ox+5LTpC9260792aS6cbJk48vdVzdmF2Wa3xiYITgJuQOKnHJOJj41WScpH8pSVJKUmsObCm2tISgGPHIDkZFs4vJS8lE/bto2PYIWZ338zYvsdpNHsGTJ7sPniJiFyg6la+lXwr0Qs4ek4k4OXmwhdfUDhnPkv3dmVu+gCOhHeErt1oEdeeyVPDmDoV2lXoPlhSWsLaA2tJSklSSUotKD5VXFZasvfEXqDq0hKA1FT44gtYvbyY0oyDsD+DXk3SubTbVoYPKCJs9kwYNw7CdUBYRC6ekm8fJd/BQc+JBI3cXJg/n9Kkeazd04o56QNJLewMXbtgOndmyMgI4uNh4MDTS4b9JSmrMlZRUloCQOeozm5wj0pSquUvLVmQtoCTRScBV1oyNWYq02Km0aZpm7LbFhXBqlWwcCHs2ZgLGRmEHT7IyDapXNp1K3H9m8Bll8GoUSovEZFapeTbR8l3cNBzIkGnpARWrMDO/YI92wqZn9GX1UfjKInuBJ060b5nFFOnGSZMgKio8h/LLsxmYdpC5qfNLytJaRrRlEndJ5EQl6CSFJ+qSku6t+ruBuJ0GXNaacn+/bBgASxfZsnffxT276fpycNM6bSThC7baTsiBhITYcgQbaQUkTqh5NtHyXdw0HMiQcta2LbN1YWv3cXizN4sONCHrEYdoFMnwjp3YMiICMaPdw00/BUO/pKU5NRkdh/dDbiSlCEdhpAYl0j/6P4NsiSl+FQxKzNWkpSSxL4T+wBXWjKi8wgS4xLp1aZX2d8lL8+1Cly8GPZszofMTMjMpGeT/UzptJNR3TJpMnkMxMdD584e/lYi0hAo+fZR8l0zZ7YavOWWW9i8eTN333033/3ud+vscfWcSEjIzIRFiyhdsoxNaVEsONCHzSe6URrdHjp0pHnX1owZaxg/HmJjyxdg046nlQ3uqViSkhCbwPhu4xtEScqx/GPMT5vPwrSFZaUlLRq3YErMlNNKS4qLYeNGWLECNq4roeTAEcjMJDL3COM7pDCl0066xYZDQgJMnAjNmnn5a4lIA6Lk2ycUk++SkhLC62iDUMXk++DBg4wbN+60qZt1JdifE5HTlJS4kYkLF5K9PoUVmTEsPdST9KIOEN0e2rcnumdLRo4yjBgBcXEuEc8pzGHh3oXMT53P8YLjQHlJSnxsPO2bh9aURWstu47uIjk1mbUH1lZZWlJSAjt3ut7ca1adIj/jGBw5gsk6Qr8WGYzrkMKorgdpMnaYS7j79FFpiYjUOyXfPoGYfKempjJ79mwmT57MkiVL6Nq1K++//z5NmzZl3bp1PPjgg+Tl5dGrVy+ef/552rRpQ3x8PBMnTmTx4sVcddVVfPjhh4wYMYLVq1dz+PBhXnrpJX7729+yceNGbrrpJn71q1+d9bgtWrTggQceIDk5mTZt2vD666/Tvn17Vq9ezT333EOzZs2YPHkyn376KZs2bWLo0KHs3LmTfv368Ze//IUpU6bU2d/E6+dEpM4cOQJLl8LKlaTvLmTpoZ6sOBRHtmkF7aOhXTSte7RkxEjDyJFugI/lFGsPui4pZ5akJMQlMCB6QFCXpFRVWjKy80gS4xLp2aYn+fmGzZth3TrYtL6EAl/CzdGj9Gh6mHEdUhjdPo3Wg7vBhAluA2VkpLe/mIg0aEq+fc6ZfD/wQN088D/+UeVVqamp9O7dm1WrVjF8+HBuvPFGrrrqKm6//XaGDh3KX/7yF6ZNm8bPf/5zsrOz+fOf/0x8fDwDBw7kr3/9KwDx8fGMGzeO3/3udzz11FP87ne/Y/Xq1bRt25ZevXqxfv162lXseYZ783755Ze57bbbePzxxzl06BDPPPPMaY/5wx/+sCz5rs9pl0q+JeRZC+npsHIlpStXszsljLVHurPmSA+OnWoJbdtA27Y069qG/kMaM3Cg65hyslEayanJrNy/sqwkpVOLTiTEJTCh24SgKknxl5YsSFtAblEu4EpLpsZMZUqPqeQdbcP27bBhvWXHhnxKs467Jt3HjtGl6TFGtNvL2A6pdBrQxiXbI0dC+9A6GiAiwUsTLgNcXFwcw4cPB2DUqFGkpqZy4sQJjh8/zrRp0wC48847ueGGG8p+5qabbjrtPq666ioAhgwZwqBBg+js21DUs2dP9u3bd1byHRYWVnYft99+O9ddd91Zj3nHHXfw6aef1v4vLNLQGQPdu0P37oRdey19UlLos3o1N6xfTNqeU6w50oO1ad05tD2KNStbsqZNG2jVkg49uzJw6F3cHHcDByIWs/rolxw8eZDXNr7Gu1vfLRvc06F5B69/w0r5S0uSUpJYd3BdeWlJyx4MbzGTpieGs2t+OL/eXMzJ/UfKku2wwnz6tjrE8HbpDOu1j+hBnVyyPeLm05upi4gEASXfFVWzQl2XmjQpX61q1KgR+fn55/yZ5s2bV3ofYWFhp91fWFgYJSUl57w/YwzW2qA+fC0SlIyBnj2hZ0/MDTcQe+gQsRs3ct3GjRxZv58tWR3Zcqwz2/Z34tDGxhxKagGtWkHLUbTuMZXozgc53HgZh5ptZG5hMkkpSQzuMJjEuMSAKUkpPlXMiv0rSEpJIj07naK8JuQe7kLHkrG0KxrJ8ZSmfJhxEnL2QHYO5OXSunE+/VsfZEDMAYZ0P07zob1g4FgYdDe0bu31ryQicsGUfAeoVq1a0aZNGxYuXMiUKVP4z3/+U7YiXRtKS0t56623uPnmm3n11VeZPHkyrVu3plWrVixatIjJkyfzyiuv1Nrjich56tABLrkELrmE6IICpm7fztQdOyjdvpzULXlsOdqJXdkdSDnQjuObI6BJE0yLIUQ0GUa6yeVEyww2d8zmw3bJdO+2gFkjhjJr2Eha1HMNtLWw9/BRPlm7ivlbtnH0UGMKsuIgYzSt8zsTTTOK8gs5kLMTSkqIalxAv1aZ9OuSSf92h2k/IBozeBAMnAY9emgIjoiEDCXfAezFF18s23DZs2dP/v3vf9fafTdv3pzNmzczatQoWrVqxRtvvAHAv//977INlzNnzqy1xxORCxAZCcOGwbBhhAE9CwrouXs37NxJ6Y61HNx2nD1ZLdmT3Z49x6Nplt+SkvSW5G1szAkTRUo4PN34KH+OnE/nrm3p37s7MTFtaNuxMVEtDVFRbuhP8+buoZo0cV+NG7tc15jyRiGlpa61X0mJmxyZn+8GfOblue8nTsCJ45ZjBwvYsyeDrTsPcjQrm/CiU0QUx9CiJIxOtjGR4ZFENjpKTNROYlocJaZjFjFdS2g/uCOmV0/oNcmV5EREVPunEREJVtpw2UA397Vo0YKTJ096HUalGupzIlJjpaVw+DDs2wfp6RSn7ufg1mNkHGrE/txW7Dwezq7jERzKb4rFZdFNwpvQvHELGke2wDRuDI0j3LSfsEbQKMxl3RW+jLVgLbbUfXdfpS4LLy5x30tKsMVF5OfnkFt4kpLSYgAahxXRrUUBfVqX0qNFEZ1a5NItNpyOfVsR1q0LdOkCMTHQpo3aAYpISNGGSxGRUBQWBh07uq/Ro4kAugPd8/NdUn74MBw6xKGU7azfuIm0tCzyc5qRn9ecEtrSJKwzlHakIC+SwtJwCk9FUHAqnKJT4VjAWoN/ecYYS7gpJSLsFBFhp2gWXkTT8GIiwvIoNpmcarSfpq2O0aRZHpHtLP37dmHogCG06BILbdtCp04uzjqaSyAiEiz0KthABeqqt4jUgqZNXZ10jx4AdGA203GDexbtXcTC3UnkHz1AZP5eWhWFMa5lf0a1H0qb8AhXW1KUB8XF2OISbFgjaNSIsPAwaNQIwsKwYWHsO3WS5cc2sfHkbgobN6IoMoJOHXoyod8MRncZTXiY3l5ERCqjV0cRkQYiqkkUs/vMZmbvmaw7uI6klCR2Zu0khX28WbiPwa1cl5SB7QdijMEAFYtBik4VlXUt2Z+9H1pCWKs2jOoyisS4ROJaxwVEdxURkUCm5FtEpIHxT5Ac2Xkk+07sIzk1meXpy9l0aBObDm2iQ/MOJMYlMqH7BCLDI8nKy2J+2nwW7V1UNhAnqkkU02KmMSVmCq0jW3v7C4mIBBFtuNTmvoCj50Sk/p0sOsmivYuYlzqPY/nHANf/v5FpVDZNEyC2dSwJcQkqLRERqYY2XIqISLVaNG7BrN6zmNFrxmklKSW2hEZhjRjV2Vda0ibO61BFRIKaku8A9ec//5n777+fZs2a1ejnLqaF4AsvvMCMGTPo0qXLWdelpqayZMkSbr311gu6b//9r1q1imeeeYbDhw9zxRVXUFRUxNNPP82UKVMu+H5FpPZULEkpKS3BWkujsEaEGQ25ERGpDXo1DVB//vOfycvLq9fHfOGFF8jIyKj0utTUVF599dVae6wvv/yS/v37s3btWiXeIgEqPCyciEYRSrxFRGqRXlE9lpuby+WXX86wYcMYPHgwb7zxBk8//TQZGRkkJCSQkJAAuBVtv7feeou77roLgJSUFCZMmMCYMWP4n//5n9Pu+w9/+ANjxoxh6NCh/OIXvwBcEj1gwADuu+8+Bg0axIwZM8jPz+ett95i1apV3HbbbQwfPpz8/PzT7uuRRx5h4cKFDB8+nD/96U+nXTdv3jymTp3Ktddey8CBA3nwwQcpLS0F3MTMvn37Mm3aNBYvXgzAunXr+NGPfsQnn3xS6WOJiIiIhCqVnVTwwAN1c7//+EfV13322Wd06dKFjz/+GIATJ07QqlUr/vjHP5KcnEx0dHS19/3tb3+bhx56iK9+9as8++yzZZfPmTOHnTt3smLFCqy1XHXVVSxYsIAePXqwc+dOXnvtNf75z39y44038vbbb3P77bfzzDPP8OSTTzJ69Nn7A5544gmefPJJPvroo0rjWLFiBVu2bCEmJoZZs2bxzjvvMGnSJH7xi1+wevVqWrVqRUJCAiNGjGD48OE8/vjjZSUoIiIiIg2FVr49NmTIEL744gt+/OMfs3DhQlq1alWjn1+8eDG33HILAHfccUfZ5XPmzGHOnDmMGDGCkSNHsm3bNnbu3AlAXFwcw4cPB2DUqFGkpqZe9O8xduxYevbsSaNGjbjllltYtGgRy5cvJz4+nvbt29O4cWNuuummi34cERERkWCmle8Kqluhrit9+/Zl9erVfPLJJzz66KPMmDGDn//852fdruLgioKCgiqv87PW8uijj/LAGcv5qampNGnSpOx8o0aNKi37WL58ednPPv7447Rs2bLa3+PMGPznNXBDREREpJxWvj2WkZFBs2bNuP322/nBD37AmjVrAIiKiiInJ6fsdh07dmTr1q2Ulpby7rvvll0+adIkXn/9dQBeeeWVsstnzpzJ888/X9b5ZP/+/Rw6dKjaWCo+5rhx41i3bh3r1q3jqquuOiueM61YsYKUlBRKS0t54403mDx5MuPGjWPevHlkZWVRXFzMm2++WcO/joiIiEhoUfLtsY0bNzJ27FiGDx/Or3/9a372s58BcP/99zN79uyyDZdPPPEEV1xxBYmJiXTu3Lns55966imeffZZxowZw4kTJ8ounzFjBrfeeisTJkxgyJAhXH/99dUmzwB33XUXDz74YKWbIIcOHUp4eDjDhg07a8MlwIQJE3jkkUcYPHgwcXFxXHvttXTu3JnHHnuMCRMmcOmllzJy5MgL/juJiIiIhAJNuNQ0xYs2b968ajdj1pSeExEREQlm1U241Mq3iIiIiEg90YZLuWjx8fHEx8d7HYaIiIhIwAvIlW9jzCxjzHZjzC5jzCOVXG+MMU/7rt9gjFExsYiIiIgEvIBLvo0xjYBngdnAQOAWY8zAM242G+jj+7of+NvFPGZDqnsPdHouREREJJQFXPINjAV2WWv3WGuLgNeBq8+4zdXAS9ZZBrQ2xnQ+847OR2RkJFlZWUr6AoC1lqysLCIjI70ORURERKROBGLNd1dgX4Xz6cC487hNV+BATR+sW7dupKenc/jw4Zr+qNSByMhIunXr5nUYIiIiInUiEJPvykYinrksfT63cTc05n5caQo9evQ46/qIiAji4uJqGKKIiIiISM0FYtlJOtC9wvluQMYF3AYAa+1z1trR1trR7du3r9VARURERERqIhCT75VAH2NMnDGmMXAz8MEZt/kA+Kqv68l44IS1tsYlJyIiIiIi9Sngyk6stSXGmIeBz4FGwPPW2s3GmAd91/8d+AS4DNgF5AF3exWviIiIiMj5alDj5Y0xh4E0Dx46GjjiweNK1fScBCY9L4FHz0lg0vMSePScBCavnpcYa22l9c4NKvn2ijFmlbV2tNdxSDk9J4FJz0vg0XMSmPS8BB49J4EpEJ+XQKz5FhEREREJSUq+RURERETqiZLv+vGc1wHIWfScBCY9L4FHz0lg0vMSePScBKaAe15U8y0iIiIiUk+08i0iIiIiUk+UfNcjY8w3jTHbjTGbjTG/9zoecYwxPzDGWGNMtNexCBhj/mCM2WaM2WCMedcY09rrmBoqY8ws32vWLmPMI17H09AZY7obY5KNMVt97yPf9jomKWeMaWSMWWuM+cjrWASMMa2NMW/53k+2GmMmeB2Tn5LvemKMSQCuBoZaawcBT3ockuDezIDpwF6vY5Eyc4HB1tqhwA7gUY/jaZCMMY2AZ4HZwEDgFmPMQG+javBKgO9bawcA44Fv6DkJKN8GtnodhJR5CvjMWtsfGEYAPTdKvuvPQ8AT1tpCAGvtIY/jEedPwI8AbX4IENbaOdbaEt/ZZUA3L+NpwMYCu6y1e6y1RcDruAUE8Yi19oC1do3vdA4umejqbVQCYIzpBlwO/J/XsQgYY1oCU4F/AVhri6y1xz0NqgIl3/WnLzDFGLPcGDPfGDPG64AaOmPMVcB+a+16r2ORKt0DfOp1EA1UV2BfhfPpKNELGMaYWGAEsNzjUMT5M24hp9TjOMTpCRwG/u0rBfo/Y0xzr4PyC/c6gFBijPkC6FTJVT/F/a3b4A4VjgH+a4zpadVupk6d4zn5CTCjfiMSqP55sda+77vNT3GH2V+pz9ikjKnkMr1eBQBjTAvgbeA71tpsr+Np6IwxVwCHrLWrjTHxHocjTjgwEvimtXa5MeYp4BHgf7wNy1HyXYustZdWdZ0x5iHgHV+yvcIYUwpE4z6ZSR2p6jkxxgwB4oD1xhhwpQ1rjDFjrbUH6zHEBqm6/ysAxpg7gSuAS/QB1TPpQPcK57sBGR7FIj7GmAhc4v2KtfYdr+MRACYBVxljLgMigZbGmJettbd7HFdDlg6kW2v9R4bewiXfAUFlJ/XnPSARwBjTF2gMHPEyoIbM2v/f3h27WlnHcRz/fClsaXLIRcoGaREEB0HudhsMJLfARaRBcshFIvG6+QcEQUuDd2twFTREEAsUwUHRtCFscfIfEArh63APFy+6Cb+fnvt6jc/0WQ7Pm995znn6YXd/0t17untPNj6oB4T3fFX1VZKzSY529/PZe7axu0n2VtXnVbUjybEklydv2tZq46TgYpK/u/un2XvY0N3nunv34l5yLMkN4T3X4l7+tKq+WFz6MsnjiZO2cPI9znqS9ar6K8n/SU440YM3+iXJR0muL76VuNPdp+ZO2n66+0VVfZ/kWpIPkqx396PJs7a7lSTHkzysqvuLa2vdfXXeJHhnnU7y2+Lw4N8k307es8kbLgEAYBCPnQAAwCDiGwAABhHfAAAwiPgGAIBBxDcAAAwivgEAYBDxDQAAg4hvAAAYRHwDsEVVfVNV/1XVZ69c+7mqnlTVrpnbAN533nAJwBZVVUnuJrnX3Ser6ockPyZZ6e5/5q4DeL99OHsAAO+W7u6qWktypaqeJDmfZFV4A7w9J98AvFFV3U5yMMnX3f377D0Ay8Az3wC8pqpWk+xPUkmeTZ4DsDScfAOwRVXtT/JHkjNJjiT5uLsPz10FsBzENwCbFv9wcjvJr919oar2JXmQjWe+b04dB7AExDcASZKq2pnkVpI/u/u7V65fSvJpdx+aNg5gSYhvAAAYxA8uAQBgEPENAACDiG8AABhEfAMAwCDiGwAABhHfAAAwiPgGAIBBxDcAAAwivgEAYJCXhHyPbBWfskUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "from scipy.stats import norm\n", - "from scipy.stats import t\n", - "from scipy.stats import laplace\n", - "#\n", - "fig, ax = plt.subplots(1, 1,figsize=(12, 8))\n", - "plt.title('Funciones de información',fontsize=14)\n", - "\n", - "x = np.linspace(-6,6,300)\n", - "#\n", - "y_laplace = -np.log(laplace.pdf(x))\n", - "ax.plot(x, y_laplace, 'g-', lw=2, alpha=0.6, label='laplace pdf')\n", - "#\n", - "y_norm = -np.log(norm.pdf(x))\n", - "ax.plot(x, y_norm, 'r-', lw=2, alpha=0.6, label='norm pdf')\n", - "#\n", - "y_student_t = -np.log(t.pdf(x, df=10))\n", - "ax.plot(x, y_student_t, 'b-', lw=2, alpha=0.6, label='student-t pdf')\n", - "\n", - "#\n", - "plt.xlabel('$x$',fontsize=14)\n", - "plt.ylabel('$I(x) = -\\log \\ f(x)$',fontsize=14)\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Revise las distribuciones de Laplace y $t$-student utilizadas arriba." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Entropia diferencial " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "La entropía de Shannon está restringida a variables aleatorias que toman valores discretos. La fórmula correspondiente para una variable aleatoria continua con función de densidad de probabilidad $ f(x) $ con soporte (dominio) finito o infinito $ \\mathbb{X}$ en la línea real se define por analogía, utilizando la forma anterior de la entropía como una esperanza:\n", - "\n", - "$$h[f]= E [-\\ln(f(x))]=-\\int_{\\mathbb {X}}f(x)\\ln(f(x))dx.$$\n", - "\n", - "\n", - "Esta fórmula generalmente se conoce como entropía continua, o **entropía diferencial**.\n", - "\n", - "Aunque la analogía entre ambas funciones es sugestiva, debe establecerse la siguiente pregunta: \n", - "\n", - "`¿Es la entropía diferencial una extensión válida de la entropía discreta de Shannon?` \n", - "\n", - "\n", - "La entropía diferencial carece de una serie de propiedades que la entropía discreta de Shannon tiene, *incluso puede ser negativa*.\n", - "\n", - "- $ \\leadsto $ Se puede demostrar que la entropía diferencial no es un límite de la entropía de Shannon para $ n \\to \\infty $." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Por otro lado, los conceptos y definiciones de la entropía de Shannon se traducen con la misma interpretación al caso continuo. Las sumas ahora son integrales. Así tenemos en el caso continuo que:\n", - "\n", - "1. Entropía conjunta: $H(X,Y) = -\\int \\int f(x,y)\\ln f(x,y) dx dy$.\n", - "2. Entropía condicional: $H(Y|X)= -\\int\\int f(x,y)\\ln p(y|x) dx dy$.\n", - "3. Infromación mutua: $\\mathfrak{M}(X,Y) = \\int \\int f(x,y)[\\ln f(x,y) - \\ln f_X(x)f_Y(y)]dx dy$.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Entropía de la familia normal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Se puede verificar que la entropía diferencial de la familia de distribuciones normales está dada por:\n", - "\n", - "$$\n", - "Entropia_{normal} = \\tfrac{1}{2} \\ln(2\\pi e\\sigma^2 )\n", - "$$\n", - "\n", - "Se observa entonces que tanto la varianza $\\sigma^2$ como la entropía $\\tfrac{1}{2} \\ln(2\\pi e\\sigma^2) $ son funciones crecientes. A mayor valor de $\\sigma$, mayor entropía y viceversa. Así una variable aleatoria que tiene distribución normal es mas predecible entre menor es su varianza.\n", - "\n", - "La figura muestra la entropía y la varianza en función de $\\sigma$ para la familia normal." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAH4CAYAAAB5fDrUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABv2UlEQVR4nO3dd1hc153/8feXIhBqSKgL9d4bKu5FrrJsxyWxHcd9XeO4ZDfJbjbZ/W3JZjcby2Ud17j3Ete4W7Zsx6qodwmhhgoIBBKiiXJ+f1yaEEjMMMMd4PN6nvswc++dO9+5DMOHw7nnmHMOEREREREJjyi/CxARERERac0UuEVEREREwkiBW0REREQkjBS4RURERETCSIFbRERERCSMFLhFRERERMJIgVtEREREJIwUuEVEREREwkiBWyRCmVkvM/tXM+vhdy0iIs3BzGLN7B/NbLTftYiEkgK3SAQysxjgDaDMObff73qaysyeN7O/+l2HX0Lx+s0sysyeNLMcM3NmdmZoqqv3uY6q90T324rW9Lqb8/1Uz3Mf7zz+AZgEbAzD8/7VzJ4P9XFFGiPG7wJEwqnyw/WGejYtds7NbOQx5gNrnXN3h7C0E/lfYI1z7nfN+JzhdC9gfhfRws0GbgLOBNKBA2F8rhN9v/T9bPma8/1UV73vHzO7HJgCnOecc81Yj0jYKXBLW/AlcF2ddUdC/SRm1s45F5LjOufuD8Vx/FZ1TpxzB/2upRUYBux1zi0I9xOd6PsVqd/PUP4MtgHN9n6qq6H3j3PuHeCdZi5HpFmoS4m0BSXOuX11lgPgtV6b2WNm9l9mlm1mWWb2RzOLqtz+PHAG8NPKf7s6MxtU67GPV+6/H/jezOLM7CEzyzSzYjNbZGan1i6m8nFPmNnDZpZbufxv1XNWPW+df+FfYGbfVe57wMw+O14fRzO7vvJfxXF11r9iZh808JjbK+uOqbP+VTN7vzF11HdOgn09jfjenFnre1J7mR/MOat8jJnZL81sq5kVmdkaM/tJIHU1RhDfz+eBB4EBla9xe2OOU+v78UDl9v1mdm/l+/RPZpZnZjvN7Lq6z2fH6TrR1PdnrdqO9/1t7M9Sfe+3gF93MK+hntdkZvb3ZrbFzErMLMPMfl9reyCvKZDaT3jcOs/xPPW/n+ab2aN1963zvT7h+78R56HuMY9bf2Oes57XmFD5PIcrj/vrBr5fx/15b+DY083si8rvTd3Pn6Enery0TQrcInAtUAacDNwN3AdcVbntXmAh8BzQp3LZVeuxP8H71+hpwPV4/Q+vAm4GJgNrgE/NrE89zxkFnATcDtxW+bwN6QA8BEzH+xfwQeBDM2vXwP5vVR7/0qoVZtYFuAx4poHHvAkkAufUekyHymO8HEAddc9JU17P8b43C6j5nvQBUoA8YH6Az1HbfwK3AD8FxgC/B540s4sCqKsxAq3tXuDfgQy81zotgONcC+QDM4D/rtz/PWAz3jl7AfizmfUNoP6mvp7atTV0Hhv7s9TQ+y3Q1x3sa6jtv4Df4r1vxgI/5OjPi0A+HwKpvbHHrdLQ+6mxTvT+P9F5qKsx9Qf6M/dH4FzgCmBW5XFPr7NPY3/eq5nZOLzPmA1475OzgX3AErz3YvpxapK2zDmnRUurXYDn8T6kD9dZ/qdy+3xgYZ3HfAH8udb9+cCj9Rx7PrC61v0OeF1Vrq+1LhrYCvxnncdtBqzWut8AGXXq/utxXlcHoBw49Tj7PAp8Wuv+nXi/GGKO85h3gZdq3f8JXvCIb0wddc9JU15PY743tda3B1Lx/h1tjX2OerYXAafVWf8Q8HEwdYX4+/kPwPYTvN/r+34srLXdgP3AB7XWxVa+b69sqN4T3Q/y9TR4HgnsZ6m+91tQr7sR78kGXzfQESgG7jjO8Rr7mhpde2OP25j3E/V81tXzvW/w+9aY81D3mI2p/0TP2cD3ogS4ts66POD5Ws97wp/3eo49D/hLnXW/B7Yc72dTixb14Za24Fu8FuTa8mrdXl1n2x6gZyOPvazW7aF4vwi/r1rhnCs3s4V4rSe1LXLO1b4oaCHwH2bW2Tl3qO6TVP6b8j/wWrx64LVeRwEDjlPb08ByM0t2zmXgtR694JwrO85jXgaeN7ME51whXqvS28654gDqWMYJBPB6Tvi9MTPD+wUeDVxXdV6DOGdjgHi8lrXa35tYYHugdR1PkN/PYI9TXatzzplZFl4LYtW6UjPLDaT+IOuoT0PnMZCfpYbebwG97hB8T8YAcXiBrD6BvKZAag/kuKFyvPf/ic5DXY2tP5CfuaFAO7zP1apjHjazNbX2CeTnHQAz647XxfD8OpsKAF3kKcelwC1tQaFzLu0420vr3Hc0vrtVQa3bVVfd1/fB29QP4w+B3XjdT3bjtdqvx/ulUi/n3CozWw7caGbv4f0r+kT9E/9aeexLzWweXveS8wKso/Y5aerracz35l/w/lU8zTlX+7kDPWdVx70Y2HmCOpryngmmtqYcp75am1p/MHXUp6E6AvlZauj9Fujrbur35ESjtgTymgKpPZSfOxUc+zpi69nveOcx0NFrGlt/IO/ZxtQQyM97lal4f9ivqrM+BVjaiOeUNkx9uEVO7Ajeh+yJpFXuW/tin2i8ftrr6+w7o7JltspMYE8DrdtJwGjgv5xzXzrnNgCdaNwfzE8DNwJ/B3zvnNt0vJ2dcyXA23gt21fhdUH5JgR1hOr11D3WlcAvgUsrW/Gb8hzr8f4NPdA5l1Zn2RFobcepOeLOY1OEqY5AfpaaLESvoer9M6uB7eF6TaE87n68Pt21TQzwGCc6D3WF47yk4YXm6qFfK69HGVdPnYH8vFf9Hmhf67jD8Fq8XwqyVmkj1MItbUGcmfWus67cNX5Cme3AdPNGJzkMHHDOVdTdyTlXYGaPA/9tZtnANuB+oBfwWJ3d+wIPmdljwHjgF3gX8NQnF8gGbjWzXUA/vHG6j9c1pMprwFy8/tt3NGJ/8LqVfAkMBl6t9VqbUkdtITlO5cVLLwC/BnbW+h4fCeY5nHP5ZvZH4I+Vfwx9i9fvcyZQ4Zx7KpD6jiOizmMIhLyOAH+WQqHJr6Hy/fMw8HszK8F7/yQBU51zj4frNYX4uF/hfS5dAmzCa+3vTwNdLBqo57jnIcz1Vx3zsJk9A/yPeaPX7MH7T1h0rX2C+XlfDBQCfzCzf8frbvQI8Lpz7tNgapW2Q4Fb2oJzgL111u0Gkhv5+D/iBbv1eC0bg2n4F9CvKr8+hzfixwrgAudc3ed/Be/DfzHev0afwRum6xjOuQozuwrvg30tXuvN3wN/OVHhlb9U3sQbJeDNE+1f6Vu88zMGuDoUddSpKSTHwfs3bgLeRU4P1Vr/jXPuzCCf47dAJt4FZY8Dh4CVeKMohEQEnscmCWMdjf1ZarIQvoZ/wgvvv8X7fMkEXqy1PVyvKVTHfRaYUPkVvMD7LtA9wOOc6DzUFY7z8g94F0a+ixeS/6/yfm0B/bw753LM7Id4jRir8D4nn8EbSUbkuOzo67ZEJNysmWeuNLNP8EZAubU5nk9ERESOphZukVbKzLpRc9FjoP0wRUREJEQUuEVar+VAN+DXzrm1fhcjIiLSVqlLiYiIiIhIGGlYQBERERGRMFLgFhEREREJo1bfh7t79+5u0KBBfpchIiIiIq3YsmXLsp1zPerb1uoD96BBg0hNTfW7DBERERFpxcyswVmJ1aVERERERCSMFLhFRERERMJIgVtEREREJIxafR/u+pSWlpKRkUFxcbHfpbQo8fHxJCcnExsb63cpIiIiIi1GmwzcGRkZdOrUiUGDBmFmfpfTIjjnyMnJISMjg8GDB/tdjoiIiEiL0Sa7lBQXF5OUlKSwHQAzIykpSf8VEBEREQlQmwzcgMJ2EHTORERERALXZgN3SzZ79mzy8vL8LkNEREREGqFN9uFuqZxzOOf4+OOP/S5FRERERBpJLdw++NWvfsVjjz1Wff///b//x7/9278xa9YspkyZwvjx43n//fcB2L59O6NHj+auu+5iypQp7Nq1i0GDBpGdnQ3AD37wA6ZOncrYsWN56qmnqo/ZsWNH/vmf/5mJEycyc+ZMMjMzAZg0aVL10r59e7755huWLFnCySefzOTJkzn55JPZtGlTM54NERERkdbNnHN+1xBWKSkpru7U7hs2bGD06NEA3P7h7WF53icvfrLBbStWrOC+++7jm2++AWDMmDF8+umnJCYm0rlzZ7Kzs5k5cyZbtmxhx44dDBkyhAULFjBz5kygZrr67t27c+DAAbp160ZRURHTpk3jm2++qb4g9IMPPuDiiy/ml7/8JZ07d+Y3v/lNdQ0ffvghf/jDH/jqq68oKioiISGBmJgYvvzySx5//HH+8pe/1Ft77XMnIiIiIh4zW+acS6lvm7qU+GDy5MlkZWWxZ88e9u/fT9euXenTpw/3338/3377LVFRUezevbu6VXrgwIHVYbuuRx55hHfffReAXbt2sWXLFpKSkmjXrh1z5swBYOrUqXzxxRfVj9myZQu/+MUv+Oqrr4iNjWXfvn3ccMMNbNmyBTOjtLQ0zGdAREREpO1o84H7eC3R4XTllVfy9ttvs2/fPq6++mpeeeUV9u/fz7Jly4iNjWXQoEHVQ/B16NCh3mPMnz+fL7/8koULF5KQkMCZZ55Z/ZjY2NjqUUWio6MpKysDoKCggB/96Ec8/fTT9O3bF4Df/va3nHXWWbz77rts376dM888M8yvXkRERKTtaPOB2y9XX301t956K9nZ2XzzzTe8+eab9OzZk9jYWL7++mt27NhxwmMcPHiQrl27kpCQwMaNG1m0aNEJH3PTTTdx0003cdpppx11nH79+gHw/PPPB/2aRERERORYEXXRpJlFm9kKM/trPdvMzB4xszQzW21mU/yoMVTGjh1Lfn4+/fr1o0+fPlx77bWkpqaSkpLCK6+8wqhRo054jAsuuICysjImTJjAb3/72wa7nVTZsWMHb7/9Ns8++2z1hZOpqan88pe/5J/+6Z845ZRTKC8vD9VLFBEREREi7KJJM/s5kAJ0ds7NqbNtNvAzYDYwA3jYOTfjRMc80UWTEhidOxEREZFjHe+iyYhp4TazZOAi4M8N7HIp8KLzLAISzaxPsxUoIiIiIhFt1b5VbD2w1e8yjhExgRt4CPglUNHA9n7Arlr3MyrXiYiIiEgbt2H/Bp5a9hQPLXqIrIIsv8s5SkQEbjObA2Q555Ydb7d61tXbH8bMbjOzVDNL3b9/f0hqFBEREZHItC13G4+nPk5ZRRmnDDiFHgk9/C7pKBERuIFTgEvMbDvwOnC2mb1cZ58MoH+t+8nAnvoO5px7yjmX4pxL6dEjsk64iIiIiITOnvw9PLL4EUrKSpiZPJOrxl5VPTRypIiIwO2c+yfnXLJzbhBwNfCVc+4ndXb7ALi+crSSmcBB59ze5q5VRERERCJDdmE2Dy16iMLSQib2nsj1E6+PuLANET4Ot5ndAeCcewL4GG+EkjSgELjJx9JERERExEd5xXk8uPBBDhYfZGT3kdw65Vaio6L9LqteERe4nXPzgfmVt5+otd4BP/WnqtZn/vz5xMXFcdJJJ/ldioiIiEhACo4U8PCih8kuzGZg4kDumnYXsdGxfpfVoIjoUiLH995777F+/fqQHW/Pnj387ne/Y9KkSSE7poiIiEhzKCkr4f+W/B978vfQp1Mf7plxD/Ex8X6XdVwK3C3A8QJ3WVlZwMdbs2YNzz77LO3bt29qaSIiIiLNprS8lMeWPsa23G0kJSRx38z76Niuo99lnZACt09efvllpk+fzqRJk7j99tspLy+nY8eO/PM//zMTJ05k5syZZGZmsmDBAj744AN+8YtfMGnSJLZu3cqZZ57Jr3/9a8444wwefvhh5s2bx+TJkxk/fjw333wzJSUlAAwaNIhf/epXTJ8+nenTp5OWlgbAwoULeeONNwB4+umnmTZtGhMnTuSKK66gsLDQt3MiIiIi0pAKV8Gfl/+Zjdkb6RzXmftm3kdifKLfZTVKxPXhbna33x6e4z75ZIObNmzYwBtvvMH3339PbGwsd911F6+88goFBQXMnDmT3/3ud/zyl7/k6aef5je/+Q2XXHIJc+bM4corr6w+Rl5eHt988w3FxcUMHz6cefPmMWLECK6//noef/xx7rvvPgA6d+7MkiVLePHFF7nvvvv461//elQtl19+ObfeeisAv/nNb3jmmWf42c9+FvrzISIiIhIk5xwvrXqJlftWkhCbwL0z76Vnh55+l9VoauH2wbx581i2bBnTpk1j0qRJzJs3j/T0dNq1a8ecOXMAmDp1Ktu3b2/wGFdddRUAmzZtYvDgwYwYMQKAG264gW+//bZ6v2uuuab668KFC485ztq1aznttNMYP348r7zyCuvWrQvVyxQRERFpMuccb61/iwW7FtAuuh0/m/Ezkjsn+11WQNTCfZyW6HBxznHDDTfw+9///qj1f/zjH6vHjoyOjj5u/+wOHTpUH+t4ao9FWd+4lDfeeCPvvfceEydO5Pnnn2f+/PmNfRkiIiIiYffxlo+Zlz6P6Kho7pp2F0O6DvG7pICphdsHs2bN4u233yYrKwuAAwcOsGPHjgb379SpE/n5+fVuGzVqFNu3b6/un/3SSy9xxhlnVG+v6qv9xhtv1DsEYH5+Pn369KG0tJRXXnkl6NckIiIiEmpfb/uaDzZ9gJnxd1P+jtE9RvtdUlDUwu2DMWPG8J//+Z+cd955VFRUEBsby5/+9KcG97/66qu59dZbeeSRR3j77beP2hYfH89zzz3HD3/4Q8rKypg2bRp33HFH9faSkhJmzJhBRUUFr7322jHH/o//+A9mzJjBwIEDGT9+fIPBXkRERKQ5LcpYxOtrXwfgugnXMaXPFJ8rCp6dqEtCS5eSkuJSU1OPWrdhwwZGj26ZfyEFYtCgQaSmptK9e/eQHbOtnDsRERHxz6p9q3gi9QkqXAVXjrmSc4ee63dJJ2Rmy5xzKfVtU5cSEREREYkYG7M38tSyp6hwFcwePrtFhO0TUZeSVux4o5yIiIiIRJr03HQeW/oYZRVlnDnoTC4ZeYnfJYVEm23hbu1dacJB50xERETCZdfBXTyy+BFKykqYmTyTq8ddXe8Iay1Rmwzc8fHx5OTkKEAGwDlHTk4O8fHxfpciIiIircze/L08tOghikqLmNJnCjdMuqHVhG1oo11KkpOTycjIYP/+/X6X0qLEx8eTnNyyBpoXERGRyJZdmM1Dix7i8JHDjOs5jlum3EKUta424TYZuGNjYxk8eLDfZYiIiIi0ablFucxdOJe84jxGJI3gjpQ7iIlqffG0df35ICIiIiItQn5JPg8uepCcwhwGdx3MT6f/lNjoWL/LCgsFbhERERFpVoWlhTy06CEyD2eS3DmZe2bcQ3xM671OTIFbRERERJpNcVkxjyx+hIxDGfTq2It7Z95LQmyC32WFlQK3iIiIiDSL0vJS/rTkT2zL3UZSQhL3z7yfznGd/S4r7BS4RURERCTsyirKeCL1CTbnbKZLfBfun3k/Xdt39busZqHALSIiIiJhVeEqeGb5M6zNWkvHdh25f+b99OjQw++ymo0Ct4iIiIiEjXOOF1a+wPK9y2kf2557Z95Ln059/C6rWSlwi4iIiEhYOOd4fe3rLMpYRFxMHD+b/jMGdBngd1nNToFbRERERELOOce7G99l/vb5xETFcNe0uxjabajfZflCgVtEREREQu7jLR/zWdpnRFkUt6fczqjuo/wuyTcK3CIiIiISUp+lfcYHmz7AzLhlyi1M6DXB75J8pcAtIiIiIiHz1baveGfDO5gZN066kZS+KX6X5DsFbhEREREJiW93fMsba98A4Nrx1zIzeabPFUUGBW4RERERabKFuxbyyupXALh63NWcNvA0nyuKHArcIiIiItIkS3cv5YVVLwBwxZgrOGvwWT5XFFkUuEVEREQkaCv2ruDZFc/inOPSUZdy3tDz/C4p4ihwi4iIiEhQVmeu5unlT1PhKpg9fDazh8/2u6SIpMAtIiIiIgFbv389T6Y+SXlFOecOPZdLRl7id0kRS4FbRERERAKyOWczjy19jLKKMs4afBZXjL4CM/O7rIilwC0iIiIijbb1wFYeXfIopeWlnDbwNK4ae5XC9gkocIuIiIhIo2zP284jix+hpKyEmckzuXb8tQrbjaDALSIiIiIntOvgLh5e9DDFZcWk9E3hhkk3KGw3kgK3iIiIiBzXnvw9PLjoQQpLC5nUexI3T76ZKFOMbCydKRERERFpUObhTB5c+CAFRwoY13Mct069leioaL/LalEUuEVERESkXlkFWcxdOJdDJYcY3WM0d6TcQUxUjN9ltTgK3CIiIiJyjKyCLB5Y8AB5xXmMSBrBnSl3Ehsd63dZLZICt4iIiIgcJbswm7kL55JXnMfwpOHcPf1u4mLi/C6rxYqYwG1m8Wa2xMxWmdk6M/u3evY508wOmtnKyuVf/KhVREREpLXKKczhgQUPkFuUy9BuQ/nZ9J8pbDdRJHXCKQHOds4dNrNY4G9m9olzblGd/b5zzs3xoT4RERGRVi2nMIcHFj7AgaIDDOk6hHtm3KOwHQIRE7idcw44XHk3tnJx/lUkIiIi0nYcKDrA3IVzySnMYXDXwdw7817iY+L9LqtViJguJQBmFm1mK4Es4Avn3OJ6djupstvJJ2Y2tnkrFBEREWl9cotyeWDBA2QXZjMocRD3zlDYDqWICtzOuXLn3CQgGZhuZuPq7LIcGOicmwj8H/Befccxs9vMLNXMUvfv3x/OkkVERERatLziPOYunEt2YTYDEwdy78x7aR/b3u+yWpWICtxVnHN5wHzggjrrDznnDlfe/hiINbPu9Tz+KedcinMupUePHs1QsYiIiEjLc7D4IHMXziWrIIv+Xfpz74x7SYhN8LusVidiAreZ9TCzxMrb7YFzgI119ultZlZ5ezpe/TnNXKqIiIhIi3eo5BAPLHyAzMOZJHdO5v6Z99OhXQe/y2qVIuaiSaAP8IKZReMF6Tedc381szsAnHNPAFcCd5pZGVAEXF15saWIiIiINNKhkkPMXTiXzMOZ9Ovcj/tPUtgOp4gJ3M651cDketY/Uev2o8CjzVmXiIiISGuSX5LPgwsfZG/+Xvp26sv9M++nY7uOfpfVqkVMlxIRERERCa/8knweXPQge/L30KdTH35+0s/pFNfJ77JaPQVuERERkTbg8JHDPLToIXYf2q2w3cwUuEVERERauYIjBTy06CEyDmXQq2Mvfn7Sz+kc19nvstqMiOnDLSIiIiKhd/jIYR5c+CAZhzLo2aGnwrYPFLhFREREWqmqPtu7D+2ubtlOjE/0u6w2R4FbREREpBXKL8ln7sK57MnfQ++Ovfn5ST+nS3wXv8tqkxS4RURERFqZqnG29+bvrb5AUt1I/KOLJkVERERaEYXtyKMWbhEREZFW4mDxQeYunMu+w/vo26mvhv6LEArcIiIiIq1AXnHe0dO1z7xfYTtCKHCLiIiItHB5xXk8sOABsgqySO6czP0nabr2SKLALSIiItKC5RblMnfhXLIKsujfpT/3z7yfDu06+F2W1KLALSIiItJC5Rbl8sDCB9hfsF9hO4IpcIuIiIi0QAeKDvDAggfILsxmYOJA7p1xr8J2hFLgFhEREWlhcgpzmLtwbnXYvm/mfSTEJvhdljRAgVtERESkBckpzOGBhQ+QU5jDoMRB3DvzXoXtCKfALSIiItJCZBdmM3fhXHIKcxjcdTD3zriX9rHt/S5LTkCBW0RERKQFyDycyYOLHiS3KJchXYdwz4x7FLZbCAVuERERkQi3N38vcxfO5VDJIYYnDefu6XcTHxPvd1nSSArcIiIiIhEs41AGDy16iPySfEZ1H8Vd0+4iLibO77IkAArcIiIiIhFqR94OHl78MAVHChjbcyx3ptxJbHSs32VJgBS4RURERCJQem46jyx+hKLSIib0msDtKbcTE6Xo1hLpuyYiIiISYbbkbOH/lvwfJWUlTOkzhVum3KKw3YLpOyciIiISQTZmb+RPS/7EkfIjTO83nZsm30SURfldljSBAreIiIhIhFiXtY7HUx+ntLyUk/ufzHUTr1PYbgUUuEVEREQiwOrM1TyZ+iRlFWWcPvB0fjz+x5iZ32VJCChwi4iIiPhs+d7lPL3saSpcBWcPPpsfjf2RwnYrosAtIiIi4qMlu5fw3IrnqHAVnDf0PC4ffbnCdiujwC0iIiLikwW7FvDiqhdxznHRiIu4eMTFCtutkAK3iIiIiA++2/EdL69+GYBLR13K7OGzfa5IwkWBW0RERKSZzUufx5vr3gTgijFXcN7Q83yuSMJJgVtERESkmTjn+CTtE97f+D4AV4+7mrMGn+VzVRJuCtwiIiIizcA5x7sb3+WztM8wM66bcB2nDDjF77KkGShwi4iIiISZc47X177O/O3zibIobp58M9P6TfO7LGkmCtwiIiIiYVThKnhp1Uss2LWAmKgYbpt6GxN7T/S7LGlGCtwiIiIiYVJWUcYzy59h+d7ltItux13T7mJ0j9F+lyXNTIFbREREJAxKy0t5IvUJ1matJT4mnntm3MPQbkP9Lkt8oMAtIiIiEmLFZcU8tvQxNmVvokO7Dtw38z4GdBngd1niEwVuERERkRAqLC3kkcWPsC13G13iu3DfzPvo26mv32WJjxS4RUREREIkvySfhxY9RMahDJISkrh/5v306NDD77LEZwrcIiIiIiGQV5zHgwsfZN/hffTq2Iv7Z95P1/Zd/S5LIoACt4iIiEgTZRdm8+DCB8kuzKZf537cN/M+Osd19rssiRAK3CIiIiJNsDd/Lw8teoi84jwGJQ7inhn30KFdB7/LkggS5XcBVcws3syWmNkqM1tnZv9Wzz5mZo+YWZqZrTazKX7UKiIiIgKw6+Au/rjgj+QV5zE8aTj3n3S/wrYcI5JauEuAs51zh80sFvibmX3inFtUa58LgeGVywzg8cqvIiIiIs0q7UAajy55lKLSIsb2HMsdKXfQLrqd32VJBIqYwO2cc8DhyruxlYurs9ulwIuV+y4ys0Qz6+Oc29uMpYqIiEgbtzZrLU+kPkFpeSlT+kzhlim3EBMVMbFKIkzEdCkBMLNoM1sJZAFfOOcW19mlH7Cr1v2MynUiIiIizWLp7qX8acmfKC0v5ZQBp3Dr1FsVtuW4IipwO+fKnXOTgGRgupmNq7OL1fewuivM7DYzSzWz1P3794ehUhEREWmLvt3xLc+seIYKV8F5Q8/jugnXEWURFackAkXkO8Q5lwfMBy6osykD6F/rfjKwp57HP+WcS3HOpfToocHmRUREpGmcc3yy5RNeWf0Kzjl+MOoHXD76cszqawsUOVrEBG4z62FmiZW32wPnABvr7PYBcH3laCUzgYPqvy0iIiLh5JzjnQ3v8N7G9zAzrp1wLRcOv1BhWxotkjoc9QFeMLNovD8E3nTO/dXM7gBwzj0BfAzMBtKAQuAmv4oVERGR1q/CVfDy6pf5fuf3RFkUN0++mWn9pvldlrQwERO4nXOrgcn1rH+i1m0H/LQ56xIREZG2qayijGeWP8PyvcuJjY7ljpQ7GNez7uVlIicWdOA2szigL9Ae2O+c09WJIiIi0iqUlJXweOrjbNi/gfax7bl7+t0M6zbM77KkhQoocJtZJ+AnwDXAdLyxsg1wZrYH+BR4yjm3NNSFioiIiDSHgiMFPLrkUdJz0+kU14l7Z9xL/y79T/xAkQY0+qJJM7sf2A7cDHyBNwnNJGAEcBLwr3gB/gsz+9TMhoe6WBEREZFwOlh8kD8u+CPpuel0a9+NX5z8C4VtabJAWrhPBs5wzq1tYPsS4NnKixxvAc4AtjSxPhEREZFmkV2YzYMLHyS7MJveHXtz38z76Nq+q99lSSvQ6MDtnPthI/crAR4LuiIRERGRZrYnfw8PLXqIg8UHGZg4kHtm3EPHdh39LktaiUZ1KTGzeDNLrmf92NCXJCIiItJ80nPT+d/v/5eDxQcZkTSCn5/0c4VtCakTBm4zuwzYDHxkZuvMbEatzS+FrTIRERGRMFuTuYa5C+dSWFrIxN4TuWfGPcTHxPtdlrQyjelS8i/AVOfcfjNLwZuc5nfOuVfxRigRERERaXEWZSzihZUvUOEqOGXAKfxkwk+IsoiZhFtakcYE7nZVY2w751LN7HTgHTMbBriwViciIiISBp9v/Zy/rP8LABcOv5BLR16qqdolbBrzZ1yWmU2ouuOcywHOBUYDExp8lIiIiEiEcc7xl/V/qQ7bPxr7I34w6gcK2xJWjWnhvg4oq73COXcEuMbMHg1LVSIiIiIhVl5RzourXmRRxiKiLIqbJt/E9H7T/S5L2oATBm7nXEbddWY22Dm3zTn3fXjKEhEREQmdI+VHeGrZU6zJXENcTBy3T72dsT012Jo0j2CvDEgzs6tDWomIiIhIGBQcKeDBhQ+yJnMNHdp14Ocn/VxhW5pVsIHbgHvNbJOZbTSzl8zs3FAWJiIiItJUuUW5/O+C/62eqv2Xp/ySQYmD/C5L2phApnavawDwAlAApADvm9mrwG3OuYpQFCciIiISrL35e3l48cPkFuXSt1Nf7plxj6ZqF180JXD/2Dn3TdWdymEC/wr8Cvh9UwsTERERCda23G3835L/o+BIAUO7DeWn035Kh3Yd/C5L2qhgu5RkA1m1Vzjn0oB7gb9ralEiIiIiwVqXtY65C+dScKSACb0mcN/M+xS2xVfBBu6VwG31rN8B9Au6GhEREZEmWJyxmEeXPMqR8iOc3P9k7px2J+2i2/ldlrRxwXYp+Q3wtZn1Ax4DVgPtgd8C6SGqTURERKRRnHN8mf4lb69/G4Dzh53PZaMu04Q2EhGCCtzOuSVmNgN4GPiCmpbyIuDKENUmIiIickLOOd5a/xbz0ucB8MOxP+ScIef4XJVIjaAvmnTOrQVmmVkSMBWIBhY75w6EqjgRERGR4yktL+X5lc+TuieV6Khobpp0E9P6TfO7LJGjBBW4zawn8DgwCzgCTKlvRkoRERGRcCksLeSxpY+xJWcL8THx3DXtLkZ2H+l3WSLHCLaF+zGgG173kQ+AdgBm9iiwyzn3P6EpT0RERORYuUW5PLL4Efbk7yExPpF7ZtxDv84at0EiU7CBexZwhnNutZmV11r/PvAHQIFbREREwmL3od08svgR8orz6NOpD/fMuIdu7bv5XZZIg4IN3OVAcT3rtwJDgi9HREREpGGbczbz2NLHKCotYnjScO6adhcJsQl+lyVyXMGOw/0RcH096zvjhXERERGRkErdk8rDix6mqLSIKX2mcO+MexW2pUUItoX718CyyrEtDXBmlgD8C7A8RLWJiIiIAPBl+pe8te4tAM4afBY/GvsjoizYdkOR5hXsONy7zewkvJFKEvBCdgcgF7gwdOWJiIhIW+ac4+31b/Nl+pcAXDHmCs4dcq4mtJEWpSnjcG8DLjCz/sAkoBRY5JzLC01pIiIi0paVVZTx3IrnqsfYvnHSjUzvN93vskQCFuw43P8C/I9zrsQ5twvYFdqyREREpC0rLC3k8aWPszlnM/Ex8dw57U5GdR/ld1kiQQm2hfv/ATvM7HvnXFrtDWZ2vnPusyZXJiIiIm1S7TG2u8R34WfTf0b/Lv39LkskaEF3KQH+BCSYWQGwFlgF7AB+BSQ2vTQRERFpazIOZfB/i/+PvOI8enfszT0z7iEpIcnvskSapCmBeyjQCZiI14d7EnA6oNZtERERCdi6rHU8uexJSspKGNZtGHdNu4sO7Tr4XZZIkzUlcLvK7iRpwF9CVI+IiIi0QX/b+TdeWf0KFa6Caf2mccPEG4iNjvW7LJGQaErgnmRmf3POFYasGhEREWlTnHO8v+l9PtnyCQAXDr+QS0deqmH/pFVpSuD+BG/Cm3RgNV4f7tXA6sohA0VEREQaVFZRxgsrX2DJ7iVEWRQ/Hv9jTht4mt9liYRcsIF7A/ADoDcwoXKZDfwSbyKc6FAUJyIiIq1TwZECHk99nC05W4iLieP2qbcztudYv8sSCYtgZ5qs+onYAnxXtd68//8MDUFdIiIi0kplF2bzyOJHyDycSWJ8Ij+b8TOSOyf7XZZI2DSlS8kxnHMO7yJKERERkWNsz9vOo0seJb8kn+TOydw9/W66tu/qd1kiYRVw4DazROAUIBdYWBmyq7Z1AP7eOffvIatQREREWoWV+1by5+V/prS8lDE9xnB7yu3Ex8T7XZZI2EUFsrOZjcXrv/0+8DdgqZkNrLVLR+BfQ1eeiIiItAbz0ufxROoTlJaXcsqAU7h7+t0K29JmBBS4gd8DC4EuQD8gHfjezIaHujARERFp+SpcBW+sfYM3172Jc45LR13KdROuIzpK4ytI2xFo4J4J/NY5V+Cc2+uc+xHwJjDfzEY0pRAz629mX5vZBjNbZ2b31rPPmWZ20MxWVi7/0pTnFBERkfA5Un6EJ1Of5KttXxETFcPNk29m9vDZGmNb2pxA+3DHAa72CufczytHJ/kGuKYJtZTh9f9ebmadgGVm9oVzbn2d/b5zzs1pwvOIiIhImB0qOcSflvyJ7XnbSYhN4M5pdzIiqUltcyItVqCBexOQAhwVgp1z95tZFF7f7qA45/YCeytv55vZBrxuK3UDt4iIiESwjEMZPLrkUXKLcklKSOJn039Gn059/C5LxDeBdil5lwZasZ1z9wIvA03+P5GZDQImA4vr2XySma0ys08qL+IUERGRCLE2ay1/+P4P5BblMrTbUP7p1H9S2JY2z2qN6hcRzKwjXveU3znn3qmzrTNQ4Zw7bGazgYedc8dcsGlmtwG3AQwYMGDqjh07mqFyERGRtu3rbV/zxro3cM4xvd90rp94PbHRsX6XJdIszGyZcy6lvm2NbuE2s8EB7Gtm1r+x+9d6XCzwF+CVumEbwDl3yDl3uPL2x0CsmXWvZ7+nnHMpzrmUHj16BFqGiIiIBKDCVfDamtd4fe3rOOe4eOTF3Dz5ZoVtkUqBdClZaGbPmNlJDe1gZl3N7E68fteXBlJI5YWXzwAbnHNzG9ind+V+mNl0vPpzAnkeERERCZ3ismIeXfIo87fPJyYqhlum3MKcEXM0EolILYFcNDkK+GfgIzMrB5bhXeRYDHQFxgCjgSXAfc65zwKs5RTgOmCNma2sXPdrYACAc+4J4ErgTjMrA4qAq12k9YkRERFpI3IKc3h0yaPsyd9Dx3YduWvaXQztNtTvskQiTsB9uM2sPXARcCowEGgPZAMrgM+cc2tDXWRTpKSkuNTUVL/LEBERaVXSc9N5bOlj5Jfk06dTH+6efjfdE47p5SnSZhyvD3egwwLinCsC3q5cREREpI1J3ZPKcyueo6yijNE9RnPb1NtIiE3wuyyRiBVw4BYREZG2yTnHJ2mf8P5Gb9qN0weeztXjrtY07SInEFTgNrNnG9jk8Pp0pwFvOOf2BFuYiIiIRI6yijJeWvUSizIWYWZcOeZKZg2epYsjRRoh2BbuHsBpQAVQ1Wd7HN6kN8uAy4F/N7PTnHMrm1qkiIiI+OfwkcM8vvRx0g6kERcTxy2Tb2Fi74l+lyXSYgQbuL8HDgO3OOcKAcwsAXgaWAXMBl4EHgBmhaBOERER8cHe/L38aemf2F+wn8T4RO6efjf9uwQ81YZImxZs4L4XOLsqbAM45wrN7HfAPOfcH8zsf4AvQ1GkiIiINL+1WWt5etnTFJcVM6DLAH46/ackxif6XZZIixNs4O4I9AE21Fnfu3IbwKEmHF9ERER84pxj3rZ5vL3+bZxzTO07lRsn3Ui76HZ+lybSIgUbiN8FnjGzXwJL8S6WnA78Aaiakn06sLnJFYqIiEizKaso45XVr7Bg1wIALh55MRcNv0gXR4o0QbCB+w5gLvByrWOUAc8C/1B5fwNwa5OqExERkWaTX5LPE6lPkHYgjdjoWG6adBNT+071uyyRFi+owF3Zd/sOM/t7YCje6CRpzrmCWvusDEmFIiIiEnYZhzJ4bOlj5BTmkBifyE+n/5QBXQb4XZZIq9CkPtaVAXt1iGoRERERH6zat4pnVjxDSVkJg7sO5s6UO+kS38XvskRajaADt5n1An4KjMHrw70eeMw5lxmi2kRERCSMnHN8mvYp7296H+ccM5JncN2E64iNjvW7NJFWJSqYB5nZKXizSf4YKMKbXfJaYIuZnRS68kRERCQcSstLeW7lc7y38T0ALht9GTdNuklhWyQMgm3h/iPwGnCHc64CwMyigCfwJrs5OTTliYiISKgdLD7I46mPsy13m2aOFGkGwQbuScCNVWEbwDlXYWZzgRWhKExERERCb+fBnTy29DFyi3JJSkjirml3kdw52e+yRFq1YAP3QWAwsKnO+sFAXlMKEhERkfBYvnc5z654ltLyUoZ1G8YdKXfQKa6T32WJtHrBBu7XqZn4ZgHeRZOnAv+N19VEREREIoRzjg83f8hHmz8C4OT+J3PthGuJidKE0CLNIdiftF/ijb39bOUxDDgCPA78Y2hKExERkaYqLivm2RXPsmrfKsyMK8dcyazBszRzpEgzCnbimyPAvWb2Txw98U1hKIsTERGR4GUezuTx1MfZm7+XhNgEbpt6G6N7jPa7LJE2p9GB28w+aMQ+ADjnLmlCTSIiItJEa7PW8uflf6aotIi+nfpy17S76NGhh99libRJgbRw54StChEREQkJ5xyfb/2cdze+i3OOyX0mc+OkG4mPife7NJE2q9GB2zl3UzgLERERkaY5Un6EF1e9yNLdSwG4eOTFXDT8IvXXFvGZLk8WERFpBXIKc3g89XF2HdylyWxEIowCt4iISAu3OWczT6Y+yeEjh+nZoSd3TbuLPp36+F2WiFRS4BYREWmhnHPM3z6fN9e9SYWrYGzPsfzdlL8jITbB79JEpBYFbhERkRaorKKMV9e8yvc7vwfg/GHn84NRPyDKonyuTETqUuAWERFpYfKK83gy9UnSc9OJjY7lhok3MK3fNL/LEpEGNClwm9liYJhzLilE9YiIiMhxpOem80TqExwsPki39t24a9pd9O/S3++yROQ4mtrC/RKgsC0iIhJmzjm+2/kdr699nfKKcoYnDef2qbfTKa6T36WJyAk0KXA75x4NVSEiIiJSv9LyUl5d8yoLdi0A4OzBZ3PlmCuJjor2uTIRaQz14RYREYlgOYU5PLnsSXbk7SA2OpbrJlzHjOQZfpclIgFQ4BYREYlQG/Zv4OnlT1NwpIDuCd25c9qdJHdO9rssEQmQAreIiEiEcc7x+dbPeXfjuzjnGNtzLLdMvoUO7Tr4XZqIBKGpo5R0BW4AhgN7gRecc7tCUZiIiEhbVFxWzAsrX2D53uUAXDTiIuaMmKPxtUUaq7wcoiPr+oaAAreZ7QHGO+dyzGwwsACIAtYBlwH/YGYznXMbQ1+qiIhI67bv8D6eSH2Cvfl7iY+J5+bJNzOx90S/yxKJPIWFkJUF+/cfu5jBf/+33xUeJdAW7t5A1Z8M/wVsBOY45wrMLB54G/gP4IehK1FERKT1W7lvJc+teI7ismL6dOrDnSl30qtjL7/LEvGHc3DwYE2IrhuuCwsbfmxMDJSWQmxs89V7Ak3pUjID+DvnXAGAc67YzP4DL3SLiIhII1S4Cj7Y9AGfbPkEgKl9p3LDxBuIi4nzuTKRMCsvh5yc+lup9+/3QnND4uKgR4/6l27dICqyumAFE7hd5dd2QFadbZlAjyZVJCIi0kYUHCngz8v/zPr96zEzLh99OecOORcz87s0kdAoLYXsbK+FumqpCtQHDkBFRcOP7dgRevasP1R36uR1HWkhggnc35hZGZAIjALW1to2AMgOQV0iIiKt2q6Du3g89XFyCnPo2K4jt069lVHdR/ldlkjg6gvVVUturtc9pD5mXmt0VYiuG67j45v3dYRRoIH73+rcz69z/2Lgu+DLERERaf2+3/k9r655lbKKMgYlDuL2lNvp1r6b32WJNKysrKYvdd3W6gMHGg7VUVHQvbsXpqsCddXX7t29/tZtQECv0jlXN3DX3f6LppUjIiLSeh0pP8Jra16rnqL9tIGncdXYq4iNjpyLu6QNqx2q9++HzMya+4GE6tpLUlLEDdHnh7bxZ4WIiIjPsgqyeDL1STIOZRAbHcu146/lpP4n+V2WtDVVoboqSCtUNwsFbhERkTBbsXcFz698nuKyYnp26MntKbdrinYJH+e88JyVBfv2eaG66nag3T969fJud+vWZrp/hENIz5yZbQCGO+cCPq6Z9QdexBvruwJ4yjn3cJ19DHgYmA0UAjc655Y3uXAREZEwKK8o592N7/LF1i8AmNxnMjdMvIH2se19rkxahYICL0zXXbKyGh5Sz8wL1VVBuipU9+jhtVQrVIdFqM/qn4CkIB9bBvy9c265mXUClpnZF8659bX2uRBvGvnheOOAP175VUREJKLkFefx9LKnSTuQRpRFccWYK5g1eJaG/JPAlJbWdP2ouxQUNPy4zp2hd++aYF11W6HaFyE94865R5vw2L3A3srb+ZWt5f2A2oH7UuBF55wDFplZopn1qXysiIhIRNiUvYmnlz9Nfkk+ifGJ3Db1NoZ2G+p3WRKpKiq84fP27asJ11W3j9cFJC7OC9H1La1oSL3WICL/xDGzQcBkYHGdTf2AXbXuZ1SuU+AWERHfOef4NO1T3t/0Ps45RnUfxd9N+Ts6xXXyuzSJBIcPN9wFpKys/sdERXkt1PWF6s6dW9TkL21ZMH2tk4E7gZPx+ls7vBkmvweedM7tOs7DG3P8jsBfgPucc4fqbq7nIcf82WdmtwG3AQwYMKAp5YiIiDRKYWkhz614jtWZqwGYPXw2F4+8mCiLrCmmJcwqKrzpyvftg717va9Vy/G6gCQm1gTr3r1rbnfvrhFAWoGAAreZnQp8gtei/DnwFV4I7gn8ELjHzC50zn0fTDFmFosXtl9xzr1Tzy4ZQP9a95OBPXV3cs49BTwFkJKS0sD/YUREREJjR94Onlz2JDmFOSTEJnDz5JsZ32u832VJOJWU1HT9qB2sj9daHRdX05e69tKzp7qAtHKBtnA/BDznnLunvo1m9nDlPtMCLaRyBJJngA3OubkN7PYBcLeZvY53seRB9d8WERG/OOf4bud3vLH2DcoqyhiYOJDbp95OUkKw4wdIRHEODh2qv7U6N7fhx3Xt6gXrukuXLuoC0kYFGrjHAtceZ/vjVHblCMIpwHXAGjNbWbnu18AAAOfcE8DHeEMCpuENC3hTkM8lIiLSJMVlxby8+mWW7l4KwOkDT+eqcVcRExWRl0fJ8ZSXe5O/1Besi4vrf0x0dE33j9qLLliUegT6qbAXLxhvamD7KQR5AaNz7m/U30e79j4O+GkwxxcREQmVXQd38dSyp8gqyCIuJo5rx1/LjGSNUhvxiouPDtRVt/fv9/pe1ychAfr0OTZYd+/uXdAo0giBBu4/Ak+Y2XTgC7yLJR3exZPnAjcC94WwPhERkYhRtwtJv879uG3qbfTu2Nvv0qS2wkIvTFcte/Z4XxvqBmLmjU9dX7Du2FHdQKTJAgrczrnHzCwHuB+4Bai6bLYcWAZc75x7M7QlioiI+K+4rJiXVr1E6p5UAE4beBpXjb2K2OhYnytrww4fPjZU790LBw/Wv39MTE2Qrh2ue/aEdu2at3ZpUwLuaOacewN4o3JEke6Vq7Odcw3MISoiItKy1e1Cct2E65jWL+DxASQYzkF+/tGBumrJz6//MbGxXqCuWvr29b6qG4j4JOgrOyoDtkYIERGRVss5xzc7vuGtdW9RVlFGcudkbpt6G7069vK7tNbHOa9lum5r9d69DY9fHRd3dKCuWpKS1A1EIooupRYREalHUWkRL656keV7lwPeKCQ/GvsjdSFpqqqh9nbv9oJ1Vbjes6fhEUHatz82WPft600Wo2AtLYACt4iISB078nbw1LKnyC7MJj4mnusmXkdK3xS/y2p5CguPDtZVtxtqse7Q4djW6j59NH61tHhBB24zOwVIdc6V1L4dutJERESal3OO+dvn8/b6tymrKKN/l/7cNvU2enbo6Xdpka2kpKaVunbAzsurf/+EBOjXzwvXVUufPhoRRFqtprRwfwJMAtLr3BYREWlxCksLeXHVi6zYuwKAMwedyZVjrlQXktrKyrypy6tCddXX7Gyvq0hdsbFemO7X7+iArRZraWOaEritgdsiIiItyva87Ty97OnqLiTXT7yeqX2n+l2Wf5zzQnTdYL1vX/0TxERFeS3UVaG66mv37grWIqgPt4iItGHOOT7f+jnvbXyPClfBgC4DuG3qbfTo0MPv0prP4cOQkeEtu3fXhOvSekb7NYMePY4N1j17emNci0i99NMhIiJt0sHigzy38jk27N8AwDlDzuGy0ZcRE9VKfzWWlUFm5tHhOiOj4UliEhOP7gbSr583SUxcXLOWLdIatNJPFRERkYatzVrL8yufJ78kn05xnbhx0o2M6znO77JCo2qimKpgXRWu9+6F8vJj94+L88J0crK3VIXrhITmr12klVLgFhGRNqOsoox3N7zLl+lfAjCq+yhunnwzXeK7+FxZkEpLvX7VdcN1fTMwmnldP2qH6+RkTRIj0gwUuEVEpE3IPJzJn5f/mZ0HdxJlUVw66lLOH3o+1hLCpnPeEHtV3UCqlszM+i9ibN/eC9NV4bpqlBB1BxHxhQK3iIi0as45Fu9ezKtrXqWkrITuCd25ZcotDOk6xO/S6lde7rVa79pVs2Rk1D9ZjBn06gX9+x8drrt1U6u1SARpSuD+L+BAPbdFREQiQnFZMa+ueZXFGYsBmNZvGteOv5b2se19rqxScbHXar1zZ02w3r3bu8CxroSEo7uCJCd7Q/G1a9f8dYtIQIIO3M6539d3W0REJBLUHlu7XXQ7rhl/DScln+RPFxLn4NCho1utd+3yJpGpT/fuXqv1gAFesO7f3xs1RK3WIi2SupSIiEirUnds7f5d+nPrlFvp1bFX8xRQUQH79x/dar1zZ/0XMkZHe6OC9O9fsyQne32wRaTVUOAWEZFW41DJIZ5d8Wz12Nqzhszi8tGXh29s7dJSrwtI3f7WR44cu2/79keH6gEDvHGtNWGMSKunn3IREWkVVu1bxYurXuTwkcN0bNeRGybdwIReE0L3BKWlXqDeudNbduzwZmSsb5SQrl2PbrXu31/D74m0YUEFbjOLA+4DRgEZwEpgpXNua8gqExERaYSSshLeWv8W3+34DoDRPUZz46QbSYxPbMJBS2q6guzY4S379h0brs28CxerQnVVn+uOHYN/bhFpdYJt4X4COBf4CPgVUAx0MLN8YLVz7vQQ1SciItKgHXk7eGbFM2QeziQmKobLRl/GrMGzArswsrj42Jbrffu8Cx1rM/P6Ww8c6AXrgQO9cK2xrUXkBIIN3BcBVzvnvjKzHwPTgJnA74FFoSpORESkPhWugs/SPuODTR9Q4Sro26kvt0y5heTOycd/YFGRF6537KgJ11lZx4brqChvPOuqcF3Vcq0h+EQkCMEG7vbAlsrbR4Ao59wLZtYJGBaSykREROqRU5jDcyufY0uO92to1pBZXDbqMmKjY4/esbi4pjtIVcCubxi+6Ohjw3W/fhAbe+y+IiJBCDZwpwP9gF3AbiAZ2AB8AnyP179bREQkpJbsXsKra16lqLSIznGduXHSjYztOda7oHFHuhest2/3lszMY1uuY2JqRgip6hbSt69GChGRsAr2E+ZN4Dy87iPzgVuAL4DxQHxIKhMREalUWFrIa2teY8nuJViF4+TogfwwZhoJn6+A7e96Q/PVvaCxKlwPHFiz9OnjtWiLiDSjRgVuMxvsnNtWdd8597tam/8ALDWzA0BH4MnQligiIm2Wc6RvXMSnXz5BTMZuLtxfxPTyXvSJA7OdNftVXdA4aFDN0q+fWq5FJCI09pPoGjMrcc49UHeDcy7DzMbiXUiZ45z7OKQViohI2+Ac5OVVdwkp37aV7Su/YXfWVsbh6NSuEyO7jyIhvr039XntcD1ggEYLEZGI1djA/RDwgZllOedeMrPhzrmqiyZxzh0AXgpHgSIi0koVF3vhets2SE/3bh86BEBhaRGbsjeSfySf4g5x9Bo7g3HT5xA9eIgXsDt08LNyEZGANCpwO+cKzexivL7bLwGbzKwAWE3lpDeVyxrnXHFYKhURkZarogL27vWC9bZt3rJ37zEXNbr27UnrVMrXZJM5sT9u0ECuOfVOhicN96lwEZGma3TnNudckZldUXm3PzAJmFj59R+AoYAzs83OubEhrlNERFqSQ4dqWq63bfNar0tKjt4nOtqbnXHwYBg8mLzeXXl+z0dsyN4I9GdG8gyuGXcN7WPb+/EKRERCJqCrSZxzRyq/7sYbDvCjqm1mloAXwCeEskAREYlwpaXeGNdVLdfbtkFOzrH7JSV54XrIEO9r//4QG4tzjsW7F/P62scoKi2iQ7sO/GTCT5jSZ0rzvxYRkTAI+vJtM4sDRlXe3eScKwQWVi4iItIaOQf79x8drnftgvLyo/eLi6tuua5eOnc+5nD5Jfm8suYVVuxdAcCEXhO4buJ1dI47dl8RkZYqqMBtZucCrwBJgAFFZvYa8GvnXD3TeImISIt05Ig3mczWrd6Sng6HDx+9T9WQfFWt10OGQO/e3vTox7Fq3ypeWv0S+SX5xMfEc9W4qzgp+STMLIwvSESk+QXbwv0o8A3wK7yp3acD9wLLzWyac25viOoTEZHmlJdXE663bvW6itSdUKZTp5puIYMHe6OGxDd+zrPismLeXPcm3+/8HoARSSO4cdKNJCUkhe51iIhEkGAD9wDgIudceuX9DOAdM3sJL4xf0eAjRUQkMlRUeN1B0tNrAvaBA0fvY+bN1jh0aM2SlOStD8LmnM08v/J5cgpziImK4bLRlzFr8Cy1aotIqxZs4F4DJANpddb/J7CsSRWJiEh4FBR4fa6rwvW2bV6Xkdri471QPWSI93Xw4IBarxtSWl7Kexvf48v0LwEYmDiQmybdRJ9OfZp8bBGRSBds4H4VeNrMLnTO1Q7dPYDcppclIiJN4hxkZXnBOi3Na8XeW09vv549vXA9bJgXsBvR9zpQO/J28NzK59ibv5coi2L28NnMHj6b6KjokD6PiEikCjZwz638ut7MPgRWAFHANcDfh6IwEREJQFX3kLS0mqVy1sZqMTFef+uqriFDhnj9scOkvKKcT9I+4aPNH1HhKujdsTc3Tb6JQYmDwvacIiKRKNjA3QOYjDfpzSTgamBk5bZ/NbPL8WahXO2c+2sTaxQRkbpKS70uIWlpsGWL14JdXGei306dvJbrYcO8cD1ggBe6m0HGoQyeX/k8uw7uAmDWkFlcNuoyYqNjm+X5RUQiSVCfvM65HODLygWoHpd7PDUhfDbwSyCxiTWKiEhh4dGt19u3Hzv2dffuMHy4twwb5nUXaeaLEcsryvk07VM+2vIR5RXlJCUkccPEGxjZfeSJHywi0kqFrKnDOVcCpFYuIiLSFHl5Xst1VQv2nj1ev+wqVaOHVIXrYcMgMdGvaoFjW7XPHHQml4++nLiYOF/rEhHxW7AT38QB/w5cAsThjVrysnPurWALMbNngTlAlnNuXD3bzwTeB7ZVrnrHOffvwT6fiEjEqJq9ccsW2LzZC9nZ2UfvExMDAwfWtGAPGQIJCf7UW0d9rdrXT7yeUd1HnfjBIiJtQLAt3H/EC8ePASXAGOBZM7sauMo5VxbEMZ/HG8P7xePs851zbk4QxxYRiRxVAXvzZm/ZtMlr0a6tani+qhbsQYMgNvL6P6tVW0TkxIIN3D8ELnfOLahaYWb/CnwM/CPeeNwBcc59a2aDgqxHRCRyVQXsTZtqQnbdgN2hA4wcWdOC3a9fyIfnCyW1aouINF6wgTseyKq9wjmXaWb3A88RROBupJPMbBWwB/gH59y6MD2PiEjwqsbArgrX9QXsjh1hxAhvGTkS+vRp9gscg5VxKIMXVr7AzoM7AbVqi4icSLCB+xvgFuCf6qzPAHo1qaKGLQcGOucOm9ls4D1geH07mtltwG0AAwYMCFM5IiKVagfsqlbsgweP3qcqYI8c6X1tQQG7ilq1RUSCE2zg/kdggZklAQ8BG4F2wL1AWFqdnXOHat3+2MweM7PuzrnsevZ9CngKICUlxdXdLiLSJFVdRDZurAnZdSeZaQUBu7a6rdpnDDqDy0dfTnxM06d9FxFp7YIdh3uDmZ2BF2rXAmV4M03mAJeGrrwaZtYbyHTOOTObXuv5RETC7+BBL2BXLQcOHL29U6eju4j07t2iA3aVsooyPtnyCZ+kfaJWbRGRIAUcuM0sGrgOeN85N9PMRgDjgHxgce2W6ACP+xpwJtDdzDKAfwViAZxzTwBXAneaWRlQBFztnFPrtYiER2Gh13pdFbD37j16e9VFjlVLKwnYtaXnpvPiqhfZm++9drVqi4gEx4LJrGZWCIx1zm074c4+S0lJcampmotHRE6gtBS2bvXC9YYNsGPH0RPNtGvnjR4yahSMHu1NOtPKAnaVkrIS3t/0Pl9t+wrnHD079OS6idcxImmE36WJiEQsM1vmnEupb1uwfbgXAiOpmYRGRKRlqajwQnVVC3ZaGpTVmkIgKsobB3vUKG8ZPNibfKaV27B/Ay+tfomcwhyiLIrzhp3HxSMuJjY68sYAFxFpKYL97fEU8Dsz29QSWrlFRKpHElm/3mvB3rQJiouP3qd//5qAPXw4xLWdYe4KjhTw9vq3WbDLm16hf5f+XD/xegZ00UhPIiJNFWzgfq3y61oz+xhvmMDlwErnXGFIKhMRaarCQq/1ev16b8mpc511z541AXvkSG9kkTZo+d7lvLbmNQ6VHCImKoY5I+Zw3tDziI6K9rs0EZFWIdjA3R+YBEys/PozYCjgzGyLc25MSKoTEQlERQVs21YTsLdtO7ofdocOMGaM1wd79Gjo1s2/WiPAweKDvLb2NVbsXQHAsG7DuH7i9fTqGK7pFERE2qZgA/enwKnOuY+qVphZAl4AnxCKwkREGiU7uyZgb9wIRUU126KivK4hY8Z4y4ABrfZCx0A451iwawFvrX+LotIi4mLiuGL0FZw+8HRM50dEJOSCDdxjgaM6NzrnCs1sPfCTJlclItKQ4mKv/3VVyM7KOnp7r141AXvECIjXEHa17S/Yz8urX2Zj9kYAxvcaz7Xjr6Vr+64+VyYi0noFFLgr+2svARxet5I6v+lIAG4HfhqS6kREnIOMDFi7Ftat84buq6io2d6+vdc9pCpkJyX5V2sEK68oZ962eXyw6QNKy0vp2K4jV427iml9p6lVW0QkzAJt4V6HNzmNAUvMLB9YBawAVgOjgL0NPlpEpDGKiryRRNau9ZaDB2u2VQ3XVxWwBw3y1kmDtuVu4+XVL5NxKAOA6f2m86OxP6JTXCefKxMRaRsCCtzOuV8AmFkJcBLQF++iyUnARZXH+2VIKxSR1s852LOnJmCnpR3dip2YCOPGecvIkZCQ4FupLUlxWTHvbniXb3Z8g3OOpIQkfjz+x4zrOc7v0kRE2pRg+3B3AMqdc8uBv4awHhFpK4qLvYscq0J2bm7NtqqLHatCdr9+utgxAM45VuxbwRtr3yCvOK96Aps5I+bQLrqd3+WJiLQ5QQVu51zZifcSEanFOdi3ryZgb9kC5eU12zt3rgnYo0erFTtIB4oO8Nqa11iduRqAwV0H85MJPyG5c7LPlYmItF1BBW4zOwOYC/QA0oCVtZb1CuQiAnhTpW/eDKtXe0vtiWfMvL7YVSG7f3+1YjdBhavgq21f8cGmDygpKyE+Jp7LR1/OaQNPI8rUx11ExE/Bdil5BlgLPAgMAyYDVwLJwBFA43CJtFWHD3st2KtWeaOKlJTUbOvYsSZgjxnjTUQjTbYjbwcvrX6JXQd3ATC171R+NPZHJMYn+luYiIgAwQfu3sB5zrn02ivNrBte+BaRtqKqq8jq1V7ITk8/enbHfv1gwgRvGTxYrdghVFxWzPsb3+fr7V9XXxR5zbhrGN9rvN+liYhILcEG7u+AQcBRgds5dwCY18SaRCTSlZd7fbCruors31+zLTram3Bm4kQvZGtc7LBYuW8lr615rfqiyHOHnsucEXOIi4k78YNFRKRZBRu4Hwd+a2ZrnHP7T7i3iLR8hYVHdxWpPYV6hw4wfrwXsseM0eyOYZRTmMMb695g1b5VAAxKHMRPJvyE/l36+1yZiIg0JNjA/V7l181m9hGwEG/ym5XOucJQFCYiESA3F1auhBUrvBbt2mNj9+lT01VkyBBNPhNmZRVlfL71cz7e8jGl5aXEx8Tzg1E/4IxBZ+iiSBGRCBds4O5PzYQ3E4F7gKGAM7MtzrkxIalORJrfvn1ewF65ErZvr1kfFeVNOlMVsnv29KvCNmfD/g28tvY1Mg9nAjCt3zSuHHOlLooUEWkhgh2HezewG/ioap2ZJeCF7wmhKU1EmoVzsGNHTUv2vn0122JjvRFFJk3yQrbGxm5WecV5vLXuLVL3pALQu2Nvrhl/DaO6j/K5MhERCUSw43D3xOvHPQtvGMApzrkMvK4lC0NXnoiERUWFNz72ypXeUnuWx4QEL1xPnuz1x26nmQmbW3lFOV9t+4oPN39ISVkJ7aLbcdGIizhnyDnERAX7j0kREfFLsJ/cjwHd8Mbe/gBoB2BmjwK7nHP/E5ryRCRkSkth/XovYK9aBQUFNdsSE71W7MmTvSnVo6N9KlK25Gzh1TWvsid/DwCT+0zmR2N/RLf23XyuTEREghVs4J4FnOGcW21mteZm5n3gD4ACt0gkKCmBNWtg2bJjJ6Hp1csL2VOmwMCBGh/bZ4dKDvGX9X9hUcYiALondOea8dcwruc4nysTEZGmCjZwlwPF9azfCgwJvhwRabLaIXvNGq9lu8rAgTUt2b17K2RHgApXwbc7vuW9je9RVFpETFQMFwy7gAuGXUBsdKzf5YmISAgEG7g/Aq4HflNnfWe8MC4izamkxJuAZtkyb6zs2iF7yBCYOtUL2ZqEJqJsy93Gq2teZefBnQCM6zmOq8ZdRc8OGgFGRKQ1CTZw/xpYZl7rmOENB5gA/AuwPES1icjxNCZkT50KXbv6V6PU61DJId7d8C4Ldi0AoGv7rlw19iom9Z6E6b8OIiKtTtDDAprZSXgjlSTghewOQC5wYejKE5GjFBfXdBepG7KHDvUC9pQpCtkRqqyijPnb5/Phpg8pLismOiqac4acw0XDL9KU7CIirVjQ40s557YBF5hZ1SQ4pcAi51xeaEoTEcAL1WvXwpIlx/bJVshuMdbvX88ba99g32FvnPMJvSbww7E/VPcREZE2oMkDujrndgG7QlCLiFSpqIANG2DpUm8ymuJa1ygPHQopKV7ITkz0rURpnOzCbN5c9yar9q0CoGeHnlw17iqNPiIi0oZoBgWRSOEcpKd7LdnLlkF+fs22/v1h+nQvaHfTeMwtQUlZCZ+mfcrnWz+nrKKMuJg45oyYw9mDz9bkNSIibYw+9UX85BxkZHgt2UuXwoEDNdt69YJp07yg3auXfzVKQJxzpO5J5e31b5NXnAfAzOSZXD76crrEd/G3OBER8YUCt4gfsrK8luylS2Hfvpr1Xbt6IXvaNK9VWyNWtCi7Du7ijXVvsCVnCwADEwdy9birGdJV0xOIiLRlCtwizaWgwAvYixd7XUeqdOjgXfg4fToMG6aQ3QIVHCng/U3v8+2Ob3HO0SmuE5eNuoyT+5+sYf5ERESBWySsysq8EUYWLfLGzC6vnBcqLs6biGbaNBg9GqKj/a1TglJeUc43O77hw00fUlhaSJRFcfaQs5kzYg4JsQl+lyciIhFCgVsk1JyD7du9kL10qdeyDV7L9dixMGOGN716nMZdbqmcc6zJWsPb698m83AmAKO6j+LqcVfTp1Mfn6sTEZFIo8AtEio5OV53kUWLIDOzZn2/fjBzptdlRMP4tXgZhzJ4a91bbMzeCHjD/F055kom9Jqg7iMiIlIvBW6RpigqguXLYeFC2LKlZn3nzl5L9syZkJzsX30SModKDvH+xvf5ftf3OOdIiE1gzog5nDHoDA3zJyIix6XfEiKBcg42bYLvv/cmpama+TE21uuXPXOm1y87KsrfOiUkSstL+TL9Sz5J+4SSshKiLIqzBp/FnBFz6NCug9/liYhIC6DALdJYBw7AggXekpNTs37kSC9kT5kC8fH+1SchVTWe9rsb3yWn0Pt+T+g1gSvHXEmvjhoXXUREGk+BW+R4Skth1Sr4299g40avdRsgKQlOPhlOOsm7La1Kem46b617i/Rcb/jG5M7J/HDsDxnVfZTPlYmISEukwC1Sn127vC4jixdDYaG3LibG6zJyyikwapTGy26FDhQd4J0N77B091IAOsd15tJRl3Jy/5OJMnUREhGR4Chwi1QpLPQC9vffe4G7yoABXsiePh0SNLZya1RUWsRnWz/jy/QvKS0vJSYqhnOHnssFwy4gPkbdhEREpGkUuKVtc86b9fHbb2HZspoLIDt08EYZOflkb4p1aZXKKsr4Zvs3fLTlIwqOeOOlp/RN4fLRl5OUoK5CIiISGgrc0jZVtWZ/+y3s2VOzfvRoOPVUmDjRG3VEWqWqCyLf2/ge2YXZAAxPGs4Vo69gcNfBPlcnIiKtTcQEbjN7FpgDZDnnxtWz3YCHgdlAIXCjc25581YpLZpzsG0bfPedNwNkVWt2p05el5HTToPu3f2tUcJuU/Ym/rLhL+zI2wFAn059uHz05YzvOV4T14iISFhETOAGngceBV5sYPuFwPDKZQbweOVXkeMrKvJas7/7DjIyataPGgWnn+61ZsdE0o+ChMPuQ7t5Z8M7rM1aC0CX+C5cMvISXRApIiJhFzEpwzn3rZkNOs4ulwIvOuccsMjMEs2sj3Nub/NUKC3Ojh3wzTdea/aRI966Tp28ftmnngo9e/pbnzSL3KJcPtj0AQszFuKcIz4mnvOHnc+swbOIi4nzuzwREWkDIiZwN0I/oNbQEWRUrlPglhplZd7Fj19/7XUfqTJypNeaPWmSWrPbiMLSQj5L+4x52+ZRWl5KlEVx5uAzuWj4RXSK6+R3eSIi0oa0pORRX+dKV++OZrcBtwEMGDAgnDVJpMjN9S6A/O47yM/31iUkeK3Zp58OvTQzYFtR38gjU/tO5QejfkDPDvqvhoiINL+WFLgzgNrjsyUDe+rb0Tn3FPAUQEpKSr2hXFoB52DLFq81e+VKqKjw1icnw9lnw7Rp0K6dryVK86lwFSzOWMyHmz+snopdI4+IiEgkaEmB+wPgbjN7He9iyYPqv91GlZR4F0F+/XXNkH5RUZCSAmedBUOHahbINsQ5x8p9K3l/0/vszfc+EjTyiIiIRJKICdxm9hpwJtDdzDKAfwViAZxzTwAf4w0JmIY3LOBN/lQqvsnKgvnzYcECb+QRgM6dvS4jp50GiYl+VifNzDnHxuyNvLvx3eoh/pISkrhk5CVM7zddI4+IiEjEiJjA7Zy75gTbHfDTZipHIkVVt5EvvoA1a7z74LVin3UWTJ6siyDboPTcdN7d8C6bczYD0DmuMxeNuIhTB5xKTJTeDyIiEln0m0kiU9VoI198AbsqB6eJiYHp072grYth26SMQxm8v/F9VmeuBiAhNoELhl3AmYPO1BB/IiISsRS4JbIUFHijjcyfD3l53rpOneDMM+GMM7zb0uZkFWTx4aYPWbpnKc452kW345wh53Du0HNJiE3wuzwREZHjUuCWyJCZCV995fXPrpqkpm9fOOccr1U7Ntbf+sQXecV5/HXzX/l+5/dUuApiomI4fdDpXDj8QjrHdfa7PBERkUZR4Bb/VPXP/vJLWL26pn/22LFw7rne1OsaYaJNyi/J57OtnzF/+3xKy0sxM07ufzJzRswhKSHJ7/JEREQCosAtza+iwuuf/fnnsHOnty4mBmbOhFmzvJZtaZMOHznM51s/5+ttX3Ok3PtPx9S+U7lk5CX07tjb5+pERESCo8Atzae01Osy8vnnkJ3trVP/bAEKjhR4QXv715SUlQAwodcELh55MQO66AJZERFp2RS4JfwKC+Gbb2DevJpp13v2hPPO81q11T+7zSo4UsAX6V/w1bavqoP2uJ7juHjkxQxKHORvcSIiIiGiwC3hk5fnhexvv4XiYm/dwIFw/vne+NlRmpikrSosLeTL9C+Zlz6P4jLvvTG251guHnGxpmEXEZFWR4FbQi8z0+s2smiRN542eBdAXnCBLoRs4wpLC5mXPo952+ZRVOrNFjq6x2guGXkJQ7oO8bk6ERGR8FDgltDJyICPP4bly70RR8xgyhQvaA8c6Hd14qPismLmpc/jy/QvKSwtBGBU91FcMvIShnYb6nN1IiIi4aXALU23cyd89BGsXOndj4mBk07yhvbr1cvX0sRfxWXFfLXtK77Y+kV10B6RNIJLRl7C8KThPlcnIiLSPBS4JXjbtnlBe80a735sLJx2mncxZNeu/tYmvio4UsBX277iq21fVQft4UnDuWTkJYxIGuFzdSIiIs1LgVsCt2WLF7Q3bPDut2vnDet33nnQWbP/tWX5Jfl8kf4F87fPrx51ZETSCC4acREjk0Zi6r8vIiJtkAK3NI5zsGmTF7Q3b/bWxcXB2Wd7k9VoDO02La84j8+3fs63O76ltLwUgDE9xjB7+Gx1HRERkTZPgVtObPNmeP99SEvz7rdv74Xss8+GDh38rU18lVOYw6dpn7Jg1wLKKrwRaSb2nsjs4bM1jraIiEglBW5pWHq6F7Q3bvTud+gA55wDZ53lhW5ps7IKsvhkyycsylhEhavAzJjadyoXDruQ/l36+12eiIhIRFHglmPt2uUF7aqLIePjvRFHzjnHuy1t1u5Du/kk7RNS96TinMPMmJE8gwuHXUifTn38Lk9ERCQiKXBLjT174MMPvXG0oaaP9rnnqutIG5d2II1P0z5lTab3R1iURXHygJO5YNgF9OzQ0+fqREREIpsCt0BWFvz1r7BkiXdxZGysN+rIBRfoYsg2zDnHmqw1fJr2KVsPbAUgNjqWUwecynlDz6Nb+24+VygiItIyKHC3Zbm5Xov2woVQUQHR0d442hdeCImJflcnPimvKCd1Tyqfpn3Knvw9ACTEJnDW4LM4a9BZdIrTH2EiIiKBUOBuiwoL4bPPYN48KC2FqCg45RS46CJISvK7OvHJkfIjfL/ze75I/4KcwhwAEuMTOXfouZw64FTiY9R/X0REJBgK3G1JWRnMnw8ffwwFBd66KVPgBz/QFOxtWGFpIfO3z2de+jwOHzkMQK+OvTh/6PnMSJ5BTJQ+JkRERJpCv0nbAue8/tnvvw85Xsslw4fDFVfA4MH+1ia+OVB0gHnp8/hu53fVs0IOShzEBcMuYGLviURZlM8VioiItA4K3K3dhg3wl794Q/0B9O0Ll18O48aBptluk3bk7eCL9C9YtmcZFa4CgNE9RnPBsAs0/bqIiEgYKHC3Vrt2eUF7wwbvfteucMklMHOm12db2pSqEUe+2PoFm3M2A97QfjOSZ3DOkHMY0GWAzxWKiIi0XgrcrU1entd1ZOFCrytJ+/beqCNnn+0N9ydtSml5KYsyFvFF+hdkHs4EID4mntMHns7Zg8+ma/uuPlcoIiLS+ilwtxalpfDFF/Dpp1BS4g3xd9ZZMHu2Jq1pg/JL8vlmxzfM3z6f/JJ8ALq278o5Q87RiCMiIiLNTIG7pXMOli3zuo8cOOCtmzTJuyCyp2YAbGsyD2fyZfqXLMxYSGl5KQADugzgvKHnMaXPFKKjon2uUEREpO1R4G7Jtm+HN9+Erd4sgCQnw49+BCNH+lqWNC/nHOv3r+erbV+xNmtt9foJvSZw7tBzGd5tuC6EFBER8ZECd0t08CC88w4sWuTd79TJG0v75JN1QWQbUlJWwqKMRXy17Sv2Hd4HeFOvz+jnXQjZp1MfnysUERERUOBuWcrL4auvvOnYS0ogJgZmzfL6acerT25bkVOYw/zt8/nbzr9RWFoIeDNCnjnoTE4beBod23X0uUIRERGpTYG7pdi0CV57Dfbu9e5PnAg//CH06OFvXdIsnHOkHUjjq21fsWLfCpxzAAzpOoRZQ2Yxufdk9c8WERGJUArckS43F95+G1JTvfs9esDVV3sT10irV1ZRxtLdS5m3bR67DnqTF0VZFNOTp3P24LMZlDjI3wJFRETkhBS4I1VZGcybBx995HUfiY31uo6ce67G024DDhQd4Nsd3/K3nX+rHtavU1wnThtwGmcMOoPE+ER/CxQREZFGU+CORBs3wquvQqY3UQmTJ3vdR5KS/K1Lwso5x8bsjXy9/WtWZ66u7jaS3DmZWUNmMa3vNGKj9ceWiIhIS6PAHUny873uI1Wjj/Tq5XUfGTPG37okrApLC1m4ayHzt88nqyALgOioaKb0ncJZg85iSNchGtZPRESkBVPgjgTOeVOxv/02FBR4o49cdBGcd553W1qlXQd3MX/7fBbvXlw9SU3X9l05feDpnDrgVDrHdfa5QhEREQkFpTm/ZWbCyy/D5s3e/VGj4NprNUtkK1VWUcayPcuYv30+6bnp1etH9xjNmYPOZEKvCUSZxlIXERFpTRS4/VJWBp98Ap9+6t3u2NGbJXL6dFD3gVYnqyCLv+38Gwt2Lai+CLJ9bHtO7n8yZww8g14de/lcoYiIiISLArcftmyBl16quSjylFPgiiugQwd/65KQKqsoY+W+lXy34zs2Zm+sXp/cOZkzB53J9H7TiYuJ87FCERERaQ4K3M2ppATefRe+/tq736sX/OQnMGKEv3VJSGUezqxuzT585DDgTbk+re80Tht4GoMTB+siSBERkTZEgbu5bNwIL74IOTkQFQUXXuiNq62LIluFsooyVuxdwbc7vmVzzubq9cmdkzlt4GnM6DeD9rHtfaxQRERE/BIxac/MLgAeBqKBPzvn/rvO9jOB94Ftlavecc79e3PWGJTiYm/0ke++8+737w833OB9lRYv83Am3+38jgW7FlBwpACAdtHtmNZvGqcPPJ2BXQaqNVtERKSNi4jAbWbRwJ+Ac4EMYKmZfeCcW19n1++cc3OavcBgrVvn9dXOzYXoaJgzB84/37stLVZJWQnL9i5jwa4FbMnZUr0+uXMypw88nRnJM4iPifexQhEREYkkERG4gelAmnMuHcDMXgcuBeoG7pahsBDeegsWLPDuDxrktWr37etrWRI85xxbc7eyYNcCUvekUlJWAkBcTFx132y1ZouIiEh9IiVw9wN21bqfAcyoZ7+TzGwVsAf4B+fcuuYoLiBlZfC730F2ttc/+5JL4NxzvX7b0uLkFeexKGMR3+/8vnoWSICh3YZySv9TmNp3qlqzRURE5LgiJXDX1yzo6txfDgx0zh02s9nAe8Dweg9mdhtwG8CAAQNCWGYjxMTAqafC6tVeq3bv3s37/NJkZRVlrM5czfc7v2fd/nU4570Vu8R34aTkkzi5/8kaN1tEREQaLVICdwZQ+yrCZLxW7GrOuUO1bn9sZo+ZWXfnXHbdgznnngKeAkhJSakb3MPv/PO9Ra3aLYZzjoxDGSzMWMjijMXVw/lFR0UzsfdEThlwCmN6jNEskCIiIhKwSAncS4HhZjYY2A1cDfy49g5m1hvIdM45M5sORAE5zV5pYyhotxh5xXks2b2EhbsWsie/5m+8fp37cUr/U5jebzqd4jr5WKGIiIi0dBERuJ1zZWZ2N/AZ3rCAzzrn1pnZHZXbnwCuBO40szKgCLjaVf2vXyQAJWUlrNi3gkUZi9iYvbG6y0iHdh2Y1ncaJ/c/mQFdBugCSBEREQkJa+2ZNSUlxaWmpvpdhviswlWwMXsjizIWsWLvCo6UHwEgJiqGCb0mMDN5JmN7jiUmKiL+BhUREZEWxsyWOedS6tumdCGtWsahDBZlLGLJ7iUcLD5YvX5ot6HMTJ5JSt8UEmITfKxQREREWjsFbml1sguzWbp7KUv3LGX3od3V63t06MHM5JnM6DeDHh16+FihiIiItCUK3NIqHCw+SOqeVJbuWcq23G3V6xNiE5jWbxozk2cyOHGw+mWLiIhIs1PglharsLSQ5XuXs3T3UjblbKq++LFddDsm9p7I9H7TGdNjjPpli4iIiK+URKRFKSkrYVXmKpbuXsq6/esorygHvIsfx/Yay7S+05jQawJxMXE+VyoiIiLiUeCWiHek/Ahrs9aybM8yVmeurh5hxMwY3WM00/pOY3Kfybr4UURERCKSArdEpJKyEtZkrWH53uWsyVxTHbLBG2FkWt9pTO07lc5xnX2sUkREROTEFLglYhSXFbMmcw3L9i5jbdZaSstLq7cN7jqYKX2mMLXPVJISknysUkRERCQwCtziq6LSIlZnrmbZ3mWsy1pHWUVZ9bah3YYypc8UpvSZQrf23XysUkRERCR4CtzS7PJL8lmduZqV+1ayfv/66pBtZgxPGl4dshPjE/0tVERERCQEFLilWewv2M+qzFWs3LeStANp1UP4mRkjkkYwte9UJveeTJf4Lj5XKiIiIhJaCtwSFs45dh7cycp9K1m5byV78vdUb4uJimFUj1FM7D2RSb0n6cJHERERadUUuCVkyivK2ZyzubolO7cot3pb+9j2jO85nom9JzKu5zjiY+J9rFRERESk+ShwS5MUHClgbdZa1mStYV3WOgpLC6u3JcYnMqn3JCb1nsTwpOGa8VFERETaJCUgCYhzjj35e1iTtYbVmatJz02v7o8N0KdTn+qQPbDLQMzMx2pFRERE/KfALSdUWl7KppxNrM5czZrMNRwoOlC9LToqmhHdRzC+53jG9xpPzw49faxUREREJPIocEu9DhQd8LqKZK5hQ/aGoyah6RzXmXE9xzGh1wRG9xit/tgiIiIix6HALQAcKT/C5pzNrN+/nnVZ69h3eN9R2wcmDqxuxVZXEREREZHGU+Buo6r6Yq/bv471+9ezJWfLUbM8xsfEM7rHaMb3HM+4nuM0PraIiIhIkBS425DDRw6zYf8G1u9fz/r968krzqveZmYMShzEmB5jGNNjDEO6DiE6Ktq/YkVERERaCQXuVuxI+RHSDqSxMXsjG7M3svPgzqNGFOkS34WxPcYypscYRvcYTcd2HX2sVkRERKR1UuBuRcoqytiet706YKfnplNeUV69PSYqhuHdhzOmxxjG9hhL30591RdbREREJMwUuFuwCldBxqGM6oCddiCNkrKS6u1mxsDEgYzqPopR3UcxtOtQ4mLifKxYREREpO1R4G5BKlwFuw/tZsuBLWzO2cym7E1HzewI3sQzo7qPYmTSSEZ2H0lCbIJP1YqIiIgIKHBHtPKKcnYc3MGWnC1sObCFtANpFJUWHbVPUkJSdcAe1X2URhMRERERiTAK3BGktLyUbXnbqgP21gNbOVJ+5Kh9khKSGN5tOMOThjMyaSTdE7qrH7aIiIhIBFPg9lF+ST7puelszd3K1gNb2Z63/aixsAF6dezFiKQR1SG7W/tuPlUrIiIiIsFQ4G4mFa6CPfl7vIB9YCvpuelkFWQdtY+Zkdw5meFJwxmRNIJh3YbROa6zTxWLiIiISCgocIdJYWkh23K3Vbdgb8vdRnFZ8VH7tItux6DEQQztNpQhXYcwrNswXeQoIiIi0soocIfB3IVz2Zyz+ahJZsDrfz20qxeuh3YbSnLnZKIsyqcqRURERKQ5KHCHQXxMPNEWzcCuA71wXRmyNYKIiIiISNujwB0GP5nwExJiE4iJ0ukVERERaeuUCMNAFzqKiIiISBV1IBYRERERCSMFbhERERGRMFLgFhEREREJIwVuEREREZEwUuAWEREREQkjBW4RERERkTBS4BYRERERCSMFbhERERGRMFLgFhEREREJIwVuEREREZEwipjAbWYXmNkmM0szs3+sZ7uZ2SOV21eb2RQ/6hQRERERCUREBG4ziwb+BFwIjAGuMbMxdXa7EBheudwGPN6sRYqIiIiIBCEiAjcwHUhzzqU7544ArwOX1tnnUuBF51kEJJpZn+YuVEREREQkEJESuPsBu2rdz6hcF+g+IiIiIiIRJVICt9WzzgWxj7ej2W1mlmpmqfv3729ycSIiIiIiwYqUwJ0B9K91PxnYE8Q+ADjnnnLOpTjnUnr06BHSQkVEREREAhEpgXspMNzMBptZO+Bq4IM6+3wAXF85WslM4KBzbm9zFyoiIiIiEogYvwsAcM6VmdndwGdANPCsc26dmd1Ruf0J4GNgNpAGFAI3NebYy5YtyzazHeGp/Li6A9k+PG9LpfMVGJ2vwOmcBUbnKzA6X4HR+QqMzldg/DpfAxvaYM7V2w1amsjMUp1zKX7X0VLofAVG5ytwOmeB0fkKjM5XYHS+AqPzFZhIPF+R0qVERERERKRVUuAWEREREQkjBe7wecrvAloYna/A6HwFTucsMDpfgdH5CozOV2B0vgITcedLfbhFRERERMJILdwiIiIiImGkwN1EZnaBmW0yszQz+8fj7DfNzMrN7MrmrC/SNOZ8mdmZZrbSzNaZ2TfNXWMkOdH5MrMuZvahma2qPF+NGi6ztTKzZ80sy8zWNrDdzOyRyvO52symNHeNkaQR5+vayvO02swWmNnE5q4xkpzofNXaT5/3NO586fO+RiN+HvV5X4uZ9Tezr81sQ+X5uLeefSLmM1+BuwnMLBr4E3AhMAa4xszGNLDf/+CNM95mNeZ8mVki8BhwiXNuLPDD5q4zUjTy/fVTYL1zbiJwJvBA5eRRbdXzwAXH2X4hMLxyuQ14vBlqimTPc/zztQ04wzk3AfgPIrBfZDN7nuOfL33eH+15jnO+9Hl/jOc5/vtLn/dHKwP+3jk3GpgJ/LSe35ER85mvwN0004E051y6c+4I8DpwaT37/Qz4C5DVnMVFoMacrx8D7zjndgI459ryOWvM+XJAJzMzoCNwAO9DqE1yzn2Ldw4acinwovMsAhLNrE/zVBd5TnS+nHMLnHO5lXcXAcnNUliEasT7C/R5X60R50uf97U04nzp874W59xe59zyytv5wAagX53dIuYzX4G7afoBu2rdz6DON9vM+gGXAU80Y12R6oTnCxgBdDWz+Wa2zMyub7bqIk9jztejwGhgD7AGuNc5V9E85bVIjTmnUr9bgE/8LiKS6fM+YPq8D4w+7xtgZoOAycDiOpsi5jM/IqZ2b8GsnnV1h315CPiVc67c+6O0TWvM+YoBpgKzgPbAQjNb5JzbHO7iIlBjztf5wErgbGAo8IWZfeecOxTm2lqqxpxTqcPMzsIL3Kf6XUuEewh93gdCn/eB0ed9PcysI95/le6r51xEzGe+AnfTZAD9a91PxvvLs7YU4PXKD9/uwGwzK3POvdcsFUaWxpyvDCDbOVcAFJjZt8BEoC1+ADfmfN0E/LfzxvdMM7NtwChgSfOU2OI05pxKLWY2AfgzcKFzLsfveiKcPu8Do8/7wOjzvg4zi8UL2684596pZ5eI+cxXl5KmWQoMN7PBlRcuXA18UHsH59xg59wg59wg4G3grjb84XvC8wW8D5xmZjFmlgDMwOuX1RY15nztxGsdwsx6ASOB9GatsmX5ALi+8sr1mcBB59xev4uKVGY2AHgHuE6tjiemz/uA6fM+MPq8r6WyL/szwAbn3NwGdouYz3y1cDeBc67MzO7Guxo9GnjWObfOzO6o3K5+fLU05nw55zaY2afAaqAC+LNz7rhDcLVWjXx//QfwvJmtwfvX2a+cc9m+Fe0zM3sN7+r97maWAfwrEAvV5+tjYDaQBhTitRi1WY04X/8CJAGPVbbaljnnUvyp1n+NOF9Sy4nOlz7vj9aI95c+7492CnAdsMbMVlau+zUwACLvM18zTYqIiIiIhJG6lIiIiIiIhJECt4iIiIhIGClwi4iIiIiEkQK3iIiIiEgYKXCLiIiIiISRAreIiIiISBgpcIuIiIiIhJECt4iIiIhIGClwi4gIAGY23cy+MLP9ZubqLEP9rk9EpKVS4BYREcxsHDAf2IA3vfTZwD5gCfATIN2v2kREWjpN7S4iIpjZPCDPOXdFrXW/B650zg33rzIRkZYvxu8CRETEX2bWHTgDOL/OpgJArTIiIk2kLiUiIjIViAZW1VmfAixt/nJERFoXtXCLiEh05df2VSvMbBhei/dlvlQkItKKqIVbREQWA4XAH8xstJmdD3wEvO6c+9Tf0kREWj5dNCkiIpjZbGAuMATYDTwD/LdzrszXwkREWgEFbhERERGRMFKXEhERERGRMFLgFhEREREJIwVuEREREZEwUuAWEREREQkjBW4RERERkTBS4BYRERERCSMFbhERERGRMFLgFhEREREJIwVuEREREZEw+v9m20zj+CU03QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "from scipy.stats import norm\n", - "from scipy.stats import t\n", - "from scipy.stats import laplace\n", - "#\n", - "fig, ax = plt.subplots(1, 1,figsize=(12, 8))\n", - "plt.title('Entropía y varianza en la familia normal como función de $\\sigma$',fontsize=14)\n", - "\n", - "sigma = np.linspace(0.4,2,300)\n", - "#\n", - "varianza = sigma**2\n", - "ax.plot(sigma, varianza, 'g-', lw=2, alpha=0.6, label='varianza')\n", - "#\n", - "entropia = 0.5*np.log(2*np.pi*np.e*sigma**2)\n", - "ax.plot(sigma, entropia, 'r-', lw=2, alpha=0.6, label='entropía')\n", - "#\n", - "plt.xlabel('$\\sigma$',fontsize=14)\n", - "plt.ylabel('$entropía = 0.5\\cdot\\log (2\\pi e \\sigma^2)$',fontsize=14)\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Referencias" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Var_Prob_conjunta-checkpoint.ipynb b/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Var_Prob_conjunta-checkpoint.ipynb deleted file mode 100644 index d79ec75e..00000000 --- a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Var_Prob_conjunta-checkpoint.ipynb +++ /dev/null @@ -1,517 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#
Probabilidad Conjunta y Entropía Cruzada
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introducción" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En esta lección se introduce el concepto de función de probabilidad conjunta. Además se introducen los conceptos de correlación, información mutua y entropía cruzada." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## El ejemplo de la moneda cargada " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Usaremos el ejemplo de la Variable Bernoulli de la [lección de variables aleatorias](Prob_Variables_Aleatorias.ipynb). En realidad el ejemplo puede reescribirse usando como experimento el lanzamiento de una moneda cargada. Suponemos dos posibles resultados cara $(g=1)$ y sello $(g=0)$. Suponemos además que $\\text{Prob}[g=1]= 0.6$ y por tanto $\\text{Prob}[g=0]= 0.4$. El experimento consiste en lanzar tres veces la moneda cargada y anotar el resultado: cara (1) o sello (0)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Ahora definimos dos variables aleatorias. La primera que llamaremos $X$, corresponde a contar el número de caras que salen. De acuerdo con los resultados de la [lección de variables aleatorias](Prob_Variables_Aleatorias.ipynb), la función de probabilidad de $X$, denotada $p_X$ es dada por extensión de la siguiente forma:\n", - "\n", - "|Valor |Experimentos| probabilidad cada experimento| probabilidad para este valor de $X$| total|\n", - "|---|---|---| ---|---|\n", - "|0| 000| $0.4\\times 0.4 \\times 0.4$|0.064|0.064|\n", - "|1| 100| $0.6\\times 0.4 \\times 0.4$|0.096||\n", - "|1| 010| $0.4 \\times 0.6\\times 0.4$|0.096||\n", - "|1| 001| $0.4 \\times 0.4\\times 0.6$|0.096|0.288|\n", - "|2| 110| $0.6\\times 0.6 \\times 0.4$|0.144||\n", - "|2| 011| $0.4 \\times 0.6\\times 0.6$|0.144||\n", - "|2| 101| $0.6 \\times 0.4 \\times 0.6$|0.144|0.432|\n", - "|3| 111| $0.6 \\times 0.6\\times 0.6$|0.216|0.216 |\n", - "\n", - "Recuerde que obtuvimos que $\\mathbb{E}[X]=1.8$. Además se tiene que $\\text{Var}[X]=0.72$ y $\\sigma_X = 0.849$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Por favor verifique que si $X\\sim \\text{Binom}(N,\\pi)$, entonces:\n", - "\n", - "1. $\\mathbb{E}[X]=N\\pi$ \n", - "2. $\\text{Var}[X]=N\\pi(1-\\pi)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La segunda variable que llamaremos $Y$ se define\n", - "como sigue:\n", - "\n", - "$$\n", - "Y = \\begin{cases} 0, &\\text{ si no sale ninguna cara}, \\\\\n", - "1, &\\text{ si salen una o dos caras},\\\\\n", - "-1, &\\text{ si salen tres caras}.\n", - "\\end{cases}\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La función de probabilidad de $Y$ , denotada $p_Y$ es dada por extensión de la siguiente forma:\n", - "\n", - "|Valor |Experimentos| probabilidad cada experimento| probabilidad para este valor de $Y$| total|\n", - "|---|---|---| ---|---|\n", - "|0| 000| $0.4\\times 0.4 \\times 0.4$|0.064|0.064|\n", - "|1| 100| $0.6\\times 0.4 \\times 0.4$|0.096||\n", - "|1| 010| $0.4 \\times 0.6\\times 0.4$|0.096||\n", - "|1| 001| $0.4 \\times 0.4\\times 0.6$|0.096||\n", - "|1| 110| $0.6\\times 0.6 \\times 0.4$|0.144||\n", - "|1| 011| $0.4 \\times 0.6\\times 0.6$|0.144||\n", - "|1| 101| $0.6 \\times 0.4 \\times 0.6$|0.144|0.720|\n", - "|-1| 111| $0.6 \\times 0.6\\times 0.6$|0.216|0.216 |" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Recuerde que :\n", - "\n", - "$$\n", - "\\begin{align}\n", - "\\mathbb{E}[Y] &= 0\\times 0.064 + 1\\times 0.72 +(-1)\\times 0.216 = 0.504\\\\\n", - "\\text{Var}[Y] &= (0-0.504)^2\\times 0.064 + (1-0.504)^2\\times 0.720 + (-1-0.504)^2\\times 0.216 = 0.682\\\\\n", - "\\sigma_Y &= 0.826\n", - "\\end{align}\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Función de probabilidad conjunta " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Abordemos el problema de determinar como está relacionadas (asociadas) estas dos variables. Para empezar observe la siguiente tabla que muestra como coocurren los valores de las dos variables aleatorias:\n", - "\n", - "\n", - "|X/Y|0|1|-1|\n", - "|---|---|---|---|\n", - "|0|000|---------|---|\n", - "|1|---|100 010 001|---|\n", - "|2|---|101 110 011|---|\n", - "|3|---|---------|111|" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La celdas vacias indican parejas de valores $(x,y)$ que no pueden ocurrir. La función de probabilidad conjunta de la variables $X$ y $Y$ se define como la función de dos variables dada por:\n", - "\n", - "$$\n", - "p_{XY}(x,y) = \\text{Prob}(X=x, Y=y).\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En nuestro ejemplo, la función de probabilidad conjunta es definida por extensión de la siguiente forma\n", - "\n", - "|X/Y|0|1|-1|$P_X$|\n", - "|---|---|---|---|---|\n", - "|0|0.064|0.000|0.000|0.064|\n", - "|1|0.000|0.288|0.000|0.288|\n", - "|2|0.000|0.432|0.000|0.432|\n", - "|3|0.000|0.000| 0.216|0.216|\n", - "|$P_Y$|0.064|0.720| 0.216|1.000|\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Distribución marginal " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Observe que en la última fila de la tabla se recupera la función de probabilidad de $Y$. De la misma forma, en la última columna se recupera la función de probabilidad de $X$. En este contexto de funciones de probabilidad conjunta, las funciones $P_X$ y $P_Y$ se llaman funciones de probabilidad marginales. En este caso, cada valor corresponde a la suma de la fila o columna correspondiente. La celda inferior derecha muestra la suma total de probabilidades, que claro debe ser 1.0." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Correlación" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "El concepto de correlación está completamente asociado a la funcion de distribución conjunta de dos variables aleatorias. Esencialmente, la correlación mide como covarían las dos variables aleatorias. Supongamos que $X$ y $Y$ son variables aleatorias definidas sobre el mismo espacio muestral como en el ejemplo anterior.\n", - "\n", - "Además supongamos que la media y la desviación estándar de cada variable se denotan como $\\mu_X$, $\\sigma_X$ y $\\mu_Y$ y $\\sigma_Y$ respectivamente. Entonces se tiene que la correlación entre las dos variables aleatorias es dada por:\n", - "\n", - "$$\n", - "Cor(X,Y) = \\mathbb{E}\\left[\\frac{(X-\\mu_X)}{\\sigma_X}\\frac{(Y-\\mu_Y)}{\\sigma_Y} \\right]= \\frac{\\mathbb{E}(XY) - \\mathbb{E}(X)\\mathbb{E}(Y)}{\\sigma_X \\sigma_Y}.\n", - "$$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Vamos a calcular la correlación de las variables del ejemplo anterior. Usaremos la segunda ecuación. La igualdad puede ser verificada sin mucha dificutad.\n", - "\n", - "La única cantidad que no tenemos aún es $\\mathbb{E}(XY)$, la cual puede calcularse como sigue:\n", - "\n", - "\n", - "\n", - "$$\n", - "\\mathbb{E}(XY) = \\sum_i \\sum_j x_iy_j P_{XY}(x_i,y_j)\n", - "$$\n", - "\n", - "En nuestro ejemplo tenemos que:\n", - "\n", - "$$\n", - "\\mathbb{E}(XY) = 1 \\times 1 \\times P_{XY}(1,1) + 2 \\times 1 \\times P_{XY}(2,1) + 3\\times (-1)\\times P_{XY}(3,-1) = 0.504\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En consecuencia se tiene que:\n", - "\n", - "$$\n", - "Cor(X,Y) = \\frac{0.504 - 1.8\\times 0.504}{0.849\\times 0.826} = -0.575\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Información mutua" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Este concepto es el análogo a la correlación, pero en este caso desde la\n", - "teoría de la información de Shannon.\n", - "\n", - "Para dos distribuciones (variables aleatorias $X$ y $Y$) discretas conjuntamente distribuidas,\n", - "la información conjunta se define por:\n", - "\n", - "$$\n", - "\\mathfrak{m}(X,Y)=\\sum_{y\\in Y}\\sum_{x\\in X}P_{XY}(x,y) \\log \\left(\\frac {P_{XY}(x,y)}{P_X(x)P_{Y}(y)}\\right) = \\mathbb{E}_{XY}[\\log P_{XY} - \\log P_X\\log P_Y]\n", - "$$\n", - "\n", - "Observe que si las variables aleatorias son independientes, entonces $\\mathfrak{m}(X,Y)=0$, porque $\\log P_{XY} = \\log P_X\\log P_Y$.\n", - "\n", - "Por otro lado, Si $X=Y$, se tiene que $\\mathfrak{m}(X,X) = H(X)$, es decir, la entropía de $X$.\n", - "\n", - "La información mutua se puede calcular siempre, teniendo en cuenta el convenio $0 \\log 0 = 0$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Recordemos la tabla de probabilidad conjunta del ejemplo:\n", - "\n", - "|X/Y|0|1|-1|$P_X$|\n", - "|---|---|---|---|---|\n", - "|0|0.064|0.000|0.000|0.064|\n", - "|1|0.000|0.288|0.000|0.288|\n", - "|2|0.000|0.432|0.000|0.432|\n", - "|3|0.000|0.000| 0.216|0.216|\n", - "|$P_Y$|0.064|0.720| 0.216|1.000|\n", - "\n", - "\n", - "Entonces en este caso tenemos que:\n", - "\n", - "$$\\mathfrak{m}(X,Y) = 0.064 \\log\\tfrac{0.064}{0.064\\times 0.064} +0.288 \\log \\tfrac{ 0.288}{0.288\\times 0.72} +0.432\\log\\tfrac{0.432}{0.432\\times 0.72} + 0.216 \\log \\tfrac{0.216}{0.216*0.216} = 0.5032.\n", - "$$\n", - "\n", - "La información mutua siempre es positiva e indica la cantidad de información que las dos variables cargan conjuntamente, la una de la otra.\n", - "\n", - "La siguiente línea ilustra el cálculo usando Numpy." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.5032013743418469" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import numpy as np\n", - "(0.064)*np.log(0.064/(0.064*.064)) +(0.288)*np.log(0.288/(0.288*0.724)) \\\n", - "+(0.432)*np.log(0.432/(0.432*0.72) + 0.216*np.log(0.216/(0.216*0.216)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Entropía cruzada" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En teoría de la información, la entropía cruzada entre dos distribuciones de probabilidad $P$ y $Q$ sobre el mismo espacio muestral mide el número promedio de bits (o nats) necesarios para identificar una distribución con la otra. \n", - "\n", - "En la práctica, si se considera la distribución $P$ como la distribución verdadera y a $Q$ como una distribución aproximante, entonces la entropía cruzada se define mediante:\n", - "\n", - "\n", - "$$\n", - "H(P,Q) = - E_P[ \\log Q] = - (p_1\\log q_1 + p_2\\log q_2+ \\cdots + p_n\\log q_n)\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Interpretación**\n", - "\n", - "Para la interpretación, esta es una medida de que tanto difiere $Q$ de $P$, medido en bits o nats. Entonces entre menor es este valor, mejor es la aproximación." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Para ilustrar el concepto, calculemos la entropía cruzada entre las distribuciones binomiales $ P=Bin(3, 0.3)$, $Q_1=Bin(3, 0.4)$ y $Q_2=Bin(3,0.7)$.\n", - "\n", - "Vamos considerar a la distribución $P$ como la verdadera y a $Q_1$ y $Q_2$ como aproximantes. Usted debe sospechar que $Q_1$ es mejor aproximante que $Q_2$.\n", - "\n", - "Veámos." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0.343 0.441 0.189 0.027]\n", - "[0.216 0.432 0.288 0.064]\n", - "[0.027 0.189 0.441 0.343]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "from scipy.stats import binom\n", - "import matplotlib.pyplot as plt\n", - "\n", - "N, p, q1, q2 = 3, 0.3, 0.4, 0.7\n", - "\n", - "P = [binom.pmf(k,N,p) for k in range(N+1)]\n", - "Q1 = [binom.pmf(k,N,q1) for k in range(N+1)]\n", - "Q2 = [binom.pmf(k,N,q2) for k in range(N+1)]\n", - "\n", - "print(np.round(P,3))\n", - "print(np.round(Q1,3))\n", - "print(np.round(Q2,3))" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "H(P,Q1)= 1.2052697267344104\n", - "H(P,Q2)= 2.157224596768415\n" - ] - } - ], - "source": [ - "H_P_Q1 = -np.sum(P*np.log(Q1))\n", - "H_P_Q2 = -np.sum(P*np.log(Q2))\n", - "\n", - "print('H(P,Q1)= ', H_P_Q1 )\n", - "print('H(P,Q2)= ', H_P_Q2 )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finalmente un gráfico de las tres distribuciones." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEYCAYAAABBWFftAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYiUlEQVR4nO3df7Cld10f8PfHDeGqCFR3h2CyZANkSjMMWmeJTm21VWkTKhOsHUlIQQWGyVhQq7ZGi04t2hZLmY4OmImQUjFthgq10cZGa6XKqCWLRSRgmDVmyRJZNiI/oixJ6Kd/nLN42L2799zd771n97mv18zJnHOe733O57k397Pf9/c8z7nV3QEAAODsfcGqCwAAAJgKAQsAAGAQAQsAAGAQAQsAAGAQAQsAAGAQAQsAAGAQAWuHqaqbqupHBu3rKVX1UFXtmj9+R1W9bMS+T3idh6rqqSc89wVV9d+q6iWjXw8AAM6UgDUhVXVfVX26qj5VVR+vqt+uqhuq6nM/5+6+obtfveS+vul0Y7r7Q939uO7+7Ij6T/M6j+vue094+ieS/Hp333Km+134fj1UVUeq6j9U1ePOrlrYmSzeANtJz+FcJmBNz/O6+0uSXJrk3yT5wSRvGv0iVXXB6H1uRnf/UHf/1IBdPa+7H5fkq5I8O8mrBuwTJsXizeZV1XdU1R9U1V9U1Ueq6g1V9YSF7c+sqjur6sGq6rN5LZgaPWfzlug5315V766qT1bV4ar6yVXP5aZMwJqo7v5Ed9+e5AVJvr2qnpkkVfXmqvrx+f3dVfXL8+b1sar6rflKyluSPCXJL81XW/5ZVe2rqq6ql1bVh5L8r4XnFn9Bn1ZV76qqT8xXZL50/lp/u6oOL9a42PSqaldV/XBV/dG8ob67qvbOt3VVPX1+/wlV9XNVdbSqDlXVq4433HlzeWdVvbaq/qyq/riqrl7y+/XhJL+S5Jln+j2HibN4s6Sq+v4kr0nyT5M8IcnXJNmX5Fer6jHzYY8keWuSl57Na8GE6TlLWrLnfFGS702yO8lXJ/nGJD9wNq/LqQlYE9fd70pyOMnfWmfz98+37UnypCQ/PPuSflGSD2X+7k53/+TC13x9kr+W5O+d4iVfnOQlSb48yaNJlm0a35fkuiTPTfL4+T7+Yp1xP51Z83jqvJYXJ/nOhe1fneSezBrITyZ5U1XVRi8+D3PPTfJ/l6wXdiSLN6dfvKmqxyf5sSSv7O7/0d2PdPd9Sb4tyWVJXjj/Pt7T3W9KcvdZ/1BgwvScYT3nZ7r7t7r74fmi8q1JvvZsfz6sT8DaGR5I8qXrPP9IkicnuXT+C/lb3b3RqSr/orv/vLs/fYrtb+nu93X3nyf5kSTfVvNzmjfwsiSvmk86urt/v7v/dHHAfD8vSPJD3f2peQP5d0letDDsUHf/7Pxt/v84P74nneZ1f7GqPp7knUn+d5J/tUStsONZvDnl4s3fSLKW5O2LT3b3Q5m9S/53l6wbWKDnDO85XxcLPFtGwNoZLk7ysXWe/7dJDmb2FvK9VXXjEvu6fxPbDyV5TGbNYSN7k/zRBmN2J7lwvt/F17h44fFHjt/p7uMN7XQfXPH87n5id1/a3d91muAInMzizcl2J3mwux9dZ9ufZDYBBM6MnnOyTfecqvrOJPuTvHaJ4+EMCFgTV1XPziyAvPPEbfNf6u/v7qcmeV6S76uqbzy++RS73Khh7V24/5TMmt6DSf48s/N/j9e1K5//S39/kqdtsO8H5/u79ITX+PAGXwdsDYs3J3swye5TXNfx5CRHNyoYOCU952Sb6jlV9fzMrmm7ursf3KBOzpCANVFV9fiq+uYktyX5+e7+g3XGfHNVPX3+lvMnk3x2fkuSI5m9bb1Z/6iqrqiqL0ryL5P8wnz15YNJ1qrq79fsgstXJXnswte9Mcmrq+rymnlWVX3Z4o7n+3lrkp+oqi+pqkszeyv+58+gTuAsWLw5pd9J8pkk/2Dxyar64iRXZ3YqMrBJes4pLd1zquqqJD+b2SmTJ80LGUfAmp5fqqpPZfYL/s+TvC6ff07vosuT/M8kD2X2C/qG7n7HfNu/TvKq+QWjm/mUmbckeXNmKy9rSb47mV2kmuS7MgtSH86sQS1eJPq6zMLTr2YW9t6U5AvX2f8r5197b2ZN9j8lOauPNgWWZ/Hm9Oa97seS/HRVXVVVj6mqfUn+S2aTqluTZF7LWmar2Kmqtap67Cl2CzuWnnN6m+g53zC//63z69nYSt3t5ubm5uZ2yluS+5J8OsmnknwiswWZf5xk18KYNyf58fn9fzL/muMLKT+yMO6azC46/3hmHxG8L7OV5AsWxnzec0nekdmiz7symzz9UpLdC+O/I7NrDT463+d9Sb5pvm1XZhOgP57Xf1eSS+bbOsnT5/f/SmaTm6OZLVD9aJIvWNj/O0/4nnzua0/xPXtpkvclOTYf+44kX77OMS7e7lv1z9rN7Vy46Tlb0nN+I7MP63ho4fYrq/5ZT/VW8286ALAFquolma0wf213f2jV9QDTpuesnoAFAFusql6U5JHuvm3VtQDTp+esloAFAAAwiA+5AAAAGGS9z8zfFrt37+59+/at6uWBbfLud7/7we5e+R9X1XNg+vQbYDudquesLGDt27cvBw4cWNXLA9ukqg5tPGrr6TkwffoNsJ1O1XOcIggAADCIgAUAADCIgAUAADCIgAUAADCIgAUAADCIgAUAADCIgAUAADCIgAUAADCIgAUAADCIgAUAADCIgHUO2bf3WKoy2du+vcdW/S0G5o5dtG/1TWGLb8cu2rfqbzOwQ+y7aNpzuKrZMbKcC1ZdAH/p0OG19K216jK2TF3fqy4BmFs7ciiVaf9O9pHp9lPg3HLoyFo60+45dWTa/2aM5B0sAACAQQQsAACAQQQsAACAQQQsAACAQQQsAACAQQQsAACAQQQsAACAQQQsAACAQQQsAACAQQQsAACAQQQsAACAQQQs4JxSVVdV1T1VdbCqbjzNuGdX1Wer6h9uZ30AAKcjYAHnjKraleT1Sa5OckWS66rqilOMe02SO7e3QgCA0xOwgHPJlUkOdve93f1wktuSXLPOuFcmeVuSj25ncQAAGxGwgHPJxUnuX3h8eP7c51TVxUm+JclNG+2sql5eVQeq6sDRo0eHFgoAsJ6lApZrIoBtUus81yc8/vdJfrC7P7vRzrr75u7e39379+zZM6I+YGLMcYDRLthowMI1Ec/JbDX5rqq6vbvfv84410QAZ+Nwkr0Ljy9J8sAJY/Ynua2qkmR3kudW1aPd/YvbUiEwGeY4wFZY5h0s10QA2+WuJJdX1WVVdWGSa5Pcvjiguy/r7n3dvS/JLyT5LuEKOEPmOMBwywSsYddEuB4COJ3ufjTJKzJbJf5Akrd2991VdUNV3bDa6oAJMscBhtvwFMFs8pqI+Wk76+rum5PcnCT79+8/cR8A6e47ktxxwnPrTmy6+zu2oyZgssxxgOGWCViuiQAApsgcBxhumYD1uWsiknw4s2siXrg4oLsvO36/qt6c5Jc1HgDgHGeOAwy3YcDq7ker6vg1EbuS3HL8moj59g3/Fg0AwLnGHAfYCsu8g+WaCABgksxxgNGW+kPDAAAAbEzAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGETAAgAAGOSCVRewrH17j+XQ4bVVlwEAADvOY3MsVdOei1/6pGO57yNnf4znTcA6dHgtfWutuowtVdf3qksAAICTfCZr6Ux8Ln5kzFzcKYIAAACDCFgAAACDCFgAAACDCFgAAACDCFgAAACDCFgAAACDCFgAAACDCFgAAACDCFgAAACDCFgAAACDCFgAAACDCFgAAACDCFgAAACDCFjAOaWqrqqqe6rqYFXduM72a6rqvVX1nqo6UFV/cxV1AgCs54JVFwBwXFXtSvL6JM9JcjjJXVV1e3e/f2HYrye5vbu7qp6V5K1JnrH91QIAnMw7WMC55MokB7v73u5+OMltSa5ZHNDdD3V3zx9+cZIOAMA5YqmA5ZQdYJtcnOT+hceH5899nqr6lqr6wyT/PclLTrWzqnr5vCcdOHr06PBigfOfOQ4w2oYBa+GUnauTXJHkuqq64oRhv57kK7r7KzOb7LxxcJ3AzlDrPHfSO1Td/V+7+xlJnp/k1afaWXff3N37u3v/nj17xlUJTII5DrAVlnkHyyk7wHY5nGTvwuNLkjxwqsHd/ZtJnlZVu7e6MGCSzHGA4ZYJWENP2QE4jbuSXF5Vl1XVhUmuTXL74oCqenpV1fz+VyW5MMmfbnulwBSY4wDDLROwhp2y43oI4HS6+9Ekr0hyZ5IPJHlrd99dVTdU1Q3zYd+a5H1V9Z7MTu15wcLqMsBmmOMAwy3zMe2bPmWnqp5WVbu7+8ETtt2c5OYk2b9/vwkRcJLuviPJHSc8d9PC/dckec121wVMkjkOMNwy72A5ZQcAmCJzHGC4Dd/B6u5Hq+r4KTu7ktxy/JSd+fabMjtl58VV9UiST8cpOwCs2LE8Nmu13hlg03HsSZdm7SP3rbqM85Y5DrAVljlF0Ck7AJx31vKZ1MQ/8K2PTDtAbgdzHGC0pf7QMAAAABsTsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAYRsAAAAAa5YNUFAJxrjl20L2tHDq26DADgPCRgAZxg7cihVHrVZWypTq26BACYJKcIAgAADCJgAQAADCJgAQAADCJgAeeUqrqqqu6pqoNVdeM626+vqvfOb79dVV+xijoBANYjYAHnjKraleT1Sa5OckWS66rqihOG/XGSr+/uZyV5dZKbt7dKAIBTWypgWVEGtsmVSQ52973d/XCS25Jcszigu3+7u/9s/vB3k1yyzTUCE2KOA4y2YcCyogxso4uT3L/w+PD8uVN5aZJfOdXGqnp5VR2oqgNHjx4dVCIwFeY4wFZY5h0sK8rAdlnvjzOt+wepqurvZBawfvBUO+vum7t7f3fv37Nnz6ASgQkxxwGGWyZgDVtRtpoMbOBwkr0Ljy9J8sCJg6rqWUnemOSa7v7TbaoNmB5zHGC4ZQLWsBVlq8nABu5KcnlVXVZVFya5NsntiwOq6ilJ3p7kRd39wRXUCEyHOQ4w3AVLjNnsivLVVpSBM9Hdj1bVK5LcmWRXklu6++6qumG+/aYkP5rky5K8oaqS5NHu3r+qmoHzmjkOMNwyAetzK8pJPpzZivILFwdYUQZG6e47ktxxwnM3Ldx/WZKXbXddwCSZ4wDDbRiwrCgDAFNkjgNshWXewbKiDABMkjkOMNpSAQtG2bf3WA4dXlt1GVvm0kuO5b77p3t8ALBZ+y46lkNH/NvIziFgsa0OHV5L37rehzZNQ12/7odPAcCOdejIWnrdD2ycjlr/wyfZoZb5mHYAAACWIGABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImABAAAMImAB55Squqqq7qmqg1V14zrbn1FVv1NVn6mqH1hFjQAAp7JUwDLhAbZDVe1K8vokVye5Isl1VXXFCcM+luS7k7x2m8sDJsgcBxhtw4BlwgNsoyuTHOzue7v74SS3JblmcUB3f7S770ryyCoKBKbDHAfYCsu8g2XCA2yXi5Pcv/D48Py5M1JVL6+qA1V14OjRo2ddHDA55jjAcMsErGETHpMdYAO1znN9pjvr7pu7e39379+zZ89ZlAVMlDkOMNwyAWvYhMdkB9jA4SR7Fx5fkuSBFdUCTJ85DjDcMgHLhAfYLnclubyqLquqC5Ncm+T2FdcETJc5DjDcBUuM+dyEJ8mHM5vwvHBLqwJ2pO5+tKpekeTOJLuS3NLdd1fVDfPtN1XVRUkOJHl8kv9XVd+b5Iru/uSq6gbOW+Y4wHAbBiwTHmA7dfcdSe444bmbFu5/JLNVZoCzYo4DbIVl3sEy4QEAJskcBxhtqT80DAAAwMYELAAAgEEELAAAgEEELAAAgEEELAAAgEEELAAAgEEELAAAgEEELAAAgEEELAAAgEEELAAAgEEELAAAgEEELAAAgEEuWHUBAMCZOZbHZq1q1WVsqWNPujRrH7lv1WUALE3AAoDz1Fo+k0qvuowt1UemHSCB6XGKIAAAwCACFgAAwCACFgAAwCACFgAAwCACFgAAwCACFgAAwCACFgAAwCACFgAAwCACFgAAwCACFgAAwCACFgAAwCACFgAAwCACFgAAwCACFgAAwCACFgAAwCACFgAAwCACFgAAwCAXrLoAmJLHPuZYqtZWXcaWuvSSY7nv/mkfI8B22XfRsRw6oqfClAhYMNBnHllL31qrLmNL1fW96hIAJuPQkbV0Jv7vRvy7wc7iFEEAAIBBBCwAAIBBBCwAAIBBBCwAAIBBBCwAAIBBBCwAAIBBBCwAAIBBBCwAAIBBBCwAAIBBlgpYVXVVVd1TVQer6sZ1tldV/dR8+3ur6qvGlwrsBPoNsJ30HGC0DQNWVe1K8vokVye5Isl1VXXFCcOuTnL5/PbyJD8zuE5gB9BvgO2k5wBbYZl3sK5McrC77+3uh5PcluSaE8Zck+TneuZ3kzyxqp48uFZg+vQbYDvpOcBwFywx5uIk9y88Ppzkq5cYc3GSP1kcVFUvz2z1J0keqqp7NlNsXb+Z0Wdtd5IHt/UVUxM/xpr9d+LHuM3Hl6ziGGtTX3DpJsYO6zfJ2faczR3kWdr2flML/90mjnEL7JhjXL7pbKbfJOfIHGdbf4Iz2//vxva92HGOcbgdcowD5jjLBKz1XqbPYEy6++YkNy/xmitXVQe6e/+q69hKjnEaJnaMw/pNcv70nIn9DNflGKdhgsdojjNRjnEaztdjXOYUwcNJ9i48viTJA2cwBmAj+g2wnfQcYLhlAtZdSS6vqsuq6sIk1ya5/YQxtyd58fyTdr4mySe6+6TTdQA2oN8A20nPAYbb8BTB7n60ql6R5M4ku5Lc0t13V9UN8+03JbkjyXOTHEzyF0m+c+tK3jbnxdv8Z8kxTsNkjlG/mTTHOA2TOkY9Z9Ic4zScl8dY3eteugAAAMAmLfWHhgEAANiYgAUAADCIgLWOqrqqqu6pqoNVdeOq6xmtqm6pqo9W1ftWXctWqaq9VfUbVfWBqrq7qr5n1TWNVFVrVfWuqvr9+fH92Kpr4szoN+e/qfebRM+Ziqn3m2T6PUe/OT+4BusEVbUryQeTPCezj2a9K8l13f3+lRY2UFV9XZKHMvvL9M9cdT1boaqenOTJ3f17VfUlSd6d5PlT+TlWVSX54u5+qKoek+SdSb6nu393xaWxCfrNNEy93yR6zhTshH6TTL/n6DfnB+9gnezKJAe7+97ufjjJbUmuWXFNQ3X3byb52Krr2Erd/Sfd/Xvz+59K8oEkF6+2qnF65qH5w8fMb1ZLzj/6zQRMvd8kes5ETL7fJNPvOfrN+UHAOtnFSe5feHw4E/sfd6epqn1J/nqS/7PiUoaqql1V9Z4kH03ya909qePbIfSbiZlqv0n0nAnQbyZGvzl3CVgnq3WeO69SM3+pqh6X5G1Jvre7P7nqekbq7s9291cmuSTJlVU1uVMhdgD9ZkKm3G8SPWcC9JsJ0W/ObQLWyQ4n2bvw+JIkD6yoFs7C/LzdtyW5tbvfvup6tkp3fzzJO5JctdpKOAP6zUTslH6T6DnnMf1mIvSbc5+AdbK7klxeVZdV1YVJrk1y+4prYpPmF0i+KckHuvt1q65ntKraU1VPnN//wiTflOQPV1oUZ0K/mYCp95tEz5kI/WYC9Jvzg4B1gu5+NMkrktyZ2YWDb+3uu1db1VhV9Z+T/E6Sv1pVh6vqpauuaQt8bZIXJfmGqnrP/PbcVRc10JOT/EZVvTezfzR/rbt/ecU1sUn6zWRMvd8kes55byf0m2RH9Bz95jzgY9oBAAAG8Q4WAADAIAIWAADAIAIWAADAIAIWAADAIAIWAADAIAIWAADAIAIWAADAIP8fFpQ97UR9pDsAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, axes = plt.subplots(1, 3, figsize=(12, 4))\n", - "ax = axes.ravel()\n", - "label = ['0','1','2','3']\n", - "\n", - "ax[0].bar(label, P, color = 'orange', edgecolor='blue',width=1)\n", - "ax[0].set_title(\"Distribución P\")\n", - "\n", - "ax[1].bar(label, Q1, color = 'blue', edgecolor='red',width=1)\n", - "ax[1].set_title(\"Distribución Q1\")\n", - "\n", - "ax[2].bar(label, Q2, color = 'red', edgecolor='blue',width=1)\n", - "ax[2].set_title(\"Distribución Q2\")\n", - "\n", - "fig.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Entropía cruzada en aprendizaje de máquinas" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Recordemos que una red neuronal de clasificación transforma un tensor de entrada en una distribución. Tal distribución indica las probabilidades de que el tensor de entrada pertenezca a cada una de las clases.\n", - "\n", - "En el entrenamiento se busca encontrar los pesos sinápticos que minimizan conjuntamente la entropía cruzada entre la distribución de salida de los tensores calculada por la red neuronal y la distribución verdadera asociada a cada tensor.\n", - "\n", - "Por ejemplo, supongamos que se tienen tres clases y que para un determinado tensor la clase asociada es la 1 (las posibles clases son 0,1,2).\n", - "\n", - "Entonces, la distribución verdadera en este caso es $P=(0,1,0)$. Por otro lado, supongamos que la distribución que calcula la red neuronal para este tensor es $Q= (0.2, 0.7, 0.1)$. Entonces, la entropía cruzada para este tensor es dada por:\n", - "\n", - "$$\n", - "H(P,Q) = - 1 \\log 0.7 = 0.357\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Referencias" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - }, - "toc-autonumbering": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Variables_Aleatorias-checkpoint.ipynb b/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Variables_Aleatorias-checkpoint.ipynb deleted file mode 100644 index d416355f..00000000 --- a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Prob_Variables_Aleatorias-checkpoint.ipynb +++ /dev/null @@ -1,1145 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#
Variables Aleatorias
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
Conceptos básicos
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "
\n", - "
\n", - "\n", - "Fuente: Alvaro Montenegro" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introducción" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En esta sección se introducen conceptos básicos de variables aleatorias, funciones de probabilidad y distribución acumulada." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ejemplo de los dados" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Recordemos el ejercicio de la sección anterior [Conceptos básicos](Prob_Conceptos_Basicos.ipynb). La imagen muestra dos dados de seis caras de distinto color. \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "
\n", - "
\n", - "

Dos datos de seis caras

\n", - "
\n", - "
\n", - "\n", - "Fuente: [pixabay](https://pixabay.com/es/photos/dice-spotted-dark-reflection-5976757/)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Como ya se sabe del ejercicio hay 36 posibles resultados. Es decir el espacio muestral $\\mathcal{M}$ tiene 36 elementos y $2^{36}$ eventos.\n", - "\n", - "Supongamos que $(x,y)$ es un elemento de $\\mathcal{M}$. Observe que $(x,y)$ es en realidad una pareja de números. Por ejemplo $(3,4)$. Definamos ahora la siguiente función:\n", - "\n", - "$$\n", - "f(x,y) = x+y,\n", - "$$\n", - "\n", - "es decir la función $f$ simplemente calcula la suma de los dos números. Como el espacio muestral tiene 36 elementos, entonces hay 36 posibles resultados, aunque no todos son diferentes.\n", - "\n", - "\n", - "La función $f$ se llama una **variable aleatoria**. Veamos algunos posibles valores que puede tomar la función:\n", - "\n", - "$$\n", - "\\begin{align}\n", - "f(1,1) & = 2\\\\\n", - "f(3,2) & = 5\\\\\n", - "f(4,3) & = 7\\\\\n", - "f(3,4) & = 7\\\\\n", - "f(6,5) & = 11\n", - "\\end{align}\n", - "$$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Variable aleatoria" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Dado un espacio muestral $\\mathcal{M}$, es una función que asigna a los elementos del espacio muestral un número real. \n", - "\n", - "\n", - "En el espacio muestral de los dos dados de seis lados, se pueden definir muchas variables aleatorias. Considere por ejemplo la variable aleatoria definida por:\n", - "$$g(x,y) = x\\times y$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Considere el ejemplo del espacio muestral de los dos dados de seis caras, no cargados. \n", - "\n", - "1. Construya la tabla completa de los posibles resultados de de las funcioens $f$ y $g$.\n", - "2. Proponga otra variable aleatoria definida sobre el espacio muestral $\\mathcal{M}$.\n", - "\n", - "Ayuda: Use Python. Construya primero la tabla que representa el espacio muestral, en un tensor $36\\times 2$. En otro tensor construya los respectivos valores de la función." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "f( 1.0 , 1.0 ) = 2.0\n", - "f( 1.0 , 2.0 ) = 3.0\n", - "f( 1.0 , 3.0 ) = 4.0\n", - "f( 1.0 , 4.0 ) = 5.0\n", - "f( 1.0 , 5.0 ) = 6.0\n", - "f( 1.0 , 6.0 ) = 7.0\n", - "f( 2.0 , 1.0 ) = 3.0\n", - "f( 2.0 , 2.0 ) = 4.0\n", - "f( 2.0 , 3.0 ) = 5.0\n", - "f( 2.0 , 4.0 ) = 6.0\n", - "f( 2.0 , 5.0 ) = 7.0\n", - "f( 2.0 , 6.0 ) = 8.0\n", - "f( 3.0 , 1.0 ) = 4.0\n", - "f( 3.0 , 2.0 ) = 5.0\n", - "f( 3.0 , 3.0 ) = 6.0\n", - "f( 3.0 , 4.0 ) = 7.0\n", - "f( 3.0 , 5.0 ) = 8.0\n", - "f( 3.0 , 6.0 ) = 9.0\n", - "f( 4.0 , 1.0 ) = 5.0\n", - "f( 4.0 , 2.0 ) = 6.0\n", - "f( 4.0 , 3.0 ) = 7.0\n", - "f( 4.0 , 4.0 ) = 8.0\n", - "f( 4.0 , 5.0 ) = 9.0\n", - "f( 4.0 , 6.0 ) = 10.0\n", - "f( 5.0 , 1.0 ) = 6.0\n", - "f( 5.0 , 2.0 ) = 7.0\n", - "f( 5.0 , 3.0 ) = 8.0\n", - "f( 5.0 , 4.0 ) = 9.0\n", - "f( 5.0 , 5.0 ) = 10.0\n", - "f( 5.0 , 6.0 ) = 11.0\n", - "f( 6.0 , 1.0 ) = 7.0\n", - "f( 6.0 , 2.0 ) = 8.0\n", - "f( 6.0 , 3.0 ) = 9.0\n", - "f( 6.0 , 4.0 ) = 10.0\n", - "f( 6.0 , 5.0 ) = 11.0\n", - "f( 6.0 , 6.0 ) = 12.0\n" - ] - } - ], - "source": [ - "# libreria numérica\n", - "import numpy as np\n", - "\n", - "# espacio muestral\n", - "M = np.zeros((36,2))\n", - "k = 0\n", - "for i in range(1,7):\n", - " for j in range(1,7):\n", - " M[k,] = (i,j)\n", - " k+=1\n", - "\n", - " \n", - "# calcula la variable aleatoria f: f(x,y)=x+y \n", - "f = np.zeros(36)\n", - "for k in range(36):\n", - " f[k] = M[k,0] + M[k,1]\n", - "\n", - " \n", - "# presenta los resultados\n", - "for k in range(36):\n", - " print('f(',M[k,0],',',M[k,1],') =', f[k])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Cálculo de frecuencias" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Observe que en el ejemplo anterior, la variable aleatoria toma once(11) posibles valores diferentes: \n", - "\n", - "$$f=\\{ 2,3,4,5,6,7,8,9,10,11,12\\}$$\n", - "\n", - "\n", - "Entonces tenemos lo siguiente: 36 posibles valores, pero solamente 11 diferentes. El siguiente fragmento de código muestra como obtener los posibles valores diferentes que toma la variable aleatoria $f$." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]\n" - ] - } - ], - "source": [ - "print(np.unique(f)) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Función Python para calcular una tabla de frecuencias" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La siguiente función muestra un camino de como calcular la tabla de frecuencias de un conjunto de datos, puestos en una lista de Python. No es la única forma. Investigue otras formas de hacerlo." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Función Python para contar los elementos la fecuencia\n", - "# de los elementos de una lista, usando un diccionario\n", - " \n", - "def CountFrequency(my_list): \n", - " \n", - " # Creando un diccionario vacío \n", - " freq = {} \n", - " for item in my_list: \n", - " if (item in freq): \n", - " freq[item] += 1\n", - " else: \n", - " freq[item] = 1\n", - " return freq \n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Asegúrese de entender completamente el código. Vamos a probar la función con dos ejemplos. Primero calculamos la frecuencia de los valores de la variable aleatoria $f$." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 2 : 1\n", - " 3 : 2\n", - " 4 : 3\n", - " 5 : 4\n", - " 6 : 5\n", - " 7 : 6\n", - " 8 : 5\n", - " 9 : 4\n", - " 10 : 3\n", - " 11 : 2\n", - " 12 : 1\n" - ] - } - ], - "source": [ - "frec = CountFrequency(f) \n", - "\n", - "for key, value in frec.items():\n", - " print (\"% d : % d\"%(key, value)) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Podemos manipular directamente los valores del diccionario. Por ejemplo para calcular la frecuencia de 7, que ya sabemos es 6, se escribe:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "frec[7]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En un segundo ejemplo, consideremos el conjunto $ W= \\{A,B,B,C,A,A \\}$" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "W = ['A','B','B','C','A','A']\n", - "frec = CountFrequency(W) \n", - "frec['B']" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Función de Probabilidad de una variable numérica discreta" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Ahora que hemos aprendido a calcular tablas de frecuencias de conjuntos de datos organizados en una lista, vamos a introducir el concepto clave de función de probabilidad. En esta sección consideramos variables aleatorias numéricas discretas como la función $f$ asociada al espacio muestral del lanzamiento de dos dados no cargados. En la siguiente sección consideramos variables categóricas y en otra lección consideramos variables continuas.\n", - "\n", - "\n", - "Como observamos antes, la variable aleatoria $f$ es discreta (particularmente es finita), debido a que toma únicamente 11 posibles valores numéricos. Por otro lado sabemos que el resultado del experimento de lanzar los dados puede arrojar 36 posibles resultados. La **función de probabilidad de la variable aleatoria** *f*, que notaremos $p_f$ se define como la probabilidad de obtener cada posible valor de *f*. \n", - "\n", - "\n", - "Entonces como vimos arriba tenemos que la función de probabilidad de la variable aleatoria $f$ está definida por extensión de la siguiente forma:\n", - "\n", - "$$\n", - "\\begin{align}\n", - "p_f[2] & = 1/36\\\\\n", - "p_f[3] & = 2/36\\\\\n", - "p_f[4] & = 3/36\\\\\n", - "p_f[5] & = 4/36\\\\\n", - "p_f[6] & = 5/36\\\\\n", - "p_f[7] & = 6/36\\\\\n", - "p_f[8] & = 5/36\\\\\n", - "p_f[9] & = 4/36\\\\\n", - "p_f[10] & = 3/36\\\\\n", - "p_f[11] & = 2/36\\\\\n", - "p_f[12] & = 1/36\n", - "\\end{align}\n", - "$$\n", - "\n", - "Podemos obtener una imagen de la función, utilizando un histograma. Un histograma es un gráfico de una función de probabilidad de una variable numérica. El siguiente código Python muestra como construir un histograma de la variable aleatoria *f*." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEaCAYAAAAG87ApAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfZElEQVR4nO3de5gdVZnv8e+PBuQuIAFCEkzUCEaUgOHiQRwVkBCQgB41iMBBZ2LOQwYY9YzxOujxnJNxQM84IhmEQFAEvABmJHIZFG8HJBfDJcFowIY0CUnkLjljCLzzR63Wys7uvWt1urqb7t/nefazq1atteqt3bDf1KraqxQRmJmZVbXNQAdgZmYvLU4cZmaWxYnDzMyyOHGYmVkWJw4zM8vixGFmZlmcOMzMLIsTh5mZZXHisD4haZmkt/XDfq6U9MW691OFpE5Jx9bRtvx5luu2+5y35vPJabuV++n159bfJI2QdJukJyVdPtDxDBbbDnQAVg9JncA+wAul4tdGxOo69hcRr6+j3+Gqp89zuH7Okm4BfhURn2sonwr8KzA6Ijb10PYO4GBg34j4U+auPwn8LiKOy4966PIZx9D2rojYpfSqJWkMRZL8j6rB5UrgDElqKD8DuLpF0hgLHA0EcHIv9nss8N1etBvSnDiGGUkh6TWl9c2GHNIwwscl3SvpaUnXSdqhtH2MpOslrZf0uKSvldodW6r3Okl3SHoqDa+cXHUfDfEeImmJpGclXQfs0LB9P0nfT/H8XtK5LY69U9InJS1PQw9XNBxbp6RPSLoXeE7Stq2OIzmsRX+zJD2YYl8u6dSMtk2Hc5p8zj1+Pu323+6zzamb83doaNfuM+p2I7AnRRLobrsHcBJwVYtdnAncRZF4zqoSU+p7e0lPA28A/k3SfVXbDgdOHNbM+4DJwDjgjcB/A5DUAfwQeBgYC4wCrm1sLGk74N+AW4G9gb8FrpZ0QLt9NPSzPcUXxjcpvjS+C7yntH2btJ97UizHAOdLOr7FsZ0OHA+8Gngt8JmG7acBJwK7A6pwHK36e5Dii+7lwOeBb0kamRFLS+0+n1b7r9C28n56+XdoG2NZRPx/4DsUiaDb+4DfRMQ9Lfo/E7g6vY6XtE+FmIiIjcCbgXXpbP0NVdoNGxHh1xB8AZ3AH4Gn0uvGVB7Aa0r1rgS+2NDug6X1LwFz0vKbgfXAtj3s79i0fDTwGLBNafs1wAXt9tHQ51uB1YBKZf+vO17gCOCRhjafBK5o8ZnMKK1PAR5s2P6h0nqV4+ixvyb7XwpMzYjl2DbLLT+fNvuv3Lamv8Ox7WJssu0twNPAjmn9l8Dftfi83wI8D+yV1n/Tqn6T9h8Abs39f284vDyOO7SdEhH/3ot2j5WWNwD7peUxwMPRw3hyyX7Aqoh4sVT2MMW/Rtvto7GfRyP9X1zqp9srgf0kPVUq6wB+3iK2VQ19Ne63vL3KcfTYn6QzgY9SnJ0B7ALslRFLOy0/nzb7b/fZVt4Pvfs7VIlxMxHxC0nrgamS7gYOA97dovuzKL74/5DWv53KvtIurmQixVmUNXDiGH42ADuV1vcFuiq2XQXsL2nbNsljNTBG0jalL939gd9mxroGGCVJpS+t/SmGN7rj+X1EjM/oc0xpef8Ua1n5y7HKcTTtT9IrgW9QDNvcGREvSFpKMfxVNZZ2evx8Kuy/3WdbaT9puTd/h6qfUaOrKIafDqBICmt76HtHiqGsDknd/0h5GbC7pIOj9fBWt4Mphuesga9xDD9LgQ9I6pA0GfirjLZ3U3yJzJa0s6QdJB3VpN6vgOeAv5e0nYrfHbyLJtdD2rgT2AScmy5Uvxs4vCGeZ9IF7R3TMR0k6bAWfZ4jabSkPYFPAde1qFvlOHrqb2eKJLQeQNLZwEFbEUszrT6fdvtv99lW3Q/07u9QJcZmrqK40+lvgHkt6p1CcSv6BIozh4nA6yjOgs7sqVGDg/EZR1NOHMPPeRRffk9RXJy9sWrDiHghtX0N8AjFmcr7m9TbSHHr4wnAH4CvA2dGxG9yAk39vJviwvmTaV/XN4lnIvD7tK/LKC609uTbFBe7H0qvHn/EVvE4mvYXEcuBiyi+dNdS3J3zy97G0iK+pp9Pu/23+2yr7idt783foepn1Nimk+L6ys7A/Mbtkn4k6VMUQ1JXRMQjEfFY9wv4GnC60u3WpfqN/ewL7EFxXcQaaPNhS7OhS8WPIv+6l9d9zCzxGYeZmWVx4jAzsyweqjIzsyw+4zAzsyzD4ncce+21V4wdO3agwzAze0lZvHjxHyJiRGP5sEgcY8eOZdGiRQMdhpnZS4qkprMJeKjKzMyyOHGYmVkWJw4zM8vixGFmZlmcOMzMLIsTh5mZZXHiMDOzLE4cZmaWxYnDzMyyDItfjpv1h7Gzbuq3fXXOPrHf9mXWyGccZmaWxYnDzMyyOHGYmVkWJw4zM8vixGFmZllqTRySJktaIWmlpFlNth8o6U5Jf5L08VL5AZKWll7PSDo/bbtA0qOlbVPqPAYzM9tcbbfjSuoALgaOA7qAhZLmR8TyUrUngHOBU8ptI2IFMLHUz6PADaUqX4mIC+uK3czMelbnGcfhwMqIeCgiNgLXAlPLFSJiXUQsBJ5v0c8xwIMR0fRJVGZm1r/qTByjgFWl9a5UlmsacE1D2UxJ90qaK2mPZo0kTZe0SNKi9evX92K3ZmbWTJ2JQ03KIqsDaXvgZOC7peJLgFdTDGWtAS5q1jYiLo2ISRExacSILZ61bmZmvVRn4ugCxpTWRwOrM/s4AVgSEWu7CyJibUS8EBEvAt+gGBIzM7N+UmfiWAiMlzQunTlMA+Zn9nEaDcNUkkaWVk8F7t+qKM3MLEttd1VFxCZJM4FbgA5gbkQskzQjbZ8jaV9gEbAb8GK65XZCRDwjaSeKO7I+0tD1lyRNpBj26myy3czMalTr7LgRsQBY0FA2p7T8GMUQVrO2G4BXNCk/o4/DNDOzDP7luJmZZXHiMDOzLE4cZmaWxYnDzMyyOHGYmVkWJw4zM8vixGFmZlmcOMzMLIsTh5mZZXHiMDOzLE4cZmaWxYnDzMyyOHGYmVkWJw4zM8vixGFmZlmcOMzMLIsTh5mZZXHiMDOzLE4cZmaWpdZnjkuaDPwz0AFcFhGzG7YfCFwBHAp8OiIuLG3rBJ4FXgA2RcSkVL4ncB0wFugE3hcRT9Z5HPbSNHbWTQMdQm36+9g6Z5/Yr/uzwa22Mw5JHcDFwAnABOA0SRMaqj0BnAtcSHNvj4iJ3UkjmQXcHhHjgdvTupmZ9ZM6h6oOB1ZGxEMRsRG4FpharhAR6yJiIfB8Rr9TgXlpeR5wSh/EamZmFdWZOEYBq0rrXamsqgBulbRY0vRS+T4RsQYgve/drLGk6ZIWSVq0fv36zNDNzKwndSYONSmLjPZHRcShFENd50h6a87OI+LSiJgUEZNGjBiR09TMzFqoM3F0AWNK66OB1VUbR8Tq9L4OuIFi6AtgraSRAOl9XZ9Ea2ZmldSZOBYC4yWNk7Q9MA2YX6WhpJ0l7dq9DLwTuD9tng+clZbPAn7Qp1GbmVlLtd2OGxGbJM0EbqG4HXduRCyTNCNtnyNpX2ARsBvwoqTzKe7A2gu4QVJ3jN+OiJtT17OB70j6MPAI8N66jsHMzLZU6+84ImIBsKChbE5p+TGKIaxGzwAH99Dn48AxfRimmZll8C/HzcwsixOHmZllceIwM7MsThxmZpbFicPMzLI4cZiZWRYnDjMzy+LEYWZmWZw4zMwsixOHmZllceIwM7MsThxmZpbFicPMzLI4cZiZWRYnDjMzy+LEYWZmWZw4zMwsixOHmZllceIwM7MstSYOSZMlrZC0UtKsJtsPlHSnpD9J+nipfIykn0h6QNIySeeVtl0g6VFJS9NrSp3HYGZmm9u2ro4ldQAXA8cBXcBCSfMjYnmp2hPAucApDc03AR+LiCWSdgUWS7qt1PYrEXFhXbGbmVnP6jzjOBxYGREPRcRG4FpgarlCRKyLiIXA8w3layJiSVp+FngAGFVjrGZmVlGdiWMUsKq03kUvvvwljQUOAX5VKp4p6V5JcyXtsVVRmplZljoTh5qURVYH0i7A94HzI+KZVHwJ8GpgIrAGuKiHttMlLZK0aP369Tm7NTOzFupMHF3AmNL6aGB11caStqNIGldHxPXd5RGxNiJeiIgXgW9QDIltISIujYhJETFpxIgRvToAMzPbUp2JYyEwXtI4SdsD04D5VRpKEnA58EBEfLlh28jS6qnA/X0Ur5mZVVDbXVURsUnSTOAWoAOYGxHLJM1I2+dI2hdYBOwGvCjpfGAC8EbgDOA+SUtTl5+KiAXAlyRNpBj26gQ+UtcxWN8aO+umgQ7Beqm//3ads0/s1/1ZntoSB0D6ol/QUDantPwYxRBWo1/Q/BoJEXFGX8ZoZmZ5WiYOSc/S4oJ2ROzW5xGZmdmg1jJxRMSuAJK+ADwGfJPiTOB0YNfaozMzs0Gn6sXx4yPi6xHxbEQ8ExGXAO+pMzAzMxucqiaOFySdLqlD0jaSTgdeqDMwMzMbnKomjg8A7wPWptd7U5mZmQ0zle6qiohOGuaZMjOz4alS4pC0A/Bh4PXADt3lEfGhmuIyM7NBqupQ1TeBfYHjgZ9S/Pbi2bqCMjOzwatq4nhNRHwWeC4i5gEnAm+oLywzMxusqiaO7udlPCXpIODlwNhaIjIzs0Gt6pQjl6bnXnyWYqLCXYDP1RaVmZkNWlXvqrosLf4UeFV94ZiZ2WDXbq6qj7ba3jjluZmZDX3tzji656M6ADiMvzxP413Az+oKyszMBq92kxx+HkDSrcChEfFsWr8A+G7t0ZmZ2aBT9a6q/YGNpfWN+K4qM7NhqepdVd8E7pZ0A8XzOU4FrqotKjMzG7Sq3lX1vyT9CDg6FZ0dEb+uLywzMxus2t1VtVtEPCNpT4rne3eWtu0ZEU/UG56ZmQ027c44vg2cBCxm80fIKq37Nx1mZsNMy4vjEXFSeh8XEa8qvcZFRNukIWmypBWSVkqa1WT7gZLulPQnSR+v0lbSnpJuk/S79L5H9cM1M7Ot1W6o6tBW2yNiSYu2HcDFwHFAF7BQ0vyIWF6q9gRwLnBKRttZwO0RMTsllFnAJ1rFaWZmfafdUNVFLbYF8I4W2w8HVkbEQwCSrqV4GNSfE0dErAPWSToxo+1U4G2p3jzgDpw4zMz6TbsfAL59K/oeBawqrXcBR/RB230iYk2Kb42kvZt1IGk6MB1g//33zwjbzMxaaTdU9Y6I+LGkdzfbHhHXt2rerEnFuLambVE54lLgUoBJkyZltTUzs561G6r6K+DHFHNTNQqgVeLoAsaU1kcDqyvG1artWkkj09nGSGBdxT7NzKwPtBuq+of0fnYv+l4IjJc0DngUmAZ8oA/azgfOAman9x/0IjYzM+ulSr8cl/QK4B+At1CcafwC+EJEPN5Tm4jYJGkmcAvQAcyNiGWSZqTtcyTtCywCdgNelHQ+MCH96HCLtqnr2cB3JH0YeAR4b+5Bm5lZ71Wdq+paimnU35PWTweuA45t1SgiFgALGsrmlJYfoxiGqtQ2lT8OHFMxbjMz62NVE8eeEfE/S+tflHRKDfGYmdkgV3Va9Z9ImiZpm/R6H3BTnYGZmdng1O523GcprmkI+CjwrbRpG+CPFNc9zMxsGGl3V9WurbbbS9/YWT5xtMGnP/+77JzdOHGFtVP1GgdpMsHxwA7dZRHh546bmQ0zVW/H/WvgPIo7oJYCRwJ30nquKjMzG4KqXhw/DzgMeDjNX3UIsL62qMzMbNCqmjj+IyL+A0DSyyLiN8AB9YVlZmaDVdVrHF2SdgduBG6T9CTV550yM7MhpFLiiIhT0+IFkn4CvBy4ubaozMxs0Mq5q+pQ/jJX1S8jYmNtUZmZ2aBV6RqHpM9RPG3vFcBewBWSPlNnYGZmNjhVPeM4DTikdIF8NrAE+GJdgZmZ2eBU9a6qTko//ANeBjzY59GYmdmg126uqn+huKbxJ2CZpNvS+nEUz+QwM7Nhpt1Q1aL0vhi4oVR+Ry3RmJnZoNduksN53cuStgdem1ZXRMTzdQZmZmaDU9W5qt5GcVdVJ8UU62MkneVJDs3Mhp+qd1VdBLwzIlYASHotcA3wproCMzOzwanqXVXbdScNgIj4LbBdu0aSJktaIWmlpFlNtkvSV9P2e9OPDJF0gKSlpdczks5P2y6Q9Ghp25SKx2BmZn2g6hnHYkmXA99M66dTXDDvkaQO4GKKO7C6gIWS5kfE8lK1Eyie8TEeOAK4BDgiJamJpX4eZfOL81+JiAsrxm5mZn2o6hnHDGAZcC7FFOvLU1krhwMrI+KhND3JtcDUhjpTgauicBewu6SRDXWOAR6MiIcrxmpmZjVqe8YhaRtgcUQcBHw5o+9RwKrSehfFWUW7OqOANaWyaRTXU8pmSjqT4nbhj0XEk03ing5MB9h///0zwjYzs1bannFExIvAPZJyv33VrLucOukW4JOB75a2XwK8mmIoaw3FhfstO4m4NCImRcSkESNGZIRtZmatVL3GMZLil+N3A891F0bEyS3adAFjSuuj2fIZHu3qnAAsiYi1pX3+eVnSN4AfVjwGMzPrA1UTx+d70fdCYLykcRQXt6cBH2ioM59i2OlaimGspyOiPEx1Gg3DVJJGluqcCtzfi9jMzKyX2s1VtQPFRfDXAPcBl0fEpiodR8QmSTOBW4AOYG5ELJM0I22fAywApgArgQ3A2aV970RxR9ZHGrr+kqSJFENanU22m5lZjdqdccwDngd+TjFsNIHirqpKImIBRXIol80pLQdwTg9tN1A8/6Ox/Iyq+zczs77XLnFMiIg3AKTfcdxdf0hmZjaYtbur6s8TGVYdojIzs6Gt3RnHwZKeScsCdkzrohhp2q3W6MzMbNBpN616R38FYmZmLw1VpxwxMzMDnDjMzCyTE4eZmWVx4jAzsyxOHGZmlsWJw8zMslSd5ND6ydhZNw10CGbDSn//P9c5+8R+3V8dfMZhZmZZnDjMzCyLE4eZmWVx4jAzsyxOHGZmlsWJw8zMsjhxmJlZFicOMzPLUmvikDRZ0gpJKyXNarJdkr6att8r6dDStk5J90laKmlRqXxPSbdJ+l1636POYzAzs83VljgkdQAXAycAE4DTJE1oqHYCMD69pgOXNGx/e0RMjIhJpbJZwO0RMR64Pa2bmVk/qfOM43BgZUQ8FBEbgWuBqQ11pgJXReEuYHdJI9v0OxWYl5bnAaf0YcxmZtZGnYljFLCqtN6VyqrWCeBWSYslTS/V2Sci1gCk972b7VzSdEmLJC1av379VhyGmZmV1Zk41KQsMuocFRGHUgxnnSPprTk7j4hLI2JSREwaMWJETlMzM2uhzsTRBYwprY8GVletExHd7+uAGyiGvgDWdg9npfd1fR65mZn1qM7EsRAYL2mcpO2BacD8hjrzgTPT3VVHAk9HxBpJO0vaFUDSzsA7gftLbc5Ky2cBP6jxGMzMrEFtz+OIiE2SZgK3AB3A3IhYJmlG2j4HWABMAVYCG4CzU/N9gBskdcf47Yi4OW2bDXxH0oeBR4D31nUMZma2pVof5BQRCyiSQ7lsTmk5gHOatHsIOLiHPh8HjunbSM3MrCr/ctzMzLI4cZiZWRYnDjMzy+LEYWZmWZw4zMwsixOHmZllceIwM7MsThxmZpbFicPMzLI4cZiZWRYnDjMzy+LEYWZmWZw4zMwsixOHmZllceIwM7MsThxmZpal1gc5DQVjZ9000CGY2RDS398pnbNP7PM+fcZhZmZZnDjMzCxLrYlD0mRJKyStlDSryXZJ+mrafq+kQ1P5GEk/kfSApGWSziu1uUDSo5KWpteUOo/BzMw2V9s1DkkdwMXAcUAXsFDS/IhYXqp2AjA+vY4ALknvm4CPRcQSSbsCiyXdVmr7lYi4sK7YzcysZ3WecRwOrIyIhyJiI3AtMLWhzlTgqijcBewuaWRErImIJQAR8SzwADCqxljNzKyiOhPHKGBVab2LLb/829aRNBY4BPhVqXhmGtqaK2mPPovYzMzaqjNxqElZ5NSRtAvwfeD8iHgmFV8CvBqYCKwBLmq6c2m6pEWSFq1fvz4zdDMz60mdiaMLGFNaHw2srlpH0nYUSePqiLi+u0JErI2IFyLiReAbFENiW4iISyNiUkRMGjFixFYfjJmZFepMHAuB8ZLGSdoemAbMb6gzHzgz3V11JPB0RKyRJOBy4IGI+HK5gaSRpdVTgfvrOwQzM2tU211VEbFJ0kzgFqADmBsRyyTNSNvnAAuAKcBKYANwdmp+FHAGcJ+kpansUxGxAPiSpIkUQ1qdwEfqOgYzM9tSrVOOpC/6BQ1lc0rLAZzTpN0vaH79g4g4o4/DNDOzDP7luJmZZXHiMDOzLE4cZmaWxYnDzMyyOHGYmVkWJw4zM8vixGFmZlmcOMzMLIsTh5mZZXHiMDOzLE4cZmaWxYnDzMyyOHGYmVkWJw4zM8vixGFmZlmcOMzMLIsTh5mZZXHiMDOzLE4cZmaWxYnDzMyy1Jo4JE2WtELSSkmzmmyXpK+m7fdKOrRdW0l7SrpN0u/S+x51HoOZmW2utsQhqQO4GDgBmACcJmlCQ7UTgPHpNR24pELbWcDtETEeuD2tm5lZP6nzjONwYGVEPBQRG4FrgakNdaYCV0XhLmB3SSPbtJ0KzEvL84BTajwGMzNrsG2NfY8CVpXWu4AjKtQZ1abtPhGxBiAi1kjau9nOJU2nOIsB+KOkFb05CGAv4A+9bPtS5WMeHnzMw4D+cauO+ZXNCutMHGpSFhXrVGnbUkRcClya06YZSYsiYtLW9vNS4mMeHnzMw0Mdx1znUFUXMKa0PhpYXbFOq7Zr03AW6X1dH8ZsZmZt1Jk4FgLjJY2TtD0wDZjfUGc+cGa6u+pI4Ok0DNWq7XzgrLR8FvCDGo/BzMwa1DZUFRGbJM0EbgE6gLkRsUzSjLR9DrAAmAKsBDYAZ7dqm7qeDXxH0oeBR4D31nUMyVYPd70E+ZiHBx/z8NDnx6yIrEsHZmY2zPmX42ZmlsWJw8zMsjhx9EDSGEk/kfSApGWSzhvomPqDpA5Jv5b0w4GOpT9I2l3S9yT9Jv2t3zzQMdVN0t+l/6bvl3SNpB0GOqa+JmmupHWS7i+VDenpino45n9K/23fK+kGSbv3xb6cOHq2CfhYRLwOOBI4p8mUKUPRecADAx1EP/pn4OaIOBA4mCF+7JJGAecCkyLiIIqbT6YNbFS1uBKY3FA21KcrupItj/k24KCIeCPwW+CTfbEjJ44eRMSaiFiSlp+l+EIZNbBR1UvSaOBE4LKBjqU/SNoNeCtwOUBEbIyIpwY0qP6xLbCjpG2Bndjy91UveRHxM+CJhuIhPV1Rs2OOiFsjYlNavYviN3FbzYmjAkljgUOAXw1wKHX7v8DfAy8OcBz95VXAeuCKNDx3maSdBzqoOkXEo8CFFLeyr6H47dStAxtVv9lsuiKg6XRFQ9iHgB/1RUdOHG1I2gX4PnB+RDwz0PHURdJJwLqIWDzQsfSjbYFDgUsi4hDgOYbe8MVm0rj+VGAcsB+ws6QPDmxUVjdJn6YYfr+6L/pz4mhB0nYUSePqiLh+oOOp2VHAyZI6KWYjfoekbw1sSLXrAroiovtM8nsUiWQoOxb4fUSsj4jngeuB/zLAMfWXYTldkaSzgJOA06OPfrjnxNEDSaIY+34gIr480PHULSI+GRGjI2IsxcXSH0fEkP6XaEQ8BqySdEAqOgZYPoAh9YdHgCMl7ZT+Gz+GIX5DQMmwm65I0mTgE8DJEbGhr/p14ujZUcAZFP/yXppeUwY6KOtzfwtcLeleYCLwvwc2nHqls6vvAUuA+yi+A4bcNBySrgHuBA6Q1JWmKJoNHCfpd8BxaX3I6OGYvwbsCtyWvsPm9Mm+POWImZnl8BmHmZllceIwM7MsThxmZpbFicPMzLI4cZiZWRYnDjMzy+LEYWZmWZw4bFiTdIek4xvKzpf09RZt/lh/ZD3u+wJJH9/KPi6StFzSv/RVXDa8bDvQAZgNsGsopli5pVQ2DfgffdF5mtZDETEoZhyW9CrgqIgYDs+WsZr4jMOGu+8BJ0l6Gfx5Cv39gF9IulHS4vS0vOnNGkv6aHqS3v2Szu/uIz1N8OsUU3uMkfRBSXenaR/+VVJHqruzpJsk3ZP6eH+TfXxa0gpJ/w4cUCpv2mdP0pxcPwVemaaRH9JTyFt9nDhsWIuIx4G7+cuT06YB16VZRD8UEW8CJgHnSnpFua2kNwFnA0dQPCXybyQdkjYfAFyVpmvfCXg/xb/0JwIvAKenepOB1RFxcHoi381N9jGN4nkw7wYOS+Wva9FnT8e6guIBRp+NiEMi4rlKH5JZAycOs78MV5Her0nL50q6h+LJaWOA8Q3t3gLcEBHPRcQfKaYoPzptezgi7krLxwBvAhZKWprWX5W23QccK+kfJR0dEU837OPotI8N6Xkw8yv02cobgHsq1DPrka9xmMGNwJclHQrsGBFLJL2N4tkVb46IDZLuAHZoaKcWfZb/NS9gXkRs8bzniPhtOquYAvwfSbdGxBcaqzXpv8c+23g9sCyzjdlmfMZhw146W7gDmMtfzjZeDjyZksaBFENRjX4GnJKebbEzcCrw8yb1bgf+q6S9ASTtKemVaXk/YENEfIvika6ND5L6GXCqpB0l7Qq8q12fPUntn+/L5zLY8OQzDrPCNRRDTd1DVjcDM9JzOlZQDFdtJp2ZXElxjQTgsoj4dbrAXq63XNJngFslbQM8D5wDPEwxdPRPkl5M5f+9yT6uA5am+j+v0GdPDgLub/9RmLXm53GYmVkWD1WZmVkWJw4zM8vixGFmZlmcOMzMLIsTh5mZZXHiMDOzLE4cZmaW5T8BuwvysfIr4JsAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "plt.hist(f, bins=11,density=True)\n", - "plt.title('Funcion de probabilidad de la V.A. $f$')\n", - "plt.xlabel('Valores de $f$')\n", - "plt.ylabel('Probabilidad')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Cálculo de algunas probabilidades" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Dado que la variable aleatoria $f$ es numérica, podemos calcular la probabilidad de diferentes eventos del espacio muestral, basados en el valor de $f$. Veamos algunos ejemplos.\n", - "\n", - "$$\n", - "\\begin{align}\n", - "\\text{Prob}[f \\text{ es par }] &= 18/36\\\\\n", - "\\text{Prob}[f\\le 6] &= 15/36\\\\\n", - "\\text{Prob}[f> 10] &= 3/36\\\\\n", - "\\text{Prob}[f \\text{ es par }|f<5] &= 4/6\n", - "\\end{align}\n", - "$$\n", - "\n", - "Por favor verifique estos resultados." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Interpretación de la función de probabilidad" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Supongamos que el experimento de lanzar se repite muchas veces. Digamos 100 veces. Como la probabilidad de obtener digamos $f=7$ es $6/36$, entonces lo que se espera que ocurra es que en los 100 lanzamientos se obtenga un valor cercano a:\n", - "\n", - "$$\n", - "\\text{Número de veces que se espera que ocurra }\\{f=7\\} = \\tfrac{6}{36}\\times 100 \\approx 17.\n", - "$$\n", - "\n", - "Por supuesto, no necesariamente el resultado será 17. Pero si un número cercano. Por ejemplo no esperamos que no ocurra ninguna vez o que ocurra todas las veces el resultado $\\{f=7\\}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ejemplos de variables numéricas discretas" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Variable de Bernoulli (Distribución de Bernoulli)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Una variable aleatoria $f$ es Bernoulli, si solamente toma dos posibles valores, los cuales por convención son $\\{0,1\\}$. Es común llamar al resultado *1* como *éxito* y a *0* como *fallo*. Observe que en este caso se tiene que la función de probabilidad es dada por:\n", - "\n", - "$$\n", - "\\begin{align}\n", - "p_f[1] &= \\pi\\\\\n", - "p_f[0] &= 1-\\pi,\n", - "\\end{align}\n", - "$$\n", - "\n", - "en donde $\\pi = \\text{Prob}[f=1]$. En este caso, se puede escribir la función en una forma más compacta como:\n", - "\n", - "$$\n", - "p_f[x] = \\pi^{x}(1-\\pi)^{1-x}, \\quad x=0,1.\n", - "$$\n", - "\n", - "Asegúrese de entender la fórmula anterior.\n", - "\n", - "Un ejemplo es el siguiente. En el experimento del lanzamiento dados no cargados, definimos la variable aleatoria $g$ como sigue:\n", - "\n", - "$$\n", - "g = \\begin{cases} &1, \\text{ si la suma de los dos dados es par} \\\\\n", - "&0, \\text{ si la suma de los dos dados es impar}\n", - "\\end{cases}\n", - "$$\n", - "\n", - "Verifique que en este caso $\\pi =18/36=1/2$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Variable Binomial (Distribución Binomial)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Consideremos la variable aleatoria $g$ definida arriba. Pero ahora vamos a considerar que hacemos el experimento digamos $N=3$ veces y contamos el número de veces en que $g=1$. Por otro lado vamos a suponer que que hay un sesgo en el experimento (una especie de dados cargados y se verifica que $\\text{Prob}[g=1] = 0.6$. Por lo tanto se tiene que $\\text{Prob}[g=0] = 0.4$.\n", - "\n", - "\n", - "Entonces obtenemos una variable aleatoria que llamaremos $q$ y diremos que $q$ es una variable Binomial. La función de probabilidad de la variable aleatoria $q$ es dada por extensión como sigue. La variable $q$ toma 4 posibles valores, $q = \\{0,1,2,3\\}$\n", - "\n", - "Veamos como calcular las probabilidades de los valores de $q$. La siguiente tabla muestra como calcular tales probabilidades.\n", - "\n", - "|Valor |Experimentos| probabilidad cada experimento| probabilidad para este valor de f| total|\n", - "|---|---|---| ---|---|\n", - "|0| 000| $0.4\\times 0.4 \\times 0.4$|0.064|0.064|\n", - "|1| 100| $0.6\\times 0.4 \\times 0.4$|0.096||\n", - "|1| 010| $0.4 \\times 0.6\\times 0.4$|0.096||\n", - "|1| 001| $0.4 \\times 0.4\\times 0.6$|0.096|0.288|\n", - "|2| 110| $0.6\\times 0.6 \\times 0.4$|0.144||\n", - "|2| 011| $0.4 \\times 0.6\\times 0.6$|0.144||\n", - "|2| 101| $0.6 \\times 0.4 \\times 0.6$|0.144|0.432|\n", - "|3| 111| $0.6 \\times 0.6\\times 0.6$|0.216|0.216 |\n", - "\n", - "\n", - "Entonces se tienen que:\n", - "\n", - "$$\n", - "\\begin{align}\n", - "p_q[0] & = 0.064 \\\\\n", - "p_q[1] & = 0.288\\\\\n", - "p_q[2] & = 0.432\\\\\n", - "p_q[3] & = 0.216 \n", - "\\end{align}\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Verifique los cálculos de la tabla anterior y asegúrese de entender completamente." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "El siguiente código muestra como calcular la función de probabilidad de la variable Binomial $q$ y como obtener un gráfico de la función." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "p_q= [0.064 0.288 0.432 0.216]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEYCAYAAABRB/GsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfhklEQVR4nO3dfdwWZZ338c9XQDEFn8BKQKEijXxARVdvrcwyH7ZSy/WJzax8ebtl6u7dbrZ3taZt6e7mqy018y7TzMLSMjJadVN0NVNAEQXFSCEupcDSBA0R+N1/HMelw8n5dME158nlfN+v1/liHo455jdzDfObOWbO41REYGZm1bVZtwMwM7PuciIwM6s4JwIzs4pzIjAzqzgnAjOzinMiMDOrOCcCM7OKcyIwM6s4J4J+JGmupEM6sJ6rJH2x7PW0Q9JCSe8uY9ni/iyWbbWfN2b/9GXZ2rL9+fdvtO39qV68kkZKmi1p7/5eX2EdkrRI0hvLWkd/rFfSYkkT8/CXJZ1TZnx9Jek+SW/tj7pe1Ykg/wf6i6QVhc9OZa0vIt4aEdPLqr9qGu3PTXU/txNXuyf1Tmxj7TokDQGuBv4uIh7Y0HolbScpCv/n/izpekmvyeuNiNglIn670RvRB31Zr6TtgNcBj0gaCZwCfLMw/3uSlkh6TtJjkk5rJwZJ20v6iaTnc1I6uUX5EyU9ksv/VtLbCrP/Azi/nfW28qpOBNn7ImLrwuepbgc0UEga3O0Yqqab+zwiXoqIoyLino2saiLwx97/c8BuwEHAhzY2xg7aA3gsIl4ETgWmRcRfCvO/DIyNiOHA+4EvStq3jXovBVYBrwUmA99odFUv6TDgIuAjwDDg7cDjhSJTgXdKen1fNqyeKiSC9eSrlTcVxmtv8RdK+pSkOflq5jpJQwvzx0j6saRlkv4o6ZLCcu8ulHuLpOmSns234e9vdx018e4t6X5JyyVdBwytmb+TpBtyPE9IOqvJti+U9BlJ8yQ9I+k7Ndu2UNKnJc0Bnpc0uNl2ZPs1qe/cfCWzPJc5tg/L1r16rrOfG+6fVutvtW/7UlbrNl99WtKTuex8Se+SdA2wM/AzpSvlf2qyz2u3vdl+ang8NzpW68Tb9G/cl+OVlAjm9o5ExBJgMTAk13WapBsLdZ8h6eeSLpX0tKSnlE6Cvc05n1a6en5W0g8lbVNY9jRJN0v6Rt43j0maIOlsSb/L9X2gwXp3lDRV0h+Urux/Jml4nr0n8FAePhK4o7iBETE3JwmAyJ+mTU6StgI+CHwuIlZExF2kk3mjBPkF4PyI+HVErI2IJyPiyUIMK4FZwHuarbcdlUwEbToeOAIYRzooTgWQNAi4CVgEjAVGAVNqF1a6zf4ZcAuwI/BJ4FpJu7ZaR009mwM3AtcA2wM/Ih1MvfM3y+t5MMfyLuAcSYc32bbJwOGkA/fNwGdr5p8E/DWwLaA2tqNZfb8F3gZsQzqwv6d1r2BaxdJUq/3TbP1tLNuX9RTL7gqcCewXEcPy9i2MiA8Bv+OVu9R/Kyz28j6PiNV1qu3zfurnYxXaOF6zvcmJICe1E4AxwA/z/D1JxyuF8QNJJ8UdSU0wn87zLiCdiA8gNdVsAXy+ZtlJwPXACNLJ+xd53hvz8p8tlC2udzjwdVJyHpuX/9+FsnPy8B7A/NqNlHSZpBeAR4ElwLQG+6PXm4E1EfFYYdqDwHp3BPlvNwkYKWmBpB5Jl0jasqboI8BeLdbbUhUSwY35SuLZ4tVAG74WEU9FxJ9I/0km5un7AzsB/xgRz0fEypzZax0AbA1cGBGrIuI20n/Kk9pYR209Q4Cv5lv364EZhfn7ASMj4vy8nseB/wec2GTbLomIxXm9/1oTU29ci/OtcDvb0bC+iPhR3sa1EXEd8BvSPmw3llaa7p8W62+1b9teT401pBPWBElDImJhG+3SxX1ez4bsp/48VntjbHW8kqefKulZ4AXS8Tg5Ipbm+XuxfiK4MCJujoi1wDwASa8lJaWTI2JJvgK+nnSCpFDXlyPilxGxJi/7UET8Z0S8BDwMDC6UfXm9EbEgIm6NiBfzNt0KbJdn78EriWBbYHntRkbEx0lNNm8Dfgy8WFumxtbAn2um/TnXUeu1pOPtuFz/RFKCrb0AWJ7j2yhVSATHRMS2+XNMH5b7fWH4BdIfEdKVzaIGV21FOwGL84HdaxHpqqzVOmrreTLW7S98UWF4F2CnQrJ7Fvhn0oHUyOKaumofoBfnt7MdDeuTdIrSWyi9se1OuvJqN5ZWmu6fFutvtW/bXk9RRCwAzgHOA5ZKmqLWLyks7sP8dvdTfx6r0MbxKmkL4C3A2yNiW2BL4ELSQ+hetVfme5ASS6/dSSf0t5FO6sXneiNIV9/Fum4qjE+oM/5ovfVK+htJd0tamo+Nc4HHJCnH0Ns09Az1T9ZExJqcXEcDf1evTMEK0l1I0XDqJBmg94Lg6zkJPg1cDBxVU24Y8GyL9bZUhURQzwvAawrjr+vDsouBndX6od5TwJjcdNNrZ+DJBuUbWQKMygdnsZ5iPE8Ukt22ETEsImoPmKIxNXXVPkAvnuza2Y669UnahXQ1eCawQz4xPExqbmo3llYa7p821t9q37a1nnoi4vsRcTApUQfpoR+su2/XWaRRXVmz/dToeO70sQrpBLqWfDWdr9LvAF4raUj+mwwmP/SUNC6PF5te9gZmAyNZ/wr6aOCuvOwuwOZAsallYl62157A7DrrPZT0NzmHlAhHAEvzsuOAtRHRm+jnkJp1mhlMi2cEOc7BksYXpu1F4XlKr4h4Buih9XHxFtZNqhukqolgNnCypEGSjgDe0Ydl7yOdFC6UtJWkoZIOqlPuXuB54J/yf4BDgPdRp422hXuA1cBZub31A6zbtHIf8Fx+oLZl3qbdJe3XpM5PSBotaXvS3cN1Tcq2sx2N6tuKdCAvA5D0EdKJYkNjqafZ/mm1/lb7tt31rEPSrpIOzVfHK0lXd2vy7D8Ab+jjNkLz/TSb+sdzp49VSCfxhyJiFUB+HvN/gam5qWYvYE7hzmrPXH5tTR0PkpreDpT0RklbSzqfdKd7ZS63V3HZ/KB3F15p0ukt82Cd9e5FSpSPkpqDriQ9n5jHug+KIbX9v3yOyA+ZT8wxDcrP404CbiuUuUrSVcUdExHPk5qQzs9/j4NIie2aBvvyO8An8/q2IyWtl+928vG1L6lJa6NUNRGcTTrQnyU9hLux3QXzFc77gDeRHvz1ACfUKbeK9FrZkcDTwGXAKRHxaG3ZFutbBXyA9GDumbyuH9eJZyLwRF7Xt0gPRxv5PunB4OP50/ALVG1uR936ImIe8BXSSfQPpCaAuzc0libx1d0/rdbfat+2u546tiA1hzxNak7ZkXTyhvTa4WdzU9Wn+rCpzfZT3eO508dqNhGYqPz9AdL+nkt6BRLyCblQfk8KV/CSdiDd0TwcETNJz0PuyrG/BTg0Il4o1DW7pq4FvfPzHc7uuUzteq8ltcH/nnRy/Q0wL++LPWrKfhc4qvCgNkjNQD2kY+E/gHMi4qeFZcaw/rEO8HFSc9lS4Aek72z0Plj/haR/LpS9gJQMHyM9FH4g749e7wemRz+8Eq/wT1VWiqSFwGkR8d/djsVsoJD0JWBpRHy1jbKbk+5C9sx3QWXFdC/wsYh4eKPrciKoFicCM6tV1aYhMzPLfEdgZlZxviMwM6u4Adep2IgRI2Ls2LHdDsPMbECZNWvW0xExst68AZcIxo4dy8yZM7sdhpnZgCKp0bfm3TRkZlZ1TgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnED7pvFZpuysWNWsqhnaLfDGDB2Gb2ShYu9v7rNicCsHy3qGUpcq9YFDQBNdu/HmwI3DZmZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFlZoIJB0hab6kBZLObVJuP0lrJB1XZjxmZra+0hKBpEHApcCRwATgJEkTGpS7CLi5rFjMzKyxMu8I9gcWRMTjEbEKmAIcXafcJ4EbgKUlxmJmZg2UmQhGAYsL4z152sskjQKOBS5vVpGk0yXNlDRz2bJl/R6omVmVlZkI6vXFW9vn7FeBT0fEmmYVRcQVETEpIiaNHDmyv+IzMzPK/T2CHmBMYXw08FRNmUnAFEkAI4CjJK2OiBtLjMvMzArKTAQzgPGSxgFPAicCJxcLRMS43mFJVwE3OQmYmXVWaYkgIlZLOpP0NtAg4MqImCvpjDy/6XMBMzPrjFJ/qjIipgHTaqbVTQARcWqZsZiZWX3+ZrGZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxZWaCCQdIWm+pAWSzq0z/2hJcyTNljRT0sFlxmNmZusbXFbFkgYBlwKHAT3ADElTI2JeodgvgakREZL2BH4I7FZWTGZmtr4y7wj2BxZExOMRsQqYAhxdLBARKyIi8uhWQGBmZh1VZiIYBSwujPfkaeuQdKykR4GfAx+tV5Gk03PT0cxly5aVEqyZWVWVmQhUZ9p6V/wR8ZOI2A04BrigXkURcUVETIqISSNHjuzfKM3MKq7MRNADjCmMjwaealQ4Iu4E3ihpRIkxmZlZjTITwQxgvKRxkjYHTgSmFgtIepMk5eF9gM2BP5YYk5mZ1SjtraGIWC3pTOBmYBBwZUTMlXRGnn858EHgFEkvAX8BTig8PDYzsw4oLREARMQ0YFrNtMsLwxcBF5UZg5mZNVdqIrCBb+yYlSzqGdrtMMysRE4E1tSinqHEtfVeALN6NNktmzbwNE0EkpbT5EteETG83yMyM7OOapoIImIYgKTzgd8D15C+HzAZGFZ6dGZmVrp2Xx89PCIui4jlEfFcRHyD9MaPmZkNcO0mgjWSJksaJGkzSZOBNWUGZmZmndFuIjgZOB74Q/78TZ5mZmYDXFtvDUXEQmp6DjUzs1eHthKBpKHAx4C3Ai+/VB4RdXsLNTOzgaPdpqFrgNcBhwN3kDqQW15WUGZm1jntJoI3RcTngOcj4mrgr4E9ygvLzMw6pd1E8FL+91lJuwPbAGNLicjMzDqq3S4mrpC0HfA5UlfSWwOfLy0qMzPrmHbfGvpWHrwDeEN54ZiZWae16mvoH5rNj4iL+zccMzPrtFZ3BL39Ce0K7McrvzD2PuDOsoIyM7POadXp3BcAJN0C7BMRy/P4ecCPSo/OzMxK1+5bQzsDqwrjq/BbQ2ZmrwrtvjV0DXCfpJ+Qfp/gWOC7pUVlZmYd0+5bQ/8q6RfA2/Kkj0TEA+WFZWZmndLqraHhEfGcpO2BhfnTO2/7iPhTueGZmVnZWt0RfB94LzCLdX+yUnnc3ykwMxvgWr019N7877jOhGNmZp3Wqmlon2bzI+L+/g3HzMw6rVXT0FeazAvg0H6MxczMuqBV09A7OxWImZl1R6umoUMj4jZJH6g3PyJ+XE5YZmbWKa2aht4B3EbqW6hWAE4EZmYDXKumoX/J/36kM+GYmVmntdXXkKQdJH1N0v2SZkn6T0k7lB2cmZmVr91O56YAy4APAsfl4evKCsrMzDqn3U7nto+ICwrjX5R0TAnxmJlZh7V7R3C7pBMlbZY/xwM/LzMwMzPrjFavjy4nvR0k4B+A7+VZmwErgH8pNTozMytdq7eGhjWbb2a2MbYYshJpaLfDGDB2Gb2ShYv7f3+1+4wASdsB44GXo4gI/26xmW2wF18aSlyrbocxYGhytC60AdpKBJJOA84GRgOzgQOAe3BfQ2ZmA167D4vPBvYDFuX+h/YmvUJqZmYDXLuJYGVErASQtEVEPArsWl5YZmbWKe0mgh5J2wI3ArdK+inwVKuFJB0hab6kBZLOrTN/sqQ5+fMrSXv1JXgzM9t47f54/bF58DxJtwPbAP/VbBlJg4BLgcOAHmCGpKkRMa9Q7AngHRHxjKQjgSuAv+rjNpiZ2Uboy1tD+wAHk75XcHdErGqxyP7Agoh4PC8/BTgaeDkRRMSvCuV/TXoYbWZmHdRup3OfB64GdgBGAN+R9NkWi40CFhfGe/K0Rj4G/KLB+k+XNFPSzGXL/IzazKw/tXtHcBKwd+GB8YXA/cAXmyxT7+Xgui/BSnonKREcXG9+RFxBajZi0qRJ5bxIa2ZWUe0+LF5I4YtkwBbAb1ss0wOMKYyPps4DZkl7At8Cjo6IP7YZj5mZ9ZNWfQ19nXQV/yIwV9Ktefww4K4Wdc8AxksaBzwJnAicXFP/zqRfOftQRDy2QVtgZmYbpVXT0Mz87yzgJ4Xp01tVHBGrJZ0J3AwMAq6MiLmSzsjzLwc+T3rucJkkgNURMalPW2BmZhulVadzV/cOS9oceHMenR8RL7WqPCKmAdNqpl1eGD4NOK0vAZuZWf9qt6+hQ0hvDS0kPQQeI+nD7nTOzGzga/etoa8A74mI+QCS3gz8ANi3rMDMzKwz2n1raEhvEgDID3aHlBOSmZl1Urt3BLMkfRu4Jo9PJj1ANjOzAa7dRHAG8AngLNIzgjuBy8oKyszMOqdlIpC0GTArInYHLi4/JDMz66SWzwgiYi3wYP7yl5mZvcq02zT0etI3i+8Dnu+dGBHvLyUqMzPrmHYTwRdKjcLMzLqmVV9DQ0kPit8EPAR8OyJWdyIwMzPrjFbPCK4GJpGSwJGkL5aZmdmrSKumoQkRsQdA/h7BfeWHZGZmndTqjuDljuXcJGRm9urU6o5gL0nP5WEBW+ZxARERw0uNzszMSteqG+pBnQrEzMy6o91O58zM7FXKicDMrOKcCMzMKs6JwMys4pwIzMwqzonAzKzinAjMzCrOicDMrOKcCMzMKs6JwMys4pwIzMwqzonAzKzinAjMzCrOicDMrOKcCMzMKs6JwMys4pwIzMwqzonAzKzinAjMzCrOicDMrOKcCMzMKs6JwMys4pwIzMwqzonAzKziSk0Eko6QNF/SAknn1pm/m6R7JL0o6VNlxmJmZvUNLqtiSYOAS4HDgB5ghqSpETGvUOxPwFnAMWXFYWZmzZV5R7A/sCAiHo+IVcAU4OhigYhYGhEzgJdKjMPMzJooMxGMAhYXxnvytD6TdLqkmZJmLlu2rF+CMzOzpMxEoDrTYkMqiogrImJSREwaOXLkRoZlZmZFZSaCHmBMYXw08FSJ6zMzsw1QZiKYAYyXNE7S5sCJwNQS12dmZhugtLeGImK1pDOBm4FBwJURMVfSGXn+5ZJeB8wEhgNrJZ0DTIiI58qKy8zM1lVaIgCIiGnAtJpplxeGf09qMjIzsy7xN4vNzCrOicDMrOKcCMzMKs6JwMys4pwIzMwqzonAzKzinAjMzCrOicDMrOKcCMzMKs6JwMys4pwIzMwqrtS+hjY1Y8esZFHP0G6HYWa2SalUIljUM5S4tt7v5VgjmrxBvyVkZgOIm4bMzCrOicDMrOKcCMzMKs6JwMys4pwIzMwqzonAzKzinAjMzCrOicDMrOKcCMzMKs6JwMys4pwIzMwqzonAzKzinAjMzCrOicDMrOKcCMzMKs6JwMys4pwIzMwqzonAzKzinAjMzCrOicDMrOKcCMzMKs6JwMys4pwIzMwqzonAzKzinAjMzCrOicDMrOJKTQSSjpA0X9ICSefWmS9JX8vz50jap8x4zMxsfaUlAkmDgEuBI4EJwEmSJtQUOxIYnz+nA98oKx4zM6uvzDuC/YEFEfF4RKwCpgBH15Q5GvhuJL8GtpX0+hJjMjOzGoNLrHsUsLgw3gP8VRtlRgFLioUknU66YwBYIWn+hgalyRu6ZKlGAE93O4j65H3WJ95ffeP91TdC2uCFd2k0o8xEUC/c2IAyRMQVwBX9EdSmSNLMiJjU7TgGEu+zvvH+6puq7a8ym4Z6gDGF8dHAUxtQxszMSlRmIpgBjJc0TtLmwInA1JoyU4FT8ttDBwB/jogltRWZmVl5SmsaiojVks4EbgYGAVdGxFxJZ+T5lwPTgKOABcALwEfKimcT96pt9iqR91nfeH/1TaX2lyLWa5I3M7MK8TeLzcwqzonAzKzinAi6rFU3HPYKSVdKWirp4W7HMhBIGiPpdkmPSJor6exux7QpkzRU0n2SHsz76wvdjqlT/Iygi3I3HI8Bh5FepZ0BnBQR87oa2CZK0tuBFaRvo+/e7Xg2dflb+q+PiPslDQNmAcf4+KpPkoCtImKFpCHAXcDZudeDVzXfEXRXO91wWBYRdwJ/6nYcA0VELImI+/PwcuAR0jf3rY7c1c2KPDokfypxpexE0F2Nutgw61eSxgJ7A/d2OZRNmqRBkmYDS4FbI6IS+8uJoLva6mLDbGNI2hq4ATgnIp7rdjybsohYExETSb0c7C+pEk2QTgTd5S42rFS5rfsG4NqI+HG34xkoIuJZYDpwRHcj6Qwngu5qpxsOsw2SH35+G3gkIi7udjybOkkjJW2bh7cE3g082tWgOsSJoIsiYjXQ2w3HI8API2Jud6PadEn6AXAPsKukHkkf63ZMm7iDgA8Bh0qanT9HdTuoTdjrgdslzSFdpN0aETd1OaaO8OujZmYV5zsCM7OKcyIwM6s4JwIzs4pzIjAzqzgnAjOzinMiqCBJ0yUdXjPtHEmXtVimKz/mLWlF61Jt1XOIpLZfB5Q0ttM9nUqa1vsue5MydfeHpKskHdcPMZwq6ZINXHbihryiKmmSpK9tyDpt4zkRVNMPSF9eKzoxT+8XuWdVa1P+3e7NIuKo/K3WgWoi6edn2yZpcETMjIizygnJWnEiqKbrgfdK2gJe7pBsJ+AuSd+QNLNZf+ySTpL0kKSHJV1UmL5C0vmS7gUOlPS3uX/32ZK+mTv0GpSvXB/Odfx9nfrHSbpH0gxJF9TM+8c8fU47/cXn33t4VNJdwAcK07fKv28wQ9IDkpr2+prvDv5H0v3587/qlLlI0scL4+dJ+j+Stpb0y7zcQ73rynU+ku/E7gfGSFooaUSef6OkWflvcXrNur6S6/ulpJF1YtlX0h15+Ztzl9S1Zd4n6d68/f8t6bV1yoyUdEPeTzMkHZSn7y/pV3nZX0naVenb8ecDJ+S/+QmSts/bMUfSryXtWdg3V0i6Bfhu8W6tXt3N/jbWDyLCnwp+gJ8DR+fhc4F/z8Pb538Hkfpa2TOPTwcmkRLG74CRwGDgNlIf95A6zDs+D78F+BkwJI9fBpwC7Ev6xmZvHNvWiW0qcEoe/gSwIg+/h/Sj4iJdxNwEvL3JNg4l9e46Pi/zQ+CmPO9LwN/2xkD6XYitapYfCzych18DDM3D44GZdda3N3BHYXwesHPeT8PztBHAghzPWGAtcEBhmYXAiJq/xZbAw8AOhf08OQ9/HrgkD18FHEfqPvlXwMg8/QTgyjrxbscrXyo9DfhKHj61UOf3gYPz8M6k7ioAhgOD8/C7gRtql83jXwf+JQ8fCszOw+eRfh9hyzx+SOFvU7duf8r7DMaqqrd56Kf534/m6cfnq8/BpK/cTwDmFJbbD5geEcsAJF0LvB24EVhD6uAM4F2kk/4MSZBOZktJyeENkr5OSka31IntIOCDefgaoPeu4z3580Ae35p0Ur6zwTbuBjwREb/JsX4P6L2yfg/wfkmfyuNDySe6BnUNAS6RNDFv55trC0TEA5J2lLQTKVE+ExG/U+r47UtKP6yzltTVeO/V96Jo/MMnZ0k6Ng+Pydv6x1zHdXn694DazuR2BXYHbs37fhCwpE79o4Hr8t3C5sATdcq8G5iQ6wEYrvQjN9sAV0saT0pMQxpsw8Hkv2VE3CZpB0nb5HlTI+IvdZZpt27rJ04E1XUjcLGkfUhXZfdLGgd8CtgvIp6RdBXpBFlUr+vsXisjYk2h3NUR8ZnaQpL2Ag4nXe0fzytJqKhe3ycCvhwR32wSQzv19Nb1wYiY32Y9fw/8AdiLdDeyskG560lX5a8j/dAQwGRSYtg3Il6StJBX9uvzdYOTDiGdhA+MiBckTWf9v0Wv2m0UMDciDmy6Relq/eKImJrXd16dMpvlGNY5YedEfntEHKvUtDi9wTqadbVed9uBC9qs2/qJnxFUVKRfYpoOXMkrD4mHk/5z/jm3Fx9ZZ9F7gXdIGqH0QPgk4I465X4JHCdpR4DcVrxLbv/eLCJuAD4H7FNn2bt55WH25ML0m4GPKvWvj6RRvfU38CgwTtIb8/hJNXV9UvlSV9LeTeqBdJW6JCLWkjpya/QwfEqO/ThSUuhddmlOAu8Edmmxrt5lnslJYDfggMK8zXL9ACeTflKxaD4wUtKBkLqilvTWBut4Mg9/uEEct5A6RiTXNbHOsqcWyi8HhhXG7yT/DXOyeTpa/yZCo7qtJE4E1fYD0hXuFICIeJDU7DKXlCDurl0gIpYAnwFuBx4E7o+In9YpNw/4LHCLUm+Ot5KamkYB05V+BeqqXFets4FPSJpBOin01nkLqc36HkkPkU60w+os31t+Jakp6OdKD4sXFWZfQGpymKP0iugFdaoougz4sKRfk5qF6l7NRuo9dhjwZN5XANcCkyTNJJ0U2+na+L+AwXnfXQAUm4+eB94qaRap3f38mhhWkRLFRZIeBGYD6z3cJt0B/EjS/wBPN4jjrBz7HEnzgDPy9H8DvizpbtZNireTmpJmSzohr2NS3o4LaZxwihrVbSVx76NmZhXnOwIzs4pzIjAzqzgnAjOzinMiMDOrOCcCM7OKcyIwM6s4JwIzs4r7/9j/jXpfejCDAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "from scipy.stats import binom\n", - "import matplotlib.pyplot as plt\n", - "\n", - "N, p = 3, 0.6\n", - "p_q = np.zeros(4)\n", - "\n", - "for k in range(4):\n", - " p_q[k] = binom.pmf(k,N,p)\n", - "\n", - "print('p_q=',p_q)\n", - "label = ['0','1','2','3']\n", - "plt.bar(label, p_q, color = 'orange', edgecolor='blue',width=1)\n", - "plt.title('Funcion de probabilidad distribución $Binomial(3,0.6)$')\n", - "plt.xlabel('Valores de de la variable aleatoria')\n", - "plt.ylabel('Probabilidad')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note que la función de probabilidad de Bernoulli es un caso especial de la Binomial con $N=1$.\n", - "\n", - "Existe una formula general para la función de probabilidad de una variable Binomial. Si se supone que se hacen $N$ experimentos de Bernoulli realizados de manera independientes con la misma probabilidad de éxito (obtener 1), y se anota el número de unos (*éxitos*) obtenidos, entonces la probabilidad de obtener $k$ exitos es dada por:\n", - "\n", - "$$\n", - "p_{bin}[k] = \\binom{N}{k}\\pi^k(1-\\pi)^{N-k},\n", - "$$\n", - "\n", - "en donde $\\binom{N}{k}$ es el símbolo combinatorio y $\\pi$ es la probabilidad de éxito de cada experimento de Bernoulli.\n", - "\n", - "**Nota.**\n", - "\n", - "Recuerde que el combinatorio $\\binom{N}{k}$ es el número de grupos diferentes de tamaño *k* que se pueden formar teniendo *N* elementos. Consulte cualquier libro de probabilidad para los detalles matemáticos.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Variable Poisson (Distribución de Poisson)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Esta distribución es utilizada en problemas de conteo. Por ejemplo el número de bacterias por unidad de área o volumen encontradas en un cultivo microbiológico.\n", - "\n", - "Una variable Poisson puede tomar teóricamente valores enteros entre cero e infinito. La función de probabilidad en este caso está dada por:\n", - "\n", - "$$\n", - "p_{poi}[k] = \\frac{e^{\\lambda}\\lambda^k}{k!},\\quad k=0,1, \\ldots\n", - "$$\n", - "\n", - "El valor $\\lambda$ se interpreta como la cantidad promedio de elementos encontrados por unidad de área, volumen, etc. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Revise en cualquier libro de probabilidad y estadística ejemplos de aplicación de la distribución de Poisson. \n", - "2. Investigue como calcular probabilidades de la distribución de Poisson con *scipy* de Python. Suponga que para algún caso $\\lambda = 5.3$. Calcule las probabilidades para $ k=0,1,\\ldots, 20$. Haga un gráfico de la función de probabilidad con esos datos (obviamente es una aproximación de la función completa).\n", - "3. Haga sus comentarios." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "#Escriba su solución aquí" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Variable categóricas" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En esta sección vamos a suponer que la variable aleatoria no asigna valores numéricos a los elementos del espacio muestral. En lugar de eso, asigna etiquetas. Usualmente se dice que en este caso la variable es en realidad un objeto aleatorio. No haremos esa distinción en este desarrollo, pero sí seremos cuidadosos en tener en cuenta que la variable no es numérica.\n", - "\n", - "Por facilidad usaremos de nuevo el ejemplo de los dados no cargados. Definimos la siguiente variable aleatoria que llamaremos $X$. Para este ejercicio vamos a distinguir el color de los dados. Entonces en la pareja $(x,y)$, $x$ corresponde al valor del dado rojo. Adicionalmente $y$ representa el valor del dado azul. Entonces:\n", - "\n", - "$$\n", - "X((x,y)) = \\begin{cases} &R, \\text{ si } x>y\\\\\n", - "&A, \\text{ si } x" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "p_X = np.array([15/36,15/36, 6/36])\n", - "label = ['R','A','B']\n", - "\n", - "plt.bar(label,p_X, color = 'red', edgecolor='black',width=1)\n", - "plt.title('Funcion de probabilidad $p_X$')\n", - "plt.xlabel('Etiquetas de $p_X$')\n", - "plt.ylabel('Probabilidad')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Obviamente en este caso no hay cantidades numéricas, por lo que el gráfico puede obtenerse de distintas formas, cambiando el orden de la etiquetas. Sin embargo, aún podemos hacer algunos cálculos de probabilidad.\n", - "\n", - "Por ejemplo, la probabilidad de obtener *R* o *A* es dada por $30/36$.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Esperanza Matemática de una variable aleatoria numérica" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La esperanza matemática de una variable aleatoria numérica discreta es el promedio ponderado de todos sus posibles valores. La ponderación como se puede sospechar es dada por la función de probabilidad de la variable.\n", - "\n", - "La definición se basa en el hecho que la función de probabilidad de la variable aleatoria representa la frecuencia relativa teórica de cada resultado particular.\n", - "\n", - "Se tiene que si $X=\\{x_1,x_2,\\ldots \\}$ es el conjunto de valores de la variable aleatoria $X$ y si la función de probabilidad de $X$ es dada por $p_X =\\{p_1, p_2,\\ldots \\}$, en donde $p_X[x_i] = p_i$, entonces la esperanza matemática de $X$ se denota por $\\mathbb{E}[X]$ y es dada por:\n", - "\n", - "$$\n", - "\\mathbb{E}[X] = p_1x_1 + p_2x_2 +\\ldots = \\sum_{i} p_ix_i\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejemplo" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En el ejemplo de los dados se tiene que:\n", - "\n", - "$$\n", - "\\mathbb{E}[f] = \\tfrac{1}{36}[2\\times 1 + 3\\times 2 + 4\\times 3 + 5 \\times 4 + 6\\times 5 + 7\\times 6 +8\\times 5 + 9\\times 4 + 10 \\times 3 + 11 \\times 2 + 12 \\times 1 ] = 7.\n", - "$$\n", - "\n", - "\n", - "\n", - "Puede también calcular la esperanza de $f$ con numpy como sigue." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7.0" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.mean(f)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Esperanza de la distribución Binomial" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En el caso del ejemplo Binomial de la moneda cargada que se lanza tres veces tenemos que\n", - "\n", - "$$\n", - "\\mathbb{E}[f] = 0\\times 0.064 + 1 \\times 0.288 + 2 \\times 0.432 + 3 \\times 0.216= 1.8.\n", - "$$\n", - "\n", - "\n", - "\n", - "Se puede verificar que si una variable aleatoria $X$ tiene distribución (función de probabilidad) Binomial, $\\text{Bin}(N,p)$, entonces:\n", - "\n", - "$$\n", - "\\mathbb{E}[X] = Np.\n", - "$$\n", - "\n", - "Puede consultar cualquier texto de probabilidad para verificar el resultado. El siguiente código muestra como calcular la esperanza para el caso $\\text{Bin}(3,0.6)$, con Python." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.7999999999999998" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from scipy.stats import binom\n", - "binom.expect(args=(3,0.6))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Dé una interpretación al resultado anterior. Observe que 1.8 no corresponde a un valor que pueda tomar la variable aleatoria." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Esperanza de la distribución Poisson" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Una variable aleatoria con distribución $\\text{Pois}(\\lambda)$ tiene esperanza matemática $\\lambda$. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Verifique la afirmación anterior." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Varianza y desviación estándar de una variable aleatoria" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Varianza" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La varianza de una variable aleatoria mide su nivel de predictibilidad. Dicho en otras palabras, que tan dispersos son los valores de la variable aleatoria en relación con la esperanza matemática. Denotemos la esperanza de $X$ por $\\mu_X$.\n", - "Técnicamente la varianza de una variable aleatoria se define por:\n", - "\n", - "$$\n", - "Var[X] = \\mathbb{E}[X-\\mu_X]^2 = \\sum_{i}p_i (x_i- \\mu_X)^2. \n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Desviación estándar" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La desviación estándar de una variable aleatoria se denota $\\sigma_X$ y es simplemente la raíz cuadrada de la varianza, es decir:\n", - "\n", - "$$\n", - "\\sigma_X = \\sqrt{Var[X]}.\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Para entender el porque la varianza mide el nivel de predictibilidad de una variable aleatoria consideremos una variable Bernoulli $X$. Escribimos $X \\sim \\text{Ber}(\\pi)$. En este caso puede verificarse que la varianza está dada por:\n", - "\n", - "$$\n", - "Var(X) = \\pi(1-\\pi).\n", - "$$\n", - "\n", - "El siguiente gráfico muestra la varianza de las distribuciones Bernoulli con valores distintos del parámetro $\\pi$." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2eUlEQVR4nO3deXhU5fn/8fedHbIQIGHLQljCElYxILKoCC7ggjtY6l6pu6211bZWba3fn1Xb2loVUXEXRUXFKkKrIrITkB2CWYCENSxJIJD9+f1xDnWMkzDBzJxZ7td15crMnGU+Z+bM3HO25xFjDEoppVRDYU4HUEop5Z+0QCillHJLC4RSSim3tEAopZRySwuEUkopt7RAKKWUcksLRIARkSMi0t0Hz/OKiPzZ28/jQY4pIjLf6RxNEREjIj1bYD4Z9rwi7PtzReS6H58QRGS0iOS63N8mIuNOYj4tlinUuK4nrp+vhu+NP4lwOkCgE5FtQEegzuXhXsaYXd54PmNMnDfm66+MMW8CbzqdwwnGmPGejCciBsg0xuQ1Ma+vgd6+yuQrDT5/NcAS4BZjTJGTuZqjpd4bb9AtiJZxkTEmzuXPK8Uh1Bz/Ja1+nBB4HS+yfzh1BvYCT5/MTELgdWo2LRBe0nATXkQeFpE37NvHdyVcJyI7RGS/iPzeZdxwEfmdiOSLyGERWSUiafYw183UNiLymoiUiMh2EXlARMLsYdeLyCIReVJEDolIoYg0+utPRE4RkdX2870DxDQYfqGIrBGRUhFZIiIDG5nPNBF5ssFjH4nIPfbt+12Wa5OIXOoy3vUislhE/i4iB4GHjy+Hyzj/EJEiESm3X5fRDV7jWfZrclhENopItj1skr177vhflYgssIddICLf2PMsEpGHG3ud7PF/LSK7RWSXiNzYYFi0/ZrvEJG99uvRqpH5hNvj7heRAuCCBsMXiMjP7Ns9ReQrESmzx3/HfnyhPfpae7kmichZIlIsIveJyB7g5eOPNYgw1H4PDonIyyIS4/LcE+33u9x+v853kynMXue2i8g++3VvYw870Toe5rIuHLDft3b2sBgRecN+vFREVopIx6beEwBjTCXwHpDlyfvRyOvU6DpkT9PXfg1K7WEXu3u/7PvfW3cb08h74xe0QDhrFNam5VjgQRHpaz9+D3A1MAFIAG4EjrqZ/mmgDdAdOBO4FrjBZfhpQC6QBDwOvCQi0nAmIhIFfAi8DrQD3gUudxk+BJgB/BxoDzwPzBGRaDeZ3gImHX8eEWkLnAu8bQ/PB0bbuf8IvCEinRtkLgA6AI+6mf9KYLCd8y3gXdcvNuBi+7kSgTnAvwCMMe8c38IDutjPMdOepgLrtUvE+pK+VUQucfPc2F+U9wLnAJlAw/34fwF62Rl7AinAg+7mBdwMXAicAmQDVzQyHsAjwHygLZCK/SvZGHOGPXyQvXzv2Pc7Yb1GXYGpjcxzCnAe0MPO/IC9jMOA14BfY70mZwDb3Ex/vf03BmsdjMN+vV00to7fBVyCtd52AQ4Bz9jDrsNaP9Kw1rdbgGONLMP/iEhrYBKwzOXhE70f7l4nt+uQiEQCH2O9Dx2AO4E3RcQvdw+1CGOM/v2IP6wPzhGg1P770OXxcS7jPQy8Yd/OAAyQ6jJ8BTDZvp0LTGzk+QzWih4OVAFZLsN+Diywb18P5LkMa21P28nNPM8AdgHi8tgS4M/27eeARxpMkwuc6WZeAuwAzrDv3wx80cTrt+b4stqZdzQYfj2wqInpD2F9OR5/jf/rMiwLONZg/DDg38BzTczzKeDvjQybATzmcr+Xy3siWMWmh8vw04HCRub1Bdb+8uP3z7XnFWHfXwD8zL79GjDddZ1puE643D8LqAZiGjxW3GC9dX3uCUC+ffv5JpbfNdPnwG0uw3pjHQeI4MTr+GZgrMuwzi7T3mivfwOb+fmrxVqPB7isi42+H428To2uQ1g/bPYAYS7DZwIPN3xt3K27ru8T8Arffb6+9974059uQbSMS4wxifbfJc2Ybo/L7aNYv8DA+uWUf4Jpk4AoYLvLY9uxfiH9YP7GmONbIO4OcncBdhp7bXWZ13FdgV/Zm9WlIlJqZ+zScEb2PN7G2gIC+AkuB5lF5Fr5bldVKdDfXpbjmjy4KCK/EpHN9q6WUqxfmq7TN3xNY+T7+5YfBeKxfsEen+dpIvKlWLvqyrB+sbrO01WXBhldX6dkrEK8ymX5PrMfb+68GvoN1hfeCnvXxo1NjAtQYqxdLk1p+NzH309P1j/s8RuufxFYB42Pa2wd7wp84PI6bcY60NwRa0t2HvC2WLvxHrd/vTfmEmNMIhAN3AF8JSKd8Oz9cPc6NbYOdQGKjDH1DZbZ9TMXVLRAeE8F1sp5XKdmTFuEtdnflP1Yv7i6ujyWDuxsxvMctxtIabD7Kb1BnkddimCiMaa1MWYm7s0ErhCRrli7jN4HsO+/gPUhbm9/qDdgffEd12jzwmIdb7gPuApoa09f1mD6RonIZKzCdYUxpsZl0FtYuxLSjDFtgGlNzHM31hfoca6v036sXSH9XF6nNqbxM8+amtf3GGP2GGNuNsZ0wdpSfFaaPrXWk2aaGz738ZMrPFn/sMdvuP7VYh0oPpEiYHyDdSrGGLPTGFNjjPmjMSYLGIG1G+7aE83QGFNnjJmNVWhG4dn70ZzmrHcBaWIf57O5fuZ+zGfeL2mB8J41wGQRibQPcjW1f7mhF4FHRCRTLANFpL3rCMaYOmAW8KiIxNtfvvcAb5xE1qVYH+y7RCRCRC4DhrkMfwG4xf6lLSISK9aB3Xh3MzPGfAOU2MsxzxhTag+KxfpAlgCIyA1YWxCeirdzlgARIvIg1jGaExKRU7D2219ijClxM9+DxphKe//7T5qY1SzgehHJsvd5P3R8gP3L8gXg7yLSwX7eFBE5r4l53SUiqfaxmvubyH+liKTadw9hvY7HT63ei3UMoLlut5+7HfA74Pjxi5eAG0RkrFgHk1NEpI+b6WcCvxSRbiISB/wf8I4xptaD556Gte52tZcvWUQm2rfHiMgAEQkHyrF+CNU1PiuLvW5OxDpOs/kk3o8TWY5VBH5jf67PAi7iu+Nra4DLRKS1XbxvOsnn8RtaILznD1i/wg5hHYx9qxnT/g3ry2M+1gfkJcDdmTB3Yq2wBcAi+zlmNDeoMaYauAxrn+khrAN9s12G52AdS/iXPTzPHrcpM7EO4P5vuY0xm4C/YhWkvcAAYHEzos4D5gJbsTbtKznBLikXx784Fsl3ZzLNtYfdBvxJRA5jHcCc1dhMjDFzsY5RfIH1OnzRYJT77MeXiUg58F8aP8f9BXuZ1gKrcXnN3RgKLBeRI1hbO3cbYwrtYQ8Dr9q7Ua5qYh4NvYW1jhXYf38GMMaswDrZ4e9YW2hf8f0theNmYO0OWggUYr0fd3r43P+wl2O+/bovw9raBOuX93tY6/5m+/mb+uHzsf26lGPtQrzOGLPRHtac96NJ9ufkYmA81tbJs8C1xpgt9ih/xzqmsRd4lSC4fke+v9tZKaWUsugWhFJKKbe0QCillHJLC4RSSim3tEAopZRyK6gap0pKSjIZGRlOx1BKqYCxatWq/cYYtxdzBlWByMjIICcnx+kYSikVMESk0Sv4dReTUkopt7RAKKWUcksLhFJKKbe0QCillHJLC4RSSim3vFogROR8EckVkTwR+UFLlSIyRUTW2X9LRGSQy7BtIrLe7jtAT01SSikf89pprnZTvc9gdc1YDKwUkTl2i57HFWL1SnZIrP6Sp/Ndi44AY4wx+72VUSmlVOO8eR3EMKwuLwsARORtrCaX/1cgjDFLXMZfhtXXrlIB50hVLXvKKtlbXknJ4SoOV9VSUVXL0eo6ON5isgito8KJi44gPiaC5LhoOraJoVNCDLHRQXVJkgoS3lwrU/h+W/3FfH/roKGbsNr6P85gtRVvgOeNMdPdTSQiU7E7G09Pb7RDLqVaRE1dPbl7DrOmqJSNu8rJLzlCQckR9h+pbnSa4/30NdWyfnJ8ND2SY+nZIY6szm0YnJZIr45xRITrYULlHG8WCHddNrr9iIjIGKwCMcrl4ZHGmF12T1D/EZEtxpiFP5ihVTimA2RnZ2vnFqpF1dTVs7aolMV5B1icv581RaVU11pdErdpFUlmhzjG9ulIRlIsndvE0DEhhuT4aBJaRRAXHUGryHCO9+RqjOFYTR1HKmspr6xl32Fri2NXaSXb9leQX3KEj9bs4o1lOwCIiQxjSHpbRvZM4vQe7RmY0kYLhvIpbxaIYr7f520q3/V5+z8iMhCra8rxxpgDxx83xuyy/+8TkQ+wdln9oEAo1dKOVdfx1dYS5m/cw+db9lF2rAYR6NclgWuHd2VweiKDUhNJbdvqf1/+nhARWkdF0Doqgg4J0LPDD7uqNsaw4+BR1hSVsqaolGUFB3liXi4AbVtHMq5vR87r14lRmUnERIa32DIr5Y43C8RKIFNEumF16j2ZBn39ikg6VjeL1xhjtro8HguEGWMO27fPBf7kxawqxNXXG5YVHmD26p3MXb+biuo62rSKZGzfDozr25HTu7enbWyU13OICF3bx9K1fSwTB6cAsP9IFUvyD/D55r18tmEP764qJj4mggsHduayIalkd23brEKllKe8ViCMMbUicgdWn7vhwAxjzEYRucUePg2r/9/2wLP2Cl5rjMkGOgIf2I9FAG8ZYz7zVlYVug5VVPNOThFvLNtO8aFjxEVHcMHAzkwcnMKwbu2I9INdOklx0Vw8qAsXD+pCdW09SwsO8NGanXy0ZhczVxTRLSmWKaelc2V2Gm1aRTodVwWRoOqTOjs722hrrsoTefuOMH1hPh+t2UVVbT2ndWvHT05L59ysTrSKCoxdNxVVtXy2YQ9vLt/O6h2ltIoM57IhKUw9oztd28c6HU8FCBFZZf8w/+EwLRAqlKwvLuOZL/OYt2kP0RFhXDYkletOz6B3p3ino/0oG3aW8drSbXz4zS5q6+u5YGAXbjurB307JzgdTfk5LRAq5G3de5i/zs9l3sa9xMdEcN3pGdwwMoP2cdFOR2tR+8oreWlRIW8s205FdR0XDerCPef0oluSblEo97RAqJC1u+wYT8zL5YNvdhIbFcHNo7tz46gM4mOCe1992dEapn+dz4xF26iuq+eq7DTuOacXyfHBVRDVj6cFQoWcypo6pi8s4LkF+dQZw/UjMrj1zB4+ORPJn5QcruKZL/N4Y9l2YiLDufPsnlw/MoPoiMA4zqK8TwuECilfbNnLHz7cyM7SY4zv34nfTehLWrvWTsdyVH7JER79ZDNfbNlHt6RY/nxJf0b2THI6lvIDWiBUSNhXXskfP97EJ+t3k9khjj9O7MeIHvol6GpB7j4enrORbQeOctmQFB64IIt2IbZVpb5PC4QKasYYZq/eycMfb6Sqtp47x/Tk52f2ICrC+WsY/FFlTR1Pf/Etz39VQHxMBH++ZAAXDOzsdCzlEC0QKmjtP1LF72avZ/6mvQzNaMtfLh9I9+QfNmGhfih3z2F+895a1haXcdGgLjwysR+JrXVrItQ0VSC0jWEVsD7fvJdfv7eOI1W1/H5CX24c1Y3wMG1ywlO9O8Xz/q0jeG5BPv/4/FuWFxzgb1cNZlSm7pZTFt0GVwGnqraOP328iZtezaFjQgz/vnMUN5/RXYvDSYgID+POsZl8ePtIElpFcs2M5Twxbwu1dfVOR1N+QAuECig7Dhzl8ueWMGNxIdePyOCD20bQq2NgXwXtD/qntGHOHSO56tQ0nvkyn0nTl7Gr9JjTsZTDtECogPHlln1c+PTX7DhwlOevOZWHL+6nTV63oNZREfzlioH8Y/Jgtuwu56KnF7EkX3v8DWVaIJTfq683/OO/33LjqytJaduaf985mvP6dXI6VtCaODiFj+4YRWLrSK55aQUvLCwgmE5mUZ7TAqH82tHqWm59cxV//+9WLh2cwuxbR5DePrQvevOFnh3i+OiOUZyb1ZFHP93MPbPWUllT53Qs5WN6FpPyW7vLjvGzV3PYvLucP1yYxY0jM7RjHB+Ki47g2SlDeHZBPk/My2XHQWvXXlKQNXCoGqdbEMovrS8uY+K/FrP9wFFeum4oN43qpsXBASLC7WN68uyUIWzcZb0nuXsOOx1L+YgWCOV3FuTuY9L0pUSGh/H+rSMY06eD05FC3oQBnZn189OpqavnymlLWFZw4MQTqYCnBUL5lfdWFfOzV3PIaB/LB7eNCPiOfILJwNREZt82guT4aK59aQWfrNvtdCTlZVoglN94bkE+9767luHd2/POz4fTISHG6UiqgdS2rXn/1hEMSG3DHTNX89rSbU5HUl6kBUI5zhjD459t4S+fbeHiQV2Ycf3QoO/QJ5Alto7izZ+dxtg+HXnwo40882We05GUl2iBUI6qrzc8PGcjzy7I5+ph6fx90mBthTUAxESG89xPhzBxcBeemJfLXz7botdKBCE9zVU5pr7ecP/sdczKKWbqGd357fg+eqZSAIkMD+PvVw0mNjqC5xbkc6y6jocuytL3MIhogVCOqKs33Pf+Ot5bVczdYzP5xbhM/WIJQGFhwqOX9Kd1ZDgvLirEGMPDF/fT9zJIaIFQPldXb/jNe+t4f3UxvxzXi7vHZTodSf0IIsLvL+hLWJgwfWEBBvijFomgoAVC+VS9veWgxSG4iIi1ixB4fmEBArolEQS0QCifMcbw0JyNvLeqmF+My9TiEGREhPvH96HeGF74upBWURHcd35vLRIBTAuE8gljDI99toXXl23n52d05+6xWhyCkYjwuwl9OVpdx7Sv8omLDueOs/W9DlRaIJRPPPNlHs9/VcBPh6dzv56tFNREhEcm9udYdR1Pzt9K66gIbhzVzelY6iRogVBe9+by7Tw5fyuXnZLCny7ur8UhBISFCY9fMZCj1XX86d+baBcbxSWnpDgdSzWTXpGkvOqzDbv5w4cbOLtPB/5yxUDCtN/okBERHsZTkwczvHs77n13LV9tLXE6kmomLRDKa5YVHOCut9cwOC2RZ34yhMhwXd1CTUxkONOvzSazYzy3vrGKNUWlTkdSzeDVT6yInC8iuSKSJyL3uxk+RUTW2X9LRGSQp9Mq//bt3sPc/FoO6e1aM+P6obSK0r6jQ1VCTCSv3jiU9nFR3PjKSrYfqHA6kvKQ1wqEiIQDzwDjgSzgahHJajBaIXCmMWYg8AgwvRnTKj+173Al17+8kpjIcF69cRiJraOcjqQc1iE+hldvGEa9Mdzw8kpKj1Y7HUl5wJtbEMOAPGNMgTGmGngbmOg6gjFmiTHmkH13GZDq6bTKPx2truVnr+ZwsKKaGdcNJSWxldORlJ/onhzHC9dmU3zoGFNfW0VVrfZx7e+8WSBSgCKX+8X2Y425CZjb3GlFZKqI5IhITkmJHgRzUn294e6317BhZxlPX30KA1LbOB1J+ZmhGe148qpBrNh2kN+8t05bgPVz3iwQ7k5Xcbs2iMgYrAJxX3OnNcZMN8ZkG2Oyk5OTTyqoahmPz8vlP5v28uCFWYzL6uh0HOWnLh7UhV+f15uP1uzi2QX5TsdRTfDmdRDFQJrL/VRgV8ORRGQg8CIw3hhzoDnTKv8xe3Ux077KZ8pp6Vw3IsPpOMrP3XZWD77de5gn5uXSIzmO8/t3cjqScsObWxArgUwR6SYiUcBkYI7rCCKSDswGrjHGbG3OtMp/rN5xiPvfX8/w7u20gTblERHhscsHMigtkXtmrWHTrnKnIyk3vFYgjDG1wB3APGAzMMsYs1FEbhGRW+zRHgTaA8+KyBoRyWlqWm9lVSdvT1klU19bRefEGJ6bcqpe66A8FhMZzgvXnEpCTCQ3v5bDgSNVTkdSDUgwHSTKzs42OTk5TscIGVW1dUx6fhnf7j3MB7ePpFfHeKcjqQC0rriUK6YtJbtrW167cRgR+iPDp0RklTEm290wfSfUSXt4zibWFJXy5JWDtDiokzYwNZFHL+nPkvwD/OWzLU7HUS60sT51Umau2MHMFTu49awejB/Q2ek4KsBdmZ3G+p1lvPB1IQNSE7l4UBenIyl0C0KdhHXFpTz00UZGZyZx77m9nY6jgsQDF2SR3bUt9723jtw9h52Oo9ACoZqp9Gg1t76xmuT4aP45+RTCtXVW1UKiIsJ4dsoQYqMjuO3NVVRU1TodKeRpgVAeq683/GrWWvYdruSZKUNoG6ttLKmW1SEhhn9ePZjC/RX8dvZ6vdLaYVoglMeeX1jA51v28fsJfRmcluh0HBWkRvRI4p5zejFn7S7eWL7D6TghTQuE8sjKbQd5cn4uFwzorFdKK6+77ayenNU7mUc+3sSGnWVOxwlZWiDUCZUerebumd+Q2rYVj10+QK+UVl4XFib87arBtIuN4s6Z33BEj0c4QguEapIxht+8t46SI1U8ffUpxMdEOh1JhYh2sVE8NXkw2w9U8OBHG5yOE5K0QKgmvbFsO/M37eW+8/swMDXR6TgqxAzv3p47z85k9uqdzF5d7HSckKMFQjVqy55yHvlkM2f1TubGkd2cjqNC1J1n92RYRjse+HADhfu1u1Jf0gKh3KqsqePumWtIiInkySsHEabXOyiHRISH8dTkwUSECb94Zw01dfVORwoZWiCUW49/lkvu3sM8ceVAkuKinY6jQlyXxFb832UDWFtUytNf5DkdJ2RogVA/sHBrCTMWF3Ld6V0Z07uD03GUAuDCgV24bEgK//riW1ZtP+h0nJCgBUJ9z6GKau59dy09O8Tx2wl9nY6j1Pf88eJ+dElsxS/eWaOnvvqAFgj1PX/4aAOHjlbz1KTBxESGOx1Hqe+Jj4nkqUmD2XnoGI9+ssnpOEFPC4T6n4/X7uLf63Zz99hM+qe0cTqOUm5lZ7Tj5jO6M3NFEV9u2ed0nKCmBUIBsK+8kj98tIFBaYnccmYPp+Mo1aR7zulFr45x3Pf+OkqPVjsdJ2hpgVAYY/jt7PUcq67jr1cO0i4fld+Ljgjnb1cN5mBFNQ/N0e7qvUW/CRTvrSrm8y37+M35fejZIc7pOEp5pH9KG+48O5OP1uxi7vrdTscJSlogQtze8koe+fcmhma05QZtpVUFmNvG9KB/SoJ1ckWF7mpqaVogQpgxht9/sIGq2noev0KvllaBJzI8jMcvH0Tp0Rr+9G89q6mlaYEIYR+v281/N+/l3nN70y0p1uk4Sp2UrC4J3DamJx98s5PPN+91Ok5Q0QIRog4cqeLhORsZlJbIjaO0IT4V2O4Y05PeHeP53QfrKTtW43ScoKEFIkT98eNNHKms5YkrBhKuu5ZUgIuKCOOJKwdScriKx+ZucTpO0NACEYK+zN3HnLW7uH1MT3p1jHc6jlItYmBqIjeN6sbMFTtYUahtNbUELRAhpqKqlgc+2EDPDnHcclZ3p+Mo1aJ+eU4vUtu24rez11FVW+d0nICnBSLE/O0/W9lZeozHLhtAdIS2taSCS+uoCB69dAD5JRU8+2W+03ECnhaIELKuuJSXFxcy5bR0sjPaOR1HKa84s1cylwzuwrML8vh272Gn4wQ0LRAhoq7e8LsP1pMUF8194/s4HUcpr/rDhVnERkfw+w83YIxxOk7A8mqBEJHzRSRXRPJE5H43w/uIyFIRqRKRexsM2yYi60VkjYjkeDNnKHh96TY27CznwYuySIiJdDqOUl7VPi6a347vw4rCg7y/eqfTcQKW1wqEiIQDzwDjgSzgahHJajDaQeAu4MlGZjPGGDPYGJPtrZyhYG95JU/O38rozCQuGNDZ6ThK+cSVp6Zxate2/N+nm7UZjpPkzS2IYUCeMabAGFMNvA1MdB3BGLPPGLMS0CtbvOiRf2+iuq6eRyb2R0SveVChISxM+PMl/Sk7VsPj8/TaiJPhzQKRAhS53C+2H/OUAeaLyCoRmdrYSCIyVURyRCSnpKTkJKMGr6+/LeHf63Zz+1k9ydDmNFSI6ds5gRtHZjBzRZH2Y30SvFkg3P1Ubc7RopHGmCFYu6huF5Ez3I1kjJlujMk2xmQnJyefTM6gVVVbx4MfbaRbUqxe86BC1i/G9aJzmxge+HAjdfV6wLo5vFkgioE0l/upwC5PJzbG7LL/7wM+wNplpZrhpUWFFO6v4OGL++k1DypkxUZH8MAFWWzeXc5by7c7HSegeLNArAQyRaSbiEQBk4E5nkwoIrEiEn/8NnAusMFrSYPQ7rJjPP15Huf168iZvXTLSoW2CQM6MbJne56Yl8uBI1VOxwkYXisQxpha4A5gHrAZmGWM2Sgit4jILQAi0klEioF7gAdEpFhEEoCOwCIRWQusAD4xxnzmrazB6M+fbKbeGB64oOGJY0qFHhHh4Yv6cbS6jifm5TodJ2BEeHPmxphPgU8bPDbN5fYerF1PDZUDg7yZLZgtydvPJ+t288txvUhr19rpOEr5hcyO8dwwMoMXFxUyeVg6g9MSnY7k9/RK6iBTW1fPwx9vJK1dK35+ph6YVsrV3eN6kRwXzUNzNlKvB6xPSAtEkHlrxQ627j3CAxdkEROpB6aVchUXHcF95/dhbVEpH67RK6xPRAtEEDlUUc1f529lZM/2nJvV0ek4SvmlS09JYVBaIo/N3UJFVa3TcfyaFogg8tR/t3K4soY/XJilV0wr1YiwMOGhi7LYd7iKZxfkOR3Hr2mBCBK5ew7zxvIdTDmtK306JTgdRym/NiS9LZedksILXxey48BRp+P4LS0QQcAYw58/2URcdAT3nNPL6ThKBYTfnN+HiDDh/z7d7HQUv6UFIggsyC3h62/3c9fYTNrGRjkdR6mA0KlNDLee2YPPNu7RPqwboQUiwNXW1fPop5vJaN+aa4Z3dTqOUgHlZ6O70ykhhkc/2aSnvbrRZIEQkTARucpXYVTzvb2yiLx9R/jthL5ERWi9V6o5WkWF8+vzerO2uIw5az1uKi5kNPmNYoypx2ouQ/mhw5U1/P0/WxnWrZ2e1qrUSbr0lBT6pyTw+GdbqKypczqOX/HkJ+d/ROReEUkTkXbH/7yeTJ3QswvyOVBRzR8u0NNalTpZYWHCAxdksauskhe/LnA6jl/xpC2mG+3/t7s8ZgBtx8FBO0uP8dKiQi47JYUBqW2cjqNUQBvevT3nZHVk2lcFTB6WTlJctNOR/MIJtyCMMd3c/GlxcNjf5m8F4Ffn9XY4iVLB4b7z+3Cspo6nP//W6Sh+w6PWXEWkP5AFxBx/zBjzmrdCqaZt3l3O7G+KmTq6OymJrZyOo1RQ6NkhjklD03hz+Q5uGNlNu+jFgy0IEXkIeNr+GwM8Dlzs5VyqCY/N3UJCTCS3ndXT6ShKBZVfjM0kMjyMJ+ZrnxHg2UHqK4CxwB5jzA1Y/TToDjqHLM7bz1dbS7h9TA/atI50Oo5SQaVDQgw3j+7GJ+t2s6ao1Ok4jvOkQFTap7vW2r297UMPUDuivt7w2NwtpCS24trTM5yOo1RQmnpmD9rHRvH/Pt2MMaF98VyjBUJE/iUiI4EVIpIIvACsAlZjdQOqfGzuhj2s31nGL8/ppX09KOUlcdER3DU2k+WFB1n47X6n4ziqqS2Ib4EngQuB3wLLgHOA6+xdTcqHauvq+ev8XHp1jOPSU1KcjqNUULt6WDqpbVvx+GdbQroJjkYLhDHmH8aY04EzgIPAy8Bc4BIRyfRRPmV7b1UxBfsruPfc3oSH6UVxSnlTVEQY95zTi427yvl0w26n4zjGk+sgthtj/mKMOQX4CXApsMXrydT/VNbU8dR/v+WU9ETO0SY1lPKJiYNT6N0xnr/O30pNXb3TcRzhyWmukSJykYi8ibUFsRW43OvJ1P+8vnQ7e8or+c15fbRJDaV8JDxMuPe83hTur+C9VcVOx3FEUwepzxGRGUAxMBX4FOhhjJlkjPnQR/lC3uHKGp5ZkMcZvZI5vUd7p+MoFVLG9e3AkPREnvrv1pBsyK+pLYjfAUuBvsaYi4wxbxpjKnyUS9lmLNpG6dEa7j1Xe4pTytdEhF+f14e95VW8uXyH03F8rqmD1GOMMS8YY7SrJYeUHq3mxa8LODerIwNTE52Oo1RIOr1He0b0aM9zC/KoqKp1Oo5PaQ8zfmz6wgKOVNdyj249KOWoX53bi/1Hqnl16Tano/iUFgg/tf9IFa8s2caFA7vQp1OC03GUCmmndm3HmN7JPP9VAeWVNU7H8RktEH5q2oJ8Kmvq+MU4veREKX9wzzm9KTtWw4xFhU5H8RktEH5ob3klry/bzqWnpNIjOc7pOEopYEBqG87r15EXvy6k9Gi103F8QguEH3puQT619Ya7xmpz3kr5k1+e04sjVbW8FCJbEVog/Mze8kreWrGDy4ek0LW9dliilD/p0ymBCQM68fLibSGxFeHVAiEi54tIrojkicj9bob3EZGlIlIlIvc2Z9pg9dyCfOrqDXeM0WMPSvmju8ZmcqSqlhe/Dv6tCK8VCBEJB54BxmN1V3q1iGQ1GO0gcBdWq7HNnTbo7Cn7bushvX1rp+Mopdzo0ymBCwZ05pUl2zhUEdxbEd7cghgG5BljCowx1cDbwETXEYwx+4wxK4GG542dcNpgNO2rfOp160Epv3fX2EwqqoP/WIQ3C0QKUORyv9h+rEWnFZGpIpIjIjklJSUnFdQffLf1kKpbD0r5ud6d4pkwoDMvLy4M6q0IbxYId82OetrzhsfTGmOmG2OyjTHZycnJHofzN88vtI493D5Gz1xSKhDcPTaTiuo6Xl4cvFsR3iwQxUCay/1UYJcPpg04JYereGv5Di4ZrMcelAoUvTrGc36/Try8ZFvQXl3tzQKxEsgUkW4iEgVMBub4YNqA8+LXBdTU1XP7mB5OR1FKNcMdZ/fkcGUtry7e5nQUr/BagTDG1AJ3APOAzcAsY8xGEblFRG4BEJFOIlIM3AM8ICLFIpLQ2LTeyuqkgxXVvL5sOxcN6kJ3vWpaqYDSP6UNY/t04KXFhRwJwpZeI7w5c2PMp1gdDbk+Ns3l9h6s3UceTRuMZiwq5FhNHXfosQelAtKdYzO55JnFvL50O7eeFVx7AfRKageVHavh1SXbGN+/E5kd452Oo5Q6CYPTEhmdmcSLXxdwrDq4ep3TAuGg15du43BVrV73oFSAu2tsJgcqqnl7ZXD1OqcFwiFHq2uZsXgbZ/fpQFYX7e9BqUA2NKMdwzLaMX1hAdW19U7HaTFaIBzy9ooiDlZU65lLSgWJ28b0YHdZJR9+s9PpKC1GC4QDqmvrmb6wgNO6tePUru2cjqOUagFn9kqmX5cEnvvKuug1GGiBcMAH3xSzp7xSr5pWKoiICLeP6Unh/grmbtjtdJwWoQXCx+rqDc8tyGdAShtGZyY5HUcp1YLO69eJ7smxPPNlPsYE/laEFggfm7thN9sOHOW2s3og4q7JKaVUoAoPE249swebd5ezIDdwGw89TguEDxljbT10T4rl3H6dnI6jlPKCiYNT6Nwmhmlf5Tsd5UfTAuFDi/L2s3FXOVPP6E54mG49KBWMoiLCuGlUN5YXHuSbHYecjvOjaIHwoee/KqBDfDSXDvG0WwylVCCaPCydhJiIgN+K0ALhI+uLy1iUt58bR3UjOiLc6ThKKS+Ki47g2tMzmL9pL/klR5yOc9K0QPjItIX5xEdH8JPT0p2OopTygetHZhAVHsYLCwucjnLStED4wPYDFcxdv5spw7uSEBPpdByllA8kxUVzZXYqs1fvZG95pdNxTooWCB948etCIsLCuHFkhtNRlFI+NHV0D2rr63llyTano5wULRBedrCimndXFXHJKV3okBDjdByllA+lt2/N+P6deXPZ9oDsUEgLhJe9vnQ7lTX13Dy6u9NRlFIO+NnobpRX1vLOyiKnozSbFggvqqyp47WlVpPe2iGQUqHplPS2DMtox4xFhdTWBVZT4FogvGj26p0cqKjWrQelQtzNZ3RnZ+kxPt2wx+kozaIFwkvq6w0vfl3AgJQ2DO+uTXorFcrG9ulA9+RYpi8MrEb8tEB4yedb9lGwv4Kbz+iujfIpFeLCwoSbR3dnw85ylhYccDqOx7RAeMmLXxeQktiKCf21UT6lFFx6SgrtY6OYsajQ6Sge0wLhBRt2lrG88CDXj8ggIlxfYqUUxESG89PhXfnv5n0UBEjzG/rt5QUvLSokNiqcScPSnI6ilPIjPx3elajwMF5evM3pKB7RAtHC9pRV8vHaXVw1NE2b1VBKfU9yfDQTB3fhvVXFlB6tdjrOCWmBaGGvLd1GnTHcMKKb01GUUn7optHdOFZTx1srdjgd5YS0QLSgo9W1vLl8B+dldSK9fWun4yil/FCfTgmM6pnEq0u2UV3r3xfOaYFoQe+v3knZsRpuGq1bD0qpxt00qht7y6v4dP1up6M0SQtEC6mvN7yyuJCBqW3I7trW6ThKKT92Zq9kuifH8vLiQr++cE4LRAv5Om8/+SUV3DAyQy+MU0o1KSxMuGFEBmuLy1i9o9TpOI3yaoEQkfNFJFdE8kTkfjfDRUT+aQ9fJyJDXIZtE5H1IrJGRHK8mbMlvLy4kKS4aCYM6Ox0FKVUALhsSCrxMRG8vNh/L5zzWoEQkXDgGWA8kAVcLSJZDUYbD2Taf1OB5xoMH2OMGWyMyfZWzpaQX3KEBbkl/HR4uvY3rZTySGx0BJOy05i7YQ+7y445Hcctb25BDAPyjDEFxphq4G1gYoNxJgKvGcsyIFFEAu4n+GtLthEVHsaU07o6HUUpFUCuG5GBMYY3lm13Oopb3iwQKYBrDxnF9mOejmOA+SKySkSmNvYkIjJVRHJEJKekpKQFYjdPeWUN760q5sJBnUmOj/b58yulAldau9aM69uRt5bvoLKmzuk4P+DNAuHuSG3Dw/VNjTPSGDMEazfU7SJyhrsnMcZMN8ZkG2Oyk5OTTz7tSZq1soiK6jq9ME4pdVJuGNmNQ0dr+GjNTqej/IA3C0Qx4NoYUSqwy9NxjDHH/+8DPsDaZeVX6usNry/bTnbXtgxIbeN0HKVUABrevR19OsXzypLtfnfKqzcLxEogU0S6iUgUMBmY02CcOcC19tlMw4EyY8xuEYkVkXgAEYkFzgU2eDHrSflqawnbDxzluhEZTkdRSgUoEeG6ERls3l1OzvZDTsf5Hq8VCGNMLXAHMA/YDMwyxmwUkVtE5BZ7tE+BAiAPeAG4zX68I7BIRNYCK4BPjDGfeSvryXp16TY6xEdzXj/t80EpdfImDu5CQkwEry7Z5nSU74nw5syNMZ9iFQHXx6a53DbA7W6mKwAGeTPbj1W4v4IFuSX8YlwmURF6vaFS6uS1jorgquw0Xlmyjb3llXRMiHE6EqBXUp+015duJzJc+Mlp6U5HUUoFgWtO70qdMby53H9aedUCcRIqqmp5d1UR4/t3pkO8f1R6pVRg69o+ljG9O/DW8h1+08qrFoiT8ME3OzlcWasHp5VSLeq6ERnsP1LF3A3+0cqrFohmMsbw+tLt9E9JYEh6otNxlFJBZHTPJLolxfLaUv+4sloLRDOt3HaI3L2HuWZ4V221VSnVosLChCmnpbNq+yE27ipzOo4WiOZ6fdl24mMiuHhQw1ZDlFLqx7vy1DRiIsN4Y5nzB6u1QDTDvsOVfLZhN1eemkarKG21VSnV8tq0juTiQV348JudlFfWOJpFC0QzzFpZRE2dYcpwPbVVKeU91wzP4FhNHbNXFTuaQwuEh2rr6nlr+Q5G9UyiR3Kc03GUUkFsQGobBqUl8voyZ9tn0gLhoS+27GNXWSU/Ha59PiilvO+a4V3JL6lgaf4BxzJogfDQG8t30CkhhnF9OzgdRSkVAi4c2JnE1pG87mBnQlogPLDjwFEWbi3h6mHpRITrS6aU8r6YyHCuPDWV/2zay77ySkcy6LedB95asYPwMGHS0LQTj6yUUi3k6mHp1NYbZuUUnXhkL9ACcQJVtXW8m1PEuL4d6NRG211SSvlO9+Q4RvZsz8wVRdTV+/5gtRaIE5i3cS8HKqqZcpoenFZK+d6U07qys/QYC7eW+Py5tUCcwJvLtpPerjWjeiY5HUUpFYLOyepIUlw0by73/cFqLRBNyNt3hOWFB7l6WDphYdruklLK9yLDw5g0NNU61b70mE+fWwtEE95avoPIcOHK7FSnoyilQtjkoekY4O0Vvm2fSQtEIypr6nh/dTHn9etEUly003GUUiEsrV1rzuqVzDs5RdTW+a4zIS0QjZi7YTdlx2r4yTBtd0kp5bzJw9LZW17Fl7m+O1itBaIRM1cUkdG+NcO7t3c6ilJKcXafDnSIj/bpbiYtEG7k7TvCisKDTBqqB6eVUv4hMjyMK7NT+TLXdwertUC48faKHUSECVecqgenlVL+Y/LQdOoNPruyWgtEA1W11sHpc/t1JDleD04rpfxHWrvWjM5MYtZK31xZrQWigXkb93LoaA2Th+rBaaWU/7l6WDq7yip9cmW1FogGZi7fQWrbVnrltFLKL43r25GkuCje8sHBai0QLrYfqGBpwQEmZafpwWmllF+Kigjj8lOtK6u93Qy4FggXs3KKCBO4Mlub9VZK+a+rstOoqze8v3qnV59HC4Sttq6ed3OKOau3NuutlPJvPZLjGJbRjndW7vBqn9VaIGxfbS1h3+Eq7RRIKRUQJg1NY9uBoywvPOi159ACYXt7ZRFJcdGc3Uf7nFZK+b8JAzoTHx3BrJXeuybCqwVCRM4XkVwRyROR+90MFxH5pz18nYgM8XTalrTvcCVfbNnH5aemEKl9TiulAkCrqHAuHtyFT9Zb7cZ5g9e+DUUkHHgGGA9kAVeLSFaD0cYDmfbfVOC5ZkzbYmav3kldvWGSHpxWSgWQyUPTqaqtZ87aXV6Zvzd/Lg8D8owxBcaYauBtYGKDcSYCrxnLMiBRRDp7OG2LMMYwa2URwzLa0T05zhtPoZRSXtE/JYG+nRN4Z6V3ronwZoFIAVx3jhXbj3kyjifTAiAiU0UkR0RySkqaf2Xh0eo6hnVrxzWna5/TSqnAIiLcMCKDwWmJVNXWtfj8I1p8jt9xd6VZw/OxGhvHk2mtB42ZDkwHyM7Obvb5XrHRETx2+cDmTqaUUn7hqqFpXOWlsy+9WSCKAdfUqUDDHWWNjRPlwbRKKaW8yJu7mFYCmSLSTUSigMnAnAbjzAGutc9mGg6UGWN2ezitUkopL/LaFoQxplZE7gDmAeHADGPMRhG5xR4+DfgUmADkAUeBG5qa1ltZlVJK/ZB48zJtX8vOzjY5OTlOx1BKqYAhIquMMdnuhulVYUoppdzSAqGUUsotLRBKKaXc0gKhlFLKraA6SC0iJcD2k5w8CdjfgnECgS5z8Au15QVd5ubqaoxJdjcgqArEjyEiOY0dyQ9WuszBL9SWF3SZW5LuYlJKKeWWFgillFJuaYH4znSnAzhAlzn4hdrygi5zi9FjEEoppdzSLQillFJuaYFQSinlVkgVCBE5X0RyRSRPRO53M1xE5J/28HUiMsSJnC3Jg2WeYi/rOhFZIiKDnMjZkk60zC7jDRWROhG5wpf5vMGTZRaRs0RkjYhsFJGvfJ2xpXmwbrcRkY9FZK29zDc4kbOliMgMEdknIhsaGd7y31/GmJD4w2o2PB/ojtUh0Vogq8E4E4C5WD3aDQeWO53bB8s8Amhr3x4fCsvsMt4XWE3OX+F0bh+8z4nAJiDdvt/B6dw+WObfAX+xbycDB4Eop7P/iGU+AxgCbGhkeIt/f4XSFsQwIM8YU2CMqQbeBiY2GGci8JqxLAMSRaSzr4O2oBMuszFmiTHmkH13GVbvfYHMk/cZ4E7gfWCfL8N5iSfL/BNgtjFmB4AxJtCX25NlNkC8iAgQh1Ugan0bs+UYYxZiLUNjWvz7K5QKRApQ5HK/2H6sueMEkuYuz01Yv0AC2QmXWURSgEuBaT7M5U2evM+9gLYiskBEVonItT5L5x2eLPO/gL5Y3RWvB+42xtT7Jp4jWvz7y5t9UvsbcfNYw3N8PRknkHi8PCIyBqtAjPJqIu/zZJmfAu4zxtRZPy4DnifLHAGcCowFWgFLRWSZMWart8N5iSfLfB6wBjgb6AH8R0S+NsaUezmbU1r8+yuUCkQxkOZyPxXrl0VzxwkkHi2PiAwEXgTGG2MO+Cibt3iyzNnA23ZxSAImiEitMeZDnyRseZ6u2/uNMRVAhYgsBAYBgVogPFnmG4DHjLWDPk9ECoE+wArfRPS5Fv/+CqVdTCuBTBHpJiJRwGRgToNx5gDX2mcDDAfKjDG7fR20BZ1wmUUkHZgNXBPAvyZdnXCZjTHdjDEZxpgM4D3gtgAuDuDZuv0RMFpEIkSkNXAasNnHOVuSJ8u8A2uLCRHpCPQGCnya0rda/PsrZLYgjDG1InIHMA/rDIgZxpiNInKLPXwa1hktE4A84CjWL5CA5eEyPwi0B561f1HXmgBuCdPDZQ4qniyzMWaziHwGrAPqgReNMW5PlwwEHr7PjwCviMh6rN0v9xljArYZcBGZCZwFJIlIMfAQEAne+/7SpjaUUkq5FUq7mJRSSjWDFgillFJuaYFQSinllhYIpZRSbmmBUEop5ZYWCKWUUm5pgVBKKeWWFgilvEREeopIiYhss/thOCgi+SKS4HQ2pTyhBUIpLzHG5AGLsJoxGYx1FfMlQdxYnAoyWiCU8q5+wPEmLfoAuQ5mUapZtEAo5SUi0gqIMcYcEpE04IDduY1SAUELhFLek8V3Lab2JbBbT1UhSAuEUt7junvpGDBERPo4mEepZtHWXJVSSrmlWxBKKaXc0gKhlFLKLS0QSiml3NICoZRSyi0tEEoppdzSAqGUUsotLRBKKaXc+v9dkWB9XwiI5AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "pi = np.linspace(0,1,100)\n", - "var = pi*(1-pi)\n", - "plt.plot(pi,var)\n", - "plt.title('Funcion de varianza de distribciones Bernoulli')\n", - "plt.xlabel( '$\\pi$')\n", - "plt.ylabel('Var')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Se observa entonces que la máxima varianza se alcanza para el caso $\\pi=0.5$. Es porque en este caso, es más difícil predecir el resultado del experimento, dado que la probabilidad de *acierto* y de *fallo* son la misma. Pero a medida que el valor $\\pi$ está cerca de cero o uno, la varianza desciende hasta cero. Por ejemplo si $\\pi = 0.9$, casi siempre se obtendrá *éxito*. Esto significa que la variable es más predictible para valores muy altos o muy bajos de $\\pi$. **A menor varianza mayor precisión para predecir el resultado del experimento y viceversa**." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Entropía de una variable aleatoria" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Similar a la varianza, la entropía de una variable aleatoria mide su grado de predictibilidad desde el punto de vista de la teoría de información de Shannon. Dada una variable aleatoria discreta $X=\\{x_1,x_2,\\ldots \\}$ con función de probabilidad $p_X =\\{p_1, p_2,\\ldots \\}$, la entropía de $X$ se define por:\n", - "\n", - "$$\n", - "H(X) = -\\sum_i p_i\\log p_i = -\\mathbb{E}[\\log P_X]\n", - "$$\n", - "\n", - "Es usual utilizar la base 2 o la base de los logaritmos Neperianos. En el primer caso, la unidad de medida de la entropía se denomina bit. En el caso de los logaritmos Neperianos, la unidad de medida se acostumbra a llamar *nat*. En realidad pasar de una base a otra es simplemente un cambio de escala. Estructuralmente miden lo mismo en distintas unidades.\n", - "\n", - "Como en el caso de la varianza ilustramos el concepto para la distribución Bernoulli." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2DklEQVR4nO3dd3wU17XA8d9RBRUEKhQhkOggqkE0d+IGbtgOtsGF2I7t8GynOPGLS+J058UlL4lbcC8vxsTdOMYQV2zTi2kyTYgiIQRCgCQk1M/7Y0fOIktCAq1Gu3u+n89+PrszVzNnZldz5t6ZuVdUFWOMMcErxO0AjDHGuMsSgTHGBDlLBMYYE+QsERhjTJCzRGCMMUHOEoExxgQ5SwSmVYjIpSKyXEQiTnI5N4jIl60U029E5B/O+94ickREQltp2bNF5H7n/dkiktsay623jvtE5NnWXm4wEJHPRORm5/0xvynnd9DXvejaH0sEfkJEdorIUedHXPd6vJl/+80/hY9iSwD+CFypqpW+Ws/JUNXdqhqjqjVNlWtuIlLVWar6+9aLsMF1/FFVffa9tZSIvCgilc5vr0REVovIWW7H1VLO7yDb7TjaE0sE/uUS50dc97qjNRYqImEnuYihwK2qurs14mnvWqtW4aceUtUYIA74O/DWieyPVvjNmVZkiSAA1J3FisgjInJIRHaIyBRn3gPAGcDj3rUIEVERuV1EtgHbnGm3iEiWiBwUkXkikuy1DhWRH4lItogcEJGHRaTu99MXeMir7N9EJEdEip2zxjOaiD3BWVexiKwA+tWbP1hEPnRi2iIiVzWxrD4issg5W/0QSPSal+ZsQ5jXPst2yu4QkWtFZAgwG5jo7KvDTtkXReTvIjJfREqBSc60P9Rb/33OvtkpItd6TT+mRtZAU8VQr23cJyL3OdO/adpyPl8qIpkicthZ5hCveTtF5C4RWS8iRSLyTxHp4DX/YhFZ6/ztEhEZ4TXvbhHZ4+yLLSJyTmP7uI6q1gJzgHigm9eybhKRTc7vcKGIpHrNO+Y3J06Tmoj8TET2i8heEbnRq3yciLwsIgUisktEfln3m2tg3xzz/TbFKdf/eOWCiSWCwDEe2ILn4PcQ8JyIiKr+AvgCuKOBWsRlzt+li8h3gP8BrgJ6ALuAufXWcTmQAYwGpgI3NRLLSmAUnoPEHOB174NSPU8A5c46b/JepohEAx86y+gKzACeFJGhjSxrDrDa2Qe/B77XUCFnuY8CU1Q1FjgVWKuqm4BZwFJnX3X2+rNrgAeAWKChpqPuznp7Out9WkQGNRKndyyxwEfAAiAZ6A983EC5gcCrwE+AJGA+8J4ce03mKmAy0AcYAdzg/O1o4HngB0AC8BQwT0QinRjvAMY6++ICYGcz4g4FZgI7gH3OtMuA+4ArnBi/cGL2dhnOb8753B1P7aIn8H3gCRHp4sx7zJnXFzjLWd+NmFZnicC/vOOc0dW9bvGat0tVn3HawF/Cc2Dt1vBivvE/qnpQVY8C1wLPq+oaVa0A7sVzZpzmVf5Bp/xu4K94Dszfoqr/UNVCVa1W1T8DkcC3DorOweS7wK9UtVRVNzqx17kY2KmqLzjLWgO8CUxrYFm9gbHA/apaoaqfA+81se21wDAR6aiqe1U1s4myAO+q6mJVrVXV8kbK1K17EfA+ngPz8VwM5Kvqn1W1XFVLVHV5A+WuBt5X1Q9VtQp4BOiIJ4nVeVRV81T1IJ5tH+VMvwV4SlWXq2qNqr4EVAATgBo830+6iISr6k5V3d5EvHc5NaVSPL+B+72uu/wAz29qk6pW47luNMq7VsCxvzmAKuB3qlqlqvOBI8Ag57dxNXCvs092An8Grm8iNnOCLBH4l8tUtbPX6xmvefl1b1S1zHkbc5zl5Xi9T8ZTC6hbxhGgEM+ZWkPldzl/8y1OVX+T00RxGM9ZXWIDRZOAsAaWWycVGO+d/PAkrO4NLCsZOKSqpY0s6xtOmavxnP3vFZH3RWRwQ2W95BxnfkPrbnD/1NMLaOrAW6f+91PrxOT9/eR7vS/jP99/KvCzevuxF5Csqll4ahm/AfaLyFzxahJswCNOTakjntrhw+I0Qzrr+ZvXOg4CQuO/IYBCJ2nUjzsRiODY73BXvWWZVmKJIDg01sWs9/Q8PP/IwDfNJwnAHq8yvbze93b+5hjiuR5wN56z4S7OQaMIzwGhvgKguoHl1skBFtVLfjGq+l8NLGsv0MWJu6FlHUNVF6rqeXhqTpuBuqTanH3VkIbWXbd/SoEor3neiSyHetdFGlH/+xE8+21Po39x7DoeqLcfo1T1VQBVnaOqpzvLV+DB4y1QPTYCi4GLvNbzg3rr6aiqS7z/tBnxAhzAU1vwrk305j/b29Q+NS1kiSA47MPTztqUOcCNIjJKRCLxVOuXO1XyOv8tIl1EpBfwY+CfDSwnFs/BvQAIE5FfAZ0aWqHTpPAW8BsRiRKRdI5t1/8XMFBErheRcOc11vsiqdeydgGrgN+KSISInA5c0tB6RaSbc+E1Gk8TyRE8TSTg2VcpcmLPQ9St+ww8TT6vO9PXAlc429gfT1u49zZ2F5GfOG32sSIyvoFlvwZcJCLniEg48DMn9iUNlK3vGWCWiIwXj2gRuchZ1yAR+Y7znZcDR/nPvmiSU4s6HahrVpsN3Ft3Dce52Htlc5ZVn/PbeA14wIkzFfgpUHeBeC1wpnieD4nD05RpTpAlAv/ynhz7HMHbzfy7vwHTxHMnx6MNFVDVj4H78bTB78Vzljq9XrF38VyMXYunDfy5Bha1EPgA2IqnKl9O080qd+BpCsgHXgRe8IqpBDjfiSPPKfMgnjbthlyD50LkQeDXwMuNlAvBcyDNc8qeBdzmzPsEz4EtX0QONBF3ffnAIWeZrwCzVHWzM+8vQCWeJPOSM997G8/Dk7Ty8dzBNan+wlV1C3AdnguoB5zylzTnuQ1VXYXnOsHjToxZOBeS8ezLPznLzMdzUf6+Jhb3c+e3Vwr8G8/39ZSznrfxfD9zRaQY2AhMaXRJx/dDPGf+2Xgu0M/Bc9EbVf0Qz4nIejy/yX+dxHqCntjANKY5RESBAU6bsjEmgFiNwBhjgpwlAmOMCXLWNGSMMUHOagTGGBPk/LLjp8TERE1LS3M7DGOM8SurV68+oKpJ9af7ZSJIS0tj1apVbodhjDF+RUQafNremoaMMSbIWSIwxpggZ4nAGGOCnE8TgYhMFs9AF1kick8D8/9bPINlrBWRjSJSIyLxvozJGGPMsXyWCJz+xJ/A09dIOjDD6VTsG6r6sKqOUtVReDqNWuT0pW6MMaaN+LJGMA7IUtVsp2OsuXhGtWrMDL49mpExxhgf82Ui6MmxvU7m0sigEiIShWeIvTcbW5iI3Coiq0RkVUFBQasGaowxwcyXzxE0NBBJY/1ZXAIsbqpZSFWfBp4GyMjIsH4xTJtSVYrLq9lfXM7B0koOlVVyuKyKssoajlbVUFFdC17dtUSGhxIZFkLHiFDiOoYTHxVBl+gIusZGEh8dgWdcGWPaB18mglyOHXkqhQZGtHJMx5qFTDtwtLKGzfnFbMkvYceBUrYXlLKrsJS8w0cprWx6vJa6Y/vxuu+KDAuhR1wHesVH0S8phj6J0QzsFkt6j07ERYW30pYY03y+TAQrgQEi0gfP8HLT8QwccgxndKGz8Ay6YUybqa1VthccYdWuQ6zedYh1OYfZXnCEWudAHhEaQlpiFH0SozmtfyLJnTvQPa4jCdERdI4Kp3NUBNERoXRwzv7rzvJVlaoa5WhVDUcrayg6WsWhskoOllayr7icvUXl7Dl8lF2Fpby+KueYBJPSpSMjUuIYkxrPmNQuDE3uRHio3eVtfMtniUBVq0XkDjwjVoUCz6tqpojMcubPdopeDvy73sDfxvjE3qKjfL61gC+zClmSdYDCUs8AX/HREZzSqzNThnUnPTmOIT1iSekSRWhIy5twRISIMCEiLIS4juF0j+vQaFlVZX9JBZvzS8jMKyIzr5i1uw8zf4NnHProiFDG903gtP6JnDkgkf5dY6xZybQ6v+yGOiMjQ62vIdMcqsrm/BIWZubz0aZ9bNxTDEBSbCRn9E9kQr8ExqbFk5YQ1a4OsPlF5azedYhl2YUszjpA9gHPeVJqQhTnDunGeendGJsWf0KJygQvEVmtqhnfmm6JwASiHQdKmbc2j/fW55G1/wgiMLp3F84d0o3vDO7KwG7+dWade6iMRVsL+OjrfSzeXkhldS3dOkVy0fBkLh2VzMiUOL/aHuMOSwQm4JVVVjN/Qz6vrcxhxc6DiMC4tHguGZnMBUO7kxTb2Jj3/qW0oppPNu/nvXV5fLalgMqaWgZ0jeGqjF5cProniTGBsZ2m9VkiMAEru+AI/7dsF2+syqWkopo+idFcmZHC5af0pEdcR7fD86ni8ireX7+X11flsGb3YcJDhSnDevC9U9MY3buz1RLMMSwRmICiqizNLuTpz7P5bEsB4aHChcN7cO34VMamdQnKA+C2fSXMWbH7m4Q4vGccN5/Rh4uG9yDM7jwyWCIwAaK2VlmQmc/sRdtZn1tEYkwk109IZcb4XnSNbfzunGBSWlHN21/t4YXFO9heUEpKl47cckZfrh7biw7hoW6HZ1xkicD4tboE8LePtrFlXwlpCVHcemY/rhjd0w5ujaitVT7atI/Zi7azZvdhusZGctvZ/Zg+rrftsyBlicD4JVXlsy0FPLhgM5vzS+ibFM2PzxnAxSOS7dbJFli6vZC/fLSVFTsO0r1TB350zgCuykixJqMgY4nA+J11OYf5nw82sSz7IKkJUdx57kAuGWkJ4ESpKku3F/LIv7ewZvdh+iVFc/fkwZyX3i0or6kEI0sExm/sLy7nTws289aaPcRHR/DjcwYwY1xvIsLs7LU1qCoLM/fx0ILNZB8oZWLfBH5z6VAGdY91OzTjY5YITLtXVVPLC4t38OjHWVRW13LT6X24fVI/YjtYR2y+UFVTy9wVu/nzh1spKa/m+gmp3HneQOI62v4OVI0lAl92OmdMs63edYj73trAln0lnDO4K7+8OJ0+idFuhxXQwkNDuH5iGhePSOZ/P9zKy0t38q/1e/n1JelcPKKHNRcFEasRGFeVlFfx4ILNvLJ8Nz06deB3U4dxbno3t8MKShv3FHHvWxvYsKeIswYm8YfLhtErPsrtsEwrsqYh0+58sa2Au99YT35xOTec2oefnT+Q6EirpLqpplZ5aclOHvn3FgS476IhXDOut9UOAoQlAtNuHKmo5oH3N/Hqit30S4rmkStHckrvLm6HZbzkHirj7jfXszirkDMGJPKn746gZ+fA7q4jGFgiMO3CV7sP8ZN/riXnYBm3nNGXO88baA83tVOqyivLd/PH+ZsICxH+eMVwLh6R7HZY5iQ0lgjsfjzTJmpqlcc/2ca02UuprlH++YOJ3HvhEEsC7ZiIcN2EVBb8+Ez6dY3hjjlf8bPX1nGkotrt0EwrswZZ43P7S8r58atrWZpdyKUjk/n9ZcPsFkU/0jshitd/MJFHP8ni8U+2sXrXQZ68dgzpyZ3cDs20EqsRGJ9asv0AF/7tS77KOcQjV47k0RmnWBLwQ2GhIfz0vIHMvXUiR6tquPzJxcxdsRt/bFo232aJwPiEqvLEp1lc9+xy4jqG8e7tpzNtTIrbYZmTNK5PPO//6AzGpsVzz1sbuOv19ZRX1bgdljlJ1jRkWl1pRTX//cY65m/I55KRyfzpiuF2W2gASYyJ5KWbxvHox9v428fb2LqvhKeuH0Oy3VXkt3xaIxCRySKyRUSyROSeRsqcLSJrRSRTRBb5Mh7je7sKS7niySUs2JjPLy4cwqPTR1kSCEChIcKd5w3kmZkZ7DhQyiWPfcny7EK3wzInyGeJQERCgSeAKUA6MENE0uuV6Qw8CVyqqkOBK30Vj/G9FTsOMvWJxeQXl/PijeO45cy+9iBSgDsvvRvv3H4acVHhXPvscl5bleN2SOYE+LJGMA7IUtVsVa0E5gJT65W5BnhLVXcDqOp+H8ZjfOjN1blc++wy4qMieOf20zhzYJLbIZk20r9rDO/cfhoT+yXw8zfW86cPNlNbaxeR/YkvE0FPwPv0INeZ5m0g0EVEPhOR1SIys7GFicitIrJKRFYVFBT4IFxzIlSV//33Fn72+jrGpsXz9m2nWWdxQahTh3Cev2Es147vzexF27l9zhq7iOxHfJkIGmoTqH+aEAaMAS4CLgDuF5GBDS1MVZ9W1QxVzUhKsrPN9qCqppa731zPo59kcVVGCi/dNI64KLs1NFiFh4bwh8uG8cuLhrAgM5/rn1tOUVmV22GZZvBlIsgFenl9TgHyGiizQFVLVfUA8Dkw0ocxmVZSVlnNrS+v4rVVufz4nAE8+N0RhNuwh0FPRLj5jL48NuMU1uUUMW32EvIOH3U7LHMcvvzPXQkMEJE+IhIBTAfm1SvzLnCGiISJSBQwHtjkw5hMKzhcVsk1zyxn0dYCHrh8GHeeN9AuCptjXDwimZduGkd+UTlXPLmErP0lbodkmuCzRKCq1cAdwEI8B/fXVDVTRGaJyCynzCZgAbAeWAE8q6obfRWTOXn7S8qZ/vQyvs4r5u/XjeHa8aluh2TaqYn9Enht1kSqa5WrnlrGxj1FbodkGmG9j5pmyz1UxnXPLmdfcQXPzMzg9AGJbodk/MCOA6Vc9+xyio9W8fyNYxmbFu92SEHLeh81J2V3YRlXP7WMg6WV/OPm8ZYETLP1SYzm9VkTSYqN5PrnlrMk64DbIZl6LBGY49pVWMrVTy+ltLKaObdMYEyqDSJjWia5c0demzWR1PhobnppJYstGbQrlghMk3YeKOXqp5ZRXlXDnJsnMKxnnNshGT+VGBPJnFvGe5LBiyv5cpslg/bCEoFp1O7CMqY/vYzKmlrm3DLB+p83Jy3BSQZ9EqP5/ksrrZmonbBEYBqUd/goM55ZRnl1Da/cPJ4hPSwJmNbhSQYTSE2I4uaXV7Fq50G3Qwp6lgjMt+wvKeda5y6P/7vJkoBpffHREfzj5vF069SBG19Yyfrcw26HFNQsEZhjHC6rdG4RLefFm8YyPMWuCRjf6BrbgVduHk+njuHMfH4FW/fZQ2dusURgvlFWWc1NL65k54Eynp2ZwZhUu9/b+FZy5468essEIkJDmPncCnIPlbkdUlCyRGAATwdyt72yhrU5h3l0xihO7W/PCZi20Tshipe/P46yympmPreCwiMVbocUdCwRGGprlZ+/sZ7PthTwwOXDmTysh9shmSAzuHsnnrthLHsOH+XGF1dypKLa7ZCCiiUCw8P/3sLbX+3hrvMHMmNcb7fDMUFqbFo8T147msy8Yu6Ys4bqmlq3QwoalgiC3CvLd/H3z7Zz7fje3D6pv9vhmCB3zpBu/H7qMD7bUsD972bij32h+SMbVTyIfbp5P/e/s5HvDO7Kby8dal1Jm3bhmvG9yT1UxpOfbadXfEduO9tOUHzNEkGQyswr4vY5a0hP7sRjM04hzAaVMe3IXecPIvfQUR5asIVeXaK4ZGSy2yEFNPvvD0L7S8q55aVVxHUM5/nvjSU60s4HTPsSEiI8fOUIxqZ14a7X17Eu57DbIQU0SwRBpryqhh/832oOllXyzMwMunbq4HZIxjQoMiyUv183hsSYSG55eRX5ReVuhxSwLBEEEVXl3rc28NXuw/zlqlHWk6hp9xJjInnuhgxKK6q55eVVHK2scTukgGSJIIg880U2b3+1h5+eN5Apw+1ZAeMfBnfvxN+mn8LGvCLufnO93UnkA5YIgsSX2w7wpw82M2VYd374HbsLw/iXc9O7cdf5g5i3Lo/nvtzhdjgBx6eJQEQmi8gWEckSkXsamH+2iBSJyFrn9StfxhOscg6W8cNX19AvKYaHrxxpt4kav3Tb2f24YGg3/ueDzSzZbuMYtCafJQIRCQWeAKYA6cAMEUlvoOgXqjrKef3OV/EEq/KqGmb9YzXVNcpT148hxu4QMn5KRPjzVaPokxjNHXO+Ys/ho26HFDB8WSMYB2SparaqVgJzgak+XJ9pwK/fzSQzr5i/XD2KvkkxbodjzEmJiQzjqevHUFXt6SSxstq6oWgNvkwEPYEcr8+5zrT6JorIOhH5QESGNrYwEblVRFaJyKqCgoLWjjUgvbE6l3+uyuH2Sf04N72b2+EY0yo8TZwjWJdzmD/O3+R2OAHBl4mgoYbo+pf71wCpqjoSeAx4p7GFqerTqpqhqhlJSUmtF2WA2pJfwi/f2cCEvvHcee5At8MxplVNHtaDm07rw4tLdvL++r1uh+P3fJkIcoFeXp9TgDzvAqparKpHnPfzgXARsY7wT1JpRTX/9cpqYiLDeXS6dR9hAtM9UwYzqldn7n5zPTsOlLodjl/z5RFiJTBARPqISAQwHZjnXUBEuotzC4uIjHPiKfRhTEHh/nc3svNAKY/OGGVPDpuAFREWwhPXjiYsVLhjzhoqqu1hsxPls0SgqtXAHcBCYBPwmqpmisgsEZnlFJsGbBSRdcCjwHS1p0VOyttf5fLWmj386JwBnNrPKlcmsPXs3JGHp40kM6+YhxZscTscv+XTewmd5p759abN9nr/OPC4L2MIJrsKS/nl2xsZm9aFO2xsARMkzkvvxsyJqTz35Q5OH5DIpEFd3Q7J71jjcYCorK7lR69+RWiI8Fe7LmCCzH0XDmFw91juem0d+0usc7qWsqNFgPjrR1tZl1vEg98dQc/OHd0Ox5g21SE8lMdmnEJpZTV3vW79EbWUJYIAsHLnQWYv2s7VGb2sMzkTtAZ0i+UXF6Xz+dYC/rFsl9vh+BVLBH7uSEU1P31tLT27dOT+SxrqwcOY4HHd+N6cNTCJB+ZvYnvBEbfD8RuWCPzcH/71NXsOHeUvV42yfoRM0BMRHp42gg7hofz0n2upqrEuKJrDEoEf++jrfcxdmcMPzupHRlq82+EY0y507dSBP14+nHW5RTzxaZbb4fgFSwR+6nBZJfe+vYHB3WOtCwlj6rlweA8uP6Unj3+SRWZekdvhtHuWCPzU7977mkOllfz5qpFEhNnXaEx9v74knS7REdz1+nprIjoOO4L4oY837eOtr/Zw26T+DE22cYeNaUjnqAgeuGwYm/YW8+Sn290Op12zROBnisqquM9pErKnh41p2vlDuzN1VDKPfbKNr/OK3Q6n3bJE4GcemP81B45U8vA0axIypjl+c8lQOkeF8/M311FtTUQNsiOJH1mSdYDXVuVyyxl9GZ5iTULGNEeX6Ah+e+kwNu4p5oXFO90Op12yROAnyqtquO/tDaQmRPGTcwe4HY4xfuXC4d05Z3BX/vfDreQcLHM7nHbHEoGfeOyTbewsLOOPlw+nQ3io2+EY41dEhN9fNowQgV++s9H6IqrHEoEf2JxfzFOLsvnu6BRO629jDBhzIpI7d+SuCwaxaGsB89blHf8Pgoglgnautla5760NdOoYzi8uGuJ2OMb4tZkT0xiZEsfv3vuaorIqt8NpNywRtHOvr85hze7D3DtlMPHREW6HY4xfCw0RHrh8OIfKKnnk3zaiWR1LBO3YodJK/vTBZjJSu/Dd0Sluh2NMQBjWM47rJ6Tyj+W72JBr3U+AJYJ27aGFWygur/Zc5AoRt8MxJmD89PxBJERH8st3N1JbaxeOLRG0U2tzDjN35W5uODWNIT06uR2OMQElrmM4v7hoMOtyDjN3ZY7b4bjOp4lARCaLyBYRyRKRe5ooN1ZEakRkmi/j8Re1tcqv3t1IUkykPTNgjI9cNqon4/vE89DCzRwqrXQ7HFc1OxGISJKIPCIi80Xkk7pXE+VDgSeAKUA6MENEvjWEllPuQWBhy8MPTG+syWV9bhH3XjiY2A7hbodjTEASEX47dSjFR6v460db3Q7HVS2pEbwCbAL6AL8FdgIrmyg/DshS1WxVrQTmAlMbKPdD4E1gfwtiCVgl5VU8tGALo3t35rJRPd0Ox5iANrh7J64dn8o/lu9mS36J2+G4piWJIEFVnwOqVHWRqt4ETGiifE/Au/Et15n2DRHpCVwOzD7eykXkVhFZJSKrCgoKWhC2f3n80ywOHKng15cMRcQuEBvjaz89byAxkWH87l+ZQfvEcUsSQd3TF3tF5CIROQVo6p7Gho5i9ffyX4G7VbXmeCtX1adVNUNVM5KSkpoVsL/ZcaCU57/cwbQxKYzs1dntcIwJCl2iI7jz3AEszirkw6/3uR2OK1qSCP4gInHAz4C7gGeBO5sonwv08vqcAtR/rjsDmCsiO4FpwJMiclkLYgooD7y/iYjQEH5+wSC3QzEmqFw7IZUBXWP4w/ubqKg+7nlpwGkyEYjIBSKSCKCq/1LVIlXdqKqTVHWMqs5r4s9XAgNEpI+IRADTgWPKq2ofVU1T1TTgDeA2VX3nZDbIXy3LLuSjTfu4bVJ/unbq4HY4xgSV8NAQ7r84nd0Hy/i/pbvcDqfNhR1nfj7wqoj8BPhBQwVU9UeNTK8WkTvw3A0UCjyvqpkiMsuZf9zrAsGitlb54/xN9IjrwPdP7+N2OMYEpTMHJnHGgEQe+ySLK8f0Ii4qeO7YazIRqOo6p6lmKLC6pQtX1fnA/HrTGkwAqnpDS5cfKN5bn8f63CL+fOVI62LaGBfdd+EQLnz0Cx7/dBu/uOhbd7sHrOPVCFDVUmCF80JEOnkma/Dea9WKKqpreHjhFtJ7dOLyU+x2UWPcNKRHJ6aNTuGlJbuYOTGNXvFRbofUJlryQFmGiGwA1gMbRWSdiIzxXWjB4eUlu8g9dJT7Lhxi/QkZ0w787PxBhITAwwuDp3fSltw19Dyei7lpqpoK3A684JuwgkNRWRWPfbKNswYmcfoAG3DGmPage1wHbj69L/PW5QVN76QtSQQlqvpF3QdV/RKw5qGT8PQX2ykur+buyYPdDsUY4+UHZ/WlS1Q4DwfJmAUtSQQrROQpETlbRM4SkSeBz0RktIiM9lWAgWp/STnPf7mTS0cmk55svYsa057EdgjntrP78/nWApZlF7odjs+1JBGMAgYCvwZ+AwwBTgX+DDzS2oEFuic+yaKyppY7zxvodijGmAZcPzGV7p068NCCzQHf9cRx7xqqo6qTfBlIMMk5WMacFbu5KqMXfRKj3Q7HGNOADuGh/OicAdz39gY+2byfc4Z0czskn2nJXUNxIvK/dR2/icifnS4nTAv99aNthIjw43NsrAFj2rMrM1JIS4ji4YVbAnoks5beNVQCXOW8irG7hlpse8ER3v4ql5kTU+keZ11JGNOehYeGcOd5A9mcX8L7G/a6HY7PtCQR9FPVXzvjC2Sr6m+Bvr4KLFA99vE2IsNCmXVWP7dDMcY0w8UjkhnQNYZHP95GTYDWClqSCI6KyOl1H0TkNOBo64cUuLL2H2HeujxmnppKQkyk2+EYY5ohNET40TkD2Lb/CPMDtFbQkkQwC3hCRHY63UY/TiMd0ZmGPf6JpzZw6xlWkTLGn1w4vEdA1wqalQiccYWvU9WRwAhghKqeoqrrfRpdALHagDH+K9BrBc1KBM4IYmOc98WqWuzTqAKQ1QaM8W+BXCtoSdPQVyIyT0SuF5Er6l4+iyyAZBdYbcAYf+ddK/hgY2DVClqSCOKBQuA7wCXO62JfBBVoZi/aTnhoCLdYbcAYv3bh8B70TYrmyU+3B9TTxs1+shh4VlUXe09w7hwyTcg7fJS31uzh2vG9SbTagDF+LTRE+K+z+vHfb6zns60FTBrU1e2QWkVLagSPNXOa8fLMF9kA3HKm1QaMCQSXndKTnp078vdPt7sdSqs5bo1ARCbi6VwuSUR+6jWrE56xiE0jCo9U8OqK3Vx2Sk9SugTHSEfGBDpPM28ffvPe16zYcZBxfeLdDumkNadGEAHE4EkasV6vYmBaU38oIpNFZIuIZInIPQ3Mnyoi60VkrdN/0ekNLcdfvbB4JxXVtfYUsTEB5uqxvUmIjuDJz7LcDqVVNGfM4kXAIhF5UVV3NXfBzrMHTwDnAbnAShGZp6pfexX7GJinqioiI4DXgIAYpaWkvIqXlu5k8tDu9O8a43Y4xphW1DEilJtO78PDC7ewcU8Rw3r6d/+bLblGECkiT4vIv0Xkk7pXE+XHAVlOv0SVwFxgqncBVT2i/7n0Hg0EzGX4uStyKCmv5r/OttqAMYHo+ompxESGfXMd0J+1JBG8DnwF/BL4b69XY3oCOV6fc51pxxCRy0VkM/A+cFNjCxORW+u6wC4oKGhB2G2vqqaWFxbvYHyfeEakdHY7HGOMD3TqEM70sb341/q97Dns392utSQRVKvq31V1haqurns1UV4amPatM35VfVtVBwOXAb9vbGGq+rSqZqhqRlJSUgvCbnvzN+wlr6icW+1OIWMC2o2n9wHgxcU7XI7k5LQkEbwnIreJSA8Ria97NVE+F+jl9TkFyGussKp+DvQTkcQWxNTuqCrPfJFN36TogLnH2BjTsJ6dO3LR8B68uiKH4vIqt8M5YS1JBN/D0xS0BFjtvFY1UX4lMEBE+ohIBDAdmOddQET6i4g470fjuUPJr0eKXppdyMY9xdxyRl9CQhqqFBljAsktZ/TlSEU1/1yRc/zC7VRLxizu05IFq2q1iNwBLMTzvMHzqpopIrOc+bOB7wIzRaQKz9gGV6ufP7f97Bc7SIiO4PJTvnU5xBgTgIanxDGhbzzPL97BDaelER7akvPr9uG4EYvIz73eX1lv3h+b+ltVna+qA1W1n6o+4Eyb7SQBVPVBVR2qqqNUdaKqfnlim9E+ZO0/wieb9zNzYhodwu1ZO2OCxS1n9GVvUbnfdlHdnNQ13ev9vfXmTW7FWPzeS0t2EhEWwnUTersdijGmDU0a1JW+idG8sHin26GckOYkAmnkfUOfg1ZxeRVvrsnlkhHJ1tW0MUEmJESYOTGVtTmHWZdz2O1wWqw5iUAbed/Q56D1xqpcyipruOHUNLdDMca44LtjUoiOCOWlJTvdDqXFmpMIRopIsYiUACOc93Wfh/s4Pr9QW6u8vHQnY1K7MDzFvx81N8acmNgO4Uwbk8K/1u/lwJEKt8NpkeMmAlUNVdVOqhqrqmHO+7rP4W0RZHu3aGsBOwvL+J7VBowJajNPTaOyppZXl+92O5QW8b/7nNqhF5fspGtsJFOGdXc7FGOMi/olxXDGgET+sXwXVTW1bofTbJYITlJ2wREWbS3g2vGpfnn/sDGmdd1wahr7iitYsDHf7VCazY5cJ2nO8t2EhQgzxvc6fmFjTMCbNKgrveI78sryZvfa7zpLBCehvKqGN9bkcv7QbnSN7eB2OMaYdiAkRJg+tjfLsg+yveCI2+E0iyWCk7BgYz6Hy6q4Zlyq26EYY9qRKzNSCAsRv7lobIngJMxZvpvUhChO7ZfgdijGmHaka2wHzh/ajTfW5FJeVeN2OMdlieAEbdtXwoqdB5kxrrf1MmqM+ZZrxqVyuKzKLy4aWyI4QXNW7CY8VJg2JsXtUIwx7dCp/RJITYhijh80D1kiOAHlVTW8tWYPFwztTqL1K2SMaUBIiDBjXG9W7DxI1v4St8NpkiWCE/DBxr0UHa3imnHWy6gxpnHTxqQQHirMWd6+B62xRHACXl+VS+/4KCbaRWJjTBMSYyI5d0g33lm7h8rq9vuksSWCFso9VMaS7YVMG5OCM8qmMcY06sqMFA6WVvLZlv1uh9IoSwQt9ObqPQBcMdqGojTGHN+ZA5JIjInk9dW5bofSKEsELVBbq7yxJodT+yWQ0iXK7XCMMX4gLDSEK0b35NPN+9tt99SWCFpg5c6D5Bw8ypUZdsuoMab5po1JobpWeXdtntuhNMiniUBEJovIFhHJEpF7Gph/rYisd15LRGSkL+M5WW+sziUmMowLhlp308aY5hvYLZaRKXG80U6bh3yWCEQkFHgCmAKkAzNEJL1esR3AWao6Avg98LSv4jlZpRXVvL9hLxcN70FURJjb4Rhj/My0MSls2lvMxj1FbofyLb6sEYwDslQ1W1UrgbnAVO8CqrpEVQ85H5cB7bbN5YON+ZRV1jDNmoWMMSfgkpHJRISGtMtagS8TQU/A+ymKXGdaY74PfNDYTBG5VURWiciqgoKCVgqx+d5du4de8R3JSO3S5us2xvi/zlERnDOkK/9av5fqdjZ6mS8TQUM32WuDBUUm4UkEdze2MFV9WlUzVDUjKSmplUJsnoKSChZnHWDqyJ727IAx5oRNHZXMgSMVLM0udDuUY/gyEeQC3sN2pQDfumQuIiOAZ4Gpqtq+9o7j/fV51KrnSzTGmBN19qCuxEaGtbu7h3yZCFYCA0Skj4hEANOBed4FRKQ38BZwvapu9WEsJ+XddXkM6dGJAd1i3Q7FGOPHOoSHMnlYdxZuzG9X4xT4LBGoajVwB7AQ2AS8pqqZIjJLRGY5xX4FJABPishaEVnlq3hO1O7CMr7afZhLR1ptwBhz8i4dlUxJRXW76nLCp/dBqup8YH69abO93t8M3OzLGE7We+s9VbhLRvZwORJjTCCY2DeBxJhI3l2bx+Rh7eO4Yk8WN0FVeeerPYxN62JdShhjWkVYaAgXj+jBx5v3U1xe5XY4gCWCJm3OL2Hb/iNcOso6mDPGtJ6po5KprK5lYTsZxtISQRPeW5dHaIhw4TDrUsIY03pG9epM7/go5q1rH3cPWSJohKrywcZ8Tu2XQIINR2mMaUUiwoXDe7B0eyFFZe43D1kiaMTWfUfYcaDUOpgzxvjE5GHdqa5VPtq0z+1QLBE0ZsHGfETg/KHd3A7FGBOARqbE0SOuAx+0g+sElgga8cHGvWSkdqFrbAe3QzHGBCAR4YKh3fl8WwGlFdWuxmKJoAE7D5SyOb+k3dzja4wJTFOGdaeyupZPXX64zBJBAxZkeqpqF1izkDHGhzLS4kmIjmCBy81DlggasGBjPsN7xtlDZMYYnwoNEc4f2o1PN+93te8hSwT17C06ytqcw0y2ZweMMW1g8rAelFbW8MW2A67FYImgnron/SwRGGPawsS+CcR2COODjXtdi8ESQT0fbtpH/64x9EuKcTsUY0wQiAgL4dwhnuahmtoGx+7yOUsEXo5UVLNix0HOGdzV7VCMMUFk0uCuHCqrYm3OYVfWb4nAy5fbDlBVo0yyRGCMaUNnDUgiRODTze7cRmqJwMunm/cT2yGMMTZAvTGmDcVFhTMmtYtrzxNYInCoKp9u2c+ZA5IID7XdYoxpW5MGdyUzr5h9xeVtvm474jky84rZX1JhzULGGFd8xzn2uDGEpSUCR13b3FkDk1yOxBgTjAZ1i6VHXAc+ceE6gU8TgYhMFpEtIpIlIvc0MH+wiCwVkQoRucuXsRzPp1v2MzIljqRYG3vAGNP2RIRJg7vy5bYDVFbXtum6fZYIRCQUeAKYAqQDM0QkvV6xg8CPgEd8FUdzHCyt5Kucw9YsZIxx1XcGdaW0soaVOw+26Xp9WSMYB2SparaqVgJzganeBVR1v6quBFwdomfR1v2owqRBlgiMMe45tX8CEWEhbd485MtE0BPI8fqc60w7ISJyq4isEpFVBQUFJx2ct8+2FJAYE8HwnnGtulxjjGmJqIgwJvRNaPPbSH2ZCKSBaSf8/LSqPq2qGaqakZTUehd0VZXFWYWc1j+RkJCGQjbGmLZzRv9EsgtK2/Q2Ul8mglygl9fnFCDPh+s7IdsLjnDgSAUT+ya4HYoxxjCxn+dYtHR7YZut05eJYCUwQET6iEgEMB2Y58P1nZC6nV23840xxk1DenQirmN4myaCMF8tWFWrReQOYCEQCjyvqpkiMsuZP1tEugOrgE5ArYj8BEhX1WJfxVXf0uxCkuM60DveBqExxrgvNEQY3yeepdkBkAgAVHU+ML/etNle7/PxNBm5orZWWZZ9kLMHJSFi1weMMe3DxH4J/PvrfeQeKmuTkRKD+snirftLOFhayan9Et0OxRhjvtHW1wmCOhEsybLrA8aY9mdg11jioyParHkoqBPB0uxCesdH0bNzR7dDMcaYb4SECBP7JrBseyGqvh+1LGgTQU2tsjy70G4bNca0SxP6JZBXVM6uwjKfrytoE8GmvcUUl1dbs5Axpl2qO0lti+ahoE0E9vyAMaY965cUTVJsZJtcMA7aRLAsu5C+idF069TB7VCMMeZbRDzXCZZm+/46QdAmgnW5RZzS28YmNsa0X6N7d6agpIJ9xRU+XU9QJoL9xeUcOFLB0ORObodijDGNGur0iPz13iKfricoE0HmXk8PFumWCIwx7diQHp5jVOYe3/a6E5SJ4Os8SwTGmPYvJjKMtIQoMvMsEbS6zLwiesdH0alDuNuhGGNMk4Ymx5FpTUOtLzOv2K4PGGP8QnpyJ3IOHqXoqO9G9A26RFBcXsWuwjJLBMYYv1B3rPrah81DQZcINjk7c2iyjU9sjGn/6o5VmXm+ax4KukSQ+U0isBqBMab9S4qNpGtspNUIWlNmXjGJMZF0tSeKjTF+YmhyJ77ea4mg1WTmFdlto8YYvzI0OY5t+49QXlXjk+UHVSKoqK4ha/8RaxYyxviVocmdqKlVtu4r8cnygyoRbM0/QnWtWiIwxviVulYMXz1Y5tNEICKTRWSLiGSJyD0NzBcRedSZv15ERvsynrqr7nbHkDHGn/TqEkVsZJjP7hzyWSIQkVDgCWAKkA7MEJH0esWmAAOc163A330VD3iyaUxkGKnxUb5cjTHGtKqQEGFIcie/rBGMA7JUNVtVK4G5wNR6ZaYCL6vHMqCziPTwVUBf7y1mSI9YQkLEV6swxhifGJrcic17S6ipbf2xCcJafYn/0RPI8fqcC4xvRpmewN76CxORW/HUGujdu/cJBTSqV2d6xNlto8YY/3Nav0SKyqo4UlFNXMfW7SfNl4mgodPu+qmsOWU8E1WfBp4GyMjIOKGUeP/F9VumjDHGP5yb3o1z07v5ZNm+bBrKBXp5fU4B8k6gjDHGGB/yZSJYCQwQkT4iEgFMB+bVKzMPmOncPTQBKFLVbzULGWOM8R2fNQ2parWI3AEsBEKB51U1U0RmOfNnA/OBC4EsoAy40VfxGGOMaZgvrxGgqvPxHOy9p832eq/A7b6MwRhjTNOC6sliY4wx32aJwBhjgpwlAmOMCXKWCIwxJsiJ53qtfxGRAmDXCf55InCgFcPxB7bNwSHYtjnYthdOfptTVTWp/kS/TAQnQ0RWqWqG23G0Jdvm4BBs2xxs2wu+22ZrGjLGmCBnicAYY4JcMCaCp90OwAW2zcEh2LY52LYXfLTNQXeNwBhjzLGCsUZgjDHGiyUCY4wJcgGbCERksohsEZEsEbmngfkiIo8689eLyGg34mwtzdjea53tXC8iS0RkpBtxtqbjbbNXubEiUiMi09oyPl9ozjaLyNkislZEMkVkUVvH2Nqa8duOE5H3RGSds81+3YuxiDwvIvtFZGMj81v/2KWqAffC0+31dqAvEAGsA9LrlbkQ+ADPKGkTgOVux+3j7T0V6OK8n+LP29vcbfYq9wmeXnCnuR13G3zPnYGvgd7O565ux90G23wf8KDzPgk4CES4HftJbPOZwGhgYyPzW/3YFag1gnFAlqpmq2olMBeYWq/MVOBl9VgGdBaRHm0daCs57vaq6hJVPeR8XIZnNDh/1pzvGOCHwJvA/rYMzkeas83XAG+p6m4AVfX37W7ONisQKyICxOBJBNVtG2brUdXP8WxDY1r92BWoiaAnkOP1OdeZ1tIy/qKl2/J9PGcU/uy42ywiPYHLgdkEhuZ8zwOBLiLymYisFpGZbRadbzRnmx8HhuAZ5nYD8GNVrW2b8FzR6scunw5M4yJpYFr9+2SbU8ZfNHtbRGQSnkRwuk8j8r3mbPNfgbtVtcZzsuj3mrPNYcAY4BygI7BURJap6lZfB+cjzdnmC4C1wHeAfsCHIvKFqhb7ODa3tPqxK1ATQS7Qy+tzCp6zhZaW8RfN2hYRGQE8C0xR1cI2is1XmrPNGcBcJwkkAheKSLWqvtMmEba+5v6uD6hqKVAqIp8DIwF/TQTN2eYbgT+ppwE9S0R2AIOBFW0TYptr9WNXoDYNrQQGiEgfEYkApgPz6pWZB8x0rsBPAIpUdW9bB9pKjru9ItIbeAu43o/PDr0dd5tVtY+qpqlqGvAGcJsfJwFo3u/6XeAMEQkTkShgPLCpjeNsTc3Z5t14akCISDdgEJDdplG2rVY/dgVkjUBVq0XkDmAhnrsOnlfVTBGZ5cyfjecukguBLKAMz1mFX2rm9v4KSACedM6Qq9WPe25s5jYHlOZss6puEpEFwHqgFnhWVRu8DdEfNPN7/j3woohswNNscreq+m331CLyKnA2kCgiucCvgXDw3bHLupgwxpggF6hNQ8YYY5rJEoExxgQ5SwTGGBPkLBEYY0yQs0RgjDFBzhKBMcYEOUsExhgT5CwRGHOSRKS/iBSIyE5nHICDIrJdRDq5HZsxzWGJwJiTpKpZwJd4uu8Yheep3ssCuNMzE2AsERjTOoYCdV05DAa2uBiLMS1iicCYkyQiHYEOqnpIRHoBhc4gKsb4BUsExpy8dP7Tw+cQ/Lu3TxOELBEYc/K8m4WOAqNFZLCL8RjTItb7qDHGBDmrERhjTJCzRGCMMUHOEoExxgQ5SwTGGBPkLBEYY0yQs0RgjDFBzhKBMcYEuf8HC8VaXTarjkQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "pi = np.linspace(0.0000001,0.999999,100)\n", - "H = -(pi*np.log(pi) + (1-pi)*np.log(1-pi))\n", - "plt.plot(pi,H)\n", - "plt.title('Entropía de distribuciones Bernoulli')\n", - "plt.xlabel( '$\\pi$')\n", - "plt.ylabel('Entropía')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Como se observa la entropía mide de la misma forma que la varianza pero en una escala diferente. Por otro lado observe que en el cálculo de la entropía no se utilizan los valores que toma la variable aleatoria. Solamente se requiere la función de probabilidad de la variable. \n", - "\n", - "En otras palabras se dice que **la entropía no depende de la escala de la variable**. Solamente de su estructura de probabilidad. Por su parte la varianza sí es dependiente de la escala de la variable aleatoria." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Referencias" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. [Alvaro Montenegro y Daniel Montenegro, Inteligencia Artificial y Aprendizaje Profundo, 2021](https://github.com/AprendizajeProfundo/Diplomado)\n", - "1. [Alvaro Montenegro, Daniel Montenegro y Oleg Jarma, Inteligencia Artificial y Aprendizaje Profundo Avanzado, 2022](https://github.com/AprendizajeProfundo/Diplomado-Avanzado)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - }, - "toc-autonumbering": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git "a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Regresi\303\263n-Lineal-Pyton-Copy1-checkpoint.ipynb" "b/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Regresi\303\263n-Lineal-Pyton-Copy1-checkpoint.ipynb" deleted file mode 100644 index ff649c8c..00000000 --- "a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Regresi\303\263n-Lineal-Pyton-Copy1-checkpoint.ipynb" +++ /dev/null @@ -1,612 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#
Regresión Lineal en Python
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introducción" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Basado en Regresión Lineal - Colab](https://colab.research.google.com/github/RFajardoMonzon/MachineLearningCourse/blob/master/Linear_regression_Regresi%C3%B3n_Lineal.ipynb#scrollTo=p5PAhkSzbkRi)\n", - "\n", - "En esta lección hacemos una primera práctica de modelamiento con un subconjunto muy famoso de datos: El California housing dataset.\n", - "\n", - "El propósito del ejercicio es predecir el valor de las casas en California, basados en 8 variables (features) que se cree están asociadas al precio. Son $20.640$ registros." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importamos la librerías que usaremos" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "g7pqJJrJd8v8" - }, - "outputs": [], - "source": [ - "# Importamos la librería SKLearn, que trae bastantes funcionalidades de Machine\n", - "# Learning. Esta librería también incluye algunos datasets muy conocidos como por\n", - "# ejemplo el que vamos a utilizar hoy: El California housing dataset.\n", - "import sklearn as skl\n", - "\n", - "# Importamos la función que nos carga los datos. OJO! Esta forma de cargar los\n", - "# datos no es habitual. Lo hacemos así porque la librería nos proporciona este\n", - "# dataset, que suele ser utilizado comunmente para pruebas. Sin embargo, lo\n", - "# habitual sería cargar este dataset nosotros mismos.\n", - "from sklearn.datasets import fetch_california_housing\n", - "\n", - "import numpy as np\n", - "import scipy as sc\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Lectura y documentación de los datos" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 904 - }, - "id": "cBF-24BkiruX", - "outputId": "a3d0f638-02f7-436c-d318-9ef0f9e3f77e" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - ".. _california_housing_dataset:\n", - "\n", - "California Housing dataset\n", - "--------------------------\n", - "\n", - "**Data Set Characteristics:**\n", - "\n", - " :Number of Instances: 20640\n", - "\n", - " :Number of Attributes: 8 numeric, predictive attributes and the target\n", - "\n", - " :Attribute Information:\n", - " - MedInc median income in block group\n", - " - HouseAge median house age in block group\n", - " - AveRooms average number of rooms per household\n", - " - AveBedrms average number of bedrooms per household\n", - " - Population block group population\n", - " - AveOccup average number of household members\n", - " - Latitude block group latitude\n", - " - Longitude block group longitude\n", - "\n", - " :Missing Attribute Values: None\n", - "\n", - "This dataset was obtained from the StatLib repository.\n", - "https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html\n", - "\n", - "The target variable is the median house value for California districts,\n", - "expressed in hundreds of thousands of dollars ($100,000).\n", - "\n", - "This dataset was derived from the 1990 U.S. census, using one row per census\n", - "block group. A block group is the smallest geographical unit for which the U.S.\n", - "Census Bureau publishes sample data (a block group typically has a population\n", - "of 600 to 3,000 people).\n", - "\n", - "An household is a group of people residing within a home. Since the average\n", - "number of rooms and bedrooms in this dataset are provided per household, these\n", - "columns may take surpinsingly large values for block groups with few households\n", - "and many empty houses, such as vacation resorts.\n", - "\n", - "It can be downloaded/loaded using the\n", - ":func:`sklearn.datasets.fetch_california_housing` function.\n", - "\n", - ".. topic:: References\n", - "\n", - " - Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,\n", - " Statistics and Probability Letters, 33 (1997) 291-297\n", - "\n" - ] - } - ], - "source": [ - "# Los datos cargados desde la librería Sklearn contienen una descripción del\n", - "# dataset que estamos cargando, almacenado en el atributo DESCR.\n", - "\n", - "california_dataset = fetch_california_housing()\n", - "\n", - "print(california_dataset.DESCR)\n", - "\n", - "X = california_dataset.data\n", - "Y = california_dataset.target\n", - "\n", - "# Guardamos información de las dimensiones de nuestro dataset. Recuerda: \n", - "# n = número de ejemplos que tenemos de nuestros datos y\n", - "# p = número de características que tenemos de cada datos.\n", - "# ar = promedio de habitaciones por hogar\n", - "\n", - "n, p = X.shape\n", - "ar = X[:, 2] #rm" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 8.30140000e+00, 2.10000000e+01, 6.23813708e+00, 9.71880492e-01,\n", - " 2.40100000e+03, 2.10984183e+00, 3.78600000e+01, -1.22220000e+02])" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X[1]\n", - "\n", - "# Aquí voy" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "diQ3uwM5uuTb" - }, - "source": [ - "## Análisis exploratorio inicial " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "diQ3uwM5uuTb" - }, - "source": [ - "Hoy nos centraremos en modelar la relación existente entre las variables **AveRoom** (promedio de habitaciones por hogar) y **MEDV** (Valor medio de la vivienda). \n", - "\n", - "Vamos a primero comenzar entendiendo la naturaleza de nuestros datos, realizando un análisis exploratorio preliminar. Recuerde, aquí hacemos uso de las herramientas estadísticas y matemáticas aprendidas para obtener una mejor imagen de lo que los datos representan. \n", - "\n", - "- **¿Qué preguntas se quieren responder con estas herramientas?**\n", - "\n", - "---\n", - "\n", - "\n", - "1. **¿Existe alguna relación entre la variable RM y MEDV?** Demostrar la existencia de dicha relación desde dos vertientes diferentes: grafica un *scatter plot* con cada variable en un eje que te permita visualizar algún patrón identificable. También, utilizar una medida estadística como la correlación entre dos variables r para comprobar cuantitativamente dicha relación. ¿Son coherentes ambos análisis?¿Es coherente con lo que se puede esperar de manera intuitiva?\n", - "\n", - "2. **¿Cúal es el precio medio de las viviendas cuyo número medio de habitaciones oscila entre 5 y 6?** Aquí nos podemos apoyar en la función ***np.logical_and()*** que sirve para combinar dos condiciones diferentes.\n", - "\n", - "3. **¿Se identifica algún fenómeno anómalo en la distribución de los datos?** Realizar un histograma para la variable MEDV. Aquí se recomienda utilizar un valor elevado de *bins*, por encima de 100, para remarcar el efecto de la anomalía. ¿De qué se trata?¿Cree que se trata de mediciones reales o es fruto de un preprocesamiento previo de los datos?\n", - "\n", - "**Consejo:** cuando al hacer un *scatter plot* haya una gran acumulación de puntos en una zona de la gráfica que no te permita identificar la densidad de puntos que hay, es una buena idea añadir algo de transparencia al color de dichos puntos. Esto se consigue con el atributo ***alpha*** de la función ***plot()***.\n", - "\n", - "Aquí van los primeros códigos." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "pooVJc8b6WEE" - }, - "outputs": [], - "source": [ - "\n", - "def relation_rm_medv(rm, means):\n", - " plt.scatter(rm, means, alpha=0.25)\n", - " plt.title(\"RM contra MEDV\")\n", - " plt.show()\n", - " return np.corrcoef(rm, means)[0, 1] # se recibe uma matriz de correlaciones. Se extrae la correlación\n", - " \n", - "def price_mean(rm, means):\n", - " filtered_means = means[np.logical_and(rm > 5, rm < 6)]\n", - " return np.mean(filtered_means) * 1000\n", - "\n", - "def medv_hist(medv):\n", - " plt.hist(medv, bins=500)\n", - " plt.show()\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 567 - }, - "id": "GM9Ll85Detyk", - "outputId": "fded2f02-29a3-4749-f849-1214c6218363" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEICAYAAACpqsStAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABa00lEQVR4nO39e5Bk93XfCX5+95U335n1ruonCt3oBgEIINgEQBFDkaa1IdqSqPFKsmdWljzjGW5seHY8u7NryY6Z9ew6JkazMeH1eHdiIrTyWtTIkkVzLFG0hjI1FEkJCBEQQIJEg+hGP9Bd3dVdr8zKd973b/+4mdlZ3VVd2dWVVZVVv09Eo1D5uPd3b1aee+4533OOkFKiUCgUitFE2+8FKBQKhWLnKCOuUCgUI4wy4gqFQjHCKCOuUCgUI4wy4gqFQjHCKCOuUCgUI4wy4gqFQjHCKCOueGyEEDeEEG0hREMIsSSE+A0hRKbv+d8QQkghxE/f975/0nn8b+3hWk939mns8nalEGK5f7tCCEMIsSKEkH2PfUsI4XTOVfffVzvPfVoIEfU9flsI8SUhxMc7zx8TQgRCiCc32f/vCSH+u908JsVooIy4Yrf4KSllBngB+Cjw9+97/gPgl7q/dIzdzwHX9mqBg/IYBr4CfK7v978CrG/yuv9ESpnp+/dTfc/d6ZzHLPAKcAn4MyHEZ6WUi8A3gL9533rHOvv64g7XrRhhlBFX7CpSyiXg3xIb836+CnxSCFHs/P4TwA+Apa22JYTQhRD/QAhxTQhRF0K8LYQ40XnuR4UQfyGEqHZ+/mjf+74lhPhHQojXO+/7uhBiovP0n3Z+Vjre7ieEEH+r89r/lxCiDPxXQognhRB/IoQoCSHWhBD/QghR2Obw/yfgF/t+/0XgN7d5z6bImNtSyv8b8OvAf9t56ovcZ8SBvwG8J6V8dyf7Uow2yogrdhUhxHFib/TqfU85wB8QGxwYzMD9n4F/j9jLzAH/IdDqeJ5/CPxTYBz4x8AfCiHG+9777wP/ATAFWMD/pfP4pzo/Cx0v+M87v78MXO+8/r8GBPDfAHPA08AJ4L/aZr2/D3xKCFHoGPx/B/jKNu8ZhH8NvCiESAO/B0wIIV7te/5vssOLhWL0UUZcsVv8vhCiDtwCVoB/uMlrfhP4RSFEHvgxYqP3MP4j4L+QUl7ueKbfl1KWgL8KXJFS/k9SykBK+TvEYYf+sMQ/l1J+IKVsA1/iwTuD+7kjpfx/d7bXllJelVL+sZTSlVKuEl8ofmybbTjEdxx/nfhi9Qedx+7nnwohKn3//tF2ayO+qBQ6x/Ov6Hj8QoizwMeA395mG4pDijLiit3iZ6SUWeDTwHlg4v4XSClfAyaB/wL4Nx2D9DBOsHnMfA64ed9jN4Fjfb/3h2laQIaHc6v/FyHElBDiXwohFoUQNeC32OSYNuE3iQ3sw+40/lMpZaHv33+5zTaPAZI45g5xSOXnhRA2sRf+R1LKlQHWpjiEKCOu2FWklN8GfgPYSinxW8B/zmC3/7eAB5QYxJ7pqfseOwksDrLEAR//bzqP/YiUMgf8ArE3vB1/BswC08BrA7x+EP5d4LtSyiaAlPLPgBLw+c66VCjlCKOMuGIY/BPgx4UQL2zy3D8Ffpx7CcaH8evAPxJCnBUxP9KJe/8vwFNCiH+/I+P768BHgH8zwDZXgQiY3+Z1WaBBnAA9BvxfB9g2Mu7t/FPAT8vH6PPcOd5jQoh/SBxW+gf3veQ3iZOdBeIQjuKIooy4YtfpxJB/E3ggTCClLEspvzGggfvHxPHsrwM14J8ByU5c/CeJPfoS8PeAn5RSrg2wthZx4vL1Tjz6lS1e+n8HXgSqxEnUfz3Aerv7eE9K+d5DXvL/uU8n/nbfc3NCiAbxBeQvgOeAT0spv37fNn6T+O7jd6WU7qBrUxw+hBoKoVAoFKOL8sQVCoVihFFGXKFQKEYYZcQVCoVihFFGXKFQKEaYXe3kth0TExPy9OnTe7lLhUKhGHnefvvtNSnl5GbP7akRP336NG+99dZe7lKhUChGHiHE/RXKPVQ4RaFQKEYYZcQVCoVihFFGXKFQKEYYZcQVCoVihFFGXKFQKEaYgdQpQogbQB0IgUBKeaEzXeV3gdPADeDnpZSbzRNUHABW6w6Xl+qstzyKKYtzM1kms/Z+L+ux2O1j2stzpNZ+bzs3Sw1qTkA+aZKzTUAgkdTbPouVNi0vZCqX4DPnpjg/m3+s/W/2XmDXzt1q3eGN62Uu3a0hkTw9m+Pl+fGhftcGaoDVMeIX+rvECSH+n0BZSvmrQohfAYpSyl9+2HYuXLgglcRw71mtO7x+tUQmYZCydFpeSMMN+OSZ4f5xDZPdPqa9PEdq7fe2E4YR19aaaALqjk8QSZKmznTO4vWrZUxd4yOzWUIJlZbPX31umuW6v6P9b7b2O5UWAHOF1GOfu9W6w9fevctCuUU+aSIQVNo+J8eSfO652cf6LIQQb0spL2z23OOEUz7PvenaXwR+5jG2pRgil5fqZBIG6YSBEIJ0wiCTMLi8VN/vpe2Y3T6mvTxHau33tlNqeqQtnWLKoumGeEFEIWXx+tUShZTFWNpirRF7yIWUye+/c2fH+99s7ZW2T6UV7Mq5u7xUp9L2KaQsUpZB0tIppkwqrWCo37VBjbgEvt6ZNv6FzmPTUsq7AJ2fU5u9UQjxBSHEW0KIt1ZXVx9/xYpHZr3lkbL0DY+lLJ31lrdPK3p8dvuY9vIcqbXf207dDUgYsRkKIwjCCNvQWW8GpC0dUxe0/BCAvG2yXHV3vP/N1u4HIX4YPfbxdLfvByG2cW8fCUPDD6OhftcGNeKflFK+SDzF/O8IIT613Ru6SCl/TUp5QUp5YXJy06pRxZAppixaXrjhsZYXUkxZ+7Six2e3j2kvz5Fa+73tZBMGbhAbUV0DQ9dwgpBi2qDphfihJGXGRrHq+EznEzve/2ZrNw0dU99oBnd67oopC9PQcYJ7+3CDCFPXhvpdG8iISynvdH6uAL8HvAQsCyFmATo/1aDWA8q5mSwNN6DpBkgpaboBDTfoJXVGkd0+pr08R2rt97YznrZoeiHrLY90QscyNCotj0+eGafS8ig3PSYyFustj0rL52demNvx/jdbeyFpUkgZu3Luzs1kKSRNKi2PlhfQ9kLWWz6FlDHU79q2iU0hRBrQpJT1zv//MfD/AD4LlPoSm2NSyr/3sG2pxOb+odQpe7+9vdzXKK79IKlT3rhe4v27NQSC87M5Xp4f2/ExDUOd8rDE5iBGfJ7Y+4ZYkvjbUsr/ujOw9kvEc/4WgJ+TUpYfti1lxBUKxWbsp5MxCuqthxnxbXXiUsrrwPObPF4i9sYVCoVix/Qb0fF0HPN+/Wpp14zodheIftUK0Pt5eal+YIz4w1AVmwqFYl8ZpkSye4Fw/IjxdALHj3j9aonVutN7zairt5QRVygU+8owjeggF4hRV28pI65QKPaVYRrRQS4Qo67eUkZcoVDsK8M0ooNcICazNp88M45tapSaLrapHaik5nbs6Xg2hUKhuJ+uEb28VKfUdCmmLJ4/sTtG9NxMltevlgA2KE+ePzH+wBpGxWjfjzLiCoVi3xmWER3mBeKgoIy4QqEYKvtdaDbKXvYgqJi4QqEYGoNI/BSPhzLiCoViaBzGNsgHDRVOUSgUu043hPKN95eZydmcHE9T6ChCUpZOqenu8woPD8oTVygUu0p/CGUmb1N3Ay4uVql0tNmjVEgzCihPXKFQ7Cr9IZRT42neXawiBCyUmpi69oDEb78Tn6OO8sQVCsWu0l8lmU9aPHcsT9Y2WKo5DxTSqMTn46M8cYVCsat0qyS73QDzSYsnJzWemcvz6tmN071GvYPgQUAZcYVCsasMWiUJsdc+nk5seGxYic/DGrZR4RSFQrGrPEovkr3qIHiYwzbKE1coFLvOoFWSj+K1Pw6HOWyjPHGFQrFv7FUHwVEf/PAwlCeuUCgGYpRjyvcnW+Hw6NWVJ65QKLZlWDHlvYpVj/rgh4ehjLhCodiWbkzZDyMuLlb5/u0KC6UWb1wv7cp2h91bZdQHPzwMFU5RKBTbst7y0IXgvTs1UpZO3jZw/Ig3Pyzz8vzOjeFeSgwPa0ta5YkrFIptKaYsrq40SVk6tqkjhKDZCU/8xusf8tqV1R2FQEZ9SPFBQBlxhUKxLedmsqw1XSIpkRLW6i5XVhtM5RJoQttxLHuvYtWrdYfXrqzy1e8v7viCc1BRRlyhUGzLZNbmpdNjSKDmeFTaHk9NZ8gkTLK2seNY9l7Eqg9zoQ+omLhCoRiQl+fHCCJJJmHw/VtlEoZBywt59lgGiGPZN0oNXrvCI8kQhx2rPsyFPqA8cYVCMSD9XrOUgkjCs8fyvWEPS7U2t8rtA+fxHuZCH1CeuEKheAS6XnO3XN7UNaSUtLyQK8sNzkxmDpzHe5gLfUB54gqFYgdsFss+XrSZLSQ3vO4geLxbJU8nMtahSHYqT1yhGDEOSvn7ZrHsg+jxdi84l5fqlJouxZTF8WKGS0sNMgmD8XSClhfy+tXSSBYAKSOuUIwQXaXFQTQ+e9WRcCfcf8F57crqoUl2qnCKQjFC7FWZ+k4YpdL2w5TsVJ64QjFC7GWZ+k4YldL2w5TsVJ64QjFCqDL13eEwdTVURlyhGCEOk/HZT0Yp9LMdA4dThBA68BawKKX8SSHEGPC7wGngBvDzUsr1YSxSoVDEbKa0eP7EaBqf/WZUQj/b8Sgx8b8LvA/kOr//CvANKeWvCiF+pfP7L+/y+hQKxX2MuvE5KBLJw8JA4RQhxHHgrwK/3vfw54Evdv7/i8DP7OrKFArFoeOwN6PaDwaNif8T4O8BUd9j01LKuwCdn1ObvVEI8QUhxFtCiLdWV1cfZ60KhWLEOcgSyVFlWyMuhPhJYEVK+fZOdiCl/DUp5QUp5YXJycmdbEKhUBwSDpM++6AwSEz8k8BPCyH+CmADOSHEbwHLQohZKeVdIcQssDLMhSoUitHnMOmzDwrbeuJSyr8vpTwupTwN/A3gT6SUvwD8AfBLnZf9EvCVoa1SoVAcCnZTInmYp/U8Co+jE/9V4MeFEFeAH+/8rlAoFFuyW/pslSC9xyOV3UspvwV8q/P/JeCzu78khUJxmNkNieRhn9bzKKjeKQrFEeCwabMPeg+ZvUSV3SsUh5zDGHpQPWTuoTxxheKQc9hCD6t1h0rL580bZSbSCc5MpbEM/cD0Lt9rlBFXKEaYQcIkN0sNGk5IwwvJJgxOjKXIJ82RDD30D8X4xPwYV1YafOd6iZeeGBvZBlaPizLiCsUIslp3eON6eYM32g2T9Buz1brD7XUHXRMUkiZuEHFxscr8RJrp/OgZvI13FQYfP52g6QbYpnYkDTiomLhCMXJ0vdHraw0mMxa6Bu/dqeGH0QMl7JeX6pydziABJ4hIGDpCwNXVxki2r1UVnw+ijLhCMWJ0vdEgjEiaBrapk7J0bpVbDxi09ZbHTC7Jc8fyWIZGzfHI2gYnxpIj6bmqhOaDqHCKQjFidOV1GdvECUKSpk7C0Kg6wQMGrWv08kmLk2OwUG6xUGrihxFwg5Nj6ZGSGx7kYcz7hTLiiiPLqGqnu4b55FiKdxer8YMSTE17wKCdm8nytXfvsrje4vpqE12HphsxV7D582sl3r9b5/Wra3z+hTnOz+b36YgGRw3FeBBlxBVHkn6Vw3g6QcsLH0gKHlS63mgmYfDsXI4rKw3W6i4vPTHGy/Obr3+t4ZMwdaptnyiSVNsBtqkTRhG6JvjKO3cYz8TFMwf9wjbqQzF2G2XEFUeSUdZO93ujbT/gxZPFLY3t5aU6c4UUqw2PvG3wwzt1VpsObT9gIpOg5QUUkhar9TZvXC8TRHIkL2xHGZXYVBxJRl3lMJm1OTeTpZiyWG95XF6qb1qB2T3ObMLADSKSloYfSMJQUnd8Ki2P798qU237vH1zXQ1sGEGUEVccSUZd5TBoKX33OE+MpWh5IbmkQRhFNL2AW+UWCUNH03RSlsGt9RZ+uPGc7MaFTbWMHS7KiCuOJLvZ13oYbGf4Bh1z1j1OU9d4Zi5H0jSZyiUAQdY2KaZM5go2ScvgyYk0V1YaG97/uBe2w9i35aChYuKKI8lBVjkMknRdb3kYmuDdxQYNxwcEUkY03NiT7sbI74+fT2RM3CBNue6BkCBib/3EWAopJd+5XqLpBrsm3xvl3MOooIy44shyUFUOgxg+geDtm+sUUha6Jri8VMcPJednsg+U33f/Xbpb5be+s0AhZXJ6Ik3VCVipu8xPpLlVblFquGRtHccPafvBrlzYVMvY4aPCKQrFAWOwpKskNuWwXHOwDB1T1xCwZWjlm5dXKKRMiimLmUISS9eIIvjj91eoOT66LnhyKksQSV6ZH+fVs5OPfZEb9dzDKKCMuEJxwBjE8EngxZMFTF2j3PBImTpPTaWRQgCbJyRXai552wQgkzB4YjJNJCOaTkAuafIjxwvM5lO7qkg56LmHw4AKpygUB4xBSsuLKQvHj3jueAEEeEGEAFJ67Jdt5u1O5RJUHR9TE6zUXdpeRM0JeHIyxXPHCr3X7Wa44yDnHg4LyogrFAeMQQxfv6E/UUzy9s11QPDiyULP270/IfmZc1P8f//0OjXHp5i0CGVEEEo0XaPS8ih0jP5uhzsOau7hsKCMuEJxANnO8PUb+pV6m4Sh0XQDfninxvnZ3KZVludn83zsVJG3b65TcwOKKZPPPz/L3ZrLleUGF04XN/X6R7XHzFFBGXGF4oCynfGczNqUGi6vX10jiiSz+SQTmQRBJLfcZjZp8r/92AlEJ3ZeaXncqbb59gfLXFyscHY6zU89f2zDUImvvXuXStvHD0JMQ+f6aoPPPTerDPkBQRlxheIAMohWfLXu8JV37qBrgvG0hRtEXF9rMj+R7iUmLy/VuVlqUHMC8kmTatvHDyNm8ykqLY83b5S5XW7zxHiG0xNpKm2fNz8sM55JMJm1eeN6mYVyi0LKIp9M4AQhC+UWb1wv85PPz+3nKVJ0UOoUheIAMkhF5uWlOlEUUUhaCCF6wyHWGi43Sw1ev1piueqwWHFpuiG319skTZ3v3qxwt9rih4sVLt2tsVr3iJCEUUQxZVJpBb39XLpbI580SZrxRKCkqZNPmly6W9uvU6O4D+WJKxRD4nFiyYMUyay3PMYyid5gCICEobFad4kwmc6luL7aIG3p2KZO2w/xQslHTxS4tlLn3ds1ojBkfjKFqWt8WGpyeixFKEVPniiRHTX6PQQCydYhG8XeojxxhWII7KRnSH+/lNvrLZZq7Q3Pbza1ZzKboO2HtP0QKaHS9tE0gSbg2kqdt2+us7jepuH42IZOw/GZLSQBwYUnxjg5kcHQdSxDI2HoLFYcTF3r7efp2RyVto/jh0gpcfyQStvn6dncUM6b4tFRRlyhGAKDNqjq0jX6K3WHO5U2d8ot/vAHd/nujTV+cHudb11a4u2bZSYy94z4uZksmtB4cjKNqQtW623CSPKps+NUWgF1N2A8bdL2Qz4sNSk1HTK2ScsLEQjOTmXIJAwajo/rh0SRZK3pUUgZvWKcl+fHOTmWJIyg2g4IIzg5luTl+aM7Du2gocIpCsUQeNSeIZeX6kQy4tpqk6Spc2oiixdJ/tdLqzx7LM/xQqw8ubTU6CUd+2WGcZfCPOdmsr0J99dWm+STFk3PwQ8lt9fbnJ2OKyjPz+YwdZ2X58f54Z0aC6UWXhjykdnsBuXJZNbmc8/NKonhAUYZcYViCHRL57vNq+DhRTTrLY/VukvS1EmaOg03YKXmEEaSIIw4NZGODbIbbGiEtZme/DvXS8zkkqQsg4VybJzX6g7VdsD1lSbnZ3OcmUpzaalBJmHwyvw4P3K8QMMN1BSfEUQZcYViCHQHFFdaAX4YYeoahZTB556b3fT1xZTFxdsVJrNJGm7Ah2tN6m7IeNqi4QS8u1jluWN5cra5bUl8/4T7545ZnBxL8daNMk9OWb2CnktLDc7PZFhreJtWhXaTsgvlJrfKbc5MZpgtJNXItgOIMuIKxTAREohAiIe+LC6jX6PS9lhcb7FSc6m1fIgkSUOLpYLrbeYnMsxPpgbY1r3eKx8s1wHB2elMLz4PsNbwePXs5APv79eo150AXRNcX2uSShi90nzVD/zgoBKbCsUQ6A4o/vjpcX70zBQfPz3OXCG1ZWJzMmvz+RfmqDs+l5frGJrg1HiSlh9wY72N64cEQUDN8Sg3vYeqXLqxctvUKDVdXD/kxZOFngGGrceurdYdvvz2Ld6/U+X6aoOVmkMhaZGydG6VWw99r2J/UJ64QjEE+hOb1bbHQrlFve0hpdgyMXh+Ns/HT4/TcAK8ICKXNDENjWorYLXu8sRkmgunxzA07QFPeDNNetfL7nY87Gez+HzXA680PSYyNl4YsdrwsAyN8XSCqhNs+V7F/qE8cYViCHTj0tW2x7uLVbwgImEYWIa+qV68qxF/+2aZuUKSiWyC2UKShBHPwMylLH7s3BT5jlfc7wlvp0kftKd3VxY5nrVxwwjb1DlWSLJYcai0fTKWrvqBH0CUJ65QDIFuXHqh3MQ24ok7LT/k2WN5TH2jJ90fg57J2dTd2OP1ghBJhBfC+Zks+eTmrWK3Guf2xvUyhZTZmcfJtmPXuncPJ8dSvLtYBWAsZdFwA8JIkrF1bFNT/cAPGNsacSGEDfwpkOi8/stSyn8ohBgDfhc4DdwAfl5KuT68pSoUo0M3Ln3l9Rqa0BBCogv44d0aGUsnY+u9cMcb10sslFr4UTzYoeEEZOzYKD9/rMBr19ZYb7n84PY6k9kEmtA2tIrdTJPuhyFv3ijzqbOTvQZa20kIN6pa8iyUW6zVHeYKNj/7sRPKcB9QBgmnuMBfklI+D7wA/IQQ4hXgV4BvSCnPAt/o/K5QKPrI2AaVpsuNtSZ+JMnbBnU34Pa6w2o9/vfmh2U0AXnbIGFoIARCyjix2HD56Ik8Xih583qZP3l/hemsucGLv73e4tuXV3j3doVKJ8xyZaXBRDoxcMUobAy75GyT+YkMT88VlAE/4GzriUspJdDo/Gp2/kng88CnO49/EfgW8Mu7vkKFYkgMc9hBN0QynbP54Z0aYQR3Kg5I0PRY7tc1qBPZBAh6nQgnMxZhBKcnDKZzNtdWm5wopjg7maXS9vjTKyWK6QRXVxq8+WGZpKnhBhE1x+fdxSpPTqRZq7u8cl9p/HZj19QotdFkoJi4EEIH3gbOAP+DlPINIcS0lPIugJTyrhBiaov3fgH4AsDJkyd3Z9UKxWMySL/uxyHuw90kCCP8QJK0NIIwpNL2+LFzUxuKds5OZbh4J27tahs6kYx7mJyfyWyo4gQoJE1urLX4yjt3SJoGU1k7nrHZcNGEwA8CVhoOLz0xhmXoG9Y0iKpEjVIbPQZSp0gpQynlC8Bx4CUhxLOD7kBK+WtSygtSyguTkw8WFigU+8GjNqgahK7C5LffuMHvv7NIy/XJ2RYZ26DqBJiGznrLZ6EcdygspiyKKYu2H6ILwdXlBhcXKzQcn5dOj3FyLE254WL3GWM3iPCjiCiKf9qmRtLUGc8kAMlYJsFKzQUEdyotNWX+CPBIEkMpZYU4bPITwLIQYhag83NltxenUAyL9ZZHytroqT5OEUu/zK/uBKRNg4WyQ9P1GUsZlBoui+stiimTWtvnuzcrTGQsJjIW371ZIZKSZ+ZyHB9L0fQizkyl4y6Fmkal7fXawLa8EEsTjGUSZBMGbhDrv4Mw4tLdOnUnYCZnY3c8d8cPKDVdbFNTpfKHlG2NuBBiUghR6Px/EvjLwCXgD4Bf6rzsl4CvDGmNCsWu01Vi9POoRSz9/b+//PYtIhmRThg03YAnOqXxt9fbNNyI2ZyNH0qEiMvdHdfnn7/+Ib/7F7dJWzqaENQ6CcWPniiw1vB6VZxhJFmtuxiaYH4iTSZpMplNcGIsRcsLcfyQ2+U2SUtHSiikTa6vNVhcb3FrvcUr8+O8enZSGfBDyiAx8Vngi524uAZ8SUr5b4QQfw58SQjxt4EF4OeGuE6FYle5v7/IZlPeH8b9MfWLt6vUnYCUZZCxTbwg4qnpDDdKLWqOhyEE+aTRaTkLAhlXZOo+Z6bShJHk2WN5CikLKWUvXn5+Ng/ANy+vsFRziIj7hS/X/U772RxXV5osd1Qsx4pJFsrxGLaJjM1aw1UNqw45g6hTfgB8dJPHS8Bnh7EohWLY7FSJ0VW0fOdaCcvQO02lDMYzCWpOHO/uFssI4OmZLOWmxw8WK7S9kJRl9GR8miaYzZusNTxOj6e51RlI3H9HcOlula+8c4cokszkbCYyCZbrfq8DYdsPePFUgfnJNLapc32t0UuEOn7IeCbRi/UrI344URWbin1lmDK/7XhUJUa/9y2ERBNwcbHKs8fynOgY7lLd4dm5PE9Oprmy3CBj69QcQdLQabkhbS+g1PDQABmBoQlW6i5SSuqOjxOEFJImn3tu9qHT7O/vQNhdW6nuMJGxe/HzZ49ltpUWKkYb1TtFsW/sZA7lftKvaMkmLRD0uvsVUhZPTqQppC1KTZeprM1/+OoT/O9eeYLzszmmchZeGNH0QpKmRiqhUXc7SUddww/ANk2QYsP+tppmf38CtntnUUhbrDVcTF3rhWdUw6rDzYH3xPfTU1MMl616fhzUW//+8vZuyMQ2NOpOHB7RdW3T6sZiysIP4fR4mpoTIGXEessjCCQrNZePnkjR9EImMha2qZG2jN7fvGVoXFqqdRKYAQldoOk6x4oP9hSfzMbl8d27hVRfw6pBY/2K0eNAe+Kj5qkpHo3dlvkNm35FS7e/iAQiGT1UwnduJoumC4SAsZSJoWnoQiObNDANjYYXcqxoM5dP4ocR19aa3Cw1EEC55bPe8lirO7hBxErdp+kGlJvupt+D+3uJK2nh4edAe+Kj5qkpHo1HnUM5DDa70wM2vfu7X9FiaBonx9KbGsn7t/vR43lultss11zGMhYvnCxweiLNG9dLTGbt3jHbpk7bD6k5AflkgqSpkzI1/MDAC0N0DZ6cTPcGTGz2PVBVl0eLA23EH3ViuGK0eFyZ3+OyWen91969C8BcIbVpOf4gipbNthtEcKyQ5OOnxzcc6/xkmmo7oO2H2IaOE4REUpJPmkgkHztV5N9edBnPxPHwyWyCUKrvgeIeB9qIHwRPTTE89rvh0mZ3epVWAEJydnrzu79BvNzNtjtXSLFSa3NlpcZKzWUql+Az56aYyFis1B3WGh5LtTZrdYe6E3B7vcWJYponp9J85FgeL4h6ssEoiPj2Byvcrba5dLfG07M5Xp5XIZOjyoGOiQ86kUQxmux30nqzmLwfRvjBxkrOQeP03QrOb7y/zLWVeq8tbLzdkEvLDc5O5fjxj8xwdirHpaUGExkLTWhMZCz8jnolYRrM5ZKsN11ev7KGpQtaXsB6y2O17nJ7vcmlpTpzuSRJ0+CdW1W+9u5dlSs6ohxoI66SNIeXg5C03qz03tQ1zB10/+s/npl8PJ3n4mJ12/7eV1caGJrgW5dXeP9OjYSuxReznM1cMcVENm6QdbyYJJ3QAYlA8JGZHJM5m6SlU0yZVFrBYzXvUowuBzqcAipJc1g5CEnrzWLyhVS8jqYbPFKcvv94To2n44pNAQulJqaubdrf2wtC3vywzKeemuLUWIowBF0XICUQt6V1dY3jxRQ/9fwxAL76/UU+WKqRT97LFSUMjWo7OLCqHsVwOdCeuOLwchDkhZvd6X3uuVk+99zsI9/99R9PV36YtQ2Wag62qW3a3/vqSpOJbKJXPJSyDDQRV3ACOEGIaegb7gKKKQuzkwDt4gYRpq6pXNER5cB74orDyUFJWm91p/eodwP3H08+afHkpMYzc3lePTvZC7fAPa9/renyifkxIC4eultps1T18cOIlhdQbfucHEttyAGdm8lyfbXBQrmFTJoIBJW2z8mxpMoVHVGUEVfsC/stL+xyf3J1ImOx1vAeOdm63fFspsR56fQYpn7Pe395fpzv3Sxzt+rg+hEvnCjy8vzYhv1PZm0+99wsb1wvc+luDYnkhRN5pU45wigjrtgX9kte2G+0BYJy0yVtGaw1XL71/grX1hqcmcpwdjqLH0asNbwti3n6DenTsznOz2S4utLknYX13mMP48xUmktL8fja2PAHaJrGy/NjnBrPbHkBmcza/OTzc/zk83MPPT7VpuJoIGQnibIXXLhwQb711lt7tj/F0eNhRqy/CCdl6bx1s8xSxcEydZKmxhsflmi0AyRwfjbDRMbm1Hiqow5J9bZXarj8zhsLLJRbpC0NiUbbDxhPJzg9keLcTJ6UpXO30ubqaoMTY0lytkW56TJXSG3w1LstZRfKTW6V25yZzDBbSPae/+SZ2JMfxDDff3z921CGfLQRQrwtpbyw2XPKE1ccCrqe8Zs3ykykE5yZSvdki10jdr8iJggjvCDCDyNqbUmt7ZOydPwgotoOaXktFtdbTGWTaAgu3q7yxz9couUGeAFkbIMPV5tU2j6GpnFluc7ieor5ySzVdtw2VtcEdSeIi3kqcVGPBLIJg/G01Wsp+9oVmMomH1DrvHG9RBAx0EDng6D4Uew9yogrRp6uB7pQbjKZsWh5AX90cYmJrEUhmcDQ4MxUhi/9xS3cIMA2DSayFqWGz91Km2LKoO5GpCyDSMp4zFkEvpSstj0kAjcICSLJUs2h2vI5NZ6k1HApNz0MXUMXkqYfcWW1ye++eZNCyiKIJKauIaUkaWpUnRA/jDg3k8UN4kZXThDw6tnJLVtMfG+hzEdPjg1kmFWbiqOJMuKKkafrgQZhhCYEdysOuiZwvAgtBf/2vbt885KO64est3xWG00APnoiR9OLe3qHkcTUBH4EqYyFJGK56lBuemgCkqZOLmkgowjHDyg3PW6vO4SRJCSutERCQte4U2lTaQdYuiBpapRbPis1l3xS5/hYGiFyGxpdwdZqHYHYVIq5mWE+KIofxd6ijLhiZOnGv7/x/jIz+dgrXVx3SJgapi5ouREIWG/6pBIRmqZRbfukLR3HD/jz6+skDA0ERGGELnRsQ+AEIQ0v7DSaMjB1wbW1BhnLoO1FJAzBnUqbtaaLJsDUBIEE29AwdWi4ATOFJCuVNh80XMbTCTQN1poeNTeeTj+eSSCQpBMWX/3+Yi/J+kDMfDa3pWHeTFmzMVG6P4ofxd6ijLhiV9krdUR/Em8mZ/cGM6w0HKazCbwANA3afoihCxpOxImxBPmURdPxcIIIxw85NZ5kMmtzs9QibeogNLww4PRECtvUePd2lUrTJ2HFnnOEZK3hEYQRAvAC8JGYOkSRpO6E2JZOEISsNDxMXSOfNHCDEDeQ5GzBUs0hbRmUGi7PnUgwnk5wt9Lm2mqDD9eapCydp2dzvaTmZtLF48VM7/gNTfDdhXXW6i7nZzIYmqDtB3veUEyxP6iKTcWusZf9UPqTeCfH00gZx4sLtokbRCzX2gRhiOuHBKGk6fqYuiBnG+i6Tta2yNkGhqaTsgzOTWf5+JPjfPr8BJaukTI1DE0jDEMqbY9a28cNQixdkDB0IiFIJzRsU2AZAinBDyUg+chsDj8SJC2dbMLAD0EgyFoG2YRJ2tKxTZ20bXRK5n2urzXJ2iYzeZuPnhwjiB32LfsHrTW8OIQURVy8U0MTgqmszVojIIgkr8yP8+rZSWXAjwBHxhNX+tnhM6g6YqvP4lE+o24Sr9LyuFVu0e7EqVfqDoahYWiC2UISKcHxA26Wm1TbPpMZi/Wmh6ELckmT9aaLGwQcL6bi6Tm2iRNEVFo+EoltGWRC0DVBFElKDRdNAz+QGKZG2pQ0vQgpQNMEuoCWF3B9tYEXhpwqppjoJFuTlsZqw6WYtqg7Ph+ZySGBW+UWKUsnYejUHG+g9rffuV5iPJ3g4p170+2llFSdQE23P2IcCU/8IHTMOwoM0g9lq8/i0t3qI31GxZTF3Uqbi4tV/DAiZ5s03YBCKsHZiTRZ2+SdhQqvX12l7Uvm8gnafshS1UUXgvGUiR9GIAS60Li22uDPr5W4uFjlyYkU19eafLDcJAwjLB3cMEIXgrWWR7nh4QcRDSeg7kYEkcQQoCOpuSG3yi3SCR1b11isOSzXHDQBYRjLEl86HfdRqbsBGduk7gYkDA0nCMnY5qbnbbPjb3khDcfH7vRkcYOIbEcjrpphHR2OhBHv9xD724Cq1p27y2atXe9XR1xeqhOGEddXG/z59RLXVxuEYcQ3L6880mc0kbH45uUVrq3UWKy0ubZSx9R1Tk+kKLUD5ifSBJEkjGAimyCfSpC0dCZzFoVM7G3P5G00TVBzfKrtgHzSoFx3qLsh2YRBxtJpuiHrTkgmoZOxDcJAEkhJOhEnRN1QEkQghMCXgoQhyKcsZvIJ8mmLpybTnbi8RoBkLm9Tc0KcIOCD5TqWLlipO7x1o8QHy3XySWPT83Y/3V77hh4XGjl+SMsLOTGWUoqUI8aRCKco/ezeMEg/lJulBosVl7Slk7eNnl661HB4/nhxw/b6P6O4mKfE+3drtLyIhuNRbXm0/YAbpRZNN+S5YzkShoYAFittwkhSbQdEUZumH5IydQopC98PuVJ1cILYuy6mTExNY34izXt3ajScgGLGwg8lEsGYAW0/4upKgwjQgSCSRLH4BSEA4kHI+aTVmY+Z4slJCzeIMFo+T01nWam5SCFwPI+cbYH0+HCtiSUElqEzkba4WWph6hqa0B6qKunGyo3rolfg9MxcDlPXlCLliHEkjLjSz+4Ng/RDqTkBmogHAsO9wcDAQ6V0X3v3LgvlNoWkyc21CjfKDlKGsfHL2EgcVhseLDeYzSe4ulKn3g7QtdgAywiCKL4DaHkRYSSphR4zhRQhkLQ0lmoeuaSBE0RMZBMsVR28ME6MrjV9Gm6I1mn37UsIZGzQhQBTF3HlpxOStWE2b2ObGrfKLcYyCZCCE2NJhIgLhyazFlJKxtM2H39irBfbLzVclmsOP/uxE9vGtLs9VF6eH+vlEmxTU4qUI8aRMOIHpWPeUWC7IR75pEndeXAw8PxkmoYbF77c/xldXqpTaQUUUya2qbPeDsgnTW6vezRrHgkj1ms3nYBCyiRlxqEPy/QwDZ31VkAmodNwAlp+hK4JsgmNtYbPcrWNZegUUjpShBzPJ9E1DcvQsC0d2xPcqrhoUmLpgjCS+BJkJIm1KPF/pIziuLYvQYBEUm761NoBr8wXefPGOqamkU4YWIbGYsVhIt2JywOFlEUhFRv2D9fqXF6q853rpYESv2pwytHmSBjx/R7IexA4KOqck2NpbFNnreFRczwytslcIcNU1ubcTJbLS3VulBpU2z45O46JX1xc59pqE03EBt4NImQUsd70e8qMlh/gBZKJtEnDC5nKppjMxOPLvr9Q4Wa5BZrAMjTSpkbDi+PUThAhkaw2Il59coJ0wqAVhJwopvhL56f46vfvUG4HhEFE0jJYb/sEXkQEGCL2xtMGxOklQTYBlqZz+W6d05NpXjyVR2gac4Uk1XZAywto+fDERJpCOvbQ+7lbaXN73WE6l9rQK+X8TIZLS42BeqgoDhbD/u4dCSMOR3vMW39hzH4bgHMzWdYaHvMTmQ0ed/8f9lrDYyqbJGXpLNXa/MWNCoYQ5FMmQRR33by13sbQBQlTj71hBGNpk2urDZIJk3LTQwcKaQvLjLXgxws2i9U21baPH8aetRdEcbiFkNuVFp85P8WxQopa2+e9xRq3y21mMiZ3qh6apjGetlgOHGQEhg5aBAlTQxcaQsCZqRzFtIkm4L/8qWf48tu3aLohZ6ayfLjaJGFquH6I60cUkrESpX8U3NXVBmenMw/INL95eYWzUznV3GrE2Ivv3pFQpxx1DpI6Z7vh1/evda3hcXo8hQQaboiUMJmNJ8OnTI2W5+OFEZmEThSF/GCxThRJJtIWixWXd25VEVJyrGhTavkYQCQhYQokklDGCpYokNRaHq9fKfEv37jFv3hjgaVqm3RCwwkkYRQBkoylo+sC2xAYmsDUBbrQMXSB0ATPHM9ybibLybE0k1mbnG0QSTA0wemJFFEkaXkhWdvYdBTcibEkM7nkhnOWsnRWau6+j7NTPDp78d07Mp74UeagqXMedld0/1objs9MLk4IpiydhVILS9OZziUIIzB0ia7Fzy2u+x3vVrBc9xjPWlSbHu/crpBJWESyIyeJInTdIJARpqYRSUmowe2qw0rdxzTisMtr19aYydn4QUTCjA1mtS0AScLQyCYtIimpuwGRFJwaT7He9IkieOFErLQ5NZ7BNgxKzbjU/+x0lvG0xXT+3jnoPxevXdk8wTuVS6jk/AiyF989ZcSPAKOkzrl/rRnbpNr2mcraPHe8wCeehLvVFpKIt26sdzxpSa0tqLd9zs9kY+9UdgpwNEEQSmxDIIROzQ0JIvAjnyCS2KaO70foQkMTEElJzQmZzFhoIu4FnjAEOdMk6oRypnNpmm5IIRUb8bWGSyhhKmvTdAOeO5bn5c7szF74aHJj+GgiY/HaldUH4qRbJeE/c25KNbcaQfbiu6eM+BFg2Oqc3UjcdLdxs9Tg9rrD2ekMM7kkExmLhVKLJ8bTSBmHIr6/UEXXNGxLY7Xu4wdxmCWI4NJynYSpUUhbyEj2GmCZhkbdDbANnabrYxkafhTRcAPCEGwzQsq4F0oQCcqdpOm652KbBifHU0xmEiRMjTNTWW6vtzA1nUBGTGVtDENjOpugkDb53HOzG7zs+5Pqx4sPT1JulYQfzySOdHJ+FNkLZZwaz3ZEGFaGfDdGgt2/jf6xZifH0g8ML/7GD5dZqTm8d7dGpe3ihRAGEV4US/50wNBi4YcuIGcbhDJuUmUbgrob4oURfhD/7Zs6IEFosd47jOILQtIUeGH82NnpLJOZBFEkmS3YhBKytoEmBJGEJyfS6Lo20HG/dmUVx482eGdNN8A2NV49O7nDT0JxUNmN754az6YYmjrnYU2vuj+3++O9fxtzxRT5lLXBqPV/EUpNl5vrTdp+gJSCMAgJZGzALR1ExyuXAAIq7QBT15jN25R7bWQlaUsjlJIglGgaaELQ8uPkZTohaLohYSTJ2SamFith5go2YRhRSFvkk2ZPCjmdj0MhwKZhkn4OWo5CMVyGrYzb1ogLIU4AvwnMABHwa1LK/14IMQb8LnAauAH8vJRyfWgrVRxIFsrNXi/vjG1ycixFzja5UWr02qVuJ63azKh5Qcj3FsoslJssrjvcLDVIGHrc36TpcnWlSRBIND3uGy7CrlIbMrZOJKHthYSxqATb0Kg7PnUvIAjjKkvb1MlbGivNOKadNDXCKERC3D5Wi716L4xYb3s8ezxHyjRYcRz+o00qKgeVk41SjkJx8BnEEw+A/1xK+V0hRBZ4Wwjxx8DfAr4hpfxVIcSvAL8C/PLwlqo4aKzWHW6V2+iaoJC0KDUdLi5WySdNvCDkpdPjA+ma7zdqlZbHdxcq6EJye73N9ZUGC+UmKcug5UVUWm5swDsl8F7HKGtAEMa/h2GsKImQaFKAEDiBJArjIh1Nh7bn03TjkItuCIJIoukaKUsjkzBZb3loQmBpGvmExc1SmycmNF56YmxTA/7lt29RaXqMZ21OjqXIJ61Nj1lVECt2k2114lLKu1LK73b+vw68DxwDPg98sfOyLwI/M6Q1Kg4ol5fqnJnMICWUmg53Kg5tL+CD5RqL622+/cEKC6VG7/Vb6Zq7HfmaboCUkivLDUCSMA1SlkGp6ROE8dCFlufH7WM18CREnbBJKCEk/tf2QvwwVq3oCMYzJglD41g+yWTWIpXQ0YTAD2PNuGHo5BImhq6TMTX8MO5OmLIMkNAOQmquz3LV4Z1bFcbT5ob1dz3wStNnImPjBRHvLlaptr1Nj3k7rbxC8Sg8UkxcCHEa+CjwBjAtpbwLsaEXQkxt8Z4vAF8AOHny5GMtVnGwWG95zBaSpBIG3/5glZYXUGp25H2WxlLN4X99f4W/9mLcF+T+kEF/nNvQwPFDVuptLt5ZBwnLNZdMwuDWehMdQduPqLc9gk6pugAsQ+AHkqBvXRp0YtyxZLDU8AllvP2UZZDVBS0vJIgCogiCICSZTZCyJCt1D0FEU0qEgCCQRCLC8SNmcjZSRvzhu8sU0wnOz+aBezH98UwCL4xIdpp7LZRbzE9kNg2THOUKYsXuMnDFphAiA/zPwH8mpawN+j4p5a9JKS9IKS9MTqrM+2GiGwYppCwmswkyCQMBZG0rHlwsYanW5oeLFZpu0CuvhweHQ9hmHOteb3poQkPTBI4fslRz8ANJzfVpeQERkjCMY926iJORQou9EUuDlBGHSqSEthfR9CLqbkgUxT28Qyl5ajqDaehx90ENimmLsUwCTdPiRlamQTZpxgMaNEHasnhyMs1kzubYWJpCyuSbl1d65+FmqcG1lTpLtTaXl+qsNVwSukap7mw4ZoViGAxkxIUQJrEB/xdSyn/deXhZCDHbeX4WWNnq/YrDSX8YJGPp3Co1MTSNyWyClGUwk09SSFpcXm5sW16fThhU2j7XV1s8MRH3Lskn40nzUsrY69Y1un+y3Rh4hMSP4jCKG4ETEPfj1gS+jMMsnXGVpAwDPwh5726dgm0wlUmQTBjYlo6OpNLyMHSdqVwibiVraARh3GwrldDxglgTnrdNVmr3+pzfXneouwFz+STHijaL621ulloU0pYKkyiGziDqFAH8M+B9KeU/7nvqD4BfAn618/MrQ1mh4sDSX5iSsXVCYCJlYpsaXhChafDMXBZD0x/QP2+mSPGDOMH3dDobt6x1Q2QrIIwijM7U+IQlEFjcqbQJQiCSaHTkhMQGOwgi+gcM2TqkbQvXD7B0jVrLJ2ka2KbO8WKKuhuwUvdACF49U8TUDZbrLtmkRcEJEJoga5tMZW0yCaMzhs7gtSur/Pm1NaIowvHj6s/xtI2uaYSRHKgnuELxuAwSE/8k8DeBd4UQ73Qe+wfExvtLQoi/DSwAPzeUFSoONN3Y7qtnJxEI/vTKKpWWT842mc3b+KHk2WO5B97XnZFZanrU3YBswug0sjIoNV1qTshyLe71PVOwSeg6TtDtdRJrwfVOF9fovm274b3HTAFC09CERNc1Wn5IMW3x8dNFnCBkre5xophEExrphKDuSJzAx9QFScvA0lJ4YUQxZZHq9E+5W2kzP5nG8SM0oZGxdcpNj0rTY63hIWUUD4JQKPaAbY24lPI14hzSZnx2d5ejGGV+/JkZgkhSacel8KahM5s0e31E+pnIWPzRxSUKKZO8bVJ1fG6VWnhhyPt3azh+QL3tgxZ3C7RNScrUsU2dYjpBueVSa4VEYWdEWme7Efd+1+nGzcHzZa/PSjFlcn21Sdo2mMhaCKlRSBtM52yuLNe5XfaRxCGb4wWbmYJNy/X5YLmGbRiMpU1mcknSCYOsbeCHEUlL5/Z6m6emsyBj1Yvq963YC1TF5gHloAxxeBQmszafe252oHWvNTxePFVgreFRd3w0AcVMgvWmz1xB8P1FFzSdYsroTL8RpBIGYSSZzttcODXGmx+We6EM0YmpRB0PXRIbb8sQRDLCDSVCxBN9pvNxr/Jqy+dmqUXetnh5vshULonjx6GbMIq7I84Wkpwqpri62uDnL5wiZel8+/Iy19aapBIG+aTB61dLLNfaIOFYIYkmBM8ey2Pqmur3rRg6yogfQA7KEIedXEgGlc6ttzxmcklm8ykA3r1dwdJ1Sg2PqVySj4QQRhG2GY9w84MIIeIeJvMTGSYzCX54p0oQaXihjyDulaLJ2HhPZBPU3YBcwiBCYOgCGUo+eqrAExMZVuouYSjxI4ltCe5UHDQNFkrNXtvbyWyCUMJawyWK4l4nlZZH1QkpN1vcqcQzP48VbZarLaTQWFxv88kz471Ra6NeSj+KzsRRQxnxA8jD+pHs1RdomBeSWNHR4tuXV1lrOEA8YefMVJpiyqTe9pjIWtytODTdENMQ6ELDCUIKqbjQxtQ1zk5nubbaQBMCTYCugZTxoIYTY0lkJCm1fFqu5OxUmhPFFLZlYugakxmL9ZZPMWUxk4uHTHzt4jK5hE7SMggiyQfLDc5MZSg3PcYyCSotj4uLVYopk5brc7vUxMsnOTWeZLqQ4lg+ScY2qLZj1fqol9IfFGdC8XCUET+AHIQGScO6kHQNQxRGvH+3iqZphGFIww25td7ic89M0+z0PBnPWFRasZdtWzpPTqWB+Pys1R28IMLxQvJJEzeIiCTM5EwmsgkWym2Sps5T0zlOFJMEUuIHEZNpCz+SfLDSIG3pTGQSFDMWjbaPpQskArfj9QO4foimCSazCW6VW6SsOC4vRBwSEkjWW3HXxoVyOx4S0ekls1Up/ah4twfBmVBsjxrPdgDpFtH0s9deXSyj2/1xYF3DcLviMJW1iaKIMBRkE3Hp+/duVZkfs7ldbnJtpUkxZfLpp6b49LlJXp6f4HgxiZSwWHHIJkwmsjZjmQQJQyNtafidhleTWZtnjxUopEwmczaFlIVt6qw0XOYnM4ynTCIpubbWiLXuXshHZnIYemywbVNnJmdh6hqff2EOTWiUGi6WrtH2Q9peyFQ2gQAqTY/FchvXD7mx1qTueFuW0t9f5OT4Ea9fLbFadx7rvA6DYf0NKHYX5YkfQA5Cg6Rhddrr3mWst3yEEExlbXQt9n6nMgkur9S5uNTkY6fHeoOMVxoun39hrjcU4c66Q842sHSNqWwCTcSdsBKmRsLQCSWkzLiRVblz99LyIiIZ8pG5HI4fsFBukU4YfGQ2h6lr3Ki7yIzFR+byPHesANzr8X1+Ns94JsHdaou1hkOiU1Y/V0xy6W6N9ZaPpglOjtkU0xYnx1IDt909yN6t6rY4GigjfgB52HSXvWJYF5Jir4eKyZWVBoWUScsNafshjh+gCZjN23z63HTvPU034OpKg0tLDSIZcascG9O1ps/psSROEGFoGk03IJswaXoBk9m4d/hq06PlhXFYRAjuJF2OFVL8lR+Z5dpqE0OPDf94xuJmucWzx/O9CUL9xzuZtfnZj53g9aslFspNbFNjte6y1vBIGhp+GHK36nJqIs3iepvfeP1Dnp7NITvH3DXqByFUNigHwZlQbI8KpxxQugU0P/X8MV49O7kvqpSW53NlpcaHa/Vd67TXLdU/N5MlDCNW6y4rdQc6U+czphkrQNr3btlTls77d2tEMuLaahPL0JnOJREIFkqxQiRhaHihJGXpvHAi3+lp3sQNIoJIIhGkbAM/ivjuzTIzuSTPHctjGRo1x2Mmb/PSE0WmsvaWnQW7F9dK0+XaagMp4Vg+wamJDBpQafkkdA3b1PjhnRrv3KqiC7EhZNIfKqu0PN69XeHbl1e4vd46cCEV1W1xNFCe+BFikIRavyLh9Him533tVvKt/y7j1bMTfP2Hy5iaIJ+yODWeZL0ZoCH53TcXSJg6xZTJuZksAsFq3SVp6hwfS/LhapP58SRX11os1xxmC0k+fW6ChhdxvGiTTyZYrLRwvBAQHBuzOTWWRhNwZaVOywvJJy2eOxaHBrYaj7bpOcvZpBImpq7xzi2P9XKTWtsna8el/DfWWkxkExRTJrfX2zx3vADEIZOud1tteVxba8aqGl0wnbMPpPJDdVs8+CgjfkQYVC62FzHb/lL9mbxNwwlpeCHZhEEx6fH191dJGIKP5HOstwP++IfL/NjZCUoNl8lsEiHgick0t8uCs5MaCVPjlSfHH5jHmU9aPD2b3LDuthcynrZouLEM8GFhgq3OmUDScAJW6i6ZhE7L9Wl7IYYQrNVdqo7PM3NZEoZG1bm3n1LT7V3Evvz2LcIwpNA3QKLpBgcyNq442CgjfkQY1DjvZsx2EM8/n7RYKFVZqrsIYKXmMpYysQyNti+xTY0wNHjr5jqWqeOHkrlCEkMTTOVsXpkf7823fON6ia+/t8RENsHZqQyzBZtLSw2EEIynLdwgotL2+dipMV6eH+eN6yW+t1BGIDg/+2B/l63OmUR01DA6YQTHinHBUhBKKm2P8zNZdE3DDSKynff0JwQnszbHiymeP17sSRkf5zwrjjYqJn5EGFQutlvyxkGkdJfuVvn25RX+7MoqqzWHIAhZWG9RaXmcmc5waiJFFEEuaSIEXDhV5GapxY21FoYmmO9MmJ/IWLx+tcT11RZTWRtNCC7eqTE/mWEun2Cl5lJtB4QRnBxL8vJ87HEHEXz05Bg/emYC29QfWN9W5yyfNGkHESfHU3xkLsf8ZIan5/Kcnc5Qbfs0XZ/37lRZXG9zvJh8oJf6bp5nhUJ54keEfrlYte2xUG5RqjsU0hardafnIe+WIuHyUp0wjLi+2uh1KRxPWz3Pf7Xu8JV37uAF8ORUhprjs1R3SZsapqHRdEKaTkjCjD3aYtrm3EyeXNJkueYwV0z2vPuux+xHEXnb6Hm31XbAv/PUJO8t1nhqJrPhbuC1K6tEMuL6WoOG45OxTSYy1oY7k60kdifH0uRsi+trDWqOR8Y2eXo2y/cXqiRNnZRlcnJMw/FC1lsup8YzG9RFq3WHSsvjzQ/LvbsGU9eV8kOxI5QRPyJ0jXPN8bi6Epeq67rOVGZjQm235I03Sw0WKy5pSydvG7hBxLW1Jk4Q8OrZSS4v1YmiuOd4NmFSSFl4QUSt7XGr3GZxvYUXShqOR9OL+JHjed69XeF4McnxYoqfev5Yb1/fuV5iPJ0gm4j3Y5s6tqFTczxMPcMrT44/kLBcKDe5vd4mZRnkbAsnCLm60sDxQ2Cyd86+9u5dKq2Aatuj0vJww5BTYymytkHbCzk7nWEml+StG+ukEjqfOjfZG5C8WbK0P87+yvw4V1ea/MmlFaayNnOFWAcP7EtcfFQqSRUbUUb8iLAxoSYpZCxOjKUopB5MqO2GIqHmxJpvu1MYY5s6bT+k1kn0rbfifiTlZoAfSiwj7nmiaxrnp9PcqrrUHY8wkJyaSBJF8XtW6i4vnMhv2FfXYz4xluLiYhWIZ2saukbDDThezPDaldUNxqna9tGE6M3DTJo6jh9SbfsPHEvT9Vkot9A1aLgBk5kISVycdGU5NvxeEPKxU8WeAYfNY9z9cfZ0wuDstKDm+CRMjScmsvva7Ez1SRlNlBE/5NzvXeWT5p4k1PJJk7oT0PZDbCPuRBhJST4ZN7AqpuKmU0tVpzcQ2QtCgiginbH5609NcaPU4upyg4wdT51fq3uYhuD9u7UNRTTdu4xMwuCZuRxXV5qsNT1eOj3Gmak0l5YaZBIGuhB892aFr/9wGdf3SZomSVPHD0IWKw5Vx+dYwe6Fly4v1ZkrpHCCiGzSjEND7YDLyw2O5W0MTfCxU2PYpsbJsXhIRD+bxbjvTxzfKrcoJE28MOyNqYO9r+AcpUpSxUaUET/EbOZd3Sq38YKoE6q4Fwue2oUvav8Fo9r2mcom8ELZixvPFTK9/ZybybLW8HjueB7tdoV3F6u0fMmFU0VmCzYzuSQfrrV4ajrDasOl5Qa0/YiZRIIglA94i90QUNsPePFUYUPsO5OIe5K/d6cWt5jNWNxY8/FERLnpcmu9Td42mR9Pk7KN3ja7Brfh+OiaYKHUIp3QCaVECLi0VGMun+DWepu5gs3tdacXXtkql3B/nL3uBli6iIcyd9gPlcooVZIqNqKM+CFmM+9qOpfgz66s8fRsLp6o0/ZZKLX4hVdOPta+7r9geH7E925VePFUgWfn8huKhuBeeOeN62V8KXj17DRnptJYhs7bN8ss1dpkO8Z3fiJD2w9ZXG+RsU1ytvmA17pZVetq3eHPr62hCY3VhksxZWCbFlLGE+4B1ps+M7kEN9baXFqu8+REhpxtcHmp3jO4GdvkynKdtG0QhBFJU0cIgaULvv1BiafnsjwxkcU2DK4sN1itO0Qyvhu5P8Z9f+LY1DSqbY8L0/eUK10Pfi9j1KpPyuiijPiAjGLS52apsaGQ5sRYCjeImMvZ5GyTmhuQs02eGE+z1tid7oTdwQmlpoeQkjeul3j+RIGTY+lNE6S31pskDYFtxRPq0wmDM5MZriw3ODOZ4dpak7Yfh2J0TRBJODGW6r1/K2+xe1FJmDoCqDs+bS/ANnR0XetJB799eQUviCik4zFxi5UWN0sNXj07wS/+6BO8frXERMbiL657pCyN5apPNmHg+CFRJHGCiKemswghmOvoxa+uNvjYqbGeuuf+2LKh0dOnzxVsCikDQ9M29Gw5XszsaYxa9UkZXZQRH4BRTPrEgxccdE1Q6PTbvrhYpdZyOT6W7pWCA7sygaZ7O94dnJCydE6Op1lrOKQsc8NFb7Xu8Mb1Em9+WKbU9Dg7lcYLIt5drPLcsTyzhSROEDCdt3GCgJoTkE+aVG2DqUzcVrbLZt7iat3hy2/fotL0SVg6tbZPyoy9+lvrbTIdGWLa0kla8RCIlhuSTkA+ZbLe8Hjzw3V+8Uef6IVpjo+lqLUDzs9YRAjSlsZSzeXZufSGZGb/FCDYGFsGen9Hnzwz2TOU52cyrDW8DWqgvY5RH4Sma4qdoYz4AIxi0ufyUp2z0xmurTZxggjbiNUh6+2AF+6bxL4bt83d2/H379ZYqTkEUmIIjdlCgkzC2KAPf/1qiYVSXJjT8kI+WG5ybiZL0tRZKLeYn8hwajzDq2cnN5XnNd0ALwg7CUyXl06P9Yp0uheHtYbL2akMlq4hhCCX1FkoubFXX4nlf6mEQRCENLyIMJQsVyXTuQQJU0NDbAjT9CdPu57q2zfLPDGZ3nAeulOA+uneLbxxPT5uP4p6d0aZhMFaw+vp3ddbHm9cL/P2jTIZWyebtHpl+cOOUas+KaOJqtgcgFFsjt+dYdnfqS9rGzx3PI+ux21bpZSbVhM+jNW6w2tXVvnq9xd57cpqz3iem8lyp9Li3Y7Ez9QETc+n7gT4Ydg7V/2FObapcaKYBOD2eouErlGqO9ypxFWb9++j6y06fsB3rpdASD4xP4Zt6nzt3bv8q7du8c1LK5QaLg0n4L27NYJIMpG2mM4lef5EnkbneMfSJklTY7UZ4Achtqnh+HFZvqVrHBtPbfh8+zv63Sg1uLJSI5/UubLc4G61RaXl8hc3SlxbbVBuuBu6MLa8EIHgzQ/LaALydnxXcHGxiheE3Cw1etWthiZ459Y6SzWXIJS9O5Rq21MxasWmKCM+AKNYIt1dc9ypr8Annpzkycksz8zld9xe9GGl9JNZm7F0grGUSdsPMQ2NczM5xjMJrqw0eueqe0HsFuZkbJOnpjL4YcRaw8XQ4z9J2zQ2LdefzMbhlE89NcXHT49TSCVIJwwWK23eXaziBhGFlEUhZbFad7m6UsfS46k8l5YavHiyyHPH8kzl4qn007kEbgi6pjGVtcgmTKpOwNMz2Qc+365HnrJMzk7lODmWIYokv/+9RX77zQWaTsBffnqKUAreulGm0nJ7F0mQTGQTIEAIgW3qpCydqytNak7Qu9O7td6mkLI4PZFiseLEo+kMjQ+W6490sVUcHZQRH4BuD+ydeq/7wcPWvNNe5f1hpa46pBsqAZBIPvv0NKfG08zlk6QtvaPvdnvnqr8wp+WFOH6IEwToQtAOIkCQtgyCKOLinSo/uL3OQrnJG9fLvXX03xl1e3K/dbNMue5iGRp1J6Dlxdu8ttLgZrlJIW2STujM5pNM5WxcP6LphkxnLIopnQjwI0nS0nhyMkMhldj08+3dSXQki7mkyVTGZixlYega+VSCj50qkrMt3lus9S6SEjg7Fats2n6IlHFB0lrTJZ80e8fTcHxsQ2c8bTGZTWDqGl4gcf3wQOdgFPuHMuIDMIrN8Yex5u3CSsWUhWXoPHssj6nHbVgjCS89MbZBYtdwA0xd45m5HLW2z8U7dSYyCT4xP0YQhrx7p8p3rpfwgoicbSGAN2+Ue95490LQTaL6YYRB7E2XGh4flpo4fqzISZkaIPjMuSlOT6SpOj6ZhMETk2mSpka57XNyLMN//Kkn+OkXjnFuOst0LoGhCb5zvbQhnNN/Drqx/6urDe7WHLwgJGXpcfFOyuLC6SLnZrO9i2QxZWHq+obwlgReOj3GybF0704vY5s4QYgbREznbJ47XuD5EwU+8eTEgf57U+wfKrE5IKOY9NntNW+nJe5P/j177J42/OX58Q0STUMTOH6ABAppk7/24jFm87E8bzxr895iFVPXONGR7GlCMJFO9JKj3f0slFokTR0J5NMWYQiOH5IyNHRdUG0FnJ5I89ETBdYaHp85N8VvfWcBgLxtcmoijbsc8WPnJjlRTDOeDrGNbjhH31QiWExZ3K20ubRUo5A0SZvx3Uap6eOHEU4QPXBeHjg3c/3nZgygJ+87UUzy9s11QPDiyULvDkpJ/RRboTxxxcD0h2jWmy5/8WGZP72ySqXl9+Lim3n/wIZYum3qBBG8Mj/O8WKKmVyyt4+TYylaboDjh0gpcfyQlhdyZird8/i7+/GCEDcIsAyNzz49zYnxFEEkCaVkMmPzwskCP/HsLLOFJOstj/OzeX7hlZOkEzp3qm2mcgn+k888yZmpbG+9Y2mLuUJqy5DRuZksV1cbIGGp6nB1pYEbhFi64MPVFhlL3zTc9rA7o/7ngkjywokiL5zIE0o5End9iv1FeeIDMmrFPsNY770qy1Kvjeon5scwdf2BToj9dEvfux68H0YslFpcXa6TtnX8MOp54vmkxfxkmrWGT9WJW9g+eyyD2Zld2b+WV54cx/HvabLzSYt626fthzw1k+XkWAop4a0b63hBSDG1yrmZLP+HT5/d8px98fUbCCG3lPbFiVUDkNQcn1zSIJcwWG64rDVqFNMGx4rJTQ3vw+6MRvFOT3EwUEZ8AEat2GeY6+1Xh/SHVQDeuF6mkDIfuHD09+XoxrHj0nXJVMbmuzcrvHiKXs+RY8UUx4owV0g9tHrw/ipDQ9N4/kQBiN/rBSHfXagAko+dKvaULpudh+45swwdTbCh+MjQtA2hkUjCUzM5npkT3Cy3WCg3sXSd02NJXj071Rv9plDsBSqcMgDbqTIOGsNe72YJTj8MefNGeVP5YTeWXm17fPuDVW6WmtwsNxFCY66Y4qMnCizXnF6Y4XPPzfK552a3TcpuFqLof+97d6rkkgYXTo/1pIhbnYfuOTs7HStIHibtyyfNuA2ArmEbOseLaeYKNpO55IH/21AcPpQnPgCj1uFt2OvdLMF5ZaXBRDqxaVVrd7jCQrlFw/FJmjpNN6Tu+FTbHrOFJJapbRj0AIMNRtgqDNF/BzBI2917r42TsrfKLepOQCSjBy4gJ8fS2KbOWsOj3HQZy1g9bfrD9qFQDANlxAdg1Dq8DXu9mzVLWqu7vDK/MdzRP+F9LG1RaQWsdhptnZvJxu1dO2X2O5nhuV3M/1HOQ73t861LKzS9kGLK5IWTBeYnM9im9sB2u2105ycyyEhSd2OlzclOY65uheb9gygOYuhNMfqocMoAjFqxz7DXu1kY46UnxrCMjSGWfoMpgQuni/zEMzNM5eKBCt0y+0dd2yBDmGHw83DpbpW3b67HicqEQcsL+V/eXeKD5dqm6+o//oytE0aSJyfT5GyTphtwp9Ki3HS3XZ9CsRsoT3wA9rPD205UJvux3jNTGS4tNYDNW5l2veJCyuqFK9YaLoW09UgJ13sdCj3Gs3ZPQQIPNiQb9Dx88/IKs4UkJ7UUK3WXIIrj3k3X31ZN8urZyd5n1N3HWNrCNoffMG3UFFOK4aCM+IDshwRspyqTYX+5N1vXpaXGpi1VNxuGkE+amJMZpnL2Ixvw16+WuFNxCMKIO5V1Li5W+eSZcU4U05vGoQf53FZqLnP5JC0/BAEISdrUKTUHa3B2/z6++v3FTStbdzNOPmqKKcXw2DacIoT4/wkhVoQQF/seGxNC/LEQ4krnZ3G4yzya7ERlMmioYRjrWmt4W/Zk2Y02AJeX6kQyotr2afsR+VQCTQhev1piqdbeccx/Kpdgqdbmw7UmfihJWQbVdkDDCXd03vaiYdqoKaYUw2OQmPhvAD9x32O/AnxDSnkW+Ebnd8Uus5MWuIN+ubdqKTusdQE7brzVv9/Vusuxgg1I/DAibWl4fsiV5caOY/6fORcPZfaCCFOj16/8YyeLOzKKe5FDGcX2yIrhsG04RUr5p0KI0/c9/Hng053//yLwLeCXd3Nhip2pTAaRFz7urfh+qXWKKYuLtytMZpPYhs5K3aXa9smnLI4Xdx7uOj+b5+OnC3y41mat4VNMW7wyP8aJsc1DNPeHqyYyFmsNb0P4atg5iVFTTCmGx05j4tNSyrsAUsq7QoiprV4ohPgC8AWAkycfbxjvUWMncw8H+XI/7qSi/ZrHGO93jUrbo5A0mdM1CimL+Yk00/nHM5DPHityZiq/4bw13WDT0W/9F8C7lTZ/dHGJF08VehWn3Qti/1Si3UbNxFR0GbrEUEr5a1LKC1LKC5OTw/ujPozsJI48yK38496K71dr3smszedfmCOMJKt1F0MTzE+k0XXtsUMVg4ZA7g9XlZoehZTJWsPb09j0KLZHVgyHnXriy0KI2Y4XPgus7OaiDgu7oRJ5VFXMILK63bgV36+GTedn84xnElue152e80HliPeHq+puQN42qTt+77G9qthUTbMUsHMj/gfALwG/2vn5lV1b0SFhPyVg2325R/1WfKvje9RzvpnB3y4Ecv8FMJswqDo+uaTZe42KTSv2km2NuBDid4iTmBNCiNvAPyQ23l8SQvxtYAH4uWEuchR53LjzMNnNYqBH8Xx34iVv957+5y/drRKEYJn6hmnym53znV5k778AjqetuHXAZBop5a5dEFUhj2JQhJRyz3Z24cIF+dZbb+3Z/vaTr35/8YHmS1JKSk33gUZPB4GdGtiuIez36B/W6nWQ1w76nv7nvSDky2/fwjYNnpqO+4+3vJBn5nKEUj5wzl+7srqhFznEiUzb1Lb1xgdRpzyOwd3JuVIcboQQb0spL2z2nKrYHBKjJAHbqVf6KHcbO7kz2e49/c9fX20wnkngh3HSc34yA8DVlSYvnio8sO3H6fQ47Fj0Qb6LUxw8VAOsITFKTbN2Wv33KCqXnShitntP//N1N+BYIYmUklrb3zBNfrNzvhdVlTtFFfIoHgVlxIfEQZWAbVapuVOj8SiGcCdGc7v39D+fTRiYusaxYpKMbWyYJr/ZOT+oF9nVusPt9RbfvrzMu4sVqu34MzgoFxjFwUOFU4bIQZOAbRU2MTQxcOinPx4sgHLT23aMGuxMEbPde/qfP15M9kaxfeqpSUxd3zBN/n4eNbm7Vc5gNxOQ3c9nKmNTd0JqbZ8f3K5wZiqDJrSRUQ8p9haV2Nxn9lKFsFUyz/EDgohtE2mbJdzuVFqMpRNI5LZJvmGrU+IUsuitZbfO5VaJxvMzcfvd3UpA9n8+lZbHrXKLUsOlkDb52Y+dOFAOgWJvUYnNA8pea8m3Sua1/WAgr3SzhNtcIdVTdGx3PDu5M9nuPXtxt7NVovGbl1c4O5XbtQRk/+fTHffWVTQpA67YCmXE95G9ViE8TDEziDHcTtFxWFUVWx33Ss3l+eO71zd8lBRNioODSmzuI3utQnjcZN52ica9PJ7HaaX7qGx13FO5xK4qXA5qslVxsFFGfB/Za5nb4ypmtjMye3U8ezH4op+tjvsz56Z21egeVEWT4mCjwin7yH70MHmcGPJ2io69Op69Dts87Li7zbh2q2/4QVM0KQ4+yojvI/s5gHmnPMzI7NXxDDr4YjdVP1sdtzK6iv1GGfF95rAZgb04nu0SgGqIsOIooWLiipFju9i8GiKsOEooT1wxNIZR3APbh20ep7mVQjFqKCOuGAo7CWk8ynseFrZRemvFUUKFUxRDYSchjd0Kgyi9teIooYy4YigMo/XsoCi9teIoocIpiqGwk5DGboZBDpvqR6HYCuWJK4bCTkIaKgyiUDw6yogrhsJOQhoqDKJQPDoqnKIYGsNoPatQKDaiPHGFQqEYYZQRVygUihFGGXGFQqEYYZQRVygUihFGGXGFQqEYYfZ02r0QYhW4uWc73BkTwNp+L2IPUMd5+Dgqx3oUj/OUlHJysxftqREfBYQQb0kpL+z3OoaNOs7Dx1E5VnWcG1HhFIVCoRhhlBFXKBSKEUYZ8Qf5tf1ewB6hjvPwcVSOVR1nHyomrlAoFCOM8sQVCoVihFFGXKFQKEYYZcT7EELoQojvCSH+zX6vZZgIIW4IId4VQrwjhHhrv9czLIQQBSHEl4UQl4QQ7wshPrHfa9pthBDnOp9j919NCPGf7fe6hoEQ4v8khHhPCHFRCPE7QohD2+5SCPF3O8f53nafp2pFu5G/C7wP5PZ7IXvAZ6SUh71g4r8H/khK+bNCCAtI7feCdhsp5WXgBYidEGAR+L39XNMwEEIcA/5T4CNSyrYQ4kvA3wB+Y18XNgSEEM8C/zHwEuABfySE+EMp5ZXNXq888Q5CiOPAXwV+fb/Xonh8hBA54FPAPwOQUnpSysq+Lmr4fBa4JqU86FXRO8UAkkIIg/iCfGef1zMsnga+I6VsSSkD4NvAv7vVi5URv8c/Af4eEO3zOvYCCXxdCPG2EOIL+72YITEPrAL/vBMi+3UhRHq/FzVk/gbwO/u9iGEgpVwE/jtgAbgLVKWUX9/fVQ2Ni8CnhBDjQogU8FeAE1u9WBlxQAjxk8CKlPLt/V7LHvFJKeWLwOeAvyOE+NR+L2gIGMCLwP8opfwo0AR+ZX+XNDw64aKfBv7Vfq9lGAghisDngSeAOSAthPiF/V3VcJBSvg/8t8AfA38EfB8Itnq9MuIxnwR+WghxA/iXwF8SQvzW/i5peEgp73R+rhDHT1/a3xUNhdvAbSnlG53fv0xs1A8rnwO+K6Vc3u+FDIm/DHwopVyVUvrAvwZ+dJ/XNDSklP9MSvmilPJTQBnYNB4OyogDIKX8+1LK41LK08S3pH8ipTyUV3khRFoIke3+P/C/Ib59O1RIKZeAW0KIc52HPgv8cB+XNGz+PQ5pKKXDAvCKECIlhBDEn+f7+7ymoSGEmOr8PAn8NR7y2Sp1ytFjGvi9+HuAAfy2lPKP9ndJQ+P/CPyLTqjhOvAf7PN6hkInbvrjwP9+v9cyLKSUbwghvgx8lzi08D0Od/n9/yyEGAd84O9IKde3eqEqu1coFIoRRoVTFAqFYoRRRlyhUChGGGXEFQqFYoRRRlyhUChGGGXEFQqFYoRRRlyhUChGGGXEFQqFYoT5/wPKngClQGDicgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "La correlación de RM y MEDV es: 0.695359947071539\n", - "La media de las viviendas con un número de viviendas entre 5 y 6 es: 17551.5923566879\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAOC0lEQVR4nO3df6xk5V3H8fdHFtJCMaXuUCsLXmoosRIEc1UUf1AozWoJ9I+aQEKzKmYTYys1rbjYP4gmJo02tSYazQZWSEq3IRRaUqKyoUU0QepdfsjSBWkq4hZkLyHaqkkR+frHHcLd4e6duXPOvXcf5v1KNjPnmXPm+e53dz97cu7Mc1JVSJLa8z2bXYAkaToGuCQ1ygCXpEYZ4JLUKANckhq1ZSMn27p1a83NzW3klJLUvP37979QVYPR8Q0N8Lm5ORYWFjZySklqXpJ/XWncSyiS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUWMDPMmeJIeTHBgZ/0iSJ5M8nuQP169ESdJKJjkDvxnYvnwgyXuAK4Bzq+pHgE/1X5okaTVjA7yq7gdeHBn+deCTVfXd4T6H16E2SdIqpr0G/i7gZ5M8mORvk/z40XZMsjPJQpKFxcXFKaeTpHbN7bp7Xd532gDfApwCXAD8NnBbkqy0Y1Xtrqr5qpofDF73VX5J0pSmDfBDwB215GvAK8DW/sqSJI0zbYB/EbgYIMm7gBOAF3qqSZI0gbGrESbZC1wEbE1yCLgB2APsGX608CVgR3l3ZEnaUGMDvKquOspLV/dciyRpDfwmpiQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUWMDPMmeJIeHd98Zfe3jSSqJ98OUpA02yRn4zcD20cEkpwOXAs/0XJMkaQJjA7yq7gdeXOGlPwauA7wXpiRtgqmugSe5HPhWVT3acz2SpAmNvanxqCQnAp8A3jfh/juBnQBnnHHGWqeTJB3FNGfgPwScCTya5GlgG/BQku9faeeq2l1V81U1PxgMpq9UknSENZ+BV9VjwKmvbg9DfL6qXuixLknSGJN8jHAv8ABwdpJDSa5Z/7IkSeOMPQOvqqvGvD7XWzWSpIn5TUxJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElq1CS3VNuT5HCSA8vG/ijJE0n+KcmdSd66rlVKkl5nkjPwm4HtI2P7gHOq6lzgn4Hre65LkjTG2ACvqvuBF0fG7qmql4eb/wBsW4faJEmr6OMa+K8Cf3W0F5PsTLKQZGFxcbGH6SRJ0DHAk3wCeBm49Wj7VNXuqpqvqvnBYNBlOknSMlumPTDJDuAy4JKqqv5KkiRNYqoAT7Id+B3g56vqf/otSZI0iUk+RrgXeAA4O8mhJNcAfwqcDOxL8kiSv1jnOiVJI8aegVfVVSsM37QOtUiS1sBvYkpSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjJrml2p4kh5McWDb2tiT7kjw1fDxlfcuUJI2a5Az8ZmD7yNgu4N6qOgu4d7gtSdpAYwO8qu4HXhwZvgK4Zfj8FuAD/ZYlSRpn2mvgb6+q5wCGj6cebcckO5MsJFlYXFyccjpJ0qh1/yFmVe2uqvmqmh8MBus9nSTNjGkD/Pkk7wAYPh7uryRJ0iSmDfC7gB3D5zuAL/VTjiRpUpN8jHAv8ABwdpJDSa4BPglcmuQp4NLhtiRpA20Zt0NVXXWUly7puRZJ0hr4TUxJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqVKcAT/JbSR5PciDJ3iRv6qswSdLqpg7wJKcBvwnMV9U5wHHAlX0VJklaXddLKFuANyfZApwIPNu9JEnSJKYO8Kr6FvAp4BngOeA/q+qe0f2S7EyykGRhcXFx+kqlo5jbdfdmlyBtii6XUE4BrgDOBH4AOCnJ1aP7VdXuqpqvqvnBYDB9pZKkI3S5hPJe4F+qarGq/he4A/jpfsqSJI3TJcCfAS5IcmKSAJcAB/spS5I0Tpdr4A8CtwMPAY8N32t3T3VJksbY0uXgqroBuKGnWiRJa+A3MSWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRnQI8yVuT3J7kiSQHk/xUX4VJklbX6ZZqwJ8Af11VH0xyAnBiDzVJkiYwdYAn+V7g54BfBqiql4CX+ilLkjROl0so7wQWgb9M8nCSG5OcNLpTkp1JFpIsLC4udphOx7q5XXdvdgnSTOkS4FuAHwP+vKrOB/4b2DW6U1Xtrqr5qpofDAYdppMkLdclwA8Bh6rqweH27SwFuiRpA0wd4FX178C/JTl7OHQJ8PVeqpIkjdX1UygfAW4dfgLlm8CvdC9JkjSJTgFeVY8A8/2UIklaC7+JKUmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowzwY9BaF4XaiEWkVppj0nm7HDvt/tIsMMAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRnQM8yXFJHk7y5T4KkiRNpo8z8GuBgz28jyRpDToFeJJtwPuBG/spR5I0qa5n4J8BrgNeOdoOSXYmWUiysLi42HG6N6ZjbaGm5fXM7br7ddvjjuky5yTzTVLPtPNLLZk6wJNcBhyuqv2r7VdVu6tqvqrmB4PBtNNJkkZ0OQO/ELg8ydPA54GLk3y2l6okSWNNHeBVdX1VbauqOeBK4CtVdXVvlUmSVuXnwCWpUVv6eJOqug+4r4/3kiRNxjNwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBvktHFk8YtprTSAk7TLCy12rGjC0lNWs9aXl/r73t0374WzVqP446FBbGOhRq0cQxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqVJe70p+e5KtJDiZ5PMm1fRYmSVpdl1uqvQx8rKoeSnIysD/Jvqr6ek+1SZJW0eWu9M9V1UPD598BDgKn9VWYJGl1vVwDTzIHnA88uMJrO5MsJFlYXFyceo71WqSnywJJkyzo1MdiTZMsTrXa+03ze1ztmJUW1hp33Erj4xbWGlffWkwzx0r7dFmMa5pjxi1c1tc8alPnAE/yFuALwEer6tujr1fV7qqar6r5wWDQdTpJ0lCnAE9yPEvhfWtV3dFPSZKkSXT5FEqAm4CDVfXp/kqSJE2iyxn4hcCHgIuTPDL89Ys91SVJGmPqjxFW1d8D6bEWSdIa+E1MSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaNTMBPs3CRZMeu9pCTcufr3VhorUsADXJHCvtM+1iVxuhj4XAlr/PtH1f66Jey48ffX6091xpv3F/1kerZ9JerFTzRi7WNa4fXeeY5j2m/Tu3Wf9+ZibAJemNxgCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNarrTY23J3kyyTeS7OqrKEnSeF1uanwc8GfALwDvBq5K8u6+CpMkra7LGfhPAN+oqm9W1UvA54Er+ilLkjROqmq6A5MPAtur6teG2x8CfrKqPjyy305g53DzbODJ6cs9JmwFXtjsIo4h9uM19uJI9uNIXfrxg1U1GB2c+q70rHxH+tf9b1BVu4HdHeY5piRZqKr5za7jWGE/XmMvjmQ/jrQe/ehyCeUQcPqy7W3As93KkSRNqkuA/yNwVpIzk5wAXAnc1U9ZkqRxpr6EUlUvJ/kw8DfAccCeqnq8t8qOXW+Yy0E9sR+vsRdHsh9H6r0fU/8QU5K0ufwmpiQ1ygCXpEYZ4KtIsifJ4SQHlo29Lcm+JE8NH0/ZzBo3SpLTk3w1ycEkjye5djg+q/14U5KvJXl02I/fG47PZD9g6dvZSR5O8uXh9iz34ukkjyV5JMnCcKz3fhjgq7sZ2D4ytgu4t6rOAu4dbs+Cl4GPVdUPAxcAvzFcOmFW+/Fd4OKq+lHgPGB7kguY3X4AXAscXLY9y70AeE9Vnbfss9+998MAX0VV3Q+8ODJ8BXDL8PktwAc2sqbNUlXPVdVDw+ffYekf6mnMbj+qqv5ruHn88Fcxo/1Isg14P3DjsuGZ7MUqeu+HAb52b6+q52Ap1IBTN7meDZdkDjgfeJAZ7sfwksEjwGFgX1XNcj8+A1wHvLJsbFZ7AUv/md+TZP9wORFYh350+Sq9ZlCStwBfAD5aVd9OVlpRYTZU1f8B5yV5K3BnknM2uaRNkeQy4HBV7U9y0SaXc6y4sKqeTXIqsC/JE+sxiWfga/d8kncADB8Pb3I9GybJ8SyF961VdcdweGb78aqq+g/gPpZ+XjKL/bgQuDzJ0yytSnpxks8ym70AoKqeHT4eBu5kafXW3vthgK/dXcCO4fMdwJc2sZYNk6VT7ZuAg1X16WUvzWo/BsMzb5K8GXgv8AQz2I+qur6qtlXVHEtLanylqq5mBnsBkOSkJCe/+hx4H3CAdeiH38RcRZK9wEUsLQP5PHAD8EXgNuAM4Bngl6pq9AedbzhJfgb4O+AxXrvO+bssXQefxX6cy9IPoo5j6UTotqr6/STfxwz241XDSygfr6rLZrUXSd7J0lk3LF2m/lxV/cF69MMAl6RGeQlFkhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RG/T+wwxhEnEmmUQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "print(\"La correlación de RM y MEDV es:\", relation_rm_medv(rm, Y))\n", - "print(\"La media de las viviendas con un número de viviendas entre 5 y 6 es:\", price_mean(rm, Y))\n", - "medv_hist(Y)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "77hvTCml_as6" - }, - "source": [ - "## Regresión Lineal Simple. Mínimos Cuadrados " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Una vez hemos efectuado el análisis exploratorio inicial, vamos a proceder a implementar y entrenar a nuestro modelo. Recuerde que podemos conseguir ajustar a los datos a una recta de regresión lineal haciendo uso de aquellos valores de los parámetros obtenidos mediante el método de ***Mínimos Cuadrados Ordinarios***. Este método encuentra que el mínimo de la función del ***Error Cuadrático Medio*** se encuentra en el punto donde su derivada es igual a 0. Esto se obtiene evaluando la siguiente expresión:\n", - "\n", - "$$\n", - "w = (X^TX)^{-1}X^TY\n", - "$$\n", - "\n", - "Para poder trabajar de forma vectorizada, ampliamos la matriz $X$ con una primera columna de valores asignados a $1$, que servirán para mantener al termino independiente.\n", - "\n", - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "77hvTCml_as6" - }, - "source": [ - "**Lo que vamos a hacer:** \n", - "\n", - "1. Ajustar un modelo de regresión lineal mediante el método de ***Mínimos Cuadrados Ordinarios***.\n", - "2. Una vez calculados los parámetros, visualizamos la recta obtenida para comprobar que realmente se ajusta a la nube de puntos.\n", - "3. ¿Qué representa $w_0$?¿Y $w_1$?\n", - "4. Utilizaremos el modelo entrenado para predecir cuál será el valor medio de la vivienda para un número medio de ***9 habitaciones***, y también el número de habitaciones medio que podría tener una vivienda cuyo valor medio es de **45.000**.\n", - "5. Utilizaremos el modelo entrenado para calcular, para cada valor de $X$, cual es el valor predicho por la regresión. Llamaremos al vector generado el vector de salida predicho $\\tilde{Y}$. \n", - "6. Luego vamos a evaluar la calidad de las predicciones implementando una función a la que le pasemos como parámetros el vector de valores de salida reales $Y$ y el vector de salida predicho $\\tilde{Y}$, para calcular el ***Error Cuadrático Medio***. Recuerda que el ***ECM*** se calcula como:\n", - "\n", - "$$\n", - "\\operatorname{ECM}=\\frac{1}{n}\\sum_{i=1}^n(Y_{Pi} - Y_i)^2. \n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "**Nota.** Vamos a utilizar el operador @ como un operador equivalente a la función **np.matmul()**, utilizada para la multiplicación matricial. ej : A = B @ C. Realmente, el operador @ implementa de manera general el producto tensorial en Python.\n", - "\n", - "**Consejo:** Al trabajar con multiplicación de matrices y vectores, compruebe que los vectores tengan bien definidas sus dos dimensiones. Esto se puede ver usando con el atributo *X.shape* de dicho vector. Queremos que sus dimensiones se muestren así **(5, 1)** y no así **(5,)**.\n", - "\n", - "\n", - "Esto se puede producir por ejemplo cuando seleccionamos una única columna de una matriz. En estos casos se puede evitar seleccionando dicha columna así **X[:, 3:4]** en vez de así **X[:, 3]**. Igualmente, en caso de haber perdido una de las dimensiones, las funciones **np.newaxis()** o **reshape()** le pueden ser de ayuda.\n", - "\n", - "ej: `Y = Y[:, np.newaxis]`\n", - "\n", - "**Info:** En el punto 5 calcularemos el error del modelo utilizando todos los datos. Más adelante en el diplomado veremos que esto no es del todo correcto a la hora de evaluar un modelo, pero de momento es suficiente.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 337 - }, - "id": "uBXHrSYnEW8M", - "outputId": "48456e7f-e7e0-4d37-bbe8-a12fc3531997" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD4CAYAAAAaT9YAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABdm0lEQVR4nO29d3wc13nv/T3TdrZhF4sOkmARYVKiKNESLcmWIlsuiWuUYjvX73XsVKU4vinOtZVy4/v6Jq/t3PQ4saPENXGLHTuy47gosmVHitUrZZFiBwkQbRe72D7tvH8MdgGQIAmCWBTyfD8fCZzBlGdmsb8585ynCCklCoVCoVifaKttgEKhUCiWjhJxhUKhWMcoEVcoFIp1jBJxhUKhWMcoEVcoFIp1jLGSJ+vs7JRbtmxZyVMqFArFuuexxx6blFJ2LfS7FRXxLVu28Oijj67kKRUKhWLdI4Q4frbfKXeKQqFQrGOUiCsUCsU6Rom4QqFQrGOUiCsUCsU6Rom4QqFQrGMWFZ0ihDgGFAEf8KSUe4UQGeDzwBbgGPBmKeVUa8xUXCwTxRoHRotMVRzaYxY7epN0Je3VNuuiWO5rWsl7pGyfPc7xbInpmkcqatJmm4BAIilWXYbzVSqOT3dbhNt2dLOzL3VR519oX2DZ7t1EscZDR3LsPzWNRHJlXxs3buto6XdNLKaK4YyI75VSTs5Z98dATkr5ASHEnUC7lPI95zrO3r17pQoxXHkmijUeOJQlETGIWToVx6dU97h5e2v/uFrJcl/TSt4jZfvscXw/4PBkGU1AsebiBZKoqdPTZvHAoRymrnFVXxJfQr7i8rrdPYwV3SWdfyHbR/IVAPrTsYu+dxPFGl9/5hRDuQqpqIlAkK+6DGSivGZ330V9FkKIx6SUexf63cW4U24HPjnz708CP3YRx1K0kAOjRRIRg3jEQAhBPGKQiBgcGC2utmlLZrmvaSXvkbJ99jjZskPc0mmPWZTrPo4XkI5ZPHAoSzpmkYlbTJbCEXI6ZvKvT44s+fwL2Z6vuuQr3rLcuwOjRfJVl3TMImYZRC2d9phJvuK19Lu2WBGXwLeEEI8JIe6YWdcjpTwFMPOze6EdhRB3CCEeFUI8OjExcfEWKy6YqYpDzNLnrYtZOlMVZ5UsuniW+5pW8h4p22ePU6x7RIxQhvwAPD/ANnSmyh5xS8fUBRXXByBlm4wV6ks+/0K2u56P6wcXfT2N47uej23MniNiaLh+0NLv2mJF/GYp5XXAa4B3CCFuXewJpJR3SSn3Sin3dnUtmDWqaDHtMYuK489bV3F82mPWKll08Sz3Na3kPVK2zx4nGTGoe6GI6hoYukbN82mPG5QdH9eXxMxQFAs1l55UZMnnX8h209Ax9fkyuNR71x6zMA2dmjd7jroXYOpaS79rixJxKeXIzM9x4MvADcCYEKIPYObneKuMVFwcO3qTlOoe5bqHlJJy3aNU95qTOuuR5b6mlbxHyvbZ43TELcqOz1TFIR7RsQyNfMXh5u0d5CsOubJDZ8JiquKQr7j82J7+JZ9/IdvTUZN0zGBkqsLTJ6a4b/8Yjx3P0Zm4cNHd0ZskHTXJVxwqjkfV8ZmquKRjRku/a+ed2BRCxAFNSlmc+fc9wPuAVwDZORObGSnlu891LDWxuXqo6JSVP95Knms92j43OmUkX6Xq+EgEMcugPx1BIFYkOiVbqnP3kyMEQUAmEaErGUET2pInN1sRnXKuic3FiPg2wtE3hCGJn5FS/pEQogP4Z2AAGALeJKXMnetYSsQVCsXptDq65nyif//BCWpuQDwyG3FdrnvYpsYtg2vDBXwuET9vnLiU8ghw7QLrs4SjcYVCoVgyc6NGgObPA6PFixbxuQ+IjnjoT3/gUHbeA2Kq4tARj8zbL2bpZMv1izr3SqEyNhUKxarSyuiaxYRErveJfyXiCoViVWmliC7mAbHeJ/6ViCsUilWllSK6mAdEV9Lm5u0d2KZGtlzHNpc2qblarGhnH4VCoTidhogeGC2SLddpj1lcu2l5RHRHb5IHDmUB5k2aXrup4wwb1oton44ScYVC0VIWExLYKhFt5QNiraBEXKFQtIzFRIe0mvU8yl4MSsQVCsWy0xh9P3g4i2XoDPYkEMJY1vBBRYia2FQoFMtKY/RdcwOEkGgC9g0XyM9EhKz34mtrDSXiCoViWZkbm52MWiBC4T6RC2t3r6cY7PWAcqcoFIplZW4G5EAmxjPDBWxDo1jzmuGDc6NDLsW6PiuJGokrFIplZW5sdipqsXtDCgkEMjgjBnuu66UjHqHmBjxwKMtEsbaKV7C+UCNxhUKxrJwem21oGgOZ+IIRKa2sm3I6qzbif/JJ+MIX4L3vBWv53UhqJK5QKJaVC8mAXKmuRKsy4q9UYONGeOEL4f/7/2B0tCWnUSNxhUKx7Cw2NrvheplbBrYVE58rOeIH4M474YMfnF3+93+HgYHlPw9KxBUKxSJphTtisWnxF8uKlZv97nfhZS+bXf7lX4YPf3h5z3EaSsQVCsV5aVXmZVfSZmdvgu8cGGd8ut7s4LPco+OWj/inpqCzE4KZpsuJBJw8CanU8hz/HCifuEKhOC8Nd4TrB+wbLvDUyTxD2QoPHcle1HEnijX2j5YY7G7jVVf1Mtjdxv7R0rL7qltWKVFKePvbIZOZFfD/+i8oFldEwEGJuEKhWARTFQfH89k3XMD1A1K2QcVx+dcnhvn0g0e5/+DEkoR3MU0bloOWlJv9138FTYNPfSpc/t//OxT1F794OUxeNMqdolAozkt7zOLx43lilo5t6pTqHkO5KvGIQanmN6M9LlQYV8pXvaz+/OHhMOqkwfbt8MwzYK9OgpIaiSsUivOyozfJZLlOICVSwslcFZBs7YxTmvE1L2UEvRKt0ZYtvDAI4Ed+ZL6A79sHBw+umoCDEnGFQrEIupI2N2zJIIHpmoPrB+zoTWLqGsmZycKYpTOUK3P/wQm++tTwolwsK9EabVlcNh/7GOg6fOtb4fLf/E3oOtm1a9nsXCrKnaJQKBbFjdsyeIFsCmKx5uF4PldvSAAwOl3lRK5KdzK66AiWlWjacFEum+efhx07ZpdvvRXuvReMtSOda8cShUKxppkruEnbIF9x2d6VIBU1Kdc9Do6V2N6VuOCEmlY3bVhSeKHjwIteBE8/Pbvu2DHYvLlldi4VJeIKhWLRzApuV3OysDGC3thu05eOztu+JQk1F8jZEoo2tie4/+DEmZOdH/xgmHHZ4POfhze/eZWsPz9KxBWKdcZaKd260Ah6JVLoL5SFXDYb2xPsHy3NS17a95XvcNtbXzu745vfDJ/7HAixesYvAiXiCsU6Yi30rDwbK5VCvxROf+Dcf3Ci6dvXyiVe+rLrMafmJC6Nj0NX1ypYeuGo6BSFYh2xUskxS6ElCTUtolE9cfMf/T43XrulKeDf//BnwqiTdSLgoEbiCsW6YsUKOS2R9dJZfsuTD7L7Z97YXD71tl/k2ff8H2xz/Y1rlYgrFOuIlSrdesmSzUJnJ7tnFp1UO4/f9zglK7pmXD8XyqIfO0IIXQjxhBDi32aWM0KIe4QQB2d+trfOTIVCASuTHHNJIiW85S1hpcEZpr7znzz8yAEmhLmmXT/n40JG4r8OPAe0zSzfCdwrpfyAEOLOmeX3LLN9CoViDiuRHNNqVjy65otfhDe9aXb5j/4Ifvd3aQduad1ZV4xFibgQYiPwOuCPgN+aWX078LKZf38SuA8l4gpFy1kvfueFWNHomhMn5nfTueoqePxxiETOvs86ZLHulL8A3g0Ec9b1SClPAcz87F5oRyHEHUKIR4UQj05MTFyMrQqFYp2zItE1vg+33TZfwJ97Dp599pITcFiEiAshXg+MSykfW8oJpJR3SSn3Sin3dq2jsB2FQrH8tLwx8kc+EtY1ue++cPmuu0J/+M6dy3P8Nchi3Ck3Az8qhHgtYANtQoh/AsaEEH1SylNCiD5gvJWGKhSK9c9yRtfM9a33jxzj+tfO8XC/8pXwjW+ElQcvcc47EpdS/o6UcqOUcgvw34BvSynfCnwFePvMZm8H7m6ZlQqF4pJguaJrGr71ernKK37itvkCfuIE3HPPZSHgcHEZmx8AXiWEOAi8amZZoVAozspyZXUeGC2y+2N/xSteuJnYkYMAPPUXH+X+58fnN224DLigZB8p5X2EUShIKbPAK5bfJIVCsdyslaJZsAzRNQ89xC033dRcnLj9TRz6k79FAlNrJHN1JVEZmwrFJc5aLpp1QUxPw6ZN4c8ZPnn3I3Rv3UBaCCp177LMXFUirlBc4jx0JMtQtoIbBCQjBpsysWZY37oR8Xe+Ez70oebi9z7yOR7cfA2aEIwNF7iiM46ua+sybf5iUSKuUKxDGu6RoVyZQtWlzTbY3JE4w00yUazx8NEc3UmblG1Q9wL2DRfY1d9G1fVW8QoWyTe/Ca9+dXPx5M/9Cvvf9V7iEYNrqg5DuQrZYo3xUo03Xr9p/TyUlhEl4grFOqPhHglkwMmpKpoQFGs+tmEwWXLmuUkOjBbpTEZAgBAC2wwjNg6Nl7luc3oVr+I8jI9DT8/scm8vHDrEE4fydMzEmaeiFrs3WEgpyZbrl6WAg6onrlCsOxpZj5Mlh5hl0B6ziFs62bJzRvbjVMVhsDtB1fWpuj5SQrHq8szwVLMz/fk60q8oUsJP/uR8AX/sMTh1CuLxZpz5XC73Ko5KxBWXLRPFGvcfnOCrTw2vPTE7B42sx1LNxTbCUWnE0CjWvTOyH9tjFlXXRxfwzMk839g3wn8enMTSNdpjFjU34IFD2bVx7Z/9LGgafOlL4fIf/3Eo6tdd19xEVXE8E+VOUVyWrOeIjcZoNGGb1DyfqKlT98JJy9NHpZ0Ji2/sG8XSBRFDR9MEhiGIRXS+vm+U7mSENtvC0OD1125YnVDEY8dg69bZ5T174KGHwDpzdH0pVHFcbtRIXHFZspbbnJ2Pxmi0M2FRcTymKg5lx6cjbp0xKp0sObxwU5qKGxBIianpdCUshvOhL73ieGgCHj6aY/+pAg8cylJzAzrikdaP0j0Pbr55voA//zw88cSCAt6gK2lzy2AXb7h2A7cMdl3WAg5KxBWXKS0vxNRCGqNRS9eoOR5DuTJVxyWyQPbjVMWhLx2lKxlhz6Y0WzpjOL5EBmBocDxb5cBogXLd46tPnVq5B9uHPgSmCf/1X+Hyxz8euk4GB5f/XJc4yp2iuCy5FNqceQG8ZHv3vM7yp9O4zmQkDC/sTkZ4dmSaiCEYylUwNR1N0+lKRHh6uMDVG9qYKwvL0b9zrotmw8nDXPf6l87+8rWvha9+NfSFK5aEEnHFZcmO3iQPHAo7nM8VwbWSLHI+3/SB0SKBDDgyWaJUcwFB3fU4ODbNi6/obG7fuM6OuMXhyTI1x0MIGC86aEKwozfCtq44hiboTkQ4OF7iRVtma25f7IOtMffQJl1e9WO3YZ84NvvL4WHo71/ysRUh6vGnuCxZrkJMraAhfOfyTQ/lyhwaL+F4AbomODReZChXpeoG87ZvXGdPyqbN1hjKVYmbOlJK2qMGvpTkyuEDw9Th6RN5ThUqyxb5cWC0yDV3/Skvv35rU8Cf/OtPhoWqlIAvC2okrrhsWattzuZOugLNn3PT5AtVF00IoqbOkckqCdvE9YJ5LqLG9o3/8hWXyZJLOmZxeKzIWNHhRK7KZLHODVszxCyDVMzk4FiJmuszkIlfXOTHAw9wyy2zJWLH3/jfOfz+v7hsC1W1CiXiCsUaY6ri0BGf30bsdN90m21QrPnUXJ9K3cPUdQIpiVnagtsD7D81TSpqEjV1tnQlkJSRSIIgIB4xqbo+LxzIYGgatqlxy+ASO3EVCmGGZS18cwgMk0cfeg4/lQa4bAtVtQrlTlEo1hiLyUrc3JHgis44pq4hEQRS0p+26W2LLrg9gEQiEAAkIgZbu+L4gcTzJZahsXtDilTUWnqUjpTwi78I6XRTwPNfv4evPHyUaTuhknNahBJxhWKNsZisxB29SXRdY1tXgh/Z1UM6ZuL6sLE9elahvLKvjXzVZbJU4/B4iYNjRYJAclVfkt0b0qSioegvaTLza18LI0z+4R/C5d/5HZCS9KtfuWbnHi4VlDtFoVhjLCYrce4248UqEUOjXPf4wcg0O/vaFhTKG7d1cDxbZt9wEU1A1NTZlImSq3rcd2AUS9cwDZ101OQ1u/ua+50zUmZ0FPpmt2VgIOwsH4vNs1WJdutQIq5QrEHmViGcqjjNhJvThTxbqvPAoUmCQNKXitKZiOAF8qzH3NyRwJfg+QEJ20RD8sChLE8MFehLRelti5COms19Joo1vv7MKfJVF9fzMQ2dIxMlXrOrh663/hT827/NnuDJJ+Haa5f/ZijOiRJxhWINspjaLhPFGnc/OYKuCTriFnUv4MhkmW2d8aboHxgtcjxbYrrmkYqajEzV2LWhjXQsQr7i8PV9p0hFTVIxk8HuRBjdYs02jHjoSI6hXIV0zCIVjVDzfFJf/BxdN//urLF//ufwG7+xCndJAUrEFYqWcTHFpBYTZnhgtEgQBHTEowhBs1b4ZKlOzfOYLDn4fsBwvo4moFjz8APJY8en2Lslw3MjBcYKNYQQxEwNzw+IWTqTpTqWGU6XzY1oSQ4f5xfe8vJZI2+4Ae6/P0yfV6waamJToWgBi0nYWWifRmncBw9ncf35ESqnR41MVRwyiXB03CBiaOTKDtM1j0TEIFt2iFs67TGLmGUQMTRA8MRQjv2jRXQNgiB0rRzNlnE9n1zZaU5sSiS65/Gjd/wYb54j4Hd97JthpUEl4KuOGokrFC1gMSPpuczt1jNRrHN0ssjhyRJ7B9L4CEo1F0PX2NaZaO7THrNw/YDDE2UAbEMnX3XRNIEm4PB4kceH8nTELXraIsQjJo7nc91Amm/sO4WhCzriEdxAYls6SDiSrbAhHW1Gtrz2Pz7Hrj99X/Oc9/zOn/DQS17Dnk2plt07xYWhRuIKRQu40CqJjVoohyfKuL5ksLuNcs3j7qdOMVWuY+k601WPXLneHM3v6E2iCY0ruuKYumCiWMUPJLcOdpCveBTrHh3xMInnaLZMtlwjYZtYhs5AJs4bru1noDPerJ1SqTtUHY/b9/TTdXg/CNEU8GdedBu//PGH+Ma1r6A9ZnDjtrVRY0ahRuIKRUtoj1mcylfJlh2KdY9kxAhHxKmFfeJTFYeJYp2oqRM1dUqBxPN9ijWXp04U2Ls1w/Wb2zF1bV46fSPM0NQ1dvWn2NGb5MBokcGeBIcnyqSiFmWnRqnuMVrIM9iTZKrssKk9iqnr7N6QYihXwdAEvSmb7XGdnS/aFRanmuGPP/Ed/K4uBmdCEJO2cqGsJZSIKxQtoNFRJx0zSdkmhZrLUK7CWzcMLLh9e8xi38k8XckopbrH0ckyTgBbOsJR8rHJMpW6R1ciQsLWmynxC8VgP3gkS29blJhlMJSrkK/WGZ12sXSNje1hbfFSzWMkX6E/HePq/hQVx2fg/76PF3zib5vHeeLD/8TDV96IVvMQEq7qT5GOWZTr3lndQoqVR4m4QtECJksO121OM1lyKNZc2qIm27riTJYWdqeEJWMnyVcdhqcqjE/Xma64OI6HZRrEbZOK41Gsh37vRoXChWik7Te6wQN0JGzabJPdG9MAlG2Pmuthmxp89z5e+Qtvau7/7I++ha/c8ft0JCKMT1fpS8Woez4nZkINl6PGuGL5UCKuULSAqYpDb1uUvlSMQtVhKFfh6ESJI+PlBUMNu5I2t+/p57MPD3FgrEhnPMLmjiiHJ8rENQ1dhF3q2+MRBnsSZ4yE54YzCiBXduhPx0LBLdbQdZ1Nmdksypil42UnueW6ayAIAJDxOF/790d4phjQmYjg+AETJQfL0OiIRyjUwqYT6615xqWOEnGFogU0RsNeEPDMcIGoqRMxDALJgg2ZJ4o1JksOuoBMzCJiaHS32QRS4PoBw1NVtnbF2b0hRZttzhsJL5QYBA4116fqeqTjFt0Jm3RDeKVky7t+lf6vfGHW4Ace4IGuQWw3oIMSdS8gaupsSEcZzlfRNY1kxGjWZVkrzTMUKjpFoWgJjSJWz48VsQ0NAVRdn8GexBl9K+fGlMcjFrs3ppBC0Gab9LTZZOIWbTGLl+7oJhW1zhgJL9T0uT8djrrbYxZttsGhiRKnChXS9/w7Lx7smhXwP/iDsPrgS17SjKgZyMSouj5V1ycTs0hFTfxAkrB1VcBqDXLekbgQwga+B0Rmtv+ilPK9QogM8HlgC3AMeLOUcqp1pioU64dG5MjBB6bRhIYQEl3AD05Nk7D0eZOTDx3JMpSt4AYBE6U67TGDF/QkmCo7ICXHsmUQ8PWnR+hN2Wxoj80rULVQ/XHX93n4WI5bB7vY2pkknZvkdddf1fy9t+0KjGf3gT0rxvN96WHUymSxRn/a5o3Xb1LCvUZZjDulDrxcSlkSQpjA/UKIrwM/AdwrpfyAEOJO4E7gPS20VaFYVi4mLX6xJGyDkVyVQs1jQ3uUjrhJvuo2JycBHj6aoztpk7INPD/g4FiRwe4EUVOj7ktsU6czbuFLOJ6r0hY1yZbqzbooT58sYBk6m9pjbMrESMcsDo6X6IxHiJsaV/7sm0nf/51Zo/btw9i16wxb5/YdbbNNtnUm6J55GCkBX7ucV8SllBIozSyaM/9J4HbgZTPrPwnchxJxxTphMQWmLob9pwrc/eQIpbrLwYkSiYjBSL4GEjRdNCcnATqTERAghKAzEY6ox6fruH6AqQteuKk93AaouT7TVZe7nxxhe1eC4XyduGVwPFfB0gX5qssVnXEmi3Xe+NQ9XPOqdzVtOvLeD/Dsj7+VN+zasKDNiymBq1h7LGpiUwihA48B24G/kVI+JITokVKeApBSnhJCdJ9l3zuAOwAGBhaOkVUoVpoLTYtfDI2R/VCuzH8dytKVjLA5k2Bsuka2VA+zLUtV9m7uIGrOZm8OdifYNzINhKnzMUsnbhvs7E1wKl8lFZ11lUQMjdHpGr1tkWZdlI64RcTQyVcdDE1Qf+453ve2H2nuM733Jp79p3+l7EO7ee5pMFX7e/2xKBGXUvrAHiFEGviyEOLqxZ5ASnkXcBfA3r17Fy50rFCsMIvpY3khzB3ZF2senh+QKzukoyaJiEm26JCwTTriJpah8djxKfZsaicdMxkv1tCF4NBYCZD0tEW4YUuGdMxksuRQ83yiMxUK616A5wdkEhGKdY+UHX6FOxIRvFqNO379jXQc3t+06/57HkHbsoWK46uokkuUCwoxlFLmhRD3Aa8GxoQQfTOj8D5gvBUGKhStoDGJ1xiBw4XHP8/1qZ+cqtDTZhOfCcPLxCNUXZ/xYh2kxNA1qnUX4ibHJ8uM5KuMT1fZ3BHnB6eKbM7E2NXfRqHmkq+4bO+O05GIcGSixFCugoyaCEJ3SWciQlcygsCh7gXYps72j/8Nv/CJP2va9vXf+3O+fe1L6fYibMiWLr5zvWLNspjolC7AnRHwKPBK4IPAV4C3Ax+Y+Xl3Kw1VKJaTuZN4MUu/4JHq6T71fScLFGseMcsgYZu4Xtgbs1B1MXUN2xQczzmMFeuYmiBmaZiG4Fi2QnfCYrLkIISgp81ma0eY2bmzL8Vrdvdxz7OjPHgkR83zGOxO8oqdPYwVXTriFqXvP8zb/8cbm3Y9+5If5gvv/hM6kzabJQQSYpbZkklbxdpgMSPxPuCTM35xDfhnKeW/CSG+D/yzEOLngSHgTec6iEKxlljqJF5j9P3g4SyWoTPYk0AIg45EhOmZ+igDmRiFqktHwqLs+EwWa0wUHRIRgzbbbDZBjtQ9TF3H0DQiM42Ee1I2scisvzxbqnNiqkpfKowX70xEGCu6XJmErTdeh5WbbNr2yS8/SDaWotMIi2hJKSnM1BVXtU4uXRYTnfI08MIF1meBV7TCKMXlw0qE+Z2NC53Emzv6FkKiCdg3XODqDSk2ZWI8M1wgW6xxdX+KK7riHBwrcUV3nJG8hZSQLYelXrMlBw2QAVQcj4lSncHuBAINxwua/vKztV+7/R//jBd85u9nDfvmN7l/6wvZ4AZkT05hG7P+82TEULVOLnHWfNr9an7JFa2l1WF+y83ciJZk1MLxwnZmJ3IVdm9Mc0VnnPFSjWy5TnfS5ocGu+hK2nz1qWGypRqnpmv4gSRqaugaFOsedS/ANDRGpqpIwNDA1DVAcmC0SKnq4EvBkYkyW5/6Pv/zT945a9A73wl/9VcA7Ji5l4auUXU9NCGoOD5Xb0ioWieXOGtaxNfbl1xxYbQizK+VzI1oGZgZeduGRrEWukd0XVswszHswBOWlZ2ueUgZMFVx8DxJ0XPYGIvj+pKOWFin2zQ0ClUn/K/mESlM8be/+qrm8UqxJH//qW/z1h++mq6ZdQ33kHFE8PCxHJ3xCLv62zB1TUWlXOKsaRFfb19yxYWx3GF+S2GhNz1gwbe/uREtjdT058fCjjy2qc3zqZ9eVdD1A4SATMykUHXRhUY0Kqi6Gh2JCFd0xknMNFuYqoQ9MpGSOz7yv7j6P7/etPf33vP3HNm6izdu7jnje9CVtHn9tf3cuC3TPPfpdikuPda0iK+FL7midSxHmN/FsNCb3tefOQVAfzp2xtvf6REthqYxkIkvWJHw9OO2xywCJMWaTyZhsWcgzZbOOPtO5rEtA13XkBJqnk8gJVd//x5+6Hff0Tzml378l/jnH3kbAtjaFSMW0XnwcHZBN6NK2Lm8WNMivtpfckVrudgwv4tloTe9fMUDIRnsOfPt75bBrkVFtCx03GsH0jx1Is+2rjiu52PoGqWax3WbMzh+wGTJYXS6infsGP/7na9vHmtqyyB/+v5PU/A1roiatEVNHN/n7ieH0YVG0jZw3HB/5Wa8PFnTIr7aX3JF6zE0eGIoh0Cws69tRYVo4ep/ARDMWzf37e9co9yGC+Xe58bobbMZ6Ig3a3hHzfDvt0MKQAMpAOiIm3zvYJZypc7/8/s/z879jzeP9+d/+WVO9mxm98YU48U6mhCUah7Hc2UMTWNnfwIvkByZLLOtM67cjJcpa1rEVUGeS5e5Loebt3c1H9AryUJveqaugRDztlvM29/c6+lN2RRrXjP8sFFVcFN7nBdtzTT3GZmq8L2DWX74P7/MC9//e831//5r7+XUm9+G6fp01hyqrs/G9iiFqkup5hI1dV7Qk5zXsHiyVMc6T10UxaXJmhZxUP69S5W1MGm90JteOhbaUa57F/T2N/d6NnfEeWa4gBAwlC1j6hqTxTo3bZt/DO/ZZ3nPz7ymufz8rhfx0f/1YQzTZBthMay6rrGxPcYbrg0rD371qWFG8lVcf7YMUcTQmCjW2bUhtRy3RbHOWPMirrg0WQuT1gu96TWaLVzo29/c62lErhzPlhkt1Ni1IcUNWzNYM0k4ol7nmh99GS8+fLC5/6e/8D2eDNoQQlJ1QndOzfMxDX3eW0AYrhhweKIMhEKfr7pommhG1iguL9T7l2JVaLgy5rIWJq0bzRYuNLns9OtJRS2u6Eryiit7uGWwixu3dTCSr8Af/iE37dpAbEbAH/y/f8f3D03SsXM7CVtnquKiiTCTM18JqyDOFecdvUk0oXFFVxxTF0wUq/iB5PY9/eqN9TJFjcQVq8JqTVrPj98W5MphU4XJUp37nhvn8GSJ7d0JBnuSuP7Zoz4mijUeOpJj/6lpJJIN6SheIEnYBhPFOrlSHU3TuH1PPwDGIw/ztle8tLn//pe/nnt/909IRi366x5ttsnmjhgnchUmijWcwOemrR28alfvGbHgjbcHU9fY1Z+a96BRGc6XHyJs3LMy7N27Vz766KMrdj7F2qYVgnOuY86dfIxZOo8ezzGar2GZOlFT46GjWUpVDwns7EvQmbDZ3BFjohi6eBoRNB1xg2/sG2MoV0EXkmLdp1jzSdg63UmLDek4mbiFpWsUh0f5H2+5eZ6NjzzyPF57hnLdo+Z6pGMWQ7kyJ3JVtncl6EtHmw+1m7eHD7XF3KfTr2/uMZSQr2+EEI9JKfcu9Ds1ElesGss5ad0YGT98LEfU0LB0geNLHjg02RwNf/yBo0wWHRK2QWfSYjhXpVz3SUUNLFNnuuoSs3RcL6BQ9ak4FQ5PFPF96EtFqXk+z44UKNVcOhIRTF1wYLSMF0hilsaJbJ3RQp1ExMTzA375F15N18Rw08ZPvO8fyN14CzIXkCzn2dgeRQK3DHZx/0HoTkbPmOh96EgWL2BRpSfWwmSxYuVRIq5Y9zRGoEO5MjFDY2iqCsALuuN4Ej56/xGCIIw4Sdk6x6eqHM2W2ZCyKdRcTk1X8aUEGVb+i1s6dddnquxzKl8hk4jQkYiQjplMVRwmSi4SwpopjocQ4FY96p4kIiVXfPEf+cXPzzZoGOrfxjvu/DhI2DxeZM9AO3Uv4PGhPHs2hRElZ5vofWIoxwsHMosS5rUwWaxYeZSIK9YtDdfJ9w9PEjF1ChWHqhOQnGlZNlFy2NqZ4OEjk/SmY8QsnYMTJXwfPD/gwGiRYt3H0gUSiJkahaqHqQtqrqTu+XhSEjUFhydLJCyDsuMikYzka+QqDroAQ9dwvYCNhVG+9aGfn2fjD//+l6jGk3jTdRw/oFj18IOARNTC8wOeO6UhGebkVAXHDehvjzX3rTg+AkHM0ucdsyHMp7uOxMw+KsP58kKJuGJZWamJtbn+X01oCELRrtR9elPhaLRSD6h5Pr4E1/VxhKDq+JgCqq5PoerSl7LxAkmh4mEbGp3xsEBVRyxCzQ1rho8XHSKmPlPISlKo1HB9cLxwPkl3XA7+8Y/Os+/9v/IB7t54HRXHZ6MdHrNeDzB0l8myi6Hr5CuNvpsRsqU6//7MKfpSUTZlonQmIui6xs6+tgWFWUDz+g1N8PjQFCdyZWJmmOLf2xZVGc6XCSrEULFsNIS15gZ0xCPU3IAHDmWZKNaW/VwN/6/rB0yU6uwfLSKlJFeuU6qHAj1RqvH0yQK6EEyU6qSiZujb9iWBBEPXMQ2NdMyiM2kTMTTaYxFsQydihF8NQ4imqyVbcijXPYTQEEhMHd71vU/NE/Bvv+Ambvo/3+SLPXuYrnrETB3b0ql7AQLQhE7Z8TENjWTUCh8KVZeJosOWzhhe4JMr1zk0UWJnb4Ibt2WanYCkDFu+hZmtgkTEwAsC9o1MownB5kwC29Q5OFbiWLaEbWpqUvMy4LIZiavQq9az2Im1s30WF/IZTVUcdCF4dmSa9phB1fFwfJ9K3eUHw3mqXsCO7gR9KYtcqcrB8TLZikNnzMLzJYYQpKI6VTcgFbXoT9tMFh0iRjhaH3GrpONh5cFC2WHaC0AI6m4YvbL15BG+9on/Mc+m3f/zS9Q1i13tUU7makjp4UtJvuLg+D4xS0cX4PsBRyZL9CQjxK0IJ3IVYlaY1DNdc3jxFV2U616zz+ZCpScePJIlZunsGykRNWfbsdV9nWs3prFNjVsGuxa8d4pLi8tCxFVziZVhMRNrE8UaX3/mFPmKh+sHmLrGkYkSN2zNsH+0tOjPqD1m8fjxPDFLxzYt/EDyxFCeuG1h6YJk1KBY9Xj8+BSBFLTZBoWyy3TVxdQEqaiJbRqUHR/fl5ycqlKs+uR12NIZYzhfw3UDDCHQNQ1DEySjJifHqjz3f398ni0//tY/Yd+mnQgJQoOpskvU0vD9sNCV6wb0t0WpeR6leoBpBpi+Rt0NiEcMfnBqGoHE0DX6UtEz7ttCUTyN5KJSzaXNDn3eqh3b5cllIeIq9GplWEzp4IeOZBnKVWmPmcQsg7oXMJSrMjY9cs4ojNNH6cVqne8cGMNxfQxDIwgktmVw3aY2hnI1ruxLct+BcQpVn4ih4QUSTRNs64pTc3yG81Vs00fTBNlyHceXdMUtxoo1tvckEUIjV3Yo1X0iho5hCn79H/+I1z91b/NaPrX3DfzBK34JgIgAoQkihiBhG8QsjQlNI6JBoeZhmhqT5YDOmMmujSnKdY/nx8u0xy10IfADQbnuU6y5FKoOhqadc0KykSyl2rEpLgsRV6FXK8NisjCfOzVNOmpim2HEhW3qpKPw9PAUN2+f//o/NwrjgUNZfD9gslTnuwcm+MGpAlFDww0k9bpHsepyZV8bw/k6UVPj0HiRUt3DC3wsGVYnDAKfk1NVKnWPui9xPJ8220IaEDc0etM2JcenUHHpabMJpKTuBVx/6DE++JHfnmfb4LvvxhWzUSOBDP8nDMFU2SEVTfCCHot8xaXmB9Rdn96UTSpqUXV8klGLLR2gCY1UzGCy6LC5I4ygeX6syEAmfs4JSdWOTdHgshBx1VxiZVhM6WCBQDI/S1gisQ3jrJ/RgdHijB+5HAp7qUbU0Bkv1fB8iSYEgZQMZSvs7E/RkbB48kQeXQgihk7NDScVdV2j6oSj7zZTp1jzCAiouwJfF4xNO2ztinGqUKdXE/TrLp/+7dvm2frDd3yEI5mNeHMuQcz8p+tQdQPAoz1mELUMijWfazamOZ6rYOsauoC6J+mOGCQjOvGIxUu2d5KvOJzIVSjWPIo1h22dCR48kj3vnIFqx6a4LERcNZdYuYnd82Vh7uxr48kTUwghsA2dmhdGktw0E4UB4Po+B8dLTBbr3LA1w8mpMkcnq2GyTtQkV3GJGBqFikfc1JC6wAkkI4UaG9sj/KDiMDpdp+a46JqGG4AmJJauUfcCIqbA8fyZQlMBggAvkHiBxBASDfjF33s7g88/1bT7Qz/yC3z6h95EtuLiza/bhS7A1ASWqeEFYBk6Y4U6/e0ahi5I2CYDmRiFqofr+dQ8H12DVDTSbA6RjlmkYxYjUxUOTQTYpt78W33gUJadvYlzzhko0V67tPq7d1mEGDZGiLapkS3XL7vQq5UM/TsfN27LMJCJEUhJoVonkJKBTIxX7erl5u0d1Fyf7x/JgRTctK0Dxw945FiesUKVVNTACySuF3AiW8HUBfUg7JrTHrOIRzQeGyowWqiiIXF8qLk+STMc/ZZrPlFDEAQSicAyNCpOQNXxcb2AWt1j8Ltf40u/9kNNAS/aCV72gXv4+EvehK7rpKNm80vTaB2ha4CQ1LyATMxka2cMVwb0p6P0p2z6Ujbbu5NkYhYDHXE2Z2KMFuqkoybpmDEvfPDQRInBngTxiIEQgnjEIBEx+M6B8ea8ztz1B0aLK/4ZKhbPSnz3LouROFzezSXW0sRuV9LmNbv7zjoyScdMbh3satr4zHCeLR0xfnCqSNkJmp1zjk9ViZkCKSWOH+D7ARoCNEEmZlGsezi+pOb6lJywGz2BxJcBQQBCBHhSoguJG0B7aYpH3v/T82x9zbs/QyXTFU6MVj0KlfA4tg5C09A08AOJqWv4Egwk27sTRC0DTQh+7patfOKBowgEiYjO1q4449M18rUAXWPB2uWbMlF626Lz7IhZOuPTda7duHDmpmLtshLfvctGxC9n1trE7rkeqKfbWqq59LZFqbp+mMRTqdPTZtMRDUu++oQ1TKKmoO5J0lGTuh9gaIL2qEE2kNRcj7ih4WsCTeoI38X1wfVBF5Lv//Xb6C5PNc/5Oz/22zxw06vxAgk+lB2PtphJseJQdjx8ICIC0rFw8rNU9zCFYGtnnEwiQipqsmdTO11Jmyv72njyRNjlJ27p9KejRC2DbZ2xeQ+ym7aFb4b3H1w4db67LaLmddYhK/HdUyJ+GdDqid3l8Pk1jrH/1DSRmR6SqahFYiZlfUtHgoGOGEO5Cs+PTmPoGpou0CRIKak4EieAoORScX3ScQsZyNDl4gnaYhalqkvFC6i6YYPmn33kbn7v3r9v2vBM3yA//44PUan5aFWXqKHj+j66pqFJsAyDuAV9KZvJiktvMhTxsIkxdCdtynWP3RtS3Lgt7KV547YOcmWHfMWbqcui0R4L3UKNV+y5/u2zzd/ctqOb/aOlM9ZfTvM665GVCKpQIn4Z0MqJ3eVIpJp7jF39KR4fyvPosRzXb26nM2ExlK2wtSNOm22yrTPB0yfzbGqPUXUDcqU6XhD2pxdAXYJXC6g5NYQm0AHLEORKDlJCRIOu/Aj3fOSOeTZc9xufpxyLE3E8PAnSlWEkiS+JCEl/exQNjUREpy9tcyJXpT1mUfV82mMmGzMxDE0jHTd5ze6+5rUv5D7KVxxsc+FX7FsGu84a4dORiKim4euMlQiqUE0hLhNaNUN+/8EJajOZhw3KdQ/b1NjRm1zUOU8/Rr7i8OTQFKemq2xqj7EhbQOCkXwNiWTfyQJTVYex6Ro1N6Dm+HgSfAmmBjIAH5CEwm4AEUujP2nxrXe/ct65f/an/l/u23J9GCIownhva+ZSgpknQypqkolH2NIZZ1tXHN8PMHSdYt2jMx5he3ccy9Ap1T129iaYLDnnvOavPjVMRzyCEKK5TkpJtlxvNkRWXDosx3fvoppCCCE2AZ8CegkHPHdJKf9SCJEBPg9sAY4Bb5ZSTp3tOIrVpVUTu0O5clhXu+41Q+nabJNj2RKTJWdRI/SF/Ia6rtHXZnP1hhRPDuV56GgWU9eIWRonp6qcyFcJgjAyRNNABIAEKcHSASFwvJmIdAHvvvejvO2//qV5/H/b+UP89k+8B39mPyEgYkDFDUvLGppGxfHwfCjVPZJRk00Zm5hpMF6r8c5brwBmO+7UXI9K3eUzDw3RmYww2J1oRiKcfs0qb+HyotVBFYtxp3jAu6SUjwshksBjQoh7gJ8B7pVSfkAIcSdwJ/CellmqWHNMFGucyFXRNUE6apEt13j0aA4/kFQcn2s2ptgz0I4Qxjln5U8XtRO5CpoAw9TZNzLNkclSmMhi6Di+TrEWTkzqhCNn16eZPuRJ0AKQQhKxNDZlh/nG3/7ivPNd9a4v41om+KDpEAEMXeAHENElGoKIoRGgYwlBgMAQggeP5Blot7l5e+c8d0nDHTRZculO2iBg38g0uzekmmGAc69Z5S0olpPziriU8hRwaubfRSHEc8AG4HbgZTObfRK4DyXilxUHRots70pwZLJMtlzjyESZ4akKbiCxdMHjQ3mmKg637ewhHbMWLIZ1YLTI8WyJk1M1BnsSRE2dh45kyZXrBIBt6AzlKmhAJQjIVZxQVAEXwnfD0wgA3fX43Cf+J7tPHWyu/6mf/wue27AdAx3f83EA4RMWzLJNKo5PICV+EOAHAlMI6r7E9TxE0iKiw3ixHnb3KdaawtwsixsEpGyj6SYZylW4uj91RiTCYjJbFYrFckETm0KILcALgYeAnhmBR0p5SgjRfZZ97gDuABgYGLgoYxVri6mKQ186Sixi8N3nJxgv1vCkJBExaI+blGo+Rycr9I4UePH2rnkug7mTmVs7k9iGwVMn8mRLDoWqSzpmMpSrUREeZcdFCIGlaTiejy8F3owNlgbOaUL+cw9/md/99keby+963W/xb9e+HF2AkBqmFu6gi9D9IqVESkEyYjBRqhOLhHHePlD3PCwjHKW32Sa6LpiqeDx0JMvrZ/zXx7MlSjWfoVwFSxNszMSIWwbTNeesbpLLOW9BsbwsOmNTCJEA/gX4DSnl9GL3k1LeJaXcK6Xc29Wl6htfSjTcIOmYRVcyQtTU6UzYZOIW7bEIuiaQMuB4rtpsZrCjNwnMT4IQQtDfHqMjESFi6Lxoa9iDMmppWIaGnHGZRMywGqEf+LNZk7Nzg1w1doRjH3x9U8Dv2X4jW9/9Ff7l6peHk5SaQBcSQ9PpSkSwDIGuQToeYUN7BG/mDSJu6UStMCPSNnTilsnmjhidbTbdbTbpqMlzp8KvwESxxsmpGsW6x9ZMlLLjc2C0yGSxhjFTjKpxzQpFK1jUSFwIYRIK+KellF+aWT0mhOibGYX3AeOtMlKxNpnr201YOo4XoGlhHHXU0ulMRJiqOFRd94zCTI2mDkcmShTrHsmIQb5cp1T32KTbOL6kUveYrnp4XoAQEAQGCIH0wwlLHXB8sN0a9911B72lXNO2F73jH5lItANhhErE0JBITD30QSdsk6RtkIyYRAyNUs3HCyTbe5JhU2XHp+J4ICAIJLFIeH0b0nEkkooTcP/BCb5/eJIgCKi5ko5EhBd0JziSLXN4ssTtezZy47aMGnErWspiolME8FHgOSnln8351VeAtwMfmPl5d0ssVKxZ5vp2E7ZOOmbh+KHg1t2wqNSm9igv2d51RpcZATw+lKc9ZpKyw7rip6bruJ7P8+PlsKCUHsZdSyExBNQ9H1MTRCI69apPANx53yf45Ye+2Dzuz7zxvXzvihc1XeUaYJmCeCRskVaqe0QtnYFMjKipkS07AHgBXNVm4QdQqIb9NhvNJmQQIAPJ1p4YuiYYyVdnmikHaEIjYethQk/ZYbLkIKRkY3tMCbhiRVjMSPxm4KeBZ4QQT86s+11C8f5nIcTPA0PAm1pioWJN0/Dt3jLYxfWbM3z24SEmSw6GBpsyNhvSsWb24nwENIvSht3mbUPjRK6CEA41x6NQcRFaWO0QAZ22GbY3k4KrDn2ff/qnO5tH+8y1r+Z3f+Qd8/wrGmFmpkDg+jLslQlsTIdNhIUm6G+PIqRGOm7Q02bzyLEcSQRShnVRbtgaw9A16q7PkfESbgCO53PzFZ0zriAYylbIV12KNZcXbmonHjEIJKp7lGJFWEx0yv3MFmw7nVcsrzmKBmuhJ+iF2rCzL8WvvXxwUftIJNdvbufEVJXpWjgaTsUs0jGTpGXw6Ik8CI101MD3A1wJsYhBtFjgE3e+AU2GY+2KGeHGd3yKciQ+W1VQhPHjuiYw9VDA655PICEZ0ehJRcOiUoUaQ9kKEUPnpm2ZsNWboeF4QfjQSETY2pWgvy3Cfzw3zqauKJah8YORPN8/muVkPqz/XXZ8aq6H5wccz1XobrO5cWsGU9fWffeotfB3qDg3Ku1+DbIWeoIu1YbFRF2Ek4EVRvI1XF8StzTKTkDc0tjUHsMLJFf1tuEHYV3tct3H0OAXPvY+XvrgN5rH+ZVf+Use7t1BreZhCCAIszYBYqZGzQlwZtI2DU0joQtePNjJ1s4Ex3MVfCSdiQj9qbB58n8enCRmamxIRxFCUHN8yjWPcaFxzaY0g91J9g0XyCRsHC/gwFiJNttkYzrC0ydrRAyduKXTFgldS40szPXKWvg7VJwfJeJrkLVQOrZVNjSEIWrqHJsoUXI8ijWPuuuTipq86spunj1Voi1qkC3WKVRdbnzmfn77w7Oukyfe/mt866d+lcJQjupwARmEDYp1HTQJEUMnkBCzDQwRumo6kxG6EhapWARD17ANnU3tcQIJnQmTshMQMXRMQ8PxJZYhEEKQr7i4geTF2zLNrvQb22McmShRqXv0t9nkKh7dqSgbUlE6EhaFWhgAebbwwvUyul0Lf4eK86NEfA2yFkrHtsqGhjAcmSg1ozw0NDRNIiX8YLREZ9zkZL6OOTbKZ977k819cz0b+cTffYWyZnJgOI8fSBKmgYgIynUPTUBfm03U0hiZduhO2LygN8Hmjji6Jjg6UcI2NExdYzhfRRMSQ9MoWzpCSgxN4HgB27sTDOerVByXDekY12/JYM7USknZBrYQpGMmx7KSg+NFdF0w2J3g8GSJ4YLO5vZoM6Ty9CzM9TS6XQt/h4rzo0R8DbIWamu0yoaGMAxlK2hCoz9lo2uC6ZqLQHCqUEP6Pu/5y99g176Hmvt99h++itx1NcXxMvtPFajWPSxD54ruBLapM1asUal5aLpG1ZVs7oixtSOO5weMT9dmOvh4CE3MlLk18AIwdUF7zGR4qkrM0kCEDR4Gu5N0xC16UnYzlNLUNGpuQLnucXSiTHcywki+Rq3mMT7tkIkbHMtWGZuuEgBvuLb/DGFeT6PbtfB3qDg/SsTXIGuhtkarbGgIA4QdeRKmQaXu4/oSQcCLv3s3v/Mvf9rc/tu/+vvs+4mfpjNuEYuY7N7YRq5UZ8gtM1VxGMhEqXkBMoC4rZOIhLW6e5IRqo7H0FQ1bBTh+mhCkIyaHJks0hY1ma55bGiPkolFqLlhxuXrrumjty3avN6Gq+Pm7R0YGjx8NMdkqY6hC+IRk6jpErU0Rqcr5KsGN2ztIGbplGoudz85wmPHc2zuSDSPM3d0O7c5ciCDNedWWQt/h4rzc1n02FxvtKon6ESxxv0HJ/jqU8Pcf3DirH3+Gj7biuNycHyao5PFZbNhR2+SUt2jpy3MkMyVwjokGydO8KVfu7Up4EdesIdf/fj3ueflb6Q7aTGcrxLIgMMTZSxDJxmx0DWdk1M12mMmhq7h+mAaOnsG0nQmbY5lK5TrHt5MT82YbWDOdLx/7e5+Xru7j3TMYrrm0JuyuWFrO91Je949h7BU7oNHsqRjFv/PjQMYmkbMMtAEICS2YaIJjUCGE6V+IDk6WUHXBKWaP6+vYuMhlq847Bsu4PoBliGImPqq9T09G5d7b9r1ghqJr1GWu7bGYn2xc7fb0pE4Y0R6scyOagXD+RpHhnPc9Ze/wtaRw81t3vZ7n8XfvJmtbTFKjs/X943R1xahLWoSNXU2ZqJM11xsU1CoBOTKDl1Ji5rj05W0iJn6TNy2R8LSAMGGjM3mTBxNwMHxIhXHJxW12L0hdA00aqDPTUpa6J7tHy2RiZvYps5ooU48YgJQ9wKqbtiqbXiqRipmko6aFGrePJdJY3Q7lK0QNXUkUPMCdm9IYWhrLyRR1XhZ+ygRv0xYrC92OX22Z4vC6EravP7afl5298dIvPd/Nbf/85/933xnz20gBPFANlPei1WPYtVluubxgp4kSdvkqv42TE2ga1VqXsBAJoZEMjJVw/EkV3TF2d4Zw7JMdvQmScxcR9Xx6YhblOoehYrDZKlOruygaYLb9/Qv6p7FIwZHJirYpkZn3OLkVBUpIW2bnMxVKdRcdvUnqXsByZl9GhOCjYfYobEiQkiSUYvt3QlS0fUfkqhYHZSIXyYsNtJguSISzjnyf/5Z2LuXxMy29+95KXe94/2koiaF4WkSloammeTKLvmKS38qQrHuIoFnR6bZ1d+GqWts7oxz285uIqaOF0iGshU2tSdAQNX12dyVYChX4WSuwo7eUFTzVZfrN2fY3p3g7idHCIKATCJCVzLC/tESHYnIvPouC92LDe1Rxop1ZCAJpKC7LYJtCupewPFsifa4xZHxCu0Jixu3htmqcycEu5I2N13RcUZHJDVpqFgKSsQvE+ZGGhSqDkO5CtlijXTcmlcbe7kiEg6MFvH9YF6Bq27hkt58LUxlm9v99oe+yZAWx5SQq7hEDBFGl0R1ao6HlJJcxaMrGeEl2zv4zv5xDo6VuGZjim2dcXRdA+SC9bx1Af3pKJPFerNJ8UAmyo3bwnovgz1hK7VSLSx125mw5r1xnO1eDGTitNkWRyZLeH5AwjZJRQ2eGipQ98KqjsP5Co6rI6U8I9xwolgjX3F4+Giu2QXI1HU1aahYEkrELxMavtjpmsOh8RKaEOi6TnfCnucbX66IhOPZEsP5OnFLJ2Ub7P2rP2TPv3yi+ft9H/s8X+3ehV902KRBoepSrnm02Sa5isPJXI2opeEHAdmyi0QyPFXjth1dnMjV6G+PNl00Dx7JErN0kpGwkJZt6mEXIM/n2k1pDo+XkVJS9zwy8RgQtpU7OVUlZhm02RY1z+fQeIma6wNdzXv29WdOzXSqd8hXHOq+z+ZMjKRtUHV8BnsS9LZFefTYFLGIzq07ukhFLQpVh+fHijw7UuDFV3Q2KzjOfUO5aVsHh8bLfHv/ON1Jm/502AgZWBU/9HpJQlLMR4n4Jc7cL6ahwXOnyvi+JJ2w2JSJkY5ZlOtecwS6XF1npmth8s3Wpx/ktb/5tub6Z37sv7P7y//E0aeGyeSr5MreTPnaKLJNkq+4pG2Dmi+ZrjnUXckLehOkbItT+SoVx2fPplSzIQPMjpg3ZWLsGy4AEEgZ1vOuhZEw/elY86H0wKEsw1NVNCGImmE44HixzkSpTrZU51VX1eZdb7nuMpSroGthv82uRIAkoDsR4eBYKPyO53P95nZS0fCNJRW12Ls5Q7ZcnzdZOtfPHo8YDPaEMfIRU2NrZ3LVkn/WUxKSYj5KxC9hFvpiFuseV/UlmK75PHeqQMI22dQepep6zf2WGpEw94FRPDnKu3/61ubvaok2PvLJe+ne0MluQuF1/YDRmSJUri+p1MOqhb0pm5/c3cdzo0UOjZVI2AaWJihUXUzH47lT08iZY+zoTTbfHhIRg139bRwaLzNZdrhhSwaQ2GYomI247GypztHJEv3pGH4QMJKvoYmwWqKpa03xOjBapD8do+YFYXz5RIli1ePAWIkNKRtDE2zvSjBeqiGRHBwv8YIe0RTyhdxQp/vZT+QqpKMmju8jhFi15J/1lISkmI8S8UuYhb6YUVPju89Psqs/1XQjPHZ8ij2b2i/qXM0HhqVz0++9kzd87cvN333mLz9Pac/1DCSssJEwoatisuSwuSPGcK5Coe4QCMGu3iSaJqi6PlLCC3oSTJTqFCoOuqZj6QLPl2eMFhuiW3U9rtucbnbT+cQDR9GEhhAwXXXpSkboTEQ4MVXFmZnozJXqTNc9giCM897eXW8+jDriEUo1F10TDGUrxCM6vpQIAU+dyDNdDf34125q5/GhPI8eyzHYHWds2mWyXOeGLZlzzjkU6x6WLkjYZvN+NSaSV9K9oVLs1y9KxBfJevQXNno/lhyfZMRgUyaGpQvqbjBTtlXO/Axre18MB0aLbLvv61zzW7Od5b/047/EAz/1S7zyqh66ZybuGuLalbTZ2Zvg4w9M4EvY3pvihQMpBjIJRqYqHBwrETXDhJq+VJR0zEIXYXf7Nts8Y9R6y2DXgvHuEVNHENb8Ljs+7TETCfSlIgznqxwdL+NJSdTS8WcaMd/9xDC3DHZy47bOZhegg2NF4raB5wdETR0hBIGUTJVddm1soz0e4frN7Tw5NMV//GCc3ZvSvHhbWHNlrluiM2HNi4pxPJ+qI9nbM9vCreL4CMSKujdUiv36RYn4IliP/sJG70ddE2HauRewb7jAdMVhV18SU9co1MKokesG0s2GCUvixAluecFsE+zspm38811foSZ0ahNFvn8kxw1bMs37NVGs8dCRLA8fzVGq++ze2Iah6wzlqqSiFn3pKDXPIxW1mhEcV/e38eTQFLqusykTa55r7mix8aA9ni3x9MkCpqaTSVpMV11qrk/C0jk4XsTxAxwvjGgp1j10DapuwIb2CKmoxVTJ4eGjU7zumn72j5boTFg8csQhZmmMFVySEYOa6xMxNCqux8CMPemYRSZuAXFetGX+RHBjwnL/aIntXYkwPr3kUHN9elI2hqYhpWxOJBsaK+reUCn26xcl4otgPfoLGyF0hyfK1LwA29Cpuj5TVY89Axn622eFsJGteMH4PrzylXDffc1Vn/j7r/FsWz9ewcEQGld0J7lmYzu2qc2LzhjKVuhO2lQcn+fHyuzoTRI1dYZyFbZ1JtjckeCWwa5mOOBUxSEdt+hO2KRj1jz/djpusv9UgYeP5hjOVzg6USZbcuhIRkhGw5BDXYNcucZYsU7MMhECHE/ieh7CNBBSkiu5mJpGxNTQEEyWnKabZmMmxnTVY2evRYAgbmkYmqAzEWn6wAFyZYdMYmG3xENHwut2gzAJaM9AO6auUXM9aq7Pk0NTSCQb0lEOjpVI2DrJqMVAJkYqarXUvbFcE9qKlUeJ+CJYj/7CqYpDb1uUmGUwlKswXXNI2ga7N6bQdY1y3VvSiKsx2m371Me45g9na3wX/+Kv+fKLXsd3D0zQCZiaoFR3KdZ0XN9vTpw2HoiNmO5N7VEOjJU4OVXhBd1JJos1bEMjE7f46lPD81xXjQfAyFSFw5NlNAG6Luhps/nsw0O4vsTxAtKxCHVPki3VSdgGV3QmSNoGz5zMY+g6AoFlCIpVF7RQRNNRi5ob+si7ExF60lGmKk5zknfu5Knr+xwcLzFaqHJ4wqXihm6auudzeKIMxClUnXkTnALBw0ezdCftZk/RfcMFdvW3Uag6xCMWewbacf1wjmJ0us4WM4rjBTwzXGim5bfSvaFS7NcnSsQXwXr0FzZsXqg+yI7e5JJGXBPFGk9960Fe+cbbZtftfQnc8y260nEyT42QiZlUXZ9UzGRHexu6Jjg4XuK6gXDitPFAbMR0J2yTDakIz54qkis5xCM6bVGThG0wUayz72SeBw5Ncvuefnb2pbh5ewdffOwEvu+TTtqkogaTRYenThZIWgbJqEnUDItR5Ssu5eECm9LRsHGzlPSnbPLVMLknYZv0p+H4ZAVd0+hO6liGTqHm8bLe5LzPtzFSfehIjoeP5YgaGl3JKJqAk1MVjkyUaLMtbtzazljR5dFjOa7f3N5M4jG0sDEFAoQQ2KYOwKHxMqYBPW0x4hGDZ4ZLpGNWWPN8qsqOXhPb0Hh+rMhAJq7cG4ozUCK+CNajv/BcNi9pxFWvE99zDa88crC56rHvPcVURw/2RIWudByJ5BVX9vDsyDQxSydihPW3J4v15oTm6THdpbrLcKFGVzLChvYovi8ZKdSYKDl0JiJ0JaPkqw53PznSTInf2B7j2o3tFKou+4YLxCydmKlRdTwqrk8gJemoSXcyQq7i8PTJAlf1t7G9M0EmbhFIODpRZmy6Rso26E1F8AJwA0nK0uiKWIxN17EMjfsPMq/mSzpmcutgF0+fzJMrO3hSUnMlmbjJzt42JBrXb27n4FiJZ4enuemKDq7d1MGDR7IMdifYNzINgG3oBFIyWXbY2ZsgZoWiXqq5tNlWs9enqWvNUrVreQ5GsXqoUrSLYD2W5FxWm//wD8G2ic0I+IG//hjfPzSJ07+BmKUzVQkbHbfHLCxD5+oNqebEaSDhhpn6IfcfnGAoV+ax4zkqdY9d/W2MTztU3YDNHXGu2ZgmYmrU3YBSzZuJAoF01CQIZHNysPEgaLRLs02dTNxC0zUEkkrdw/UD/EAy2J3kiu4kV/a1cf3mDIVqGC64pTOGoQtyVY+dvSl+8dat/OieDWxsjwGCwZ4EWzoS88rIQvgm4Xg++0enEQLiVpgZeipfw/UDinWPdMxi75Z2dvQlm1Ez7TELU9fZvSGFZWhM1xwkcMOWDAOZ+EyNdUjYJjXPp+4F9LTZ7N6Y5tpNaV58Reea/ntTrB5qJH4Jc9E+zocegptuai6Ov+EnePr9f0PcNs+YWJwo1ub5ja/ekGqO/rd3J+aVt7VNnYNjJTa22/SlbF55VTfpWDjnkLBNak4R05iNm657AZm41XxYNM6TLdXpTESouj5dSZt4xODYZIXITH/MqGXQk4oQNTUeOz7F9ZsztMdMfCnxg4Cr+pNMFh1uHuykty1KR9xnquzwwk3t9KXCid/TJ7HbYxaPH89j6YKx6RpBICg7PrYpGJ6qMjgTKni6u23evemfvTc3bgsfcI23pk3tUR47PgUIrhtIn7XNm0LRQIn4IlivIYZLjmufnoZNm8KfDSYnEVac0qEshap7xsTi6Uk3c/3tp0f3RE2DqGlwKl8nbodRM+mZ0wxkYjwxNIUmg5l6JwEVx2dbZ3xeFcCbt3dwqlBhslSjI2lz47ZQ5O55dpSqG04SpqIGQ9kqEuhN2dimTtI2ycStZsZnZ8JisuSQLdcRhB3uj2VLZCvOglEhO3qT/OuTw1ScsNmDoQsCGTA67TJdceltizAyVUHXtXnCe77oj7nJSmHilcSXEtvUVJSI4pwoEV8E6y3E8KIeOr/2a/A3fzO7fO+98PKXA2FZqNMnFhtCV657PHQkRzpmnvHgePBIdl5Lsn3DhRlXiaQ7YfP48TzXbYbetiiGprF7Q4qxQo2JYp1M3GpWK2z41SEUxTdev6l5nQ2//7Wb0gD0p2McHi8iRJjGtLkjTjxi0J+OndH8Ye49a49H0ARnjQrpStr0JG1cL8A2QpeRoel0JnRsXeD4AYcmSty+58z+mud6M1KRIYqlokR8Eay3EMMlPXS++U149atnl3/zN+HP/uyMzeZOLDZKvgK4vs/Dx3LcOth1xoOj4cP2goDvPj9BqeYStXT6UtFmvPrYdA1TD8XyTXs3Ne0915vEQqPb1+zua+47Ol2jN2WzuSPeDPc72+fWuGeDPYnmZOnZokI2tNtIJDHLYGSqSsX1kVLSlYzwsp29lOsekyXnnJ+RQrFcKBFfBOstxPCCHjrj49DTM7vc3Q2HD0Micea2Myx0Pw6Ol+iMRxZ8cDRKug7lKqGAmzrluk+x5lKoOvSlo1imxhvmVCaExZVjPdsItrFusY0Xnh0pcHSiRL7qYRuCjmSEmGkuGBUykIljmzqTJYdcuU4mYZGOhf9BeK+PZUvcf5B1VaZBsT5R0SmLoNHct1z35hX5n/t6v5aY7Sg/yxniJSX85E/OF/BHH4WxsXMKOCx8PyaLdbZ3x+dt14hc6UraZOIWbbY108QhPEZHIsJQrrKkB+Jimj4v9nPbf6rAw0dyTNd8OuMWCI3j2SodCXPBqJAdvUk0obGtM8ELB9rJxCMIIZrp96PTVU7kqtTcgI545IwIF4ViOVEivghWM8RwsR3q53Je8frsZ0HT4EtfCpc/8IFQ1K+/flE2NYpXHRyf5p4fjHJwfJqdvQksQ5+33VxxlsDeLe28elcv3W1hGdeIrpEt1i7ogThRrPFvTw3z1/ce5PGhKQxNnFUkF/u5fefAOAMdMSxD4AaSRETH0jUePT61oF1zj5uwdfwg7OnZZpuU6x4Hx8L6KPGI0SzUlYgYzRDJ5WIpfxuKS4/zulOEEB8DXg+MSymvnlmXAT4PbAGOAW+WUk61zszVZzUmni5mgtLQRLMWx5V9beE+2VFo2zq70TXXwCOPgHXho+D9oyUGu9u4dmM4oTiSrzCSr8xrvjA3NK7xdpCOWVy9IcWJXIXJUp103Fr0A7FxP547VaDi+BwcnebQeImbt3fQEbcX9Pkv5nMbn67Tn4pi6oJD4yVKMyUJUlHjvBORtwx2NSOBGn75je02fenovO2Xew5lPUZMKVrDYkbinwBefdq6O4F7pZSDwL0zy4plZu4E5WJHdI0vt23qvGR7Jy8cyOA7HulX3QZb5wj4gQPw1FMXLOBns6s/HSMTj5x11Dv37SAVNdnWleDK/hRvvH7TokXnwGiRQAYcnSwjBKRiETQRlmx1fb8ZR36hdLdFGJ2uMl506EzavKCnjZhl4gdiUaPbhpi/4doN3DLYxeaOxPndWRfJUv42FJcm5x2JSym/J4TYctrq24GXzfz7k8B9wHuW0zDF0qJiTo9MueLzn2Dr++Y8Yz/6Ufi5nwtHjwcnljTxdja7qq53Ruheg+WokjdVcZgo1mmzTTQhEAISEZ1CxZ1Xn+VCuW1HN//3mweIGDpxKywO5ng+N1/RueDo/vQY/Eas+dzl/aOl5n1pRZmG9RYxpWgdS41O6ZFSngKQUp4SQnQvo02KGZYSFdP4ckeff449r/2h5vrxl7yU7v/8NmjaRb+KLzVa52JdUu0xi30n82xMRzmWKwMgpSRi6PPqs1woO/tSvGhLmqOTVSZLLu1xi5u2ZdiUiZ8hiqffu1P5Kt/YN8p1m9P0tkWpOD77R0vs7E00k4haUdZ1vUVMKVpHy0MMhRB3AHcADAwMnGdrxVyWUnirQ/PZc9v1xE4ONdf957efQGzcQLcWes8uNnlptQqCheedxJOSLZkYw/kahZrL1o44uzemLkokr97Qzvbu1DxRLNe9M0Tx9HuXLTukYyaTJYe+VKy5frLknPWtZDlYj0XZFK1hqSI+JoTomxmF9wHjZ9tQSnkXcBfA3r17L64H2DrjYlu6XbAL4g/+gJf8n//TXHzuw59i+NYfplT3uHnOKPViX8VXq4FAV9Lm9j393P3kCG4g2d6doDMRQde1Ztr9hdzzudsKBLly/awTsw1Ov3fFukfKNinW3Oa6lXBrqCYOigZLFfGvAG8HPjDz8+5ls+gSYbmiBxblgnjgAbjlluZi7b//NI/+wZ8wVXVpX6D2xnK8ii/FNbKUh9pC+/zcLVsXPM6F3POFtgWouR5V1zurKJ5+75IRg0LNpS06W7BrpdwaKlVfAYsLMfws4SRmpxDiJPBeQvH+ZyHEzwNDwJtaaeR6ZEXqrRQK0NsLtZkICl2HiQns9nZuOcduy/kqvlhhXspD7Vz7NFwVjfM/eCTL/lMFPB8sU282hm5EbJx+joU+n7PVVTnXveuIW2FLua74vB6ZF+vWWI+NuRWrw3lDDKWUb5FS9kkpTSnlRinlR6WUWSnlK6SUgzM/cyth7HpiquI0C/03mFt7+6KQEu64A9LpWQG/7z7wPGg/f4TGQkkwO3sTHBgtXlDiSENkF5OZuJSQuPPtM/f8uhA8d6rIiakqugDXD9ufOd7CoYdL/XxOv3c9KZu33jRAd9JetkSwC7mvCoWqndIiWhY98LWvwetfP7v8nveEGZcXyNxX8aW6fi7kbWMpfvjz7TP3/EcmSnQkIri+ZKJYZ1tXWDrg0HiZ6zanzzj2xXw+rXZjrLeqmYrVRYl4i1j26IHRUejrm13euDFM2InFzr7PAiz0mr5U0bgQYV6KaJ5vn7nnL9Y9NqSjHJ0sM111kZJm+7OFQg/XanTHRLHGg4ezCCFXrNO9Yn2jaqe0iGWrtxIE8IY3zBfwJ56AEyeWJOALvaYP5cqLdi3MrddxcqrC6HR13u/PJsxLKSJ2vn3mFvpKRgxMXWNDe5SEbcxrf3a2KocX8vmcrU7JctYvaXw+lqETMYxmTfNC1VEx4IqzIqRcuai/vXv3ykcffXTFzrceOOcE1j/+I7ztbbMb/+mfwm/91pLPdf/BiTNKs5brHgfHpxnsbjtj/emTfHPdLjFL51S+yhMn8vMSXUbyFTLxCBJ5xvUsV3TKQm4gx/N5fCgPyHld5pejlsjp190Yte/sTbB/tHTG+qWes/H5NPz5MStspiwJy9+quiiXL0KIx6SUexf6nXKnrCJn80X/kFagY8+u2Q337oX/+i8wzbMfbBGczf3RZhuU6l5z+WyuhdPdLqc3dGi0iLBNvXmcub71pfiSz9cNZ35bsxQg8AJJ0l6+tmZnczd958D4vIffxfquG5+PEEazSJjqdK84H0rEV5HTxSGhSV70068j9exTsxsdOgRXXLEs5zubj3lzR6LpGz9X4shCD4G5DR3uPziBba7shNxKxEqf7eE3Pl3n2o1nuqGW6rue+/k0mkw03oiUgCvOhhLxVWSuOPR99G/Z8v4/mP3lpz4FP/3Ty3q+c03mLUYML2SisUGrJuRWMo76bNfd3RZZ1giktTrZqljbqInNVaQ9ZqE99RQv3t7ZFPCJl/0w9+8fXXYBh4ufbL2QicYGrZiQW+k46rNd9207upe149NqNh9RrF/USHy1qFR48cv2oI+MNFd9776nybVluLk/1bLTXoz74Xz1OlZqJLmYkMjlHKmf67o7EpFlrV+iUukVF4oS8dXgzjvhgx+k4U199u8+zZEbX0p7zOLmNZ5evdiJxlYWZTqf26YVXW/O1ZB5LX9eiksfJeIryfe+By996ezyHXfARz7CLiHYdfa91hWnZ4I26posR0hhg/P55lXGo+JyQvnEV4KpqbA4VUPAo1HI5+Hv/g6EOOeu65Wl+K0Xu8/5fPMtrVujUKwxlIi3Einh7W+HTCbMvAS4/36oVCDVOr/3WqAVBa8anG8CcKUmWBWKtYByp7SKu++GH/ux2eXf/32Y07DhUqcVBa/mci5ftArVU1xOKBFfboaHw+JUDbZtg337QhfKZUQrCl4tFtX1RnE5oUR8uQgCeM1r4Fvfml33zDNw9dWrZ9MqspTR8HKOoFXUiOJyQfnEl4OPfSycuGwI+F/9VegPv0wFHJaWuKKSXRSKC0eNxC+G55+HHTtml1/yEvjud8FQtxWWNhpWI2iF4sJQarMUHAde9CJ4+unZdUePwpYtq2aSQqG4PFHulAvlgx+ESGRWwD/zmdB1ogRcoVCsAmokvlgeeyys693gJ38SvvCFSzZZR6FQrA+UiJ+PUikME5yYmF03Ngbd3atnk0KhUMyg3Cnn4l3vgmRyVsC/8Y3QdaIEXKFQrBHUSHwh7r0XXvnK2eV3vAM+9KHVs0ehUCjOghLxuWSz0Nk5u5xOw/Hj0Na2aiYpFArFuVDuFAhdJG95y3wBf/DBsPqgEnCFQrGGUSL+xS+CpsHnPhcuv+99oajfeOPq2qVQKBSL4PJ1p5w4AQMDs8s7d8KTT4Yx4AqFQrFOuPxG4r4Pt902X8B/8AN47jkl4AqFYt1xUSIuhHi1EOKAEOKQEOLO5TKqZfzd34V1Te67L1z+8IdD18mVV66qWQqFQrFUluxOEULowN8ArwJOAo8IIb4ipfzBchm3bDz3HFx11ezyy14G//EfYeVBhUKhWMdcjE/8BuCQlPIIgBDic8DtwNoR8Xod9uyB/ftn1x0/Pt+VolAoFOuYi3GnbABOzFk+ObNuHkKIO4QQjwohHp2Ym7reav7wD8G2ZwX8C18IXSdKwBUKxSXExYzEF6r8JM9YIeVdwF0Ae/fuPeP3y85DD8FNN80uv+Ut8OlPq0JVCoXikuRiRPwksGnO8kZg5OLMuQiKxbC35fT07LqJifkJPAqFQnGJcTHulEeAQSHEViGEBfw34CvLY9YF8s53hpmVDQH/j/8IXSdKwBUKxSXOkkfiUkpPCPFrwDcBHfiYlPLZZbNsMXzzm/DqV88u/+Zvwp/92YqaoFAoFKvJRWVsSin/Hfj3ZbJl8YyPQ0/P7HJ3Nxw+DInEipuiUCgUq8n6ytiUMuyoM1fAH3kkbNKgBFyhUFyGrB8R/+xnw0JVX/pSuPz+94eiPrdlmkKhUFxmrI8CWJ/8JPzMz4T/vuaacPRtWatqkkKhUKwF1sdI/MorwxH3gQPw1FNKwBUKhWKG9TESv+GGcPStUCgUinmsj5G4QqFQKBZEibhCoVCsY5SIKxQKxTpGibhCoVCsY5SIKxQKxTpGibhCoVCsY5SIKxQKxTpGibhCoVCsY4SUrW+20zyZEBPA8RU74dLoBCZX24gVQF3npcflcq2X43VullJ2LbTRior4ekAI8aiU8pKvqqWu89LjcrlWdZ3zUe4UhUKhWMcoEVcoFIp1jBLxM7lrtQ1YIdR1XnpcLteqrnMOyieuUCgU6xg1ElcoFIp1jBJxhUKhWMcoEZ+DEEIXQjwhhPi31ballQghjgkhnhFCPCmEeHS17WkVQoi0EOKLQoj9QojnhBAvXm2blhshxI6Zz7Hx37QQ4jdW265WIIT4TSHEs0KIfUKIzwoh7NW2qVUIIX595jqfPd/nuT46+6wcvw48B7SttiErwG1Syks9YeIvgW9IKd8ohLCA2GobtNxIKQ8AeyAchADDwJdX06ZWIITYAPwP4CopZVUI8c/AfwM+saqGtQAhxNXALwI3AA7wDSHE16SUBxfaXo3EZxBCbAReB/zDatuiuHiEEG3ArcBHAaSUjpQyv6pGtZ5XAIellGs9K3qpGEBUCGEQPpBHVtmeVnEl8KCUsiKl9IDvAj9+to2ViM/yF8C7gWCV7VgJJPAtIcRjQog7VtuYFrENmAA+PuMi+wchRHy1jWox/w347Gob0QqklMPAnwBDwCmgIKX81upa1TL2AbcKITqEEDHgtcCms22sRBwQQrweGJdSPrbatqwQN0sprwNeA7xDCHHrahvUAgzgOuDDUsoXAmXgztU1qXXMuIt+FPjCatvSCoQQ7cDtwFagH4gLId66ula1Binlc8AHgXuAbwBPAd7ZtlciHnIz8KNCiGPA54CXCyH+aXVNah1SypGZn+OE/tMbVteilnASOCmlfGhm+YuEon6p8hrgcSnl2Gob0iJeCRyVUk5IKV3gS8BLVtmmliGl/KiU8jop5a1ADljQHw5KxAGQUv6OlHKjlHIL4Svpt6WUl+RTXggRF0IkG/8Gfpjw9e2SQko5CpwQQuyYWfUK4AeraFKreQuXqCtlhiHgJiFETAghCD/P51bZppYhhOie+TkA/ATn+GxVdMrlRw/w5fB7gAF8Rkr5jdU1qWW8E/j0jKvhCPCzq2xPS5jxm74K+KXVtqVVSCkfEkJ8EXic0LXwBJd2+v2/CCE6ABd4h5Ry6mwbqrR7hUKhWMcod4pCoVCsY5SIKxQKxTpGibhCoVCsY5SIKxQKxTpGibhCoVCsY5SIKxQKxTpGibhCoVCsY/5/etCX7GD14dAAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "w = [-34.67062078 9.10210898]\n", - "Predicción precio con 9 cuartos: $ 47248.36\n", - "Predicción del número de cuartos para un precio de $45.000: 8.75\n", - "ECM: 43.6\n" - ] - } - ], - "source": [ - "def lineal_regression(x, means):\n", - "# W = (Xt*X)^-1 * Xt*Y \n", - " w = np.linalg.inv(x.T @ x) @ x.T @ Y\n", - " plt.scatter(rm, means, alpha=0.25)\n", - " plt.plot(rm, x @ w, color=\"red\")\n", - " plt.show()\n", - " return w, x @ w\n", - " \n", - "def predict_from_room_number(room_number, w):\n", - " return (w[0] + w[1] * room_number) * 1000\n", - " \n", - "def predict_from_price(price, w):\n", - " return (price/1000 - w[0]) / w[1]\n", - " \n", - "def get_mse(yp, y):\n", - " return np.mean(np.square(np.subtract(yp, y)))\n", - " \n", - "\n", - "w, yp = lineal_regression(np.c_[np.ones(rm.shape[0]), rm], Y) # np._c concatena a lo largo del segundo eje\n", - "print('w = ', w)\n", - "print('Predicción precio con 9 cuartos: $',np.round(predict_from_room_number(9, w),2))\n", - "print('Predicción del número de cuartos para un precio de $45.000: ', np.round(predict_from_price(45000, w),2))\n", - "print('ECM: ',np.round(get_mse(yp, Y),2))\n", - " \n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "97yJHn9aDN3g" - }, - "source": [ - "## Regresión Lineal Simple. Librería Sklearn " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "97yJHn9aDN3g" - }, - "source": [ - "\n", - "Hasta este punto hemos usado los conceptos teóricos y prácticos de como funciona el modelo de regresión lineal simple y como se implementa internamente. Esto está muy bien para tener un mejor conocimiento de los conceptos. Sin embargo, en el día a día tenemos que ser efectivos, y para eso lo habitual será utilizar librerías que ya implementen tales modelos. \n", - "\n", - "Por ejemplo, la librería **Sklearn** ya implementa muchos de los modelos de Machine Learning el modelo de regresión lineal. \n", - "\n", - "---\n", - "Usaremos a continuación la función *sklearn.linear_model.LinearRegression()* para entrenar un modelo de regresión lineal simple con las mismas variables que hemos utilizado en el ejercicio anterior. \n", - "\n", - "Por favor revise la documentación (online o usando el comando \"?\") para estudiar los diferentes parámetros que acepta este modelo. \n", - "\n", - "Por ejemplo ¿Para qué sirve el parámetro *fit_intercept*? \n", - "\n", - "Se puede entrenar el modelo con y sin dicho parámetro y visualizarlo en una gráfica.\n", - "\n", - "Una vez ajustado el modelo, comprobaremos que el valor de los parámetros obtenidos (también llamados coeficientes) es el mismo que se obtuvo anteriormente. De la misma forma, utiliza la función *.predict()*, que ya viene implementada, para comprobar que las predicciones son las mismas de antes. \n", - "\n", - "Finalmente, se comprueba que el valor del Error Cuadrático Medio que se ha obtenido previamente es igual al que proporciona la función ya implementada *sklearn.metrics.mean_squared_error()*. \n", - "\n", - "Veamos." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 303 - }, - "id": "xwwMXdGzG_kf", - "outputId": "d6e924fd-eb77-4969-bb41-c4d969655504" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD4CAYAAAAaT9YAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABn10lEQVR4nO2dd5xdZZ3/389pt8+900smPUMCISRABKSj6CriYgF721Wxr7o21P2trgWxu5Z1F9G1I8qKiGJBBDVIhwABEtInmWTqnXL7ac/vjzNzM5PMJJPJ3CnJ83698hrOuad8z7ncz3nO9/kWIaVEoVAoFPMTbbYNUCgUCsXUUSKuUCgU8xgl4gqFQjGPUSKuUCgU8xgl4gqFQjGPMWbyZHV1dXLJkiUzeUqFQqGY9zz88MO9Usr68T6bURFfsmQJDz300EyeUqFQKOY9QojdE32m3CkKhUIxj1EirlAoFPMYJeIKhUIxj5lRn/h4OI7D3r17KRaLs23KnCAcDtPa2oppmrNtikKhmAfMuojv3buXRCLBkiVLEELMtjmzipSSvr4+9u7dy9KlS2fbHIVCMQ+YlIgLIXYBGcADXCnleiFEDXATsATYBbxCStl/tAYUi0Ul4MMIIaitraWnp2faj92TKbKlM0N/3qY6arGyKUF9Ijzt55lJpvuaZvIeKdsPHGd3X5ahoksyYlIVNgGBRJIpOHQMFMjbHg1VIS5Z2cCq5uQxnX+8fYFpu3c9mSL370izef8QEsnJzVWcvay2or+1o/GJXyKlXCelXD+8fA1wp5SyDbhzeHlKKAE/QCXuRU+myD3b+ig6PrWxEEXH555tffRk5q8La7qvaSbvkbL9wHG6Bot0DJTIlTy2dGa4d0cfG/f00zmY549PdfFMV5aqsEGu5PHj+9q5d1v3lM8/nu2/e2I/v3ti/7Tcu55Mkd89sZ+Ne/oJmRoR02DjnkF+98T+iv7WjmVi8wrgB8P//QPgJcdsjaIibOnMEA8ZxEIGQghiIYN4yGBLZ2a2TZsy031NM3mPlO0HjtOXs4lZOtVRi1zJw3Z9UlGLe7b1kYpa1MQserPBCDkVNfnVxn1TPv94tg8UHAby7rTcuy2dGQYKDqmoRdQyiFg61VGTgbxb0d/aZEVcAn8UQjwshLh6eF2jlHI/wPDfhvF2FEJcLYR4SAjxUCXcBNNBZ2cnr3rVq1i+fDmnnHIKl112Gc8888wxH3fz5s2sW7eO008/ne3bt3PuuecCsGvXLn76058e8/EnS3/eJmrpY9ZFLZ3+vD1jNkw3031NM3mPlO0HjpMpuYSMQIY8H1zPJ2zo9OdcYpaOqQvyjgdAMmzSNVia8vnHs91xPRzPP+brGTm+43qEjQPnCBkajudX9Lc2WRE/T0p5BvBC4F1CiAsnewIp5fVSyvVSyvX19eNmjc4qUkpe+tKXcvHFF7N9+3aeeuoprr32Wrq6uo752L/61a+44oorePTRR1m+fDl///vfgZkX8eqoRd72xqzL2x7VUWvGbJhupvuaZvIeKdsPHCcRMii5gYjqGhi6RtH1qI4Z5GwPx5NEzUAUB4sOjcnQlM8/nu2moWPqY2VwqveuOmphGjpF98A5Sq6PqWsV/a1NSsSllPuG/3YDtwBnAV1CiGaA4b/dlTKyktx1112Ypsnb3/728rp169ZxwQUXIKXkQx/6EKeeeipr1qzhpptuAuDuu+/m4osv5sorr2TVqlW89rWv5eAOSbfffjtf+9rXuOGGG7jkkksAiMfjAFxzzTX87W9/Y926dXz1q1+t+DWubEqQLbnkSi5SSnIll2zJLU/qzEem+5pm8h4p2w8cpzZmkbM9+vM2sZCOZWgM5G3OW1HLQN4mnbOpi1v0520G8g4vWdcy5fOPZ3sqYpKKGuzrz/P4nn7u3tzFw7vT1MWPXnRXNiVIRUwG8jZ526Vge/TnHVJRo6K/tSNGpwghYoAmpcwM//fzgU8BvwbeCFw3/PfWYzXmfb9/Hxs7Nx7rYcawrmkdX3vB1yb8fNOmTZx55pnjfvbLX/6SjRs38thjj9Hb28uznvUsLrwweAl59NFHefLJJ2lpaeG8887jnnvu4fzzzy/ve9lll/H2t7+deDzOBz/4wTHHve666/jSl77Eb37zm2O/wElQnwhz3opatnRm6MuVqI5arF1Y2RnzSjPd1zST90jZPvY4Rddl30ABXYCma4QMnahl8PxTGukYKDBUdGmoCnH5ac1jolOO9vzj2f7CNc30ZUvcunEfvu9TEw9RnwixuTNLbTx0VNdVnwjzwjXNY6JT1i1MVjw6ZTIhho3ALcNREwbwUynl74UQDwI/F0K8GWgHrqqYlbPEhg0bePWrX42u6zQ2NnLRRRfx4IMPUlVVxVlnnUVraysQjNx37do1RsTnGvWJ8LwW7fGY7muayXukbD9wnJVNCe7Z1kc8ZBC1dPK2R7bkct6K8cXvaM9/pJDELZ0ZzlxcQyx0QA5zpWAycioPp8vXtnD52paj2u9YOKKISyl3AGvHWd8HPHc6jTnciLlSrF69mptvvnnczw7XRDoUCpX/W9d1XNeddtsUihOB0VEjQPnvVET0YEbCCuMhg9pY4E+/Z1vfmAdEf96mNhYas1/U0unLlY7p3DPFCV875TnPeQ6lUonvfOc75XUPPvggf/nLX7jwwgu56aab8DyPnp4e/vrXv3LWWWcd8zkTiQSZzPwN71MoppNKRtdMJiRyvk/8n/AiLoTglltu4Y477mD58uWsXr2aT37yk7S0tPDSl76U0047jbVr1/Kc5zyHL3zhCzQ1NR3zOU877TQMw2Dt2rUzMrGpUMxlKimik3lAzPeJf3E4l8F0s379enlwU4inn36ak08+ecZsmA+oe6I4kRjt8piMT/xo2LC1h6LjH+LvDpsa57cdCHme62UphBAPj8qWH8OsF8BSKBQnNpWMrhmZNAXGPCDWLqw9xIa5JNpHgxJxhUJRUSYzyq2UiB6P4bUHo0RcoVBUjMlEh1Sa+TzKngxKxBUKxbQzMvq+b3sflqHT1hhHCGNawwcVASd8dIpCoZheRpd8FUKiCdjUMcjAcETIfC++NtdQIq5QKKaV0bHZiYgFIhDuPek8ML9isOcDSsSBz372s6xevZrTTjuNdevWcf/99wPwlre8haeeemrSxymVSlx66aWsW7eOm266acz+1157bUVsVyjmGqNjsxfVRCk4Hr6UZIruuDHYPZkiG7b2cNtjHWzY2jOvm5XMBie8T/zee+/lN7/5DY888gihUIje3l5sO3jVu+GGG47qWI8++iiO47Bx40YAXvnKV5Y/u/baa/nYxz42bXYrFHOVkeSdWMggGbFYsyDJM10ZfOkTNrUx0SFzYeJzvnPCj8T3799PXV1duRZKXV0dLS1B8ZqLL76YkeSkeDzOxz/+cdauXcs555xzSL3x7u5uXve617Fx40bWrVvH9u3by/tfc801FAoF1q1bx2tf+9qZvUCFYoY5OAPS0DQW1cR403lLOb+t/pDiUzPVlWi2RvwbOzfy8Ts/ju1VZh5gbo3E3/c+GB7FThvr1sHXvjbhx89//vP51Kc+xUknncSll17KK1/5Si666KJDtsvlcpxzzjl89rOf5cMf/jDf+c53+Ld/+7fy5w0NDdxwww3jlpi97rrr+OY3v1keoSsUxzNHE5s9U8WnZmPEn3fynPSNk+jIdADwtvVvY1Fy0bSf54QficfjcR5++GGuv/566uvreeUrX8n3v//9Q7azLIvLL78cgDPPPJNdu3bNrKEKxTyiPhHm/LZ6Xrx2wSGj79HMVPGpme4ze82friF2baws4Le/5vaKCDjMtZH4YUbMlUTXdS6++GIuvvhi1qxZww9+8APe9KY3jdnGNM1yJ3pVelZxIlKJ+iKTTYs/VmZqxP+XXX/h4h9cXF5++5lv59uXf3taz3Ewc0vEZ4EtW7agaRptbW0AbNy4kcWLF0/7eUzTxHEcTNOc9mMrFJWmUu6I+kSYVU1x7trSTfdQiYaqEJesbJh2F8foydYRpnPE31/op+6Ldfgy6Bcat+Lsff9ekuHktBz/cJzwIp7NZnnPe97DwMAAhmGwYsUKrr/++mk/z9VXX81pp53GGWecwU9+8pNpP75CUUlG3BGO57OpI0um5GJqGoYGl69dMOXj9mSKbO7M0tZQxdrWYCQ+ldZoR6JSI34pJW+69U388LEfltf9/Z//zrMXPvuYjns0qFK0cxB1TxRzjdse60AXgif3DRG1dEKGRm+2xLbuLJesqmdxbXxK7pXJloqdDqbbHfSrzb/ipTe9tLz8yYs+yScu/sR0mHoIqhStQqE4JqqjFo/sHiBq6YRNnWzJpT1dIBYyyBY9io4/JffKTEanTJeAdwx10PrV1vLyipoVPPGOJwgbsxPXfsJHpygUiiOzsilBb66ELyVSwt50AZAsrYuRHfY1TyXaYyaiU0bXcqmNhcoPnKONE/elzz/8+B/GCPimd2xi63u2zpqAwxwR8Zl06cx11L1QzEXqE2HOWlKDBIaKNo7ns7IpgalrJIZdIVFLpz2dO6qEmplojTYd4YXfe/R76J/S+eP2PwLwrcu+hfyEZHXD6mmzc6rMujslHA7T19dHbW1tOYTvREVKSV9fH+GwSjdWzD3OXlaD68uyIGaKLrbrceqCOACdQwX2pAs0JCKTjmCZiaYNx+KyeabvGVZ+c2V5+cLFF3LnG+7E0GZdOsvMuiWtra3s3buXnp6e2TZlThAOh2ltbT3yhgrFDDNacBNhg4G8w4r6OMmISa7ksrUry4r6eHmScrK1wyvdtGEq4YW2Z/Os7zyLx7seL6/b9d5dLE5Nf/jxsTLrIm6aJkuXLp1tMxQKxSQ4ILj15cnCkRF0a3WY5lRkzPaVmKQ8WiYKL2ytjrNha88hk52f3/B5rrnzmvL+N115E69Y/YrZMv+IzLqIKxSKo2OudGYfbwRdyYSaqTKey6a1Os7mzuyY5KUfPnQXH/zrZeX9XrH6Ffzs5T+b825eJeIKxTxiLpdunakU+qlw8ANnw9aesm8/72S56tdnMlDqK3/e/cFu6mPTG6deKeZEdIpCoZgcM13I6WgYGfGGTY2+XImwqc2Jh8t4jDSu+M+H/o1Lb1pSFvD/OPenyE/IeSPgoEbiCsW8YqaSY6bKfOksv33oPv7xV1eWl69c+VbedtqnCZvzb1yrRFyhmEdUupDT8U5fvo+6L9aVlxNWNf/3kkcQMjJnXD9Hy6QfO0IIXQjxqBDiN8PLNUKIO4QQW4f/VlfOTIVCATOTHHM8IqXk1f/36jEC/ofX/I3br9xC0TbntOvnSBzNSPy9wNNA1fDyNcCdUsrrhBDXDC9/ZJrtUygUo5iJ5JhKM9PRNTc/dTNX/eKq8vJnn/NZPnbB8dPvdlIiLoRoBV4EfBb41+HVVwAXD//3D4C7USKuUFSc+eJ3Ho+ZjK7ZM7iHRV870E3nlPpTeOTqRwgZocPsNf+Y7Ej8a8CHgdHvbI1Syv0AUsr9QoiG8XYUQlwNXA2waFFl2hMpFIr5wejoGph8VufR4Pkel/7oUu7edXd53dPveppVdaum5fhzjSP6xIUQlwPdUsqHp3ICKeX1Usr1Usr19fXzJ2xHoVBMPyOhfaOJWjr9+enpBP/fD/03xqeNsoBff/n1yE/I41bAYXIj8fOAfxRCXAaEgSohxI+BLiFE8/AovBnorqShCoVi/jOd0TWjfeuDzi5e/9vzy59duuxSfv/a36Nr+mGOcHxwxJG4lPKjUspWKeUS4FXAn6WUrwN+DbxxeLM3ArdWzEqFQnFcMF3RNSO+9aFigff8+ZIxAr7n/Xu44/V3nBACDseWsXkd8DwhxFbgecPLCoVCMSHTldW5pTPDr7Z/nRf9cjG7h7YC8O/P/i5/e003rVUnVhXQo0r2kVLeTRCFgpSyD3ju9JukUCimm7lSNAuOPbrm/r33c8FPzykv/8PSq/j3c/8LYM5krs4kKmNToTjOmctFs46GodIQC7+6kKHSUHndl897kJMbFyCEIFdyT8jMVSXiCsVxzv07+mjvy+P4PomQwcKaaLlo1nwR8ffc/h6++eA3y8uffPbPiPin4XuCJzoGWV4XQ9e1eZk2f6woEVco5iEj7pH2dI7BgkNV2GBxbfwQN0lPpsgDO9M0JMIkwwYl12dTxyCrW6ooOO4sXsHk+MO2P/CCn7ygvPyqVe/gzWs+QSxkMFiwaU/n6csU6c4WufLMhfPmoTSdKBFXKOYZI+4RX/rs7S+gCUGm6BE2DHqz9hg3yZbODHWJEAgQQhA2g4iNbd05zlicmsWrODzduW4av9RYXm6KN7HtPdv489MD5TjzZMRizQIr6E2bK52QAg6qnrhCMe8YyXrszdpELYPqqEXM0unL2YfUFu/P27Q1xCk4HgXHQ0rIFBye6Ogvd6Y/Ukf6mURKyct//vIxAv7w1Q+z/wP7iVmxcpz5aE70Ko5qJK44YZlLERtHw0hN8WzRoSociFfI0BgsuofUFq+OWnRniugCntg7QF+2RMH2WVIXpTpqUXT8OTPJeeMTN/KaX76mvPyFS7/Ah8770Jht5nL3oNlCibjihGQ+R2yMjEbjYZOi6xExdUpuMGl58Ki0Lm7x+02dWLogZOhomsAwBNGQzu82ddKQCFEVtjA0uHztgll5sO0a2MXS/zzQLH1d0zruf8v9WPqho+vjoYrjdKNEXHFCMhOFmCrFyGi0Lm6xrTtL0fHwJSyvCx8yKu3N2py+MMWDu/vxpcTUdKriBh0DBRoSEfK2Sypi8cDONCsaDm0eXMkHm+u7XPT9i/j7nr+X1z3z7mdoq2077H7zuYpjJVA+ccUJSaULMVWSkdGopWsUbZf2dI6C7RAaJ/uxP2/TnIpQnwixbmGKJXVRbE8ifTA02N1XYEvnILmSy22P7Z+x/p3ffOCbmJ82ywL+v1f8L/IT8ogCrjgUNRJXnJAcD23OXB/OXdEwxjd8MCPXmQgF4YUNiRBP7hsiZAja03lMTUfTdOrjIR7vGOTUBVWMloXp6N852kXTb2/njbdfVP7ssrbLuO3Vt6EJNZ6cKkrEFSckc32C7Ei+6S2dGXzps6M3S7boAIKS47K1a4hnL68rbz9ynbUxi+29OYq2ixDQnbHRhGBlU4hl9TEMTdAQD7G1O8uzlhxomnCsD7aRuQfTcHj7ny5hX3ZX+bOOf+2gJdEy5WMrAtTjT3FCMl2FmCrBiPAVHZ/aWKgcQTI6FLA9nWNbdxbb9dE1wbbuDO3pAgXHH7P9yHU2JsNUhTXa0wVipo6UkuqIgScl6VzwwDB1eHzPAPsH89PWv3NLZ4abt36Zy3+5tCzg/3HeD/jba7qVgE8TaiSuOGGZqxNkk5l0HSw4aEIQMXV29BaIh00c1x/jIhrZfuTfQN6hN+uQilps78rQlbHZky7Qmylx1tIaopZBMmqytSuYLF1UEzumyI972u/hgp8eKBF7+fLX8tFzvgacmIWqKoUScYVijjESBz6ag33TVWGDTNGj6HjkSy6mruNLSdTSxt0eYPP+IZIRk4ips6Q+jiSHROL7PrGQScHxOH1RDYamETY1zm+bWieuweIgTV9uougGbw6GMPnNlU9TFUoBnLCFqiqFEnGFYo4xmUnXxbVxwoZBX85GIvClpCUVpjoaGnd7AIlEIACIhwyW1sfYN1jA8ySWobGiIU4yciCN/WiRUnL1bVdzw6M3lNfd+oo78Isno2MgpZxzcw/HA0rEFYo5xmQmXVc2JejN2iyrj7OwJsLDu/txPGitjpR92QcL5cnNVWzcM0jOdhjMuwwVHXxfckpzgjULUuXtpjKZ+dtnfsvlN15eXv7o+R/l2udeCxyYpFXJOZVBibhCMceYTFbi6G26MwVChkau5PLUviFWNVeNO0l79rJadvfl2NSRQRMQMXUW1kRIF1zu3tKJpWuYhk4qYvLCNc3l/Q4XKdOZ7aT5ywe2XZRcxNPvepqoGR1jqxLtyqFEXKGYg4yuQtift8sJNwcLeV+2xD3bevF9SXMyQl08hOvLCY+5uDaOJ8H1fOJhEw3JPdv6eLR9kOZkhKaqEKmIWd6nJ1Pkd0/sZ6Dg4LgepqGzoyfLP5zayFt++0p+88xvyttufNtG1jatrcTtUBwGJeIKxRxkMrVdejJFbt24D10T1MYsSq7Pjt4cy+piZdHf0plhd1+WoaJLMmKyr7/I6gVVpKIhBvI2v9u0n2TEJBk1aWuIB75460DDiPt3pGlP50lFLZKREEXX49dbf8Yb7/hY2dav/sNXed8575uN26RAibhCUTGOpZjUZMIMt3Rm8H2f2lgEISjXCu/Nlii6Lr1ZG8/z6RgooQnIFF08X/Lw7n7WL6nh6X2DdA0WEUIQNTVczydq6fRmS1hmEOUyOqKlO7+bj933nLKNZy04iw3/tAFTN1HMHirZR6GoAJNJ2Blvnw1be7jtsQ7u296H442tm31wbZf+vE1NPBgdjxAyNNI5m6GiSzwURK/ELJ3qqEXUMggZGiB4tD3N5s4Muga+H7hWdvblcFyPdM4uT2wGIYgun3nwJWME/CNr/8D9b7lfCfgcQI3EFYoKcLRVEkd36+nJlNjZm2F7b5b1i1J4CLJFB0PXWFYXL+9THbVwPJ/tPTkAwobOQMFB0wSagO3dGR5pH6A2ZtFYFSIWMrFdjzMWpfj9pv0YuqA2FsLxJWFLBwk7+vIsSEXKWZpbcj/ju5s+VT7nG1d+iRXxF7JuYbJi905xdKiRuEJRAY62SuJILZTtPTkcT9LWUEWu6HLrY/vpz5WwdJ2hgks6VyqP5lc2JdCExvL6GKYu6MkU8HzJhW21DORdMiWX2liQxLOzL0dfrkg8bGIZOotqYrx4bQuL6mLl2in5kk3BdrliXQsduc2I/xBlAV8ev4S3LrmfWvFcqqMGZy9Tcd5zBTUSVygqQHXUYv9Agb6cTabkkggZwYg4Ob5PvD9v05MpETF1IqZO1pe4nkem6PDYnkHWL63hzMXVmLo2Jp1+JMzQ1DVWtyRZ2ZRgS2eGtsY423tyJCMWObtItuTSOThAW2OC/pzNwuoIpq6zZkGS9nQeQxM0JcO0pHQuvXE1HZmOsm3/uvou6qL15RDERFi5UCZFOg3f+AZcey3YNuzYAUuXHnm/o0SJuEJRAUY66qSiJsmwyWDRoT2d53ULFo27fXXUYtPeAeoTEbIll529OWwfltQGo+RdvTnyJZf6eIh4WC+nxI8Xg33fjj6aqiJELYP2dJ6BQonOIQdL12itDmqLZ4su+wbytKSinNqSJG97/Nejn+KWDf9VPs5nzv8xdcbZZIouUsIpLUlSUYtcyZ0XzTNmnG3b4POfhxtuGP/zXK4ip1UirlBUgN6szRmLU/RmbTJFh6qIybL6GL3Z8d0pQZZmLwMFm47+PN1DJYbyDrbtYpkGsbBJ3nbJlAK/90iFwvEYSdsf6QYPUBsPUxU2WdOaAiAXdik6LmFT4y+77+ZjG64q739B86t54YJ/o9YI0TVUoDkZpeR67BkONZyOGuPHBRs2wOc+B7ffPvE273gHfPCDsGxZxcxQIq5QVID+vE1TVYTmZJTBgk17Os/Oniw7unPjhhrWJ8Jcsa6FGx9oZ0tXhrpYiMW1Ebb35IhpGroIutRXx0K0NcYPGQmPDmcUQDpn05KKBoKbKaLrOgtrDmRRRi2dnlwvV9x6Gr70g3VmjOsvfZD2Hp+6eAjb8+nJ2liGRm0sxGAxaDox35pnTAueBzffHIj2Y4+Nv000Ch/7GLzznVBdPWOmKRFXKCrAyGjY9X2e6BgkYuqEDANfMm7fyp5Mkd6sjS6gJmoRMjQaqsL4UuB4Ph39BZbWx1izIElV2BwzEh4vMQhsio5HwXFJxSwa4mFSI2GDUvLJDe/kjt2/KB/jnn++B7/YRtHxyRWzlFyfiKmzIBWhY6CArmkkQsaEdVmOO7JZ+M53An92b+/427S1wUc/Cq99LViz91BT0SkKRQVY2ZQgW3J5pitD2NAQQMHxaGuMH9K3cnRMeSxksaY1iRSCqrBJY1WYmphFVdTiopUNJCPWISPh0eGMI70xW1LBqLs6alEVNtjWk2X/YJ6/tt/OeT+pLwv4v1/478hPSM5deG45omZRTZSC41FwPGqiFsmIiedL4mF9TjXPmFb27QvcHkIE/xIJ+Nd/HSvgF18Mf/gD+D5ICc88A//0T7Mq4DCJkbgQIgz8FQgNb3+zlPITQoga4CZgCbALeIWUsr9ypioU84eRyJGt9wyhCQ0hJLqAp/YPEbf0MZOT9+/oo70vj+P79GRLVEcNTmqM05+zQUp29eVAwO8e30dTMsyC6uiYAlXj1R93PI8HdqW5sK2epXUJcm4vL7/tlPLnS1PLeepdmwgbB8R4rC89iFrpzRRpSYW58syFx5dwP/544Br52c8m3uY1r4FrroE1a2bOrikwGXdKCXiOlDIrhDCBDUKI3wEvA+6UUl4nhLgGuAb4SAVtVSimlWNJi58s8bDBvnSBwaLLguoItTGTgYJTnpwEeGBnmoZEmGTYwPV8tnZlaGuIEzE1Sp4kbOrUxSw8CbvTBaoiJn3ZUrkuyuN7B7EMnYXVURbWRElFLbZ2Z6mLhYhYGu//8yt4YP9dZZs2vWMTqxtWH2Lr6BK4VWGTZXVxGoYfRvNawKUMRtCf+xz89a8Tb/ehD8H73gct86tt3BFFXEopgezwojn8TwJXABcPr/8BcDdKxBXzhMkUmDoWNu8f5NaN+8iWHLb2ZImHDPYNFEGCpovy5CRAXSIEAoQQ1MWDEXX3UAnH8zF1wekLq4NtgKLjMVRwuHXjPlbUx+kYKBGzDHan81i6YKDgsLwuRm+mxJB2B+/9yQfKNv3r+uu4uPV1rG5YMK7NkymBOy+wbfjRjwLR3r59/G0aGoJJyLe8BWKxmbVvmpnUxKYQQgceBlYA35JS3i+EaJRS7geQUu4XQjRMsO/VwNUAixaNHyOrUMw0R5sWPxlGRvbt6Rx/39ZHfSLE4po4XUNF+rKlINsyW2D94loi5oHszbaGOJv2DQFB6nzU0omFDVY1xdk/UCAZOeAqCRkanUNFmqpC5bootTGLkKEzULAxNMET3U/z6cf+obzP2vpz+MbzfkXJgbB5+GmweVn7u78fvvnNYBKyOEFtmtNPDyYhX/Yy0PXxt5mnTErEpZQesE4IkQJuEUKcOtkTSCmvB64HWL9+/fiFjhWKGWYyfSyPhtEj+0zRxfV80jmbVMQkHjLpy9jEwya1MRPL0Hh4dz/rFlaTipp0Z4roQrCtKwtIGqtCnLWkhlTUpDdrU3Q9IsMVCkuuj+v51MRDZEouyXDwE66Nh8g7Rb719JV05DaX7frxZQ+ytHrJ8dUWbft2+OIX4X/+Z+JtLr888Gefd97M2TVLHFWIoZRyQAhxN/ACoEsI0Tw8Cm8GuithoEJRCSbTx/JIjPap7+3P01gVJjYchlcTC1FwPLozJZASQ9colByImezuzbFvoED3UIHFtTGe2p9hcU2U1S1VDBYdBvIOKxpi1MZD7OjJ0p7OIyMmgsBdUhcPUZ8IIbApuT5hU+f/tn6L3+/9Stm2N678KvX6RezrCyH87DF3rp9V7r03GGX/5jcTb3P11YFPe8WKmbNrjjCZ6JR6wBkW8AhwKfB54NfAG4Hrhv/eWklDFYrpZDJ9LA/HwT71TXsHyRRdopZBPGziuJJcyWWw4GDqGmFTsDtt05UpYWqCqKVhGoJdfXka4ha9WRshBI1VYZbWBpmdq5qTvHBNM3c82cl9O9IUXZe2hgTPXdVIV8ahNmbxl90P8I1NV5btOiX1fK5c8qVArCX4EqKWWZFJ24rgeXDLLYE/+5FHxt8mHA782e96F9TUzKx9c5DJjMSbgR8M+8U14OdSyt8IIe4Ffi6EeDPQDlx1uIMoFHOJqU7ijYy+79veh2XotDXGEcKgNh5iaLg+yqKaKIMFh9q4Rc726M0U6cnYxEMGVWGTbMklV3IJlVxMXcfQNEKmRl+uRGMyTDR0wF/ely2xp79AczKIF6+Lh+jKOCyshUt/egYDpQNxzF989n1oJLGMoIiWlJLB4bric7bWSS4X1Bq59lronuBlftmyQLRf9zoIhcbf5gRmMtEpjwOnj7O+D3huJYxSnDjMRJjfRBztJN7o0bcQEk3Apo5BTl2QZGFNlCc6BunLFDm1Jcny+hhbu7Isb4ixb8BCSujLBaVe+7I2GiB9yNsuPdkSbQ1xBBq265f95RO1X/tb91e4bed3ynb94XV/IOqfTtHxeXxvP2HjgP88ETLmVq2Tzk746lfhC1+YeJsLLggmIV/wgiDxRnFY5nza/Wz+yBWVpdJhftPN6IiWRMTCdoN2ZnvSeda0plheF6M7W6QvV6IhEeaCtnrqE2Fue6yDvmyR/UNFPF8SMTV0DTIll5LrYxoa+/oLSMDQwNQ1QLKlM0O2YONJwY6eHDsy9/KH7veU7XnPWe/h6y/8OnDgXhq6RsFx0YQgb3ucuiA+u7VONm0KXCM//enE27zqVcEk5FrVZHkqzGkRn28/csXRUYkwv0oyOqJl0fDIO2xoZIqBe0TXtXEzG4MOPEFZ2aGii5Q+/Xkb15VkXJvWaAzHk9RGgzrdpqExWLCDf0WXrNPP/+56Xvl4lkjw8TP+zDvOPxAkNuIeMnYIHtiVpi4WYnVLFaauzVxUipRwxx2BaN9998TbfeAD8P73w4Lx49UVR8ecFvH59iNXHB3THeY3FcZ70wPGffsbHdEykpr+TFfQkSdsamN86gdXFXQ8HyGgJmoyWHDQhUYkIig4GrXxEMvrYsSHmy305+1hsZfc3fv/eKL/d2V7L635DnXWalY3NR7yO6hPhLl8bQtnL6spn/tgu6YV2w5G2J/7XFBHZDzq6gJ/9lvfCvH4+Nsojok5LeJz4UeuqBzTEeZ3LIz3pve7J/YD0JKKHvL2d3BEi6FpLKqJjVuR8ODjVkctfCSZokdN3GLdohRL6mJs2jtA2DLQdQ0poeh6+FKyefAOvr7xXeVjnpF8G22RNyCApfVRoiGd+7b3jetmrFjCzsAAfOtbwSRkPj/+NmvXBv7sK6887pJq5ipzWsRn+0euqCzHGuZ3rIz3pjeQd0FI2hoPffs7v61+UhEt4x137aIUj+0ZYFl9DMf1MHSNbNHljMU12J5Pb9amc6jAzvQuvrfz8vKxWmJtvGbxTyjaGlURk6qIie153LqxA11oJMIGthPsP+1uxp07g6Sab3974m0uuywQ7fPPn77zKo6KOS3is/0jV1QeQ4NH29MIBKuaq2Z0vmP86n8+4I9ZN/rt73Cj3BEXyp1Pd9FUFWZRbaxcwztiBv//1koBaCCDqIvamMlft/YxVCzxv8+8mf3FA7HRV7fdQlxfzOqWJN2ZEpoQZIsuu9M5DE1jVUsc15fs6M2xrC527G7G++8PRtm//vXE27zlLfDhDwe1tBVzgjkt4sdNQR7FIYx2OZy3or78gJ5JxnvTM3XtkLC2ybz9jb6epmSYTNEthx+OVBVcWB3jWUsPJKfs68/z16197CjcwvVPfLy8/orFn+DFy99AwfHIFG0KjkdrdYTBgkO26BAxdU5qTIxpWNybLWEdoS7KGHwffvWrwJ/90EPjb2NZwSj73e8OfNuKOcmcFnGYpwV5FEdkLkxaj/eml4oGduRK7lG9/Y2+nsW1MZ7oGEQIaO/LYeoavZkS5ywbe4wnup7kPx56YXl5YfRZvGLxtwkZgTiHDZ2SrtFaHeXFa4NIjtse62DfQAHHO1CGKGRo9GRKrF6QnNjAfB6++91AtPfvH3+bJUuCScg3vEEl1cwj5ryIK45P5sKk9XhveiPNFo727W/09YxEruzuy9E5WGT1giRnLa3BGk7Csb0Sb/ztxewe2lre/3PP/it9A1UIISnYgTun6HqYhj7mLSAIV/TZ3hN0Tg8bQeNkTRPlyBoAurrga1+D666b2OjzzgtG2pddppJq5jFKxBWzwlydtO7LlujN2kedXHbw9SQjFsvrNVa3JDm/rZ6eTJHfPbGfm7Z8ndvbv1be70Pr/4eXrno5gwWb+4t97O0vkBzubD9YcFhUEx0jziubEvRmbZbXx+jJlOjJFNA0jasig9S/6+qgjvZEvOIVQVLN6YckYCvmMUrEFbPCbE1aj43fFqRzQVOF3myJu5/uZntvlhUNcdoaEzjexFEfPZki9+9Is3n/EBLJglQE15fEwwY9mRLpbAlN07hiXdAl5uH9D/DGOy4q739m/eW8aeWXqIpY5EouVWGTxbVR9qTz9GSK2L7HOUtred7qpkNiwc9bXkPnLbdzwX99lfoH7pnwWjve9DbCH/kgtatOvMp+JxIiaNwzM6xfv14+NNEkiuKEoxIlFQ53zNGTj1FL56HdaToHilimTsTUuH9nH9mCiwRWNcepi4dZXBulJxO4eEYiaGpjBr/f1EV7Oo8uJJmSR6boEQ/rNCQsFqRi1MQsLF1jZ38nn350bE3r3131DMlQDbmSS9FxSUUt2tM59qQLrKiP05yKlB9q562oBceh/4Yf0Pzf/0li57bxL7ymhuwHPsTdF76UcE1qzINRZTjPf4QQD0sp14/3mRqJK2aN6Zy0HhkZP7ArTcTQsHSB7Unu2dZbHg3/7z076c3YxMMGdQmLjnSBXMkjGTGwTJ2hgkPU0nFcn8GCR97Os70ng+dBczJC0fV4ct8g2aJDbTyEqQu2dOZwfUnU0tjTV6JzsEQ8ZOJ6Pl984gVk3I6yja9ffgPrGs7nyb0+idAArdURJHB+Wz0btkJDIkIsZKBnhmj78fdY8N9fw8gFnRHrD7pe95TVGP/2cbjqKjCCn/HGrT2EHV9lOJ9gKBFXzHtGRtjt6RxRQ6O9vwDASQ0xXAnf3bAD3w8iTpJhnd39BXb25ViQDDNYdNg/VMCTEmRQ+S9m6ZQcj/6cx/6BPDXxELXxEKmoSX/epifrICGomWK7CAFOwaXkSkJS8sfdP+LR7IEGDUljGRdU/S/9adhBhnWLqim5Po+0D7BuYRJ272bBv3+SpT/7/oTXOHDBc+h4+3sZOutccrZH2NQ4v22stM+FyWLFzKNEXDFvGXGd3Lu9l5CpM5i3Kdg+ieGWZT1Zm6V1cR7Y0UtTKkrU0tnak8XzwPV8tnRmyJQ8LF0ggaipMVhwMXVB0ZGUXA9XSiKmYHtvlrhlkLMdJJJ9A0XSeRtdgKFrOK6Po3XyuPfmA23FgfXGLwnrCXqHStieT6bg0rptEy/63Y9Y88Cfy9stPejauq98Ldve9A7+rtdy7oo6xKjokRFhPth1JGBOThYrKosSccW0MlOlg0f7tzWhIQhEO1/yaEoGo9F8yafoengSHMfDFoKC7WEKKDgegwWH5mQY15cM5l3ChkZdLChQVRsNUXSCmuHdGZuQqQ8XspIM5os4HthuMJ8kHIcdkX8cY9+5yevw8mdQLNq885Gf85o/fJ+Q64x7LVLXefx1b+d7p7+YxMIWFtZEqIuH0HWNVZoYV5gFlK/f0ASPtPezJ50jagYp/k1VEZXhfIKgRFwxbcxk6eCR5BrH8+nJlsgUHTQB6VyJeNjA830G8g5Z20UXgp5sieUNCZqTEfb25/ElGLqOaWjEDR1TNxD4VEdDlFyfkBFkPxpClF0tfVmbIKFTQ+Bh6tAlfsig+fOyXU2FZ3HDH1O86NFrJrS9u7qRv7zszfzt3BcRTca56KR6NnUMUucEJW3TuRIDBYcr1rVQGw+NG8VjaIJ4SMf1fTbtGyJi6iyuiZMpOmztylJ0vPndV1MxaU4YEVfNJSrPZLMwJ/oujuY76s/b6ELw5L4hqqMGBdvF9jzyJYenOgYouD4rG+I0Jy3S2QJbu3P05W3qohauJzGEIBnRKTg+yYhFSypMb8YmZASj9X1OgVQsqDw4mLMZcn0QgpITRK8MujvYF/4XlvTD72+Gc8rzlw+Oa+8Xn/8W/u+8l2OYwf2JhHQaDYN6S2NPOk/UCpJ6hoo2z15eT67klvtsjld64r4dfUQtnU37skTMA+3YSp7O2tbUuD5zxfHJCSHiqrnEzDCZibWRpJeBvIvj+Zi6xo6eLGctrWFzZ3bS31F11OKR3QNELZ2waeH5kkfbB4iFLSxdkIgYZAouj+zux5eCqrDBYM5hqOBgaoJkxCRsGuRsD8+T7O0vkCl4DOiwpC5Kx0ARx/ExhEDXNAxNkIiY1Dz6MP9z88dJHWGu8CNv/Ax3LDkDXTcIG4JYyCDsumRLPqbpY3oapeFIkqf2DyGQGLpGczJyyH0bL4pnJLkoW3SoCgc+7znZjk1RcU4IEZ8LdTpOBCaThXn/jj7a0wWqoyZRy6Dk+rSnC3QN7eP0RTUTfkcHj9IzhRJ3benCdjwMQ8P3JWHL4IyFVbSni5zcnODuLd0MFjxChobrSzRNsKw+RtH26BgoEDY9NE3Qlythe5L6mEVXpsiKxgRCaKSzJS6653Y++ssvH/a6d1S38N6Xf4ytjUsJGYKFNTGilkYy4xDSYLDoYpoavTmfuqjJ6tYkuZLLM905qmMWuhB4viBX8sgUHQYLNoamHXZCciRZas61Y1PMOCeEiKvQq5lhMlmYT+8fIhUxCZtBHZGwqZOKwOMd/Zy3Yuzr/+gojHu29eF5Pr3ZEn/Z0sNT+weJGBqOLymVXDIFh5Obq+gYKBExNbZ1Z8iWXFzfw5JBdULf99jbXyBfcil5Etv1qApbSANihsaCuM4r/++7XHXXzw57nbeuhE//ww/pjRyoSGhqgCcRhqA/Z5OMxDmp0WIg71D0fEqOR1MyTDJiUbA9EhGLJbWgCY1k1KA3Y7O4NoigeaYrU/ZnT8ScaMemmBOcECI+V+t0HG9MpnSwQCAZmyUskYQNY8LvaEtnBs8LOr1HLZ2+bJGIodOdLeJ6Ek0IfClp78uzqiVJbdxi454BdCEIGTpFx0cAuq5RsIPRd5WpY/T18fmff43zt9x/2Ov6/Hnw/y4Bx4BF9n9j+q24oy5BDP/TdSg4PuBSHTWIWAaZosdprSl2p/OEdQ1dQMmVNIQMEiGdWMji3BV1DORt9qTzZIoumaLNsro49+3oO+KcwYy2Y1PMSU4IEVfNJWZuYvdIWZirmqvYuKcfIQRhQ6foBqF+5yyrKdcTdzyPrd1ZejMlzlpaw97+HDt7C0GyTsQknXcIGRqDeZeYqSF1ge1L9g0Waa0O8VTepnOoRNF20DUNxwdNSFb17uazP/4PlqT3HfYavvnaa/js6tvptB8vr1ukvYUW7Sr6bAf7oEoVugBTE1imhuuDZeh0DZZoqdYwdEE8bLKoJspgwcVxPYquh65BMhIqN4dIRS1SUYt9/Xm29fiETb38/+o92/pY1RQ/7JyBEu25S6V/eyeEiJ/ozSXm0sTu2ctqyiF0g4USpqGzqCbK81Y3AZRT5+tiIc5ZVkvR9Xhw1wCe57OgOigy5bg+3YNFTF1Q8qE6rGMZGhlh83D7IA1VYTQkK/Y8w1s33MSlm/8+oT2D4RjvuPL/8fDCU6kKGwzpf+EZ93NgB5/rxDkvfAvZko+uB66f3qyDTzD6loCuAUJSdH0a4iGakmFKnk9LKkLE1GhOhmmsCrOzJ0fI1PB9n87BEotrYsDY2uXberK0NcYPmRu4a0s3bQ1Val5nnjETv70TQsThxG4uMZcmdusTYV64pnnCkUkqanJhW33Zxic6BlhSG+Wp/Rlytl/unLO7v0DUFEgpsT0f33G5ePN9vP6vN7GuY/OE53+8dRUffsmH2VfThC8lridxfLD9fp6Rr4dRzYXWaj8ladUTMjQGCi6D+aCrfVgHoWloGni+xNQ1PAkGkhUNcSKWgSYE/3z+Ur5/z04EQUz30voY3UNFBoo+usa4tcsX1kRoqoqMsTlq6XQPlVjbqh+yXs3rzG1m4rd3woj4icxcm9g93AP1YFuzRYemqggFxyNb8hjMl2isCtNs+Fyw4be89d5f0DLUM+6xepL1fPeCV3Lzqc/BiMfwJPgSHMfB8XwcDzRNsjv0BjzRX95vgfwgyyIvCEb9HuRsl6qoSSZvk7NdPCAkfFLRML6UZEsuphAsrYtREw+RjJisW1hNfSLMyc1VbNwTdPmJWXowOrcMltVFxzzIzlkWjMw2bB0/db6hKqTmdeYhM/HbUyJ+AlDpid3p8PmNHGPz/iFCwz0kkxGLeDhIg1+llzj37htZdsPX0Xx/3GM82ryS7zz7Kv5+6jkk42GkH4y07ZJLTdQiW3DIuz4FJ2jQPKjfSq/5nfL+YdnGGvOb5IseAwWHiKHjeB66pqFJsAyDmAXNyTC9eYemRCDiQRNjaEiEyZVc1ixIcvayIHLl7GW1pHM2A3l3uC6LRnXUwPUlRcc/5BV7ovmbS1Y2sLkze8j6E2leZz4yE0EVqp74CcDBdbSns870dBx79DFs1+OR9gFq9u7gH//wY1p/ddOE+921+ny+tf5lPNp0Urk/vQR0ApEWmkAHLEOg6zpSgqFJugvt7LKuHnOsZcWbMLQYIUNgeyAlRC2NkicJGRqrmhJoaMRDOs2pMHvSBaqjFgXXw3U9WmuiGJpGKmZy5ZkLD5uhOpC3CZvGmB92ruSWsyynI6NVMTeYrt/e4eqJKxE/QaiUAGzY2kNxVA1rOCBIK5sSkzrnhme6Cd97Dytu+AapDXdNeK5HXvxaHnz5m/i7E6e/YNM1VKTo+BRtD1eCJ4N4bemDRyDoguB1M2RpNFVZ3Jm7dMwxm+3/IOSdGYQIisDdYg1fij88e5mMmNTEQiypi7GsPobn+Ri6TqbkUhcLsaIhhmXoZEsuq5riR2zvdttjHdTGQmMqE0op6cuVyg2RFccP0/HbO6amEEKIhcAPgSbAB66XUv6nEKIGuAlYAuwCXiGl7J/oOIrZpVITu+3pXFBXu+SWQ+mqwia7+rL0Zu3xZ+UjBvz850Hn9U2bOH+c45aicf5+1Vtwr34bD/X73L+zD1PXiLoae/vz7Bko4PtBZIimgfABGYygLR0QAtsdjkgX0KN/lydz/1c+fsy9gFb/I3h+MJcpBIQMyDtBaVlD08jbLq4H2ZJLImKysCZM1DToLhZ5z4XLAco/zqLjki85/PT+duoSIdoa4hQdf9xIBJW3cGJR6aCKyfjEXeADUspHhBAJ4GEhxB3Am4A7pZTXCSGuAa4BPlIxSxVzjp5MkT3pAromSEUs+nJFHtqZxvMledvjtNYk6xZVo+cKtN34fVq+/Z+YQwPjHiu3rI1973g/fZe/lMe7cgwNVyX0MrCjNxskshg6tqeTKTo4XuA28SU4HuX0IVeC5oMUkpClYcsOthlvHXOuZYVb0DQTzwdNhxBg6ALPh5Au0RCEDA0fHUsIfASGENy3Y4BF1WHOW1FX/lGOuDnu2dZHb9ahIREGAZv2DbFmQZJ4yDgkEkHlLSimkyOKuJRyP7B/+L8zQoingQXAFcDFw5v9ALgbJeInFFs6M6yoj7OjN0dfrsiOnhwd/XmS6W5e+def85K/3Dzxzs99LgPv/QCbVp7J7nSOvf1F2hrjRByf+3f0kc6V8IGwodOezqMBed8nnbcDUQUcgHHmOH3A9112aB+iKLaW1y/zvkZMrICQTsn1sAHhERTMCpvkbQ9fSjzfx/MFphCUPInjuoiERUiH7kwp6O6TKZaFuVwW1/dJho2ym6Q9nefUluQhkQgnet6CYno5qugUIcQS4HTgfqBxWOCRUu4XQjRMsM/VwNUAixYtOiZjFXOL/rxNcypC0/anSPznVzjt3j9OuG33S1/J9je9E+/kk8uTd/ds6yPuSpbWJQgbBo/tGaAvazNYcEhFTdrTRfLCJWc7CCGwNA3b9fCkKIdzWxrYBwn5gH4LfeZ3y8v19r9SzXPQBXiahqkFO+gicL9IKZFSkAgZ9GRLRENBnLcHlFwXywhG6VVhE10X9Odd7t/Rx+XD/uvdfVmyRY/2dB5LE7TWRIlZBkNFe0I3yYmct6CYXiYt4kKIOPB/wPuklEOjJ2UOh5TyeuB6CCY2p2KkYg4hJdx+O1x7LS/++8SZkHde8U/84vyX0xtNsqA6xovXtgSz8k0J4NAkiJbqKB2DBbJFj2ctreaxPQNELG1YYMH1IREK/NS+9NEIJi9H/29oix3sD/9LeTninU29/XEEGr4A3RToQmJoOvVxnXTexvUkqViIBdUhOvqLWLogZukYWtAUwnF9IpbO4tooNcPNkVMRk6f3D3H52gX0ZIrs7S+ia4KlNRGe6c6xpTPDouoI0bCh3CSKijMpERdCmAQC/hMp5S+HV3cJIZqHR+HNQHeljFTMIsUi/PCHwSTkrl3jb9LQxEOvupr/WnoBbjjKopooEUvHyjtE8jYFxzmkMNNIU4cdPVkyJZdEyGAgVyJbclmoh7E9Sb7kMlRwcV0fIcD3DRAC6clyKKHtgU+RfeGr8US6bFNr4UfoVANBhErI0JBITD3wQcfDJomwQSJkEjI0skUP15esaEwETZVtj7ztggDfl0RDOrbrsyAVQyLJ2z4btvZw7/ZefN+n6Ehq4yFOaoizoy/H9t4sV6xr5exlNWrEragok4lOEcB3gaellF8Z9dGvgTcC1w3/vbUiFipmlr4++PrX4dprwXXH32b9evjYx+CKK+jJ2WzpzLC7L0t0cw+2FwhuyfFxfcnC6gjnrqg/pMuMAB5pH6A6apIMB3XF9w+VcFyPZ7pzQUEpPYi7lkJiCCi5HqYmCIV0SgUPHxgwvs+gecD33lD6BDH/WWVXuQZYpiAW0im5PtmSS8QK6rVETI2+XFAkxfXhlCoLz4fBQtBvc6TZhPR9pC9Z2hhF1wT7BgrDzZR9NKERD+tBQk/OpjdrI6SktTqqBFwxI0xmJH4e8HrgCSHExuF1HyMQ758LId4MtANXVcRCRWXZuhW+8AW44YaJt7niCrjmGjjnnEM+GvHtnt9Wz5mLa7jxgXZ6szaGBgtrwixIRcvZi2MJykcNtxpGAmEjaFUmhE3RdhnMOwgtqHaIgLqwGfi1paDXuZc95oE+lnH3BdQ470Igxgi4oQXlbx1PBr0ygdZU0ERYaIKW6ghCaqRiBo1VYR7clSaBQMqgLspZS6MYukbJ8djRnQ3qrLge5y2vIxYyEALa+/IMFBwyRYfTF1YTCxn4EtU9SjEjTCY6ZQPBL248nju95ihGqFh23t/+Foyyf//7ibd55zvhgx+kp+6gQlWjIjLGY1Vzknc/p21SdkskZy6uZk9/gaFiMBpORi1SUZOEZfDQngEQGqmIgef5OBKiIYOCO8jv0i9GmoFUCxmitfhDDGLlMENdBPHjuiYw9UDAS66HLwO/emMyEhSVGizS3pcnZOics6wmaPVmaNiuHzw04iGW1sdpqQrxp6e7WVgfwTI0nto3wL07+9g7ENT/ztkeRcfF9Xx2p/M0VIU5e2kNpq7N+yqDKkt07qNqp8xBpq18pevCzTcH/uzHHx9/m3gcPvrRQLhTqWO2YTJRF8FkYJ59A0UcTxKzNHK2T8zSWFgdxfUlpzRV4flBXe1cKai/fU/6U+wqHnj4nGb9J4azkiHNDSY4/SBrEyBqahRtP6j9LcDQNOK64NltdSyti7M7ncdDUhcP0ZIMmif/bWsvUVNjQSqCEIKi7ZErunQLjdMWpmhrSLCpY5CaeBjb9dnSlaUqbNKaCvH43iIhQydm6VSFdFJRq5yFOV+ZSyWMFROjRHwOMuXyldksXH99INq9veNvc9JJgT/71a8Ga+IMwUqV0BwRhoips6snS9Z2yRRdSo5HMmLyvJMbeHJ/lqqIQV+mxGDBodPZwIb+A66Ty5e8m/Mb3slj7Wk2dgwifRBa0FlHkxAydHwJ0bCBIQJXTV0iRH3cIhkNYegaYUNnYXUMX0Jd3CRn+4QMHdPQsD2JZQiEEAzkHRxf8uxlNeWu9K3VUXb0ZMmXXFqqwqTzLg3JCAuSEWrjFoPFYC5hovDC+TK6nUsljBUTo0R8DjLp8pUdHfCVrwT/JuKSS4KR9qWXjo3Hmy4bjpIRYdjRky1HeWhoaFoQSvhUZ5a6mMnegRLdhU7uHHx5ed+U1coH1/4a3zN5omMAz5fETQMREuRKLpqA5qowEUtj35BNQzzMSU1xFtfG0DXBzp4sYUPD1DU6BgpoQmJoGjlLR0iJoQls12dFQ5yOgQJ522FBKsqZS2owh2ulJMMGYSFIRU129Um2dmfQdUFbQ5ztvVk6BnUWV0fIldxxwwvn0+h2rpUwVoyPEvE5yES1NVp3bYHPfQBumriyH697HXzkI3DqqRWx4Vjre4wIQ3tfHk1otCTD6JpgqOggEOwfLOL5Hn/uex8dxQO9Lz92xm2srj+Vrd05NncOUii5WIbO8oY4YVOnK1MkX3TRdI2CI1lcG2VpbQzX8+keKpK3fQq2i9DEcJlbA9cHUxdUR006+gtELQ1E0OChrSFBbcyiMRkup8mbmkbR8cmVXHb25GhIhNg3UKRYdOkesqmJGezqK9A1VMAHXry25RBhnk+jW1XjZX6gRHwOsrIpwT1be6n9250sv+HrVD10mEa+H/4wvO990Nw8/TZUoL7HiDBA0JEnbhrkSx6OJxH4PD10K7elv1ze/qVL/o2LW19PXcwiGjJZ01pFOlui3cnRn7dZVBOh6PpIH2JhnXgoqNXdmAhRsF3a+wukIiYlx0MTgkTEZEdvhqqIyVDRZUF1hJpoiKITZFy+6LRmmqoi5esdcXWct6IWQ4MHdqbpzZYwdEEsZBIxHSKWRudQnoGCwVlLa4laOtmiw60b9/Hw7jSLa+Pl44we3Y5ujuxLf865VVSNl/mBEvG5QqkEP/oRfO5z1O/YwUvG26apKXCNvPnNEIsd9Skm64sd2S5vO+wfzFMVNlhcG5+W+h4jwtBYFWLvQIF01iZTdNCsTv6Yfk15u+bwOi5v/ja1sQgNCYs96QLLG3S29+SwDJ1EyKJgy3LNlaGCG8SRGzqnNsXxfHh4V5qC4xEPGUgE0bCBOdzx/rI1LQwVHdrTeYaKNk3JME3JEA2J8Jh6JhCU2x25Z685exH/ddd2opZAE4CQhA2TkuPjy2CiNFN02Nmb56SmBNmiN6aa4chDzPF8NnUMErV0LEMg0eecW0XVeJkfKBGfLdJp+MY3gknI0gQ+xjPOCCYhX/KSYNbuGJisL3b0dktq44eMSI+VA6NaQcdAkc2daR4svIOh7PbyNhfEbmRhcjEN8ShZ2+N3m7porgpRFTGJmDqtNRGGig5hUzCY90nnbOoTFkXboz5hETX14bhtl7ilAYIFNWEW18TQBGztzpC3PZIRizULAtfA6KYMh7tnmzuz1MRMwqZO52CJWMgEoOT6FJygVVtHf5Fk1CQVMRksumNcJiMPsfa+PBFTRwJF12fNgiSGNvdCElWNl7mPEvGZYvv2IKnm+usn3ubFLw6Sas49d9pPP1lf7HT6bCca+dcnwly+toX7e7/Hndv+X3n7sxKfpNG4BITA92U55T1TcMkUHIaKLic1JkiETU5pqcLUBLpWoOj6LKqJIpHs6y9iu5Ll9TFW1EWxLJOVTQniw9dRsD1qYxbZkstg3qY3WyKds9E0wRXrWiZ1z2Ihgx09ecKmRl3MYm9/ASkhFTbZmy4wWHRY3ZKg5PokhvcZmRAceYht68oghCQRsVjRECcZmf8hiYrZQYl4pbjnnmCU/dvfTrzN298OH/oQLFtWcXMmG2kwXREJhxv5t2eeZP13DjQpaTYv4rkNnyMVMXm8Y4i4paFpJumcw0DeoSUZIlNykMCT+4ZY3VKFqWssrotxyaoGQqaO60va+/IsrI6DgILjsbg+Tns6z950npVNgagOFBzOXFzDioY4t27ch+/71MRD1CdCbO7MUhsPjanvMt69WFAdoStTQvoSXwoaqkKETUHJ9dndl6U6ZrGjO0913OLspUG26ugJwfpEmHOW1x7SEUlNGiqmghLx6cDz4Je/DDIhN24cf5tIJPBnv+tdUDNeGnplGR1pMFiwaU/n6csUScWsMbWxpysiYUtnBs/zxxS4ioYc2r61lsFSX3m7Nyz+A4VCEK+dzjuEDBFEl0R0iraLlJJ03qU+EeLcFbXctbmbrV1ZTmtNsqwuhq5rgBy3nrcuoCUVoTdTKjcpXlQT4exlgZ+3rTFopZYtBqVu6+LWmDeOie7FopoYVWGLHb1ZXM8nHjZJRgweax+k5HqkohYdA3lsR0dKeUi4YU+myEDe5oGd6XIXIFPX1aShYkooEZ8KuRx85zvBSLt7guKNK1YEov261x02qWamGPHFDhVttnVn0UTQPLghHh7jG5+uiITdfVk6BkrELJ1k2OCnz3yGuzq+X/78y5fcRCmzmu6MjRaFwYJDruhSFTZJ5232potELA3P9+nLOUgkHf1FLllZz550kZbqSNlFc9+OPqKWTiIUFNIKm3rQBcj1WLswxfbuHFJKSq5LTSwKBG3l9vYXiFoGVWGLouuxrTtL0fGA+vI9+90T+4c71dsM5G1KnsfimiiJsEHB9mhrjNNUFeGhXf1EQzoXrqwnGbEYLNg805XhyX2DPHt5XXlCcPQbyjnLatnWnePPm7tpSIRpSYXY0pkBmBU/9HxJQlKMRYn4ZNi/P0io+dKXJt7mwguDScjnP/+okmoqzegfpqHB0/tzeJ4kFbdYWBMlFbXIldzyCHS6IhKGikHyzc7MfXx54xvK6y9qeS13v/XH3PZYB/tkgXTORdOgORlBVkkG8g6psEHRkwwVbUqO5KSmOMmwxf6BAnnbY93CZLkhAxwYMS+sibKpYxAAX0oMXSNbdGmsCtGSipYfSvds66Ojv4AmBBEzCAfszpToyZboy5Z43ilja8TkSkEUi64F/Tbr4z4Sn4Z4iK1dgfDbrseZi6tJRoIHdjJisX5xDX250pjJ0tF+9ljIoK0xiJEPmRpL6xKzlvwzn5KQFGNRIj4eTzwB110HP/3pxNu8+tVBUs3atTNn11Ey3g8zU3I5pTnOUNHj6f2DxMMmC6sjFJwDZWenGpEw+oGxM93JF5+4sPxZxKjio+vuZHldHRAIr+P5dA4XoXI8Sb4UVC1sSoZ5+Zpmnu7MsK0rSzxsYGmCwYKDabs8vX8IOXyMlU2J8ttDPGSwuqWKbd05enM2Zy2pASRhMxDMkbjsvmyJnb1ZWlJRPN9n30ARTQTVEk1dK4vXls4MLakoRdcP4st7smQKLlu6sixIhjE0wYr6ON3ZIhLJ1u4sJzWKspCP54Y62M++J50nFTGxPQ8hxKwl/8ynJCTFWJSISwl//GPgGvnLXybe7oMfhPe/H1paJt5mjjHeDzNiavzlmV5WtyTLboSHd/ezbmH1MZ1r5IERs3S+/uh7+NPuW8qfvffUmzil/kzq4lbQSJjAVdGbtVlcG6UjnWewZOMLweqmBJomKDgeUsJJjXF6siUG8za6pmPpAteTh4wWR0S34LicsTjFyuEOQt+/Zyea0BAChgoO9YkQdfEQe/oL2MMTnelsiaGSi+8Hcd4rGkrlh1FtLES26KBrgva+PLGQjiclQsBjewYYKgR+/LULq3mkfYCHdqVpa4jRNeTQmytx1pKaw845ZEouli6Ih83y/RqZSJ5J94ZKsZ+/nHgibtvwk58Ek5Dbto2/TUND4M9+y1uCKn+MGmU+1jFv/IUjvR+ztkciZLCwJoqlC0qOP1xbWA7/DWp7HwtbOjM80vM7Pn3vgc7ypyffxiXNb+PSkxrLE3cj4lqfCLOqKc7/3tODJ2FFU5LTFyVZVBNnX3+erV1ZIqYR1ENJRkhFLXQRdLevCpuHjFrPb6sfN949ZOoIgprfOdujOmoigeZkiI6BAju7c7hSErF0vOFGzLc+2sH5bXWcvayu3AVoa1eGWNjA9Xwipo4QAl9K+nMOq1urqI6FOHNxNRvb+/nTU92sWZji2cuCmiuj3RJ1cWtMVIztehRsyfrGRNn2vO0hEDPq3lAp9vOX41/E+/vhW98KRtr5/PjbrFsXiPbLXz5uUs189BeO7v2YipiU3CBDcChvs7o5galrDBaDqJEzFqXKDROmwp7BPVzw0wNNsBvCy/jomb9GejrbejLcuyPNWUtqyverJ1Pk/h19PLAzTbbksaa1CkPXaU8XSEYsmlMRiq5LMmKVIzhObaliY3s/uq6zsCZaPtfo0eLIg3Z3X5bH9w5iajo1CYuhgkPR8YhbOlu7M9iej+0GES2ZkouuQcHxWVAdIhmx6M/aPLCznxed1sLmzix1cYsHd9hELY2uQYdEyKDoeIQMjbzjsmjYnlTUoiZmATGetWTsRPDIhOXmziwr6uNBfHrWpuh4NCbDGFrQT3RkItnQmFH3hkqxn78cfyK+Ywd88Yvw3/898TYvelGQVHP++ZM65Hz0F46E0G3vyVF0fcKGTsHx6C+4rFtUQ0v1ASEcyVY8Wjzf49IfXcrdu+4ur/vw2t/i2y3s7rMxhMbyhgSntVYTNrUx0RntfXkaEmHytsczXTlWNiWImDrt6TzL6uIsro1zflt9ORywP2+Tilk0xMOkotYY/3YqZrJ5/yAP7EzTMZBnZ0+OvqxNbSJEIhKEHOoapHNFujIlopaJEGC7Esd1EaaBkJJ01sHUNEKmhoagN2uX3TStNVGGCi6rmix8BDFLw9AEdfFQ2QcOkM7Z1MTHd0vcvyO4bscPkoDWLarG1DWKjkvR8djY3o9EsiAVYWtXlnhYJxGxWFQTJRmxKureUCn285f5L+L33huMsm+7beJtrr46SKpZsWJKp5iP/sL+vE1TVYSoZZTrgyTCBmtak+i6Rq7kTmnENTLavfHJ7/Ffjx2o8f3FS79Bg3gRd23poS4GpibIlhwyRR3H88oTpyMPxJGY7oXVEbZ0Zdnbn+ekhgS9mSJhQ6MmZnHbQa6rkQfAvv4823tzaAJ0XdBYFebGB9pxPInt+qSiIUqupC9bIh42WF4XJxE2eGLvAIauIxBYhiBTcEALRDQVsSg6gY+8IR6iMRWhP2+XJ3lHT546nsfW7iydgwW29zjkncBNU3I9tvfkgBiDBXvMBKdA8MDOPhoS4XJP0U0dg6xuqWKwYBMLWaxbVI3jBXMUnUMllpgRbNfniY7Bclp+Jd0bKsV+fjK/RNz34ZZbAn/2I4+Mv00oFLhG3v1uqJ2eV8H56C8csXm8+iArmxJTGnH1ZIr87NH7+Je7LimvO7XuXO543R9pSsb4zWP7qImaFByPZNRkZXUVuibY2p3ljEXBxOnIA3EkpjseNlmQDPHk/gzprE0spFMVMYmHDXoyJTbtHeCebb1csa6FVc1JzltRy80P78HzPFKJMMmIQW/G5rG9gyQsg0TEJGJq+DIIV8x1DLIwFQkaN0tJSzLMQCFI7omHTVpSsLs3j65pNCR0LENnsOhycVNizPc7MlK9f0eaB3aliRga9YkImoC9/Xl29GSpClucvbSarozDQ7vSnLm4ujwXYGhBYwoECCEIm4Hbblt3DtOAxqoosZDBEx1ZUlErqHneX2Blk0nY0HimK8OimphybygOYX6I+KZNsGbN+J8tWxaI9utfHwh4BZiP/sLD2TyVEVfJLfGsG05j99DW8rpbXvoYcaORbd15mpIxJJLnntzIk/uGiFo6ISOov92bKZUnNA+O6c6WHDoGi9QnQiyojuB5kn2DRXqyNnXxEPWJCAMFm1s37iunxLdWR1nbWs1gwSlXAoyaGgXbJe94+FKSipg0JEKk8zaP7x3klJYqVtTFqYlZ+BJ29uToGiqSDBs0JUO4Pji+JGlp1IcsuoZKWIbGhq2MqfmSippc2FbP43sHSOdsXCkpOpKamMmqpiokGmcurmZrV5YnO4Y4Z3ktaxfWct+OPtoa4mzaNwRA2NDxpaQ3Z7OqKU7UCkQ9W3SoClvlXp+mrpVL1c7lORjF7HH0jtDZ4KmnDvz3+efD7bcHo3Ipg8JSb3lLxQQcDozCwqZGX65E2NTm/A9qOm3+zF8/Q/iz4bKAf+aC7/H31/XSGFtA1NLpzweNjqujFpahc+qCZHni1Jdw1nD9kA1be2hP53h4d5p8yWV1SxXdQzYFx2dxbYzTWlOETI2S45MtusNRIJCKmPi+LE8OjjwIRtqlhU2dmpiFpmsIJPmSi+P5eL6krSHB8oYEJzdXcebiGgYLQbjgkroohi5IF1xWNSV564VL+cd1C2itjgKCtsY4S2rj5TKyPZkiELxJ2K7H5s4hhICYFWSG7h8o4ng+mZJLKmqxfkk1K5sT5aiZ6qiFqeusWZDEMjSGijYSOGtJDYtqYsM11iEeNim6HiXXp7EqzJrWFGsXpnj28ro5/f+bYvaYHyPxV7wi+Kc4Ko7Vx3n/3vs557vnlJeft/hlfOhZ3yIeNg+ZWOzJFMf4jU9dkCyP/lc0xMeUtw2bOlu7srRWh2lOhrn0lAZS0eAhHA+bFO0MpnEgbrrk+tTErPLDYuQ8fdkSdfEQBcejPhEmFjLY1ZsnNNwfM2IZNCZDREyNh3f3c+biGqqjJp6UeL7PKS0JejM257XV0VQVoTbm0Z+zOX1hNc3JYOL34Ens6qjFI7sHsHRB11AR3xfkbI+wKejoL9A2HCp4sLttzL1pOXBvzl4WPOBG3poWVkd4eHc/IDhjUWrCNm8KxQjzQ8RnmfkaYjjVRJGh0hALv7qQodJQeV3vh3rxvVhQf6XgHDKxeHDSzWh/+8HRPRHTIGIa7B8oEQsHUTOp4fMsqonyaHs/mvSH65345G2PZXWxMVUAz1tRy/7BPL3ZIrWJMGcvC0Tujic7KTjBJGEyYtDeV0ACTckwYVMnETapiVnljM+6uEVv1qYvV0IQdLjf1ZelL2+PGxWysinBrzZ2kLeDZg+GLvClT+eQw1DeoakqxL7+PLqujRHeI0V/jE5WChKvJJ6UhE1NRYkoDosS8Ukw30IMj+Wh8+7b3823HvxWefnON9zJc5Y+p7x88MTiiNDlSi7370iTipqHPDju29E3piXZpo7BYVeJpCEe5pHdA5yxGJqqIhiaxpoFSboGi/RkStTErHK1whG/OgSieOWZC8vXOeL3X7swBUBLKsr27gxCBGlMi2tjxEIGLanoIc0fRt+z6lgITTBhVEh9IkxjIozj+oSNwGVkaDp1cZ2wLrA9n209Wa5Yd2h/zcO9GanIEMVUUSI+CeZbiOFUHjp/2PYHXvCTF5SX33/O+/nKP3zlkO1GTyyKUYW+HM/jgV1pLmyrP+TBMeLDdn2fvzzTQ7boELF0mpORcrx611ARUw/E8qr1C8v2Hu5NYrzR7QvXNJf37Rwq0pQMs7g2Vg73m+h7G7lnbY3x8mTpRFEhC6rDSCRRy2Bff4G84yGlpD4R4uJVTeRKLr1Z+wjfkkIxPSgRnwTzLcTwaB463bluGr/UWF5uiDWw/V+2E7fiEx5/vPuxtTtLXSw07oNjpKRrezofCLipkyt5ZIoOgwWb5lQEy9R48ajKhDC5cqwTjWBH1k228cKT+wbZ2ZNloOASNgS1iRBR0xw3KmRRTYywqdObtUnnStTELVLR4B8E93pXX5YNW1FlXRUVZ35Ep8wyK5sSZEsuuZI7psj/6Nf7ucSBjvIHOFi8pJS8/OcvHyPgD731Ibo+2HVYAYfx70dvpsSKhrHNm0ciV+oTYWpiFlVha7iJQ3CM2niI9nR+Sg/EnkyRDVt7uO2xDjZs7SlHjxzJzvG+t837B3lgR5qhokddzAKhsbuvQG3cHDcqZGVTAk1oLKuLc/qiampiIYQQ5fT7zqECe9IFio5PbSx0SISLQjGdqJH4JJjNlOSpTFAeKa79xidu5DW/PNBZ/rrnXsdHzv/IpG0aKV5115ZuuodKNFSFWNUUxzLG1p0ZLc4SWL+kuuyuMDSBpWv0Zoo0JMJHlTE6UndlpCvO6G7yo+/NZL+3u7Z0s6g2Sn/exvEl8ZCO7fo8tDuonzLe9Y8cNx4OmjK3NcapCpvkSi5bu4L6KJWeQ1FNHBQwCREXQnwPuBzollKeOryuBrgJWALsAl4hpeyvnJmzz2xMPB3LBKWhiXItjpObqzhvRS05r5OG/1ha3ua0xtN48K0PYulHPwre3JmlraGKta3BQ2LfQJ59A/kxzRdGPzhG3g5SUYtTFyTZk87Tmy2RilmTjvIZuR9P7x8kb3ts7RxiW3eW81bUUhsLjyuSk/neuodKtCQjmLpgW3eW7HBJgmTEOOJE5Plt9WUxHXlQtFaHaU5Fxmw/3XMo8zFiSlEZJjMS/z7wTeCHo9ZdA9wppbxOCHHN8PLkh3KKSTGVCcrRP+5zVwSlVAcLRV70s0t4cN99B4797i2cVHvStNnVkopSdLxyctHBo97RbwfJiIlZH6ehKnxUorOlM4MvfXb25khGTJLRENmSyz3b+njhqU1jGlscDQ1VITqHCvTlHOoSYVpSGumcjeczphb4RIz3oKj0HMp8i5hSVI4jiriU8q9CiCUHrb4CuHj4v38A3I0S8WlnKlExB/+4f7fr+3zlwQOFqr77j9/ln0//57JPeSqv4hPZVXDcQ0L3RpgOl1R/3qYnU6IqbKIJgRAQD+kM5p0x9VmOlktWNvDFP2whZOjErKA4mO16nLe8blxRPNiNMRJrPnp5c2e2fF8qUaZhvkVMKSrHVH3ijVLK/QBSyv1CiIZptEkxzFSiYkZ+3NsHnub1v7mgvP70hot46O1/RhPaMb+KTzVa51hdUtVRi017B2hNRdiVzgHBBG3I0MfUZzlaVjUnedaSFDt7C/RmHapjFucsq2FhTewQUTz43u0fKPD7TZ2csThFU1WEvO2xuTPLqqZ4OYmoEnMo8y1iSlE5Kj6xKYS4GrgaYNGiRUfYWjGaqRTeiloeL//VmXTm2svrbrz8UVqrFqCJIDLkWF/FZ6sgWHDeXlwpWVITpWOgyGDRYWltjDWtyWMSyVMXVLOiITlGFHMl9xBRPPje9eVsUlGT3qxNczJaXt+btSd8K5kO5mNRNkVlmKqIdwkhmodH4c1A90QbSimvB64HWL9+/bH1AJtnHGv0wNG6IP79rn/n03/9dHn5ugt/yJmNzz8krO5YX8VnK1qnPhHminUt3LpxH44vWdEQpy4eQte1ctr90dzz0dsKBOlcacKJ2REOvneZkksybJIpOuV1M+HWUE0cFCNMVcR/DbwRuG74763TZtFxwnRFD0zGBXFP+z2c/78HuhS9avXreedpX2Kg4Ixbe2M6XsWn4hqZykNtvH3++fyl4x7naO75eNsCFB2XguNOKIoH37tEyGCw6FAVOVCwa6bcGipVXwGTCzG8kWASs04IsRf4BIF4/1wI8WagHbiqkkbOR2YiemCwOEjTl5soukESiS50ej7UQ3Xk8BN80/kqPllhnspD7XD7jLgqRs5/344+Nu8fxPXAMvVyY+h4yBj3nk8UYTNeXZXD3bvamBW0lKuPjemReaxuDRUDrpgsR8zYlFK+WkrZLKU0pZStUsrvSin7pJTPlVK2Df9Nz4Sx84n+vF0u9D/C6Nrbx4KUkqtvu5rU51NlAb/7jXfj/rt7RAGH8WuNr2qKs6Uzc9gMyIMZEdnJZCaOFs2RTvUjAjsRR9pn9Pl1IXh6f4Y9/QV0AY4XtD+zXW/cez7V7+fge9eYDPO6cxbRkAhPW635o7mvCoXK2KwQlYoe+O0zv+XyGy8vL3/kvI9w3aXXHfVxRr+KT9X1czRvG1Pxwx9pn9Hn39GTpTYewvEkPZkSy+qD0gHbunOcsTh1yLGP5fuptBtDxYArjgYl4hViuqMHOrOdNH+5ubzcWtXKlndvIWpGD7PXoYz3mj5V0TgaYZ6KaB5pn9Hnz5RcFqQi7OzNMVRwkJJy+7PxQg/nanRHT6bIfdv7EELOWKd7xfxGiXiFmK7oAV/6XPGzK/jNM78pr3v0bY+yrmndUds00Yg7bzssqR1b9Goi0Rj9ENjbn8fx/HIXHJhYmKcimkfaZ7TIJ0IGjuezoDpCf85mqGhj6BpnLamZsMrh0Xw/E/mop9N3PfL9WIZ+2JrmCsVohJQzF/W3fv16+dBDD83Y+eYDhxOBHz32I97wqzeUt/3y87/Mvz77X6d8rg1bew4pzZoruWztHqKtoeqQ9QdP8o1+CEQtnf0DBR7dMzAm0WXfQJ6aWAiJPOR6pis6ZTw3kO16PNI+AMgxXeano5bIwdc98jBZ1RRnc2f2kPVTPefI9zPiz49aQTNlSVD+VtVFOXERQjwspVw/3mdqJD6LTDQybqkb5OzvrS5vt75lPX//579j6uZhjnZkJnJ/VIUNsiW3vDzRKPlgt8vBDR1GWkSETb18nNG+9an4ko/UDWdsW7MkIHB9SSI8fW3NJnI33bWle8zD71h91yPfjxBGuUiY6nSvOBJKxGeRg8UhZEre9acX8Uz/Y+Vttr1nG8trlk/L+SbyMS+ujZd944dzLYz3EBjd0GHD1h7C5sxOyM1ErPRED7/uoRJrWw+NcJmq73r09zPSZGLkjUgJuGIilIjPIqPF4can/otvPPLv5c9++JIf8vq1r5/W8x3OxzwZMTyaicYRKjUhN5Nx1BNdd0NVaFojkObqZKtibqM6+8wi1VGLx7sf49wf15UF/Jzm5/OXV3dOu4DD+PHhR/OafqROOZPpKDQdzHQc9UTXfcnKhmnt+HSs34/ixESNxGeJvJPnFb9ex/7svvK6m178OJao4eTmZMXOeyzuhyNFdMzUSHIyIZHTOVI/3HXXxkPTWr9EpdIrjhYl4rPANX+6hs/f8/ny8ucv+gknV180L9KrJzvRWMmiTEdy21Si681E161EVzHbKBGfQf66+69c9P2LystXn3E1/335fyOEOMxe84uDM0FH6ppMR0jhCEfyzauMR8WJhBLxGaC/0E/dF+vwpQ9AxIiw/wP7SYYr5zaZbaa74NXofY7ktlFdbxQnEmpis4JIKXnjr95IzRdqygK+4Z82kP94/rgWcKhMwasRjjQBOFMTrArFXECNxCvErZtv5SU3vaS8/G8X/Buffs6nJ97hOKMSBa9GczhftArVU5xIKBGfZjqGOmj9amt5eVn1Mja9YxMRMzKLVs08lSh4NVlU1xvFiYQS8WnClz4v/MkL+eP2P5bXPfGOJzi14dRZtGr2qETBq6NBRY0oThSUT3wa+N6j30P/lF4W8K+/4OvIT8gTVsBhaokrKtlFoTh61Ej8GHim7xlWfnNlefnchefylzf9BUNTtxWmNhpWI2iF4uhQajMFbM/mWd95Fo93PV5et/O9O1mSWjJ7RikUihMS5U45Sj6/4fOEPhMqC/hPX/ZT5CekEnCFQjErqJH4JHl438Os/86BmuwvP/nl/OKqXxxX2ZYKhWL+oUT8CGTtLMv+cxk9+Z7yuq4PdtEQa5hFqxQKhSJAuVMOwwf+8AESn0uUBfz3r/098hNSCbhCoZgzqJH4ONy5404u/dGl5eV3PetdfPOyb86iRQqFQjE+SsRH0Zfvo+6LdeXlVDjF7vftpipUNYtWKRQKxcQodwpBoapX/9+rxwj4fW++j/6P9CsBVygUc5oTfiR+81M3c9Uvriovf+riT/H/Lvp/s2iRQqFQTJ4TVsT3DO5h0dcWlZdX1a1i49s2EjJCh9lLoVAo5hYnnIh7vselP7qUu3fdXV731Duf4uT6k2fPKIVCoZgix+QTF0K8QAixRQixTQhxzXQZVSn+56H/wfi0URbwb7/o28hPSCXgCoVi3jLlkbgQQge+BTwP2As8KIT4tZTyqekybrp4uudpTvmvU8rLFy+5mD+9/k/omj6LVikUCsWxcyzulLOAbVLKHQBCiJ8BVwBzRsRLbol1/7OOzb2by+t2v283i5KLDrOXQqFQzB+OxZ2yANgzannv8LoxCCGuFkI8JIR4qKen5+CPK8Zn/voZwp8NlwX8F1f9AvkJqQRcoVAcVxzLSHy8yk/ykBVSXg9cD7B+/fpDPp9u7t97P+d895zy8qtPfTU/edlPVKEqhUJxXHIsIr4XWDhquRXYd2zmTJ1MKUPrV1sZKg2V1/V8qIe6aN1h9lIoFIr5zbG4Ux4E2oQQS4UQFvAq4NfTY9bR8Z7b30PVdVVlAf/T6/+E/IRUAq5QKI57pjwSl1K6Qoh3A38AdOB7Usonp82ySfCHbX/gBT95QXn5/ee8n6/8w1dm0gSFQqGYVY4p2UdKeTtw+zTZMmm6c900fqmxvNwQa2D7v2wnbsVn2hSFQqGYVeZVxqaUkit/cSW/fPqX5XUPvvVB1resP8xeCoVCcfwyb0T8xidu5DW/fE15+XPP/RzXnD/nk0QVCoWioswLEf/Bxh/wplvfBMBpjafx4FsfxNKt2TVKoVAo5gDzQsRPrj+Z9S3r+cnLfsJJtSfNtjkKhUIxZ5gXIn7WgrN48K0PzrYZCoVCMedQnX0UCoViHqNEXKFQKOYxSsQVCoViHqNEXKFQKOYxSsQVCoViHqNEXKFQKOYxSsQVCoViHqNEXKFQKOYxQsqKN9s5cDIheoDdM3bCqVEH9M62ETOAus7jjxPlWk/E61wspawfb6MZFfH5gBDiISnlcV8WUV3n8ceJcq3qOsei3CkKhUIxj1EirlAoFPMYJeKHcv1sGzBDqOs8/jhRrlVd5yiUT1yhUCjmMWokrlAoFPMYJeIKhUIxj1EiPgohhC6EeFQI8ZvZtqWSCCF2CSGeEEJsFEI8NNv2VAohREoIcbMQYrMQ4mkhxLNn26bpRgixcvh7HPk3JIR432zbVQmEEO8XQjwphNgkhLhRCBGebZsqhRDivcPX+eSRvs950dlnBnkv8DRQNduGzACXSCmP94SJ/wR+L6W8UghhAdHZNmi6kVJuAdZBMAgBOoBbZtOmSiCEWAD8C3CKlLIghPg58Crg+7NqWAUQQpwKvBU4C7CB3wshfiul3Dre9mokPowQohV4EXDDbNuiOHaEEFXAhcB3AaSUtpRyYFaNqjzPBbZLKed6VvRUMYCIEMIgeCDvm2V7KsXJwH1SyryU0gX+Arx0oo2ViB/ga8CHAX+W7ZgJJPBHIcTDQoirZ9uYCrEM6AH+d9hFdoMQIjbbRlWYVwE3zrYRlUBK2QF8CWgH9gODUso/zq5VFWMTcKEQolYIEQUuAxZOtLEScUAIcTnQLaV8eLZtmSHOk1KeAbwQeJcQ4sLZNqgCGMAZwLellKcDOeCa2TWpcgy7i/4R+MVs21IJhBDVwBXAUqAFiAkhXje7VlUGKeXTwOeBO4DfA48B7kTbKxEPOA/4RyHELuBnwHOEED+eXZMqh5Ry3/DfbgL/6Vmza1FF2AvslVLeP7x8M4GoH6+8EHhEStk124ZUiEuBnVLKHimlA/wSOHeWbaoYUsrvSinPkFJeCKSBcf3hoEQcACnlR6WUrVLKJQSvpH+WUh6XT3khREwIkRj5b+D5BK9vxxVSyk5gjxBi5fCq5wJPzaJJlebVHKeulGHagXOEEFEhhCD4Pp+eZZsqhhCiYfjvIuBlHOa7VdEpJx6NwC3B7wAD+KmU8veza1LFeA/wk2FXww7gn2bZnoow7Dd9HvC22balUkgp7xdC3Aw8QuBaeJTjO/3+/4QQtYADvEtK2T/RhirtXqFQKOYxyp2iUCgU8xgl4gqFQjGPUSKuUCgU8xgl4gqFQjGPUSKuUCgU8xgl4gqFQjGPUSKuUCgU85j/D/Rux1Xq6DFUAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Modelo con fit_intercept: w1 = 9.10210898118031 w0 = -34.67062077643857 mse = 43.60055177116956\n", - "Modelo sin fit_intercept: w1 = 3.6533504000238826 w0 = 0.0 mse = 58.41063543210172\n" - ] - } - ], - "source": [ - "from sklearn import linear_model\n", - "from sklearn.metrics import mean_squared_error\n", - "\n", - "#rm.reshape(-1, 1) cambia las dimensiones de rm, de tal manera que la segunda dimensión es 1. \n", - "# el -1 indica a Python que recalcule la primera dimensión.\n", - "# En resumen, tranforma el vector rm en una matriz de tamaño n*1.\n", - "def use_sklearn():\n", - " model = linear_model.LinearRegression().fit(rm.reshape(-1, 1), Y)\n", - " model_2 = linear_model.LinearRegression(fit_intercept=False).fit(rm.reshape(-1, 1), Y)\n", - "\n", - " yp = model.predict(rm.reshape(-1, 1))\n", - " yp2 = model_2.predict(rm.reshape(-1, 1))\n", - "\n", - " plt.plot(rm, yp, color=\"green\",label=\"Con fit\")\n", - " plt.plot(rm, yp2, color=\"red\",label=\"Sin fit\")\n", - " plt.scatter(rm, Y, alpha=0.25)\n", - " plt.legend()\n", - " plt.show()\n", - " \n", - " fit_intercept_error = mean_squared_error(Y, yp)\n", - "\n", - " print(\"Modelo con fit_intercept: w1 =\", model.coef_[0], \"w0 =\",\n", - " model.intercept_, \"mse =\", fit_intercept_error)\n", - " print(\"Modelo sin fit_intercept: w1 =\", model_2.coef_[0], \"w0 =\",\n", - " model_2.intercept_, \"mse =\", mean_squared_error(Y, yp2))\n", - " \n", - "use_sklearn()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5OU7JKm0QLyW" - }, - "source": [ - "## Regresión Lineal Múltiple " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5OU7JKm0QLyW" - }, - "source": [ - "Por último, como ya hemos visto, podemos generalizar el modelo de regresión lineal simple añadiendo más variables y obteniendo así el modelo de regresión lineal múltiple. Al añadir más variables al modelo, le estamos dotando de más información que ayude a mejorar las predicciones. Por ejemplo, un modelo de regresión lineal simple podría intentar predecir la altura de una persona en base al tamaño de la mano. Pero si añadieramos otra variable, como por ejemplo, el género, podríamos tener más información para hacer predicciones más fidedignas.\n", - "\n", - "La buena noticia es que a nivel de código, no hay gran diferencia entre ambos modelos, que también pueden ser resueltos mediante el método de ***Mínimos Cuadrados Ordinarios*** evaluando la expresión que ya conocemos:\n", - "\n", - "$$\n", - "W = (X^TX)^{-1}X^TY\n", - "$$\n", - "\n", - "\n", - "Veamos." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 85 - }, - "id": "aLCT_xrxTF87", - "outputId": "5c78ed83-09fe-4ac1-8385-c2837a7573a0" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coeficientes \"a mano\": [18.56711151 4.51542094 -0.57180569 -0.93072256]\n", - "Coeficientes sklearn: 18.567111505395236 [ 4.51542094 -0.57180569 -0.93072256]\n", - "Error regresión lineal múltiple: 27.13040575849706\n", - "Error regresión lineal simple: 43.60055177116956\n" - ] - } - ], - "source": [ - "from sklearn import linear_model\n", - "from sklearn.metrics import mean_squared_error\n", - "\n", - "\n", - "def user_weights(x):\n", - " return np.linalg.inv(x.T @ x) @ x.T @ Y\n", - "\n", - "x = np.c_[np.ones(rm.shape[0]), rm, X[:, [-1, -3]]]\n", - "w = user_weights(x)\n", - "print('Coeficientes \"a mano\":', w) # El primero es el valor resultante cuando el resto de variables son 0, el resto es la importancia (peso) de cada variable.\n", - "\n", - "# Quitamos la columna de unos\n", - "\n", - "x = x[:, 1:]\n", - "model = linear_model.LinearRegression().fit(x, Y)\n", - "print(\"Coeficientes sklearn:\", model.intercept_, model.coef_)\n", - "\n", - "print(\"Error regresión lineal múltiple:\", mean_squared_error(Y, model.predict(x)))\n", - "print(\"Error regresión lineal simple:\", get_mse(yp, Y))\n", - "\n" - ] - } - ], - "metadata": { - "colab": { - "name": "Copia de Linear regression - Regresión Lineal", - "provenance": [ - { - "file_id": "https://github.com/RFajardoMonzon/MachineLearningCourse/blob/master/Linear_regression_Regresi%C3%B3n_Lineal.ipynb", - "timestamp": 1616159304239 - } - ] - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git "a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Regresi\303\263n-Lineal-Pyton-checkpoint.ipynb" "b/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Regresi\303\263n-Lineal-Pyton-checkpoint.ipynb" deleted file mode 100644 index ce16b905..00000000 --- "a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/Regresi\303\263n-Lineal-Pyton-checkpoint.ipynb" +++ /dev/null @@ -1,635 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#
Regresión Lineal en Python
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introducción" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Basado en Regresión Lineal - Colab](https://colab.research.google.com/github/RFajardoMonzon/MachineLearningCourse/blob/master/Linear_regression_Regresi%C3%B3n_Lineal.ipynb#scrollTo=p5PAhkSzbkRi)\n", - "\n", - "En esta lección hacemos una primera práctica de modelamiento con un subconjunto muy famoso de datos: El Boston Housing Dataset. \n", - "\n", - "El propósito del ejercicio es predecir el valor de las casas en Boston, basados en 13 variables (features) que se cree están asociadas al precio. Son 506 registros." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importamos la librerías que usaremos" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "g7pqJJrJd8v8" - }, - "outputs": [], - "source": [ - "# Importamos la librería SKLearn, que trae bastantes funcionalidades de Machine\n", - "# Learning. Esta librería también incluye algunos datasets muy conocidos como por\n", - "# ejemplo el que vamos a utilizar hoy: El Boston Housing Dataset.\n", - "import sklearn as skl\n", - "\n", - "# Importamos la función que nos carga los datos. OJO! Esta forma de cargar los\n", - "# datos no es habitual. Lo hacemos así porque la librería nos proporciona este\n", - "# dataset, que suele ser utilizado comunmente para pruebas. Sin embargo, lo\n", - "# habitual sería cargar este dataset nosotros mismos.\n", - "from sklearn.datasets import load_boston\n", - "\n", - "import numpy as np\n", - "import scipy as sc\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Lectura y documentación de los datos" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 904 - }, - "id": "cBF-24BkiruX", - "outputId": "a3d0f638-02f7-436c-d318-9ef0f9e3f77e" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - ".. _boston_dataset:\n", - "\n", - "Boston house prices dataset\n", - "---------------------------\n", - "\n", - "**Data Set Characteristics:** \n", - "\n", - " :Number of Instances: 506 \n", - "\n", - " :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.\n", - "\n", - " :Attribute Information (in order):\n", - " - CRIM per capita crime rate by town\n", - " - ZN proportion of residential land zoned for lots over 25,000 sq.ft.\n", - " - INDUS proportion of non-retail business acres per town\n", - " - CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)\n", - " - NOX nitric oxides concentration (parts per 10 million)\n", - " - RM average number of rooms per dwelling\n", - " - AGE proportion of owner-occupied units built prior to 1940\n", - " - DIS weighted distances to five Boston employment centres\n", - " - RAD index of accessibility to radial highways\n", - " - TAX full-value property-tax rate per $10,000\n", - " - PTRATIO pupil-teacher ratio by town\n", - " - B 1000(Bk - 0.63)^2 where Bk is the proportion of black people by town\n", - " - LSTAT % lower status of the population\n", - " - MEDV Median value of owner-occupied homes in $1000's\n", - "\n", - " :Missing Attribute Values: None\n", - "\n", - " :Creator: Harrison, D. and Rubinfeld, D.L.\n", - "\n", - "This is a copy of UCI ML housing dataset.\n", - "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/\n", - "\n", - "\n", - "This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.\n", - "\n", - "The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic\n", - "prices and the demand for clean air', J. Environ. Economics & Management,\n", - "vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics\n", - "...', Wiley, 1980. N.B. Various transformations are used in the table on\n", - "pages 244-261 of the latter.\n", - "\n", - "The Boston house-price data has been used in many machine learning papers that address regression\n", - "problems. \n", - " \n", - ".. topic:: References\n", - "\n", - " - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.\n", - " - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.\n", - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/kamilo44/anaconda3/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function load_boston is deprecated; `load_boston` is deprecated in 1.0 and will be removed in 1.2.\n", - "\n", - " The Boston housing prices dataset has an ethical problem. You can refer to\n", - " the documentation of this function for further details.\n", - "\n", - " The scikit-learn maintainers therefore strongly discourage the use of this\n", - " dataset unless the purpose of the code is to study and educate about\n", - " ethical issues in data science and machine learning.\n", - "\n", - " In this special case, you can fetch the dataset from the original\n", - " source::\n", - "\n", - " import pandas as pd\n", - " import numpy as np\n", - "\n", - "\n", - " data_url = \"http://lib.stat.cmu.edu/datasets/boston\"\n", - " raw_df = pd.read_csv(data_url, sep=\"\\s+\", skiprows=22, header=None)\n", - " data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])\n", - " target = raw_df.values[1::2, 2]\n", - "\n", - " Alternative datasets include the California housing dataset (i.e.\n", - " :func:`~sklearn.datasets.fetch_california_housing`) and the Ames housing\n", - " dataset. You can load the datasets as follows::\n", - "\n", - " from sklearn.datasets import fetch_california_housing\n", - " housing = fetch_california_housing()\n", - "\n", - " for the California housing dataset and::\n", - "\n", - " from sklearn.datasets import fetch_openml\n", - " housing = fetch_openml(name=\"house_prices\", as_frame=True)\n", - "\n", - " for the Ames housing dataset.\n", - " \n", - " warnings.warn(msg, category=FutureWarning)\n" - ] - } - ], - "source": [ - "# Los datos cargados desde la librería Sklearn contienen una descripción del\n", - "# dataset que estamos cargando, almacenado en el atributo DESCR.\n", - "\n", - "boston_dataset = load_boston()\n", - "\n", - "print(boston_dataset.DESCR)\n", - "\n", - "X = boston_dataset.data\n", - "Y = boston_dataset.target\n", - "\n", - "# Guardamos información de las dimensiones de nuestro dataset. Recuerda: \n", - "# n = número de ejemplos que tenemos de nuestros datos y\n", - "# p = número de características que tenemos de cada datos.\n", - "\n", - "n, p = X.shape\n", - "n, p\n", - "rm = X[:, 5]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "diQ3uwM5uuTb" - }, - "source": [ - "## Análisis exploratorio inicial " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "diQ3uwM5uuTb" - }, - "source": [ - "Hoy nos centraremos en modelar la relación existente entre las variables **RM** (Número medio de habitaciones) y **MEDV** (Valor medio de la vivienda). \n", - "\n", - "Vamos a primero comenzar entendiendo la naturaleza de nuestros datos, realizando un análisis exploratorio preliminar. Recuerde, aquí hacemos uso de las herramientas estadísticas y matemáticas aprendidas para obtener una mejor imagen de lo que los datos representan. \n", - "\n", - "- **¿Qué preguntas se quieren responder con estas herramientas?**\n", - "\n", - "---\n", - "\n", - "\n", - "1. **¿Existe alguna relación entre la variable RM y MEDV?** Demostrar la existencia de dicha relación desde dos vertientes diferentes: grafica un *scatter plot* con cada variable en un eje que te permita visualizar algún patrón identificable. También, utilizar una medida estadística como la correlación entre dos variables r para comprobar cuantitativamente dicha relación. ¿Son coherentes ambos análisis?¿Es coherente con lo que se puede esperar de manera intuitiva?\n", - "\n", - "2. **¿Cúal es el precio medio de las viviendas cuyo número medio de habitaciones oscila entre 5 y 6?** Aquí nos podemos apoyar en la función ***np.logical_and()*** que sirve para combinar dos condiciones diferentes.\n", - "\n", - "3. **¿Se identifica algún fenómeno anómalo en la distribución de los datos?** Realizar un histograma para la variable MEDV. Aquí se recomienda utilizar un valor elevado de *bins*, por encima de 100, para remarcar el efecto de la anomalía. ¿De qué se trata?¿Cree que se trata de mediciones reales o es fruto de un preprocesamiento previo de los datos?\n", - "\n", - "**Consejo:** cuando al hacer un *scatter plot* haya una gran acumulación de puntos en una zona de la gráfica que no te permita identificar la densidad de puntos que hay, es una buena idea añadir algo de transparencia al color de dichos puntos. Esto se consigue con el atributo ***alpha*** de la función ***plot()***.\n", - "\n", - "Aquí van los primeros códigos." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "pooVJc8b6WEE" - }, - "outputs": [], - "source": [ - "\n", - "def relation_rm_medv(rm, means):\n", - " plt.scatter(rm, means, alpha=0.25)\n", - " plt.title(\"RM contra MEDV\")\n", - " plt.show()\n", - " return np.corrcoef(rm, means)[0, 1] # se recibe uma matriz de correlaciones. Se extrae la correlación\n", - " \n", - "def price_mean(rm, means):\n", - " filtered_means = means[np.logical_and(rm > 5, rm < 6)]\n", - " return np.mean(filtered_means) * 1000\n", - "\n", - "def medv_hist(medv):\n", - " plt.hist(medv, bins=500)\n", - " plt.show()\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 567 - }, - "id": "GM9Ll85Detyk", - "outputId": "fded2f02-29a3-4749-f849-1214c6218363" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEICAYAAACpqsStAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABa00lEQVR4nO39e5Bk93XfCX5+95U335n1ruonCt3oBgEIINgEQBFDkaa1IdqSqPFKsmdWljzjGW5seHY8u7NryY6Z9ew6JkazMeH1eHdiIrTyWtTIkkVzLFG0hjI1FEkJCBEQQIJEg+hGP9Bd3dVdr8zKd973b/+4mdlZ3VVd2dWVVZVVv09Eo1D5uPd3b1aee+4533OOkFKiUCgUitFE2+8FKBQKhWLnKCOuUCgUI4wy4gqFQjHCKCOuUCgUI4wy4gqFQjHCKCOuUCgUI4wy4gqFQjHCKCOueGyEEDeEEG0hREMIsSSE+A0hRKbv+d8QQkghxE/f975/0nn8b+3hWk939mns8nalEGK5f7tCCEMIsSKEkH2PfUsI4XTOVfffVzvPfVoIEfU9flsI8SUhxMc7zx8TQgRCiCc32f/vCSH+u908JsVooIy4Yrf4KSllBngB+Cjw9+97/gPgl7q/dIzdzwHX9mqBg/IYBr4CfK7v978CrG/yuv9ESpnp+/dTfc/d6ZzHLPAKcAn4MyHEZ6WUi8A3gL9533rHOvv64g7XrRhhlBFX7CpSyiXg3xIb836+CnxSCFHs/P4TwA+Apa22JYTQhRD/QAhxTQhRF0K8LYQ40XnuR4UQfyGEqHZ+/mjf+74lhPhHQojXO+/7uhBiovP0n3Z+Vjre7ieEEH+r89r/lxCiDPxXQognhRB/IoQoCSHWhBD/QghR2Obw/yfgF/t+/0XgN7d5z6bImNtSyv8b8OvAf9t56ovcZ8SBvwG8J6V8dyf7Uow2yogrdhUhxHFib/TqfU85wB8QGxwYzMD9n4F/j9jLzAH/IdDqeJ5/CPxTYBz4x8AfCiHG+9777wP/ATAFWMD/pfP4pzo/Cx0v+M87v78MXO+8/r8GBPDfAHPA08AJ4L/aZr2/D3xKCFHoGPx/B/jKNu8ZhH8NvCiESAO/B0wIIV7te/5vssOLhWL0UUZcsVv8vhCiDtwCVoB/uMlrfhP4RSFEHvgxYqP3MP4j4L+QUl7ueKbfl1KWgL8KXJFS/k9SykBK+TvEYYf+sMQ/l1J+IKVsA1/iwTuD+7kjpfx/d7bXllJelVL+sZTSlVKuEl8ofmybbTjEdxx/nfhi9Qedx+7nnwohKn3//tF2ayO+qBQ6x/Ov6Hj8QoizwMeA395mG4pDijLiit3iZ6SUWeDTwHlg4v4XSClfAyaB/wL4Nx2D9DBOsHnMfA64ed9jN4Fjfb/3h2laQIaHc6v/FyHElBDiXwohFoUQNeC32OSYNuE3iQ3sw+40/lMpZaHv33+5zTaPAZI45g5xSOXnhRA2sRf+R1LKlQHWpjiEKCOu2FWklN8GfgPYSinxW8B/zmC3/7eAB5QYxJ7pqfseOwksDrLEAR//bzqP/YiUMgf8ArE3vB1/BswC08BrA7x+EP5d4LtSyiaAlPLPgBLw+c66VCjlCKOMuGIY/BPgx4UQL2zy3D8Ffpx7CcaH8evAPxJCnBUxP9KJe/8vwFNCiH+/I+P768BHgH8zwDZXgQiY3+Z1WaBBnAA9BvxfB9g2Mu7t/FPAT8vH6PPcOd5jQoh/SBxW+gf3veQ3iZOdBeIQjuKIooy4YtfpxJB/E3ggTCClLEspvzGggfvHxPHsrwM14J8ByU5c/CeJPfoS8PeAn5RSrg2wthZx4vL1Tjz6lS1e+n8HXgSqxEnUfz3Aerv7eE9K+d5DXvL/uU8n/nbfc3NCiAbxBeQvgOeAT0spv37fNn6T+O7jd6WU7qBrUxw+hBoKoVAoFKOL8sQVCoVihFFGXKFQKEYYZcQVCoVihFFGXKFQKEaYXe3kth0TExPy9OnTe7lLhUKhGHnefvvtNSnl5GbP7akRP336NG+99dZe7lKhUChGHiHE/RXKPVQ4RaFQKEYYZcQVCoVihFFGXKFQKEYYZcQVCoVihFFGXKFQKEaYgdQpQogbQB0IgUBKeaEzXeV3gdPADeDnpZSbzRNUHABW6w6Xl+qstzyKKYtzM1kms/Z+L+ux2O1j2stzpNZ+bzs3Sw1qTkA+aZKzTUAgkdTbPouVNi0vZCqX4DPnpjg/m3+s/W/2XmDXzt1q3eGN62Uu3a0hkTw9m+Pl+fGhftcGaoDVMeIX+rvECSH+n0BZSvmrQohfAYpSyl9+2HYuXLgglcRw71mtO7x+tUQmYZCydFpeSMMN+OSZ4f5xDZPdPqa9PEdq7fe2E4YR19aaaALqjk8QSZKmznTO4vWrZUxd4yOzWUIJlZbPX31umuW6v6P9b7b2O5UWAHOF1GOfu9W6w9fevctCuUU+aSIQVNo+J8eSfO652cf6LIQQb0spL2z23OOEUz7PvenaXwR+5jG2pRgil5fqZBIG6YSBEIJ0wiCTMLi8VN/vpe2Y3T6mvTxHau33tlNqeqQtnWLKoumGeEFEIWXx+tUShZTFWNpirRF7yIWUye+/c2fH+99s7ZW2T6UV7Mq5u7xUp9L2KaQsUpZB0tIppkwqrWCo37VBjbgEvt6ZNv6FzmPTUsq7AJ2fU5u9UQjxBSHEW0KIt1ZXVx9/xYpHZr3lkbL0DY+lLJ31lrdPK3p8dvuY9vIcqbXf207dDUgYsRkKIwjCCNvQWW8GpC0dUxe0/BCAvG2yXHV3vP/N1u4HIX4YPfbxdLfvByG2cW8fCUPDD6OhftcGNeKflFK+SDzF/O8IIT613Ru6SCl/TUp5QUp5YXJy06pRxZAppixaXrjhsZYXUkxZ+7Six2e3j2kvz5Fa+73tZBMGbhAbUV0DQ9dwgpBi2qDphfihJGXGRrHq+EznEzve/2ZrNw0dU99oBnd67oopC9PQcYJ7+3CDCFPXhvpdG8iISynvdH6uAL8HvAQsCyFmATo/1aDWA8q5mSwNN6DpBkgpaboBDTfoJXVGkd0+pr08R2rt97YznrZoeiHrLY90QscyNCotj0+eGafS8ig3PSYyFustj0rL52demNvx/jdbeyFpUkgZu3Luzs1kKSRNKi2PlhfQ9kLWWz6FlDHU79q2iU0hRBrQpJT1zv//MfD/AD4LlPoSm2NSyr/3sG2pxOb+odQpe7+9vdzXKK79IKlT3rhe4v27NQSC87M5Xp4f2/ExDUOd8rDE5iBGfJ7Y+4ZYkvjbUsr/ujOw9kvEc/4WgJ+TUpYfti1lxBUKxWbsp5MxCuqthxnxbXXiUsrrwPObPF4i9sYVCoVix/Qb0fF0HPN+/Wpp14zodheIftUK0Pt5eal+YIz4w1AVmwqFYl8ZpkSye4Fw/IjxdALHj3j9aonVutN7zairt5QRVygU+8owjeggF4hRV28pI65QKPaVYRrRQS4Qo67eUkZcoVDsK8M0ooNcICazNp88M45tapSaLrapHaik5nbs6Xg2hUKhuJ+uEb28VKfUdCmmLJ4/sTtG9NxMltevlgA2KE+ePzH+wBpGxWjfjzLiCoVi3xmWER3mBeKgoIy4QqEYKvtdaDbKXvYgqJi4QqEYGoNI/BSPhzLiCoViaBzGNsgHDRVOUSgUu043hPKN95eZydmcHE9T6ChCUpZOqenu8woPD8oTVygUu0p/CGUmb1N3Ay4uVql0tNmjVEgzCihPXKFQ7Cr9IZRT42neXawiBCyUmpi69oDEb78Tn6OO8sQVCsWu0l8lmU9aPHcsT9Y2WKo5DxTSqMTn46M8cYVCsat0qyS73QDzSYsnJzWemcvz6tmN071GvYPgQUAZcYVCsasMWiUJsdc+nk5seGxYic/DGrZR4RSFQrGrPEovkr3qIHiYwzbKE1coFLvOoFWSj+K1Pw6HOWyjPHGFQrFv7FUHwVEf/PAwlCeuUCgGYpRjyvcnW+Hw6NWVJ65QKLZlWDHlvYpVj/rgh4ehjLhCodiWbkzZDyMuLlb5/u0KC6UWb1wv7cp2h91bZdQHPzwMFU5RKBTbst7y0IXgvTs1UpZO3jZw/Ig3Pyzz8vzOjeFeSgwPa0ta5YkrFIptKaYsrq40SVk6tqkjhKDZCU/8xusf8tqV1R2FQEZ9SPFBQBlxhUKxLedmsqw1XSIpkRLW6i5XVhtM5RJoQttxLHuvYtWrdYfXrqzy1e8v7viCc1BRRlyhUGzLZNbmpdNjSKDmeFTaHk9NZ8gkTLK2seNY9l7Eqg9zoQ+omLhCoRiQl+fHCCJJJmHw/VtlEoZBywt59lgGiGPZN0oNXrvCI8kQhx2rPsyFPqA8cYVCMSD9XrOUgkjCs8fyvWEPS7U2t8rtA+fxHuZCH1CeuEKheAS6XnO3XN7UNaSUtLyQK8sNzkxmDpzHe5gLfUB54gqFYgdsFss+XrSZLSQ3vO4geLxbJU8nMtahSHYqT1yhGDEOSvn7ZrHsg+jxdi84l5fqlJouxZTF8WKGS0sNMgmD8XSClhfy+tXSSBYAKSOuUIwQXaXFQTQ+e9WRcCfcf8F57crqoUl2qnCKQjFC7FWZ+k4YpdL2w5TsVJ64QjFC7GWZ+k4YldL2w5TsVJ64QjFCqDL13eEwdTVURlyhGCEOk/HZT0Yp9LMdA4dThBA68BawKKX8SSHEGPC7wGngBvDzUsr1YSxSoVDEbKa0eP7EaBqf/WZUQj/b8Sgx8b8LvA/kOr//CvANKeWvCiF+pfP7L+/y+hQKxX2MuvE5KBLJw8JA4RQhxHHgrwK/3vfw54Evdv7/i8DP7OrKFArFoeOwN6PaDwaNif8T4O8BUd9j01LKuwCdn1ObvVEI8QUhxFtCiLdWV1cfZ60KhWLEOcgSyVFlWyMuhPhJYEVK+fZOdiCl/DUp5QUp5YXJycmdbEKhUBwSDpM++6AwSEz8k8BPCyH+CmADOSHEbwHLQohZKeVdIcQssDLMhSoUitHnMOmzDwrbeuJSyr8vpTwupTwN/A3gT6SUvwD8AfBLnZf9EvCVoa1SoVAcCnZTInmYp/U8Co+jE/9V4MeFEFeAH+/8rlAoFFuyW/pslSC9xyOV3UspvwV8q/P/JeCzu78khUJxmNkNieRhn9bzKKjeKQrFEeCwabMPeg+ZvUSV3SsUh5zDGHpQPWTuoTxxheKQc9hCD6t1h0rL580bZSbSCc5MpbEM/cD0Lt9rlBFXKEaYQcIkN0sNGk5IwwvJJgxOjKXIJ82RDD30D8X4xPwYV1YafOd6iZeeGBvZBlaPizLiCsUIslp3eON6eYM32g2T9Buz1brD7XUHXRMUkiZuEHFxscr8RJrp/OgZvI13FQYfP52g6QbYpnYkDTiomLhCMXJ0vdHraw0mMxa6Bu/dqeGH0QMl7JeX6pydziABJ4hIGDpCwNXVxki2r1UVnw+ijLhCMWJ0vdEgjEiaBrapk7J0bpVbDxi09ZbHTC7Jc8fyWIZGzfHI2gYnxpIj6bmqhOaDqHCKQjFidOV1GdvECUKSpk7C0Kg6wQMGrWv08kmLk2OwUG6xUGrihxFwg5Nj6ZGSGx7kYcz7hTLiiiPLqGqnu4b55FiKdxer8YMSTE17wKCdm8nytXfvsrje4vpqE12HphsxV7D582sl3r9b5/Wra3z+hTnOz+b36YgGRw3FeBBlxBVHkn6Vw3g6QcsLH0gKHlS63mgmYfDsXI4rKw3W6i4vPTHGy/Obr3+t4ZMwdaptnyiSVNsBtqkTRhG6JvjKO3cYz8TFMwf9wjbqQzF2G2XEFUeSUdZO93ujbT/gxZPFLY3t5aU6c4UUqw2PvG3wwzt1VpsObT9gIpOg5QUUkhar9TZvXC8TRHIkL2xHGZXYVBxJRl3lMJm1OTeTpZiyWG95XF6qb1qB2T3ObMLADSKSloYfSMJQUnd8Ki2P798qU237vH1zXQ1sGEGUEVccSUZd5TBoKX33OE+MpWh5IbmkQRhFNL2AW+UWCUNH03RSlsGt9RZ+uPGc7MaFTbWMHS7KiCuOJLvZ13oYbGf4Bh1z1j1OU9d4Zi5H0jSZyiUAQdY2KaZM5go2ScvgyYk0V1YaG97/uBe2w9i35aChYuKKI8lBVjkMknRdb3kYmuDdxQYNxwcEUkY03NiT7sbI74+fT2RM3CBNue6BkCBib/3EWAopJd+5XqLpBrsm3xvl3MOooIy44shyUFUOgxg+geDtm+sUUha6Jri8VMcPJednsg+U33f/Xbpb5be+s0AhZXJ6Ik3VCVipu8xPpLlVblFquGRtHccPafvBrlzYVMvY4aPCKQrFAWOwpKskNuWwXHOwDB1T1xCwZWjlm5dXKKRMiimLmUISS9eIIvjj91eoOT66LnhyKksQSV6ZH+fVs5OPfZEb9dzDKKCMuEJxwBjE8EngxZMFTF2j3PBImTpPTaWRQgCbJyRXai552wQgkzB4YjJNJCOaTkAuafIjxwvM5lO7qkg56LmHw4AKpygUB4xBSsuLKQvHj3jueAEEeEGEAFJ67Jdt5u1O5RJUHR9TE6zUXdpeRM0JeHIyxXPHCr3X7Wa44yDnHg4LyogrFAeMQQxfv6E/UUzy9s11QPDiyULP270/IfmZc1P8f//0OjXHp5i0CGVEEEo0XaPS8ih0jP5uhzsOau7hsKCMuEJxANnO8PUb+pV6m4Sh0XQDfninxvnZ3KZVludn83zsVJG3b65TcwOKKZPPPz/L3ZrLleUGF04XN/X6R7XHzFFBGXGF4oCynfGczNqUGi6vX10jiiSz+SQTmQRBJLfcZjZp8r/92AlEJ3ZeaXncqbb59gfLXFyscHY6zU89f2zDUImvvXuXStvHD0JMQ+f6aoPPPTerDPkBQRlxheIAMohWfLXu8JV37qBrgvG0hRtEXF9rMj+R7iUmLy/VuVlqUHMC8kmTatvHDyNm8ykqLY83b5S5XW7zxHiG0xNpKm2fNz8sM55JMJm1eeN6mYVyi0LKIp9M4AQhC+UWb1wv85PPz+3nKVJ0UOoUheIAMkhF5uWlOlEUUUhaCCF6wyHWGi43Sw1ev1piueqwWHFpuiG319skTZ3v3qxwt9rih4sVLt2tsVr3iJCEUUQxZVJpBb39XLpbI580SZrxRKCkqZNPmly6W9uvU6O4D+WJKxRD4nFiyYMUyay3PMYyid5gCICEobFad4kwmc6luL7aIG3p2KZO2w/xQslHTxS4tlLn3ds1ojBkfjKFqWt8WGpyeixFKEVPniiRHTX6PQQCydYhG8XeojxxhWII7KRnSH+/lNvrLZZq7Q3Pbza1ZzKboO2HtP0QKaHS9tE0gSbg2kqdt2+us7jepuH42IZOw/GZLSQBwYUnxjg5kcHQdSxDI2HoLFYcTF3r7efp2RyVto/jh0gpcfyQStvn6dncUM6b4tFRRlyhGAKDNqjq0jX6K3WHO5U2d8ot/vAHd/nujTV+cHudb11a4u2bZSYy94z4uZksmtB4cjKNqQtW623CSPKps+NUWgF1N2A8bdL2Qz4sNSk1HTK2ScsLEQjOTmXIJAwajo/rh0SRZK3pUUgZvWKcl+fHOTmWJIyg2g4IIzg5luTl+aM7Du2gocIpCsUQeNSeIZeX6kQy4tpqk6Spc2oiixdJ/tdLqzx7LM/xQqw8ubTU6CUd+2WGcZfCPOdmsr0J99dWm+STFk3PwQ8lt9fbnJ2OKyjPz+YwdZ2X58f54Z0aC6UWXhjykdnsBuXJZNbmc8/NKonhAUYZcYViCHRL57vNq+DhRTTrLY/VukvS1EmaOg03YKXmEEaSIIw4NZGODbIbbGiEtZme/DvXS8zkkqQsg4VybJzX6g7VdsD1lSbnZ3OcmUpzaalBJmHwyvw4P3K8QMMN1BSfEUQZcYViCHQHFFdaAX4YYeoahZTB556b3fT1xZTFxdsVJrNJGm7Ah2tN6m7IeNqi4QS8u1jluWN5cra5bUl8/4T7545ZnBxL8daNMk9OWb2CnktLDc7PZFhreJtWhXaTsgvlJrfKbc5MZpgtJNXItgOIMuIKxTAREohAiIe+LC6jX6PS9lhcb7FSc6m1fIgkSUOLpYLrbeYnMsxPpgbY1r3eKx8s1wHB2elMLz4PsNbwePXs5APv79eo150AXRNcX2uSShi90nzVD/zgoBKbCsUQ6A4o/vjpcX70zBQfPz3OXCG1ZWJzMmvz+RfmqDs+l5frGJrg1HiSlh9wY72N64cEQUDN8Sg3vYeqXLqxctvUKDVdXD/kxZOFngGGrceurdYdvvz2Ld6/U+X6aoOVmkMhaZGydG6VWw99r2J/UJ64QjEE+hOb1bbHQrlFve0hpdgyMXh+Ns/HT4/TcAK8ICKXNDENjWorYLXu8sRkmgunxzA07QFPeDNNetfL7nY87Gez+HzXA680PSYyNl4YsdrwsAyN8XSCqhNs+V7F/qE8cYViCHTj0tW2x7uLVbwgImEYWIa+qV68qxF/+2aZuUKSiWyC2UKShBHPwMylLH7s3BT5jlfc7wlvp0kftKd3VxY5nrVxwwjb1DlWSLJYcai0fTKWrvqBH0CUJ65QDIFuXHqh3MQ24ok7LT/k2WN5TH2jJ90fg57J2dTd2OP1ghBJhBfC+Zks+eTmrWK3Guf2xvUyhZTZmcfJtmPXuncPJ8dSvLtYBWAsZdFwA8JIkrF1bFNT/cAPGNsacSGEDfwpkOi8/stSyn8ohBgDfhc4DdwAfl5KuT68pSoUo0M3Ln3l9Rqa0BBCogv44d0aGUsnY+u9cMcb10sslFr4UTzYoeEEZOzYKD9/rMBr19ZYb7n84PY6k9kEmtA2tIrdTJPuhyFv3ijzqbOTvQZa20kIN6pa8iyUW6zVHeYKNj/7sRPKcB9QBgmnuMBfklI+D7wA/IQQ4hXgV4BvSCnPAt/o/K5QKPrI2AaVpsuNtSZ+JMnbBnU34Pa6w2o9/vfmh2U0AXnbIGFoIARCyjix2HD56Ik8Xih583qZP3l/hemsucGLv73e4tuXV3j3doVKJ8xyZaXBRDoxcMUobAy75GyT+YkMT88VlAE/4GzriUspJdDo/Gp2/kng88CnO49/EfgW8Mu7vkKFYkgMc9hBN0QynbP54Z0aYQR3Kg5I0PRY7tc1qBPZBAh6nQgnMxZhBKcnDKZzNtdWm5wopjg7maXS9vjTKyWK6QRXVxq8+WGZpKnhBhE1x+fdxSpPTqRZq7u8cl9p/HZj19QotdFkoJi4EEIH3gbOAP+DlPINIcS0lPIugJTyrhBiaov3fgH4AsDJkyd3Z9UKxWMySL/uxyHuw90kCCP8QJK0NIIwpNL2+LFzUxuKds5OZbh4J27tahs6kYx7mJyfyWyo4gQoJE1urLX4yjt3SJoGU1k7nrHZcNGEwA8CVhoOLz0xhmXoG9Y0iKpEjVIbPQZSp0gpQynlC8Bx4CUhxLOD7kBK+WtSygtSyguTkw8WFigU+8GjNqgahK7C5LffuMHvv7NIy/XJ2RYZ26DqBJiGznrLZ6EcdygspiyKKYu2H6ILwdXlBhcXKzQcn5dOj3FyLE254WL3GWM3iPCjiCiKf9qmRtLUGc8kAMlYJsFKzQUEdyotNWX+CPBIEkMpZYU4bPITwLIQYhag83NltxenUAyL9ZZHytroqT5OEUu/zK/uBKRNg4WyQ9P1GUsZlBoui+stiimTWtvnuzcrTGQsJjIW371ZIZKSZ+ZyHB9L0fQizkyl4y6Fmkal7fXawLa8EEsTjGUSZBMGbhDrv4Mw4tLdOnUnYCZnY3c8d8cPKDVdbFNTpfKHlG2NuBBiUghR6Px/EvjLwCXgD4Bf6rzsl4CvDGmNCsWu01Vi9POoRSz9/b+//PYtIhmRThg03YAnOqXxt9fbNNyI2ZyNH0qEiMvdHdfnn7/+Ib/7F7dJWzqaENQ6CcWPniiw1vB6VZxhJFmtuxiaYH4iTSZpMplNcGIsRcsLcfyQ2+U2SUtHSiikTa6vNVhcb3FrvcUr8+O8enZSGfBDyiAx8Vngi524uAZ8SUr5b4QQfw58SQjxt4EF4OeGuE6FYle5v7/IZlPeH8b9MfWLt6vUnYCUZZCxTbwg4qnpDDdKLWqOhyEE+aTRaTkLAhlXZOo+Z6bShJHk2WN5CikLKWUvXn5+Ng/ANy+vsFRziIj7hS/X/U772RxXV5osd1Qsx4pJFsrxGLaJjM1aw1UNqw45g6hTfgB8dJPHS8Bnh7EohWLY7FSJ0VW0fOdaCcvQO02lDMYzCWpOHO/uFssI4OmZLOWmxw8WK7S9kJRl9GR8miaYzZusNTxOj6e51RlI3H9HcOlula+8c4cokszkbCYyCZbrfq8DYdsPePFUgfnJNLapc32t0UuEOn7IeCbRi/UrI344URWbin1lmDK/7XhUJUa/9y2ERBNwcbHKs8fynOgY7lLd4dm5PE9Oprmy3CBj69QcQdLQabkhbS+g1PDQABmBoQlW6i5SSuqOjxOEFJImn3tu9qHT7O/vQNhdW6nuMJGxe/HzZ49ltpUWKkYb1TtFsW/sZA7lftKvaMkmLRD0uvsVUhZPTqQppC1KTZeprM1/+OoT/O9eeYLzszmmchZeGNH0QpKmRiqhUXc7SUddww/ANk2QYsP+tppmf38CtntnUUhbrDVcTF3rhWdUw6rDzYH3xPfTU1MMl616fhzUW//+8vZuyMQ2NOpOHB7RdW3T6sZiysIP4fR4mpoTIGXEessjCCQrNZePnkjR9EImMha2qZG2jN7fvGVoXFqqdRKYAQldoOk6x4oP9hSfzMbl8d27hVRfw6pBY/2K0eNAe+Kj5qkpHo3dlvkNm35FS7e/iAQiGT1UwnduJoumC4SAsZSJoWnoQiObNDANjYYXcqxoM5dP4ocR19aa3Cw1EEC55bPe8lirO7hBxErdp+kGlJvupt+D+3uJK2nh4edAe+Kj5qkpHo1HnUM5DDa70wM2vfu7X9FiaBonx9KbGsn7t/vR43lultss11zGMhYvnCxweiLNG9dLTGbt3jHbpk7bD6k5AflkgqSpkzI1/MDAC0N0DZ6cTPcGTGz2PVBVl0eLA23EH3ViuGK0eFyZ3+OyWen91969C8BcIbVpOf4gipbNthtEcKyQ5OOnxzcc6/xkmmo7oO2H2IaOE4REUpJPmkgkHztV5N9edBnPxPHwyWyCUKrvgeIeB9qIHwRPTTE89rvh0mZ3epVWAEJydnrzu79BvNzNtjtXSLFSa3NlpcZKzWUql+Az56aYyFis1B3WGh5LtTZrdYe6E3B7vcWJYponp9J85FgeL4h6ssEoiPj2Byvcrba5dLfG07M5Xp5XIZOjyoGOiQ86kUQxmux30nqzmLwfRvjBxkrOQeP03QrOb7y/zLWVeq8tbLzdkEvLDc5O5fjxj8xwdirHpaUGExkLTWhMZCz8jnolYRrM5ZKsN11ev7KGpQtaXsB6y2O17nJ7vcmlpTpzuSRJ0+CdW1W+9u5dlSs6ohxoI66SNIeXg5C03qz03tQ1zB10/+s/npl8PJ3n4mJ12/7eV1caGJrgW5dXeP9OjYSuxReznM1cMcVENm6QdbyYJJ3QAYlA8JGZHJM5m6SlU0yZVFrBYzXvUowuBzqcAipJc1g5CEnrzWLyhVS8jqYbPFKcvv94To2n44pNAQulJqaubdrf2wtC3vywzKeemuLUWIowBF0XICUQt6V1dY3jxRQ/9fwxAL76/UU+WKqRT97LFSUMjWo7OLCqHsVwOdCeuOLwchDkhZvd6X3uuVk+99zsI9/99R9PV36YtQ2Wag62qW3a3/vqSpOJbKJXPJSyDDQRV3ACOEGIaegb7gKKKQuzkwDt4gYRpq6pXNER5cB74orDyUFJWm91p/eodwP3H08+afHkpMYzc3lePTvZC7fAPa9/renyifkxIC4eultps1T18cOIlhdQbfucHEttyAGdm8lyfbXBQrmFTJoIBJW2z8mxpMoVHVGUEVfsC/stL+xyf3J1ImOx1vAeOdm63fFspsR56fQYpn7Pe395fpzv3Sxzt+rg+hEvnCjy8vzYhv1PZm0+99wsb1wvc+luDYnkhRN5pU45wigjrtgX9kte2G+0BYJy0yVtGaw1XL71/grX1hqcmcpwdjqLH0asNbwti3n6DenTsznOz2S4utLknYX13mMP48xUmktL8fja2PAHaJrGy/NjnBrPbHkBmcza/OTzc/zk83MPPT7VpuJoIGQnibIXXLhwQb711lt7tj/F0eNhRqy/CCdl6bx1s8xSxcEydZKmxhsflmi0AyRwfjbDRMbm1Hiqow5J9bZXarj8zhsLLJRbpC0NiUbbDxhPJzg9keLcTJ6UpXO30ubqaoMTY0lytkW56TJXSG3w1LstZRfKTW6V25yZzDBbSPae/+SZ2JMfxDDff3z921CGfLQRQrwtpbyw2XPKE1ccCrqe8Zs3ykykE5yZSvdki10jdr8iJggjvCDCDyNqbUmt7ZOydPwgotoOaXktFtdbTGWTaAgu3q7yxz9couUGeAFkbIMPV5tU2j6GpnFluc7ieor5ySzVdtw2VtcEdSeIi3kqcVGPBLIJg/G01Wsp+9oVmMomH1DrvHG9RBAx0EDng6D4Uew9yogrRp6uB7pQbjKZsWh5AX90cYmJrEUhmcDQ4MxUhi/9xS3cIMA2DSayFqWGz91Km2LKoO5GpCyDSMp4zFkEvpSstj0kAjcICSLJUs2h2vI5NZ6k1HApNz0MXUMXkqYfcWW1ye++eZNCyiKIJKauIaUkaWpUnRA/jDg3k8UN4kZXThDw6tnJLVtMfG+hzEdPjg1kmFWbiqOJMuKKkafrgQZhhCYEdysOuiZwvAgtBf/2vbt885KO64est3xWG00APnoiR9OLe3qHkcTUBH4EqYyFJGK56lBuemgCkqZOLmkgowjHDyg3PW6vO4SRJCSutERCQte4U2lTaQdYuiBpapRbPis1l3xS5/hYGiFyGxpdwdZqHYHYVIq5mWE+KIofxd6ijLhiZOnGv7/x/jIz+dgrXVx3SJgapi5ouREIWG/6pBIRmqZRbfukLR3HD/jz6+skDA0ERGGELnRsQ+AEIQ0v7DSaMjB1wbW1BhnLoO1FJAzBnUqbtaaLJsDUBIEE29AwdWi4ATOFJCuVNh80XMbTCTQN1poeNTeeTj+eSSCQpBMWX/3+Yi/J+kDMfDa3pWHeTFmzMVG6P4ofxd6ijLhiV9krdUR/Em8mZ/cGM6w0HKazCbwANA3afoihCxpOxImxBPmURdPxcIIIxw85NZ5kMmtzs9QibeogNLww4PRECtvUePd2lUrTJ2HFnnOEZK3hEYQRAvAC8JGYOkSRpO6E2JZOEISsNDxMXSOfNHCDEDeQ5GzBUs0hbRmUGi7PnUgwnk5wt9Lm2mqDD9eapCydp2dzvaTmZtLF48VM7/gNTfDdhXXW6i7nZzIYmqDtB3veUEyxP6iKTcWusZf9UPqTeCfH00gZx4sLtokbRCzX2gRhiOuHBKGk6fqYuiBnG+i6Tta2yNkGhqaTsgzOTWf5+JPjfPr8BJaukTI1DE0jDEMqbY9a28cNQixdkDB0IiFIJzRsU2AZAinBDyUg+chsDj8SJC2dbMLAD0EgyFoG2YRJ2tKxTZ20bXRK5n2urzXJ2iYzeZuPnhwjiB32LfsHrTW8OIQURVy8U0MTgqmszVojIIgkr8yP8+rZSWXAjwBHxhNX+tnhM6g6YqvP4lE+o24Sr9LyuFVu0e7EqVfqDoahYWiC2UISKcHxA26Wm1TbPpMZi/Wmh6ELckmT9aaLGwQcL6bi6Tm2iRNEVFo+EoltGWRC0DVBFElKDRdNAz+QGKZG2pQ0vQgpQNMEuoCWF3B9tYEXhpwqppjoJFuTlsZqw6WYtqg7Ph+ZySGBW+UWKUsnYejUHG+g9rffuV5iPJ3g4p170+2llFSdQE23P2IcCU/8IHTMOwoM0g9lq8/i0t3qI31GxZTF3Uqbi4tV/DAiZ5s03YBCKsHZiTRZ2+SdhQqvX12l7Uvm8gnafshS1UUXgvGUiR9GIAS60Li22uDPr5W4uFjlyYkU19eafLDcJAwjLB3cMEIXgrWWR7nh4QcRDSeg7kYEkcQQoCOpuSG3yi3SCR1b11isOSzXHDQBYRjLEl86HfdRqbsBGduk7gYkDA0nCMnY5qbnbbPjb3khDcfH7vRkcYOIbEcjrpphHR2OhBHv9xD724Cq1p27y2atXe9XR1xeqhOGEddXG/z59RLXVxuEYcQ3L6880mc0kbH45uUVrq3UWKy0ubZSx9R1Tk+kKLUD5ifSBJEkjGAimyCfSpC0dCZzFoVM7G3P5G00TVBzfKrtgHzSoFx3qLsh2YRBxtJpuiHrTkgmoZOxDcJAEkhJOhEnRN1QEkQghMCXgoQhyKcsZvIJ8mmLpybTnbi8RoBkLm9Tc0KcIOCD5TqWLlipO7x1o8QHy3XySWPT83Y/3V77hh4XGjl+SMsLOTGWUoqUI8aRCKco/ezeMEg/lJulBosVl7Slk7eNnl661HB4/nhxw/b6P6O4mKfE+3drtLyIhuNRbXm0/YAbpRZNN+S5YzkShoYAFittwkhSbQdEUZumH5IydQopC98PuVJ1cILYuy6mTExNY34izXt3ajScgGLGwg8lEsGYAW0/4upKgwjQgSCSRLH4BSEA4kHI+aTVmY+Z4slJCzeIMFo+T01nWam5SCFwPI+cbYH0+HCtiSUElqEzkba4WWph6hqa0B6qKunGyo3rolfg9MxcDlPXlCLliHEkjLjSz+4Ng/RDqTkBmogHAsO9wcDAQ6V0X3v3LgvlNoWkyc21CjfKDlKGsfHL2EgcVhseLDeYzSe4ulKn3g7QtdgAywiCKL4DaHkRYSSphR4zhRQhkLQ0lmoeuaSBE0RMZBMsVR28ME6MrjV9Gm6I1mn37UsIZGzQhQBTF3HlpxOStWE2b2ObGrfKLcYyCZCCE2NJhIgLhyazFlJKxtM2H39irBfbLzVclmsOP/uxE9vGtLs9VF6eH+vlEmxTU4qUI8aRMOIHpWPeUWC7IR75pEndeXAw8PxkmoYbF77c/xldXqpTaQUUUya2qbPeDsgnTW6vezRrHgkj1ms3nYBCyiRlxqEPy/QwDZ31VkAmodNwAlp+hK4JsgmNtYbPcrWNZegUUjpShBzPJ9E1DcvQsC0d2xPcqrhoUmLpgjCS+BJkJIm1KPF/pIziuLYvQYBEUm761NoBr8wXefPGOqamkU4YWIbGYsVhIt2JywOFlEUhFRv2D9fqXF6q853rpYESv2pwytHmSBjx/R7IexA4KOqck2NpbFNnreFRczwytslcIcNU1ubcTJbLS3VulBpU2z45O46JX1xc59pqE03EBt4NImQUsd70e8qMlh/gBZKJtEnDC5nKppjMxOPLvr9Q4Wa5BZrAMjTSpkbDi+PUThAhkaw2Il59coJ0wqAVhJwopvhL56f46vfvUG4HhEFE0jJYb/sEXkQEGCL2xtMGxOklQTYBlqZz+W6d05NpXjyVR2gac4Uk1XZAywto+fDERJpCOvbQ+7lbaXN73WE6l9rQK+X8TIZLS42BeqgoDhbD/u4dCSMOR3vMW39hzH4bgHMzWdYaHvMTmQ0ed/8f9lrDYyqbJGXpLNXa/MWNCoYQ5FMmQRR33by13sbQBQlTj71hBGNpk2urDZIJk3LTQwcKaQvLjLXgxws2i9U21baPH8aetRdEcbiFkNuVFp85P8WxQopa2+e9xRq3y21mMiZ3qh6apjGetlgOHGQEhg5aBAlTQxcaQsCZqRzFtIkm4L/8qWf48tu3aLohZ6ayfLjaJGFquH6I60cUkrESpX8U3NXVBmenMw/INL95eYWzUznV3GrE2Ivv3pFQpxx1DpI6Z7vh1/evda3hcXo8hQQaboiUMJmNJ8OnTI2W5+OFEZmEThSF/GCxThRJJtIWixWXd25VEVJyrGhTavkYQCQhYQokklDGCpYokNRaHq9fKfEv37jFv3hjgaVqm3RCwwkkYRQBkoylo+sC2xAYmsDUBbrQMXSB0ATPHM9ybibLybE0k1mbnG0QSTA0wemJFFEkaXkhWdvYdBTcibEkM7nkhnOWsnRWau6+j7NTPDp78d07Mp74UeagqXMedld0/1objs9MLk4IpiydhVILS9OZziUIIzB0ia7Fzy2u+x3vVrBc9xjPWlSbHu/crpBJWESyIyeJInTdIJARpqYRSUmowe2qw0rdxzTisMtr19aYydn4QUTCjA1mtS0AScLQyCYtIimpuwGRFJwaT7He9IkieOFErLQ5NZ7BNgxKzbjU/+x0lvG0xXT+3jnoPxevXdk8wTuVS6jk/AiyF989ZcSPAKOkzrl/rRnbpNr2mcraPHe8wCeehLvVFpKIt26sdzxpSa0tqLd9zs9kY+9UdgpwNEEQSmxDIIROzQ0JIvAjnyCS2KaO70foQkMTEElJzQmZzFhoIu4FnjAEOdMk6oRypnNpmm5IIRUb8bWGSyhhKmvTdAOeO5bn5c7szF74aHJj+GgiY/HaldUH4qRbJeE/c25KNbcaQfbiu6eM+BFg2Oqc3UjcdLdxs9Tg9rrD2ekMM7kkExmLhVKLJ8bTSBmHIr6/UEXXNGxLY7Xu4wdxmCWI4NJynYSpUUhbyEj2GmCZhkbdDbANnabrYxkafhTRcAPCEGwzQsq4F0oQCcqdpOm652KbBifHU0xmEiRMjTNTWW6vtzA1nUBGTGVtDENjOpugkDb53HOzG7zs+5Pqx4sPT1JulYQfzySOdHJ+FNkLZZwaz3ZEGFaGfDdGgt2/jf6xZifH0g8ML/7GD5dZqTm8d7dGpe3ihRAGEV4US/50wNBi4YcuIGcbhDJuUmUbgrob4oURfhD/7Zs6IEFosd47jOILQtIUeGH82NnpLJOZBFEkmS3YhBKytoEmBJGEJyfS6Lo20HG/dmUVx482eGdNN8A2NV49O7nDT0JxUNmN754az6YYmjrnYU2vuj+3++O9fxtzxRT5lLXBqPV/EUpNl5vrTdp+gJSCMAgJZGzALR1ExyuXAAIq7QBT15jN25R7bWQlaUsjlJIglGgaaELQ8uPkZTohaLohYSTJ2SamFith5go2YRhRSFvkk2ZPCjmdj0MhwKZhkn4OWo5CMVyGrYzb1ogLIU4AvwnMABHwa1LK/14IMQb8LnAauAH8vJRyfWgrVRxIFsrNXi/vjG1ycixFzja5UWr02qVuJ63azKh5Qcj3FsoslJssrjvcLDVIGHrc36TpcnWlSRBIND3uGy7CrlIbMrZOJKHthYSxqATb0Kg7PnUvIAjjKkvb1MlbGivNOKadNDXCKERC3D5Wi716L4xYb3s8ezxHyjRYcRz+o00qKgeVk41SjkJx8BnEEw+A/1xK+V0hRBZ4Wwjxx8DfAr4hpfxVIcSvAL8C/PLwlqo4aKzWHW6V2+iaoJC0KDUdLi5WySdNvCDkpdPjA+ma7zdqlZbHdxcq6EJye73N9ZUGC+UmKcug5UVUWm5swDsl8F7HKGtAEMa/h2GsKImQaFKAEDiBJArjIh1Nh7bn03TjkItuCIJIoukaKUsjkzBZb3loQmBpGvmExc1SmycmNF56YmxTA/7lt29RaXqMZ21OjqXIJ61Nj1lVECt2k2114lLKu1LK73b+vw68DxwDPg98sfOyLwI/M6Q1Kg4ol5fqnJnMICWUmg53Kg5tL+CD5RqL622+/cEKC6VG7/Vb6Zq7HfmaboCUkivLDUCSMA1SlkGp6ROE8dCFlufH7WM18CREnbBJKCEk/tf2QvwwVq3oCMYzJglD41g+yWTWIpXQ0YTAD2PNuGHo5BImhq6TMTX8MO5OmLIMkNAOQmquz3LV4Z1bFcbT5ob1dz3wStNnImPjBRHvLlaptr1Nj3k7rbxC8Sg8UkxcCHEa+CjwBjAtpbwLsaEXQkxt8Z4vAF8AOHny5GMtVnGwWG95zBaSpBIG3/5glZYXUGp25H2WxlLN4X99f4W/9mLcF+T+kEF/nNvQwPFDVuptLt5ZBwnLNZdMwuDWehMdQduPqLc9gk6pugAsQ+AHkqBvXRp0YtyxZLDU8AllvP2UZZDVBS0vJIgCogiCICSZTZCyJCt1D0FEU0qEgCCQRCLC8SNmcjZSRvzhu8sU0wnOz+aBezH98UwCL4xIdpp7LZRbzE9kNg2THOUKYsXuMnDFphAiA/zPwH8mpawN+j4p5a9JKS9IKS9MTqrM+2GiGwYppCwmswkyCQMBZG0rHlwsYanW5oeLFZpu0CuvhweHQ9hmHOteb3poQkPTBI4fslRz8ANJzfVpeQERkjCMY926iJORQou9EUuDlBGHSqSEthfR9CLqbkgUxT28Qyl5ajqDaehx90ENimmLsUwCTdPiRlamQTZpxgMaNEHasnhyMs1kzubYWJpCyuSbl1d65+FmqcG1lTpLtTaXl+qsNVwSukap7mw4ZoViGAxkxIUQJrEB/xdSyn/deXhZCDHbeX4WWNnq/YrDSX8YJGPp3Co1MTSNyWyClGUwk09SSFpcXm5sW16fThhU2j7XV1s8MRH3Lskn40nzUsrY69Y1un+y3Rh4hMSP4jCKG4ETEPfj1gS+jMMsnXGVpAwDPwh5726dgm0wlUmQTBjYlo6OpNLyMHSdqVwibiVraARh3GwrldDxglgTnrdNVmr3+pzfXneouwFz+STHijaL621ulloU0pYKkyiGziDqFAH8M+B9KeU/7nvqD4BfAn618/MrQ1mh4sDSX5iSsXVCYCJlYpsaXhChafDMXBZD0x/QP2+mSPGDOMH3dDobt6x1Q2QrIIwijM7U+IQlEFjcqbQJQiCSaHTkhMQGOwgi+gcM2TqkbQvXD7B0jVrLJ2ka2KbO8WKKuhuwUvdACF49U8TUDZbrLtmkRcEJEJoga5tMZW0yCaMzhs7gtSur/Pm1NaIowvHj6s/xtI2uaYSRHKgnuELxuAwSE/8k8DeBd4UQ73Qe+wfExvtLQoi/DSwAPzeUFSoONN3Y7qtnJxEI/vTKKpWWT842mc3b+KHk2WO5B97XnZFZanrU3YBswug0sjIoNV1qTshyLe71PVOwSeg6TtDtdRJrwfVOF9fovm274b3HTAFC09CERNc1Wn5IMW3x8dNFnCBkre5xophEExrphKDuSJzAx9QFScvA0lJ4YUQxZZHq9E+5W2kzP5nG8SM0oZGxdcpNj0rTY63hIWUUD4JQKPaAbY24lPI14hzSZnx2d5ejGGV+/JkZgkhSacel8KahM5s0e31E+pnIWPzRxSUKKZO8bVJ1fG6VWnhhyPt3azh+QL3tgxZ3C7RNScrUsU2dYjpBueVSa4VEYWdEWme7Efd+1+nGzcHzZa/PSjFlcn21Sdo2mMhaCKlRSBtM52yuLNe5XfaRxCGb4wWbmYJNy/X5YLmGbRiMpU1mcknSCYOsbeCHEUlL5/Z6m6emsyBj1Yvq963YC1TF5gHloAxxeBQmszafe252oHWvNTxePFVgreFRd3w0AcVMgvWmz1xB8P1FFzSdYsroTL8RpBIGYSSZzttcODXGmx+We6EM0YmpRB0PXRIbb8sQRDLCDSVCxBN9pvNxr/Jqy+dmqUXetnh5vshULonjx6GbMIq7I84Wkpwqpri62uDnL5wiZel8+/Iy19aapBIG+aTB61dLLNfaIOFYIYkmBM8ey2Pqmur3rRg6yogfQA7KEIedXEgGlc6ttzxmcklm8ykA3r1dwdJ1Sg2PqVySj4QQRhG2GY9w84MIIeIeJvMTGSYzCX54p0oQaXihjyDulaLJ2HhPZBPU3YBcwiBCYOgCGUo+eqrAExMZVuouYSjxI4ltCe5UHDQNFkrNXtvbyWyCUMJawyWK4l4nlZZH1QkpN1vcqcQzP48VbZarLaTQWFxv88kz471Ra6NeSj+KzsRRQxnxA8jD+pHs1RdomBeSWNHR4tuXV1lrOEA8YefMVJpiyqTe9pjIWtytODTdENMQ6ELDCUIKqbjQxtQ1zk5nubbaQBMCTYCugZTxoIYTY0lkJCm1fFqu5OxUmhPFFLZlYugakxmL9ZZPMWUxk4uHTHzt4jK5hE7SMggiyQfLDc5MZSg3PcYyCSotj4uLVYopk5brc7vUxMsnOTWeZLqQ4lg+ScY2qLZj1fqol9IfFGdC8XCUET+AHIQGScO6kHQNQxRGvH+3iqZphGFIww25td7ic89M0+z0PBnPWFRasZdtWzpPTqWB+Pys1R28IMLxQvJJEzeIiCTM5EwmsgkWym2Sps5T0zlOFJMEUuIHEZNpCz+SfLDSIG3pTGQSFDMWjbaPpQskArfj9QO4foimCSazCW6VW6SsOC4vRBwSEkjWW3HXxoVyOx4S0ekls1Up/ah4twfBmVBsjxrPdgDpFtH0s9deXSyj2/1xYF3DcLviMJW1iaKIMBRkE3Hp+/duVZkfs7ldbnJtpUkxZfLpp6b49LlJXp6f4HgxiZSwWHHIJkwmsjZjmQQJQyNtafidhleTWZtnjxUopEwmczaFlIVt6qw0XOYnM4ynTCIpubbWiLXuXshHZnIYemywbVNnJmdh6hqff2EOTWiUGi6WrtH2Q9peyFQ2gQAqTY/FchvXD7mx1qTueFuW0t9f5OT4Ea9fLbFadx7rvA6DYf0NKHYX5YkfQA5Cg6Rhddrr3mWst3yEEExlbXQt9n6nMgkur9S5uNTkY6fHeoOMVxoun39hrjcU4c66Q842sHSNqWwCTcSdsBKmRsLQCSWkzLiRVblz99LyIiIZ8pG5HI4fsFBukU4YfGQ2h6lr3Ki7yIzFR+byPHesANzr8X1+Ns94JsHdaou1hkOiU1Y/V0xy6W6N9ZaPpglOjtkU0xYnx1IDt909yN6t6rY4GigjfgB52HSXvWJYF5Jir4eKyZWVBoWUScsNafshjh+gCZjN23z63HTvPU034OpKg0tLDSIZcascG9O1ps/psSROEGFoGk03IJswaXoBk9m4d/hq06PlhXFYRAjuJF2OFVL8lR+Z5dpqE0OPDf94xuJmucWzx/O9CUL9xzuZtfnZj53g9aslFspNbFNjte6y1vBIGhp+GHK36nJqIs3iepvfeP1Dnp7NITvH3DXqByFUNigHwZlQbI8KpxxQugU0P/X8MV49O7kvqpSW53NlpcaHa/Vd67TXLdU/N5MlDCNW6y4rdQc6U+czphkrQNr3btlTls77d2tEMuLaahPL0JnOJREIFkqxQiRhaHihJGXpvHAi3+lp3sQNIoJIIhGkbAM/ivjuzTIzuSTPHctjGRo1x2Mmb/PSE0WmsvaWnQW7F9dK0+XaagMp4Vg+wamJDBpQafkkdA3b1PjhnRrv3KqiC7EhZNIfKqu0PN69XeHbl1e4vd46cCEV1W1xNFCe+BFikIRavyLh9Him533tVvKt/y7j1bMTfP2Hy5iaIJ+yODWeZL0ZoCH53TcXSJg6xZTJuZksAsFq3SVp6hwfS/LhapP58SRX11os1xxmC0k+fW6ChhdxvGiTTyZYrLRwvBAQHBuzOTWWRhNwZaVOywvJJy2eOxaHBrYaj7bpOcvZpBImpq7xzi2P9XKTWtsna8el/DfWWkxkExRTJrfX2zx3vADEIZOud1tteVxba8aqGl0wnbMPpPJDdVs8+CgjfkQYVC62FzHb/lL9mbxNwwlpeCHZhEEx6fH191dJGIKP5HOstwP++IfL/NjZCUoNl8lsEiHgick0t8uCs5MaCVPjlSfHH5jHmU9aPD2b3LDuthcynrZouLEM8GFhgq3OmUDScAJW6i6ZhE7L9Wl7IYYQrNVdqo7PM3NZEoZG1bm3n1LT7V3Evvz2LcIwpNA3QKLpBgcyNq442CgjfkQY1DjvZsx2EM8/n7RYKFVZqrsIYKXmMpYysQyNti+xTY0wNHjr5jqWqeOHkrlCEkMTTOVsXpkf7823fON6ia+/t8RENsHZqQyzBZtLSw2EEIynLdwgotL2+dipMV6eH+eN6yW+t1BGIDg/+2B/l63OmUR01DA6YQTHinHBUhBKKm2P8zNZdE3DDSKynff0JwQnszbHiymeP17sSRkf5zwrjjYqJn5EGFQutlvyxkGkdJfuVvn25RX+7MoqqzWHIAhZWG9RaXmcmc5waiJFFEEuaSIEXDhV5GapxY21FoYmmO9MmJ/IWLx+tcT11RZTWRtNCC7eqTE/mWEun2Cl5lJtB4QRnBxL8vJ87HEHEXz05Bg/emYC29QfWN9W5yyfNGkHESfHU3xkLsf8ZIan5/Kcnc5Qbfs0XZ/37lRZXG9zvJh8oJf6bp5nhUJ54keEfrlYte2xUG5RqjsU0hardafnIe+WIuHyUp0wjLi+2uh1KRxPWz3Pf7Xu8JV37uAF8ORUhprjs1R3SZsapqHRdEKaTkjCjD3aYtrm3EyeXNJkueYwV0z2vPuux+xHEXnb6Hm31XbAv/PUJO8t1nhqJrPhbuC1K6tEMuL6WoOG45OxTSYy1oY7k60kdifH0uRsi+trDWqOR8Y2eXo2y/cXqiRNnZRlcnJMw/FC1lsup8YzG9RFq3WHSsvjzQ/LvbsGU9eV8kOxI5QRPyJ0jXPN8bi6Epeq67rOVGZjQm235I03Sw0WKy5pSydvG7hBxLW1Jk4Q8OrZSS4v1YmiuOd4NmFSSFl4QUSt7XGr3GZxvYUXShqOR9OL+JHjed69XeF4McnxYoqfev5Yb1/fuV5iPJ0gm4j3Y5s6tqFTczxMPcMrT44/kLBcKDe5vd4mZRnkbAsnCLm60sDxQ2Cyd86+9u5dKq2Aatuj0vJww5BTYymytkHbCzk7nWEml+StG+ukEjqfOjfZG5C8WbK0P87+yvw4V1ea/MmlFaayNnOFWAcP7EtcfFQqSRUbUUb8iLAxoSYpZCxOjKUopB5MqO2GIqHmxJpvu1MYY5s6bT+k1kn0rbfifiTlZoAfSiwj7nmiaxrnp9PcqrrUHY8wkJyaSBJF8XtW6i4vnMhv2FfXYz4xluLiYhWIZ2saukbDDThezPDaldUNxqna9tGE6M3DTJo6jh9SbfsPHEvT9Vkot9A1aLgBk5kISVycdGU5NvxeEPKxU8WeAYfNY9z9cfZ0wuDstKDm+CRMjScmsvva7Ez1SRlNlBE/5NzvXeWT5p4k1PJJk7oT0PZDbCPuRBhJST4ZN7AqpuKmU0tVpzcQ2QtCgiginbH5609NcaPU4upyg4wdT51fq3uYhuD9u7UNRTTdu4xMwuCZuRxXV5qsNT1eOj3Gmak0l5YaZBIGuhB892aFr/9wGdf3SZomSVPHD0IWKw5Vx+dYwe6Fly4v1ZkrpHCCiGzSjEND7YDLyw2O5W0MTfCxU2PYpsbJsXhIRD+bxbjvTxzfKrcoJE28MOyNqYO9r+AcpUpSxUaUET/EbOZd3Sq38YKoE6q4Fwue2oUvav8Fo9r2mcom8ELZixvPFTK9/ZybybLW8HjueB7tdoV3F6u0fMmFU0VmCzYzuSQfrrV4ajrDasOl5Qa0/YiZRIIglA94i90QUNsPePFUYUPsO5OIe5K/d6cWt5jNWNxY8/FERLnpcmu9Td42mR9Pk7KN3ja7Brfh+OiaYKHUIp3QCaVECLi0VGMun+DWepu5gs3tdacXXtkql3B/nL3uBli6iIcyd9gPlcooVZIqNqKM+CFmM+9qOpfgz66s8fRsLp6o0/ZZKLX4hVdOPta+7r9geH7E925VePFUgWfn8huKhuBeeOeN62V8KXj17DRnptJYhs7bN8ss1dpkO8Z3fiJD2w9ZXG+RsU1ytvmA17pZVetq3eHPr62hCY3VhksxZWCbFlLGE+4B1ps+M7kEN9baXFqu8+REhpxtcHmp3jO4GdvkynKdtG0QhBFJU0cIgaULvv1BiafnsjwxkcU2DK4sN1itO0Qyvhu5P8Z9f+LY1DSqbY8L0/eUK10Pfi9j1KpPyuiijPiAjGLS52apsaGQ5sRYCjeImMvZ5GyTmhuQs02eGE+z1tid7oTdwQmlpoeQkjeul3j+RIGTY+lNE6S31pskDYFtxRPq0wmDM5MZriw3ODOZ4dpak7Yfh2J0TRBJODGW6r1/K2+xe1FJmDoCqDs+bS/ANnR0XetJB799eQUviCik4zFxi5UWN0sNXj07wS/+6BO8frXERMbiL657pCyN5apPNmHg+CFRJHGCiKemswghmOvoxa+uNvjYqbGeuuf+2LKh0dOnzxVsCikDQ9M29Gw5XszsaYxa9UkZXZQRH4BRTPrEgxccdE1Q6PTbvrhYpdZyOT6W7pWCA7sygaZ7O94dnJCydE6Op1lrOKQsc8NFb7Xu8Mb1Em9+WKbU9Dg7lcYLIt5drPLcsTyzhSROEDCdt3GCgJoTkE+aVG2DqUzcVrbLZt7iat3hy2/fotL0SVg6tbZPyoy9+lvrbTIdGWLa0kla8RCIlhuSTkA+ZbLe8Hjzw3V+8Uef6IVpjo+lqLUDzs9YRAjSlsZSzeXZufSGZGb/FCDYGFsGen9Hnzwz2TOU52cyrDW8DWqgvY5RH4Sma4qdoYz4AIxi0ufyUp2z0xmurTZxggjbiNUh6+2AF+6bxL4bt83d2/H379ZYqTkEUmIIjdlCgkzC2KAPf/1qiYVSXJjT8kI+WG5ybiZL0tRZKLeYn8hwajzDq2cnN5XnNd0ALwg7CUyXl06P9Yp0uheHtYbL2akMlq4hhCCX1FkoubFXX4nlf6mEQRCENLyIMJQsVyXTuQQJU0NDbAjT9CdPu57q2zfLPDGZ3nAeulOA+uneLbxxPT5uP4p6d0aZhMFaw+vp3ddbHm9cL/P2jTIZWyebtHpl+cOOUas+KaOJqtgcgFFsjt+dYdnfqS9rGzx3PI+ux21bpZSbVhM+jNW6w2tXVvnq9xd57cpqz3iem8lyp9Li3Y7Ez9QETc+n7gT4Ydg7V/2FObapcaKYBOD2eouErlGqO9ypxFWb9++j6y06fsB3rpdASD4xP4Zt6nzt3bv8q7du8c1LK5QaLg0n4L27NYJIMpG2mM4lef5EnkbneMfSJklTY7UZ4Achtqnh+HFZvqVrHBtPbfh8+zv63Sg1uLJSI5/UubLc4G61RaXl8hc3SlxbbVBuuBu6MLa8EIHgzQ/LaALydnxXcHGxiheE3Cw1etWthiZ459Y6SzWXIJS9O5Rq21MxasWmKCM+AKNYIt1dc9ypr8Annpzkycksz8zld9xe9GGl9JNZm7F0grGUSdsPMQ2NczM5xjMJrqw0eueqe0HsFuZkbJOnpjL4YcRaw8XQ4z9J2zQ2LdefzMbhlE89NcXHT49TSCVIJwwWK23eXaziBhGFlEUhZbFad7m6UsfS46k8l5YavHiyyHPH8kzl4qn007kEbgi6pjGVtcgmTKpOwNMz2Qc+365HnrJMzk7lODmWIYokv/+9RX77zQWaTsBffnqKUAreulGm0nJ7F0mQTGQTIEAIgW3qpCydqytNak7Qu9O7td6mkLI4PZFiseLEo+kMjQ+W6490sVUcHZQRH4BuD+ydeq/7wcPWvNNe5f1hpa46pBsqAZBIPvv0NKfG08zlk6QtvaPvdnvnqr8wp+WFOH6IEwToQtAOIkCQtgyCKOLinSo/uL3OQrnJG9fLvXX03xl1e3K/dbNMue5iGRp1J6Dlxdu8ttLgZrlJIW2STujM5pNM5WxcP6LphkxnLIopnQjwI0nS0nhyMkMhldj08+3dSXQki7mkyVTGZixlYega+VSCj50qkrMt3lus9S6SEjg7Fats2n6IlHFB0lrTJZ80e8fTcHxsQ2c8bTGZTWDqGl4gcf3wQOdgFPuHMuIDMIrN8Yex5u3CSsWUhWXoPHssj6nHbVgjCS89MbZBYtdwA0xd45m5HLW2z8U7dSYyCT4xP0YQhrx7p8p3rpfwgoicbSGAN2+Ue95490LQTaL6YYRB7E2XGh4flpo4fqzISZkaIPjMuSlOT6SpOj6ZhMETk2mSpka57XNyLMN//Kkn+OkXjnFuOst0LoGhCb5zvbQhnNN/Drqx/6urDe7WHLwgJGXpcfFOyuLC6SLnZrO9i2QxZWHq+obwlgReOj3GybF0704vY5s4QYgbREznbJ47XuD5EwU+8eTEgf57U+wfKrE5IKOY9NntNW+nJe5P/j177J42/OX58Q0STUMTOH6ABAppk7/24jFm87E8bzxr895iFVPXONGR7GlCMJFO9JKj3f0slFokTR0J5NMWYQiOH5IyNHRdUG0FnJ5I89ETBdYaHp85N8VvfWcBgLxtcmoijbsc8WPnJjlRTDOeDrGNbjhH31QiWExZ3K20ubRUo5A0SZvx3Uap6eOHEU4QPXBeHjg3c/3nZgygJ+87UUzy9s11QPDiyULvDkpJ/RRboTxxxcD0h2jWmy5/8WGZP72ySqXl9+Lim3n/wIZYum3qBBG8Mj/O8WKKmVyyt4+TYylaboDjh0gpcfyQlhdyZird8/i7+/GCEDcIsAyNzz49zYnxFEEkCaVkMmPzwskCP/HsLLOFJOstj/OzeX7hlZOkEzp3qm2mcgn+k888yZmpbG+9Y2mLuUJqy5DRuZksV1cbIGGp6nB1pYEbhFi64MPVFhlL3zTc9rA7o/7ngkjywokiL5zIE0o5End9iv1FeeIDMmrFPsNY770qy1Kvjeon5scwdf2BToj9dEvfux68H0YslFpcXa6TtnX8MOp54vmkxfxkmrWGT9WJW9g+eyyD2Zld2b+WV54cx/HvabLzSYt626fthzw1k+XkWAop4a0b63hBSDG1yrmZLP+HT5/d8px98fUbCCG3lPbFiVUDkNQcn1zSIJcwWG64rDVqFNMGx4rJTQ3vw+6MRvFOT3EwUEZ8AEat2GeY6+1Xh/SHVQDeuF6mkDIfuHD09+XoxrHj0nXJVMbmuzcrvHiKXs+RY8UUx4owV0g9tHrw/ipDQ9N4/kQBiN/rBSHfXagAko+dKvaULpudh+45swwdTbCh+MjQtA2hkUjCUzM5npkT3Cy3WCg3sXSd02NJXj071Rv9plDsBSqcMgDbqTIOGsNe72YJTj8MefNGeVP5YTeWXm17fPuDVW6WmtwsNxFCY66Y4qMnCizXnF6Y4XPPzfK552a3TcpuFqLof+97d6rkkgYXTo/1pIhbnYfuOTs7HStIHibtyyfNuA2ArmEbOseLaeYKNpO55IH/21AcPpQnPgCj1uFt2OvdLMF5ZaXBRDqxaVVrd7jCQrlFw/FJmjpNN6Tu+FTbHrOFJJapbRj0AIMNRtgqDNF/BzBI2917r42TsrfKLepOQCSjBy4gJ8fS2KbOWsOj3HQZy1g9bfrD9qFQDANlxAdg1Dq8DXu9mzVLWqu7vDK/MdzRP+F9LG1RaQWsdhptnZvJxu1dO2X2O5nhuV3M/1HOQ73t861LKzS9kGLK5IWTBeYnM9im9sB2u2105ycyyEhSd2OlzclOY65uheb9gygOYuhNMfqocMoAjFqxz7DXu1kY46UnxrCMjSGWfoMpgQuni/zEMzNM5eKBCt0y+0dd2yBDmGHw83DpbpW3b67HicqEQcsL+V/eXeKD5dqm6+o//oytE0aSJyfT5GyTphtwp9Ki3HS3XZ9CsRsoT3wA9rPD205UJvux3jNTGS4tNYDNW5l2veJCyuqFK9YaLoW09UgJ13sdCj3Gs3ZPQQIPNiQb9Dx88/IKs4UkJ7UUK3WXIIrj3k3X31ZN8urZyd5n1N3HWNrCNoffMG3UFFOK4aCM+IDshwRspyqTYX+5N1vXpaXGpi1VNxuGkE+amJMZpnL2Ixvw16+WuFNxCMKIO5V1Li5W+eSZcU4U05vGoQf53FZqLnP5JC0/BAEISdrUKTUHa3B2/z6++v3FTStbdzNOPmqKKcXw2DacIoT4/wkhVoQQF/seGxNC/LEQ4krnZ3G4yzya7ERlMmioYRjrWmt4W/Zk2Y02AJeX6kQyotr2afsR+VQCTQhev1piqdbeccx/Kpdgqdbmw7UmfihJWQbVdkDDCXd03vaiYdqoKaYUw2OQmPhvAD9x32O/AnxDSnkW+Ebnd8Uus5MWuIN+ubdqKTusdQE7brzVv9/Vusuxgg1I/DAibWl4fsiV5caOY/6fORcPZfaCCFOj16/8YyeLOzKKe5FDGcX2yIrhsG04RUr5p0KI0/c9/Hng053//yLwLeCXd3Nhip2pTAaRFz7urfh+qXWKKYuLtytMZpPYhs5K3aXa9smnLI4Xdx7uOj+b5+OnC3y41mat4VNMW7wyP8aJsc1DNPeHqyYyFmsNb0P4atg5iVFTTCmGx05j4tNSyrsAUsq7QoiprV4ohPgC8AWAkycfbxjvUWMncw8H+XI/7qSi/ZrHGO93jUrbo5A0mdM1CimL+Yk00/nHM5DPHityZiq/4bw13WDT0W/9F8C7lTZ/dHGJF08VehWn3Qti/1Si3UbNxFR0GbrEUEr5a1LKC1LKC5OTw/ujPozsJI48yK38496K71dr3smszedfmCOMJKt1F0MTzE+k0XXtsUMVg4ZA7g9XlZoehZTJWsPb09j0KLZHVgyHnXriy0KI2Y4XPgus7OaiDgu7oRJ5VFXMILK63bgV36+GTedn84xnElue152e80HliPeHq+puQN42qTt+77G9qthUTbMUsHMj/gfALwG/2vn5lV1b0SFhPyVg2325R/1WfKvje9RzvpnB3y4Ecv8FMJswqDo+uaTZe42KTSv2km2NuBDid4iTmBNCiNvAPyQ23l8SQvxtYAH4uWEuchR53LjzMNnNYqBH8Xx34iVv957+5y/drRKEYJn6hmnym53znV5k778AjqetuHXAZBop5a5dEFUhj2JQhJRyz3Z24cIF+dZbb+3Z/vaTr35/8YHmS1JKSk33gUZPB4GdGtiuIez36B/W6nWQ1w76nv7nvSDky2/fwjYNnpqO+4+3vJBn5nKEUj5wzl+7srqhFznEiUzb1Lb1xgdRpzyOwd3JuVIcboQQb0spL2z2nKrYHBKjJAHbqVf6KHcbO7kz2e49/c9fX20wnkngh3HSc34yA8DVlSYvnio8sO3H6fQ47Fj0Qb6LUxw8VAOsITFKTbN2Wv33KCqXnShitntP//N1N+BYIYmUklrb3zBNfrNzvhdVlTtFFfIoHgVlxIfEQZWAbVapuVOj8SiGcCdGc7v39D+fTRiYusaxYpKMbWyYJr/ZOT+oF9nVusPt9RbfvrzMu4sVqu34MzgoFxjFwUOFU4bIQZOAbRU2MTQxcOinPx4sgHLT23aMGuxMEbPde/qfP15M9kaxfeqpSUxd3zBN/n4eNbm7Vc5gNxOQ3c9nKmNTd0JqbZ8f3K5wZiqDJrSRUQ8p9haV2Nxn9lKFsFUyz/EDgohtE2mbJdzuVFqMpRNI5LZJvmGrU+IUsuitZbfO5VaJxvMzcfvd3UpA9n8+lZbHrXKLUsOlkDb52Y+dOFAOgWJvUYnNA8pea8m3Sua1/WAgr3SzhNtcIdVTdGx3PDu5M9nuPXtxt7NVovGbl1c4O5XbtQRk/+fTHffWVTQpA67YCmXE95G9ViE8TDEziDHcTtFxWFUVWx33Ss3l+eO71zd8lBRNioODSmzuI3utQnjcZN52ica9PJ7HaaX7qGx13FO5xK4qXA5qslVxsFFGfB/Za5nb4ypmtjMye3U8ezH4op+tjvsz56Z21egeVEWT4mCjwin7yH70MHmcGPJ2io69Op69Dts87Li7zbh2q2/4QVM0KQ4+yojvI/s5gHmnPMzI7NXxDDr4YjdVP1sdtzK6iv1GGfF95rAZgb04nu0SgGqIsOIooWLiipFju9i8GiKsOEooT1wxNIZR3APbh20ep7mVQjFqKCOuGAo7CWk8ynseFrZRemvFUUKFUxRDYSchjd0Kgyi9teIooYy4YigMo/XsoCi9teIoocIpiqGwk5DGboZBDpvqR6HYCuWJK4bCTkIaKgyiUDw6yogrhsJOQhoqDKJQPDoqnKIYGsNoPatQKDaiPHGFQqEYYZQRVygUihFGGXGFQqEYYZQRVygUihFGGXGFQqEYYfZ02r0QYhW4uWc73BkTwNp+L2IPUMd5+Dgqx3oUj/OUlHJysxftqREfBYQQb0kpL+z3OoaNOs7Dx1E5VnWcG1HhFIVCoRhhlBFXKBSKEUYZ8Qf5tf1ewB6hjvPwcVSOVR1nHyomrlAoFCOM8sQVCoVihFFGXKFQKEYYZcT7EELoQojvCSH+zX6vZZgIIW4IId4VQrwjhHhrv9czLIQQBSHEl4UQl4QQ7wshPrHfa9pthBDnOp9j919NCPGf7fe6hoEQ4v8khHhPCHFRCPE7QohD2+5SCPF3O8f53nafp2pFu5G/C7wP5PZ7IXvAZ6SUh71g4r8H/khK+bNCCAtI7feCdhsp5WXgBYidEGAR+L39XNMwEEIcA/5T4CNSyrYQ4kvA3wB+Y18XNgSEEM8C/zHwEuABfySE+EMp5ZXNXq888Q5CiOPAXwV+fb/Xonh8hBA54FPAPwOQUnpSysq+Lmr4fBa4JqU86FXRO8UAkkIIg/iCfGef1zMsnga+I6VsSSkD4NvAv7vVi5URv8c/Af4eEO3zOvYCCXxdCPG2EOIL+72YITEPrAL/vBMi+3UhRHq/FzVk/gbwO/u9iGEgpVwE/jtgAbgLVKWUX9/fVQ2Ni8CnhBDjQogU8FeAE1u9WBlxQAjxk8CKlPLt/V7LHvFJKeWLwOeAvyOE+NR+L2gIGMCLwP8opfwo0AR+ZX+XNDw64aKfBv7Vfq9lGAghisDngSeAOSAthPiF/V3VcJBSvg/8t8AfA38EfB8Itnq9MuIxnwR+WghxA/iXwF8SQvzW/i5peEgp73R+rhDHT1/a3xUNhdvAbSnlG53fv0xs1A8rnwO+K6Vc3u+FDIm/DHwopVyVUvrAvwZ+dJ/XNDSklP9MSvmilPJTQBnYNB4OyogDIKX8+1LK41LK08S3pH8ipTyUV3khRFoIke3+P/C/Ib59O1RIKZeAW0KIc52HPgv8cB+XNGz+PQ5pKKXDAvCKECIlhBDEn+f7+7ymoSGEmOr8PAn8NR7y2Sp1ytFjGvi9+HuAAfy2lPKP9ndJQ+P/CPyLTqjhOvAf7PN6hkInbvrjwP9+v9cyLKSUbwghvgx8lzi08D0Od/n9/yyEGAd84O9IKde3eqEqu1coFIoRRoVTFAqFYoRRRlyhUChGGGXEFQqFYoRRRlyhUChGGGXEFQqFYoRRRlyhUChGGGXEFQqFYoT5/wPKngClQGDicgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "La correlación de RM y MEDV es: 0.695359947071539\n", - "La media de las viviendas con un número de viviendas entre 5 y 6 es: 17551.5923566879\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAOC0lEQVR4nO3df6xk5V3H8fdHFtJCMaXuUCsLXmoosRIEc1UUf1AozWoJ9I+aQEKzKmYTYys1rbjYP4gmJo02tSYazQZWSEq3IRRaUqKyoUU0QepdfsjSBWkq4hZkLyHaqkkR+frHHcLd4e6duXPOvXcf5v1KNjPnmXPm+e53dz97cu7Mc1JVSJLa8z2bXYAkaToGuCQ1ygCXpEYZ4JLUKANckhq1ZSMn27p1a83NzW3klJLUvP37979QVYPR8Q0N8Lm5ORYWFjZySklqXpJ/XWncSyiS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUWMDPMmeJIeTHBgZ/0iSJ5M8nuQP169ESdJKJjkDvxnYvnwgyXuAK4Bzq+pHgE/1X5okaTVjA7yq7gdeHBn+deCTVfXd4T6H16E2SdIqpr0G/i7gZ5M8mORvk/z40XZMsjPJQpKFxcXFKaeTpHbN7bp7Xd532gDfApwCXAD8NnBbkqy0Y1Xtrqr5qpofDF73VX5J0pSmDfBDwB215GvAK8DW/sqSJI0zbYB/EbgYIMm7gBOAF3qqSZI0gbGrESbZC1wEbE1yCLgB2APsGX608CVgR3l3ZEnaUGMDvKquOspLV/dciyRpDfwmpiQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUWMDPMmeJIeHd98Zfe3jSSqJ98OUpA02yRn4zcD20cEkpwOXAs/0XJMkaQJjA7yq7gdeXOGlPwauA7wXpiRtgqmugSe5HPhWVT3acz2SpAmNvanxqCQnAp8A3jfh/juBnQBnnHHGWqeTJB3FNGfgPwScCTya5GlgG/BQku9faeeq2l1V81U1PxgMpq9UknSENZ+BV9VjwKmvbg9DfL6qXuixLknSGJN8jHAv8ABwdpJDSa5Z/7IkSeOMPQOvqqvGvD7XWzWSpIn5TUxJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElq1CS3VNuT5HCSA8vG/ijJE0n+KcmdSd66rlVKkl5nkjPwm4HtI2P7gHOq6lzgn4Hre65LkjTG2ACvqvuBF0fG7qmql4eb/wBsW4faJEmr6OMa+K8Cf3W0F5PsTLKQZGFxcbGH6SRJ0DHAk3wCeBm49Wj7VNXuqpqvqvnBYNBlOknSMlumPTDJDuAy4JKqqv5KkiRNYqoAT7Id+B3g56vqf/otSZI0iUk+RrgXeAA4O8mhJNcAfwqcDOxL8kiSv1jnOiVJI8aegVfVVSsM37QOtUiS1sBvYkpSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjJrml2p4kh5McWDb2tiT7kjw1fDxlfcuUJI2a5Az8ZmD7yNgu4N6qOgu4d7gtSdpAYwO8qu4HXhwZvgK4Zfj8FuAD/ZYlSRpn2mvgb6+q5wCGj6cebcckO5MsJFlYXFyccjpJ0qh1/yFmVe2uqvmqmh8MBus9nSTNjGkD/Pkk7wAYPh7uryRJ0iSmDfC7gB3D5zuAL/VTjiRpUpN8jHAv8ABwdpJDSa4BPglcmuQp4NLhtiRpA20Zt0NVXXWUly7puRZJ0hr4TUxJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqVKcAT/JbSR5PciDJ3iRv6qswSdLqpg7wJKcBvwnMV9U5wHHAlX0VJklaXddLKFuANyfZApwIPNu9JEnSJKYO8Kr6FvAp4BngOeA/q+qe0f2S7EyykGRhcXFx+kqlo5jbdfdmlyBtii6XUE4BrgDOBH4AOCnJ1aP7VdXuqpqvqvnBYDB9pZKkI3S5hPJe4F+qarGq/he4A/jpfsqSJI3TJcCfAS5IcmKSAJcAB/spS5I0Tpdr4A8CtwMPAY8N32t3T3VJksbY0uXgqroBuKGnWiRJa+A3MSWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRnQI8yVuT3J7kiSQHk/xUX4VJklbX6ZZqwJ8Af11VH0xyAnBiDzVJkiYwdYAn+V7g54BfBqiql4CX+ilLkjROl0so7wQWgb9M8nCSG5OcNLpTkp1JFpIsLC4udphOx7q5XXdvdgnSTOkS4FuAHwP+vKrOB/4b2DW6U1Xtrqr5qpofDAYdppMkLdclwA8Bh6rqweH27SwFuiRpA0wd4FX178C/JTl7OHQJ8PVeqpIkjdX1UygfAW4dfgLlm8CvdC9JkjSJTgFeVY8A8/2UIklaC7+JKUmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowzwY9BaF4XaiEWkVppj0nm7HDvt/tIsMMAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRnQM8yXFJHk7y5T4KkiRNpo8z8GuBgz28jyRpDToFeJJtwPuBG/spR5I0qa5n4J8BrgNeOdoOSXYmWUiysLi42HG6N6ZjbaGm5fXM7br7ddvjjuky5yTzTVLPtPNLLZk6wJNcBhyuqv2r7VdVu6tqvqrmB4PBtNNJkkZ0OQO/ELg8ydPA54GLk3y2l6okSWNNHeBVdX1VbauqOeBK4CtVdXVvlUmSVuXnwCWpUVv6eJOqug+4r4/3kiRNxjNwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBvktHFk8YtprTSAk7TLCy12rGjC0lNWs9aXl/r73t0374WzVqP446FBbGOhRq0cQxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqVJe70p+e5KtJDiZ5PMm1fRYmSVpdl1uqvQx8rKoeSnIysD/Jvqr6ek+1SZJW0eWu9M9V1UPD598BDgKn9VWYJGl1vVwDTzIHnA88uMJrO5MsJFlYXFyceo71WqSnywJJkyzo1MdiTZMsTrXa+03ze1ztmJUW1hp33Erj4xbWGlffWkwzx0r7dFmMa5pjxi1c1tc8alPnAE/yFuALwEer6tujr1fV7qqar6r5wWDQdTpJ0lCnAE9yPEvhfWtV3dFPSZKkSXT5FEqAm4CDVfXp/kqSJE2iyxn4hcCHgIuTPDL89Ys91SVJGmPqjxFW1d8D6bEWSdIa+E1MSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaNTMBPs3CRZMeu9pCTcufr3VhorUsADXJHCvtM+1iVxuhj4XAlr/PtH1f66Jey48ffX6091xpv3F/1kerZ9JerFTzRi7WNa4fXeeY5j2m/Tu3Wf9+ZibAJemNxgCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNarrTY23J3kyyTeS7OqrKEnSeF1uanwc8GfALwDvBq5K8u6+CpMkra7LGfhPAN+oqm9W1UvA54Er+ilLkjROqmq6A5MPAtur6teG2x8CfrKqPjyy305g53DzbODJ6cs9JmwFXtjsIo4h9uM19uJI9uNIXfrxg1U1GB2c+q70rHxH+tf9b1BVu4HdHeY5piRZqKr5za7jWGE/XmMvjmQ/jrQe/ehyCeUQcPqy7W3As93KkSRNqkuA/yNwVpIzk5wAXAnc1U9ZkqRxpr6EUlUvJ/kw8DfAccCeqnq8t8qOXW+Yy0E9sR+vsRdHsh9H6r0fU/8QU5K0ufwmpiQ1ygCXpEYZ4KtIsifJ4SQHlo29Lcm+JE8NH0/ZzBo3SpLTk3w1ycEkjye5djg+q/14U5KvJXl02I/fG47PZD9g6dvZSR5O8uXh9iz34ukkjyV5JMnCcKz3fhjgq7sZ2D4ytgu4t6rOAu4dbs+Cl4GPVdUPAxcAvzFcOmFW+/Fd4OKq+lHgPGB7kguY3X4AXAscXLY9y70AeE9Vnbfss9+998MAX0VV3Q+8ODJ8BXDL8PktwAc2sqbNUlXPVdVDw+ffYekf6mnMbj+qqv5ruHn88Fcxo/1Isg14P3DjsuGZ7MUqeu+HAb52b6+q52Ap1IBTN7meDZdkDjgfeJAZ7sfwksEjwGFgX1XNcj8+A1wHvLJsbFZ7AUv/md+TZP9wORFYh350+Sq9ZlCStwBfAD5aVd9OVlpRYTZU1f8B5yV5K3BnknM2uaRNkeQy4HBV7U9y0SaXc6y4sKqeTXIqsC/JE+sxiWfga/d8kncADB8Pb3I9GybJ8SyF961VdcdweGb78aqq+g/gPpZ+XjKL/bgQuDzJ0yytSnpxks8ym70AoKqeHT4eBu5kafXW3vthgK/dXcCO4fMdwJc2sZYNk6VT7ZuAg1X16WUvzWo/BsMzb5K8GXgv8AQz2I+qur6qtlXVHEtLanylqq5mBnsBkOSkJCe/+hx4H3CAdeiH38RcRZK9wEUsLQP5PHAD8EXgNuAM4Bngl6pq9AedbzhJfgb4O+AxXrvO+bssXQefxX6cy9IPoo5j6UTotqr6/STfxwz241XDSygfr6rLZrUXSd7J0lk3LF2m/lxV/cF69MMAl6RGeQlFkhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RG/T+wwxhEnEmmUQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "print(\"La correlación de RM y MEDV es:\", relation_rm_medv(rm, Y))\n", - "print(\"La media de las viviendas con un número de viviendas entre 5 y 6 es:\", price_mean(rm, Y))\n", - "medv_hist(Y)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "77hvTCml_as6" - }, - "source": [ - "## Regresión Lineal Simple. Mínimos Cuadrados " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Una vez hemos efectuado el análisis exploratorio inicial, vamos a proceder a implementar y entrenar a nuestro modelo. Recuerde que podemos conseguir ajustar a los datos a una recta de regresión lineal haciendo uso de aquellos valores de los parámetros obtenidos mediante el método de ***Mínimos Cuadrados Ordinarios***. Este método encuentra que el mínimo de la función del ***Error Cuadrático Medio*** se encuentra en el punto donde su derivada es igual a 0. Esto se obtiene evaluando la siguiente expresión:\n", - "\n", - "$$\n", - "w = (X^TX)^{-1}X^TY\n", - "$$\n", - "\n", - "Para poder trabajar de forma vectorizada, ampliamos la matriz $X$ con una primera columna de valores asignados a $1$, que servirán para mantener al termino independiente.\n", - "\n", - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "77hvTCml_as6" - }, - "source": [ - "**Lo que vamos a hacer:** \n", - "\n", - "1. Ajustar un modelo de regresión lineal mediante el método de ***Mínimos Cuadrados Ordinarios***.\n", - "2. Una vez calculados los parámetros, visualizamos la recta obtenida para comprobar que realmente se ajusta a la nube de puntos.\n", - "3. ¿Qué representa $w_0$?¿Y $w_1$?\n", - "4. Utilizaremos el modelo entrenado para predecir cuál será el valor medio de la vivienda para un número medio de ***9 habitaciones***, y también el número de habitaciones medio que podría tener una vivienda cuyo valor medio es de **45.000**.\n", - "5. Utilizaremos el modelo entrenado para calcular, para cada valor de $X$, cual es el valor predicho por la regresión. Llamaremos al vector generado el vector de salida predicho $\\tilde{Y}$. \n", - "6. Luego vamos a evaluar la calidad de las predicciones implementando una función a la que le pasemos como parámetros el vector de valores de salida reales $Y$ y el vector de salida predicho $\\tilde{Y}$, para calcular el ***Error Cuadrático Medio***. Recuerda que el ***ECM*** se calcula como:\n", - "\n", - "$$\n", - "\\operatorname{ECM}=\\frac{1}{n}\\sum_{i=1}^n(Y_{Pi} - Y_i)^2. \n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "**Nota.** Vamos a utilizar el operador @ como un operador equivalente a la función **np.matmul()**, utilizada para la multiplicación matricial. ej : A = B @ C. Realmente, el operador @ implementa de manera general el producto tensorial en Python.\n", - "\n", - "**Consejo:** Al trabajar con multiplicación de matrices y vectores, compruebe que los vectores tengan bien definidas sus dos dimensiones. Esto se puede ver usando con el atributo *X.shape* de dicho vector. Queremos que sus dimensiones se muestren así **(5, 1)** y no así **(5,)**.\n", - "\n", - "\n", - "Esto se puede producir por ejemplo cuando seleccionamos una única columna de una matriz. En estos casos se puede evitar seleccionando dicha columna así **X[:, 3:4]** en vez de así **X[:, 3]**. Igualmente, en caso de haber perdido una de las dimensiones, las funciones **np.newaxis()** o **reshape()** le pueden ser de ayuda.\n", - "\n", - "ej: `Y = Y[:, np.newaxis]`\n", - "\n", - "**Info:** En el punto 5 calcularemos el error del modelo utilizando todos los datos. Más adelante en el diplomado veremos que esto no es del todo correcto a la hora de evaluar un modelo, pero de momento es suficiente.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 337 - }, - "id": "uBXHrSYnEW8M", - "outputId": "48456e7f-e7e0-4d37-bbe8-a12fc3531997" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD4CAYAAAAaT9YAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABdm0lEQVR4nO29d3wc13nv/T3TdrZhF4sOkmARYVKiKNESLcmWIlsuiWuUYjvX73XsVKU4vinOtZVy4/v6Jq/t3PQ4saPENXGLHTuy47gosmVHitUrZZFiBwkQbRe72D7tvH8MdgGQIAmCWBTyfD8fCZzBlGdmsb8585ynCCklCoVCoVifaKttgEKhUCiWjhJxhUKhWMcoEVcoFIp1jBJxhUKhWMcoEVcoFIp1jLGSJ+vs7JRbtmxZyVMqFArFuuexxx6blFJ2LfS7FRXxLVu28Oijj67kKRUKhWLdI4Q4frbfKXeKQqFQrGOUiCsUCsU6Rom4QqFQrGOUiCsUCsU6Rom4QqFQrGMWFZ0ihDgGFAEf8KSUe4UQGeDzwBbgGPBmKeVUa8xUXCwTxRoHRotMVRzaYxY7epN0Je3VNuuiWO5rWsl7pGyfPc7xbInpmkcqatJmm4BAIilWXYbzVSqOT3dbhNt2dLOzL3VR519oX2DZ7t1EscZDR3LsPzWNRHJlXxs3buto6XdNLKaK4YyI75VSTs5Z98dATkr5ASHEnUC7lPI95zrO3r17pQoxXHkmijUeOJQlETGIWToVx6dU97h5e2v/uFrJcl/TSt4jZfvscXw/4PBkGU1AsebiBZKoqdPTZvHAoRymrnFVXxJfQr7i8rrdPYwV3SWdfyHbR/IVAPrTsYu+dxPFGl9/5hRDuQqpqIlAkK+6DGSivGZ330V9FkKIx6SUexf63cW4U24HPjnz708CP3YRx1K0kAOjRRIRg3jEQAhBPGKQiBgcGC2utmlLZrmvaSXvkbJ99jjZskPc0mmPWZTrPo4XkI5ZPHAoSzpmkYlbTJbCEXI6ZvKvT44s+fwL2Z6vuuQr3rLcuwOjRfJVl3TMImYZRC2d9phJvuK19Lu2WBGXwLeEEI8JIe6YWdcjpTwFMPOze6EdhRB3CCEeFUI8OjExcfEWKy6YqYpDzNLnrYtZOlMVZ5UsuniW+5pW8h4p22ePU6x7RIxQhvwAPD/ANnSmyh5xS8fUBRXXByBlm4wV6ks+/0K2u56P6wcXfT2N47uej23MniNiaLh+0NLv2mJF/GYp5XXAa4B3CCFuXewJpJR3SSn3Sin3dnUtmDWqaDHtMYuK489bV3F82mPWKll08Sz3Na3kPVK2zx4nGTGoe6GI6hoYukbN82mPG5QdH9eXxMxQFAs1l55UZMnnX8h209Ax9fkyuNR71x6zMA2dmjd7jroXYOpaS79rixJxKeXIzM9x4MvADcCYEKIPYObneKuMVFwcO3qTlOoe5bqHlJJy3aNU95qTOuuR5b6mlbxHyvbZ43TELcqOz1TFIR7RsQyNfMXh5u0d5CsOubJDZ8JiquKQr7j82J7+JZ9/IdvTUZN0zGBkqsLTJ6a4b/8Yjx3P0Zm4cNHd0ZskHTXJVxwqjkfV8ZmquKRjRku/a+ed2BRCxAFNSlmc+fc9wPuAVwDZORObGSnlu891LDWxuXqo6JSVP95Knms92j43OmUkX6Xq+EgEMcugPx1BIFYkOiVbqnP3kyMEQUAmEaErGUET2pInN1sRnXKuic3FiPg2wtE3hCGJn5FS/pEQogP4Z2AAGALeJKXMnetYSsQVCsXptDq65nyif//BCWpuQDwyG3FdrnvYpsYtg2vDBXwuET9vnLiU8ghw7QLrs4SjcYVCoVgyc6NGgObPA6PFixbxuQ+IjnjoT3/gUHbeA2Kq4tARj8zbL2bpZMv1izr3SqEyNhUKxarSyuiaxYRErveJfyXiCoViVWmliC7mAbHeJ/6ViCsUilWllSK6mAdEV9Lm5u0d2KZGtlzHNpc2qblarGhnH4VCoTidhogeGC2SLddpj1lcu2l5RHRHb5IHDmUB5k2aXrup4wwb1oton44ScYVC0VIWExLYKhFt5QNiraBEXKFQtIzFRIe0mvU8yl4MSsQVCsWy0xh9P3g4i2XoDPYkEMJY1vBBRYia2FQoFMtKY/RdcwOEkGgC9g0XyM9EhKz34mtrDSXiCoViWZkbm52MWiBC4T6RC2t3r6cY7PWAcqcoFIplZW4G5EAmxjPDBWxDo1jzmuGDc6NDLsW6PiuJGokrFIplZW5sdipqsXtDCgkEMjgjBnuu66UjHqHmBjxwKMtEsbaKV7C+UCNxhUKxrJwem21oGgOZ+IIRKa2sm3I6qzbif/JJ+MIX4L3vBWv53UhqJK5QKJaVC8mAXKmuRKsy4q9UYONGeOEL4f/7/2B0tCWnUSNxhUKx7Cw2NrvheplbBrYVE58rOeIH4M474YMfnF3+93+HgYHlPw9KxBUKxSJphTtisWnxF8uKlZv97nfhZS+bXf7lX4YPf3h5z3EaSsQVCsV5aVXmZVfSZmdvgu8cGGd8ut7s4LPco+OWj/inpqCzE4KZpsuJBJw8CanU8hz/HCifuEKhOC8Nd4TrB+wbLvDUyTxD2QoPHcle1HEnijX2j5YY7G7jVVf1Mtjdxv7R0rL7qltWKVFKePvbIZOZFfD/+i8oFldEwEGJuEKhWARTFQfH89k3XMD1A1K2QcVx+dcnhvn0g0e5/+DEkoR3MU0bloOWlJv9138FTYNPfSpc/t//OxT1F794OUxeNMqdolAozkt7zOLx43lilo5t6pTqHkO5KvGIQanmN6M9LlQYV8pXvaz+/OHhMOqkwfbt8MwzYK9OgpIaiSsUivOyozfJZLlOICVSwslcFZBs7YxTmvE1L2UEvRKt0ZYtvDAI4Ed+ZL6A79sHBw+umoCDEnGFQrEIupI2N2zJIIHpmoPrB+zoTWLqGsmZycKYpTOUK3P/wQm++tTwolwsK9EabVlcNh/7GOg6fOtb4fLf/E3oOtm1a9nsXCrKnaJQKBbFjdsyeIFsCmKx5uF4PldvSAAwOl3lRK5KdzK66AiWlWjacFEum+efhx07ZpdvvRXuvReMtSOda8cShUKxppkruEnbIF9x2d6VIBU1Kdc9Do6V2N6VuOCEmlY3bVhSeKHjwIteBE8/Pbvu2DHYvLlldi4VJeIKhWLRzApuV3OysDGC3thu05eOztu+JQk1F8jZEoo2tie4/+DEmZOdH/xgmHHZ4POfhze/eZWsPz9KxBWKdcZaKd260Ah6JVLoL5SFXDYb2xPsHy3NS17a95XvcNtbXzu745vfDJ/7HAixesYvAiXiCsU6Yi30rDwbK5VCvxROf+Dcf3Ci6dvXyiVe+rLrMafmJC6Nj0NX1ypYeuGo6BSFYh2xUskxS6ElCTUtolE9cfMf/T43XrulKeDf//BnwqiTdSLgoEbiCsW6YsUKOS2R9dJZfsuTD7L7Z97YXD71tl/k2ff8H2xz/Y1rlYgrFOuIlSrdesmSzUJnJ7tnFp1UO4/f9zglK7pmXD8XyqIfO0IIXQjxhBDi32aWM0KIe4QQB2d+trfOTIVCASuTHHNJIiW85S1hpcEZpr7znzz8yAEmhLmmXT/n40JG4r8OPAe0zSzfCdwrpfyAEOLOmeX3LLN9CoViDiuRHNNqVjy65otfhDe9aXb5j/4Ifvd3aQduad1ZV4xFibgQYiPwOuCPgN+aWX078LKZf38SuA8l4gpFy1kvfueFWNHomhMn5nfTueoqePxxiETOvs86ZLHulL8A3g0Ec9b1SClPAcz87F5oRyHEHUKIR4UQj05MTFyMrQqFYp2zItE1vg+33TZfwJ97Dp599pITcFiEiAshXg+MSykfW8oJpJR3SSn3Sin3dq2jsB2FQrH8tLwx8kc+EtY1ue++cPmuu0J/+M6dy3P8Nchi3Ck3Az8qhHgtYANtQoh/AsaEEH1SylNCiD5gvJWGKhSK9c9yRtfM9a33jxzj+tfO8XC/8pXwjW+ElQcvcc47EpdS/o6UcqOUcgvw34BvSynfCnwFePvMZm8H7m6ZlQqF4pJguaJrGr71ernKK37itvkCfuIE3HPPZSHgcHEZmx8AXiWEOAi8amZZoVAozspyZXUeGC2y+2N/xSteuJnYkYMAPPUXH+X+58fnN224DLigZB8p5X2EUShIKbPAK5bfJIVCsdyslaJZsAzRNQ89xC033dRcnLj9TRz6k79FAlNrJHN1JVEZmwrFJc5aLpp1QUxPw6ZN4c8ZPnn3I3Rv3UBaCCp177LMXFUirlBc4jx0JMtQtoIbBCQjBpsysWZY37oR8Xe+Ez70oebi9z7yOR7cfA2aEIwNF7iiM46ua+sybf5iUSKuUKxDGu6RoVyZQtWlzTbY3JE4w00yUazx8NEc3UmblG1Q9wL2DRfY1d9G1fVW8QoWyTe/Ca9+dXPx5M/9Cvvf9V7iEYNrqg5DuQrZYo3xUo03Xr9p/TyUlhEl4grFOqPhHglkwMmpKpoQFGs+tmEwWXLmuUkOjBbpTEZAgBAC2wwjNg6Nl7luc3oVr+I8jI9DT8/scm8vHDrEE4fydMzEmaeiFrs3WEgpyZbrl6WAg6onrlCsOxpZj5Mlh5hl0B6ziFs62bJzRvbjVMVhsDtB1fWpuj5SQrHq8szwVLMz/fk60q8oUsJP/uR8AX/sMTh1CuLxZpz5XC73Ko5KxBWXLRPFGvcfnOCrTw2vPTE7B42sx1LNxTbCUWnE0CjWvTOyH9tjFlXXRxfwzMk839g3wn8enMTSNdpjFjU34IFD2bVx7Z/9LGgafOlL4fIf/3Eo6tdd19xEVXE8E+VOUVyWrOeIjcZoNGGb1DyfqKlT98JJy9NHpZ0Ji2/sG8XSBRFDR9MEhiGIRXS+vm+U7mSENtvC0OD1125YnVDEY8dg69bZ5T174KGHwDpzdH0pVHFcbtRIXHFZspbbnJ2Pxmi0M2FRcTymKg5lx6cjbp0xKp0sObxwU5qKGxBIianpdCUshvOhL73ieGgCHj6aY/+pAg8cylJzAzrikdaP0j0Pbr55voA//zw88cSCAt6gK2lzy2AXb7h2A7cMdl3WAg5KxBWXKS0vxNRCGqNRS9eoOR5DuTJVxyWyQPbjVMWhLx2lKxlhz6Y0WzpjOL5EBmBocDxb5cBogXLd46tPnVq5B9uHPgSmCf/1X+Hyxz8euk4GB5f/XJc4yp2iuCy5FNqceQG8ZHv3vM7yp9O4zmQkDC/sTkZ4dmSaiCEYylUwNR1N0+lKRHh6uMDVG9qYKwvL0b9zrotmw8nDXPf6l87+8rWvha9+NfSFK5aEEnHFZcmO3iQPHAo7nM8VwbWSLHI+3/SB0SKBDDgyWaJUcwFB3fU4ODbNi6/obG7fuM6OuMXhyTI1x0MIGC86aEKwozfCtq44hiboTkQ4OF7iRVtma25f7IOtMffQJl1e9WO3YZ84NvvL4WHo71/ysRUh6vGnuCxZrkJMraAhfOfyTQ/lyhwaL+F4AbomODReZChXpeoG87ZvXGdPyqbN1hjKVYmbOlJK2qMGvpTkyuEDw9Th6RN5ThUqyxb5cWC0yDV3/Skvv35rU8Cf/OtPhoWqlIAvC2okrrhsWattzuZOugLNn3PT5AtVF00IoqbOkckqCdvE9YJ5LqLG9o3/8hWXyZJLOmZxeKzIWNHhRK7KZLHODVszxCyDVMzk4FiJmuszkIlfXOTHAw9wyy2zJWLH3/jfOfz+v7hsC1W1CiXiCsUaY6ri0BGf30bsdN90m21QrPnUXJ9K3cPUdQIpiVnagtsD7D81TSpqEjV1tnQlkJSRSIIgIB4xqbo+LxzIYGgatqlxy+ASO3EVCmGGZS18cwgMk0cfeg4/lQa4bAtVtQrlTlEo1hiLyUrc3JHgis44pq4hEQRS0p+26W2LLrg9gEQiEAAkIgZbu+L4gcTzJZahsXtDilTUWnqUjpTwi78I6XRTwPNfv4evPHyUaTuhknNahBJxhWKNsZisxB29SXRdY1tXgh/Z1UM6ZuL6sLE9elahvLKvjXzVZbJU4/B4iYNjRYJAclVfkt0b0qSioegvaTLza18LI0z+4R/C5d/5HZCS9KtfuWbnHi4VlDtFoVhjLCYrce4248UqEUOjXPf4wcg0O/vaFhTKG7d1cDxbZt9wEU1A1NTZlImSq3rcd2AUS9cwDZ101OQ1u/ua+50zUmZ0FPpmt2VgIOwsH4vNs1WJdutQIq5QrEHmViGcqjjNhJvThTxbqvPAoUmCQNKXitKZiOAF8qzH3NyRwJfg+QEJ20RD8sChLE8MFehLRelti5COms19Joo1vv7MKfJVF9fzMQ2dIxMlXrOrh663/hT827/NnuDJJ+Haa5f/ZijOiRJxhWINspjaLhPFGnc/OYKuCTriFnUv4MhkmW2d8aboHxgtcjxbYrrmkYqajEzV2LWhjXQsQr7i8PV9p0hFTVIxk8HuRBjdYs02jHjoSI6hXIV0zCIVjVDzfFJf/BxdN//urLF//ufwG7+xCndJAUrEFYqWcTHFpBYTZnhgtEgQBHTEowhBs1b4ZKlOzfOYLDn4fsBwvo4moFjz8APJY8en2Lslw3MjBcYKNYQQxEwNzw+IWTqTpTqWGU6XzY1oSQ4f5xfe8vJZI2+4Ae6/P0yfV6waamJToWgBi0nYWWifRmncBw9ncf35ESqnR41MVRwyiXB03CBiaOTKDtM1j0TEIFt2iFs67TGLmGUQMTRA8MRQjv2jRXQNgiB0rRzNlnE9n1zZaU5sSiS65/Gjd/wYb54j4Hd97JthpUEl4KuOGokrFC1gMSPpuczt1jNRrHN0ssjhyRJ7B9L4CEo1F0PX2NaZaO7THrNw/YDDE2UAbEMnX3XRNIEm4PB4kceH8nTELXraIsQjJo7nc91Amm/sO4WhCzriEdxAYls6SDiSrbAhHW1Gtrz2Pz7Hrj99X/Oc9/zOn/DQS17Dnk2plt07xYWhRuIKRQu40CqJjVoohyfKuL5ksLuNcs3j7qdOMVWuY+k601WPXLneHM3v6E2iCY0ruuKYumCiWMUPJLcOdpCveBTrHh3xMInnaLZMtlwjYZtYhs5AJs4bru1noDPerJ1SqTtUHY/b9/TTdXg/CNEU8GdedBu//PGH+Ma1r6A9ZnDjtrVRY0ahRuIKRUtoj1mcylfJlh2KdY9kxAhHxKmFfeJTFYeJYp2oqRM1dUqBxPN9ijWXp04U2Ls1w/Wb2zF1bV46fSPM0NQ1dvWn2NGb5MBokcGeBIcnyqSiFmWnRqnuMVrIM9iTZKrssKk9iqnr7N6QYihXwdAEvSmb7XGdnS/aFRanmuGPP/Ed/K4uBmdCEJO2cqGsJZSIKxQtoNFRJx0zSdkmhZrLUK7CWzcMLLh9e8xi38k8XckopbrH0ckyTgBbOsJR8rHJMpW6R1ciQsLWmynxC8VgP3gkS29blJhlMJSrkK/WGZ12sXSNje1hbfFSzWMkX6E/HePq/hQVx2fg/76PF3zib5vHeeLD/8TDV96IVvMQEq7qT5GOWZTr3lndQoqVR4m4QtECJksO121OM1lyKNZc2qIm27riTJYWdqeEJWMnyVcdhqcqjE/Xma64OI6HZRrEbZOK41Gsh37vRoXChWik7Te6wQN0JGzabJPdG9MAlG2Pmuthmxp89z5e+Qtvau7/7I++ha/c8ft0JCKMT1fpS8Woez4nZkINl6PGuGL5UCKuULSAqYpDb1uUvlSMQtVhKFfh6ESJI+PlBUMNu5I2t+/p57MPD3FgrEhnPMLmjiiHJ8rENQ1dhF3q2+MRBnsSZ4yE54YzCiBXduhPx0LBLdbQdZ1Nmdksypil42UnueW6ayAIAJDxOF/790d4phjQmYjg+AETJQfL0OiIRyjUwqYT6615xqWOEnGFogU0RsNeEPDMcIGoqRMxDALJgg2ZJ4o1JksOuoBMzCJiaHS32QRS4PoBw1NVtnbF2b0hRZttzhsJL5QYBA4116fqeqTjFt0Jm3RDeKVky7t+lf6vfGHW4Ace4IGuQWw3oIMSdS8gaupsSEcZzlfRNY1kxGjWZVkrzTMUKjpFoWgJjSJWz48VsQ0NAVRdn8GexBl9K+fGlMcjFrs3ppBC0Gab9LTZZOIWbTGLl+7oJhW1zhgJL9T0uT8djrrbYxZttsGhiRKnChXS9/w7Lx7smhXwP/iDsPrgS17SjKgZyMSouj5V1ycTs0hFTfxAkrB1VcBqDXLekbgQwga+B0Rmtv+ilPK9QogM8HlgC3AMeLOUcqp1pioU64dG5MjBB6bRhIYQEl3AD05Nk7D0eZOTDx3JMpSt4AYBE6U67TGDF/QkmCo7ICXHsmUQ8PWnR+hN2Wxoj80rULVQ/XHX93n4WI5bB7vY2pkknZvkdddf1fy9t+0KjGf3gT0rxvN96WHUymSxRn/a5o3Xb1LCvUZZjDulDrxcSlkSQpjA/UKIrwM/AdwrpfyAEOJO4E7gPS20VaFYVi4mLX6xJGyDkVyVQs1jQ3uUjrhJvuo2JycBHj6aoztpk7INPD/g4FiRwe4EUVOj7ktsU6czbuFLOJ6r0hY1yZbqzbooT58sYBk6m9pjbMrESMcsDo6X6IxHiJsaV/7sm0nf/51Zo/btw9i16wxb5/YdbbNNtnUm6J55GCkBX7ucV8SllBIozSyaM/9J4HbgZTPrPwnchxJxxTphMQWmLob9pwrc/eQIpbrLwYkSiYjBSL4GEjRdNCcnATqTERAghKAzEY6ox6fruH6AqQteuKk93AaouT7TVZe7nxxhe1eC4XyduGVwPFfB0gX5qssVnXEmi3Xe+NQ9XPOqdzVtOvLeD/Dsj7+VN+zasKDNiymBq1h7LGpiUwihA48B24G/kVI+JITokVKeApBSnhJCdJ9l3zuAOwAGBhaOkVUoVpoLTYtfDI2R/VCuzH8dytKVjLA5k2Bsuka2VA+zLUtV9m7uIGrOZm8OdifYNzINhKnzMUsnbhvs7E1wKl8lFZ11lUQMjdHpGr1tkWZdlI64RcTQyVcdDE1Qf+453ve2H2nuM733Jp79p3+l7EO7ee5pMFX7e/2xKBGXUvrAHiFEGviyEOLqxZ5ASnkXcBfA3r17Fy50rFCsMIvpY3khzB3ZF2senh+QKzukoyaJiEm26JCwTTriJpah8djxKfZsaicdMxkv1tCF4NBYCZD0tEW4YUuGdMxksuRQ83yiMxUK616A5wdkEhGKdY+UHX6FOxIRvFqNO379jXQc3t+06/57HkHbsoWK46uokkuUCwoxlFLmhRD3Aa8GxoQQfTOj8D5gvBUGKhStoDGJ1xiBw4XHP8/1qZ+cqtDTZhOfCcPLxCNUXZ/xYh2kxNA1qnUX4ibHJ8uM5KuMT1fZ3BHnB6eKbM7E2NXfRqHmkq+4bO+O05GIcGSixFCugoyaCEJ3SWciQlcygsCh7gXYps72j/8Nv/CJP2va9vXf+3O+fe1L6fYibMiWLr5zvWLNspjolC7AnRHwKPBK4IPAV4C3Ax+Y+Xl3Kw1VKJaTuZN4MUu/4JHq6T71fScLFGseMcsgYZu4Xtgbs1B1MXUN2xQczzmMFeuYmiBmaZiG4Fi2QnfCYrLkIISgp81ma0eY2bmzL8Vrdvdxz7OjPHgkR83zGOxO8oqdPYwVXTriFqXvP8zb/8cbm3Y9+5If5gvv/hM6kzabJQQSYpbZkklbxdpgMSPxPuCTM35xDfhnKeW/CSG+D/yzEOLngSHgTec6iEKxlljqJF5j9P3g4SyWoTPYk0AIg45EhOmZ+igDmRiFqktHwqLs+EwWa0wUHRIRgzbbbDZBjtQ9TF3H0DQiM42Ee1I2scisvzxbqnNiqkpfKowX70xEGCu6XJmErTdeh5WbbNr2yS8/SDaWotMIi2hJKSnM1BVXtU4uXRYTnfI08MIF1meBV7TCKMXlw0qE+Z2NC53Emzv6FkKiCdg3XODqDSk2ZWI8M1wgW6xxdX+KK7riHBwrcUV3nJG8hZSQLYelXrMlBw2QAVQcj4lSncHuBAINxwua/vKztV+7/R//jBd85u9nDfvmN7l/6wvZ4AZkT05hG7P+82TEULVOLnHWfNr9an7JFa2l1WF+y83ciJZk1MLxwnZmJ3IVdm9Mc0VnnPFSjWy5TnfS5ocGu+hK2nz1qWGypRqnpmv4gSRqaugaFOsedS/ANDRGpqpIwNDA1DVAcmC0SKnq4EvBkYkyW5/6Pv/zT945a9A73wl/9VcA7Ji5l4auUXU9NCGoOD5Xb0ioWieXOGtaxNfbl1xxYbQizK+VzI1oGZgZeduGRrEWukd0XVswszHswBOWlZ2ueUgZMFVx8DxJ0XPYGIvj+pKOWFin2zQ0ClUn/K/mESlM8be/+qrm8UqxJH//qW/z1h++mq6ZdQ33kHFE8PCxHJ3xCLv62zB1TUWlXOKsaRFfb19yxYWx3GF+S2GhNz1gwbe/uREtjdT058fCjjy2qc3zqZ9eVdD1A4SATMykUHXRhUY0Kqi6Gh2JCFd0xknMNFuYqoQ9MpGSOz7yv7j6P7/etPf33vP3HNm6izdu7jnje9CVtHn9tf3cuC3TPPfpdikuPda0iK+FL7midSxHmN/FsNCb3tefOQVAfzp2xtvf6REthqYxkIkvWJHw9OO2xywCJMWaTyZhsWcgzZbOOPtO5rEtA13XkBJqnk8gJVd//x5+6Hff0Tzml378l/jnH3kbAtjaFSMW0XnwcHZBN6NK2Lm8WNMivtpfckVrudgwv4tloTe9fMUDIRnsOfPt75bBrkVFtCx03GsH0jx1Is+2rjiu52PoGqWax3WbMzh+wGTJYXS6infsGP/7na9vHmtqyyB/+v5PU/A1roiatEVNHN/n7ieH0YVG0jZw3HB/5Wa8PFnTIr7aX3JF6zE0eGIoh0Cws69tRYVo4ep/ARDMWzf37e9co9yGC+Xe58bobbMZ6Ig3a3hHzfDvt0MKQAMpAOiIm3zvYJZypc7/8/s/z879jzeP9+d/+WVO9mxm98YU48U6mhCUah7Hc2UMTWNnfwIvkByZLLOtM67cjJcpa1rEVUGeS5e5Loebt3c1H9AryUJveqaugRDztlvM29/c6+lN2RRrXjP8sFFVcFN7nBdtzTT3GZmq8L2DWX74P7/MC9//e831//5r7+XUm9+G6fp01hyqrs/G9iiFqkup5hI1dV7Qk5zXsHiyVMc6T10UxaXJmhZxUP69S5W1MGm90JteOhbaUa57F/T2N/d6NnfEeWa4gBAwlC1j6hqTxTo3bZt/DO/ZZ3nPz7ymufz8rhfx0f/1YQzTZBthMay6rrGxPcYbrg0rD371qWFG8lVcf7YMUcTQmCjW2bUhtRy3RbHOWPMirrg0WQuT1gu96TWaLVzo29/c62lErhzPlhkt1Ni1IcUNWzNYM0k4ol7nmh99GS8+fLC5/6e/8D2eDNoQQlJ1QndOzfMxDX3eW0AYrhhweKIMhEKfr7pommhG1iguL9T7l2JVaLgy5rIWJq0bzRYuNLns9OtJRS2u6Eryiit7uGWwixu3dTCSr8Af/iE37dpAbEbAH/y/f8f3D03SsXM7CVtnquKiiTCTM18JqyDOFecdvUk0oXFFVxxTF0wUq/iB5PY9/eqN9TJFjcQVq8JqTVrPj98W5MphU4XJUp37nhvn8GSJ7d0JBnuSuP7Zoz4mijUeOpJj/6lpJJIN6SheIEnYBhPFOrlSHU3TuH1PPwDGIw/ztle8tLn//pe/nnt/909IRi366x5ttsnmjhgnchUmijWcwOemrR28alfvGbHgjbcHU9fY1Z+a96BRGc6XHyJs3LMy7N27Vz766KMrdj7F2qYVgnOuY86dfIxZOo8ezzGar2GZOlFT46GjWUpVDwns7EvQmbDZ3BFjohi6eBoRNB1xg2/sG2MoV0EXkmLdp1jzSdg63UmLDek4mbiFpWsUh0f5H2+5eZ6NjzzyPF57hnLdo+Z6pGMWQ7kyJ3JVtncl6EtHmw+1m7eHD7XF3KfTr2/uMZSQr2+EEI9JKfcu9Ds1ElesGss5ad0YGT98LEfU0LB0geNLHjg02RwNf/yBo0wWHRK2QWfSYjhXpVz3SUUNLFNnuuoSs3RcL6BQ9ak4FQ5PFPF96EtFqXk+z44UKNVcOhIRTF1wYLSMF0hilsaJbJ3RQp1ExMTzA375F15N18Rw08ZPvO8fyN14CzIXkCzn2dgeRQK3DHZx/0HoTkbPmOh96EgWL2BRpSfWwmSxYuVRIq5Y9zRGoEO5MjFDY2iqCsALuuN4Ej56/xGCIIw4Sdk6x6eqHM2W2ZCyKdRcTk1X8aUEGVb+i1s6dddnquxzKl8hk4jQkYiQjplMVRwmSi4SwpopjocQ4FY96p4kIiVXfPEf+cXPzzZoGOrfxjvu/DhI2DxeZM9AO3Uv4PGhPHs2hRElZ5vofWIoxwsHMosS5rUwWaxYeZSIK9YtDdfJ9w9PEjF1ChWHqhOQnGlZNlFy2NqZ4OEjk/SmY8QsnYMTJXwfPD/gwGiRYt3H0gUSiJkahaqHqQtqrqTu+XhSEjUFhydLJCyDsuMikYzka+QqDroAQ9dwvYCNhVG+9aGfn2fjD//+l6jGk3jTdRw/oFj18IOARNTC8wOeO6UhGebkVAXHDehvjzX3rTg+AkHM0ucdsyHMp7uOxMw+KsP58kKJuGJZWamJtbn+X01oCELRrtR9elPhaLRSD6h5Pr4E1/VxhKDq+JgCqq5PoerSl7LxAkmh4mEbGp3xsEBVRyxCzQ1rho8XHSKmPlPISlKo1HB9cLxwPkl3XA7+8Y/Os+/9v/IB7t54HRXHZ6MdHrNeDzB0l8myi6Hr5CuNvpsRsqU6//7MKfpSUTZlonQmIui6xs6+tgWFWUDz+g1N8PjQFCdyZWJmmOLf2xZVGc6XCSrEULFsNIS15gZ0xCPU3IAHDmWZKNaW/VwN/6/rB0yU6uwfLSKlJFeuU6qHAj1RqvH0yQK6EEyU6qSiZujb9iWBBEPXMQ2NdMyiM2kTMTTaYxFsQydihF8NQ4imqyVbcijXPYTQEEhMHd71vU/NE/Bvv+Ambvo/3+SLPXuYrnrETB3b0ql7AQLQhE7Z8TENjWTUCh8KVZeJosOWzhhe4JMr1zk0UWJnb4Ibt2WanYCkDFu+hZmtgkTEwAsC9o1MownB5kwC29Q5OFbiWLaEbWpqUvMy4LIZiavQq9az2Im1s30WF/IZTVUcdCF4dmSa9phB1fFwfJ9K3eUHw3mqXsCO7gR9KYtcqcrB8TLZikNnzMLzJYYQpKI6VTcgFbXoT9tMFh0iRjhaH3GrpONh5cFC2WHaC0AI6m4YvbL15BG+9on/Mc+m3f/zS9Q1i13tUU7makjp4UtJvuLg+D4xS0cX4PsBRyZL9CQjxK0IJ3IVYlaY1DNdc3jxFV2U616zz+ZCpScePJIlZunsGykRNWfbsdV9nWs3prFNjVsGuxa8d4pLi8tCxFVziZVhMRNrE8UaX3/mFPmKh+sHmLrGkYkSN2zNsH+0tOjPqD1m8fjxPDFLxzYt/EDyxFCeuG1h6YJk1KBY9Xj8+BSBFLTZBoWyy3TVxdQEqaiJbRqUHR/fl5ycqlKs+uR12NIZYzhfw3UDDCHQNQ1DEySjJifHqjz3f398ni0//tY/Yd+mnQgJQoOpskvU0vD9sNCV6wb0t0WpeR6leoBpBpi+Rt0NiEcMfnBqGoHE0DX6UtEz7ttCUTyN5KJSzaXNDn3eqh3b5cllIeIq9GplWEzp4IeOZBnKVWmPmcQsg7oXMJSrMjY9cs4ojNNH6cVqne8cGMNxfQxDIwgktmVw3aY2hnI1ruxLct+BcQpVn4ih4QUSTRNs64pTc3yG81Vs00fTBNlyHceXdMUtxoo1tvckEUIjV3Yo1X0iho5hCn79H/+I1z91b/NaPrX3DfzBK34JgIgAoQkihiBhG8QsjQlNI6JBoeZhmhqT5YDOmMmujSnKdY/nx8u0xy10IfADQbnuU6y5FKoOhqadc0KykSyl2rEpLgsRV6FXK8NisjCfOzVNOmpim2HEhW3qpKPw9PAUN2+f//o/NwrjgUNZfD9gslTnuwcm+MGpAlFDww0k9bpHsepyZV8bw/k6UVPj0HiRUt3DC3wsGVYnDAKfk1NVKnWPui9xPJ8220IaEDc0etM2JcenUHHpabMJpKTuBVx/6DE++JHfnmfb4LvvxhWzUSOBDP8nDMFU2SEVTfCCHot8xaXmB9Rdn96UTSpqUXV8klGLLR2gCY1UzGCy6LC5I4ygeX6syEAmfs4JSdWOTdHgshBx1VxiZVhM6WCBQDI/S1gisQ3jrJ/RgdHijB+5HAp7qUbU0Bkv1fB8iSYEgZQMZSvs7E/RkbB48kQeXQgihk7NDScVdV2j6oSj7zZTp1jzCAiouwJfF4xNO2ztinGqUKdXE/TrLp/+7dvm2frDd3yEI5mNeHMuQcz8p+tQdQPAoz1mELUMijWfazamOZ6rYOsauoC6J+mOGCQjOvGIxUu2d5KvOJzIVSjWPIo1h22dCR48kj3vnIFqx6a4LERcNZdYuYnd82Vh7uxr48kTUwghsA2dmhdGktw0E4UB4Po+B8dLTBbr3LA1w8mpMkcnq2GyTtQkV3GJGBqFikfc1JC6wAkkI4UaG9sj/KDiMDpdp+a46JqGG4AmJJauUfcCIqbA8fyZQlMBggAvkHiBxBASDfjF33s7g88/1bT7Qz/yC3z6h95EtuLiza/bhS7A1ASWqeEFYBk6Y4U6/e0ahi5I2CYDmRiFqofr+dQ8H12DVDTSbA6RjlmkYxYjUxUOTQTYpt78W33gUJadvYlzzhko0V67tPq7d1mEGDZGiLapkS3XL7vQq5UM/TsfN27LMJCJEUhJoVonkJKBTIxX7erl5u0d1Fyf7x/JgRTctK0Dxw945FiesUKVVNTACySuF3AiW8HUBfUg7JrTHrOIRzQeGyowWqiiIXF8qLk+STMc/ZZrPlFDEAQSicAyNCpOQNXxcb2AWt1j8Ltf40u/9kNNAS/aCV72gXv4+EvehK7rpKNm80vTaB2ha4CQ1LyATMxka2cMVwb0p6P0p2z6Ujbbu5NkYhYDHXE2Z2KMFuqkoybpmDEvfPDQRInBngTxiIEQgnjEIBEx+M6B8ea8ztz1B0aLK/4ZKhbPSnz3LouROFzezSXW0sRuV9LmNbv7zjoyScdMbh3satr4zHCeLR0xfnCqSNkJmp1zjk9ViZkCKSWOH+D7ARoCNEEmZlGsezi+pOb6lJywGz2BxJcBQQBCBHhSoguJG0B7aYpH3v/T82x9zbs/QyXTFU6MVj0KlfA4tg5C09A08AOJqWv4Egwk27sTRC0DTQh+7patfOKBowgEiYjO1q4449M18rUAXWPB2uWbMlF626Lz7IhZOuPTda7duHDmpmLtshLfvctGxC9n1trE7rkeqKfbWqq59LZFqbp+mMRTqdPTZtMRDUu++oQ1TKKmoO5J0lGTuh9gaIL2qEE2kNRcj7ih4WsCTeoI38X1wfVBF5Lv//Xb6C5PNc/5Oz/22zxw06vxAgk+lB2PtphJseJQdjx8ICIC0rFw8rNU9zCFYGtnnEwiQipqsmdTO11Jmyv72njyRNjlJ27p9KejRC2DbZ2xeQ+ym7aFb4b3H1w4db67LaLmddYhK/HdUyJ+GdDqid3l8Pk1jrH/1DSRmR6SqahFYiZlfUtHgoGOGEO5Cs+PTmPoGpou0CRIKak4EieAoORScX3ScQsZyNDl4gnaYhalqkvFC6i6YYPmn33kbn7v3r9v2vBM3yA//44PUan5aFWXqKHj+j66pqFJsAyDuAV9KZvJiktvMhTxsIkxdCdtynWP3RtS3Lgt7KV547YOcmWHfMWbqcui0R4L3UKNV+y5/u2zzd/ctqOb/aOlM9ZfTvM665GVCKpQIn4Z0MqJ3eVIpJp7jF39KR4fyvPosRzXb26nM2ExlK2wtSNOm22yrTPB0yfzbGqPUXUDcqU6XhD2pxdAXYJXC6g5NYQm0AHLEORKDlJCRIOu/Aj3fOSOeTZc9xufpxyLE3E8PAnSlWEkiS+JCEl/exQNjUREpy9tcyJXpT1mUfV82mMmGzMxDE0jHTd5ze6+5rUv5D7KVxxsc+FX7FsGu84a4dORiKim4euMlQiqUE0hLhNaNUN+/8EJajOZhw3KdQ/b1NjRm1zUOU8/Rr7i8OTQFKemq2xqj7EhbQOCkXwNiWTfyQJTVYex6Ro1N6Dm+HgSfAmmBjIAH5CEwm4AEUujP2nxrXe/ct65f/an/l/u23J9GCIownhva+ZSgpknQypqkolH2NIZZ1tXHN8PMHSdYt2jMx5he3ccy9Ap1T129iaYLDnnvOavPjVMRzyCEKK5TkpJtlxvNkRWXDosx3fvoppCCCE2AZ8CegkHPHdJKf9SCJEBPg9sAY4Bb5ZSTp3tOIrVpVUTu0O5clhXu+41Q+nabJNj2RKTJWdRI/SF/Ia6rtHXZnP1hhRPDuV56GgWU9eIWRonp6qcyFcJgjAyRNNABIAEKcHSASFwvJmIdAHvvvejvO2//qV5/H/b+UP89k+8B39mPyEgYkDFDUvLGppGxfHwfCjVPZJRk00Zm5hpMF6r8c5brwBmO+7UXI9K3eUzDw3RmYww2J1oRiKcfs0qb+HyotVBFYtxp3jAu6SUjwshksBjQoh7gJ8B7pVSfkAIcSdwJ/CellmqWHNMFGucyFXRNUE6apEt13j0aA4/kFQcn2s2ptgz0I4Qxjln5U8XtRO5CpoAw9TZNzLNkclSmMhi6Di+TrEWTkzqhCNn16eZPuRJ0AKQQhKxNDZlh/nG3/7ivPNd9a4v41om+KDpEAEMXeAHENElGoKIoRGgYwlBgMAQggeP5Blot7l5e+c8d0nDHTRZculO2iBg38g0uzekmmGAc69Z5S0olpPziriU8hRwaubfRSHEc8AG4HbgZTObfRK4DyXilxUHRots70pwZLJMtlzjyESZ4akKbiCxdMHjQ3mmKg637ewhHbMWLIZ1YLTI8WyJk1M1BnsSRE2dh45kyZXrBIBt6AzlKmhAJQjIVZxQVAEXwnfD0wgA3fX43Cf+J7tPHWyu/6mf/wue27AdAx3f83EA4RMWzLJNKo5PICV+EOAHAlMI6r7E9TxE0iKiw3ixHnb3KdaawtwsixsEpGyj6SYZylW4uj91RiTCYjJbFYrFckETm0KILcALgYeAnhmBR0p5SgjRfZZ97gDuABgYGLgoYxVri6mKQ186Sixi8N3nJxgv1vCkJBExaI+blGo+Rycr9I4UePH2rnkug7mTmVs7k9iGwVMn8mRLDoWqSzpmMpSrUREeZcdFCIGlaTiejy8F3owNlgbOaUL+cw9/md/99keby+963W/xb9e+HF2AkBqmFu6gi9D9IqVESkEyYjBRqhOLhHHePlD3PCwjHKW32Sa6LpiqeDx0JMvrZ/zXx7MlSjWfoVwFSxNszMSIWwbTNeesbpLLOW9BsbwsOmNTCJEA/gX4DSnl9GL3k1LeJaXcK6Xc29Wl6htfSjTcIOmYRVcyQtTU6UzYZOIW7bEIuiaQMuB4rtpsZrCjNwnMT4IQQtDfHqMjESFi6Lxoa9iDMmppWIaGnHGZRMywGqEf+LNZk7Nzg1w1doRjH3x9U8Dv2X4jW9/9Ff7l6peHk5SaQBcSQ9PpSkSwDIGuQToeYUN7BG/mDSJu6UStMCPSNnTilsnmjhidbTbdbTbpqMlzp8KvwESxxsmpGsW6x9ZMlLLjc2C0yGSxhjFTjKpxzQpFK1jUSFwIYRIK+KellF+aWT0mhOibGYX3AeOtMlKxNpnr201YOo4XoGlhHHXU0ulMRJiqOFRd94zCTI2mDkcmShTrHsmIQb5cp1T32KTbOL6kUveYrnp4XoAQEAQGCIH0wwlLHXB8sN0a9911B72lXNO2F73jH5lItANhhErE0JBITD30QSdsk6RtkIyYRAyNUs3HCyTbe5JhU2XHp+J4ICAIJLFIeH0b0nEkkooTcP/BCb5/eJIgCKi5ko5EhBd0JziSLXN4ssTtezZy47aMGnErWspiolME8FHgOSnln8351VeAtwMfmPl5d0ssVKxZ5vp2E7ZOOmbh+KHg1t2wqNSm9igv2d51RpcZATw+lKc9ZpKyw7rip6bruJ7P8+PlsKCUHsZdSyExBNQ9H1MTRCI69apPANx53yf45Ye+2Dzuz7zxvXzvihc1XeUaYJmCeCRskVaqe0QtnYFMjKipkS07AHgBXNVm4QdQqIb9NhvNJmQQIAPJ1p4YuiYYyVdnmikHaEIjYethQk/ZYbLkIKRkY3tMCbhiRVjMSPxm4KeBZ4QQT86s+11C8f5nIcTPA0PAm1pioWJN0/Dt3jLYxfWbM3z24SEmSw6GBpsyNhvSsWb24nwENIvSht3mbUPjRK6CEA41x6NQcRFaWO0QAZ22GbY3k4KrDn2ff/qnO5tH+8y1r+Z3f+Qd8/wrGmFmpkDg+jLslQlsTIdNhIUm6G+PIqRGOm7Q02bzyLEcSQRShnVRbtgaw9A16q7PkfESbgCO53PzFZ0zriAYylbIV12KNZcXbmonHjEIJKp7lGJFWEx0yv3MFmw7nVcsrzmKBmuhJ+iF2rCzL8WvvXxwUftIJNdvbufEVJXpWjgaTsUs0jGTpGXw6Ik8CI101MD3A1wJsYhBtFjgE3e+AU2GY+2KGeHGd3yKciQ+W1VQhPHjuiYw9VDA655PICEZ0ehJRcOiUoUaQ9kKEUPnpm2ZsNWboeF4QfjQSETY2pWgvy3Cfzw3zqauKJah8YORPN8/muVkPqz/XXZ8aq6H5wccz1XobrO5cWsGU9fWffeotfB3qDg3Ku1+DbIWeoIu1YbFRF2Ek4EVRvI1XF8StzTKTkDc0tjUHsMLJFf1tuEHYV3tct3H0OAXPvY+XvrgN5rH+ZVf+Use7t1BreZhCCAIszYBYqZGzQlwZtI2DU0joQtePNjJ1s4Ex3MVfCSdiQj9qbB58n8enCRmamxIRxFCUHN8yjWPcaFxzaY0g91J9g0XyCRsHC/gwFiJNttkYzrC0ydrRAyduKXTFgldS40szPXKWvg7VJwfJeJrkLVQOrZVNjSEIWrqHJsoUXI8ijWPuuuTipq86spunj1Voi1qkC3WKVRdbnzmfn77w7Oukyfe/mt866d+lcJQjupwARmEDYp1HTQJEUMnkBCzDQwRumo6kxG6EhapWARD17ANnU3tcQIJnQmTshMQMXRMQ8PxJZYhEEKQr7i4geTF2zLNrvQb22McmShRqXv0t9nkKh7dqSgbUlE6EhaFWhgAebbwwvUyul0Lf4eK86NEfA2yFkrHtsqGhjAcmSg1ozw0NDRNIiX8YLREZ9zkZL6OOTbKZ977k819cz0b+cTffYWyZnJgOI8fSBKmgYgIynUPTUBfm03U0hiZduhO2LygN8Hmjji6Jjg6UcI2NExdYzhfRRMSQ9MoWzpCSgxN4HgB27sTDOerVByXDekY12/JYM7USknZBrYQpGMmx7KSg+NFdF0w2J3g8GSJ4YLO5vZoM6Ty9CzM9TS6XQt/h4rzo0R8DbIWamu0yoaGMAxlK2hCoz9lo2uC6ZqLQHCqUEP6Pu/5y99g176Hmvt99h++itx1NcXxMvtPFajWPSxD54ruBLapM1asUal5aLpG1ZVs7oixtSOO5weMT9dmOvh4CE3MlLk18AIwdUF7zGR4qkrM0kCEDR4Gu5N0xC16UnYzlNLUNGpuQLnucXSiTHcywki+Rq3mMT7tkIkbHMtWGZuuEgBvuLb/DGFeT6PbtfB3qDg/SsTXIGuhtkarbGgIA4QdeRKmQaXu4/oSQcCLv3s3v/Mvf9rc/tu/+vvs+4mfpjNuEYuY7N7YRq5UZ8gtM1VxGMhEqXkBMoC4rZOIhLW6e5IRqo7H0FQ1bBTh+mhCkIyaHJks0hY1ma55bGiPkolFqLlhxuXrrumjty3avN6Gq+Pm7R0YGjx8NMdkqY6hC+IRk6jpErU0Rqcr5KsGN2ztIGbplGoudz85wmPHc2zuSDSPM3d0O7c5ciCDNedWWQt/h4rzc1n02FxvtKon6ESxxv0HJ/jqU8Pcf3DirH3+Gj7biuNycHyao5PFZbNhR2+SUt2jpy3MkMyVwjokGydO8KVfu7Up4EdesIdf/fj3ueflb6Q7aTGcrxLIgMMTZSxDJxmx0DWdk1M12mMmhq7h+mAaOnsG0nQmbY5lK5TrHt5MT82YbWDOdLx/7e5+Xru7j3TMYrrm0JuyuWFrO91Je949h7BU7oNHsqRjFv/PjQMYmkbMMtAEICS2YaIJjUCGE6V+IDk6WUHXBKWaP6+vYuMhlq847Bsu4PoBliGImPqq9T09G5d7b9r1ghqJr1GWu7bGYn2xc7fb0pE4Y0R6scyOagXD+RpHhnPc9Ze/wtaRw81t3vZ7n8XfvJmtbTFKjs/X943R1xahLWoSNXU2ZqJM11xsU1CoBOTKDl1Ji5rj05W0iJn6TNy2R8LSAMGGjM3mTBxNwMHxIhXHJxW12L0hdA00aqDPTUpa6J7tHy2RiZvYps5ooU48YgJQ9wKqbtiqbXiqRipmko6aFGrePJdJY3Q7lK0QNXUkUPMCdm9IYWhrLyRR1XhZ+ygRv0xYrC92OX22Z4vC6EravP7afl5298dIvPd/Nbf/85/933xnz20gBPFANlPei1WPYtVluubxgp4kSdvkqv42TE2ga1VqXsBAJoZEMjJVw/EkV3TF2d4Zw7JMdvQmScxcR9Xx6YhblOoehYrDZKlOruygaYLb9/Qv6p7FIwZHJirYpkZn3OLkVBUpIW2bnMxVKdRcdvUnqXsByZl9GhOCjYfYobEiQkiSUYvt3QlS0fUfkqhYHZSIXyYsNtJguSISzjnyf/5Z2LuXxMy29+95KXe94/2koiaF4WkSloammeTKLvmKS38qQrHuIoFnR6bZ1d+GqWts7oxz285uIqaOF0iGshU2tSdAQNX12dyVYChX4WSuwo7eUFTzVZfrN2fY3p3g7idHCIKATCJCVzLC/tESHYnIvPouC92LDe1Rxop1ZCAJpKC7LYJtCupewPFsifa4xZHxCu0Jixu3htmqcycEu5I2N13RcUZHJDVpqFgKSsQvE+ZGGhSqDkO5CtlijXTcmlcbe7kiEg6MFvH9YF6Bq27hkt58LUxlm9v99oe+yZAWx5SQq7hEDBFGl0R1ao6HlJJcxaMrGeEl2zv4zv5xDo6VuGZjim2dcXRdA+SC9bx1Af3pKJPFerNJ8UAmyo3bwnovgz1hK7VSLSx125mw5r1xnO1eDGTitNkWRyZLeH5AwjZJRQ2eGipQ98KqjsP5Co6rI6U8I9xwolgjX3F4+Giu2QXI1HU1aahYEkrELxMavtjpmsOh8RKaEOi6TnfCnucbX66IhOPZEsP5OnFLJ2Ub7P2rP2TPv3yi+ft9H/s8X+3ehV902KRBoepSrnm02Sa5isPJXI2opeEHAdmyi0QyPFXjth1dnMjV6G+PNl00Dx7JErN0kpGwkJZt6mEXIM/n2k1pDo+XkVJS9zwy8RgQtpU7OVUlZhm02RY1z+fQeIma6wNdzXv29WdOzXSqd8hXHOq+z+ZMjKRtUHV8BnsS9LZFefTYFLGIzq07ukhFLQpVh+fHijw7UuDFV3Q2KzjOfUO5aVsHh8bLfHv/ON1Jm/502AgZWBU/9HpJQlLMR4n4Jc7cL6ahwXOnyvi+JJ2w2JSJkY5ZlOtecwS6XF1npmth8s3Wpx/ktb/5tub6Z37sv7P7y//E0aeGyeSr5MreTPnaKLJNkq+4pG2Dmi+ZrjnUXckLehOkbItT+SoVx2fPplSzIQPMjpg3ZWLsGy4AEEgZ1vOuhZEw/elY86H0wKEsw1NVNCGImmE44HixzkSpTrZU51VX1eZdb7nuMpSroGthv82uRIAkoDsR4eBYKPyO53P95nZS0fCNJRW12Ls5Q7ZcnzdZOtfPHo8YDPaEMfIRU2NrZ3LVkn/WUxKSYj5KxC9hFvpiFuseV/UlmK75PHeqQMI22dQepep6zf2WGpEw94FRPDnKu3/61ubvaok2PvLJe+ne0MluQuF1/YDRmSJUri+p1MOqhb0pm5/c3cdzo0UOjZVI2AaWJihUXUzH47lT08iZY+zoTTbfHhIRg139bRwaLzNZdrhhSwaQ2GYomI247GypztHJEv3pGH4QMJKvoYmwWqKpa03xOjBapD8do+YFYXz5RIli1ePAWIkNKRtDE2zvSjBeqiGRHBwv8YIe0RTyhdxQp/vZT+QqpKMmju8jhFi15J/1lISkmI8S8UuYhb6YUVPju89Psqs/1XQjPHZ8ij2b2i/qXM0HhqVz0++9kzd87cvN333mLz9Pac/1DCSssJEwoatisuSwuSPGcK5Coe4QCMGu3iSaJqi6PlLCC3oSTJTqFCoOuqZj6QLPl2eMFhuiW3U9rtucbnbT+cQDR9GEhhAwXXXpSkboTEQ4MVXFmZnozJXqTNc9giCM897eXW8+jDriEUo1F10TDGUrxCM6vpQIAU+dyDNdDf34125q5/GhPI8eyzHYHWds2mWyXOeGLZlzzjkU6x6WLkjYZvN+NSaSV9K9oVLs1y9KxBfJevQXNno/lhyfZMRgUyaGpQvqbjBTtlXO/Axre18MB0aLbLvv61zzW7Od5b/047/EAz/1S7zyqh66ZybuGuLalbTZ2Zvg4w9M4EvY3pvihQMpBjIJRqYqHBwrETXDhJq+VJR0zEIXYXf7Nts8Y9R6y2DXgvHuEVNHENb8Ljs+7TETCfSlIgznqxwdL+NJSdTS8WcaMd/9xDC3DHZy47bOZhegg2NF4raB5wdETR0hBIGUTJVddm1soz0e4frN7Tw5NMV//GCc3ZvSvHhbWHNlrluiM2HNi4pxPJ+qI9nbM9vCreL4CMSKujdUiv36RYn4IliP/sJG70ddE2HauRewb7jAdMVhV18SU9co1MKokesG0s2GCUvixAluecFsE+zspm38811foSZ0ahNFvn8kxw1bMs37NVGs8dCRLA8fzVGq++ze2Iah6wzlqqSiFn3pKDXPIxW1mhEcV/e38eTQFLqusykTa55r7mix8aA9ni3x9MkCpqaTSVpMV11qrk/C0jk4XsTxAxwvjGgp1j10DapuwIb2CKmoxVTJ4eGjU7zumn72j5boTFg8csQhZmmMFVySEYOa6xMxNCqux8CMPemYRSZuAXFetGX+RHBjwnL/aIntXYkwPr3kUHN9elI2hqYhpWxOJBsaK+reUCn26xcl4otgPfoLGyF0hyfK1LwA29Cpuj5TVY89Axn622eFsJGteMH4PrzylXDffc1Vn/j7r/FsWz9ewcEQGld0J7lmYzu2qc2LzhjKVuhO2lQcn+fHyuzoTRI1dYZyFbZ1JtjckeCWwa5mOOBUxSEdt+hO2KRj1jz/djpusv9UgYeP5hjOVzg6USZbcuhIRkhGw5BDXYNcucZYsU7MMhECHE/ieh7CNBBSkiu5mJpGxNTQEEyWnKabZmMmxnTVY2evRYAgbmkYmqAzEWn6wAFyZYdMYmG3xENHwut2gzAJaM9AO6auUXM9aq7Pk0NTSCQb0lEOjpVI2DrJqMVAJkYqarXUvbFcE9qKlUeJ+CJYj/7CqYpDb1uUmGUwlKswXXNI2ga7N6bQdY1y3VvSiKsx2m371Me45g9na3wX/+Kv+fKLXsd3D0zQCZiaoFR3KdZ0XN9vTpw2HoiNmO5N7VEOjJU4OVXhBd1JJos1bEMjE7f46lPD81xXjQfAyFSFw5NlNAG6Luhps/nsw0O4vsTxAtKxCHVPki3VSdgGV3QmSNoGz5zMY+g6AoFlCIpVF7RQRNNRi5ob+si7ExF60lGmKk5zknfu5Knr+xwcLzFaqHJ4wqXihm6auudzeKIMxClUnXkTnALBw0ezdCftZk/RfcMFdvW3Uag6xCMWewbacf1wjmJ0us4WM4rjBTwzXGim5bfSvaFS7NcnSsQXwXr0FzZsXqg+yI7e5JJGXBPFGk9960Fe+cbbZtftfQnc8y260nEyT42QiZlUXZ9UzGRHexu6Jjg4XuK6gXDitPFAbMR0J2yTDakIz54qkis5xCM6bVGThG0wUayz72SeBw5Ncvuefnb2pbh5ewdffOwEvu+TTtqkogaTRYenThZIWgbJqEnUDItR5Ssu5eECm9LRsHGzlPSnbPLVMLknYZv0p+H4ZAVd0+hO6liGTqHm8bLe5LzPtzFSfehIjoeP5YgaGl3JKJqAk1MVjkyUaLMtbtzazljR5dFjOa7f3N5M4jG0sDEFAoQQ2KYOwKHxMqYBPW0x4hGDZ4ZLpGNWWPN8qsqOXhPb0Hh+rMhAJq7cG4ozUCK+CNajv/BcNi9pxFWvE99zDa88crC56rHvPcVURw/2RIWudByJ5BVX9vDsyDQxSydihPW3J4v15oTm6THdpbrLcKFGVzLChvYovi8ZKdSYKDl0JiJ0JaPkqw53PznSTInf2B7j2o3tFKou+4YLxCydmKlRdTwqrk8gJemoSXcyQq7i8PTJAlf1t7G9M0EmbhFIODpRZmy6Rso26E1F8AJwA0nK0uiKWIxN17EMjfsPMq/mSzpmcutgF0+fzJMrO3hSUnMlmbjJzt42JBrXb27n4FiJZ4enuemKDq7d1MGDR7IMdifYNzINgG3oBFIyWXbY2ZsgZoWiXqq5tNlWs9enqWvNUrVreQ5GsXqoUrSLYD2W5FxWm//wD8G2ic0I+IG//hjfPzSJ07+BmKUzVQkbHbfHLCxD5+oNqebEaSDhhpn6IfcfnGAoV+ax4zkqdY9d/W2MTztU3YDNHXGu2ZgmYmrU3YBSzZuJAoF01CQIZHNysPEgaLRLs02dTNxC0zUEkkrdw/UD/EAy2J3kiu4kV/a1cf3mDIVqGC64pTOGoQtyVY+dvSl+8dat/OieDWxsjwGCwZ4EWzoS88rIQvgm4Xg++0enEQLiVpgZeipfw/UDinWPdMxi75Z2dvQlm1Ez7TELU9fZvSGFZWhM1xwkcMOWDAOZ+EyNdUjYJjXPp+4F9LTZ7N6Y5tpNaV58Reea/ntTrB5qJH4Jc9E+zocegptuai6Ov+EnePr9f0PcNs+YWJwo1ub5ja/ekGqO/rd3J+aVt7VNnYNjJTa22/SlbF55VTfpWDjnkLBNak4R05iNm657AZm41XxYNM6TLdXpTESouj5dSZt4xODYZIXITH/MqGXQk4oQNTUeOz7F9ZsztMdMfCnxg4Cr+pNMFh1uHuykty1KR9xnquzwwk3t9KXCid/TJ7HbYxaPH89j6YKx6RpBICg7PrYpGJ6qMjgTKni6u23evemfvTc3bgsfcI23pk3tUR47PgUIrhtIn7XNm0LRQIn4IlivIYZLjmufnoZNm8KfDSYnEVac0qEshap7xsTi6Uk3c/3tp0f3RE2DqGlwKl8nbodRM+mZ0wxkYjwxNIUmg5l6JwEVx2dbZ3xeFcCbt3dwqlBhslSjI2lz47ZQ5O55dpSqG04SpqIGQ9kqEuhN2dimTtI2ycStZsZnZ8JisuSQLdcRhB3uj2VLZCvOglEhO3qT/OuTw1ScsNmDoQsCGTA67TJdceltizAyVUHXtXnCe77oj7nJSmHilcSXEtvUVJSI4pwoEV8E6y3E8KIeOr/2a/A3fzO7fO+98PKXA2FZqNMnFhtCV657PHQkRzpmnvHgePBIdl5Lsn3DhRlXiaQ7YfP48TzXbYbetiiGprF7Q4qxQo2JYp1M3GpWK2z41SEUxTdev6l5nQ2//7Wb0gD0p2McHi8iRJjGtLkjTjxi0J+OndH8Ye49a49H0ARnjQrpStr0JG1cL8A2QpeRoel0JnRsXeD4AYcmSty+58z+mud6M1KRIYqlokR8Eay3EMMlPXS++U149atnl3/zN+HP/uyMzeZOLDZKvgK4vs/Dx3LcOth1xoOj4cP2goDvPj9BqeYStXT6UtFmvPrYdA1TD8XyTXs3Ne0915vEQqPb1+zua+47Ol2jN2WzuSPeDPc72+fWuGeDPYnmZOnZokI2tNtIJDHLYGSqSsX1kVLSlYzwsp29lOsekyXnnJ+RQrFcKBFfBOstxPCCHjrj49DTM7vc3Q2HD0Micea2Myx0Pw6Ol+iMRxZ8cDRKug7lKqGAmzrluk+x5lKoOvSlo1imxhvmVCaExZVjPdsItrFusY0Xnh0pcHSiRL7qYRuCjmSEmGkuGBUykIljmzqTJYdcuU4mYZGOhf9BeK+PZUvcf5B1VaZBsT5R0SmLoNHct1z35hX5n/t6v5aY7Sg/yxniJSX85E/OF/BHH4WxsXMKOCx8PyaLdbZ3x+dt14hc6UraZOIWbbY108QhPEZHIsJQrrKkB+Jimj4v9nPbf6rAw0dyTNd8OuMWCI3j2SodCXPBqJAdvUk0obGtM8ELB9rJxCMIIZrp96PTVU7kqtTcgI545IwIF4ViOVEivghWM8RwsR3q53Je8frsZ0HT4EtfCpc/8IFQ1K+/flE2NYpXHRyf5p4fjHJwfJqdvQksQ5+33VxxlsDeLe28elcv3W1hGdeIrpEt1i7ogThRrPFvTw3z1/ce5PGhKQxNnFUkF/u5fefAOAMdMSxD4AaSRETH0jUePT61oF1zj5uwdfwg7OnZZpuU6x4Hx8L6KPGI0SzUlYgYzRDJ5WIpfxuKS4/zulOEEB8DXg+MSymvnlmXAT4PbAGOAW+WUk61zszVZzUmni5mgtLQRLMWx5V9beE+2VFo2zq70TXXwCOPgHXho+D9oyUGu9u4dmM4oTiSrzCSr8xrvjA3NK7xdpCOWVy9IcWJXIXJUp103Fr0A7FxP547VaDi+BwcnebQeImbt3fQEbcX9Pkv5nMbn67Tn4pi6oJD4yVKMyUJUlHjvBORtwx2NSOBGn75je02fenovO2Xew5lPUZMKVrDYkbinwBefdq6O4F7pZSDwL0zy4plZu4E5WJHdI0vt23qvGR7Jy8cyOA7HulX3QZb5wj4gQPw1FMXLOBns6s/HSMTj5x11Dv37SAVNdnWleDK/hRvvH7TokXnwGiRQAYcnSwjBKRiETQRlmx1fb8ZR36hdLdFGJ2uMl506EzavKCnjZhl4gdiUaPbhpi/4doN3DLYxeaOxPndWRfJUv42FJcm5x2JSym/J4TYctrq24GXzfz7k8B9wHuW0zDF0qJiTo9MueLzn2Dr++Y8Yz/6Ufi5nwtHjwcnljTxdja7qq53Ruheg+WokjdVcZgo1mmzTTQhEAISEZ1CxZ1Xn+VCuW1HN//3mweIGDpxKywO5ng+N1/RueDo/vQY/Eas+dzl/aOl5n1pRZmG9RYxpWgdS41O6ZFSngKQUp4SQnQvo02KGZYSFdP4ckeff449r/2h5vrxl7yU7v/8NmjaRb+KLzVa52JdUu0xi30n82xMRzmWKwMgpSRi6PPqs1woO/tSvGhLmqOTVSZLLu1xi5u2ZdiUiZ8hiqffu1P5Kt/YN8p1m9P0tkWpOD77R0vs7E00k4haUdZ1vUVMKVpHy0MMhRB3AHcADAwMnGdrxVyWUnirQ/PZc9v1xE4ONdf957efQGzcQLcWes8uNnlptQqCheedxJOSLZkYw/kahZrL1o44uzemLkokr97Qzvbu1DxRLNe9M0Tx9HuXLTukYyaTJYe+VKy5frLknPWtZDlYj0XZFK1hqSI+JoTomxmF9wHjZ9tQSnkXcBfA3r17L64H2DrjYlu6XbAL4g/+gJf8n//TXHzuw59i+NYfplT3uHnOKPViX8VXq4FAV9Lm9j393P3kCG4g2d6doDMRQde1Ztr9hdzzudsKBLly/awTsw1Ov3fFukfKNinW3Oa6lXBrqCYOigZLFfGvAG8HPjDz8+5ls+gSYbmiBxblgnjgAbjlluZi7b//NI/+wZ8wVXVpX6D2xnK8ii/FNbKUh9pC+/zcLVsXPM6F3POFtgWouR5V1zurKJ5+75IRg0LNpS06W7BrpdwaKlVfAYsLMfws4SRmpxDiJPBeQvH+ZyHEzwNDwJtaaeR6ZEXqrRQK0NsLtZkICl2HiQns9nZuOcduy/kqvlhhXspD7Vz7NFwVjfM/eCTL/lMFPB8sU282hm5EbJx+joU+n7PVVTnXveuIW2FLua74vB6ZF+vWWI+NuRWrw3lDDKWUb5FS9kkpTSnlRinlR6WUWSnlK6SUgzM/cyth7HpiquI0C/03mFt7+6KQEu64A9LpWQG/7z7wPGg/f4TGQkkwO3sTHBgtXlDiSENkF5OZuJSQuPPtM/f8uhA8d6rIiakqugDXD9ufOd7CoYdL/XxOv3c9KZu33jRAd9JetkSwC7mvCoWqndIiWhY98LWvwetfP7v8nveEGZcXyNxX8aW6fi7kbWMpfvjz7TP3/EcmSnQkIri+ZKJYZ1tXWDrg0HiZ6zanzzj2xXw+rXZjrLeqmYrVRYl4i1j26IHRUejrm13euDFM2InFzr7PAiz0mr5U0bgQYV6KaJ5vn7nnL9Y9NqSjHJ0sM111kZJm+7OFQg/XanTHRLHGg4ezCCFXrNO9Yn2jaqe0iGWrtxIE8IY3zBfwJ56AEyeWJOALvaYP5cqLdi3MrddxcqrC6HR13u/PJsxLKSJ2vn3mFvpKRgxMXWNDe5SEbcxrf3a2KocX8vmcrU7JctYvaXw+lqETMYxmTfNC1VEx4IqzIqRcuai/vXv3ykcffXTFzrceOOcE1j/+I7ztbbMb/+mfwm/91pLPdf/BiTNKs5brHgfHpxnsbjtj/emTfHPdLjFL51S+yhMn8vMSXUbyFTLxCBJ5xvUsV3TKQm4gx/N5fCgPyHld5pejlsjp190Yte/sTbB/tHTG+qWes/H5NPz5MStspiwJy9+quiiXL0KIx6SUexf6nXKnrCJn80X/kFagY8+u2Q337oX/+i8wzbMfbBGczf3RZhuU6l5z+WyuhdPdLqc3dGi0iLBNvXmcub71pfiSz9cNZ35bsxQg8AJJ0l6+tmZnczd958D4vIffxfquG5+PEEazSJjqdK84H0rEV5HTxSGhSV70068j9exTsxsdOgRXXLEs5zubj3lzR6LpGz9X4shCD4G5DR3uPziBba7shNxKxEqf7eE3Pl3n2o1nuqGW6rue+/k0mkw03oiUgCvOhhLxVWSuOPR99G/Z8v4/mP3lpz4FP/3Ty3q+c03mLUYML2SisUGrJuRWMo76bNfd3RZZ1giktTrZqljbqInNVaQ9ZqE99RQv3t7ZFPCJl/0w9+8fXXYBh4ufbL2QicYGrZiQW+k46rNd9207upe149NqNh9RrF/USHy1qFR48cv2oI+MNFd9776nybVluLk/1bLTXoz74Xz1OlZqJLmYkMjlHKmf67o7EpFlrV+iUukVF4oS8dXgzjvhgx+k4U199u8+zZEbX0p7zOLmNZ5evdiJxlYWZTqf26YVXW/O1ZB5LX9eiksfJeIryfe+By996ezyHXfARz7CLiHYdfa91hWnZ4I26posR0hhg/P55lXGo+JyQvnEV4KpqbA4VUPAo1HI5+Hv/g6EOOeu65Wl+K0Xu8/5fPMtrVujUKwxlIi3Einh7W+HTCbMvAS4/36oVCDVOr/3WqAVBa8anG8CcKUmWBWKtYByp7SKu++GH/ux2eXf/32Y07DhUqcVBa/mci5ftArVU1xOKBFfboaHw+JUDbZtg337QhfKZUQrCl4tFtX1RnE5oUR8uQgCeM1r4Fvfml33zDNw9dWrZ9MqspTR8HKOoFXUiOJyQfnEl4OPfSycuGwI+F/9VegPv0wFHJaWuKKSXRSKC0eNxC+G55+HHTtml1/yEvjud8FQtxWWNhpWI2iF4sJQarMUHAde9CJ4+unZdUePwpYtq2aSQqG4PFHulAvlgx+ESGRWwD/zmdB1ogRcoVCsAmokvlgeeyys693gJ38SvvCFSzZZR6FQrA+UiJ+PUikME5yYmF03Ngbd3atnk0KhUMyg3Cnn4l3vgmRyVsC/8Y3QdaIEXKFQrBHUSHwh7r0XXvnK2eV3vAM+9KHVs0ehUCjOghLxuWSz0Nk5u5xOw/Hj0Na2aiYpFArFuVDuFAhdJG95y3wBf/DBsPqgEnCFQrGGUSL+xS+CpsHnPhcuv+99oajfeOPq2qVQKBSL4PJ1p5w4AQMDs8s7d8KTT4Yx4AqFQrFOuPxG4r4Pt902X8B/8AN47jkl4AqFYt1xUSIuhHi1EOKAEOKQEOLO5TKqZfzd34V1Te67L1z+8IdD18mVV66qWQqFQrFUluxOEULowN8ArwJOAo8IIb4ipfzBchm3bDz3HFx11ezyy14G//EfYeVBhUKhWMdcjE/8BuCQlPIIgBDic8DtwNoR8Xod9uyB/ftn1x0/Pt+VolAoFOuYi3GnbABOzFk+ObNuHkKIO4QQjwohHp2Ym7reav7wD8G2ZwX8C18IXSdKwBUKxSXExYzEF6r8JM9YIeVdwF0Ae/fuPeP3y85DD8FNN80uv+Ut8OlPq0JVCoXikuRiRPwksGnO8kZg5OLMuQiKxbC35fT07LqJifkJPAqFQnGJcTHulEeAQSHEViGEBfw34CvLY9YF8s53hpmVDQH/j/8IXSdKwBUKxSXOkkfiUkpPCPFrwDcBHfiYlPLZZbNsMXzzm/DqV88u/+Zvwp/92YqaoFAoFKvJRWVsSin/Hfj3ZbJl8YyPQ0/P7HJ3Nxw+DInEipuiUCgUq8n6ytiUMuyoM1fAH3kkbNKgBFyhUFyGrB8R/+xnw0JVX/pSuPz+94eiPrdlmkKhUFxmrI8CWJ/8JPzMz4T/vuaacPRtWatqkkKhUKwF1sdI/MorwxH3gQPw1FNKwBUKhWKG9TESv+GGcPStUCgUinmsj5G4QqFQKBZEibhCoVCsY5SIKxQKxTpGibhCoVCsY5SIKxQKxTpGibhCoVCsY5SIKxQKxTpGibhCoVCsY4SUrW+20zyZEBPA8RU74dLoBCZX24gVQF3npcflcq2X43VullJ2LbTRior4ekAI8aiU8pKvqqWu89LjcrlWdZ3zUe4UhUKhWMcoEVcoFIp1jBLxM7lrtQ1YIdR1XnpcLteqrnMOyieuUCgU6xg1ElcoFIp1jBJxhUKhWMcoEZ+DEEIXQjwhhPi31ballQghjgkhnhFCPCmEeHS17WkVQoi0EOKLQoj9QojnhBAvXm2blhshxI6Zz7Hx37QQ4jdW265WIIT4TSHEs0KIfUKIzwoh7NW2qVUIIX595jqfPd/nuT46+6wcvw48B7SttiErwG1Syks9YeIvgW9IKd8ohLCA2GobtNxIKQ8AeyAchADDwJdX06ZWIITYAPwP4CopZVUI8c/AfwM+saqGtQAhxNXALwI3AA7wDSHE16SUBxfaXo3EZxBCbAReB/zDatuiuHiEEG3ArcBHAaSUjpQyv6pGtZ5XAIellGs9K3qpGEBUCGEQPpBHVtmeVnEl8KCUsiKl9IDvAj9+to2ViM/yF8C7gWCV7VgJJPAtIcRjQog7VtuYFrENmAA+PuMi+wchRHy1jWox/w347Gob0QqklMPAnwBDwCmgIKX81upa1TL2AbcKITqEEDHgtcCms22sRBwQQrweGJdSPrbatqwQN0sprwNeA7xDCHHrahvUAgzgOuDDUsoXAmXgztU1qXXMuIt+FPjCatvSCoQQ7cDtwFagH4gLId66ula1Binlc8AHgXuAbwBPAd7ZtlciHnIz8KNCiGPA54CXCyH+aXVNah1SypGZn+OE/tMbVteilnASOCmlfGhm+YuEon6p8hrgcSnl2Gob0iJeCRyVUk5IKV3gS8BLVtmmliGl/KiU8jop5a1ADljQHw5KxAGQUv6OlHKjlHIL4Svpt6WUl+RTXggRF0IkG/8Gfpjw9e2SQko5CpwQQuyYWfUK4AeraFKreQuXqCtlhiHgJiFETAghCD/P51bZppYhhOie+TkA/ATn+GxVdMrlRw/w5fB7gAF8Rkr5jdU1qWW8E/j0jKvhCPCzq2xPS5jxm74K+KXVtqVVSCkfEkJ8EXic0LXwBJd2+v2/CCE6ABd4h5Ry6mwbqrR7hUKhWMcod4pCoVCsY5SIKxQKxTpGibhCoVCsY5SIKxQKxTpGibhCoVCsY5SIKxQKxTpGibhCoVCsY/5/etCX7GD14dAAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "w = [-34.67062078 9.10210898]\n", - "Predicción precio con 9 cuartos: $ 47248.36\n", - "Predicción del número de cuartos para un precio de $45.000: 8.75\n", - "ECM: 43.6\n" - ] - } - ], - "source": [ - "def lineal_regression(x, means):\n", - "# W = (Xt*X)^-1 * Xt*Y \n", - " w = np.linalg.inv(x.T @ x) @ x.T @ Y\n", - " plt.scatter(rm, means, alpha=0.25)\n", - " plt.plot(rm, x @ w, color=\"red\")\n", - " plt.show()\n", - " return w, x @ w\n", - " \n", - "def predict_from_room_number(room_number, w):\n", - " return (w[0] + w[1] * room_number) * 1000\n", - " \n", - "def predict_from_price(price, w):\n", - " return (price/1000 - w[0]) / w[1]\n", - " \n", - "def get_mse(yp, y):\n", - " return np.mean(np.square(np.subtract(yp, y)))\n", - " \n", - "\n", - "w, yp = lineal_regression(np.c_[np.ones(rm.shape[0]), rm], Y) # np._c concatena a lo largo del segundo eje\n", - "print('w = ', w)\n", - "print('Predicción precio con 9 cuartos: $',np.round(predict_from_room_number(9, w),2))\n", - "print('Predicción del número de cuartos para un precio de $45.000: ', np.round(predict_from_price(45000, w),2))\n", - "print('ECM: ',np.round(get_mse(yp, Y),2))\n", - " \n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "97yJHn9aDN3g" - }, - "source": [ - "## Regresión Lineal Simple. Librería Sklearn " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "97yJHn9aDN3g" - }, - "source": [ - "\n", - "Hasta este punto hemos usado los conceptos teóricos y prácticos de como funciona el modelo de regresión lineal simple y como se implementa internamente. Esto está muy bien para tener un mejor conocimiento de los conceptos. Sin embargo, en el día a día tenemos que ser efectivos, y para eso lo habitual será utilizar librerías que ya implementen tales modelos. \n", - "\n", - "Por ejemplo, la librería **Sklearn** ya implementa muchos de los modelos de Machine Learning el modelo de regresión lineal. \n", - "\n", - "---\n", - "Usaremos a continuación la función *sklearn.linear_model.LinearRegression()* para entrenar un modelo de regresión lineal simple con las mismas variables que hemos utilizado en el ejercicio anterior. \n", - "\n", - "Por favor revise la documentación (online o usando el comando \"?\") para estudiar los diferentes parámetros que acepta este modelo. \n", - "\n", - "Por ejemplo ¿Para qué sirve el parámetro *fit_intercept*? \n", - "\n", - "Se puede entrenar el modelo con y sin dicho parámetro y visualizarlo en una gráfica.\n", - "\n", - "Una vez ajustado el modelo, comprobaremos que el valor de los parámetros obtenidos (también llamados coeficientes) es el mismo que se obtuvo anteriormente. De la misma forma, utiliza la función *.predict()*, que ya viene implementada, para comprobar que las predicciones son las mismas de antes. \n", - "\n", - "Finalmente, se comprueba que el valor del Error Cuadrático Medio que se ha obtenido previamente es igual al que proporciona la función ya implementada *sklearn.metrics.mean_squared_error()*. \n", - "\n", - "Veamos." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 303 - }, - "id": "xwwMXdGzG_kf", - "outputId": "d6e924fd-eb77-4969-bb41-c4d969655504" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD4CAYAAAAaT9YAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABn10lEQVR4nO2dd5xdZZ3/389pt8+900smPUMCISRABKSj6CriYgF721Wxr7o21P2trgWxu5Z1F9G1I8qKiGJBBDVIhwABEtInmWTqnXL7ac/vjzNzM5PMJJPJ3CnJ83698hrOuad8z7ncz3nO9/kWIaVEoVAoFPMTbbYNUCgUCsXUUSKuUCgU8xgl4gqFQjGPUSKuUCgU8xgl4gqFQjGPMWbyZHV1dXLJkiUzeUqFQqGY9zz88MO9Usr68T6bURFfsmQJDz300EyeUqFQKOY9QojdE32m3CkKhUIxj1EirlAoFPMYJeIKhUIxj5lRn/h4OI7D3r17KRaLs23KnCAcDtPa2oppmrNtikKhmAfMuojv3buXRCLBkiVLEELMtjmzipSSvr4+9u7dy9KlS2fbHIVCMQ+YlIgLIXYBGcADXCnleiFEDXATsATYBbxCStl/tAYUi0Ul4MMIIaitraWnp2faj92TKbKlM0N/3qY6arGyKUF9Ijzt55lJpvuaZvIeKdsPHGd3X5ahoksyYlIVNgGBRJIpOHQMFMjbHg1VIS5Z2cCq5uQxnX+8fYFpu3c9mSL370izef8QEsnJzVWcvay2or+1o/GJXyKlXCelXD+8fA1wp5SyDbhzeHlKKAE/QCXuRU+myD3b+ig6PrWxEEXH555tffRk5q8La7qvaSbvkbL9wHG6Bot0DJTIlTy2dGa4d0cfG/f00zmY549PdfFMV5aqsEGu5PHj+9q5d1v3lM8/nu2/e2I/v3ti/7Tcu55Mkd89sZ+Ne/oJmRoR02DjnkF+98T+iv7WjmVi8wrgB8P//QPgJcdsjaIibOnMEA8ZxEIGQghiIYN4yGBLZ2a2TZsy031NM3mPlO0HjtOXs4lZOtVRi1zJw3Z9UlGLe7b1kYpa1MQserPBCDkVNfnVxn1TPv94tg8UHAby7rTcuy2dGQYKDqmoRdQyiFg61VGTgbxb0d/aZEVcAn8UQjwshLh6eF2jlHI/wPDfhvF2FEJcLYR4SAjxUCXcBNNBZ2cnr3rVq1i+fDmnnHIKl112Gc8888wxH3fz5s2sW7eO008/ne3bt3PuuecCsGvXLn76058e8/EnS3/eJmrpY9ZFLZ3+vD1jNkw3031NM3mPlO0HjpMpuYSMQIY8H1zPJ2zo9OdcYpaOqQvyjgdAMmzSNVia8vnHs91xPRzPP+brGTm+43qEjQPnCBkajudX9Lc2WRE/T0p5BvBC4F1CiAsnewIp5fVSyvVSyvX19eNmjc4qUkpe+tKXcvHFF7N9+3aeeuoprr32Wrq6uo752L/61a+44oorePTRR1m+fDl///vfgZkX8eqoRd72xqzL2x7VUWvGbJhupvuaZvIeKdsPHCcRMii5gYjqGhi6RtH1qI4Z5GwPx5NEzUAUB4sOjcnQlM8/nu2moWPqY2VwqveuOmphGjpF98A5Sq6PqWsV/a1NSsSllPuG/3YDtwBnAV1CiGaA4b/dlTKyktx1112Ypsnb3/728rp169ZxwQUXIKXkQx/6EKeeeipr1qzhpptuAuDuu+/m4osv5sorr2TVqlW89rWv5eAOSbfffjtf+9rXuOGGG7jkkksAiMfjAFxzzTX87W9/Y926dXz1q1+t+DWubEqQLbnkSi5SSnIll2zJLU/qzEem+5pm8h4p2w8cpzZmkbM9+vM2sZCOZWgM5G3OW1HLQN4mnbOpi1v0520G8g4vWdcy5fOPZ3sqYpKKGuzrz/P4nn7u3tzFw7vT1MWPXnRXNiVIRUwG8jZ526Vge/TnHVJRo6K/tSNGpwghYoAmpcwM//fzgU8BvwbeCFw3/PfWYzXmfb9/Hxs7Nx7rYcawrmkdX3vB1yb8fNOmTZx55pnjfvbLX/6SjRs38thjj9Hb28uznvUsLrwweAl59NFHefLJJ2lpaeG8887jnnvu4fzzzy/ve9lll/H2t7+deDzOBz/4wTHHve666/jSl77Eb37zm2O/wElQnwhz3opatnRm6MuVqI5arF1Y2RnzSjPd1zST90jZPvY4Rddl30ABXYCma4QMnahl8PxTGukYKDBUdGmoCnH5ac1jolOO9vzj2f7CNc30ZUvcunEfvu9TEw9RnwixuTNLbTx0VNdVnwjzwjXNY6JT1i1MVjw6ZTIhho3ALcNREwbwUynl74UQDwI/F0K8GWgHrqqYlbPEhg0bePWrX42u6zQ2NnLRRRfx4IMPUlVVxVlnnUVraysQjNx37do1RsTnGvWJ8LwW7fGY7muayXukbD9wnJVNCe7Z1kc8ZBC1dPK2R7bkct6K8cXvaM9/pJDELZ0ZzlxcQyx0QA5zpWAycioPp8vXtnD52paj2u9YOKKISyl3AGvHWd8HPHc6jTnciLlSrF69mptvvnnczw7XRDoUCpX/W9d1XNeddtsUihOB0VEjQPnvVET0YEbCCuMhg9pY4E+/Z1vfmAdEf96mNhYas1/U0unLlY7p3DPFCV875TnPeQ6lUonvfOc75XUPPvggf/nLX7jwwgu56aab8DyPnp4e/vrXv3LWWWcd8zkTiQSZzPwN71MoppNKRtdMJiRyvk/8n/AiLoTglltu4Y477mD58uWsXr2aT37yk7S0tPDSl76U0047jbVr1/Kc5zyHL3zhCzQ1NR3zOU877TQMw2Dt2rUzMrGpUMxlKimik3lAzPeJf3E4l8F0s379enlwU4inn36ak08+ecZsmA+oe6I4kRjt8piMT/xo2LC1h6LjH+LvDpsa57cdCHme62UphBAPj8qWH8OsF8BSKBQnNpWMrhmZNAXGPCDWLqw9xIa5JNpHgxJxhUJRUSYzyq2UiB6P4bUHo0RcoVBUjMlEh1Sa+TzKngxKxBUKxbQzMvq+b3sflqHT1hhHCGNawwcVASd8dIpCoZheRpd8FUKiCdjUMcjAcETIfC++NtdQIq5QKKaV0bHZiYgFIhDuPek8ML9isOcDSsSBz372s6xevZrTTjuNdevWcf/99wPwlre8haeeemrSxymVSlx66aWsW7eOm266acz+1157bUVsVyjmGqNjsxfVRCk4Hr6UZIruuDHYPZkiG7b2cNtjHWzY2jOvm5XMBie8T/zee+/lN7/5DY888gihUIje3l5sO3jVu+GGG47qWI8++iiO47Bx40YAXvnKV5Y/u/baa/nYxz42bXYrFHOVkeSdWMggGbFYsyDJM10ZfOkTNrUx0SFzYeJzvnPCj8T3799PXV1duRZKXV0dLS1B8ZqLL76YkeSkeDzOxz/+cdauXcs555xzSL3x7u5uXve617Fx40bWrVvH9u3by/tfc801FAoF1q1bx2tf+9qZvUCFYoY5OAPS0DQW1cR403lLOb+t/pDiUzPVlWi2RvwbOzfy8Ts/ju1VZh5gbo3E3/c+GB7FThvr1sHXvjbhx89//vP51Kc+xUknncSll17KK1/5Si666KJDtsvlcpxzzjl89rOf5cMf/jDf+c53+Ld/+7fy5w0NDdxwww3jlpi97rrr+OY3v1keoSsUxzNHE5s9U8WnZmPEn3fynPSNk+jIdADwtvVvY1Fy0bSf54QficfjcR5++GGuv/566uvreeUrX8n3v//9Q7azLIvLL78cgDPPPJNdu3bNrKEKxTyiPhHm/LZ6Xrx2wSGj79HMVPGpme4ze82friF2baws4Le/5vaKCDjMtZH4YUbMlUTXdS6++GIuvvhi1qxZww9+8APe9KY3jdnGNM1yJ3pVelZxIlKJ+iKTTYs/VmZqxP+XXX/h4h9cXF5++5lv59uXf3taz3Ewc0vEZ4EtW7agaRptbW0AbNy4kcWLF0/7eUzTxHEcTNOc9mMrFJWmUu6I+kSYVU1x7trSTfdQiYaqEJesbJh2F8foydYRpnPE31/op+6Ldfgy6Bcat+Lsff9ekuHktBz/cJzwIp7NZnnPe97DwMAAhmGwYsUKrr/++mk/z9VXX81pp53GGWecwU9+8pNpP75CUUlG3BGO57OpI0um5GJqGoYGl69dMOXj9mSKbO7M0tZQxdrWYCQ+ldZoR6JSI34pJW+69U388LEfltf9/Z//zrMXPvuYjns0qFK0cxB1TxRzjdse60AXgif3DRG1dEKGRm+2xLbuLJesqmdxbXxK7pXJloqdDqbbHfSrzb/ipTe9tLz8yYs+yScu/sR0mHoIqhStQqE4JqqjFo/sHiBq6YRNnWzJpT1dIBYyyBY9io4/JffKTEanTJeAdwx10PrV1vLyipoVPPGOJwgbsxPXfsJHpygUiiOzsilBb66ELyVSwt50AZAsrYuRHfY1TyXaYyaiU0bXcqmNhcoPnKONE/elzz/8+B/GCPimd2xi63u2zpqAwxwR8Zl06cx11L1QzEXqE2HOWlKDBIaKNo7ns7IpgalrJIZdIVFLpz2dO6qEmplojTYd4YXfe/R76J/S+eP2PwLwrcu+hfyEZHXD6mmzc6rMujslHA7T19dHbW1tOYTvREVKSV9fH+GwSjdWzD3OXlaD68uyIGaKLrbrceqCOACdQwX2pAs0JCKTjmCZiaYNx+KyeabvGVZ+c2V5+cLFF3LnG+7E0GZdOsvMuiWtra3s3buXnp6e2TZlThAOh2ltbT3yhgrFDDNacBNhg4G8w4r6OMmISa7ksrUry4r6eHmScrK1wyvdtGEq4YW2Z/Os7zyLx7seL6/b9d5dLE5Nf/jxsTLrIm6aJkuXLp1tMxQKxSQ4ILj15cnCkRF0a3WY5lRkzPaVmKQ8WiYKL2ytjrNha88hk52f3/B5rrnzmvL+N115E69Y/YrZMv+IzLqIKxSKo2OudGYfbwRdyYSaqTKey6a1Os7mzuyY5KUfPnQXH/zrZeX9XrH6Ffzs5T+b825eJeIKxTxiLpdunakU+qlw8ANnw9aesm8/72S56tdnMlDqK3/e/cFu6mPTG6deKeZEdIpCoZgcM13I6WgYGfGGTY2+XImwqc2Jh8t4jDSu+M+H/o1Lb1pSFvD/OPenyE/IeSPgoEbiCsW8YqaSY6bKfOksv33oPv7xV1eWl69c+VbedtqnCZvzb1yrRFyhmEdUupDT8U5fvo+6L9aVlxNWNf/3kkcQMjJnXD9Hy6QfO0IIXQjxqBDiN8PLNUKIO4QQW4f/VlfOTIVCATOTHHM8IqXk1f/36jEC/ofX/I3br9xC0TbntOvnSBzNSPy9wNNA1fDyNcCdUsrrhBDXDC9/ZJrtUygUo5iJ5JhKM9PRNTc/dTNX/eKq8vJnn/NZPnbB8dPvdlIiLoRoBV4EfBb41+HVVwAXD//3D4C7USKuUFSc+eJ3Ho+ZjK7ZM7iHRV870E3nlPpTeOTqRwgZocPsNf+Y7Ej8a8CHgdHvbI1Syv0AUsr9QoiG8XYUQlwNXA2waFFl2hMpFIr5wejoGph8VufR4Pkel/7oUu7edXd53dPveppVdaum5fhzjSP6xIUQlwPdUsqHp3ICKeX1Usr1Usr19fXzJ2xHoVBMPyOhfaOJWjr9+enpBP/fD/03xqeNsoBff/n1yE/I41bAYXIj8fOAfxRCXAaEgSohxI+BLiFE8/AovBnorqShCoVi/jOd0TWjfeuDzi5e/9vzy59duuxSfv/a36Nr+mGOcHxwxJG4lPKjUspWKeUS4FXAn6WUrwN+DbxxeLM3ArdWzEqFQnFcMF3RNSO+9aFigff8+ZIxAr7n/Xu44/V3nBACDseWsXkd8DwhxFbgecPLCoVCMSHTldW5pTPDr7Z/nRf9cjG7h7YC8O/P/i5/e003rVUnVhXQo0r2kVLeTRCFgpSyD3ju9JukUCimm7lSNAuOPbrm/r33c8FPzykv/8PSq/j3c/8LYM5krs4kKmNToTjOmctFs46GodIQC7+6kKHSUHndl897kJMbFyCEIFdyT8jMVSXiCsVxzv07+mjvy+P4PomQwcKaaLlo1nwR8ffc/h6++eA3y8uffPbPiPin4XuCJzoGWV4XQ9e1eZk2f6woEVco5iEj7pH2dI7BgkNV2GBxbfwQN0lPpsgDO9M0JMIkwwYl12dTxyCrW6ooOO4sXsHk+MO2P/CCn7ygvPyqVe/gzWs+QSxkMFiwaU/n6csU6c4WufLMhfPmoTSdKBFXKOYZI+4RX/rs7S+gCUGm6BE2DHqz9hg3yZbODHWJEAgQQhA2g4iNbd05zlicmsWrODzduW4av9RYXm6KN7HtPdv489MD5TjzZMRizQIr6E2bK52QAg6qnrhCMe8YyXrszdpELYPqqEXM0unL2YfUFu/P27Q1xCk4HgXHQ0rIFBye6Ogvd6Y/Ukf6mURKyct//vIxAv7w1Q+z/wP7iVmxcpz5aE70Ko5qJK44YZlLERtHw0hN8WzRoSociFfI0BgsuofUFq+OWnRniugCntg7QF+2RMH2WVIXpTpqUXT8OTPJeeMTN/KaX76mvPyFS7/Ah8770Jht5nL3oNlCibjihGQ+R2yMjEbjYZOi6xExdUpuMGl58Ki0Lm7x+02dWLogZOhomsAwBNGQzu82ddKQCFEVtjA0uHztgll5sO0a2MXS/zzQLH1d0zruf8v9WPqho+vjoYrjdKNEXHFCMhOFmCrFyGi0Lm6xrTtL0fHwJSyvCx8yKu3N2py+MMWDu/vxpcTUdKriBh0DBRoSEfK2Sypi8cDONCsaDm0eXMkHm+u7XPT9i/j7nr+X1z3z7mdoq2077H7zuYpjJVA+ccUJSaULMVWSkdGopWsUbZf2dI6C7RAaJ/uxP2/TnIpQnwixbmGKJXVRbE8ifTA02N1XYEvnILmSy22P7Z+x/p3ffOCbmJ82ywL+v1f8L/IT8ogCrjgUNRJXnJAcD23OXB/OXdEwxjd8MCPXmQgF4YUNiRBP7hsiZAja03lMTUfTdOrjIR7vGOTUBVWMloXp6N852kXTb2/njbdfVP7ssrbLuO3Vt6EJNZ6cKkrEFSckc32C7Ei+6S2dGXzps6M3S7boAIKS47K1a4hnL68rbz9ynbUxi+29OYq2ixDQnbHRhGBlU4hl9TEMTdAQD7G1O8uzlhxomnCsD7aRuQfTcHj7ny5hX3ZX+bOOf+2gJdEy5WMrAtTjT3FCMl2FmCrBiPAVHZ/aWKgcQTI6FLA9nWNbdxbb9dE1wbbuDO3pAgXHH7P9yHU2JsNUhTXa0wVipo6UkuqIgScl6VzwwDB1eHzPAPsH89PWv3NLZ4abt36Zy3+5tCzg/3HeD/jba7qVgE8TaiSuOGGZqxNkk5l0HSw4aEIQMXV29BaIh00c1x/jIhrZfuTfQN6hN+uQilps78rQlbHZky7Qmylx1tIaopZBMmqytSuYLF1UEzumyI972u/hgp8eKBF7+fLX8tFzvgacmIWqKoUScYVijjESBz6ag33TVWGDTNGj6HjkSy6mruNLSdTSxt0eYPP+IZIRk4ips6Q+jiSHROL7PrGQScHxOH1RDYamETY1zm+bWieuweIgTV9uougGbw6GMPnNlU9TFUoBnLCFqiqFEnGFYo4xmUnXxbVxwoZBX85GIvClpCUVpjoaGnd7AIlEIACIhwyW1sfYN1jA8ySWobGiIU4yciCN/WiRUnL1bVdzw6M3lNfd+oo78Isno2MgpZxzcw/HA0rEFYo5xmQmXVc2JejN2iyrj7OwJsLDu/txPGitjpR92QcL5cnNVWzcM0jOdhjMuwwVHXxfckpzgjULUuXtpjKZ+dtnfsvlN15eXv7o+R/l2udeCxyYpFXJOZVBibhCMceYTFbi6G26MwVChkau5PLUviFWNVeNO0l79rJadvfl2NSRQRMQMXUW1kRIF1zu3tKJpWuYhk4qYvLCNc3l/Q4XKdOZ7aT5ywe2XZRcxNPvepqoGR1jqxLtyqFEXKGYg4yuQtift8sJNwcLeV+2xD3bevF9SXMyQl08hOvLCY+5uDaOJ8H1fOJhEw3JPdv6eLR9kOZkhKaqEKmIWd6nJ1Pkd0/sZ6Dg4LgepqGzoyfLP5zayFt++0p+88xvyttufNtG1jatrcTtUBwGJeIKxRxkMrVdejJFbt24D10T1MYsSq7Pjt4cy+piZdHf0plhd1+WoaJLMmKyr7/I6gVVpKIhBvI2v9u0n2TEJBk1aWuIB75460DDiPt3pGlP50lFLZKREEXX49dbf8Yb7/hY2dav/sNXed8575uN26RAibhCUTGOpZjUZMIMt3Rm8H2f2lgEISjXCu/Nlii6Lr1ZG8/z6RgooQnIFF08X/Lw7n7WL6nh6X2DdA0WEUIQNTVczydq6fRmS1hmEOUyOqKlO7+bj933nLKNZy04iw3/tAFTN1HMHirZR6GoAJNJ2Blvnw1be7jtsQ7u296H442tm31wbZf+vE1NPBgdjxAyNNI5m6GiSzwURK/ELJ3qqEXUMggZGiB4tD3N5s4Muga+H7hWdvblcFyPdM4uT2wGIYgun3nwJWME/CNr/8D9b7lfCfgcQI3EFYoKcLRVEkd36+nJlNjZm2F7b5b1i1J4CLJFB0PXWFYXL+9THbVwPJ/tPTkAwobOQMFB0wSagO3dGR5pH6A2ZtFYFSIWMrFdjzMWpfj9pv0YuqA2FsLxJWFLBwk7+vIsSEXKWZpbcj/ju5s+VT7nG1d+iRXxF7JuYbJi905xdKiRuEJRAY62SuJILZTtPTkcT9LWUEWu6HLrY/vpz5WwdJ2hgks6VyqP5lc2JdCExvL6GKYu6MkU8HzJhW21DORdMiWX2liQxLOzL0dfrkg8bGIZOotqYrx4bQuL6mLl2in5kk3BdrliXQsduc2I/xBlAV8ev4S3LrmfWvFcqqMGZy9Tcd5zBTUSVygqQHXUYv9Agb6cTabkkggZwYg4Ob5PvD9v05MpETF1IqZO1pe4nkem6PDYnkHWL63hzMXVmLo2Jp1+JMzQ1DVWtyRZ2ZRgS2eGtsY423tyJCMWObtItuTSOThAW2OC/pzNwuoIpq6zZkGS9nQeQxM0JcO0pHQuvXE1HZmOsm3/uvou6qL15RDERFi5UCZFOg3f+AZcey3YNuzYAUuXHnm/o0SJuEJRAUY66qSiJsmwyWDRoT2d53ULFo27fXXUYtPeAeoTEbIll529OWwfltQGo+RdvTnyJZf6eIh4WC+nxI8Xg33fjj6aqiJELYP2dJ6BQonOIQdL12itDmqLZ4su+wbytKSinNqSJG97/Nejn+KWDf9VPs5nzv8xdcbZZIouUsIpLUlSUYtcyZ0XzTNmnG3b4POfhxtuGP/zXK4ip1UirlBUgN6szRmLU/RmbTJFh6qIybL6GL3Z8d0pQZZmLwMFm47+PN1DJYbyDrbtYpkGsbBJ3nbJlAK/90iFwvEYSdsf6QYPUBsPUxU2WdOaAiAXdik6LmFT4y+77+ZjG64q739B86t54YJ/o9YI0TVUoDkZpeR67BkONZyOGuPHBRs2wOc+B7ffPvE273gHfPCDsGxZxcxQIq5QVID+vE1TVYTmZJTBgk17Os/Oniw7unPjhhrWJ8Jcsa6FGx9oZ0tXhrpYiMW1Ebb35IhpGroIutRXx0K0NcYPGQmPDmcUQDpn05KKBoKbKaLrOgtrDmRRRi2dnlwvV9x6Gr70g3VmjOsvfZD2Hp+6eAjb8+nJ2liGRm0sxGAxaDox35pnTAueBzffHIj2Y4+Nv000Ch/7GLzznVBdPWOmKRFXKCrAyGjY9X2e6BgkYuqEDANfMm7fyp5Mkd6sjS6gJmoRMjQaqsL4UuB4Ph39BZbWx1izIElV2BwzEh4vMQhsio5HwXFJxSwa4mFSI2GDUvLJDe/kjt2/KB/jnn++B7/YRtHxyRWzlFyfiKmzIBWhY6CArmkkQsaEdVmOO7JZ+M53An92b+/427S1wUc/Cq99LViz91BT0SkKRQVY2ZQgW3J5pitD2NAQQMHxaGuMH9K3cnRMeSxksaY1iRSCqrBJY1WYmphFVdTiopUNJCPWISPh0eGMI70xW1LBqLs6alEVNtjWk2X/YJ6/tt/OeT+pLwv4v1/478hPSM5deG45omZRTZSC41FwPGqiFsmIiedL4mF9TjXPmFb27QvcHkIE/xIJ+Nd/HSvgF18Mf/gD+D5ICc88A//0T7Mq4DCJkbgQIgz8FQgNb3+zlPITQoga4CZgCbALeIWUsr9ypioU84eRyJGt9wyhCQ0hJLqAp/YPEbf0MZOT9+/oo70vj+P79GRLVEcNTmqM05+zQUp29eVAwO8e30dTMsyC6uiYAlXj1R93PI8HdqW5sK2epXUJcm4vL7/tlPLnS1PLeepdmwgbB8R4rC89iFrpzRRpSYW58syFx5dwP/544Br52c8m3uY1r4FrroE1a2bOrikwGXdKCXiOlDIrhDCBDUKI3wEvA+6UUl4nhLgGuAb4SAVtVSimlWNJi58s8bDBvnSBwaLLguoItTGTgYJTnpwEeGBnmoZEmGTYwPV8tnZlaGuIEzE1Sp4kbOrUxSw8CbvTBaoiJn3ZUrkuyuN7B7EMnYXVURbWRElFLbZ2Z6mLhYhYGu//8yt4YP9dZZs2vWMTqxtWH2Lr6BK4VWGTZXVxGoYfRvNawKUMRtCf+xz89a8Tb/ehD8H73gct86tt3BFFXEopgezwojn8TwJXABcPr/8BcDdKxBXzhMkUmDoWNu8f5NaN+8iWHLb2ZImHDPYNFEGCpovy5CRAXSIEAoQQ1MWDEXX3UAnH8zF1wekLq4NtgKLjMVRwuHXjPlbUx+kYKBGzDHan81i6YKDgsLwuRm+mxJB2B+/9yQfKNv3r+uu4uPV1rG5YMK7NkymBOy+wbfjRjwLR3r59/G0aGoJJyLe8BWKxmbVvmpnUxKYQQgceBlYA35JS3i+EaJRS7geQUu4XQjRMsO/VwNUAixaNHyOrUMw0R5sWPxlGRvbt6Rx/39ZHfSLE4po4XUNF+rKlINsyW2D94loi5oHszbaGOJv2DQFB6nzU0omFDVY1xdk/UCAZOeAqCRkanUNFmqpC5bootTGLkKEzULAxNMET3U/z6cf+obzP2vpz+MbzfkXJgbB5+GmweVn7u78fvvnNYBKyOEFtmtNPDyYhX/Yy0PXxt5mnTErEpZQesE4IkQJuEUKcOtkTSCmvB64HWL9+/fiFjhWKGWYyfSyPhtEj+0zRxfV80jmbVMQkHjLpy9jEwya1MRPL0Hh4dz/rFlaTipp0Z4roQrCtKwtIGqtCnLWkhlTUpDdrU3Q9IsMVCkuuj+v51MRDZEouyXDwE66Nh8g7Rb719JV05DaX7frxZQ+ytHrJ8dUWbft2+OIX4X/+Z+JtLr888Gefd97M2TVLHFWIoZRyQAhxN/ACoEsI0Tw8Cm8GuithoEJRCSbTx/JIjPap7+3P01gVJjYchlcTC1FwPLozJZASQ9colByImezuzbFvoED3UIHFtTGe2p9hcU2U1S1VDBYdBvIOKxpi1MZD7OjJ0p7OIyMmgsBdUhcPUZ8IIbApuT5hU+f/tn6L3+/9Stm2N678KvX6RezrCyH87DF3rp9V7r03GGX/5jcTb3P11YFPe8WKmbNrjjCZ6JR6wBkW8AhwKfB54NfAG4Hrhv/eWklDFYrpZDJ9LA/HwT71TXsHyRRdopZBPGziuJJcyWWw4GDqGmFTsDtt05UpYWqCqKVhGoJdfXka4ha9WRshBI1VYZbWBpmdq5qTvHBNM3c82cl9O9IUXZe2hgTPXdVIV8ahNmbxl90P8I1NV5btOiX1fK5c8qVArCX4EqKWWZFJ24rgeXDLLYE/+5FHxt8mHA782e96F9TUzKx9c5DJjMSbgR8M+8U14OdSyt8IIe4Ffi6EeDPQDlx1uIMoFHOJqU7ijYy+79veh2XotDXGEcKgNh5iaLg+yqKaKIMFh9q4Rc726M0U6cnYxEMGVWGTbMklV3IJlVxMXcfQNEKmRl+uRGMyTDR0wF/ely2xp79AczKIF6+Lh+jKOCyshUt/egYDpQNxzF989n1oJLGMoIiWlJLB4bric7bWSS4X1Bq59lronuBlftmyQLRf9zoIhcbf5gRmMtEpjwOnj7O+D3huJYxSnDjMRJjfRBztJN7o0bcQEk3Apo5BTl2QZGFNlCc6BunLFDm1Jcny+hhbu7Isb4ixb8BCSujLBaVe+7I2GiB9yNsuPdkSbQ1xBBq265f95RO1X/tb91e4bed3ynb94XV/IOqfTtHxeXxvP2HjgP88ETLmVq2Tzk746lfhC1+YeJsLLggmIV/wgiDxRnFY5nza/Wz+yBWVpdJhftPN6IiWRMTCdoN2ZnvSeda0plheF6M7W6QvV6IhEeaCtnrqE2Fue6yDvmyR/UNFPF8SMTV0DTIll5LrYxoa+/oLSMDQwNQ1QLKlM0O2YONJwY6eHDsy9/KH7veU7XnPWe/h6y/8OnDgXhq6RsFx0YQgb3ucuiA+u7VONm0KXCM//enE27zqVcEk5FrVZHkqzGkRn28/csXRUYkwv0oyOqJl0fDIO2xoZIqBe0TXtXEzG4MOPEFZ2aGii5Q+/Xkb15VkXJvWaAzHk9RGgzrdpqExWLCDf0WXrNPP/+56Xvl4lkjw8TP+zDvOPxAkNuIeMnYIHtiVpi4WYnVLFaauzVxUipRwxx2BaN9998TbfeAD8P73w4Lx49UVR8ecFvH59iNXHB3THeY3FcZ70wPGffsbHdEykpr+TFfQkSdsamN86gdXFXQ8HyGgJmoyWHDQhUYkIig4GrXxEMvrYsSHmy305+1hsZfc3fv/eKL/d2V7L635DnXWalY3NR7yO6hPhLl8bQtnL6spn/tgu6YV2w5G2J/7XFBHZDzq6gJ/9lvfCvH4+Nsojok5LeJz4UeuqBzTEeZ3LIz3pve7J/YD0JKKHvL2d3BEi6FpLKqJjVuR8ODjVkctfCSZokdN3GLdohRL6mJs2jtA2DLQdQ0poeh6+FKyefAOvr7xXeVjnpF8G22RNyCApfVRoiGd+7b3jetmrFjCzsAAfOtbwSRkPj/+NmvXBv7sK6887pJq5ipzWsRn+0euqCzHGuZ3rIz3pjeQd0FI2hoPffs7v61+UhEt4x137aIUj+0ZYFl9DMf1MHSNbNHljMU12J5Pb9amc6jAzvQuvrfz8vKxWmJtvGbxTyjaGlURk6qIie153LqxA11oJMIGthPsP+1uxp07g6Sab3974m0uuywQ7fPPn77zKo6KOS3is/0jV1QeQ4NH29MIBKuaq2Z0vmP86n8+4I9ZN/rt73Cj3BEXyp1Pd9FUFWZRbaxcwztiBv//1koBaCCDqIvamMlft/YxVCzxv8+8mf3FA7HRV7fdQlxfzOqWJN2ZEpoQZIsuu9M5DE1jVUsc15fs6M2xrC527G7G++8PRtm//vXE27zlLfDhDwe1tBVzgjkt4sdNQR7FIYx2OZy3or78gJ5JxnvTM3XtkLC2ybz9jb6epmSYTNEthx+OVBVcWB3jWUsPJKfs68/z16197CjcwvVPfLy8/orFn+DFy99AwfHIFG0KjkdrdYTBgkO26BAxdU5qTIxpWNybLWEdoS7KGHwffvWrwJ/90EPjb2NZwSj73e8OfNuKOcmcFnGYpwV5FEdkLkxaj/eml4oGduRK7lG9/Y2+nsW1MZ7oGEQIaO/LYeoavZkS5ywbe4wnup7kPx56YXl5YfRZvGLxtwkZgTiHDZ2SrtFaHeXFa4NIjtse62DfQAHHO1CGKGRo9GRKrF6QnNjAfB6++91AtPfvH3+bJUuCScg3vEEl1cwj5ryIK45P5sKk9XhveiPNFo727W/09YxEruzuy9E5WGT1giRnLa3BGk7Csb0Sb/ztxewe2lre/3PP/it9A1UIISnYgTun6HqYhj7mLSAIV/TZ3hN0Tg8bQeNkTRPlyBoAurrga1+D666b2OjzzgtG2pddppJq5jFKxBWzwlydtO7LlujN2kedXHbw9SQjFsvrNVa3JDm/rZ6eTJHfPbGfm7Z8ndvbv1be70Pr/4eXrno5gwWb+4t97O0vkBzubD9YcFhUEx0jziubEvRmbZbXx+jJlOjJFNA0jasig9S/6+qgjvZEvOIVQVLN6YckYCvmMUrEFbPCbE1aj43fFqRzQVOF3myJu5/uZntvlhUNcdoaEzjexFEfPZki9+9Is3n/EBLJglQE15fEwwY9mRLpbAlN07hiXdAl5uH9D/DGOy4q739m/eW8aeWXqIpY5EouVWGTxbVR9qTz9GSK2L7HOUtred7qpkNiwc9bXkPnLbdzwX99lfoH7pnwWjve9DbCH/kgtatOvMp+JxIiaNwzM6xfv14+NNEkiuKEoxIlFQ53zNGTj1FL56HdaToHilimTsTUuH9nH9mCiwRWNcepi4dZXBulJxO4eEYiaGpjBr/f1EV7Oo8uJJmSR6boEQ/rNCQsFqRi1MQsLF1jZ38nn350bE3r3131DMlQDbmSS9FxSUUt2tM59qQLrKiP05yKlB9q562oBceh/4Yf0Pzf/0li57bxL7ymhuwHPsTdF76UcE1qzINRZTjPf4QQD0sp14/3mRqJK2aN6Zy0HhkZP7ArTcTQsHSB7Unu2dZbHg3/7z076c3YxMMGdQmLjnSBXMkjGTGwTJ2hgkPU0nFcn8GCR97Os70ng+dBczJC0fV4ct8g2aJDbTyEqQu2dOZwfUnU0tjTV6JzsEQ8ZOJ6Pl984gVk3I6yja9ffgPrGs7nyb0+idAArdURJHB+Wz0btkJDIkIsZKBnhmj78fdY8N9fw8gFnRHrD7pe95TVGP/2cbjqKjCCn/HGrT2EHV9lOJ9gKBFXzHtGRtjt6RxRQ6O9vwDASQ0xXAnf3bAD3w8iTpJhnd39BXb25ViQDDNYdNg/VMCTEmRQ+S9m6ZQcj/6cx/6BPDXxELXxEKmoSX/epifrICGomWK7CAFOwaXkSkJS8sfdP+LR7IEGDUljGRdU/S/9adhBhnWLqim5Po+0D7BuYRJ272bBv3+SpT/7/oTXOHDBc+h4+3sZOutccrZH2NQ4v22stM+FyWLFzKNEXDFvGXGd3Lu9l5CpM5i3Kdg+ieGWZT1Zm6V1cR7Y0UtTKkrU0tnak8XzwPV8tnRmyJQ8LF0ggaipMVhwMXVB0ZGUXA9XSiKmYHtvlrhlkLMdJJJ9A0XSeRtdgKFrOK6Po3XyuPfmA23FgfXGLwnrCXqHStieT6bg0rptEy/63Y9Y88Cfy9stPejauq98Ldve9A7+rtdy7oo6xKjokRFhPth1JGBOThYrKosSccW0MlOlg0f7tzWhIQhEO1/yaEoGo9F8yafoengSHMfDFoKC7WEKKDgegwWH5mQY15cM5l3ChkZdLChQVRsNUXSCmuHdGZuQqQ8XspIM5os4HthuMJ8kHIcdkX8cY9+5yevw8mdQLNq885Gf85o/fJ+Q64x7LVLXefx1b+d7p7+YxMIWFtZEqIuH0HWNVZoYV5gFlK/f0ASPtPezJ50jagYp/k1VEZXhfIKgRFwxbcxk6eCR5BrH8+nJlsgUHTQB6VyJeNjA830G8g5Z20UXgp5sieUNCZqTEfb25/ElGLqOaWjEDR1TNxD4VEdDlFyfkBFkPxpClF0tfVmbIKFTQ+Bh6tAlfsig+fOyXU2FZ3HDH1O86NFrJrS9u7qRv7zszfzt3BcRTca56KR6NnUMUucEJW3TuRIDBYcr1rVQGw+NG8VjaIJ4SMf1fTbtGyJi6iyuiZMpOmztylJ0vPndV1MxaU4YEVfNJSrPZLMwJ/oujuY76s/b6ELw5L4hqqMGBdvF9jzyJYenOgYouD4rG+I0Jy3S2QJbu3P05W3qohauJzGEIBnRKTg+yYhFSypMb8YmZASj9X1OgVQsqDw4mLMZcn0QgpITRK8MujvYF/4XlvTD72+Gc8rzlw+Oa+8Xn/8W/u+8l2OYwf2JhHQaDYN6S2NPOk/UCpJ6hoo2z15eT67klvtsjld64r4dfUQtnU37skTMA+3YSp7O2tbUuD5zxfHJCSHiqrnEzDCZibWRpJeBvIvj+Zi6xo6eLGctrWFzZ3bS31F11OKR3QNELZ2waeH5kkfbB4iFLSxdkIgYZAouj+zux5eCqrDBYM5hqOBgaoJkxCRsGuRsD8+T7O0vkCl4DOiwpC5Kx0ARx/ExhEDXNAxNkIiY1Dz6MP9z88dJHWGu8CNv/Ax3LDkDXTcIG4JYyCDsumRLPqbpY3oapeFIkqf2DyGQGLpGczJyyH0bL4pnJLkoW3SoCgc+7znZjk1RcU4IEZ8LdTpOBCaThXn/jj7a0wWqoyZRy6Dk+rSnC3QN7eP0RTUTfkcHj9IzhRJ3benCdjwMQ8P3JWHL4IyFVbSni5zcnODuLd0MFjxChobrSzRNsKw+RtH26BgoEDY9NE3Qlythe5L6mEVXpsiKxgRCaKSzJS6653Y++ssvH/a6d1S38N6Xf4ytjUsJGYKFNTGilkYy4xDSYLDoYpoavTmfuqjJ6tYkuZLLM905qmMWuhB4viBX8sgUHQYLNoamHXZCciRZas61Y1PMOCeEiKvQq5lhMlmYT+8fIhUxCZtBHZGwqZOKwOMd/Zy3Yuzr/+gojHu29eF5Pr3ZEn/Z0sNT+weJGBqOLymVXDIFh5Obq+gYKBExNbZ1Z8iWXFzfw5JBdULf99jbXyBfcil5Etv1qApbSANihsaCuM4r/++7XHXXzw57nbeuhE//ww/pjRyoSGhqgCcRhqA/Z5OMxDmp0WIg71D0fEqOR1MyTDJiUbA9EhGLJbWgCY1k1KA3Y7O4NoigeaYrU/ZnT8ScaMemmBOcECI+V+t0HG9MpnSwQCAZmyUskYQNY8LvaEtnBs8LOr1HLZ2+bJGIodOdLeJ6Ek0IfClp78uzqiVJbdxi454BdCEIGTpFx0cAuq5RsIPRd5WpY/T18fmff43zt9x/2Ov6/Hnw/y4Bx4BF9n9j+q24oy5BDP/TdSg4PuBSHTWIWAaZosdprSl2p/OEdQ1dQMmVNIQMEiGdWMji3BV1DORt9qTzZIoumaLNsro49+3oO+KcwYy2Y1PMSU4IEVfNJWZuYvdIWZirmqvYuKcfIQRhQ6foBqF+5yyrKdcTdzyPrd1ZejMlzlpaw97+HDt7C0GyTsQknXcIGRqDeZeYqSF1ge1L9g0Waa0O8VTepnOoRNF20DUNxwdNSFb17uazP/4PlqT3HfYavvnaa/js6tvptB8vr1ukvYUW7Sr6bAf7oEoVugBTE1imhuuDZeh0DZZoqdYwdEE8bLKoJspgwcVxPYquh65BMhIqN4dIRS1SUYt9/Xm29fiETb38/+o92/pY1RQ/7JyBEu25S6V/eyeEiJ/ozSXm0sTu2ctqyiF0g4USpqGzqCbK81Y3AZRT5+tiIc5ZVkvR9Xhw1wCe57OgOigy5bg+3YNFTF1Q8qE6rGMZGhlh83D7IA1VYTQkK/Y8w1s33MSlm/8+oT2D4RjvuPL/8fDCU6kKGwzpf+EZ93NgB5/rxDkvfAvZko+uB66f3qyDTzD6loCuAUJSdH0a4iGakmFKnk9LKkLE1GhOhmmsCrOzJ0fI1PB9n87BEotrYsDY2uXberK0NcYPmRu4a0s3bQ1Val5nnjETv70TQsThxG4uMZcmdusTYV64pnnCkUkqanJhW33Zxic6BlhSG+Wp/Rlytl/unLO7v0DUFEgpsT0f33G5ePN9vP6vN7GuY/OE53+8dRUffsmH2VfThC8lridxfLD9fp6Rr4dRzYXWaj8ladUTMjQGCi6D+aCrfVgHoWloGni+xNQ1PAkGkhUNcSKWgSYE/3z+Ur5/z04EQUz30voY3UNFBoo+usa4tcsX1kRoqoqMsTlq6XQPlVjbqh+yXs3rzG1m4rd3woj4icxcm9g93AP1YFuzRYemqggFxyNb8hjMl2isCtNs+Fyw4be89d5f0DLUM+6xepL1fPeCV3Lzqc/BiMfwJPgSHMfB8XwcDzRNsjv0BjzRX95vgfwgyyIvCEb9HuRsl6qoSSZvk7NdPCAkfFLRML6UZEsuphAsrYtREw+RjJisW1hNfSLMyc1VbNwTdPmJWXowOrcMltVFxzzIzlkWjMw2bB0/db6hKqTmdeYhM/HbUyJ+AlDpid3p8PmNHGPz/iFCwz0kkxGLeDhIg1+llzj37htZdsPX0Xx/3GM82ryS7zz7Kv5+6jkk42GkH4y07ZJLTdQiW3DIuz4FJ2jQPKjfSq/5nfL+YdnGGvOb5IseAwWHiKHjeB66pqFJsAyDmAXNyTC9eYemRCDiQRNjaEiEyZVc1ixIcvayIHLl7GW1pHM2A3l3uC6LRnXUwPUlRcc/5BV7ovmbS1Y2sLkze8j6E2leZz4yE0EVqp74CcDBdbSns870dBx79DFs1+OR9gFq9u7gH//wY1p/ddOE+921+ny+tf5lPNp0Urk/vQR0ApEWmkAHLEOg6zpSgqFJugvt7LKuHnOsZcWbMLQYIUNgeyAlRC2NkicJGRqrmhJoaMRDOs2pMHvSBaqjFgXXw3U9WmuiGJpGKmZy5ZkLD5uhOpC3CZvGmB92ruSWsyynI6NVMTeYrt/e4eqJKxE/QaiUAGzY2kNxVA1rOCBIK5sSkzrnhme6Cd97Dytu+AapDXdNeK5HXvxaHnz5m/i7E6e/YNM1VKTo+BRtD1eCJ4N4bemDRyDoguB1M2RpNFVZ3Jm7dMwxm+3/IOSdGYQIisDdYg1fij88e5mMmNTEQiypi7GsPobn+Ri6TqbkUhcLsaIhhmXoZEsuq5riR2zvdttjHdTGQmMqE0op6cuVyg2RFccP0/HbO6amEEKIhcAPgSbAB66XUv6nEKIGuAlYAuwCXiGl7J/oOIrZpVITu+3pXFBXu+SWQ+mqwia7+rL0Zu3xZ+UjBvz850Hn9U2bOH+c45aicf5+1Vtwr34bD/X73L+zD1PXiLoae/vz7Bko4PtBZIimgfABGYygLR0QAtsdjkgX0KN/lydz/1c+fsy9gFb/I3h+MJcpBIQMyDtBaVlD08jbLq4H2ZJLImKysCZM1DToLhZ5z4XLAco/zqLjki85/PT+duoSIdoa4hQdf9xIBJW3cGJR6aCKyfjEXeADUspHhBAJ4GEhxB3Am4A7pZTXCSGuAa4BPlIxSxVzjp5MkT3pAromSEUs+nJFHtqZxvMledvjtNYk6xZVo+cKtN34fVq+/Z+YQwPjHiu3rI1973g/fZe/lMe7cgwNVyX0MrCjNxskshg6tqeTKTo4XuA28SU4HuX0IVeC5oMUkpClYcsOthlvHXOuZYVb0DQTzwdNhxBg6ALPh5Au0RCEDA0fHUsIfASGENy3Y4BF1WHOW1FX/lGOuDnu2dZHb9ahIREGAZv2DbFmQZJ4yDgkEkHlLSimkyOKuJRyP7B/+L8zQoingQXAFcDFw5v9ALgbJeInFFs6M6yoj7OjN0dfrsiOnhwd/XmS6W5e+def85K/3Dzxzs99LgPv/QCbVp7J7nSOvf1F2hrjRByf+3f0kc6V8IGwodOezqMBed8nnbcDUQUcgHHmOH3A9112aB+iKLaW1y/zvkZMrICQTsn1sAHhERTMCpvkbQ9fSjzfx/MFphCUPInjuoiERUiH7kwp6O6TKZaFuVwW1/dJho2ym6Q9nefUluQhkQgnet6CYno5qugUIcQS4HTgfqBxWOCRUu4XQjRMsM/VwNUAixYtOiZjFXOL/rxNcypC0/anSPznVzjt3j9OuG33S1/J9je9E+/kk8uTd/ds6yPuSpbWJQgbBo/tGaAvazNYcEhFTdrTRfLCJWc7CCGwNA3b9fCkKIdzWxrYBwn5gH4LfeZ3y8v19r9SzXPQBXiahqkFO+gicL9IKZFSkAgZ9GRLRENBnLcHlFwXywhG6VVhE10X9Odd7t/Rx+XD/uvdfVmyRY/2dB5LE7TWRIlZBkNFe0I3yYmct6CYXiYt4kKIOPB/wPuklEOjJ2UOh5TyeuB6CCY2p2KkYg4hJdx+O1x7LS/++8SZkHde8U/84vyX0xtNsqA6xovXtgSz8k0J4NAkiJbqKB2DBbJFj2ctreaxPQNELG1YYMH1IREK/NS+9NEIJi9H/29oix3sD/9LeTninU29/XEEGr4A3RToQmJoOvVxnXTexvUkqViIBdUhOvqLWLogZukYWtAUwnF9IpbO4tooNcPNkVMRk6f3D3H52gX0ZIrs7S+ia4KlNRGe6c6xpTPDouoI0bCh3CSKijMpERdCmAQC/hMp5S+HV3cJIZqHR+HNQHeljFTMIsUi/PCHwSTkrl3jb9LQxEOvupr/WnoBbjjKopooEUvHyjtE8jYFxzmkMNNIU4cdPVkyJZdEyGAgVyJbclmoh7E9Sb7kMlRwcV0fIcD3DRAC6clyKKHtgU+RfeGr8US6bFNr4UfoVANBhErI0JBITD3wQcfDJomwQSJkEjI0skUP15esaEwETZVtj7ztggDfl0RDOrbrsyAVQyLJ2z4btvZw7/ZefN+n6Ehq4yFOaoizoy/H9t4sV6xr5exlNWrEragok4lOEcB3gaellF8Z9dGvgTcC1w3/vbUiFipmlr4++PrX4dprwXXH32b9evjYx+CKK+jJ2WzpzLC7L0t0cw+2FwhuyfFxfcnC6gjnrqg/pMuMAB5pH6A6apIMB3XF9w+VcFyPZ7pzQUEpPYi7lkJiCCi5HqYmCIV0SgUPHxgwvs+gecD33lD6BDH/WWVXuQZYpiAW0im5PtmSS8QK6rVETI2+XFAkxfXhlCoLz4fBQtBvc6TZhPR9pC9Z2hhF1wT7BgrDzZR9NKERD+tBQk/OpjdrI6SktTqqBFwxI0xmJH4e8HrgCSHExuF1HyMQ758LId4MtANXVcRCRWXZuhW+8AW44YaJt7niCrjmGjjnnEM+GvHtnt9Wz5mLa7jxgXZ6szaGBgtrwixIRcvZi2MJykcNtxpGAmEjaFUmhE3RdhnMOwgtqHaIgLqwGfi1paDXuZc95oE+lnH3BdQ470Igxgi4oQXlbx1PBr0ygdZU0ERYaIKW6ghCaqRiBo1VYR7clSaBQMqgLspZS6MYukbJ8djRnQ3qrLge5y2vIxYyEALa+/IMFBwyRYfTF1YTCxn4EtU9SjEjTCY6ZQPBL248nju95ihGqFh23t/+Foyyf//7ibd55zvhgx+kp+6gQlWjIjLGY1Vzknc/p21SdkskZy6uZk9/gaFiMBpORi1SUZOEZfDQngEQGqmIgef5OBKiIYOCO8jv0i9GmoFUCxmitfhDDGLlMENdBPHjuiYw9UDAS66HLwO/emMyEhSVGizS3pcnZOics6wmaPVmaNiuHzw04iGW1sdpqQrxp6e7WVgfwTI0nto3wL07+9g7ENT/ztkeRcfF9Xx2p/M0VIU5e2kNpq7N+yqDKkt07qNqp8xBpq18pevCzTcH/uzHHx9/m3gcPvrRQLhTqWO2YTJRF8FkYJ59A0UcTxKzNHK2T8zSWFgdxfUlpzRV4flBXe1cKai/fU/6U+wqHnj4nGb9J4azkiHNDSY4/SBrEyBqahRtP6j9LcDQNOK64NltdSyti7M7ncdDUhcP0ZIMmif/bWsvUVNjQSqCEIKi7ZErunQLjdMWpmhrSLCpY5CaeBjb9dnSlaUqbNKaCvH43iIhQydm6VSFdFJRq5yFOV+ZSyWMFROjRHwOMuXyldksXH99INq9veNvc9JJgT/71a8Ga+IMwUqV0BwRhoips6snS9Z2yRRdSo5HMmLyvJMbeHJ/lqqIQV+mxGDBodPZwIb+A66Ty5e8m/Mb3slj7Wk2dgwifRBa0FlHkxAydHwJ0bCBIQJXTV0iRH3cIhkNYegaYUNnYXUMX0Jd3CRn+4QMHdPQsD2JZQiEEAzkHRxf8uxlNeWu9K3VUXb0ZMmXXFqqwqTzLg3JCAuSEWrjFoPFYC5hovDC+TK6nUsljBUTo0R8DjLp8pUdHfCVrwT/JuKSS4KR9qWXjo3Hmy4bjpIRYdjRky1HeWhoaFoQSvhUZ5a6mMnegRLdhU7uHHx5ed+U1coH1/4a3zN5omMAz5fETQMREuRKLpqA5qowEUtj35BNQzzMSU1xFtfG0DXBzp4sYUPD1DU6BgpoQmJoGjlLR0iJoQls12dFQ5yOgQJ522FBKsqZS2owh2ulJMMGYSFIRU129Um2dmfQdUFbQ5ztvVk6BnUWV0fIldxxwwvn0+h2rpUwVoyPEvE5yES1NVp3bYHPfQBumriyH697HXzkI3DqqRWx4Vjre4wIQ3tfHk1otCTD6JpgqOggEOwfLOL5Hn/uex8dxQO9Lz92xm2srj+Vrd05NncOUii5WIbO8oY4YVOnK1MkX3TRdI2CI1lcG2VpbQzX8+keKpK3fQq2i9DEcJlbA9cHUxdUR006+gtELQ1E0OChrSFBbcyiMRkup8mbmkbR8cmVXHb25GhIhNg3UKRYdOkesqmJGezqK9A1VMAHXry25RBhnk+jW1XjZX6gRHwOsrIpwT1be6n9250sv+HrVD10mEa+H/4wvO990Nw8/TZUoL7HiDBA0JEnbhrkSx6OJxH4PD10K7elv1ze/qVL/o2LW19PXcwiGjJZ01pFOlui3cnRn7dZVBOh6PpIH2JhnXgoqNXdmAhRsF3a+wukIiYlx0MTgkTEZEdvhqqIyVDRZUF1hJpoiKITZFy+6LRmmqoi5esdcXWct6IWQ4MHdqbpzZYwdEEsZBIxHSKWRudQnoGCwVlLa4laOtmiw60b9/Hw7jSLa+Pl44we3Y5ujuxLf865VVSNl/mBEvG5QqkEP/oRfO5z1O/YwUvG26apKXCNvPnNEIsd9Skm64sd2S5vO+wfzFMVNlhcG5+W+h4jwtBYFWLvQIF01iZTdNCsTv6Yfk15u+bwOi5v/ja1sQgNCYs96QLLG3S29+SwDJ1EyKJgy3LNlaGCG8SRGzqnNsXxfHh4V5qC4xEPGUgE0bCBOdzx/rI1LQwVHdrTeYaKNk3JME3JEA2J8Jh6JhCU2x25Z685exH/ddd2opZAE4CQhA2TkuPjy2CiNFN02Nmb56SmBNmiN6aa4chDzPF8NnUMErV0LEMg0eecW0XVeJkfKBGfLdJp+MY3gknI0gQ+xjPOCCYhX/KSYNbuGJisL3b0dktq44eMSI+VA6NaQcdAkc2daR4svIOh7PbyNhfEbmRhcjEN8ShZ2+N3m7porgpRFTGJmDqtNRGGig5hUzCY90nnbOoTFkXboz5hETX14bhtl7ilAYIFNWEW18TQBGztzpC3PZIRizULAtfA6KYMh7tnmzuz1MRMwqZO52CJWMgEoOT6FJygVVtHf5Fk1CQVMRksumNcJiMPsfa+PBFTRwJF12fNgiSGNvdCElWNl7mPEvGZYvv2IKnm+usn3ubFLw6Sas49d9pPP1lf7HT6bCca+dcnwly+toX7e7/Hndv+X3n7sxKfpNG4BITA92U55T1TcMkUHIaKLic1JkiETU5pqcLUBLpWoOj6LKqJIpHs6y9iu5Ll9TFW1EWxLJOVTQniw9dRsD1qYxbZkstg3qY3WyKds9E0wRXrWiZ1z2Ihgx09ecKmRl3MYm9/ASkhFTbZmy4wWHRY3ZKg5PokhvcZmRAceYht68oghCQRsVjRECcZmf8hiYrZQYl4pbjnnmCU/dvfTrzN298OH/oQLFtWcXMmG2kwXREJhxv5t2eeZP13DjQpaTYv4rkNnyMVMXm8Y4i4paFpJumcw0DeoSUZIlNykMCT+4ZY3VKFqWssrotxyaoGQqaO60va+/IsrI6DgILjsbg+Tns6z950npVNgagOFBzOXFzDioY4t27ch+/71MRD1CdCbO7MUhsPjanvMt69WFAdoStTQvoSXwoaqkKETUHJ9dndl6U6ZrGjO0913OLspUG26ugJwfpEmHOW1x7SEUlNGiqmghLx6cDz4Je/DDIhN24cf5tIJPBnv+tdUDNeGnplGR1pMFiwaU/n6csUScWsMbWxpysiYUtnBs/zxxS4ioYc2r61lsFSX3m7Nyz+A4VCEK+dzjuEDBFEl0R0iraLlJJ03qU+EeLcFbXctbmbrV1ZTmtNsqwuhq5rgBy3nrcuoCUVoTdTKjcpXlQT4exlgZ+3rTFopZYtBqVu6+LWmDeOie7FopoYVWGLHb1ZXM8nHjZJRgweax+k5HqkohYdA3lsR0dKeUi4YU+myEDe5oGd6XIXIFPX1aShYkooEZ8KuRx85zvBSLt7guKNK1YEov261x02qWamGPHFDhVttnVn0UTQPLghHh7jG5+uiITdfVk6BkrELJ1k2OCnz3yGuzq+X/78y5fcRCmzmu6MjRaFwYJDruhSFTZJ5232potELA3P9+nLOUgkHf1FLllZz550kZbqSNlFc9+OPqKWTiIUFNIKm3rQBcj1WLswxfbuHFJKSq5LTSwKBG3l9vYXiFoGVWGLouuxrTtL0fGA+vI9+90T+4c71dsM5G1KnsfimiiJsEHB9mhrjNNUFeGhXf1EQzoXrqwnGbEYLNg805XhyX2DPHt5XXlCcPQbyjnLatnWnePPm7tpSIRpSYXY0pkBmBU/9HxJQlKMRYn4ZNi/P0io+dKXJt7mwguDScjnP/+okmoqzegfpqHB0/tzeJ4kFbdYWBMlFbXIldzyCHS6IhKGikHyzc7MfXx54xvK6y9qeS13v/XH3PZYB/tkgXTORdOgORlBVkkG8g6psEHRkwwVbUqO5KSmOMmwxf6BAnnbY93CZLkhAxwYMS+sibKpYxAAX0oMXSNbdGmsCtGSipYfSvds66Ojv4AmBBEzCAfszpToyZboy5Z43ilja8TkSkEUi64F/Tbr4z4Sn4Z4iK1dgfDbrseZi6tJRoIHdjJisX5xDX250pjJ0tF+9ljIoK0xiJEPmRpL6xKzlvwzn5KQFGNRIj4eTzwB110HP/3pxNu8+tVBUs3atTNn11Ey3g8zU3I5pTnOUNHj6f2DxMMmC6sjFJwDZWenGpEw+oGxM93JF5+4sPxZxKjio+vuZHldHRAIr+P5dA4XoXI8Sb4UVC1sSoZ5+Zpmnu7MsK0rSzxsYGmCwYKDabs8vX8IOXyMlU2J8ttDPGSwuqWKbd05enM2Zy2pASRhMxDMkbjsvmyJnb1ZWlJRPN9n30ARTQTVEk1dK4vXls4MLakoRdcP4st7smQKLlu6sixIhjE0wYr6ON3ZIhLJ1u4sJzWKspCP54Y62M++J50nFTGxPQ8hxKwl/8ynJCTFWJSISwl//GPgGvnLXybe7oMfhPe/H1paJt5mjjHeDzNiavzlmV5WtyTLboSHd/ezbmH1MZ1r5IERs3S+/uh7+NPuW8qfvffUmzil/kzq4lbQSJjAVdGbtVlcG6UjnWewZOMLweqmBJomKDgeUsJJjXF6siUG8za6pmPpAteTh4wWR0S34LicsTjFyuEOQt+/Zyea0BAChgoO9YkQdfEQe/oL2MMTnelsiaGSi+8Hcd4rGkrlh1FtLES26KBrgva+PLGQjiclQsBjewYYKgR+/LULq3mkfYCHdqVpa4jRNeTQmytx1pKaw845ZEouli6Ih83y/RqZSJ5J94ZKsZ+/nHgibtvwk58Ek5Dbto2/TUND4M9+y1uCKn+MGmU+1jFv/IUjvR+ztkciZLCwJoqlC0qOP1xbWA7/DWp7HwtbOjM80vM7Pn3vgc7ypyffxiXNb+PSkxrLE3cj4lqfCLOqKc7/3tODJ2FFU5LTFyVZVBNnX3+erV1ZIqYR1ENJRkhFLXQRdLevCpuHjFrPb6sfN949ZOoIgprfOdujOmoigeZkiI6BAju7c7hSErF0vOFGzLc+2sH5bXWcvayu3AVoa1eGWNjA9Xwipo4QAl9K+nMOq1urqI6FOHNxNRvb+/nTU92sWZji2cuCmiuj3RJ1cWtMVIztehRsyfrGRNn2vO0hEDPq3lAp9vOX41/E+/vhW98KRtr5/PjbrFsXiPbLXz5uUs189BeO7v2YipiU3CBDcChvs7o5galrDBaDqJEzFqXKDROmwp7BPVzw0wNNsBvCy/jomb9GejrbejLcuyPNWUtqyverJ1Pk/h19PLAzTbbksaa1CkPXaU8XSEYsmlMRiq5LMmKVIzhObaliY3s/uq6zsCZaPtfo0eLIg3Z3X5bH9w5iajo1CYuhgkPR8YhbOlu7M9iej+0GES2ZkouuQcHxWVAdIhmx6M/aPLCznxed1sLmzix1cYsHd9hELY2uQYdEyKDoeIQMjbzjsmjYnlTUoiZmATGetWTsRPDIhOXmziwr6uNBfHrWpuh4NCbDGFrQT3RkItnQmFH3hkqxn78cfyK+Ywd88Yvw3/898TYvelGQVHP++ZM65Hz0F46E0G3vyVF0fcKGTsHx6C+4rFtUQ0v1ASEcyVY8Wjzf49IfXcrdu+4ur/vw2t/i2y3s7rMxhMbyhgSntVYTNrUx0RntfXkaEmHytsczXTlWNiWImDrt6TzL6uIsro1zflt9ORywP2+Tilk0xMOkotYY/3YqZrJ5/yAP7EzTMZBnZ0+OvqxNbSJEIhKEHOoapHNFujIlopaJEGC7Esd1EaaBkJJ01sHUNEKmhoagN2uX3TStNVGGCi6rmix8BDFLw9AEdfFQ2QcOkM7Z1MTHd0vcvyO4bscPkoDWLarG1DWKjkvR8djY3o9EsiAVYWtXlnhYJxGxWFQTJRmxKureUCn285f5L+L33huMsm+7beJtrr46SKpZsWJKp5iP/sL+vE1TVYSoZZTrgyTCBmtak+i6Rq7kTmnENTLavfHJ7/Ffjx2o8f3FS79Bg3gRd23poS4GpibIlhwyRR3H88oTpyMPxJGY7oXVEbZ0Zdnbn+ekhgS9mSJhQ6MmZnHbQa6rkQfAvv4823tzaAJ0XdBYFebGB9pxPInt+qSiIUqupC9bIh42WF4XJxE2eGLvAIauIxBYhiBTcEALRDQVsSg6gY+8IR6iMRWhP2+XJ3lHT546nsfW7iydgwW29zjkncBNU3I9tvfkgBiDBXvMBKdA8MDOPhoS4XJP0U0dg6xuqWKwYBMLWaxbVI3jBXMUnUMllpgRbNfniY7Bclp+Jd0bKsV+fjK/RNz34ZZbAn/2I4+Mv00oFLhG3v1uqJ2eV8H56C8csXm8+iArmxJTGnH1ZIr87NH7+Je7LimvO7XuXO543R9pSsb4zWP7qImaFByPZNRkZXUVuibY2p3ljEXBxOnIA3EkpjseNlmQDPHk/gzprE0spFMVMYmHDXoyJTbtHeCebb1csa6FVc1JzltRy80P78HzPFKJMMmIQW/G5rG9gyQsg0TEJGJq+DIIV8x1DLIwFQkaN0tJSzLMQCFI7omHTVpSsLs3j65pNCR0LENnsOhycVNizPc7MlK9f0eaB3aliRga9YkImoC9/Xl29GSpClucvbSarozDQ7vSnLm4ujwXYGhBYwoECCEIm4Hbblt3DtOAxqoosZDBEx1ZUlErqHneX2Blk0nY0HimK8OimphybygOYX6I+KZNsGbN+J8tWxaI9utfHwh4BZiP/sLD2TyVEVfJLfGsG05j99DW8rpbXvoYcaORbd15mpIxJJLnntzIk/uGiFo6ISOov92bKZUnNA+O6c6WHDoGi9QnQiyojuB5kn2DRXqyNnXxEPWJCAMFm1s37iunxLdWR1nbWs1gwSlXAoyaGgXbJe94+FKSipg0JEKk8zaP7x3klJYqVtTFqYlZ+BJ29uToGiqSDBs0JUO4Pji+JGlp1IcsuoZKWIbGhq2MqfmSippc2FbP43sHSOdsXCkpOpKamMmqpiokGmcurmZrV5YnO4Y4Z3ktaxfWct+OPtoa4mzaNwRA2NDxpaQ3Z7OqKU7UCkQ9W3SoClvlXp+mrpVL1c7lORjF7HH0jtDZ4KmnDvz3+efD7bcHo3Ipg8JSb3lLxQQcDozCwqZGX65E2NTm/A9qOm3+zF8/Q/iz4bKAf+aC7/H31/XSGFtA1NLpzweNjqujFpahc+qCZHni1Jdw1nD9kA1be2hP53h4d5p8yWV1SxXdQzYFx2dxbYzTWlOETI2S45MtusNRIJCKmPi+LE8OjjwIRtqlhU2dmpiFpmsIJPmSi+P5eL6krSHB8oYEJzdXcebiGgYLQbjgkroohi5IF1xWNSV564VL+cd1C2itjgKCtsY4S2rj5TKyPZkiELxJ2K7H5s4hhICYFWSG7h8o4ng+mZJLKmqxfkk1K5sT5aiZ6qiFqeusWZDEMjSGijYSOGtJDYtqYsM11iEeNim6HiXXp7EqzJrWFGsXpnj28ro5/f+bYvaYHyPxV7wi+Kc4Ko7Vx3n/3vs557vnlJeft/hlfOhZ3yIeNg+ZWOzJFMf4jU9dkCyP/lc0xMeUtw2bOlu7srRWh2lOhrn0lAZS0eAhHA+bFO0MpnEgbrrk+tTErPLDYuQ8fdkSdfEQBcejPhEmFjLY1ZsnNNwfM2IZNCZDREyNh3f3c+biGqqjJp6UeL7PKS0JejM257XV0VQVoTbm0Z+zOX1hNc3JYOL34Ens6qjFI7sHsHRB11AR3xfkbI+wKejoL9A2HCp4sLttzL1pOXBvzl4WPOBG3poWVkd4eHc/IDhjUWrCNm8KxQjzQ8RnmfkaYjjVRJGh0hALv7qQodJQeV3vh3rxvVhQf6XgHDKxeHDSzWh/+8HRPRHTIGIa7B8oEQsHUTOp4fMsqonyaHs/mvSH65345G2PZXWxMVUAz1tRy/7BPL3ZIrWJMGcvC0Tujic7KTjBJGEyYtDeV0ACTckwYVMnETapiVnljM+6uEVv1qYvV0IQdLjf1ZelL2+PGxWysinBrzZ2kLeDZg+GLvClT+eQw1DeoakqxL7+PLqujRHeI0V/jE5WChKvJJ6UhE1NRYkoDosS8Ukw30IMj+Wh8+7b3823HvxWefnON9zJc5Y+p7x88MTiiNDlSi7370iTipqHPDju29E3piXZpo7BYVeJpCEe5pHdA5yxGJqqIhiaxpoFSboGi/RkStTErHK1whG/OgSieOWZC8vXOeL3X7swBUBLKsr27gxCBGlMi2tjxEIGLanoIc0fRt+z6lgITTBhVEh9IkxjIozj+oSNwGVkaDp1cZ2wLrA9n209Wa5Yd2h/zcO9GanIEMVUUSI+CeZbiOFUHjp/2PYHXvCTF5SX33/O+/nKP3zlkO1GTyyKUYW+HM/jgV1pLmyrP+TBMeLDdn2fvzzTQ7boELF0mpORcrx611ARUw/E8qr1C8v2Hu5NYrzR7QvXNJf37Rwq0pQMs7g2Vg73m+h7G7lnbY3x8mTpRFEhC6rDSCRRy2Bff4G84yGlpD4R4uJVTeRKLr1Z+wjfkkIxPSgRnwTzLcTwaB463bluGr/UWF5uiDWw/V+2E7fiEx5/vPuxtTtLXSw07oNjpKRrezofCLipkyt5ZIoOgwWb5lQEy9R48ajKhDC5cqwTjWBH1k228cKT+wbZ2ZNloOASNgS1iRBR0xw3KmRRTYywqdObtUnnStTELVLR4B8E93pXX5YNW1FlXRUVZ35Ep8wyK5sSZEsuuZI7psj/6Nf7ucSBjvIHOFi8pJS8/OcvHyPgD731Ibo+2HVYAYfx70dvpsSKhrHNm0ciV+oTYWpiFlVha7iJQ3CM2niI9nR+Sg/EnkyRDVt7uO2xDjZs7SlHjxzJzvG+t837B3lgR5qhokddzAKhsbuvQG3cHDcqZGVTAk1oLKuLc/qiampiIYQQ5fT7zqECe9IFio5PbSx0SISLQjGdqJH4JJjNlOSpTFAeKa79xidu5DW/PNBZ/rrnXsdHzv/IpG0aKV5115ZuuodKNFSFWNUUxzLG1p0ZLc4SWL+kuuyuMDSBpWv0Zoo0JMJHlTE6UndlpCvO6G7yo+/NZL+3u7Z0s6g2Sn/exvEl8ZCO7fo8tDuonzLe9Y8cNx4OmjK3NcapCpvkSi5bu4L6KJWeQ1FNHBQwCREXQnwPuBzollKeOryuBrgJWALsAl4hpeyvnJmzz2xMPB3LBKWhiXItjpObqzhvRS05r5OG/1ha3ua0xtN48K0PYulHPwre3JmlraGKta3BQ2LfQJ59A/kxzRdGPzhG3g5SUYtTFyTZk87Tmy2RilmTjvIZuR9P7x8kb3ts7RxiW3eW81bUUhsLjyuSk/neuodKtCQjmLpgW3eW7HBJgmTEOOJE5Plt9WUxHXlQtFaHaU5Fxmw/3XMo8zFiSlEZJjMS/z7wTeCHo9ZdA9wppbxOCHHN8PLkh3KKSTGVCcrRP+5zVwSlVAcLRV70s0t4cN99B4797i2cVHvStNnVkopSdLxyctHBo97RbwfJiIlZH6ehKnxUorOlM4MvfXb25khGTJLRENmSyz3b+njhqU1jGlscDQ1VITqHCvTlHOoSYVpSGumcjeczphb4RIz3oKj0HMp8i5hSVI4jiriU8q9CiCUHrb4CuHj4v38A3I0S8WlnKlExB/+4f7fr+3zlwQOFqr77j9/ln0//57JPeSqv4hPZVXDcQ0L3RpgOl1R/3qYnU6IqbKIJgRAQD+kM5p0x9VmOlktWNvDFP2whZOjErKA4mO16nLe8blxRPNiNMRJrPnp5c2e2fF8qUaZhvkVMKSrHVH3ijVLK/QBSyv1CiIZptEkxzFSiYkZ+3NsHnub1v7mgvP70hot46O1/RhPaMb+KTzVa51hdUtVRi017B2hNRdiVzgHBBG3I0MfUZzlaVjUnedaSFDt7C/RmHapjFucsq2FhTewQUTz43u0fKPD7TZ2csThFU1WEvO2xuTPLqqZ4OYmoEnMo8y1iSlE5Kj6xKYS4GrgaYNGiRUfYWjGaqRTeiloeL//VmXTm2svrbrz8UVqrFqCJIDLkWF/FZ6sgWHDeXlwpWVITpWOgyGDRYWltjDWtyWMSyVMXVLOiITlGFHMl9xBRPPje9eVsUlGT3qxNczJaXt+btSd8K5kO5mNRNkVlmKqIdwkhmodH4c1A90QbSimvB64HWL9+/bH1AJtnHGv0wNG6IP79rn/n03/9dHn5ugt/yJmNzz8krO5YX8VnK1qnPhHminUt3LpxH44vWdEQpy4eQte1ctr90dzz0dsKBOlcacKJ2REOvneZkksybJIpOuV1M+HWUE0cFCNMVcR/DbwRuG74763TZtFxwnRFD0zGBXFP+z2c/78HuhS9avXreedpX2Kg4Ixbe2M6XsWn4hqZykNtvH3++fyl4x7naO75eNsCFB2XguNOKIoH37tEyGCw6FAVOVCwa6bcGipVXwGTCzG8kWASs04IsRf4BIF4/1wI8WagHbiqkkbOR2YiemCwOEjTl5soukESiS50ej7UQ3Xk8BN80/kqPllhnspD7XD7jLgqRs5/344+Nu8fxPXAMvVyY+h4yBj3nk8UYTNeXZXD3bvamBW0lKuPjemReaxuDRUDrpgsR8zYlFK+WkrZLKU0pZStUsrvSin7pJTPlVK2Df9Nz4Sx84n+vF0u9D/C6Nrbx4KUkqtvu5rU51NlAb/7jXfj/rt7RAGH8WuNr2qKs6Uzc9gMyIMZEdnJZCaOFs2RTvUjAjsRR9pn9Pl1IXh6f4Y9/QV0AY4XtD+zXW/cez7V7+fge9eYDPO6cxbRkAhPW635o7mvCoXK2KwQlYoe+O0zv+XyGy8vL3/kvI9w3aXXHfVxRr+KT9X1czRvG1Pxwx9pn9Hn39GTpTYewvEkPZkSy+qD0gHbunOcsTh1yLGP5fuptBtDxYArjgYl4hViuqMHOrOdNH+5ubzcWtXKlndvIWpGD7PXoYz3mj5V0TgaYZ6KaB5pn9Hnz5RcFqQi7OzNMVRwkJJy+7PxQg/nanRHT6bIfdv7EELOWKd7xfxGiXiFmK7oAV/6XPGzK/jNM78pr3v0bY+yrmndUds00Yg7bzssqR1b9Goi0Rj9ENjbn8fx/HIXHJhYmKcimkfaZ7TIJ0IGjuezoDpCf85mqGhj6BpnLamZsMrh0Xw/E/mop9N3PfL9WIZ+2JrmCsVohJQzF/W3fv16+dBDD83Y+eYDhxOBHz32I97wqzeUt/3y87/Mvz77X6d8rg1bew4pzZoruWztHqKtoeqQ9QdP8o1+CEQtnf0DBR7dMzAm0WXfQJ6aWAiJPOR6pis6ZTw3kO16PNI+AMgxXeano5bIwdc98jBZ1RRnc2f2kPVTPefI9zPiz49aQTNlSVD+VtVFOXERQjwspVw/3mdqJD6LTDQybqkb5OzvrS5vt75lPX//579j6uZhjnZkJnJ/VIUNsiW3vDzRKPlgt8vBDR1GWkSETb18nNG+9an4ko/UDWdsW7MkIHB9SSI8fW3NJnI33bWle8zD71h91yPfjxBGuUiY6nSvOBJKxGeRg8UhZEre9acX8Uz/Y+Vttr1nG8trlk/L+SbyMS+ujZd944dzLYz3EBjd0GHD1h7C5sxOyM1ErPRED7/uoRJrWw+NcJmq73r09zPSZGLkjUgJuGIilIjPIqPF4can/otvPPLv5c9++JIf8vq1r5/W8x3OxzwZMTyaicYRKjUhN5Nx1BNdd0NVaFojkObqZKtibqM6+8wi1VGLx7sf49wf15UF/Jzm5/OXV3dOu4DD+PHhR/OafqROOZPpKDQdzHQc9UTXfcnKhmnt+HSs34/ixESNxGeJvJPnFb9ex/7svvK6m178OJao4eTmZMXOeyzuhyNFdMzUSHIyIZHTOVI/3HXXxkPTWr9EpdIrjhYl4rPANX+6hs/f8/ny8ucv+gknV180L9KrJzvRWMmiTEdy21Si681E161EVzHbKBGfQf66+69c9P2LystXn3E1/335fyOEOMxe84uDM0FH6ppMR0jhCEfyzauMR8WJhBLxGaC/0E/dF+vwpQ9AxIiw/wP7SYYr5zaZbaa74NXofY7ktlFdbxQnEmpis4JIKXnjr95IzRdqygK+4Z82kP94/rgWcKhMwasRjjQBOFMTrArFXECNxCvErZtv5SU3vaS8/G8X/Buffs6nJ97hOKMSBa9GczhftArVU5xIKBGfZjqGOmj9amt5eVn1Mja9YxMRMzKLVs08lSh4NVlU1xvFiYQS8WnClz4v/MkL+eP2P5bXPfGOJzi14dRZtGr2qETBq6NBRY0oThSUT3wa+N6j30P/lF4W8K+/4OvIT8gTVsBhaokrKtlFoTh61Ej8GHim7xlWfnNlefnchefylzf9BUNTtxWmNhpWI2iF4uhQajMFbM/mWd95Fo93PV5et/O9O1mSWjJ7RikUihMS5U45Sj6/4fOEPhMqC/hPX/ZT5CekEnCFQjErqJH4JHl438Os/86BmuwvP/nl/OKqXxxX2ZYKhWL+oUT8CGTtLMv+cxk9+Z7yuq4PdtEQa5hFqxQKhSJAuVMOwwf+8AESn0uUBfz3r/098hNSCbhCoZgzqJH4ONy5404u/dGl5eV3PetdfPOyb86iRQqFQjE+SsRH0Zfvo+6LdeXlVDjF7vftpipUNYtWKRQKxcQodwpBoapX/9+rxwj4fW++j/6P9CsBVygUc5oTfiR+81M3c9Uvriovf+riT/H/Lvp/s2iRQqFQTJ4TVsT3DO5h0dcWlZdX1a1i49s2EjJCh9lLoVAo5hYnnIh7vselP7qUu3fdXV731Duf4uT6k2fPKIVCoZgix+QTF0K8QAixRQixTQhxzXQZVSn+56H/wfi0URbwb7/o28hPSCXgCoVi3jLlkbgQQge+BTwP2As8KIT4tZTyqekybrp4uudpTvmvU8rLFy+5mD+9/k/omj6LVikUCsWxcyzulLOAbVLKHQBCiJ8BVwBzRsRLbol1/7OOzb2by+t2v283i5KLDrOXQqFQzB+OxZ2yANgzannv8LoxCCGuFkI8JIR4qKen5+CPK8Zn/voZwp8NlwX8F1f9AvkJqQRcoVAcVxzLSHy8yk/ykBVSXg9cD7B+/fpDPp9u7t97P+d895zy8qtPfTU/edlPVKEqhUJxXHIsIr4XWDhquRXYd2zmTJ1MKUPrV1sZKg2V1/V8qIe6aN1h9lIoFIr5zbG4Ux4E2oQQS4UQFvAq4NfTY9bR8Z7b30PVdVVlAf/T6/+E/IRUAq5QKI57pjwSl1K6Qoh3A38AdOB7Usonp82ySfCHbX/gBT95QXn5/ee8n6/8w1dm0gSFQqGYVY4p2UdKeTtw+zTZMmm6c900fqmxvNwQa2D7v2wnbsVn2hSFQqGYVeZVxqaUkit/cSW/fPqX5XUPvvVB1resP8xeCoVCcfwyb0T8xidu5DW/fE15+XPP/RzXnD/nk0QVCoWioswLEf/Bxh/wplvfBMBpjafx4FsfxNKt2TVKoVAo5gDzQsRPrj+Z9S3r+cnLfsJJtSfNtjkKhUIxZ5gXIn7WgrN48K0PzrYZCoVCMedQnX0UCoViHqNEXKFQKOYxSsQVCoViHqNEXKFQKOYxSsQVCoViHqNEXKFQKOYxSsQVCoViHqNEXKFQKOYxQsqKN9s5cDIheoDdM3bCqVEH9M62ETOAus7jjxPlWk/E61wspawfb6MZFfH5gBDiISnlcV8WUV3n8ceJcq3qOsei3CkKhUIxj1EirlAoFPMYJeKHcv1sGzBDqOs8/jhRrlVd5yiUT1yhUCjmMWokrlAoFPMYJeIKhUIxj1EiPgohhC6EeFQI8ZvZtqWSCCF2CSGeEEJsFEI8NNv2VAohREoIcbMQYrMQ4mkhxLNn26bpRgixcvh7HPk3JIR432zbVQmEEO8XQjwphNgkhLhRCBGebZsqhRDivcPX+eSRvs950dlnBnkv8DRQNduGzACXSCmP94SJ/wR+L6W8UghhAdHZNmi6kVJuAdZBMAgBOoBbZtOmSiCEWAD8C3CKlLIghPg58Crg+7NqWAUQQpwKvBU4C7CB3wshfiul3Dre9mokPowQohV4EXDDbNuiOHaEEFXAhcB3AaSUtpRyYFaNqjzPBbZLKed6VvRUMYCIEMIgeCDvm2V7KsXJwH1SyryU0gX+Arx0oo2ViB/ga8CHAX+W7ZgJJPBHIcTDQoirZ9uYCrEM6AH+d9hFdoMQIjbbRlWYVwE3zrYRlUBK2QF8CWgH9gODUso/zq5VFWMTcKEQolYIEQUuAxZOtLEScUAIcTnQLaV8eLZtmSHOk1KeAbwQeJcQ4sLZNqgCGMAZwLellKcDOeCa2TWpcgy7i/4R+MVs21IJhBDVwBXAUqAFiAkhXje7VlUGKeXTwOeBO4DfA48B7kTbKxEPOA/4RyHELuBnwHOEED+eXZMqh5Ry3/DfbgL/6Vmza1FF2AvslVLeP7x8M4GoH6+8EHhEStk124ZUiEuBnVLKHimlA/wSOHeWbaoYUsrvSinPkFJeCKSBcf3hoEQcACnlR6WUrVLKJQSvpH+WUh6XT3khREwIkRj5b+D5BK9vxxVSyk5gjxBi5fCq5wJPzaJJlebVHKeulGHagXOEEFEhhCD4Pp+eZZsqhhCiYfjvIuBlHOa7VdEpJx6NwC3B7wAD+KmU8veza1LFeA/wk2FXww7gn2bZnoow7Dd9HvC22balUkgp7xdC3Aw8QuBaeJTjO/3+/4QQtYADvEtK2T/RhirtXqFQKOYxyp2iUCgU8xgl4gqFQjGPUSKuUCgU8xgl4gqFQjGPUSKuUCgU8xgl4gqFQjGPUSKuUCgU85j/D/Rux1Xq6DFUAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Modelo con fit_intercept: w1 = 9.10210898118031 w0 = -34.67062077643857 mse = 43.60055177116956\n", - "Modelo sin fit_intercept: w1 = 3.6533504000238826 w0 = 0.0 mse = 58.41063543210172\n" - ] - } - ], - "source": [ - "from sklearn import linear_model\n", - "from sklearn.metrics import mean_squared_error\n", - "\n", - "#rm.reshape(-1, 1) cambia las dimensiones de rm, de tal manera que la segunda dimensión es 1. \n", - "# el -1 indica a Python que recalcule la primera dimensión.\n", - "# En resumen, tranforma el vector rm en una matriz de tamaño n*1.\n", - "def use_sklearn():\n", - " model = linear_model.LinearRegression().fit(rm.reshape(-1, 1), Y)\n", - " model_2 = linear_model.LinearRegression(fit_intercept=False).fit(rm.reshape(-1, 1), Y)\n", - "\n", - " yp = model.predict(rm.reshape(-1, 1))\n", - " yp2 = model_2.predict(rm.reshape(-1, 1))\n", - "\n", - " plt.plot(rm, yp, color=\"green\",label=\"Con fit\")\n", - " plt.plot(rm, yp2, color=\"red\",label=\"Sin fit\")\n", - " plt.scatter(rm, Y, alpha=0.25)\n", - " plt.legend()\n", - " plt.show()\n", - " \n", - " fit_intercept_error = mean_squared_error(Y, yp)\n", - "\n", - " print(\"Modelo con fit_intercept: w1 =\", model.coef_[0], \"w0 =\",\n", - " model.intercept_, \"mse =\", fit_intercept_error)\n", - " print(\"Modelo sin fit_intercept: w1 =\", model_2.coef_[0], \"w0 =\",\n", - " model_2.intercept_, \"mse =\", mean_squared_error(Y, yp2))\n", - " \n", - "use_sklearn()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5OU7JKm0QLyW" - }, - "source": [ - "## Regresión Lineal Múltiple " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5OU7JKm0QLyW" - }, - "source": [ - "Por último, como ya hemos visto, podemos generalizar el modelo de regresión lineal simple añadiendo más variables y obteniendo así el modelo de regresión lineal múltiple. Al añadir más variables al modelo, le estamos dotando de más información que ayude a mejorar las predicciones. Por ejemplo, un modelo de regresión lineal simple podría intentar predecir la altura de una persona en base al tamaño de la mano. Pero si añadieramos otra variable, como por ejemplo, el género, podríamos tener más información para hacer predicciones más fidedignas.\n", - "\n", - "La buena noticia es que a nivel de código, no hay gran diferencia entre ambos modelos, que también pueden ser resueltos mediante el método de ***Mínimos Cuadrados Ordinarios*** evaluando la expresión que ya conocemos:\n", - "\n", - "$$\n", - "W = (X^TX)^{-1}X^TY\n", - "$$\n", - "\n", - "\n", - "Veamos." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 85 - }, - "id": "aLCT_xrxTF87", - "outputId": "5c78ed83-09fe-4ac1-8385-c2837a7573a0" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coeficientes \"a mano\": [18.56711151 4.51542094 -0.57180569 -0.93072256]\n", - "Coeficientes sklearn: 18.567111505395236 [ 4.51542094 -0.57180569 -0.93072256]\n", - "Error regresión lineal múltiple: 27.13040575849706\n", - "Error regresión lineal simple: 43.60055177116956\n" - ] - } - ], - "source": [ - "from sklearn import linear_model\n", - "from sklearn.metrics import mean_squared_error\n", - "\n", - "\n", - "def user_weights(x):\n", - " return np.linalg.inv(x.T @ x) @ x.T @ Y\n", - "\n", - "x = np.c_[np.ones(rm.shape[0]), rm, X[:, [-1, -3]]]\n", - "w = user_weights(x)\n", - "print('Coeficientes \"a mano\":', w) # El primero es el valor resultante cuando el resto de variables son 0, el resto es la importancia (peso) de cada variable.\n", - "\n", - "# Quitamos la columna de unos\n", - "\n", - "x = x[:, 1:]\n", - "model = linear_model.LinearRegression().fit(x, Y)\n", - "print(\"Coeficientes sklearn:\", model.intercept_, model.coef_)\n", - "\n", - "print(\"Error regresión lineal múltiple:\", mean_squared_error(Y, model.predict(x)))\n", - "print(\"Error regresión lineal simple:\", get_mse(yp, Y))\n", - "\n" - ] - } - ], - "metadata": { - "colab": { - "name": "Copia de Linear regression - Regresión Lineal", - "provenance": [ - { - "file_id": "https://github.com/RFajardoMonzon/MachineLearningCourse/blob/master/Linear_regression_Regresi%C3%B3n_Lineal.ipynb", - "timestamp": 1616159304239 - } - ] - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/am_intro_regresion-checkpoint.ipynb b/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/am_intro_regresion-checkpoint.ipynb deleted file mode 100644 index e6285c0f..00000000 --- a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/am_intro_regresion-checkpoint.ipynb +++ /dev/null @@ -1,833 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#
Conceptos básicos de regresión
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introducción" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En esta lección se introduce una de las máquinas de aprendizaje más conocidas. La máquina de regresión.\n", - "\n", - "En el caso más simple de un problema de regresión, lo que se busca es establecer una relación entre dos variables aleatorias. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ejemplo 1: Modelo lineal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La gráfica presenta un conjunto de datos de entrenamiento de $ N = 11 $ puntos, que se muestran como círculos cafés, cada uno con una observación de la variable de entrada $ x $ junto con la variable objetivo correspondiente $ y $. \n", - "\n", - "\n", - "Nuestro objetivo en este caso es entrenar una máquina de aprendizaje de tipo lineal, es decir, de la forma $y = ax+b$.\n", - "\n", - "\n", - "La curva azul muestra la función $y= 0.8431 x + 6.339$, la cual corresponde al modelo lineal entrenado para este conjunto de datos. El entrenamiento fue desarrollado usando la función *polyfit()* de numpy.\n", - "\n", - "El área sombreada corresponde a lo que los estadísticos llaman bandas de confianza. No entraremos en detalles, pero se espera que la mayor parte de los datos de entranamiento y validación queden dentro de tales bandas. Esta es una medida de la calidad de la máquina de aprendizaje. El gráfico muestra que las cosas no salieron muy bien. Esto es porque al parecer el comportamineto de los datos que no es lineal. \n", - "\n", - "Los datos de entrenamiento aparecen de color café y los datos de validación en color verde." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAodElEQVR4nO3dZ3Tc13nn8e8zmIbeGwsIVokNVoE6KYlqFk0oSnZjrZw4cg0dJ7YVJ3sSe/PCerNnvZvsbniO9uQsj6M4Ovaxonh9NiEgSpRlyqLVvBTlDFhEiaREisQMGlEGwPS5+2IGFESBIMqU/3/m+bwh8SeIuYPyw537v/d5xBiDUkop+3HkewBKKaUWRwNcKaVsSgNcKaVsSgNcKaVsSgNcKaVsypnLB2toaDDt7e25fEillLK9t956a8gY03j59ZwGeHt7O4cPH87lQyqllO2JyNnZrusSilJK2ZQGuFJK2ZQGuFJK2ZQGuFJK2ZQGuFJK2ZQGuFJK2ZQGuFJK2ZQGuFJK2ZQGuFJKZVEommAsFMvKx9YAV0qpLIglknx4cYpTAxOEoomsPEZOj9IrpVShSyYNgxMRBoMRst3wTANcKaUy5OJklP7xMPFEblpVaoArpdQSBcMxAmNhwrFkTh9XA1wppRYpHEsQGAsTDMfz8vga4EoptUDxRJL+YISRyWjW17nnogGulFLzlEwahiZTNyiTuV0tmZUGuFJKzcPoVJTAeJhYPI9T7stcdR+4iDwlIgMicvSy698UkZMickxE/lv2hqiUUvkzGYlzamCCDy+GLBXeML8Z+A+BJ4Gnpy+IyA7gYaDDGBMRkabsDE8ppfIjEk/QPxbJ2inKTLhqgBtjXhGR9ssufx34vjEmkn6fgSyMTSmlci6RNAwEwwxP5PcG5Xws9ij9BmC7iLwpIr8UkZuu9I4isltEDovI4cHBwUU+nFJKZZcxhqGJCCcDQYaC1g9vWPxNTCdQC9wK3AQ8KyJrjPnkUzbG7AX2AnR2dtrgU6KUKjZjodRBnGjcAltLFmCxAX4e+Fk6sH8tIkmgAdAptlLKNkLRBP6xEJOR7BSbyrbFBvj/Be4BXhaRDYAbGMrUoJRSKpui8ST942FGp6x7g3I+rhrgIvIT4G6gQUTOA98DngKeSm8tjAJfmG35RCmlrCSXlQJzYT67UD53hX/6fIbHopRSWWGM4eJklIFgJGeVAnNBT2IqpQraWChG/3iYSI4rBeaCBrhSqiBNReP4x8JM2fQG5XxogCulCkoknirxOh7KT4nXXNIAV0oVBKuUeM0lDXCllK0lk6kTlIMT1ijxmksa4EopWzLGMDIVm1cPyr63XuXU/mcJjwzhrW1g3c5HWHbjHTkaafZogCulbGchO0v63nqV4//8A5KxKADhkSGO//MPAGwf4ostZqWUUjk3FY1zenCCc8NT894WeGr/s5fCe1oyFuXU/mezMcSc0hm4UsryllKbOzwye5WPK123Ew1wpZRlZWJnibe2Ydaw9tY2LHF0+adLKEopy0kmDQPjYU72B7m4xMYK63Y+gsPl/tg1h8vNup2PLHGU+aczcKWUZSxkZ8l8Td+o1F0oSimVJePhVFOFbNQsWXbjHXkJ7ETS8NbZi7x4vJ///h+uY3lNaUY/vga4UiqvpqJxAmNh2zZVmM1EOM6B4wGeO+qnfzxCY6WHs8OTGuBKqcJgh67vC/XB0CTdvj4OvjtINJ5k87Iqvnj7ah7qaGVFXVnGH08DXCmVU/FEkoFghIsFUrMkkTS8cWaYbl8fR/vGcZc4uOuaRh7qaGV1QwUAzpLs7BfRAFdK5UQ8kWRoIsrQRGF0wxkLxXjhWID9R/0MTURpqvTwpdvbuX9TM5VeV07GoAGulMqqRLrY1FCBFJt6rz9Id6+fQ+8NEksYrltZw9fuXMtN7XWUOCSnY9EAV0plRSJpGC6QKoGxRJJXTw3R7fNzsj+I1+Xg/k0tdG1tZWUW1rbnSwNcKZVRyaRhaDLCUDBKImnvtZKLk1GeP+rn+WMBRqZitFZ7+cPtq7n32mbKPfmPz/yPQKkideLQQQ498zTB4SEq6xvY/uhjbNy+I9/DWrRk0jA8GWUwGLF1cBtjOBkIss/n59XTQySShhtX1dLV0coNbbU4JLfLJHPRAFcqD04cOsiBvU8Sj0YACA4NcmDvkwC2C3FjPgpuO3d8j8aTvPLeIN2+Pk4PTlLmLmHX1lZ2bW1lWYb3b2fKVQNcRJ4CuoABY8yWy/7tPwJ/DTQaY+xf2kupHDn0zNOXwntaPBrh0DNP2ybAjTFcnIwyYPPgHgxG2H/UzwvHAoyH46ysK+Prd61lxzVNlLpL8j28Oc1nBv5D4Eng6ZkXRWQlcD9wLvPDUqqwBYdnn+9c6Xom9ZzpYc+RPQQmA7SUt/D4DY+za82uef//6XolA8Ewsbg9g9sYw9ELY+zz+Xnz/WEAbl5dR1fHMjqWVyMWWiaZy1UD3Bjzioi0z/JP/xP4C+BfMj0opQpdZX0DwaHBWa9nU8+ZHp547QnCiTAA/kk/T7z2BMBVQ9wYw+hUjIFghGjcnttKwrEEL58cpKe3jw+Gp6j0OPmd65ezc0srzVXefA9vwRa1Bi4ivwVcMMb829V+U4nIbmA3QFtb22IeTqmCs/3Rxz62Bg7gdHvY/uhjWX3cPUf2XArvaeFEmD1H9swZ4KNTUfrH7RvcgbEwPb1+XjwRYDKSYE1DOd+6Zx13bmjE47T2MslcFhzgIlIG/BXwwHze3xizF9gL0NnZac/XW0pl2PQ6d653oQQmAwu6PjqVWuPORoXAbDPG8PaHo3T7+jj8wQgicPvaBro6WtnUWmWbZZK5LGYGvhZYDUzPvlcAR0TkZmPM7N8FSqlP2Lh9R85vWLaUt+Cf9M96faax9Bp32IbBPRWN84t3Buj2+bkwGqKm1MUjN61k5+YW6is8+R5eRi04wI0xvUDT9Nsi8gHQqbtQlLK+x294/GNr4ADeEi+P3/A4kKrvMRgME4raL7jPj0zR4/Pz0jsDhGIJNjRX8Gf3b2DbugZcWSomlW/z2Ub4E+BuoEFEzgPfM8b8fbYHppTKvOl17st3oWxf9gCnBoK2C+5Uw4QRun19vP3hKE6HsG19Aw91LGNDc2W+h5d1YnJYFqyzs9McPnw4Z4+nlJpbMByjfzxCKGqvZgoT4Tg/P9FPT6+fwHiYunI3O7e08OnNLdSWua/+AXKssdJDS/Xid7mIyFvGmM7Lr+tJTKWK0EQkTv94mCmbdcE5OzzJPp+fl08OEIkn2dRaxWO3reK2NfVZq7ltZRrgShWRyXRw26l9WSJpePP9Ybp9fnovjKUaJmxoZFdHK2sbK/I9vLzSAFeqCExF4/SPR5gIx/M9lHkbC8U4cCzAc0cDDE1EaKr08MXb27l/YzNVpblpmGB1GuBKFbBQNEH/eJigjYL71MAE3b4+Xkk3TOhYUc3uO9dwcx4aJlidBrhSBSgcSwX3eMgewR1LJHnt9DA9vj5OBFINE+7b2Myura2sqi/P9/AsSwNcFbVCq8kdjiUYGLdPp/eRySjPHwvw/NEAF6eitFZ7+eq21dy7sZkKCzRMsDr9DKmiVUg1ue0U3MYYTvYH6fb5efXUEPGk4Ya2Wr7ZsY4bVlmrYYLVaYCrolUINbkj8VRwj05ZP7ij8SSH3huku9fPqYEJSl0l7NzSwq6ty1hea82GCVanAa6KVj5rci/VdHCPhWLk8CzeogxNRHiu96OGCStqS/mju9ay45pGytwaQUuhnz1VtPJVk3spovEkA8Ewo1PWDm5jDEf7xunx9fH6mWGM+ahhwqdW2KdhgtVpgKuila+a3IsRSyQZCEYYmYxaOrjDsQS/fDfVV/KD4SkqPE5++7rl7NzaSosNGyZYnQa4Klr5qsm9ELFEksFghIsWD+7AeJjnev28eLyfiUic9voyvrFjHXdtaMTrsm/DBKvTAFdFLR81uecjnkgyOBFheMK6wW2M4TcfjtLT6+fX719EBG5b20DX1lY2LyuMhgmZkq1PhQa4UhYSTyQZmogyNBGxbHBPReMcfGeA7l4/50dCVJe6+GznSnZuaaGhwBomLEWp20Gl10Wl15m1m7Ua4EpZQCJpGJqIMDQRIWnRktwXRkJ09/bx0olUw4R1TRV8+771bFvXiNtZfJUAL+dwQKUnFdiVXuel6ojZPCymAa5UHiWShuGJCIMWDe6k+ahhwpFz6YYJ6xro6ljGhuaKol8m8bpSs+wKr5Nyd8knPh/ZPiymAa5UHkTjSYYnUzcnrRjcE5FUw4Tnev34x8LUlbn5vZvbeHBzC7Xl1muYkCsiUOFxpmfZrqu+8sj2YTENcKVyKBRNMDRh3QM4Z4cn6fb5OZhumLCxtYrP37KK29bWF2xfyatxOx2XlkXK3U4cC6iImO3DYhrgSuXAWCjG0ETEkh1wEknDr9MNE3wXxnCVSKphwtZlrGsqvoYJIlDmLrl0A3Ip2yCzfVhMA1ypLEkmDSNTUYYno0Ri1lsnGQvFOHA8wP6jAQaDERoqPDx22yoe2NRCdZE1THCWyKVlkQqPM2N1x7N9WEwDXKkMiyeSDE9GGZ6Ikkhab53k9GC6YcK7Q0QTSTqWV/PVbau5ZXV90TRMEIFSd0kqtD0uSt3ZOWyU7cNiVw1wEXkK6AIGjDFb0tf+GngIiAKngS8ZY0YzMiKlbCocS61vW7FOSTyR5PUzw+zz+TnhH8fjdHDPtU10dRRPw4QSh1xay67wOHPWBDmbh8XmMwP/IfAk8PSMay8C3zXGxEXkvwLfBf4y88NTyvomInGGghFLti27vGFCS5WXr2xbzX3XNlPhLfwX4G6ng6pSJ1VeF2WzbPOzu6t+BY0xr4hI+2XXDsx48w3gdzM8LqUszRhz6cZkKGq99e2TgSDdvj5+dalhQg3f6FjHjUXQMKHMk1oaqfK6Cr4OSyZ+BX8Z+KcMfBylLC+RNJf2b8fi1loniSXSDRN8ft5LN0x4cEsLu7a2sqK2LN/DyxoRLgX2zBOQxWBJAS4ifwXEgR/P8T67gd0AbW1tS3k4pfImGk8yNBFhZMp6B2+GJiLsPxrghWMBxkIxlteU8rU713DPtU0F2zDBWSJUlaaPrXucBbc0Ml+L/uqKyBdI3dy815gr37IxxuwF9gJ0dnZaa8qi1FVMReMMBaOMh611Y9IYw3H/OPt8fl4/PYQxcFN7HV0drVy3sqYgA226OFSVN3u7RuxmUQEuIg+Suml5lzFmKrNDUir/rHrwZrphQk+vn/eHJin3lPDwdcv5zJZWWqoLq2GCCJR7nFTN89h6MZrPNsKfAHcDDSJyHvgeqV0nHuDF9G/6N4wxf5TFcSqVddMHb4YmokTj1lon6U83TDhQ4A0Tprf6VaULRBXLvvTFms8ulM/NcvnvszAWpfIiGk+mTkxa7OCNMYZ/Oz9Gt6/vUsOEW9fU09WxjC0F1DCh0Lf6ZVNh3uFQ6iqMMYyH44xMRi23fzsUTfCLkwP0+Pr4cCREldfJ7964gp1bWmmsLIyGCcW01S+bNMBVUZmebY9MWW8bYN9oiJ5ePz8/0c9UNMG6xgr+9N71bF9fGA0Tyjwl1JS6qC51FdVWv2zSAFcFzxhDMBLn4kSUiUjcUrtJksZw5OwI+3x+jpwbwekQ7ljXQFdHK9c0V9p+OaHUXUJ1qYuaMlfRlqPNJg1wVbCsPNueTDdM6Ek3TKgtc/F7N7fx6c0t1Nm8YUKp20FVqYuaUndBvHKwMg1wZQmZ6hto5dk2wLmLU3T7+jh4coBwLMm1LZX8/i2ruN3mDRO8LgfVpS6qy1x4nLqmnSsa4CrvMtE3MBpPMjoV5aIFZ9uJpOHXH1yk29eH73yqYcKd6xvp6rB3wwS300FNWWpNW29E5ocGuMq7pfQNHA/HLDvbHg/FeDHdV3JgumHCrat4YLN9Gya4nEJNqZvqUj0NaQUa4CrvFto3MJZIMjJpzdk2wJnBCbp9fn757iDRRJKty6v5io0bJjhL5NKNyEKtrWJX+tVQeTffvoHj4dilfdtWm21PN0zo9vk57h/H7XSw49omura20t5gv4YJJQ6husxFTamLco/GhFXpV0bl3Vx9A60+2x6divLCsVRfyeHJKM1VHr58Rzv3b2yxXcMEh4PUjcjSVF9Iu29hLAb2+g4rEpnakWEXs/UN7Pz3v0/Zpps5GQhabrYN8G5/kH2+Pn71XqphwvUra/jju1MNE+y0TOJwQJU3tXukmMuy2pUGuMVkYkeGHW3cvoO1t931sZ0k4yFrHXGPJZL86tQQ3b4+3u1PN0zY3MJnOlpZaaOGCSIfhXaVV0PbzjTALWYpOzLsKJZIMhaKMRaKWa5067ThiQj7jwV44WiAUZs2TJjuWlNT6qbS68Rho1cJ6srs8d1XRBa6I8OO4jNCe9KioT3dMKHb5+f1M8Mkk4bO9lq6OpZx3coaW/SVFIEKj5PqUhdVpS5bLe2o+dEAt5j57siwm0TSMB6KMRqKMWnBPdvTIvEEr7yb6it5Jt0w4aGOVj6ztZXW6tJ8D++qppsgTN+M1NAubBrgFjPXjgy7SSYN4+EYo1MxSx60mWlgPMxzR/0cONZPMBJnVV0Zf3L3Ou6+xh4NE8o9JZdCWyv9FQ8NcIuZbUeGnXahJJOGYDjOWChmuT6SlzPG4LvwUcMEgFtW1/NQRytblldb/uZeqbvk0lF2O9dRUYunAW5BG7fvsE1gw0fNEcbT69pWDm1INUx4+d0Bun1+zl2cotLr5N9dv4KdW1toqrR2X8lSt4Pq9FF2rfSnNMDVJT1nethzZA+ByQAt5S08fsPj7Fqza9b3na76NzaVmmknrdVCclbTDRNeOtHPZDTB2sZyHr93PXdavGGCVvpTV6IBroBUeD/x2hOEE2EA/JN+nnjtCYCPhfhEJM7oVJTxUNxS/SOvJGkMb58bpdvXx1tnR3A4hDvWpvpKXtti3YYJnunQ1kp/ag4a4AqAPUf2XArvaeFEmD1H9nD38k8zGooxHooRT1g/tCHVMOGld/rp8fnpGwtTU+bi0ZtW8uCWVss2THA7PwptrfSn5kMDXAEQmAxc8fqZwckcj2bxPrw4RXevn4PvDBCKJbimuZI/v7mNO9Y1WPJGn7NELt2ItMuhIGUdV/2OEZGngC5gwBizJX2tDvgnoB34AHjEGDOSvWGqbGspb8E/6f/E9XpvUx5GszCJpOHw2Yt0+/z85sNRnI7phgmtrG+uzPfwZlXpdVJb7taj7GpJ5vMr/4fAk8DTM659B3jJGPN9EflO+u2/zPzwVLaFYwnGQjEeWbubvzv6faLJj/afux0eHlnztTyObm7BcIwXj6f6SqYaJrj5g1tX8cCmZmrKrLdM4iwR6srd1JZpr0iVGVcNcGPMKyLSftnlh4G703//R+BlNMBtIxJPMDaV2vIXjqW2j9zSeD+xaw3PnvnfDIcHqPc28ciar7Gt9YE8j/aT3h+apNvXx8vvDhKNJ9m8rIov37GaW9dYs2FChddJnc62geKrtJlti110azbG+AGMMX4RueLrbBHZDewGaGtrW+TDqaWKxqfrj0QJRWff87et9QFLBjak6qe88X6qr+SxvnTDhA2N7OpoZXWD9fpKOkuE2jI3deU6255WrJU2synrd02MMXuBvQCdnZ322MJQIKYr/Y1OxQhFrVk06mpGp6K8cLyf/b1+hiejNFV6+NLt7dy/qZlKr/X6Sups+8qKrdJmLiw2wPtFpDU9+24FBjI5KLV4dqj0Nx/v9Qfp9vl55b1B4knDdStr+Prda+lcVWe5ZZLp2XZtuR60mUsxVNrMtcUG+L8CXwC+n/7zXzI2IrVgiaSZEdrWLho1l1giyaunhuj2+TnZH6TUVcKnN7ewa2srK+us1zChwuukrsxNVanOtuejUCtt5tN8thH+hNQNywYROQ98j1RwPysiXwHOAZ/N5iDVJ02XZx0LWb/S39UMT0R4/liA548FGJ2Ksazayx9uX8O91zZZrqGuzrYXr5AqbVrFfHahfO4K/3RvhseirmK60t9oyJqd2RfCGMOJQJBuXx+vnU41TLhxVaphwvVt1muYoLPtpbN7pU0rstb0Rn3CdKW/6aJRdg5tSG1hPPTuEPt6+zgzOEm5u4SuramGCctqrNUwQWfbmWe3SptWpwFuQclkqtLfeMg+lf6uZiAYZn9vgBeOBwiG46ysK+OP717L3RuaLFf3Q2fbyi40wC0ilkgSTNfUtvua9jRjDL0Xxuj2+Xnz/WEAbl5dR1fHMjos1jChxJE+JamzbWUjGuB5FI4l0rPsuG33ac8mHEtw8OQAPT4/Zy9OUelx8jvXr+AzW1poqrJWwwSvy0FDhYeaMpelfqEoNR8a4DlkjGEiEk/NtMMxYvECmGbP4B8L0ePz8/N0w4Q1DeV865513Lmh0XKz2gqvk4YKtyUPAyk1XxrgWZZIGoLhGOOhOMFIYaxnz5Q0ht+cG2XfjIYJt6cbJmy0WMMEEaguddFY6dEmCaogaIBnQSSeSAV2OMZUNFEQ69mXm4rGeenEAD29fi6MhqgpdfHITSvZubmF+gpPvof3MQ4H1Jd7qK9wW7ImuFKLpQGeIVPROOOh1NJIJFZg0+wZPhyZosfn5xfphgkbmiv4s/s3sM2CDRPcTgf1FW7qytw4LHb8XqlM0ABfpJlb/YJhe/SHXKxE0vDW2Yvsm9EwYfv6Bro6lrHBgg0TyjwlNFR4qC7V9W1V2DTAF6AQt/rNZSIc58UTAXp6/fSPR6grd/P5W9p4YHMLtRZrmCACVV4XDZVubU2mioZ+p19FoW71m8sH6YYJB2c0TPji7au5dXUdTostk4hAXbmb+gq35Xa6KJVtGuCXmV4aCYZTs+xC2+p3JYmk4Y0zw3T7+jjaN467xMFd1zTStbWVNY3WbJhQX+GmvtxjufKySuWKBjipWfb0/mw7l2NdjLFQjBeOBdh/1M/QRKphwhdvb+f+jc1UWXANWQ/eKPWRogzwmQdqguE40Xjh7hq5klMDE+zz9XHovUFiCcOnVlTztTvXclO79RomgB68UWo2RRPg0XiSYDi1Y6QYbkDOZrphQk+vn3cCQbwuB/dtbKarYxltFmyYIAI1ZS4aKvTgjVKzKdgAN8YwFU2kZ9kfdV8vRhcnozx/1M/zxwKMTMVorfby1W2ruXdjMxUWa5gAqcJS9RWphsBW21uulJVY76d3CeLpbX7BcGEeW18IYwwnA0H2+fy8enqIxKWGCa3c0FZruYYJkDp401DhplYP3ig1L7YP8KlonIlwvKi2+c0lGk/yynuDdPv6OD04SZm7hF1bW9llwYYJ01xOoanSS63emFRqQWwX4ImkSQd2aptfPFGEi9mzGAxG2H/UzwvHAoyH46ysLeXrd61lxzXWa5gwzVkiNFV6qCt3a3ArtQi2CfDhiQhjocItDrUYxhiOXhiju9fPG2dSDRNuaq/joY5ldKywVsOEmZwlQmOlh3oNbqWWxD4BPhkt6CJRCxGOJXj55CA9vX18MDxFhcfJb1+3nM9sbaXZYg0TZipxfBTcusat1NLZJsAVBMbC9PT6efFEgMlIgtUN5XzznnXcub7R0tvsShxCQ6WbhnKPBrdSGbSkABeRbwNfBQzQC3zJGBPOxMBUijGGtz8cpdvXx+EPRhCB29Y28FBHK5taqyy9BOFwQGOFh/oKPe6uVDYsOsBFZDnwLWCTMSYkIs8CjwI/zNDYitpUNM4v3hmg25dqmFBd6uKRzpU8uKWFBos1TLicwwENFR4aNLiVyqqlLqE4gVIRiQFlQN/Sh1Tczo9M0dPr56UTqYYJ65sq+PZ9G9i+3noNEy4nkgruxkoNbqVyYdEBboy5ICJ/A5wDQsABY8yBy99PRHYDuwHa2toW+3AFLWkMhz8YodvXx9vphgnb1qUaJlzTYr2GCZcTgfoKN40VHsuVm1WqkC1lCaUWeBhYDYwC/ywinzfG/Gjm+xlj9gJ7ATo7O3UD4AwTkTg/P95PT6+fwHiYujI3v39LG5/e1EJtubUaJsxmOrgbKjyWf3WgVCFayhLKfcD7xphBABH5GXA78KM5/5fi7PAk3T4/B08OEIkn2dhaxWO3reK2NfW2mMFON1ForNTgViqflhLg54BbRaSM1BLKvcDhjIyqACWShjffH6bb56f3wliqYcKGRnZ1tLLWgg0TZiMCteWppRK3U4NbqXxbyhr4myLyU+AIEAfeJr1Uoj4yFopx4HiA/UcDDAYjNFZ6+MJt7TywyZoNE2YzXda1qdKrwa2UhSxpF4ox5nvA9zI0loJyenCCbl8fv3w31TChY3k1f7htNTevrrfNDg0RqC510VTl0X6TSlmQnsTMoHgiyWunU30lTwSCeJyphgm7trayqr4838NbkJoyF42V2khBKSvTAM+Akckozx8L8PzRABenorRWe/nKttXcZ9GGCXOZnnFrcCtlffZKFwsxxnCyP0iPz8+vTg0RTxpuaKvlmx3ruGGVNRsmzKWq1ElzlVeDWykb0QBfoFgiyaH3Btnn83NqYIJSVwk7t7Swa+syltdas2HCXCq9qeC2as1wpdSVaYDP09BEhP1HA7xwLMBYKMbK2lL+6K617LimkTK3/T6NFV4nzVUeW45dKZWiP71zMMZw3D/OPp+f108PYQzcvLqOro5lfMrCDRPmUu4pobnKS7nN1uaVUp+kP8WzCMcS/PLdQXp6/bw/NEmFx8nD6YYJLRZumDCXsnRw2+2mqlLqyvSneYb+8TDP9fo5cLyfiUic9voyvrFjHXdtsHbDhLlocCtVuIr+p9oYw7+dH6Pb18ev3794qWFC19ZWNi+zdsOEuZS6S2iu8lDptcdpT6XUwhVtgE9F4xw8OUiPr48PR1INEz7buZKdNmiYMJdSt4OmKi9VGtxKFbyiC/C+0RDdvj5eemeAqWiCdU0VfPu+9Wxb12jrOh9eVyq4q21SX0UptXRFEeBJYzhydoR9Pj9Hzo3gdAh3rGugq6OVa5orbbtMAuBxOWiu9FJdpsGtVLEp6ACfiMT5+Yl+nuv14x9LNUz4vZvbeHCzPRomzMXjctBU6aGmzN7PQym1eAUZ4GeHJ+npTTVMCMeSbGyp5PO3rOK2tfW2b0Dgdk4Ht8vWrxyUUktXMAGeSBp+/f4w3b1+fOfHcJVIqmHC1mWsa7JHw4S5uJxCU6WXWg1upVSa7QN8PBTjwPF+njvqZzAYoaHCw2O3reKBTS0FcUPP5RQaKzzUlbs1uJVSH2PbAD89OEGPz88v3x0kmkjSsbyar25bzS02apgwF2eJ0FjpoV6DWyl1BbYK8Hgiyetnhtnn83PCP47H6eCea5vo6rBfw4QrEYGmSg8NFR4cBfCLSCmVPbYI8MFghB+9cZZun5+Lk1Faqrx85Y50wwSvLZ7CVU03DG7STu9KqXmyRfr9l+dO8LO3L3BDWw1/cvc6blxVWxDLJNO0mYJSajFsEeDfunc9uzpaaaq0ZyXAKynzlNCipV2VUotki+RobygnmkgSiSXzPZSM8LgcNOuxd6XUEi0pwEWkBvgBsAUwwJeNMa9nYFwFyVkiNFXqlkClVGYsdQa+B3jeGPO7IuIGyjIwpoIjAo2VHhp1Z4lSKoMWHeAiUgXcCXwRwBgTBaKZGVZh0J0lSqlsWkqqrAEGgX8QkbdF5Aci8onN2CKyW0QOi8jhwcHBJTycvVSVOlnXVMHymlINb6VUViwlWZzADcDfGWOuByaB71z+TsaYvcaYTmNMZ2Nj4xIezh5K3SWsaSxnVX25bgtUSmXVUtbAzwPnjTFvpt/+KbMEeLFwOx20VGldbqVU7iw6wI0xARH5UESuMcacBO4FjmduaPZQ4hCaq3RniVIq95a6C+WbwI/TO1DOAF9a+pDsYXpnSUOFp6BOhSql7GNJAW6M+Q3QmZmh2IMI1JS5aK7y6s1JpVRe2eIkplVozRKllJVogM9DqbuE1mqtWaKUshZNpDnozhKllJVpgM/C4YCmSi8NFbqzRCllXRrgM4hAXfrou1NvUCqlLE4DPE1vUCql7KboA7zU7aClupQKvUGplLKZok0tl1NorvRSW+7O91CUUmpRii7Ateu7UqpQFFWA15brCUqlVOEoigCv8DpprdYblEqpwlLQAe5xOWip9lLl1YM4SqnCU5ABriVelVLFoKACXAQaKjw0VmqJV6VU4SuYAJ8u8ep26g1KpVRxsH2Al3lSlQLL3Jl/KicOHeTQM08THB6isr6B7Y8+xsbtOzL+OEoptRi2DXC3M3WDsro0OzcoTxw6yIG9TxKPRgAIDg1yYO+TABriSilLsN16g8MBLdVeNjRXZC28AQ498/Sl8J4Wj0Y49MzTWXtMpZRaCNvMwB0C9RW5qxQYHB5a0HWllMo128zA2+vLWVZTmrMyr5X1DQu6rpRSuWabAM91fe7tjz6G0+35+BjcHrY/+lhOx6GUUley5CUUESkBDgMXjDFdSx+SNUzfqNRdKEopq8rEGvjjwAmgKgMfy1I2bt+hga2UsqwlBbiIrAB2Af8Z+LOMjOgyuhdbKaVmt9QZ+N8CfwFUXukdRGQ3sBugra1tQR9c92IrpdSVLfrOoIh0AQPGmLfmej9jzF5jTKcxprOxsXFBj6F7sZVS6sqWsrXjDuC3ROQD4BngHhH5UUZGlaZ7sZVS6soWHeDGmO8aY1YYY9qBR4FfGGM+n7GRoXuxlVJqLpbeB657sZVS6soycpTeGPMy8HImPtZMuhdbKaWuzPK1UHQvtlJKzc7SSyhKKaWuTANcKaVsSgNcKaVsSgNcKaVsSgNcKaVsSowxuXswkUHg7CL/ewNQbEcw9TkXB33OxWEpz3mVMeYTtUhyGuBLISKHjTGd+R5HLulzLg76nItDNp6zLqEopZRNaYArpZRN2SnA9+Z7AHmgz7k46HMuDhl/zrZZA1dKKfVxdpqBK6WUmkEDXCmlbMoWAS4iD4rISRE5JSLfyfd4sk1EVorIQRE5ISLHROTxfI8pF0SkRETeFpHufI8lF0SkRkR+KiLvpL/Wt+V7TNkmIt9Of08fFZGfiIg332PKNBF5SkQGROTojGt1IvKiiLyX/rM2E49l+QAXkRLgfwE7gU3A50RkU35HlXVx4M+NMRuBW4E/KYLnDPA4cCLfg8ihPcDzxphrgU9R4M9dRJYD3wI6jTFbgBJS3bwKzQ+BBy+79h3gJWPMeuCl9NtLZvkAB24GThljzhhjoqT6bz6c5zFllTHGb4w5kv57kNQP9vL8jiq7RGQFsAv4Qb7HkgsiUgXcCfw9gDEmaowZzeugcsMJlIqIEygD+vI8nowzxrwCXLzs8sPAP6b//o/Ab2fisewQ4MuBD2e8fZ4CD7OZRKQduB54M89Dyba/Bf4CSOZ5HLmyBhgE/iG9bPQDESnP96CyyRhzAfgb4BzgB8aMMQfyO6qcaTbG+CE1QQOaMvFB7RDgMsu1otj7KCIVwP8B/tQYM57v8WSLiHQBA8aYt/I9lhxyAjcAf2eMuR6YJEMvq60qve77MLAaWAaUi0hGG6EXGzsE+Hlg5Yy3V1CAL7suJyIuUuH9Y2PMz/I9niy7A/gtEfmA1BLZPSLyo/wOKevOA+eNMdOvrH5KKtAL2X3A+8aYQWNMDPgZcHuex5Qr/SLSCpD+cyATH9QOAf7/gPUislpE3KRuevxrnseUVSIipNZGTxhj/ke+x5NtxpjvGmNWGGPaSX19f2GMKeiZmTEmAHwoItekL90LHM/jkHLhHHCriJSlv8fvpcBv3M7wr8AX0n//AvAvmfiglm9qbIyJi8g3gBdI3bV+yhhzLM/DyrY7gD8AekXkN+lr/8kY81z+hqSy4JvAj9MTkzPAl/I8nqwyxrwpIj8FjpDaafU2BXikXkR+AtwNNIjIeeB7wPeBZ0XkK6R+kX02I4+lR+mVUsqe7LCEopRSahYa4EopZVMa4EopZVMa4EopZVMa4EopZVMa4EopZVMa4EopZVP/H27qEJTcziGwAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "x_train = np.array([0,1,2,4,5,6,8,9,10])\n", - "x_val = np.array([3,7])\n", - "\n", - "y_train = np.array([3.9, 4.4, 10.8, 11.2, 13.1, 14.1, 9.9, 15.1, 12.5])\n", - "y_val = np.array([10.3, 13.9])\n", - "\n", - "# fit a linear curve an estimate its y-values and their error.\n", - "a, b = np.polyfit(x_train, y_train, deg=1)\n", - "y_est = a * x_train + b\n", - "y_err = x_train.std() * np.sqrt(1/len(x_train) +\n", - " (x_train - x_train.mean())**2 / np.sum((x_train - x_train.mean())**2))\n", - "\n", - "fig, ax = plt.subplots()\n", - "ax.plot(x_train, y_est, '-')\n", - "ax.fill_between(x_train, y_est - y_err, y_est + y_err, alpha=0.2)\n", - "ax.plot(x_train, y_train, 'o', color='tab:brown')\n", - "ax.plot(x_val, y_val, 'o', color='tab:green')\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ejemplo 2: Modelo cuadrático \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En este segundo intento vamos a entrenar un modelo de tipo cuadrático de la forma $y = ax^2 + bx +c$. Usaremos al misma herramienta para entrenar el modelo. La gráfica presenta el resultado." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAt10lEQVR4nO3deXycV33v8c9vdo002lfbkuUl3pM0iROyGbKR2IEk7YWmLqWhlEsopRQoewM3LRdK0paWtmkpbgo0hZvgJNyS28aOs4KzEtskxba8r7K1ryPNPnPuHyPJS+TY1jzPrL/36+WXNY9Gz3PG1nx1dJ7fOUeMMSillCo8jlw3QCml1MxogCulVIHSAFdKqQKlAa6UUgVKA1wppQqUK5sXq6+vN+3t7dm8pFJKFbytW7f2G2MaTj+e1QBvb29ny5Yt2bykUkoVPBE5PN1xHUJRSqkCpQGulFIFSgNcKaUKlAa4UkoVKA1wpZQqUFmtQlFKqVzo2Pw8mx95iOBAP4G6elatvYulq67PdbMypgGulCpqHZufZ9O6B0jEogAE+/vYtO4BgIIPcR1CUUoVtc2PPDQV3pMSsSibH3koRy2yjga4UqqoBQf6z+t4IdEhFKWUrZIpQzyZIppIEUukSKRSOERwOx24nILH6cDlEFxOe/qTgbp6gv190x4vdBrgSqmMGGOIJdPhHEukiCdN+uOJY8nUue36JcKpoe5Mh7zbcdLHTkFEzqt9q9bedcoYOIDL42XV2rvO6zz5SANcKXVW8VMCOt2bjifTIR1PWLMtozFMXANCJM/4vHSYCy6HA7fLgdtxojefDnkHTseJkJ+8UalVKEqpopRMmamAjk0F84ledD5tnZtIGhJJA6TO+BwR8LjSQzNup4Oai67ifZdcjc/txO9xnncvPl9pgCtVAowx6THok4I5njDEkkmiiRSpM2dhQTIGovEU6UGTU3vzDgeUe1xU+FxUeF343M5cNNESGuBKFYlY4q0958m/0z1WBZBKQTCSIBhJAOB2CRVeFwGvmwqf65Thl3ynAa5UgUicNOYcTSZP3CycGI/Op2GOQhJPGIYScYbG44iAz+0kMNE7z/fhFg1wpfJEKmWmxp8nQ/nkceliG+bIR8ZAOJYkHEvSSxSHAyq86TAP+Nx4XPk1dUYDXKkcGY8mGA7HCceSxJM6zJGPUikYDScYDSeACB6XY2rsPOB14cjxcIsGuFJZFIolGAnHGQ7FNbALUCyRYnAsxuBYDBEo8zgJeNM3RP2e7MepBrhSNovEkwyH4oyE48QSOg5SLIyBUDRJKJqkZzSK05G+GVrhcxHwuXDbNLP0ZBrgStkgmkgyMhHakfj0oX1860vs27CeyFA/vpp6Fq65k1mXXZPlliqrJFOGkXD6/xzA63ZMBXqFx57hlrP+iBCR74lIr4hsn+ZznxMRIyKFv6iAUhmKJVL0BaPs6w2yp3uMntHo24b3zkcfJDKUXlApMtTPzkcf5PjWl7LZZGWjaDzFwFiMw/0heoPRs3/BDJxLH/8HwOrTD4pIK/Bu4IjFbVKqYMSTKfrHouzvG2N3d5DukQjh2NmHSfZtWE8qHjvlWCoeY9+G9XY1VRWhsw6hGGN+LiLt03zqb4EvAD+1ulFK5bPJX5WHQzFCseSM6q8ne97netxKL3ZtYv2B79If6aXe18id8z/GtS03235dZb0ZjYGLyO3AMWPMm/lc5K6UVVIpw2gkXT0yFk1kPGnGV1M/bVj7auwdjXyxaxMP7rqfWCr9K31/pIcHd90PoCFegM77NqmI+IF7gP91js+/W0S2iMiWvr63rsmrVL5KpQwjoThHBkLs7Brl6GCYYCTz8AZYuOZOHG7PKcccbg8L19yZ+cnfxvoD350K70mxVJT1B75r63WVPWbSA18AzAMme99zgG0icoUxpvv0Jxtj1gHrAFauXKmFryqvGWMIRhOMhOKMRuK2zX6crDbJdhVKf6R32uMDZziu8tt5B7gx5ldA4+RjETkErDTGFP7+RKpkjUUTDIdijIYT57wBQaZmXXZN1ssG632N9Ed63nK8ztc4zbNVvjuXMsKHgVeAxSLSKSIfsb9ZSmXHSDjOvt4gB/vGGRqPZy28c+XO+R/D4/Cecszj8HLn/I/lqEUqE+dShfLbZ/l8u2WtUSoLjDEMh+L0jUWJnqFOu1hN3qhcf+C7DER6qdMqlIKmMzFVyTDGMDgeo38sVtJT2q9tuTmngZ0yBodWr1lCA1wVvVTKMDAeo38sqgtInafJnXwi8STheJJIPEkoliQSnzgWSx+f/NzbP04RjiWJJVPMqvKxpLmSJS0BljQHaKstL6iNFPKFBrgqWsmUYWAsSv9YrOjHticlU+bsYRpLTgVyeCJUTzw+9fOReJJz/adzOoQytxOf20mZx0mZ20GZ20llmXvicfqPy+ng8MA4W48M8dzudPVLmdvJoqaKdKg3B1jcHCDgc9v4L1UcNMBV0Ykn02tQDIxH834ThEQyxVg08ZbebTieJBJLEpo4fj6923PlczvSYTv5x+OkqsxNc6Vv6vGJzzumHvvcTvwnBfXkRsEuh5zX7jXGGLpHI+zqDqb/dI3y6NajUz8wZleXsbQlMBXqrbV+HXo5jQa4KhqxRIq+sShD47G83l5sPJrg9UODvLx/gK1Hhs5pPH6ydzsVmG4nPreDKr/7LSF88uMTveHJx+kg9rqcOR+yEBFaqspoqSrj+sXpMsZwLMne3olA7x7ltYODPNOR7qX7PU4WNaWHXJY2V7KoOUCFt7QjrLRfvSoKkXiSvmCUkXD8vIM7W0u6DodivHZwkFcODPDm0WESKUNtuYebljbRVlP2luA95bHHmZW1pfNBmcfJRXOquWhONZDupXeNROjoGp0K9fVbTvTSW2v9LGkOTPypZE5NWUn10jXAVcEKx04E90xMLuk6uSrg5JKugCUh3heM8sqBAV7Z38/OrlFSBporfdx+8SyuWlDHoqZASYXNTIgIs6rLmFVdxo1Lm4D0rkZ7e8bY1Z0O9Vf2D/D0zvTkpHKvk8VNlVOhvrg5kJOdcrKleF+ZKlrj0QR9wSjBSCKj87zdkq4zDfBjQ2FePtDPK/sH2Ns7BsDcWj93rmzl6gV1tNeV5/Uu54XA73FxcWs1F7dWA+myxGPDYXZ3BadC/eFfDGEAAdpq/SxpSYf6RXOqaAz4ctl8S2mAq4IRjMTpC0YZjyYtOZ8VS7oaYzg0MM5L+wd4Zf8ARwZDACxqquBDV7Vz1fw6ZteUWdJeNT2HCK01flpr/Ny0LN1LH48m2NNzYiz9xb19PLWjGwEuaathzYpmLm+vzfl9gExpgKu8NxJOB3c4Zk1wT5rpkq4pY9jTHeTlA+nQ7h6N4BBYPquKu1fN58r5dTQEvG97DmWvcq+LS9pquKStBkj/nx0dDPHSvn6e2tnDN57soK7cw83Lmrh5eTP1FYX5/6UBrvKSMWYquM+0LVmmFq6585QxcDjzkq7JlGH7sRFePjDAq/sHGAzFcDmEi1uref9lc3jHvFqq/Z63fJ3KDw4R5taVM7eunN+6vI3XDw2yYXs3j7x+lB9vOcrl7bWsXt7MJW01BdUr1wBXeSWb093PtqRrLJHijaPDvHKgn9cODBKMJvC6HFw2t4ar5tdxeXst5SVexlaInA7hyvl1XDm/ju7RCJt2dPP0zh5eOzhIY8DLLcubeffSJmrK8/8HspgsFsyuXLnSbNmyJWvXU4VlOBSjaySS0+nuoViCrYeHeOXAAFsODRGOJyn3OLl8Xi1XL6jnktZqfG5nztqn7BFPpnjt4CAbtnfx350j6ZCfV8uaFS1cOKcq42qhhoCX5qqZ3zwVka3GmJWnH9fug8q5RDLF8eHIjMsBMxWJJ3lxX7py5JdHh4gnDdVlbt65qIGr59dx4ZyqkqnDLlVup4NrF9Zz7cJ6jg2F2bijm2c7enhp/wAtVT5WL2/mxqVNVJXl1/R+7YGrnApG4nQOhXPS647Ek2zY3sVPth1jOBynIeDlqvl1XL2gjiXNlQU1FqqsF0ukeHl/Pxu2d7OzaxSXQ7hmYT1rVjSzrKXynMtBj299iQMb1xMaGiBQV8+qtXexdNX159UW7YGrvJJKGbpGIwyOxc7+ZItF4kk2bu/m8W2dDIfj/FprNWsvbz2vN6Uqfh6Xg+sWN3Ld4kYOD4yzcUc3z+/q5Wd7+mitKWP1ihZuWNxIhe/MMXr6ZLFgfx+b1j0AcN4hPh3tgausC8USdA6Fs76ZQjSRZMNkcIfSwf3bV7SxrKUyq+1QhSsST/Li3n427OhiT88YHqeDVRfUs3pFM4ubAm/pAPz865+atlQ1UN/A3f/4/XO+rvbAVc4ZY+gNRukLRrO62FQ0caLHPRSKc/GcKr60uo3ls6qy1whVFHxuJzcta+KmZU3s7xtj4/Zufranj2d39TKvvpw1K5p516KGqen7Z5oUFhywZgthDXCVFZF4ks6hEOFY9nrd0USSp3b08PjWTgZDMS6aU8UXbmljxWwNbpW5BQ0VfOL6hXz4mnZ+tqePjdu7+acX9vO9lw7yrkWNrF7efMbJYoG6t58sdq40wJXt+seidI9EstbrjiVSPLWjm8cmgvvC2VV87pbFXKjBrWzg97hYs6KF1cub2ds7xobtXTy/u5endnTzztp3cPHoJkieqLByebysWnuXJdfWAFe2iSdTdA6FGctw0alzFUuk2LSzm0e3djI4HmP5rEo+d/MiLpxYmlQpO4kIi5oCLGoK8JFr5/P8rl427vDTVRPh2uFfUJEIEqhvmFEVyhmvebabmCLyPeC9QK8xZsXEsb8CbgNiwH7gw8aY4bNdTG9ilo7hUIxjw+Gs7IgTS6R4eiK4ByaC+wNXtE2tKa1Urhhj2Nk1ygu7+/jary+f8UqIZ7qJeS4B/k5gDHjopAC/GXjOGJMQkfsnGvrFszVCA7z4JVOG48NhhkP2T8qJJ1Ns2tnDo1uOMjAeY1lLJR94RxsXza7K63JAkfTGBQGfi0qfG4cIBoMx6UWXJv9OGWDqY4PhxOennku6JNMYMKS/5sRz0o8NhlQqfRzI692KilXOZmIaY34uIu2nHdt00sNXgffPuGWqaGRrUk48meLpnT08uvUo/WMxlrZU8pmbFnHRnPwNbocDAl43lWUuKrwuXDmc2WlO+yEx0x8e0/4wMeak8596zvS1c/ayi5IVY+C/D/z4TJ8UkbuBuwHa2tosuJzKN6lUenPaAZsn5cSTKZ7p6GH9lk76x6IsbQ7wqRsXcXGeBrfX7SDgcxHwuSn3OPOmjSKCCDjIfnsmfysYiyQYDscIRhIa6hnIKMBF5B4gAfzoTM8xxqwD1kF6CCWT66n8E44lOToUsnVSzmRwP7q1k75glCXNAf74hoX8Wmt13oQipIdG/B4nAV+6p+116aJXpxMRnAJVfjdVfjfJlGE0HGckHGcsqmF+vmYc4CLyIdI3N2802ZzOqfKCMYa+YJReGyflxJMpnu3oZf3Wo/QFoyxuCvBH1y/kkjwKbqdDpsayK3wuXT/lPDkdQk25h5pyD8lUeg34kXCccQ3zczKjABeR1cAXgXcZY0LWNknlu/SknLDlO+RMSiRTPLurl/VbjtI7EdyfuG4hl7blR3D73I6pXnYxb5ibbU6HUFvuobbcQyKZOinM7fk+KwZn/e4TkYeB64B6EekE7gW+DHiBpyfeUK8aY/7AxnaqPDEwFqXLpkk5pwf3oqYKPn7dAi5rq8lpcItAhdc1NZ7tcenSsnZzOR3UVXipq/ASPynMQxrmpziXKpTfnubwv9rQFpXH7J6Uc3QwxDc37uLoYIiFjRV8/F0LuGxu7oLb5ZSpwA54XTh0aCRn3E4H9RVe6iu8xBInwtyu3wALif7+p85qJBTn2HCYZMqeQcnNe/v4++f24nU5uefWpbxjXm1OgrvM46RyIrTLPHoDMh95XA4aAl4aAl6iiSQj4Tij4XhW19jJJxrg6ozsnpQTT6b4wcuHeOLN4yxpDvCl1Uuoy/Lu4CJQU+6hMeDVXXcKjNflpDHgpDHgIxJPTlWz2LUJdj7SAFfTGosm6BwKEU/Y0+seGIty/8ZddHQHuf3iWfze1e1ZD9Bqv5umSp+OaRcBn9uJz+2ksTId5pPDLNlecz7bNMDVKbIxKee/O4f5q6d2E0kk+fzNi3nnogaOb33pjLvDW62yzEVTpU83Jy5Sk2HeVOkjHDsR5rFE8YW5BriaYvekHGMMj287xr+/eohZ1WV8Y82FtNX637LtVGSon52PPghgaYhX+Fw0VXq19K+ElHmclHmcNFf5CMUSDIzFsrJOT7bod7LKyqScsWiCbz+zh9cODnLtwno+ecPCqSDdt2H9VHhPSsVj7Nuw3pIAn3wDV3j1272U+T0u/LUuGgJJukciBLO0zLGd9Du6xEUTSY4O2jcpB+Bg/zjf3NBBbzDKR1fN47aLZp1SZXKmbafOdPxc+dwOGit9VJW5MzqPKi4+t5P2+nLGowm6RyMFXVuuAV7C7JyUM+m5XT384wv7qfC6+IvfuHDaDYTPtO2Ur2Zm2055XA6aKr1U+z0z+npVGsq9LhY0VDAaidMzEinI6hUN8BIUT6Y4NhS29VfIWCLFv2w+wMYd3Vw4u4rP37KYmjME6sI1d54yBg7gcHtYuObO87qmyyk0BrzUlnvyYsq9KgyVPjeVPjdD4zF6ghHbKq/soAGehzo2P8/mRx4iONBPoK7e0i2Y7J6UA9AzGuG+jbvY1zvG+y6dw+9eOfdtF3maHOeeaRWK0yHUBzzUl3t1xqSasZpyD9V+N/1jMfqCUVvfI1bRAM8zHZufZ9O6B0jEogAE+/vYtO4BgIxCPFs75Ww9PMS3Nu0maQx/eutSrppfd05fN+uya877hqVIeqeT+gqvrgKoLCEiNEz8Ftc/FqXPxhv7VtAAzzObH3loKrwnJWJRNj/y0IwD3O5JOZDeceXHrx/l4V8cYW6dny+vWcqs6jJbriUCtROzJ3O5s40qXk6H0FTpo7bcQ28wytB4LC+DXAM8zwQHpq+8ONPxt5OtnXJGw3G+9fQeth0Z4obFjXz8ugW2TJIRgaoynT2pssftdDC7uoz6Cg+9o9G8qyHXAM8zgbp6gv190x4/H+FYks6hkO131vf0BLlv4y6GxmN84rqF3LK8yZYbiFVlbhorvTp7UuWE1+WktdZPfUWS7tGIbatyni/txuSZVWvvwuU5dUEnl8fLqrV3ndPXG2PoDUbY3zdma3gbY9iwvYsvPv7fANz/votYvaLZ8vCu8LlY2FhBW51fw1vlXJnHybz6cuY1lOfFipXaA88zk+PcM6lCiSbSO+XYPTEhEk/ynRf289zuXi5tq+az715MpcWTZXT2pMpnFd50x2IkHKdnNJKzRbP03ZGHlq66/rxvWA6Oxzg+HLb9Rsvx4TDf3NDB4YEQH7iijTtXtlpaAeJzO2iq8lHp09mTKv9Vlbmp9LkYCqWDPJHM7p1ODfACZ+WknBe7NrH+wHfpj/RS72vkzvkf49qWm6c+/+qBAf72mT04Rbj3tuVcNrcm42uerKnSS2Olz9JzKmU3kfRentVlbvrH06WHqSx1yDXAC9hIOM6xIWsm5bzYtYkHd91PLJUuYeyP9PDgrvsBuKrp3fz7q4d5fFsnCxsr+PLqJZYGrQjMqSnTqe+qoDkcQmPAR125l75glP4x+2vINcALkB2TctYf+O5UeE+KpaI8vO+fefLVFn51bITVy5v56Kr5lpbwOR3C3Do/5TrWrYqE0yE0V/moq/DQMxqxtfRQ3zUFxq5JOf2R3mmPD0V76e4O8ukbL+DGpU2WXtPrdjC3zo/Xlfu7+UpZze10MKcmXXoYS9ozpnLWrpSIfE9EekVk+0nHakXkaRHZO/G3tYOh6i2MMXSNhDnYN27LjMp6X+O0xyVZw1//5kWWh3e518mChgoNb1X0fG6nbTflz+V34R8Aq0879iXgWWPMBcCzE4+VTSLxJPt6x+gP2jej8s75H8PjOLX+XIyH31/2h8yrr7D0WtV+N/Pqy3X9khLUsfl51n3iw3xr7W2s+8SH6dj8fK6bVNDOOoRijPm5iLSfdvgO4LqJj/8NeAH4opUNU2m9wQi9o/bfDLm25WYGxqOs37+OlHMIv6Oe31v2cVa13GLpdZqqvDQGtNKkFNm1UFspm+kYeJMxpgvAGNMlItP//g2IyN3A3QBtbW0zvFzpiSdTHBkMZW23kM17+/jhc3X4XF/hi7cs5qI51ZaeXwRaa/xU+bW+u1TZsVBbqbP9JqYxZh2wDmDlypV5uJ5X/okmkhzqD2VlF+14MsUPXj7EE28eZ2lzgC+uXkJdhffsX3genA6hvd6vmwmXOCsXalNpM31H9YhIy0TvuwWYvoRBnbdIPMnB/vGszOgaGIty/8ZddHQHuf3iWXz46nbLl2f1uh2015Xr6oHKsoXa1AkzfVc9AXxo4uMPAT+1pjmlLRRLcKAvO+H9Zucwn/7xGxwcGOcLtyzmo6vmWx7eFb70noMa3goyX6hNvdVZe+Ai8jDpG5b1ItIJ3AvcB6wXkY8AR4DftLORpWAsmuBQ/7jtNytTxvD4tk5++OphZlWX8RdrLqS11m/5dWrK3cyuLtO9KdWUTBZqU9MTk8VtJlauXGm2bNmStesVipFwnKODIdvDeyya4NvP7OG1g4OsuqCeP7p+oS3j0s1VPhoC1o6jK1XKRGSrMWbl6cf1rlKODY3HOJaFVQQP9o/xzQ276A1G+eiq+dx2UYvlvWMRaK31U2Xx0rJKqelpgOdQXzBK90jE9us829HDP72wnwqfi2/+xoUsbam0/BouZ3pNE600USp79N2WI90jEfqC0bM/MQOxRIp1mw/w1I5uLppdxedvWWzLin8+t4O5WmmiVNZpgOfAseEwgzZvNNwzGuG+DbvY1zfG+y+dwwevnGvL1PUKn4u2Wr9Oi1cqBzTAs8gYQ+eQtcvATmfr4SG+tWk3KWO459alXDm/zpbr1FZ4mFXl00oTpXJEAzxLUinDkcGQJTvnnEkyZfjx60d45PWjzK3z8+U1S5lVXWbLtbTSRKnc0wDPgmTKcGhg3NZ1TUbDcb719G62HRnmhsWNfPy6Bbbs4q6VJkrlDw1wm8WTKQ4PjBOO2beuyZ6eIPdt3MXQeIxPXLeQW5Y32TKs4XIK7XXllHl0DW+l8oEGuI1iiRQH+8dtW5TKGMPGHd2s+/kBass9/OX7LuKCpoAt19JKE6Xyjwa4TexelCoST/KdF/bz3O5eLm2r4bPvXkSlTcMaAZ+LVq00USrvaIDbIBRLcKg/ZMlu8dM5Phzmmxs6ODwQ4gNXtPFbl7fisKkSpK7CQ4tWmiiVlzTALWb3olSvHBjg28/swSnCn922nEvn2rcdaUu1j3qL1wZXSllHA9xCdi5KlUwZ/v3VQzy+7RgXNFbwpdVLaKy0Z2syEWir89u2EatSyhoa4Baxc1GqoVCMv3pqN786NsKaFc18dNV83Bav3T1JK02UKhwa4BboH4vSNWzPolQ7u0a5f8MuxmIJPnPTBdywpMmW6wCUedKVJnb9cFBKWUsDPEM9o+ld461mjOGJN4/z/ZcP0Rjw8me3X8y8+nLLrzMpMLGmiUMrTZQqGBrgGbBrUaqUMfzDc3t5pqOXK+fX8ukbF1Hute+/qq7CY9uUe6WUfTTAZ8DORamMMXznhf0809HL2stb+cAVbbaV8IlAS5XP8l3olVLZoQF+nuxclMoYw7++eJCNO7r5zcvm8DvvmGv5NSY5HOk1TbTSRKnCpQF+HuxelOpHvzjCT988zu0Xz+J3r7QvvN2udKWJHYtdKaWyRwP8HCWSKQ7ZuCjVY1s7+fHrR7l5WRP/89p5tg2baKWJUsUjo3exiHxGRHaIyHYReVhE7JlZkmOxRIoD/faF9/978zj/9soh3rWogT+8bqFt4V1Z5mJ+fYWGt1JFYsbvZBGZDfwxsNIYswJwAmutali+iMSTHOgfIxq3J7yf3tnNus0HuGp+HZ+5aZFtC0bVBzzMrSvXMkGlikimQyguoExE4oAfOJ55k/LH5HKwdq0o+LM9ffzDc/u4tK2Gz9+y2Jbw1koTpYrXjHvgxphjwF8DR4AuYMQYs+n054nI3SKyRUS29PX1zbylWTY55m1XeL96YIC/eXo3y2dV8uU1S2wZ1nA4YG6dX8NbqSKVyRBKDXAHMA+YBZSLyAdPf54xZp0xZqUxZmVDQ8PMW5pFqZTh0EDItmGTbYeHuH/jLi5oDPDV9y6zpRrE7RIWNFQQ0DJBpYpWJt2+m4CDxpg+Y0wc+AlwtTXNyh1jDIcHQ4Rj9pQKbj82wjc2dNBW6+fPbluO32N9IVCZx8mChgotE1SqyGUS4EeAK0XEL+myiRuBDmualTudQ2HGbNo5fk9PkK/9506aAl6+dscKKnzWh3dVmZv59VomqFQpmHGCGGNeE5HHgG1AAvglsM6qhuXC8WF7pscDHOwf4389sZ2qMjf/+44Vtuzq3hDw0lxVlJWcSqlpZNQFNMbcC9xrUVtyqjcYYcCGhakAjg6G+OpPd1DmdvH1X19h+U1FEZhVXUZtucfS8yql8pvOxAQGx2P0jFi/JCxA90iEr/x0OyLw9TtW0GTxLjrpSpNyKmxcrVAplZ9K/l0/Eo5zfDhsy7n7glHu+Y9fEU+k+Ob/uJDZNdYu2epxOZhb59eblUqVqJIO8PFowrY9LIdCMb760+2MRRN849cvZG6dtZsxlHmctNf5cenNSqVKVskGeCSe5NCAPbvHj4bjfPU/ttM/FuVrd6xgYWOFpeevKnMzp6ZMp8UrVeJKMsCjiSQH+8dJ2TBPZzya4N4ndnB8JMy9713OspZKS8+vlSZKqUklF+CJZIpD/SFbpshH4kn+/D93cnBgnHtuXcrFrdWWnVsEZleXUaOVJkqpCSUV4JMbMsQS1ne9Y4kU33iyg93do3z+liVc3l5r2bm10kQpNZ2SSQRjDIdt2pAhnkxx38YO3jg6zGduuoBrF9Zbdm6tNFFKnUnJBPjRwTDjNmyFlkwZvvX0Hl4/NMTH37WAG5Y0WXZuv9fJ3FqtNFFKTa8kAvzYcJiRsPVT5FPG8PfP7eWlff38/jXt3Hphi2XnLvc6mVdfbtvuPEqpwlf0Xbue0QiDNkyRN8bwzz/bz3O7evnAFW38xiVzLDu3153et1LDWyn1doo6wAfGovSOWj9F3hjD918+xIbt3bzv0tmsvbzVsnM7HcLcOr9tW6sppYpH0Qb4SCjO8eGILed+5PWj/N9fHuM9F7bwoavaLespi6R30PG69IalUursijLAx6IJjg6FbDn3T7Z18n9+cYQblzRy9zvnWzrM0Vrjp1xLBZVS56joAjwcS3LYpiny//WrLr7/8iFWXVDPJ2+4AIeF4d1U5aXKr9ufKaXOXVEFuJ1T5J/t6OGff7afK9pr+ZObFlk6Rl1T7qYxoNPjlVLnp2gCPD4xRT6Zsr7rvXlvH3//3F5+rbWaL65eYmlddrnXyexqa5eZVUqVhqII8GTKcKjfninyvzg4wLee3sOS5kruuXUpHpd1/2RaLqiUykTBB3hqYn2TSNz68N7VNcp9G3cxr76ce29bZul0dqdDaK8r13JBpdSMFXSAG2M4OhQiZMMU+YGxKH+xoYO6ci9/ftty/B7rqkNEoL3eb2lvXilVejJKEBGpFpHHRGSXiHSIyFVWNexcHBsOMxpOWH7eaCLJ15/sIBJP8ZX3LKXS4h3kW2v8lv5AUEqVpkxT5O+AjcaY94uIB/Bb0KZz0j0SYWjc+vVNjDE88Pw+9vWOcc+tSy3fCk3LBZVSVplxgItIJfBO4PcAjDExwPpFR6bRPxalL2jPLvL/8cYxXtjdx++8o40r59dZem4tF1RKWSmTIZT5QB/wfRH5pYg8KCJv6a6KyN0iskVEtvT19WVwubThUIwum6bIbzs8xA9ePsQ1C+r4rZXWrW8CUOFzabmgUspSmQS4C7gU+I4x5hJgHPjS6U8yxqwzxqw0xqxsaGjI4HIQjMTpHApndI4zOTYU5i+f2kVbrZ9P3bjI0tI+n9tBW61fywWVUpbKJMA7gU5jzGsTjx8jHei2CMUSHB4I2TJFfjya4OtP7sThEL7ynmWUeawrF3Q5hblaLqiUssGMA9wY0w0cFZHFE4duBHZa0qppHB8O2xLeyZThrzftpmskwpdXL6Gp0roxahForyvXckGllC0yrUL5JPCjiQqUA8CHM2/S9GyYIQ/Aj147zJbDQ/zBuxZw4ZxqS8/dWuu3tDevlFInyyjAjTFvACutaUr2/XxPH49u7eSW5c3cuqLZ0nM3V/mosrh+XCmlTlayv9vv6x3j757by7KWSj5m8bretRUeGgJey86nlFLTKckAHwrF+MaTHVT63HxpzRLcFq4uGPC5mFWltd5KKfuVXIDHkym+uWEXo5E499y6lBq/x7Jza7mgUiqbSirAjTF892f76ega5VM3XMDCxgrLzu1yCu315Ti0XFAplSUlFeBPbu/mqZ09vP/SObxzUWaTik42WS5o5VCMUkqdTckkzq86h/mXzQdYObeGD14517LzikBbnZYLKqWyryQCvGc0wn0bd9FS5eNzNy+2dFZkc5WPSp+WCyqlsq/oAzwST/L1/9pJMmX4yq3LKPdatw53XYWH+gotF1RK5UZRB7gxhm8/s4cjgyG+cMsSZtdYtxpgZZmLWbq6oFIqh4o6wNdvOcpL+wf40FXtXDq3xrLzlnkctNZkbe8KpZSaVtEG+KsHBvjha0e4bnEDv3HJbMvO63alVxfUckGlVK4VZYAfHhjnb57ew8LGCv7o+oWWTaxxOLRcUCmVP4ouiYKROF//rw58bgdfuXUpXpc15X0i0Fbrx+fWckGlVH4oqgBPpgx/+dRu+sei/OmapdRZWCHSUuUjoOWCSqk8UlQB/r2XDvLG0WE+cd1ClrRUWnbe+oDH0h8GSillBeuKonPsmY4ennjzOLdd1MJNy5osOefxrS9xYON6QkMDBOrqWbX2Lpauut6ScyulVKaKIsB3dY/yj8/v4+I5VXzk2vmWnPP41pfoePRBkvEYAMH+PjatewBAQ1wplRcKfghlYCzKXzzZQX2Fly/cssSyafL7NqyfCu9JiViUzY88ZMn5lVIqUwUd4NFEkm882UEknuIr71lKpYVbmEWGBqY9Hhzot+waSimViYINcGMMDzy/j729Y3zm3YuYW1du2bkrfC4C9fXTfi5QN/1xpZTKtoIN8P944xgv7O7jA1e0cdX8OsvO63IKrTVlrFp7Fy7PqZUnLo+XVWvvsuxaSimViYxvYoqIE9gCHDPGvDfzJp3dtsND/ODlQ1y9oI7furzV0nO31vpxOR1TNyo3P/IQwYF+rUJRSuUdK6pQPgV0ANYVXr+N48Nh/nLTLtpq/Xz6xkU4LNx/siHgpeKk5WaXrrpeA1splbcyCnARmQO8B/gG8CeWtOg0HZufT/eC+/vwVtfxYtUVOPwLuec9yyzdBcfvddJUqZN1lFKFI9Me+LeBLwCBMz1BRO4G7gZoa2s7r5N3bH6eTeseIBGLAhAdHuDXRp7mxlsaaa70zbTNb+F0CK01upu8UqqwzPgmpoi8F+g1xmx9u+cZY9YZY1YaY1Y2NJzfRsKbH3loKrwnuU2C2Gv/dd7tfTuza8rwuAr2fq5SqkRlklrXALeLyCHgEeAGEfmhJa2acKaa68iQdbXYdRUeqiysH1dKqWyZcYAbY75sjJljjGkH1gLPGWM+aFnLOHPNta/GmlrsMo+DlirrhmKUUiqb8nrcYLpabIfbw8I1d2Z8bpF0yaCOeyulCpUli1kZY14AXrDiXCc7pRa7vx9fTR0L19zJrMuuyfjcc2rKLNvsQSmlciHvVyOcrMXe0xMkGk9Zcs5qv5tqv8eScymlVK7k9RCKHbxuB7Ory3LdDKWUylhJBfjkvpa6o7xSqhiUVIC3VPl0U2KlVNEomQCvLHPpvpZKqaJSEgHudglzavy5boZSSlmq6AN8ctzbqq3WlFIqXxR9gDdWevF78r5aUimlzltRB3iFz0VjQKfKK6WKU9EG+OTWaEopVayKNsDn1JThchbty1NKqeIM8IaAl4BPl4hVShW3ogtw3RpNKVUqiirAHQ50azSlVMkoqgCfU+PXrdGUUiWjaNJOt0ZTSpWaoghw3RpNKVWKCj7ARdJDJzrurZQqNQUf4LOry3SJWKVUSSroAK/2u6kp163RlFKlqWADXLdGU0qVuhkHuIi0isjzItIhIjtE5FNWNuztr61boymlVCbrrCaAzxpjtolIANgqIk8bY3Za1LYz0q3RlFIqgx64MabLGLNt4uMg0AHMtqphZ6JboymlVJolY+Ai0g5cArw2zefuFpEtIrKlr68vo+vo1mhKKXVCxgEuIhXA48CnjTGjp3/eGLPOGLPSGLOyoaFh5tchvc6Jbo2mlFJpGQW4iLhJh/ePjDE/saZJ02us9FHu1a3RlFJqUiZVKAL8K9BhjPkb65o0PV3nRCmlTpVJD/wa4HeBG0TkjYk/t1rULqWUUmcx4zEJY8yLpIemlVJK5UDBzsRUSqlSpwGulFIFSgNcKaUKlAa4UkoVKA1wpZQqUBrgSilVoDTAlVKqQIkxJnsXE+kDDs/wy+uBfgubUwj0NZcGfc2lIZPXPNcY85bFpLIa4JkQkS3GmJW5bkc26WsuDfqaS4Mdr1mHUJRSqkBpgCulVIEqpABfl+sG5IC+5tKgr7k0WP6aC2YMXCml1KkKqQeulFLqJBrgSilVoAoiwEVktYjsFpF9IvKlXLfHbiLSKiLPi0iHiOwQkU/luk3ZICJOEfmliPxnrtuSDSJSLSKPiciuif/rq3LdJruJyGcmvqe3i8jDIuLLdZusJiLfE5FeEdl+0rFaEXlaRPZO/F1jxbXyPsBFxAn8I7AGWAb8togsy22rbJcAPmuMWQpcCXyiBF4zwKeAjlw3Iov+DthojFkCXEyRv3YRmQ38MbDSGLMCcAJrc9sqW/wAWH3asS8BzxpjLgCenXicsbwPcOAKYJ8x5oAxJgY8AtyR4zbZyhjTZYzZNvFxkPQbe3ZuW2UvEZkDvAd4MNdtyQYRqQTeSXpfWYwxMWPMcE4blR0uoExEXIAfOJ7j9ljOGPNzYPC0w3cA/zbx8b8Bv27FtQohwGcDR0963EmRh9nJRKQduAR4LcdNsdu3gS8AqRy3I1vmA33A9yeGjR4UkfJcN8pOxphjwF8DR4AuYMQYsym3rcqaJmNMF6Q7aECjFScthACfbt/Nkqh9FJEK4HHg08aY0Vy3xy4i8l6g1xizNddtySIXcCnwHWPMJcA4Fv1ana8mxn3vAOYBs4ByEflgbltV2AohwDuB1pMez6EIf+06nYi4SYf3j4wxP8l1e2x2DXC7iBwiPUR2g4j8MLdNsl0n0GmMmfzN6jHSgV7MbgIOGmP6jDFx4CfA1TluU7b0iEgLwMTfvVactBAC/HXgAhGZJyIe0jc9nshxm2wlIkJ6bLTDGPM3uW6P3YwxXzbGzDHGtJP+/33OGFPUPTNjTDdwVEQWTxy6EdiZwyZlwxHgShHxT3yP30iR37g9yRPAhyY+/hDwUytO6rLiJHYyxiRE5I+Ap0jftf6eMWZHjptlt2uA3wV+JSJvTBz7U2PMk7lrkrLBJ4EfTXRMDgAfznF7bGWMeU1EHgO2ka60+iVFOKVeRB4GrgPqRaQTuBe4D1gvIh8h/YPsNy25lk6lV0qpwlQIQyhKKaWmoQGulFIFSgNcKaUKlAa4UkoVKA1wpZQqUBrgSilVoDTAlVKqQP1//sTckQEJXkgAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "x_train = np.array([0,1,2,4,5,6,8,9,10])\n", - "x_val = np.array([3,7])\n", - "\n", - "y_train = np.array([3.9, 4.4, 10.8, 11.2, 13.1, 14.1, 9.9, 15.1, 12.5])\n", - "y_val = np.array([10.3, 13.9])\n", - "\n", - "\n", - "# fit a linear curve an estimate its y-values and their error.\n", - "a, b, c = np.polyfit(x_train, y_train, deg=2)\n", - "y_est = a * x_train**2 + b *x_train + c\n", - "y_err = x_train.std() * np.sqrt(1/len(x_train) +\n", - " (x_train - x_train.mean())**2 / np.sum((x_train - x_train.mean())**2))\n", - "\n", - "fig, ax = plt.subplots()\n", - "ax.plot(x_train, y_est, '-')\n", - "ax.fill_between(x_train, y_est - y_err, y_est + y_err, alpha=0.2)\n", - "ax.plot(x_train, y_train, 'o', color='tab:brown')\n", - "ax.plot(x_val, y_val, 'o', color='tab:green')\n", - "#plt.savefig('predictive.png')\n", - "plt.show()\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "El modelo obtenido es $y = f(x) = -0.165x^2 + 2.534x + 3.943$. \n", - "\n", - "De acuerdo con la bandas de confianza este es un mejor modelo. En general existen herramientas para juzgar que tan buena es nuestra máquina de aprendizaje.\n", - "\n", - "Los valores predichos por el modelo son los que caen sobre la curva. Observe como en este caso los datos de validación quedan bastante bien predichos." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ejemplo 3: Modelo polinomial general " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Por el momento, procederemos de manera bastante informal y consideraremos un\n", - "enfoque simple basado en el ajuste de curvas. En particular, ajustaremos los datos utilizando una\n", - "función polinomial de la forma:\n", - "\n", - "$$y = f(x,\\boldsymbol{w}) = w_0 + w_1x + w_2x^2+ . . . + w_M x^M = \\sum_{j=0}^M w_jx^j = $$\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Función de pérdida " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Los valores de los coeficientes se determinarán ajustando el polinomio a los datos de entrenamiento. Esto se puede hacer minimizando una función de pérdida que mide el desajuste entre la función $f(x,\\boldsymbol{w})$, para cualquier valor de $\\boldsymbol{w}$, y el conjunto de datos de entrenamiento.\n", - "\n", - "Una opción simple de función de pérdida, que se usa ampliamente, viene dada por el promedio de **los cuadrados de los errores** entre las predicciones $f(x_n,\\boldsymbol{w})$, que denotaremos por $\\tilde{y}_n$, y los correspondientes valores objetivo $y_n$, de tal manera que se minimice:\n", - "\n", - "\n", - "$$ECM(w) = \\frac{1}{N} \\sum_{n=1}^{N} [{f(x_n,\\boldsymbol{w}) − y_n}]^2 = \\frac{1}{N} \\sum_{n=1}^{N} [{\\tilde{y}_n − y_n}]^2$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Pérdida en entrenamiento vs pérdida en validación " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Los datos de validación se notarán respectivamente como $x_n^*$ y $y_n^*$. Los datos de entrenamiento no tienen ningún símbolo adicional.\n", - "\n", - "Así, el ECM, es el modelo cuadrático para los datos de entrenamiento, luego de entrenada la máquina, es dado por:\n", - "\n", - "$$\n", - "ECM(w) = \\frac{1}{9} \\sum_{n=1}^{9} [{f(x_n,\\boldsymbol{w}) − y_n}]^2 = \\frac{1}{9} \\sum_{n=1}^{9} [{\\tilde{y}_n − y_n}]^2 = 3.1114\n", - "$$\n", - "\n", - "Para los datos de validación se obtiene:\n", - "\n", - "\n", - "$$\n", - "ECM(w) = \\frac{1}{2} \\sum_{n=1}^{2} [{f(x_n^*,\\boldsymbol{w}) − y_n^*}]^2 = \\frac{1}{2} \\sum_{n=1}^{2} [{\\tilde{y}_n^* − y_n^*}]^2 = 0.0758\n", - "$$\n", - "\n", - "Este resultado, no es realmente tan placentero. Genera dudas, debido a que se espera que el ECM de validación y el de entrenamiento sean similares. Aquí se puede sospechar que los datos de validación no fueron obtenidos adecuadamente. \n", - "\n", - "El siguiente código Python enseña como hacer los cálculos de esta sección." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3.052278640749228\n", - "0.04602282952396535\n" - ] - } - ], - "source": [ - "# emc train data\n", - "y_est_train = a * x_train**2 + b *x_train + c\n", - "print (np.mean((y_train- y_est_train)**2))\n", - "\n", - "# emc validation data\n", - "y_est_val = a * x_val**2 + b *x_val + c\n", - "print (np.mean((y_val- y_est_val)**2))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Sobreajuste y otros problemas" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "La siguiente tabla muestra los coeficientes (parámetros) de los polinomios entrenados con varios órdenes $ M $.\n", - "\n", - "#### Parámetros de regresión de acuerdo con el grado del polinomio\n", - "\n", - "|$w$| M =1| M=2| M=3 | M = 8|\n", - "|---|---|---|---|---|\n", - "|$w_0$|0.8836|-0.165|0.018|0.00002|\n", - "|$w_1$|6.418|2.534|-0.439|-0.001|\n", - "|$w_2$|---|3.942|3.580|-0.05|\n", - "|$w_3$|---|---| 3.284|-0.75|\n", - "|$w_4$|---|---|---|5.38|\n", - "|$w_5$|---|---|---|-1.96|\n", - "|$w_6$|---|---|---|33.8|\n", - "|$w_7$|---|---|---|-18.46|\n", - "|$w_8$|---|---|---|3.9|\n", - "\n", - "La siguiente gráfica muestra el polinomio entrenado de grado $M=8$. Observe que el polinomio pasa por todos los puntos de entrenamiento, por lo que el $ECM=0$. Sin embargo, es claro que por fuera del rango de los datos de entrenamiento, este polinomio no generaliza bien. También puede observarse que en este caso el ECM para los datos de validación es mayor que para los datos de entrenamiento.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD4CAYAAAAJmJb0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAo9UlEQVR4nO3deXzU1b3/8dcnk8wkmeyZkI2wK5sVlAguxaVat6pYW607LhV7q7229Vq1/bXa9tZ6r9VeW6q3qLgVpe77LahQxKpIWAXDKhDCkkz2kH05vz9mggHDEma+85355vN8PPIgmZl8zxmRd07O93POEWMMSimlnCnO7g4opZSyjoa8Uko5mIa8Uko5mIa8Uko5mIa8Uko5WLzdHejN5/OZYcOG2d0NpZSKKcuWLasyxuT09VxUhfywYcMoKSmxuxtKKRVTRGTbgZ7T6RqllHIwDXmllHKwkENeRIpEZKGIlIrIWhG5Lfj4vSKyQ0RWBj/OD727Siml+iMcc/KdwO3GmOUikgosE5F3g8/90RjzhzC0oZRS6giEHPLGmF3AruDnjSJSChSGel2llFKhC+ucvIgMA44DlgQfulVEVovIbBHJPMD3zBCREhEp8fv94eyOUkoNeGELeRFJAV4GfmyMaQAeBUYCEwmM9B/s6/uMMbOMMcXGmOKcnD7LPJVSSh2hsIS8iCQQCPg5xphXAIwxFcaYLmNMN/AYMDkcbfVlR10LD81fz9aqJquaUEqpmBSO6hoBngBKjTEP9Xo8v9fLvg2sCbWtA6ltaudPCzaxbnejVU0opVRMCkd1zSnANcBnIrIy+NjPgStEZCJggK3AzWFoq0++FA8A1U1tVjWhlFIxKRzVNR8C0sdT74R67cOV6U0AoGZPe6SaVEqpmOCIFa+eeBepifFUN2nIK6VUb44IeQhM2VTt0ekapZTqzTEhn+11U63TNUoptQ/nhHyKmxqdrlFKqX04JuSzvB6trlFKqf04JuR9wZF8V7exuytKKRU1HBPy2V433QbqmnXKRimlejgn5IMLonReXimlvuSgkHcDUKUVNkoptZdzQt6rWxsopdT+nBPywZG81sorpdSXHBPymcluRNCtDZRSqhfHhLwrTshKdlOtWxsopdRejgl5CEzZ6HSNUkp9yVEhn+V1641XpZTqxVEhn53i0ZG8Ukr1Eo7j/4pEZKGIlIrIWhG5Lfh4loi8KyIbg39mht7dg/N53XrjVSmlegnHSL4TuN0YMxY4EbhFRMYBdwHvG2OOAt4Pfm2p7BQP9S0dtHd2W92UUkrFhJBD3hizyxizPPh5I1AKFALTgKeDL3sauDjUtg4lyxuola/V/WuUUgoI85y8iAwDjgOWALnGmF0Q+EEADDrA98wQkRIRKfH7/SG179u7tYHefFVKKQhjyItICvAy8GNjTMPhfp8xZpYxptgYU5yTkxNSH3STMqWU2ldYQl5EEggE/BxjzCvBhytEJD/4fD5QGY62DsYXDHl/o47klVIKwlNdI8ATQKkx5qFeT70BTA9+Ph14PdS2DmVQaiDkKzXklVIKgPgwXOMU4BrgMxFZGXzs58D9wAsiciNQBlwahrYOyuuJJ8UTT0VDq9VNKaVUTAg55I0xHwJygKfPDPX6/TUozaMjeaWUCnLUilcITNlU6kheKaUAB4Z8bloiFQ06kldKKXBgyA9K9VDZ2Ioxxu6uKKWU7RwX8rlpibR2dNPQ2ml3V5RSynbhqK6JKoPSEgHwN7aSnpRgc2+UUrGosrGVzZVNxLuEMXmppCbGbpY4L+SDtfIVDW2MGpRqc2+UUrHCGMOCdZU8+s/NlGyr3ft4fJwwbWIhd503hpxgvsQSx4V8bnAkr7XySqnDVdvUzp0vr2b+5xUMzU7mjnNGM2FwBh1d3Sza4Oe5T8tYtMHP0zecwPiCdLu72y+OC3ld9aqU6o9t1U1c9+RSdtS2cPd5Y7jh68NJcH15u/KMMYO4YvIQbnhqKVc9voRX/u1kRuSk2Njj/nHcjVdd9aqUOlxrdtRzySMfUdvczpybpnDzaSP3Cfgeo/NSee6mKQjwwznLae3oinxnj5DjQh501atS6tA2Ve7h2tmfkpjg4uV/O5kThmUd9PVDs708dNlE1u1u5JGFmyLUy9A5M+R11atS6iB21rVw7RNLiBP42/enMPIwp1/OGDOIiycW8L+LvmBbdZPFvQwPR4Z8blqijuSVUn1qbu/k+0+X0NjaydM3TGa4z9uv7//5+WMRgZkLYmM078iQH5TqoaJBV70qpfZljOE/XlzFut0N/OnK446oUmZQWiJXThnCKyt2sL2m2YJehpcjQ15XvSql+vLoos2889lu7jpvDGeM7vNE0sNy86kjEeCZj7eGrW9WcWTI9171qpRSAMu21fLg/A1869h8bpo6IqRr5aUncvb4XF5cVh71lTbODPleq16VUqq+pYN/f34F+emJ/P6SrxE40C40V08ZSl1zB/9YszsMPbROWBZDichs4AKg0hhzTPCxe4GbAH/wZT83xrwTjvYORVe9KqVKFy9k8dxnaKyuoiMxjZTUE/j9HdNJC9M+NCeOyKYwI4nXV+7g4uMKw3JNK4RrJP8UcG4fj//RGDMx+BGRgAfITw+E/M66lkg1qZSKIqWLFzJ/1kwaq/xgDAkt9Zxds4ikbSvD1kZcnHDhhAI+2FhF9Z7onTUIS8gbYz4AasJxrXBITHDhS3Gzo05H8koNRIvnPkNn+37B29nB4rnPhLWdiyYU0NVtmLe2IqzXDSer5+RvFZHVIjJbRDL7eoGIzBCREhEp8fv9fb3kiBRkJOlIXqkBqrG6ql+PH6mx+akUZSXxfunADPlHgZHARGAX8GBfLzLGzDLGFBtjinNycsLWeEF6Ejs05JUakFKzff16/EiJCGeOyeXDTVW0tEdnlY1lIW+MqTDGdBljuoHHgMlWtdWXwszASF4XRKlYUrp4IbNuuZ4HL7+QWbdcT+nihXZ3KSalT51Gh+xbVxLv9jD18mvD3tZZY3Np6+zmX5vC+1tCuFgW8iKS3+vLbwNrrGqrLwUZSTS3d1HX3BHJZpU6bF3dhtaOLprbO2lq62TtB/veLGys8jN/1kxLg/61FTs45f4FDL/rbU65fwGvrdhhWVuRsrOuhfvWJ7Nh1Lmk+nJAhFRfDmfPuJWxU88Ie3uTh2eRlODiwygN+XCVUD4PnA74RKQcuAc4XUQmAgbYCtwcjrYOV2FGoMJmR10LmV53JJtWaq/KxlY+K69ns38Pmyub2FLdRNWeNqr3tFPfsu8AZPr2Z0nr3PdmYWd7G+//7SmGTTmVJLcrrH17bcUO7n7lM1qCi3l21LVw9yufAUR1SeDBdHZ18+O5K+no6ub/3XY1I3J+YHmb7vg4Jg/PcnbIG2Ou6OPhJ8Jx7SNVmJEMBH6qH1MYWye5qNi1s66FDzb4+dfmalaU1VJe++V9IV+Km+E+L2Pz0/B53WR63SS44nDFBRbmND2yp89rttZV87V75zG+MJ2po3ycNS6XYwvTiYsLbUHPA/PW7w34Hi0dXTwwb33Mhvyf3t/Ip1treOiyCRE92OOUUdnc9846dte3khcs4Y4WjjsZqkdBr5G8UlYxxrC8rI5/rNnFog1+NlQEgjovLZFJQzO57uRhTCjK4OhBqaQnH3wRzqwXcgJTNftxp2dz06kjKNlaw6OLNjNz4SZyUj2cd0wel04q4pjCtCNawXmg6rNYrUr7aFMVf164ie8cP5hLjh8c0bZPGRW4ofvR5qqIt30ojg35LK+bxIS4mP0fVkWP3isnU7N9fP3yazEjj+fNVbt4c9VOdtS14HYFfmW/dFIRp43O4ahBKf0O3qmXX8v8WTP3qe+Od3v45jXXMXbqGADqmttZtMHP/LUVzF26nWc+3saYvFSumDyE704ajNdz+P+kCzL6rkAryEjqV7+jQdWeNm77+0qG+7z8Ztr4iLc/Ni+N1MR4lm6t1ZCPFBEJ1srrgih15HpWTvYEb2OVnzcfeZj3sk5jS/poph7l4/azj+ab43JJDXG5fM9Nwd4/UKZefu0+Nwszkt1Mm1jItImF1Dd38MbqnbxYsp173ljLg/PXc8WUIVx/8vDDmjK445zR+8zJAyQluLjjnNEhvY9I6+42/PSFVdS3dPDMDZP79YMuXOLihElDM1m2LWrWhO7l2JAHKMxIolxH8ioEfa2cjO/u5Py2FUz/xS1khfmm/tipZxx2BUh6cgLXnDiUa04cyrJttTzx4Rc89sEXPPmvrVw5eQg/PGMkg1IPHPY98+4PzFvPzroWCjKSuOOc0TE3H//XD77ggw1+/vPiYxibn2ZbP4qHZvKH9X7qmtvJSI6eYg9Hh3xBehLrdlfa3Q0VgyobW3mxpJyWKj99Tbp076kNe8CHYtLQTCYNnURZdTMzF27k2U+2MXdpGdeeNIybTx1Bdoqnz++7+LjCmAv13j7Y4OeBeev41rH5XDVliK19GVKzjullc3ji+kdJ9eV85bcwuzg75DOS8De20drRRWJCeMvPlPN0dxsWb6ri+SVlvFdaQWe3YUZiOp7W+q+8NtwrJ8NlSHYy//3dCfzw9FH8acFGHl/8Bc8vKeNHZ47iupOH4453zu7i26qb+NHzKzg6N5X//s6xYdk++EiVLl7IltefIq3ry2m9+bNmAtge9M75G+9DYWbgBtLuep2XVwe2u76VmQs2cuoDC5k++1M+3VrDjV8fzoLbT+Pb3/8+8e59R8FWrZwMp2E+Lw9dNpH5PzmVE4Zncd876zj7j4uYv3a3I1aBN7V1MuOZZQDMuqbYlnn43vqa1utsbwv7hmhHwuEj+S+3HB7Wz8N6lbN1dnXzz/V+5i4tY8G6SroNnDQimzvPHcPZ43PxxAd/88s59M3QaDZqUCqzrzuBRRv8/Patz5nx7DJOGZXNLy8Yx5g8++avQ9HVbfjpCyvZWNnI0zdMZkh2st1ditiGaEfC0SFfGCwF670gRQ1sZdXNvFCynReXbaeioQ1fioebTxvJ94qLDjgQ6M/N0Gh12tE5nHzbVJ5bUsYf39vA+Q8v5poTh/LTb44+ZP1+NDHG8KvX1zBvbQX3XDiOqUeFb1PDUKRm+/pc4xAN03qODvmCjCRccUJZDJyorqxT2dDKW6t38caqnazcXkecBELvN9OG8I0xg0hwOXrWcq8EVxzTTx7GtIkFPDh/A89+so03V+/ijnNGc1lx0d6Vt9HsT+9vYs6SMn5w2kiuP2W43d3Z60BrHKJhWs/RIZ/gimNwZhJbqpvs7oqKsF31LSxc5+ftz3by8eZqug2My0/jrvPGcNGEgphc8BMuGclufnvxMVwxeQj3vrGWu1/5jOeWlHHvReOZNLTPYx+iwpwl2/jjexv4zvGDufPc6Krl773GoaHKD94Mzr7+xqj4DVCi6SZMcXGxKSkpCes1p8/+lOqmNt760dSwXtcJ/I1trCirZZN/DztqWyivbaGupYPW9i5aOrowGDzxLjzxcXg98fhS3PhSPGR7PeSmeRiSlUxRVjL56YnER3A0vP8K1KmXX8vwE09ldXk9izZUsmCdn9JdDQAMy07mogkFXDSxgFGDUiPWx1hhjOGNVTu5751SKhrauOT4Qu46b8xB6+vtMGfJNn7x6hrOGJ3DrGuLo/q3r3P/5wPy0xN58vrI7a4uIsuMMcV9PefokTwE/pEv21aLMcbWEqto0NrRxeKNVcxbu5tPt9TsM42VmZxAYWYSWV4PeWkekhJciAjtnd20dXbR0NLJut2NVO+p/sruifFxQmFm0t7QL8pMDn4eeCw9KSFs/+0PtAJ14QurKfWOwhVceXjXeWP4xphBR7S9wEAiIkybWMhZY3OZuXATTyzewvy1Fdx25lFMP3lYVJRczv5wC79563O+MWYQj1x1fFQHPMDY/DQ+3lxtdzf2cn7I+7zsaeukuqkd3wEWhDhR79FuUkY21WPO5IXaQTS2dZKWGM/JI31cc+JQjh+ayei8VFL6UYLW3tlNRUMr22uaKev1sb2mmf/7bBe1++3hn+qJpygrmcGZSfhSPfhSPPhS3GQmu0l2u0hMCHx44uPo7DZ0dHXv/eFStacdf2Mb/sY2KhtbKfjHYyTtV6rm6u7kzKal/OQH32PK8OyYupEYLbyeeO48dwyXFRfx27c+53fvlDJ3aWAKx66bm13dht+/U8rjH27hnPG5/PmK46Pih86hjM1P5dUVO6htao+Kbc6dH/LZgYqJrVVNAybk9x/tttRWkfDJy1ww6WLOvepbnDQiO6R/LO74uMCIPSuZk/t4vrG1g+01LWyvDQR/zw+DrdVNLNtWS01zO/2dJUxNjCcn1cOI9oY+n5fmes4en9f/N6P2MdznZfZ1J7BgXQW/efNzrnniU84Zn8v/+9Y4irIiV6pY39zB7S+u4r3SCq47eRi/vGBcTNwYBvZurVC6q4GTR2l1jeV6yuK2VjdTPCzL5t5ExqLnn/7KwowE08nwrYs47ejrwt7eayt29Ln/ybiCvuuwO7u6qW3uoKapnZaOLlqDH22d3SS4hARXHG5XHJ4EF9newH2AngMzZt3ydNSWqjnJN8bkcsooH48v3sLMBZs4c90irphcxA/PGEVumrXz9cvLavnRcyuoaGjl3gvHcV0UVdEcjr0hv7vROSEvIrOBC4BKY8wxwceygL8DwwicDHWZMaY2HO31x+DMQBnltgFQYWOM4fWVO9lTXdXnfitWLMw4ktOF4l1x5KR6yEnt/29W0Vyq5jSeeBe3nDGKS44v5OH3NjJnSRnPL93OlZOHcMMpw8O+CKmxtYMH52/gmY+3UpCRxIs/OInjhkRvtc+B+FI8ZCYnsNnf9yEwkRaukfxTwEyg9xreu4D3jTH3i8hdwa/vDFN7h21vGWWVs0O+obWDu1/+jLc/28VNnjQS2746rWHFaDfSpwsdzna8Krzy05O4/zvH8sPTRzFz4Ub+9sk2nv54K2eOGcS1Jw3jlFG+w55KOVBl1JwlZTz6z81UN7Vx9ZSh/Mc5o0lPit17KyNzUthc6aCQN8Z8ICLD9nt4GoFzXwGeBv6JDSEPMDTby7Zq5y6IWr+7kR/8bRnba5q545zRnO66ifcei8xo147ThZywAjUW9Wx+9tNvjmbOkm08t6SM90o/xZcSOKXqvK/lMWlo5pdbQuynr8qotx/9Ex+9toblCSM4aUQ2j59XzMSijAi+K2uMyPGyYN1XpxXtYOWcfK4xZheAMWaXiAyysK2DGp6dzAqHllEuXFfJLc8tx+uJ57mbTmTy8CxgFHESmdGuk04XUocnLz2R288ezS1njOLdzyt457NdvLhsO89+sg1PfBwTBmdwdF4Kw30pZHkT8Lrj6ew2bHjmSbr2u1ckXR1Mrv6EO391JVNGZNv0jsJvZE4KL5SUU9/SYftvJLbfeBWRGcAMgCFDrNkPemi2l8a2Tmqa2g+4r3Ys+vvSMn7+6hrG5qfyxPQT9rkhFqnRrlNOF1L9l5jg4sIJBVw4oYCmtk4+3FTF0i01LC+r5Y2VO2lo7dzn9bc21PR5ryihtcFRAQ+BkAf4wr/H9vsKVoZ8hYjkB0fx+UCfp3cYY2YBsyCw4tWKjgzfW2HT5JiQf/JfW/j1m59z6tE5PHLV8f2qcw8np5wupELj9cRzzvg8zgmWsRpjqG3uoK65naa2LhLihYW/fpHmmq/e/HdiZdTIQYGQ3+xvcnTIvwFMB+4P/vm6hW0d1NBgFcCWqmYmDY39MspnPt7Kr9/8nHPG5zLzSvtXAMb66UIq/ESELK97n9OzzJXTB0xlVFFmEgkuiYoKm3CVUD5P4CarT0TKgXsIhPsLInIjUAZcGo62jkRRVnLU/AcP1Zwl2/jV62v55rjACkC7A16pwzWQKqPiXXEMy/ZGRYVNuKprrjjAU2eG4/qhSnDFMTInhfW7G+3uSkjeXLWTX7y6hjPHDOIvV8bGEm+lehtIlVEjc1LYWGl/5gyYlDg6NzWmQ75kaw23v7iKycOyeORqDXilot2InEDpdkdXt639GDBJMTovlR11LTS2dhz6xVFma1UTNz1TQmFGEn+9ZtIB65CVUtFjZE4Knd3G9kOLBk7I5wb2Et9QYf8cWX/UNbdz/VNLAXjyuhOiYlc7pdSh7a2wsXlefuCEfF4g5GNpyqa72/CTv6+kvLaZx64t1sPIlYohI3IC/16/sHlLlQET8oUZSXjdLjZUxE7I/2XhJhau9/OrC8YNmB00lXKKtMQEMpMTdLomUuLihKPzUlm3u+/9yKPN4o1+HnpvAxdPLODqE4fa3R2l1BEoykqmvNa6fZwOx4AJeQjMy6/f3Ug0nWvbl131Ldw2dyVHDUrhvku+5rj9dpQaKAZnJlGuI/nIGZ2XSm1zB/49bYd+sU26uw23v7CK1o4uHr16Eslu27cXUkodoaLMwEi+u9u+geXACvmeCpvd0Vth8/iHX/DR5mruuXDc3k2OlFKxaXBWMu1d3bYOLAdWyAcrbKJ1Xn7NjnoemLeec8fncVlxkd3dUUqFqCgzsOX2dhunbAZUyGeneChIT2RVeb3dXfmKlvYufvz3lWR53fxe5+GVcoTBmYHNEbfX2hfyA27Cd+KQDFaURfyo2UN6cP56NlXu4W83TtEFT0o5xODgSL68xr4KmwE1kgc4riiT8toWqqLo5uvyslqe+NcWrj5xCF8/ynl7ays1UCUmuBiU6rF1JD/gQn7ikAwAVpbV2dqPHm2dXfzspdXkpyVy57lj7O6OUirMBmcmsV1H8pFzTEE6rjhhxfbomLL58/ub2FS5h/su+RqpibF7Or1Sqm9FWcmU1+lIPmKS3C7G5qeycnud3V1hzY56Hl20me8cP5jTR9t2zrlSykJFmcnsrGul06Ythy0PeRHZKiKfichKESmxur3DMbEog1Xb6+mycYFCR1c3P3tpNVleN7+8YKxt/VBKWWtwZhJd3YZd9a22tB+pkfwZxpiJxpjiCLV3UBOLMtnT1mnrcYCzPviCz3c18Ntpx5CRrNU0SjlVUVagjNKuPWwG3HQNwHHBm692lVJuqmzk4fc28q1j8zn3mDxb+qCUiowim2vlIxHyBpgvIstEZEYE2juk4dleMpMTWLo18iHf1W2446XVeD0ufn3R+Ii3r5SKrPyMROLEvpF8JBZDnWKM2Skig4B3RWSdMeaDnieDwT8DYMiQIRHoTmDb4ZNGZvPRpiqMMRFZXVq6eGHglPoqP8e6Urjk/MvwpXgsb1cpZa8EVxy+FA+76x06XWOM2Rn8sxJ4FZi83/OzjDHFxpjinJwcq7uz10kjfeysb2VbtfW/QpUuXsj8WTNprPIDkNa1h5p5cyhdvNDytpVS9stLT2R3gz0LMC0NeRHxikhqz+fA2cAaK9s8XENqSple9iwv3/I9Zt1yvaWBu3juM3S27/sX3NnexuK5z1jWplIqeuSlJVJhU3WN1dM1ucCrwemQeOA5Y8w/LG7zkEoXL2Tl84+R1hUI3sYqP/NnzQRg7NQzwt5eY3VVvx5XSjlLXnoiS7bU2NK2pSN5Y8wXxpgJwY/xxpjfWdne4Yr0yDo5M7vPx1OzdZ8apQaC3LRE6ls6aGnvinjbA7KEMpIja2MMpYVT6ZB9f2mKd3uYevm1YW9PKRV98tISAdjdEPkpmwEZ8gcaQVsxsn5pWTlv7Mkj65yrSPXlgAipvhzOnnGrJVNDSqnok5ceDHkb5uUH3H7yAFMvv5b5s2buM2Vjxci6oqGV3771OZOHZfH96ecTd/2lYb2+Uio25AZH8hU2jOQHZMj3jKB76tYbXCkcP+3KsI6sjTHc9fJq2jq7+a/vHktcnJ70pNRAtXckryEfOWOnnsHYqWfQ0t7FpP98l1YKmBbG6z/90VYWrvfzm2njGe7zhvHKSqlYk+KJJ8UTb8t0zYCck+8tye3igmPzeXP1Tva0dYblmut2N3Df/63jzDGDuObEoWG5plIqtuWmeTTk7fK9E4bQ3N7Fm6t2hnyt1o4ubnt+JWmJCfzXd4/VA7mVUkDPqlcNeVscPySDsflpzP5wC90h7jH/27c+Z31FI3+49Fjdm0YptVduWqItN1415AER4eZTR7Cxcg8L1lUe8XXmflrGnCVl3HzqCD3pSSm1j/z0RCob2yJ+WJGGfNAFx+ZTlJXEQ+9uOKK/hGXbavnV62uZepSPn+mB3Eqp/eSlJdLVbajeE9mNyjTkg+JdcfzH2aP5fFcDLy8v79f3bqho5Manl5KfkcifrzgOl5ZLKqX2k2vTqlcN+V4umlDApKGZ/O7t0sOeOyurbubqx5fgdsXx7A1T9Cg/pVSf7Fr1qiHfi4jwwHePpa2zi1ufW05rx8E3E1pRVsslj35Ee1c3z944hSHZyRHqqVIq1ti1f42G/H5G5KTwwHcnsHRrLT+cs5ymPmrnjTH8fWkZ35v1CUnuOF64+SRG56Xa0FulVKzITvHgipOIj+QH7IrXg7lwQgENrR388rU1nPfwYn70jVGcNDIbY2B5WS1PfbSVFWV1nDgii0eumkSWV6dolFIH54oTsr1u/I2RvfGqIX8AV00ZyghfCve8sYY7Xlq9z3OFGUncf8nXuKy4SPekUUodNl+Kh+qm9oi2qSF/ECeNzGbej09lVXk963Y1AHB0XioTBmdoBY1Sqt98qR6qIlxCaXnIi8i5wMOAC3jcGHO/1W2Gk4gwsSiDiUUZdndFKRXjfCluNlU0RrRNqw/ydgF/Ac4DxgFXiMg4K9tUSqlolZPioWpPO8ZEbtWr1dU1k4FNwbNe24G5ENYdfZVSKmb4Ujy0d3XT0BqeHW8Ph9UhXwhs7/V1efCxvURkhoiUiEiJ3++3uDtKKWWf7JRAJV4ktzawOuT7uju5z+8pxphZxphiY0xxTk6Oxd1RSin79OxMW7UnchU2Vod8OVDU6+vBQOibtiulVAz6MuSdM5JfChwlIsNFxA1cDrxhcZtKKRWVfKmB6ZpIhrylJZTGmE4RuRWYR6CEcrYxZq2VbSqlVLTKSnYjAlURXPVqeZ28MeYd4B2r21FKqWgX74ojM9lNVQRXveoGZUopFUG+FHdER/Ia8kopFUG+lMhubaAhr5RSEeQLrnqNFA15pZSKIB3JK6WUg/lS3TS3d9HcHpmtDTTklVIqgnzewIKo6ghN2WjIK6VUBPUsiPJHaMpGQ14ppSJo79YGESqj1JBXSqkIivQmZRrySikVQZHeblhDXimlIsgT7yI1MT5iZZQa8kopFWHZXjc1zR0RaUtDXimlIiwj2U1ds87JK6WUI2UmJ1CrIa+UUs6U6XVT26TTNUop5UiZye7YH8mLyL0iskNEVgY/zreqLaWUiiVZ3sD+Na0dXZa3ZfXJUH80xvzB4jaUUiqmZCQnAFDX3EFeusvStnS6RimlIiwzObAgKhJTNlaH/K0islpEZotIZl8vEJEZIlIiIiV+v9/i7iillP32hnwEznoNKeRF5D0RWdPHxzTgUWAkMBHYBTzY1zWMMbOMMcXGmOKcnJxQuqOUUjEh0xuYrqmNwIKokObkjTFnHc7rROQx4K1Q2lJKKadwxHSNiOT3+vLbwBqr2lJKqVjSc+M1EtM1VlbX/LeITAQMsBW42cK2lFIqZnjiXXjdruifrjkYY8w1Vl1bKaViXaY3MvvXaAmlUkrZIDPZTY2GvFJKOVNGckJEpms05JVSygZZXnf018krpZQ6MpHapExDXimlbJCZ7KaxtZOOrm5L29GQV0opG/Sseq2zeF5eQ14ppWyQEVz1anUZpYa8UkrZIGvv1gY6kldKKcfp2dqgxuIKGw15pZSyQaZXp2uUUsqxdLpGKaUcLMntwhMfZ3mtvIa8UkrZJDPZ+lWvGvJKKWWT9KQE6lt0ukYppRwpPSmBhlYNeaWUcqS0pATqWzotbSPUg7wvFZG1ItItIsX7PXe3iGwSkfUick5o3VRKKedJS4qnweLpmlBPhloDXAL8tfeDIjIOuBwYDxQA74nI0caYrhDbU0opx0hPSrA85EMayRtjSo0x6/t4ahow1xjTZozZAmwCJofSllJKOU16UgKNbZ10dRvL2rBqTr4Q2N7r6/LgY18hIjNEpERESvx+v0XdUUqp6JOWGNjaoNHCm6+HDHkReU9E1vTxMe1g39bHY33+qDLGzDLGFBtjinNycg6330opFfPSkwIhb2UZ5SHn5I0xZx3BdcuBol5fDwZ2HsF1lFLKsdIiEPJWTde8AVwuIh4RGQ4cBXxqUVtKKRWTekbyDRaWUYZaQvltESkHTgLeFpF5AMaYtcALwOfAP4BbtLJGKaX2FRXTNQdjjHkVePUAz/0O+F0o11dKKSdLSwpEcCxO1yillDqEvdM1dlbXKKWUskZSgov4ONGRvFJKOZGIWL7qVUNeKaVsZPV2wxrySillo1QNeaWUcq7AnvJRWievlFIqNDonr5RSDpaWaO2e8hrySillo54br8ZYs92whrxSStkoLSmBzm5Dc7s1O79oyCullI2sXvWqIa+UUjayepMyDXmllLJRz+lQ9c0a8kop5ThfTtdYUyuvIa+UUjbS6RqllHKwnj3lraqVD/VkqEtFZK2IdItIca/Hh4lIi4isDH78b+hdVUop50lNtHYkH9LJUMAa4BLgr308t9kYMzHE6yullKO54oRUT3x0hrwxphQCeyIrpZQ6MmlJCTFZJz9cRFaIyCIRmXqgF4nIDBEpEZESv99vYXeUUio6nT0+l/EF6ZZc+5AjeRF5D8jr46lfGGNeP8C37QKGGGOqRWQS8JqIjDfGNOz/QmPMLGAWQHFxsTWbNyilVBS758Lxll37kCFvjDmrvxc1xrQBbcHPl4nIZuBooKTfPVRKKXXELJmuEZEcEXEFPx8BHAV8YUVbSimlDizUEspvi0g5cBLwtojMCz51KrBaRFYBLwE/MMbUhNZVpZRS/RVqdc2rwKt9PP4y8HIo11ZKKRU6XfGqlFIOpiGvlFIOpiGvlFIOpiGvlFIOJlYdHnskRMQPbItwsz6gKsJtRpKT35++t9jl5Pdnx3sbaozJ6euJqAp5O4hIiTGm+NCvjE1Ofn/63mKXk99ftL03na5RSikH05BXSikH05APbo7mYE5+f/reYpeT319UvbcBPyevlFJOpiN5pZRyMA15pZRysAEd8iJyroisF5FNInKX3f0JFxEpEpGFIlIaPGj9Nrv7FG4i4gqePPaW3X0JNxHJEJGXRGRd8O/wJLv7FC4i8pPg/5NrROR5EUm0u0+hEJHZIlIpImt6PZYlIu+KyMbgn5l29nHAhnxwv/u/AOcB44ArRGScvb0Km07gdmPMWOBE4BYHvbcetwGldnfCIg8D/zDGjAEm4JD3KSKFwL8DxcaYYwAXcLm9vQrZU8C5+z12F/C+MeYo4P3g17YZsCEPTAY2GWO+MMa0A3OBaTb3KSyMMbuMMcuDnzcSCIlCe3sVPiIyGPgW8LjdfQk3EUkjcB7DEwDGmHZjTJ2tnQqveCBJROKBZGCnzf0JiTHmA2D/szKmAU8HP38auDiSfdrfQA75QmB7r6/LcVAQ9hCRYcBxwBKbuxJO/wP8DOi2uR9WGAH4gSeD01GPi4jX7k6FgzFmB/AHoIzAOdD1xpj59vbKErnGmF0QGHABg+zszEAOeenjMUfVk4pICoHDW37c1yHqsUhELgAqjTHL7O6LReKB44FHjTHHAU3Y/Ot+uATnpqcBw4ECwCsiV9vbK+cbyCFfDhT1+nowMf6rY28ikkAg4OcYY16xuz9hdApwkYhsJTDF9g0R+Zu9XQqrcqDcGNPzm9dLBELfCc4Cthhj/MaYDuAV4GSb+2SFChHJBwj+WWlnZwZyyC8FjhKR4SLiJnAD6A2b+xQWIiIE5nRLjTEP2d2fcDLG3G2MGWyMGUbg72yBMcYxo0FjzG5gu4iMDj50JvC5jV0KpzLgRBFJDv4/eiYOuam8nzeA6cHPpwOv29iX0M54jWXGmE4RuRWYR+Au/2xjzFqbuxUupwDXAJ+JyMrgYz83xrxjX5dUP/wImBMcfHwBXG9zf8LCGLNERF4ClhOoAFtBlG0B0F8i8jxwOuATkXLgHuB+4AURuZHAD7ZL7euhbmuglFKONpCna5RSyvE05JVSysE05JVSysE05JVSysE05JVSysE05JVSysE05JVSysH+P1VaZEF2gM15AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "\n", - "x_train = np.array([0,1,2,4,5,6,8,9,10])\n", - "x_val = np.array([3,7])\n", - "\n", - "y_train = np.array([3.9, 4.4, 10.8, 11.2, 13.1, 14.1, 9.9, 15.1, 12.5])\n", - "y_val = np.array([10.3, 13.9])\n", - "\n", - "\n", - "# fit a linear curve an estimate its y-values and their error.\n", - "w = np.polyfit(x_train, y_train, deg=8)\n", - "#y_est = w[0]*x **5 + w[1] *x **4 + w[2] *x **3 + w[3] *x **2 + w[4] *x + w[5] \n", - "xx = np.linspace(-0.5,10.5,300)\n", - "yy = w[0]*xx **8 + w[1] *xx **7 + w[2] *xx **6 + w[3] *xx **5 + w[4] *xx**4 + w[5] *xx**3 + w[6] *xx**2 + w[7] *xx + w[8] \n", - " \n", - " \n", - "fig, ax = plt.subplots()\n", - "ax.plot(xx, yy, '-')\n", - "\n", - "ax.plot(x_train, y_train, 'o', color='tab:brown')\n", - "ax.plot(x_val, y_val, 'o', color='tab:blue')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "EMC = 3.0522" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Por otro lado, el modelo cuadrático construido previamente tiene $ECM=3.11$, pero este parece generalizar mejor. \n", - "\n", - "Esto significa que cuando se tiene más de una máquina de aprendizaje candidata para nuestro datos, no es un criterio suficiente el del error cuadrático medio. Ambas deben generalizar bien. \n", - "\n", - "De momento puede decidirse por una máquina que tenga un *ECM razonable* para nuestros datos siempre que generalice bien.\n", - "\n", - "\n", - "Esta revisión permite establecer que el modelo polinomial ajusta sin error los datos de entrenamiento, pero no generaliza bien. En general esto se notará porque el ECM en los datos de validación resulta mas grande que en los datos de entrenamiento.\n", - "\n", - "Este fenómeno se conoce como **sobreajuste**. Entonces una máquina de aprendizaje está sobre ajustada, cuando predice muy bien una parte de los datos de entrenamiento (pudiendose ser a todo el conjunto de entrenamiento), pero generaliza mal, lo cual puede medirse con datos de validación.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Discuta por que para el ejemplo de las los números de cédulas (entrada) y los número de tarjeta de crédito (salida), siempre es posible construir una máquina de regresión con ECM = 0, pero que nunca puede generalizar bien. Recuerde la clase de modelamiento matemático." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Regularización " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La tabla de la sección anterior muestra que en el caso del polinomio de grado $M=8$, los coeficientes del polinomio (los pesos que debe aprender la máquina de aprendizaje) son grandes en algunos casos y que la norma (la longitud del vector $\\mathbf{w}$ es grande. Por ejemplo, para ese último caso ($M=8$), la norma del vector $\\mathbf{w}$ es:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "norma del vector w= 43.79217575242128\n" - ] - } - ], - "source": [ - "print('norma del vector w=', np.sqrt(np.sum(w*w)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Esta situación no es única de este conjunto de datos. En realidad es en buena parte la causante del problema de sobreajuste. \n", - "\n", - "Es posible resolver este problema recurriendo a técnicas de penalización en el proceso de optimización, conocidads como **técnicas de regularización**.\n", - "\n", - "El asunto aquí es bastante sencillo. La idea central es introducir términos adicionales en la función de pérdida que será optimizada. \n", - "\n", - "Las técnicas de regularización por lo general se basan en restricciones impuestas sobre el vector de pesos $\\mathbf{w}$ que evitan que este crezca demasiado. Esas restricciones se introducen usando distintos tipos de norma. Y en ocasiones se incluye más de una. Revisamos aquí las técnicas $L1$ y $L2$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Regularización L2 " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En este caso la restricción se basa en la norma Euclidiana usual. Si $\\mathbf{w}$ es un vector geométrico de $\\mathcal{R}^N$, entonces la norma del vector (su tamaño) es definido como:\n", - "\n", - "$$\n", - "||\\mathbf{w}||^2 = \\sum_{i=1}^N w_i^2\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La técnica de regularización $L2$ consiste en agregar a la función de pérdida la norma cuadrática multiplicada por una constante que debe ser previamente definida. En símbolos se tiene que:\n", - "\n", - "\n", - "\n", - "$$\n", - "\\mathcal{Loss}(\\boldsymbol{w}) = \\frac{1}{2} \\sum_{n=1}^{N}[f(x_n,\\boldsymbol{w}) − y_n]^2 + \\frac{\\lambda}{2} ||\\boldsymbol{w} ||^2\n", - "$$\n", - "\n", - "Se puede verificar que la introducción de la regularización $L2$, reduce el problema de sobreajuste de la máquina de aprendizaje.\n", - "\n", - "Dado que la función de pérdida debe ser minimizada, en función de $\\boldsymbol{w}$, el ingreso de la norma en la pérdida no permite tener valores grandes de la norma del vector.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejercicio*" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use JAX o Autograd, defina la función de pérdida e introduzca la regularización L2. Use los datos de esta lección. ¿Cuáles valores de $\\lambda$ parecen funcionar mejor?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Regularización L1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En este caso la restricción se basa en la norma $\\mathcal{l}_1$. Si $\\mathbf{w}$ es un vector geométrico de $\\mathcal{R}^N$, entonces la norma $\\mathcal{l}_1$ es definida como \n", - "\n", - "$$\n", - "||\\mathbf{w}||_1 = \\sum_{i=1}^N|w_i|\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La técnica de regularización $L1$ consiste en agregar a la función de pérdida la norma $\\mathcal{l}_1$ multiplicada por una constante que debe ser concida de antemano. En símbolos se tiene que:\n", - "\n", - "\n", - "\n", - "$$\n", - "\\mathcal{Loss}(\\boldsymbol{w}) = \\frac{1}{2} \\sum_{n=1}^{N}[f(x_n,\\boldsymbol{w}) − y_n]^2 + \\lambda \\sum_{i=1}^N|w_i|\n", - "$$\n", - "\n", - "En este caso se controla el tamaño de cada componente de $\\boldsymbol{w}$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Regularización L1-L2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Es posible incluir las dos restriciones en la función de pérdida. En este caso la función de pérdida queda expresada en la forma:\n", - "\n", - "\n", - "$$\n", - "\\mathcal{Loss}(\\boldsymbol{w}) = \\frac{1}{2} \\sum_{n=1}^{N}[f(x_n,\\boldsymbol{w}) − y_n]^2 + \\lambda_1 \\sum_{i=1}^N|w_i| + \\frac{\\lambda_2}{2} \\sum_{i=1}^Nw_i^2.\n", - "$$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Perspectiva probabilística" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Vamos a abordar el problema del aprendizaje de máquina desde la perspectiva estadística. Para hacerlo necesitamos introducir los conceptos de distribución conjunta y verosimilitud." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Distribución conjunta" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Supongamos que $X$ y $Y$ son variables aleatorias con función de densidad conjunta dada por $f_{XY}(x,y)$. El concepto de función de probabilidad conjunta estudiada antes se generaliza para el caso de variables aleatorias continuas.\n", - "\n", - "De momento nos interesa el caso en que $X$ y $Y$ son variables aleatorias independientes. \n", - "\n", - "Decimos que las variables aleatorias $X$ y $Y$ son independientes si su función de densidad conjunta puede escribirse como:\n", - "\n", - "$$\n", - "f_{XY}(x,y)= f_X(x)f_Y(y),\n", - "$$\n", - "\n", - "en donde $f_X(x)$ y $f_Y(y)$ son las respetivas funciones de densidad de $X$ y $Y$ y se dicen estas son las densidades marginales como antes.\n", - "\n", - "De nuevo esta es una definición bastante técnica y lo que nos interesa de momento es justamente el caso en que las variables aleatorias son independientes. \n", - "\n", - "Si se tienen $N$ variables independientes $X_1,\\cdots,X_N$, cada una con función de densidad $f_n(x_n)$, entonces la función de densidad conjunta de $X_1,\\cdots,X_N$ es dada por:\n", - "\n", - "$$\n", - "f(x_1,\\cdots,x_n) = \\prod_{n=1}^N f_n(x_n) = f_1(x_1)\\cdot f_2(x_2)\\cdots f_N(x_N).\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejemplo con la distribución normal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Supongamos que se tienen $N$ variables aleatorias normales independientes, cada una con función de densidad dada por $\\phi(x;\\mu_n,\\sigma_n ^2)$, en donde $\\phi(x;\\mu_n,\\sigma_n ^2)$ representa la función de densidad de una distribución normal $\\mathcal{N}(\\mu_n,\\sigma_n ^2)$. Entonces la función de densidad conjunta es dada por:\n", - "\n", - "$$ \n", - "f(x_1,\\cdots,x_n|\\mu_n,\\sigma_n^2, n=1,\\cdots,N) = \\prod_{n=1}^N \\phi(x_n;\\mu_n,\\sigma_n ^2) = \\prod_{n=1}^N \\tfrac{1}{\\sqrt{2\\pi\\sigma_n^2}} e^{-\\tfrac{(x_n-\\mu_n)^2}{2\\sigma_n^2}}\n", - "$$\n", - "\n", - "Si las variables son una muestra de una única distribución $\\mathcal{N}(\\mu,\\sigma ^2)$, la conjunta se escribe como:\n", - "\n", - "$$ \n", - "f(x_1,\\cdots,x_n|\\mu,\\sigma^2) = \\prod_{n=1}^N \\tfrac{1}{\\sqrt{2\\pi\\sigma^2}} e^{-\\tfrac{(x_n-\\mu)^2}{2\\sigma^2}}\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Verosimilitud" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "El problema recurrente en estadística es que por lo general se tiene la realización de una muestra estadística de alguna distribución que se desconoce.\n", - "\n", - "Por facilidad, vamos a trabajar con la distribución Normal, pero su generalización a otras distribuciones es inmediata.\n", - "\n", - "Supongamos entonces que la muestra proviene teóricamente de una única distribución $\\mathcal{N}(\\mu,\\sigma^2)$. La distribución conjunta de la muestra de arriba. Pero ahora los parámetros $(\\mu,\\sigma^2)$ se desconocen. Por otro lado al tener la realización de la muestra, las variables toman los valores específicos $x_n$ (justamente los de la realización de la muestra). \n", - "\n", - "\n", - "Esto nos lleva a definir una nueva función llamada la *verosimilitud* dada por:\n", - "\n", - "$$ \n", - "l(\\mu,\\sigma^2|x_1,\\cdots,x_n) = \\prod_{n=1}^N \\tfrac{1}{\\sqrt{2\\pi\\sigma^2}} e^{-\\tfrac{(x_n-\\mu)^2}{2\\sigma^2}}\n", - "$$\n", - "\n", - "Observe que hemos intercambiado los roles. Ahora las variables son $(\\mu,\\sigma)$, mientras que $x_1,\\cdots,x_n$ son ahora valores conocidos. La función $l(\\mu,\\sigma^2|x_1,\\cdots,x_n)$ ya no es una función de densidad.\n", - "\n", - "El problema estadístico se reduce ahora a encontrar valores para $(\\mu,\\sigma^2)$ que maximizan a la función $l(\\mu,\\sigma^2|x_1,\\cdots,x_n)$.\n", - "\n", - "Para entender porque tiene sentido maximizar esta función vamos a utilizar el concepto de información." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Función de pérdida asociada a la log-verosimilitud" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Para los valores $x_1,\\cdots,x_N$, una función de pérdida es dada por:\n", - "\n", - "$$\n", - "\\mathcal{Loss}(\\mu, \\sigma^2) = - \\tfrac{1}{N} \\sum_{i=1}^N\\log l(x_n;\\mu,\\sigma^2)\n", - "$$\n", - "\n", - "Observe que en este caso la función de pérdida está asociada a la información que transportan los valores observados. Entonces con esta función de pérdida se buscan los parámetros $(\\mu, \\sigma^2)$ que minimiza la información transportada por los datos y por tanto permite que sean más predecibles por la máquina de aprendizaje.\n", - "\n", - "Se toma el promedio, para poder comparar la función de pérdida usando los datos de entrenamiento con los datos de validación.\n", - " \n", - "En este caso, se tiene que esta función de pérdida y la log-verosimiltud están relacionadas de esta forma:\n", - "\n", - "$$\n", - "\\mathcal{Loss}(\\mu, \\sigma^2) = - \\tfrac{1}{N} l(\\mu,\\sigma^2|x_1,\\cdots,x_n).\n", - "$$\n", - "\n", - "Por lo tanto, un máximo de $l(\\mu,\\sigma^2|x_1,\\cdots,x_n)$ es un mínimo de $\\mathcal{Loss}(\\mu, \\sigma^2)$ y viceversa.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Notas" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Observe además que hemos encontrado una nueva función de pérdida diferente al ECM. Sin embargo, si la distribución asociada en el problema es la Normal, se llega a la misma función de pérdida. Por eso es bastante usual la utilización del ECM como función de pérdida en los problemas de regresión en el área del aprendizaje de máquinas.\n", - "2. Puede verificarse que la optimización de $\\mu$ y $\\sigma$ puede hacerse de forma independiente en el caso Normal. Generalmente, el parámetro $\\sigma^2$ no se incluye en los modelos de aprendizaje profundo. Principalmente porque el ECM de depende de ninguna distribución particular." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Densidad condicional " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Supongamos dos variables aleatorias $X$ y $Y$ con densidad conjunta dada por $f_{XY}(x,y)$. Ya sabemos que si las dos variables son independientes, entonces $f_{XY}(x,y)=f_X(x)f_Y(y)$. \n", - "\n", - "Por otro lado, en los problemas de regresión se espera justamente que las variables que se busca poner en relación no sean independientes. Entonces la forma de construcción de la máquina de aprendizaje es plantear la densidad de $Y$ condicionada a los valores observados de $X$. \n", - "\n", - "La densidad condicional de $Y$ condicionada a valores de $X$ se escribe $f(y|x)$. En la teoría de probabilidad se comprueba que:\n", - "\n", - "$$\n", - "f_{XY}(x,y) = f_X(x)f(y|x).\n", - "$$\n", - "\n", - "Esta ecuación se usa constantemente para definir $f(y|x)$ como:\n", - "\n", - "$$\n", - "f(y|x) = \\frac{f_{XY}(x,y)}{f_X(x)}.\n", - "$$\n", - "\n", - "Observe que si las variables son independentes, entonces $f(y|x) = f_Y(y)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Regresión y máxima verosimilitud" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "El objetivo en el problema de ajuste de curvas es poder **hacer predicciones** para la\n", - "variable objetivo $ t$ dado algún nuevo valor de la variable de entrada $ x $ sobre la base de un conjunto de datos de entrenamiento que comprenden $ N $ valores de entrada $ \\mathbf{x} = (x_1, \\cdots, x_N) ^ T $ y sus correspondientes valores objetivo $ \\mathbf{t} = (t_1, \\cdots, t_N) ^ T $. \n", - "\n", - "Podemos expresar la incertidumbre sobre el valor de la variable objetivo utilizando una distribución de probabilidad. Para este propósito, asumiremos que, dado el valor de $ x $, el valor correspondiente de $ t $ tiene una distribución Gaussiana (Normal) con una media igual al valor $ y (x, \\boldsymbol{w}) $ de la curva polinomial. Así tenemos:\n", - "\n", - "$$ \n", - "p(t|x,\\boldsymbol{w}, \\beta) = \\mathcal{N} (t|y(x,\\boldsymbol{w}), \\beta^{-1}),\n", - "$$\n", - "\n", - "en donde $\\beta$ es el parámetro de precisión (inverso del parámetro de escala). La gráfica ilustra la situación." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Revisar si la imagen es nuestra" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "
\n", - "
\n", - "

Ejemplo de una curva de regresión: $y(x) = E[t|x]$

\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Ahora usamos los datos de entrenamiento $\\{\\boldsymbol {x, t} \\}$ para determinar los valores desconocidos de los parámetros $ \\boldsymbol{w} $ y $\\beta $ utilizando la máxima verosimilitud (el valor que maximiza la verosimilitud). \n", - "\n", - "Si se supone que las parejas $(x_n,t_n)$ se observan independientemente, entonces la función de verosimilitud viene dada por:\n", - "\n", - "$$\n", - "p(t|\\boldsymbol{x, t}, \\beta) = \\prod_{n=1}^{N} \\mathcal{N}(t_n|y(x_n,\\boldsymbol{w}), \\beta^{-1})\n", - "$$\n", - "\n", - "El logaritmo de la verosimilitud es dada por:\n", - "\n", - "$$ \\ln p(t|\\boldsymbol{x, t}, \\beta) = -\\frac{\\beta}{2}\\sum_{n=1}^{N}[y(x_n,\\boldsymbol{w})-t_n]^2 + \\frac{N}{2} \\ln \\beta - \\frac{N}{2} \\ln (2 \\pi)$$\n", - "\n", - "\n", - "Supongamos que $\\boldsymbol{\\phi}(x)$ define un vector con elementos $\\boldsymbol{\\phi}_i(x) = x_i$, para $i=1,\\cdots,M$.\n", - "\n", - "Sea $\\boldsymbol{\\phi}(X)$ la matriz cuyas filas están dadas por $(1,\\boldsymbol{\\phi}(x_n)^T), \\quad n=1,\\cdots,N$. Las estimaciones de máxima verosimilutud (EMV) estan dadas por:\n", - "\n", - "$$\n", - "\\begin{align}\n", - "\\boldsymbol{w}_{ml} &= [\\boldsymbol{\\phi}(X)^T\\boldsymbol{\\phi}(X)]^{-1}\\boldsymbol{\\phi}(X)^T\\boldsymbol{t},\\\\\n", - "\\beta^{-1}_{ml} &=\\frac{1}{N} \\sum_{n=1}^{N}[y(x_n,\\boldsymbol{w}_{ml})-t_n]^2.\n", - "\\end{align}\n", - "$$\n", - "\n", - "Además se verifica que:\n", - "\n", - "$$\n", - "\\begin{align}\n", - "E(\\boldsymbol{w}_{ml}) &= \\boldsymbol{w}\\\\\n", - "E(\\beta^{-1}_{ml}) &= \\left(\\tfrac{N-1}{N}\\right)\\beta^{-1}.\n", - "\\end{align}\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Distribución predictiva\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Después de obtener las estimaciones de máxima verosimilitud (EMV), tenemos una distribución predictiva que corresponde a la distribución de probabilidad condicional $p(t|x,\\widehat{\\boldsymbol{w}},\\widehat{\\beta}^{-1})$ dado, la cual se obtiene tomando como parámetros la EMV de parámetros de probabilidad para obtener en este caso:\n", - "\n", - "$$ \n", - "p(t|\\widehat{\\boldsymbol{w}},\\widehat{\\beta}) = \\mathcal{N}(t|y(x,\\widehat{\\boldsymbol{w}}),\\widehat{\\beta}^{-1})\n", - "$$\n", - "\n", - "La siguiente gráfica ilustra la distribución predictiva en nuestro ejemplo inicial." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n", - "
\n", - "
\n", - "

Distribución predictiva: $ p(t|\\widehat{\\boldsymbol{w}},\\widehat{\\beta}) = \\mathcal{N}(t|y(x,\\widehat{\\boldsymbol{w}}),\\widehat{\\beta}^{-1})$

\n", - "
\n", - "
" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/ti_Teoria_Informacion-checkpoint.ipynb b/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/ti_Teoria_Informacion-checkpoint.ipynb deleted file mode 100644 index 2be28740..00000000 --- a/Fundamentacion_Estadistica/Cuadernos/.ipynb_checkpoints/ti_Teoria_Informacion-checkpoint.ipynb +++ /dev/null @@ -1,661 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#
Teoría de la Información
" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "
Conceptos básicos
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - " \n", - "
\n", - "
\n", - "\n", - "Fuente: [pixabay](https://pixabay.com/es/illustrations/orden-caos-wuerfelmeer-geometr%c3%ada-3431153/)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Contenido o cantidad de Información" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "La idea básica de la teoría de la información es que el **valor de la noticia** de un mensaje comunicado depende del grado en que el *contenido del mensaje sea sorprendente*. \n", - "\n", - "\n", - "Si un evento es muy probable, no es sorprendente (y generalmente poco interesante) cuando ese evento ocurre como se esperaba. Sin embargo, si es improbable que ocurra un evento, es mucho más informativo saber que el evento ocurrió o sucederá.\n", - "\n", - "En teoría de la información, **el contenido de información, auto-información o la sorpresa** de una variable o una señal aleatoria *es la cantidad de información obtenida cuando se muestrea la correspondiente distribución*. \n", - "\n", - "Formalmente, el contenido de información es una variable aleatoria definida para cualquier evento en la teoría de probabilidad, independientemente de si una variable aleatoria se está midiendo o no.\n", - "\n", - "El contenido de la información se expresa en una unidad de información, como se explica a continuación. El valor esperado de la auto-información es la **entropía** teórica de la información, la cantidad promedio de información que un observador esperaría obtener sobre un sistema al muestrear la variable aleatoria." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejemplo para dummies" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Supongamos que se tiene una moneda sesgada, de tal manera que la probabilidad que caiga es 0.9. En símbolos de la probabilidad escribimos $P(x_c) = 0.9$. Se lanzamos la moneda y el resultado es cara $x=x_c$, es menos sorprendente en relación con que salga sello (cruz) $x=x_s$. Los resultados más improbables son más sorprendentes y decimos que entregan más información sobre el experimento realizado." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Enfoque matemático" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Supongamos que $ X $ es una variable aleatoria discreta con valores $ \\Omega = \\{x_1, x_2, \\cdots \\} $ y probabilidades $ \\mathcal {P} = \\{p_i = P (X = x_i), \\quad i = 1, 2, \\cdots \\} $. Si $ x \\in \\Omega $, el contenido de información (o información de Shannon) del conjunto (evento) $ \\{x\\} $ viene dado por:\n", - "\n", - "\n", - "$$\n", - "I(\\{x\\})=-\\log_k{P(X=x)} = \\log_k \\left[ \\frac{1}{P(X=x)}\\right]\n", - "$$\n", - "\n", - "Donde $k$ es una base que depende principalmente de la cardinalidad de $ \\Omega $. Si $k=2$, la unidad de medida utilizada fue denominada bit. Si se utilizan logaritmos Neperianos, la unidad se denominan nat. \n", - "\n", - "\n", - "En el ejemplo para dummies, si se tiene una moneda justa, entonces $I\\{x_c\\}= -\\log_2 0.5 = 1$ bit. Por otro lado, si la moneda es segada como en el ejemplo, entonces $P\\{ x_c\\} = -\\log_2 0.9 = 0.15$ bits, mientras que $P\\{ x_s\\} = -\\log_2 0.1 = 3.32$ bits" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejemplo Distribución de Bernoulli" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Supongamos que $ X \\sim Bernoulli(p)$, por lo tanto: $ x \\in \\{0,1 \\} $. Podemos observar el comportamiento de la sorpresa al variar el parámetro de distribución de la siguiente manera:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAH5CAYAAAABRAMuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABdG0lEQVR4nO3dd3hcV53/8fdXozIqVperLMm9t9jpPTHBJCEJAUIKBAhsgCW7wI9d2i6wLCxl6WyAJYRQloSEEiAJIb03Jy6Jey9yl6xmdY2k8/vjjmTZke0ZtTvl83qeeUaauXPnO/fOjD4695xzzTmHiIiIiMSPFL8LEBEREZHoKMCJiIiIxBkFOBEREZE4owAnIiIiEmcU4ERERETijAKciIiISJxRgBMRERGJMwpwIiIiInFGAS5OmVmamX3OzGb5XYtIItBnSiT2mVmxmX3ZzEb7XYvfEjbAmVmKmf3MzGrMzJnZRX7XFC0z+5WZPXSCu/8bWAhsGobnfcjMfjXU6+3neZ4xs9uH+3kS0SneG4NZ7zH7frie5/h1j9R7wa/PVPi5R+RzFQ+O3w+n+j3CdSbd9h3B7+ph+x6Isg4Dfg0EnHNVftfjt1S/C4hE+A1a7Jy7MoqHXQ58ELgI2AHUDn1lw+4TgB1/o5ldC5wGXOZi9FxoZlYCfAVvP4wD6oF1wDedc4/7WJpEp9/3YH/M7BlgnXPutqFe9xCK288U9H4Xvr/PTTXAK8C/OOeGJXj6xI/3hsS+fwGqnXNfGoknG8B32oiKiwA3QFOBA865lwa6AjNLd851DGFNUXHONZzg9vuB+0e4nGj9CcgCPgRsA0YDFwJFfhYl0TnRe3Awej5Xw7HuU4nzz1SPJ4D3hX8eD3wb+DMw4EO/fn/XHc+P90Ysi7X9M1KOf93OuW/7Wc+J+LV/4vIQavhwy0/M7OtmdtjMqszsO2aWEr7/V8D3gbLw4dNdZpZhZj8ws0Nm1mZmr5jZef2s96fhdVUDLx53+3fNrNbMqs3sE+F1/tjM6s2s0sze12ddy8zseTOrCz/m0eP71pjn02a21czazWyvmX2jz/3HH1Y46Ws41XY5wbbMCj9PU3i9X+hnGTOzz5jZdjNrNbO1Zvbek6wzHzgf+Jxz7knn3G7n3GvOue845+49bvGUk9Ub4XY85euO4D0T6fsj2u17ym03kPX28zyn3E79PCaSfX/8e/CC8LZpMrMGM1tuZnPN+8xdCHzcvM+cM7OKPq+vv8/V8YdlUs3sh+HXUGdm3+5nHx5zmLWf+sx8/kxFsW1P+d44gXbn3MHwZRXed91MM8uMdL0n2SdD9Tk56X46lVMtP1zbN5LP0cneY1G8R6PePxG+5lPun4G85lMJ1/u/dvLPb6Tf5f29L0/6WBvA3+hT7Qsb2HfaQLZ/cXjdnzKz18KP22Jml51qu8dlgAu7CegEzgFuAz4JvCd83yeA/wT24h2+Ox2vf8t7gFuARcBa4BEzG3fcet+L13R/PnDzcc/XCJwJfBP4AfAXYAuwBO+4/J1mNj68fHZ4mTPwDuM2AA+aWXqfdX4d+CLwDWAO8G5gz0lecySv4WTbpT/fAd4CvBO4NLzeC45b5mt4LWkfB2aH6/2ZmV1xgnU2hS9XmVnwJM8dSb2RbMdI1nOqZSJ9f0S7fSPddtGu93iRbqe+Itn3vcwsFfgr8AKwAO+z8EOgC+8z9zLwS7zP3DiOfS+f6HPV101430lnAx8BbsXbDtGIhc8UDM/n6k3MbFS4lrXOudYo13uy77rBfk6G23Bt3+H43j7eQPdPJK95IPtnIN8d/TnV5zfS5+nvfdn3sRfidYk6/rHR/o2Gk++LgXynDWT7Lwpf3wZ8DpgPrAHusfA/ZSfknIv5C/Ar4KE+vz8DvHzcMo8Dd/b5/V+AXeGfs4EO4OY+9weA7cDXjlvvmn6e/5jnC++0auCBPrelhZ/jXSd4Ddl4f+jOC/+eA7QBH43kdUfyGiLZLsfdlwO0Azcdd1s98Ks+z9sKnH/cY38APHyS2t+J9yFrw/sQfAc482Tb9VT19rcdo3g/nHCZKN8f0WzfiLbdALdD73sj0u0U7b7v5z1YCDjgwhOs8xng9hPc3t/nqu+6n8H7orU+9/87sPdk6z9uHb5/pkbgc/UrvHDV80+SAyqBuQN4z53yu24Qn5MT7qeB/D5S2/dUn6NTvccieI8OaP9E8ZpPuX+ifc2n2h+Rfn4jfJ5+35f9PDYL73NwXp/HRfU3OpJ90d/+PFGdA93+wL+GX8uMPrdNwftsLzrZdojnPnBrjvt9P14/q/5Mwdt5L/bc4JzrMrOX8VJ3XytP9XzOOWdmVXjpuue2kJnV9dRgZlOAr+L9N1CC959JClAWfshsIAN48gTPN9DXEO12SccLWD3rbDKztX2WmQ0E8f6L6Nu5Ow3YdaJinXN/MrO/4f13cjawDPi0mf2bc+7rkdYbwXaMaD2nWCaa90c02zeabRfNet8kiu3UI5J9fwznXG34sMKjZvYk3nv3D865SFofTvS56usVF/72CnsZ+KqZ5TrnjkTw+Fj4TPWsd1g+V2HP4bVugBeq/xF4zMzOBMZGsd5TfteFDeRzMpyGbfsOw/f28aKpq+/+ieQ1D2j/DOC740RO+vmN4nne9L40sxnAt/D+lpRwdIBL38dG9TeawX0G+6tzoJ+PhcCDzrnNfW6LqD9dPAe40HG/O058SNj6LHO8429rjuL5TlbDg8A+vKbkfXgJewPeh7BvTZGK9DUMZLucTM9j3473n35fxz/XsU/sXBvef++PA/9pZncC/2Fm33FHO3yeqt5TbccT1dLf6z7RMtG8P6LZvtFsu2jW259It1OPAY3wc8590Mx+gBfIrwL+y8yucc49eoqHnuhzFY1u3lx3Wp+fY+EzFWkdA/5cAS3OuW29T2a2Eu9w1K1AT1+rSNYbzXddNJ+TU+2nwRrO7TvY7+1TvfZo6uq7fyJ5zdF8j/UV7XfHQEX6PP29Lx8EVgBnhR/bhdd61vex0f6NHsxnsL86B7r9FwL3HXfb6XgtvZvftHQf8dwHLhrb8BJt387JAbw0v2Gon8zMivBGhH3dOfeEc24jMIpjA/MGvCbxSyNc7XC8hm14b9Sz+qwzG5jbT53lzrltx112R/l8G/C2wan6xfXUEsl2HArD9f4Yym13QgPcTpHs+345595wzn3LOXcR3qGE94fv6sA7ZDBQZ5pZ3z9UZwH7+7S+VeP1Q+lrQZ+fY+Ez1bPekfxcObzgkDXE6z1epNvrVPtpsIZl+w7R93ak79Fo908krznq9/MQf8ee8PM7mOcxs2JgGvAz59zO8D//pzP4fwoi2RfRfKcNZPsHgRm8OYt9ErjXOddysieM5xa4iDnnms3sp8A3zewwsBP4FDAG+MkwPGUdcBj4BzPbA0zAG+rf2aemRjP7IfANM2vHOyxSBCx2zv10JF5DuAn+F8C3wiNp9gNfos8bNlznd4DvhD+cz+H1vTgL6HbO3XH8esMf1j8Ad+E1azfidSL9DPBkhIfDIILtOBSG6/0xkG03QFFvp0j2/fHMbBLef88P4P0XPBmvw23P+3UXcIZ5I7WagFrnXHcUr2M88AMz+wkwD69vyNf63P9U+P6r8P4z/QgwMfy8MfGZCq93WD5XfWSY2djwzwV4nZ9z8A7DDNt7LortddL9NFjDuH2H4ns7kvdo1Psnwtc8kPfzUH7HnuzzO5jnqcULxh83s/1AKV6f6kH9HYhwX+wiwu+0AW7/eeHrG8LdUqrw+g5OBa471WtIigAX9tnw9S+BfGA1sMw5d2Con8g5121m7wF+hDd57Tbg03hzo/X1ebw39hfx3pSHgN+cZNXD8Rr+Ba/z5Z+BFuB/wr/39cVwbf+C98f6CPA63oib/jThTS76Cbw3YgbeH/x7OPYP8klFsR2HwnC9P6LddlEbxHaKZN/31QJMxwvnxXiv6268vingfan+Gu+/zUxgEtH90b4b7w/ScrxWpV/gTZHR4y68wHhX+PefhGsv7rNMLHymYHg+Vz2WAj31NeKdOeLdzrlnBrneSESyvSLZT4M15Nt3iL63I3ntA90/kbzmqN7PQ/wde8LP72CeJ/zYdwO34/Vp2wb8P4Zm3sZT7Ytov9Oi/T5ZCGzFm/T+d3h9Wh8DTnfOHTxV8XZsn0MRERGRyFmMn7EgVpnZj4ES59wpW9v6kyx94ERERERiyULePOo7YgpwIiIiIiMo3O9uHoMIcDqEKiIiIhJn1AInIiIiEmcU4ERERETiTEJMI1JcXOwqKir8LkNERETklFauXHnYOVcymHUkRICrqKhgxYoVfpchIiIickpmNuiz8egQqoiIiEicUYATERERiTMKcCIiIiJxRgFOREREJM4owImIiIjEGQU4ERERkTijACciIiISZxTgREREROKMApyIiIhInFGAExEREYkzCnAiIiIicUYBTkRERCTOKMCJiIiIxBnfApyZ3WVmVWa2rs9thWb2uJltDV8X+FWfiIiISKzyswXuV8Cy4277HPCkc24a8GT4dxERERHpw7cA55x7Dqg97uargV+Hf/41cM1I1iQiIiISD2KtD9wY59wBgPD16BMtaGa3mtkKM1tRXV09rEV1dHZT19yBc25Yn0dERER80tUJLbXedRyItQAXMefcHc65Jc65JSUlJcP6XL9+aReLvvo4Te3xsVNFREQkSrXb4b8nwYa/+F1JRGItwB0ys3EA4esqn+sBIJgeAKA11OVzJSIiIjIsQi3edVqWv3VEKNYC3APA+8M/vx/4q4+19AqmepupPdTtcyUiIiIyLEJt3nVa0N86IuTnNCK/A14GZpjZXjP7EPBN4C1mthV4S/h332WqBU5ERCSxxVkLXKpfT+ycu+EEd106ooVEIJjqBbg2BTgREZHE1BlugUtVC1zC6G2B61CAExERSUihVu86TlrgFOAiEEzTIVQREZGE1hvgMv2tI0IKcBEIpnmbqU2DGERERBKTAlziyUxTHzgREZGE1juIQQEuYQQV4ERERBJb7yAGBbiEkak+cCIiIokt1AKBDEiJj2gUH1X67GgLnPrAiYiIJKRQW9xM4gsKcBHJCJ+JQS1wIiIiCSrUEjdTiIACXERSUoyM1BTaFeBEREQSU2db3EziCwpwEctMD6gFTkREJFGFWtUCl4iCqQGNQhUREUlUoVb1gUtEXgucBjGIiIgkJLXAJaaM1BS1wImIiCSqzlb1gUtEmek6hCoiIpKwQq1xcxYGUICLmPrAiYiIJDAFuMSkUagiIiIJTAEuMQXTUmjtUIATERFJSJ1tcXMeVFCAi1gwLaBTaYmIiCSqUIta4BJRZpr6wImIiCSkrhB0d2oakUQUVIATERFJTKFW71oT+SaezDRvEINzzu9SREREZCh1tnnXOoSaeIJpKXQ7CHUpwImIiCSUUIt3rUEMiSeYFgDQVCIiIiKJpvcQqgJcwukJcO0KcCIiIolFAS5xZaoFTkREJDEpwCWunhY4zQUnIiKSYDrDAU594BJPZrq3qdQCJyIikmDUApe4gqk9LXAKcCIiIgklpGlEElYwXX3gREREElLPNCIKcImnpwVOo1BFREQSTM9EvuoDl3gy1QInIiKSmNQCl7iCad6m0ihUERGRBNPTBy5V50JNOL3zwHWoBU5ERCShhFq88JYSP7Eofir1mU6lJSIikqA62+Kq9Q0U4CKWkeptKg1iEBERSTChFkjL8ruKqCjARcjMyEwLqAVOREQk0YTa4moAAyjARSWYlqJBDCIiIokm1KoAl8jUAiciIpKAOhXgElowLaBTaYmIiCSaUKsGMSQyBTgREZEEFGrVIIZEpj5wIiIiCSjUCmlqgUtYmenqAyciIpJwOtUCl9CCqTqEKiIiknDUBy6xBdUCJyIiknjUBy6xBVMDtKsPnIiISOJwTn3gEl1meopa4ERERBJJVwhcl+aBS2TqAyciIpJgOlu961QFuITVMwrVOed3KSIiIjIUQuEApxa4xBVMC+ActHeqH5yIiEhCUIBLfMG0AIAGMoiIiCQKBbjEF0zzNpcGMoiIiCQI9YFLfJnhFjgNZBAREUkQaoFLfD2HUNUCJyIikiBCbd61AlziUguciIhIggm1eNcKcIlLLXAiIiIJprOnBU6n0kpYPYMYNApVREQkQfS0wOlk9okrM10tcCIiIglFfeASXzBVfeBEREQSivrAJT61wImIiCSYnj5wOoSauI62wKkPnIiISEIItXiT+Jr5XUlUFOCiEEz3NpcOoYqIiCSIUFvcHT4FBbiopAdSMFOAExERSRihVgW4RGdmZKYFaO1QgBMREUkInQpwSSGYFqCtUwFOREQkIYRa4+5E9qAAFzWvBU6DGERERBJCqEUtcMkgIy1FfeBEREQSRagN0uJrChFQgItaZlpAAU5ERCRRhFri7jyooAAXtWBaQBP5ioiIJIrOtribxBcU4KKmFjgREZEEEmpVC1wyCKal0KozMYiIiCSGUKv6wA0VM/uUma03s3Vm9jszi5ktG0wL0K4WOBERkcSgFrihYWYTgH8Gljjn5gIB4Hp/qzoqU33gREREEoNzmsh3iKUCmWaWCmQB+32up1dQfeBEREQSQ1cHuG4NYhgKzrl9wHeASuAA0OCce8zfqo7KTFcLnIiISEIItXrXOoQ6eGZWAFwNTALGA9lm9t5+lrvVzFaY2Yrq6uoRqy+YmkJbqBvn3Ig9p4iIiAyD3gCnFrihsBTY6Zyrds6FgPuBc45fyDl3h3NuiXNuSUlJyYgVF0wPANDeqZGoIiIica1TLXBDqRI4y8yyzMyAS4GNPtfUK5jqBTj1gxMREYlzPS1w6gM3eM655cAfgVXAWrwa7/C1qD4ywy1w6gcnIiIS50Jt3nUctsCl+l1Af5xzXwa+7Hcd/QmmeZm3TZP5ioiIxLdQi3etPnCJLzMt3ALXoRY4ERGRuNYZvy1wCnBRykjTIVQREZGE0NMCpz5wia+nBU6n0xIREYlzvX3gdCaGhBdUC5yIiEhi6O0DpwCX8Hpa4DSIQUREJM51qgUuafSMQlULnIiISJzr7QOnAJfwjrbAKcCJiIjEtVArYJCa4XclUVOAi1KGApyIiEhiCLV6h0/N/K4kagpwUVILnIiISILoCXBxSAEuSmkBI5Bi6gMnIiIS7zrb4nISX1CAi5qZEUxN0ShUERGReBdqictJfEEBbkAy0wNqgRMREYl3oTYdQk0mGakB9YETERGJd6EWBbhkkpmuACciIhL3OtUCl1SCaeoDJyIiEvdCLXE5iS8owA1IZlqA1g61wImIiMQ19YFLLsG0AG2dCnAiIiJxTfPAJZegWuBERETiX6cCXFIJpmkQg4iISNwLtWoeuGSSqUEMIiIi8c258CFUnYkhaQTTNJGviIhIXOtsBxykqQUuaWTqEKqIiEh862z1rtUClzwy0gK0d3bT3e38LkVEREQGIhQOcOoDlzwy0wIAtHeqH5yIiEhcCqkFLukE07zNpn5wIiIicao3wKkFLmn0tMCpH5yIiEic6mzzrtUClzwy070ApxY4ERGROBVq8a41kW/yyEhVC5yIiEhc6x3EoACXNHpa4BTgRERE4lRvHzgFuKQRTPU2m87GICIiEqc0iCH59PaB0wntRURE4pMm8k0+wZ5RqJ0KcCIiInFJE/kmn55pRNQCJyIiEqc0kW/yyUjr6QOnACciIhKXQq1gKRBI87uSAVGAG4CjE/lqEIOIiEhc6mzzWt/M/K5kQBTgBqCnD5wm8hUREYlToZa47f8GCnADkhZIITXFdAhVREQkXoXa4rb/GyjADVgwLaAWOBERkXgVaonbOeBAAW7AgmkB9YETERGJV51tcXsWBlCAG7BgWooOoYqIiMSrUEvcngcVFOAGLDMtoAAnIiISr0JqgUtK6gMnIiISx0KtCnDJSC1wIiIicaxTAS4pZaSl0KpBDCIiIvEp1Ko+cMkoMy1Au1rgRERE4pMOoSanzHT1gRMREYlbCnDJKZiqPnAiIiJxyTn1gUtWmekBWjsU4EREROJOZ5t3rQCXfDLSUmjr1CAGERGRuBNq9a41iCH5ZKYF6Ojspqvb+V2KiIiIRKMnwKkFLvkE0wIA6gcnIiISbxTgklemApyIiEh86lSAS1rBNG/TaSoRERGROKM+cMnr6CFUDWQQERGJKzqEmrxGBVMBONIW8rkSERERiUpbg3edkeNvHYOgADdAEwuyANhT2+JzJSIiIhKVul3edX6Zr2UMhgLcAE0s9ALcrsMKcCIiInGldgdkFniXOKUAN0DBtADj8oLsrm32uxQRERGJRt1OKJzsdxWDogA3CGWFWeyuUQuciIhIXKndAQWT/K5iUBTgBqGiKFsBTkREJJ50dkDDXrXAJbOyoiwON7XT3N7pdykiIiISiYY94LqhUC1wSau8yBvIoFY4ERGROFG7w7vWIdTkVVGUDUClBjKIiIjEh9qd3rUOoSavsnAL3C61wImIiMSH2h2Qlg05o/2uZFAU4AYhN5hGYXa6DqGKiIjEi7qdXv83M78rGRQFuEHyphLRIVQREZG4ULsDCir8rmLQFOAGqaJIc8GJiIjEhe5uqNsd9/3fQAFu0MqKsjnQ0Ep7Z5ffpYiIiMjJNO6Hrva4n0IEBhDgzCzDzBaEL8HhKCqelBdm0e1gb12r36WIiIjIySTIFCIQZYAzs7cAe4BVwGqgxszuNLP4HsoxCBXF3kjUSh1GFRERiW0JMoUIRN8CdzvwLDANKAPeF/55lZmNG6qizCzfzP5oZpvMbKOZnT1U6x5qZYXeXHC7NJBBREQkttXugJQ0yCv1u5JBS41y+TLgCudcuA2SvcD9ZvZ/eOHunUNU1w+BR5xz7zKzdCBriNY75Ipz0slOD2ggg4iISKyr2wkF5ZAS8LuSQYu2BW4t0F9s/Rrw1sGXA2aWC1wA/ALAOdfhnKsfinUPBzOjrCibyloFOBERkZhWuzMh+r9B9AHuHuDnZjb1uNtLgLqhKYnJQDXwSzNbHe5jlz1E6x4W5YVZOoQqIiISy5zzAlwCjECF6APc94ApwAYz+5OZ/buZfQn4OfDpIaopFTgN+KlzbhHQDHzu+IXM7FYzW2FmK6qrq4foqQemvDiLvbWtdHU7X+sQERGRE2ipgY7GhBjAANH3gSsBFgELw5frgRnh+75sZtcCa4A1zrmHBljTXmCvc255+Pc/0k+Ac87dAdwBsGTJEl+TU3lhNh1d3RxoaKW0IGa764mIiCSvBJpCBKIMcM65GuCJ8AXw5oUD5nE01F0OfAbIH0hBzrmDZrbHzGY45zYDlwIbBrKukVJRdHQqEQU4ERGRGJRAU4hA9C1wb+KcawdWhC9D5Z+Au8MjUHcAHxzCdQ+5snCA213bwjk+1yIiIiL9qNsJmDcKNQEMOsANB+fc68ASv+uI1Li8TNIDKRrIICIiEqtqd3jzv6Vm+F3JkNC5UIdAIMUoLczU2RhERERiVe1OKKjwu4ohowA3RLypRBTgREREYlLtjoSZQgQU4IZMeVE2lTXNOKepRERERGJK2xFoOZwwAxhAAW7IlBdl0dzRxeGmDr9LERERkb7qwiNQE2QKEVCAGzIVRd7JIiprNZBBREQkpiTYFCKgADdkeqcSUT84ERGR2NLTApdAfeCimkbEzO46wV0OaAO2Afc55/YPtrB4U1qQSYqhgQwiIiKxpnYHZJdAxii/KxkyAzmV1vlAN7AufNtcwICVwLXAf5rZ+eG53JJGRmqAcXmZVGouOBERkdhSuzOh+r9B9IdQXwT+DpQ65y5wzl0AlAIPA48B5cDfgO8OaZVxorxIU4mIiIjEnNqdCXX4FKIPcJ8A/tM515tSwj//F/Ap51wH8C28c6ImnfKibCprFeBERERiRmc7HNmXUAMYIPoAlwOM6+f2seH7AI4Qo6foGm7lRVnUNndwpC3kdykiIiICULcbcEl/CPXPwC/M7N1mVmFm5Wb2buAXwP3hZc4AtgxlkfGiIjwSVafUEhERiRG1O7zrJG+B+yjwKPBbYDuwM/zzI8A/hpfZCPzDUBUYTyYVe42QW6safa5EREREAKje5F0XTfG3jiEWVYBzzrU45z4KFAKLwpdC59zHnHPN4WVeT7YRqD2mjs4hJyOVlbvr/C5FREREAPa86rW+ZRX6XcmQirqvmpmNAT4OzMab/229mf3EOVc11MXFm0CKsagsnxW7FOBERER85xzsWQ7TLvO7kiEXVQucmZ2LN1nvjUAr3uS97wW2mdnZQ19e/FlcXsDmQ400aiCDiIiIv2p3eCexLzvT70qGXLR94L4D/A6Y7px7n3PufcB04F6SdO634y0uL8A5WF1Z73cpIiIiya3yFe964ln+1jEMog1wC4HvOue6e24I//w9vP5wSW9RWQEpBivUD05ERMRfe16BYB4UT/e7kiEXbYBrAPqbSGUSUD/oahJATkYqM8fmsnJ3rd+liIiIJLfK5TDxTEiJNu7Evmhf0b1488DdZGaTwnPBvRf4Od6hVQGWVBSwurKezq7uUy8sIiIiQ6+lFg5v9gJcAoo2wH0G+CNwF95ghu3AncAfgM8NbWnxa3F5AS0dXWw6qPngREREfLHnVe+6LPH6v0H088B1OOc+ARTg9YfrmQeu5zyoghfgAM0HJyIi4pc9yyElFcaf5nclw2JAB4XDE/qudc6t6Xtie/FMyM9kbG5QAxlERET8smc5jFsA6Vl+VzIsTjmRr5k9EOnKnHNXDa6cxGBmLK4oYOUuDWQQEREZcZ0dsG8lLPmQ35UMm0jOxFAz7FUkoCXlBfxtzQH217cyPj/T73JERESSx8E10NkGE8/wu5Jhc8oA55z74EgUkmiWlHvnXFuxu46rFOBERERGTs8Evgk6gAEG2AdOTm3muFFkpgV0GFVERGSk7XkF8sth1Fi/Kxk2CnDDJC2QwsKJ+ays1EAGERGREeOcN4VIAre+gQLcsFpSUcDGA400t3f6XYqIiEhyqNsFTYcSdgLfHgpww2hxeQFd3Y7X99T7XYqIiEhy2LPcu1YLXP/M7AIzCw5lMYlmUVkBZrBilw6jioiIjIjKVyAjF0pm+l3JsBpMC9zTQNlQFZKI8jLTmD56FCt0YnsREZGRsWc5lJ4OKQG/KxlWgwlwNmRVJLDFFQW8XllPV7fzuxQREZHE1loPVRsT/vApqA/csFtSXkBjeydbDunE9iIiIsNq7wrAJfwABlCAG3Y9E/q+ulOHUUVERIbV7hfBAjBhsd+VDDsFuGE2sTCTycXZPL7hkN+liIiIJLbND0P5OZCR43clw04BbpiZGW+dO5aXd9RQ39LhdzkiIiKJqXoLVG+CWVf5XcmIUIAbAcvmjKWr2/HExiq/SxEREUlMmx70rmde4W8dI0QBbgTML81jXF6QR9Yd9LsUERGRxLTxQZiwBPIm+F3JiBhMgPsv4PBQFZLIzIy3zhnLc1urdVotERGRoVa/B/avhllv97uSETPgAOec+6JzTkMrI7Rs7lg6Ort5ZnO136WIiIgklk0PedcKcDLUTq8opCg7nUfX6zCqiIjIkNr4EIyeA0VT/K5kxCjAjZBAivGW2WN4alMV7Z1dfpcjIiKSGJqqofIlmHWl35WMKAW4EfTWuWNpau/kpW01fpciIiKSGDY/DK47qQ6fggLciDpnShGjMlI1GlVERGSobHwQCipgzFy/KxlRCnAjKCM1wCWzRvP4xkN0dnX7XY6IiEh8a2uAHc94rW9mflczohTgRtiyOWOpbe7gtV11fpciIiIS37Y8Bt2hpDn7Ql9RBzgzO9fMMo7/WSJz4YwSMlJTNBpVRERksDY+ADljvQl8k8xAWuD+Dkzo52eJQFZ6KhdOL+GRdQfp7nZ+lyMiIhKfOlpg2xPe6NOU5DugOJBXbCf4WSK0bO5YDh5pY82+Br9LERERiU/bn4JQS9KNPu2RfJE1Blw6cwypKcbf1uz3uxQREZH4tP7PEMyH8nP9rsQXCnA+yMtKY+msMfxx5V7aQprUV0REJCrNh73+b/Ovg0Ca39X4QgHOJ+89q5y6lhB/X3fA71JERETiy+rfQlcHLLnF70p8owDnk3OmFDGpOJvfvlLpdykiIiLxo7sbVv7SO3Q6epbf1fhGAc4nKSnGjWeUsXJ3HRsPHPG7HBERkfiw/Smo25XUrW+gAOerdy0uJT01hd++stvvUkREROLDil9AdklSTt7b10AC3NeB2n5+ligVZKdz5fxx/GX1PpraO/0uR0REJLbV74Etj8Ci90Fqut/V+CrqAOec+4Zzrv74n2Vg3ntWOc0dXfx59T6/SxEREYltq34NzsHiD/hdie90CNVniybmM3tcLne/shvndGYGERGRfnWFYNVvYNplUFDudzW+U4DzmZnx3rPK2XSwkVWVOsG9iIhIvzY9BE2H4PQP+V1JTFCAiwFXLxxPTkaqphQRERE5kdd+AXllMHWp35XEhKgDnJllmNkkM5ttZiXDUVSyyc5I5drTJvC3NQeobe7wuxwREZHYUr0Fdj0PSz4AKQG/q4kJEQU4MxtlZh8zs+eABmAbsA44aGZ7zOznZnb6cBaa6N57VjkdXd38fsUev0sRERGJLSvugpQ0WHSz35XEjFMGODP7FLALuAV4HLgaWAhMB84GvgykAo+b2SNmNm24ik1k08eM4qzJhfzyxZ06P6qIiEiP5hpv8MKcd0CODvz1iKQF7hzgQufc6c65rzrnHnXOrXXObXPOveqcu8s590FgDPAAcOGwVpzA/vmSaRw60s59r6kVTkREBICX/wdCLXD+p/2uJKacMsA5597tnFsXwXLtzrmfOOfuHJrSks/ZU4o4o6KQnzyzTa1wIiIizTWw/A6Yey2Mnul3NTFloIMYFoQvweEoKlmZGZ9cqlY4ERER4Gjr2wWf8buSmBNVgDOztwB7gFXAaqDGzO40s9HDUVwyUiuciIgIan07hWhb4G4HngWmAWXA+8I/rzKzcUNcW1Lq2wqnEakiIpK0Xr5drW8nEW2AKwM+75zb4Zzb65y73zl3IfA0XriTIdDbCvf0drXCiYhI8mmugVfV+nYy0Qa4tUBpP7d/DXjr4MsRONoKd/BIm1rhREQk+bx8O3Q0q/XtJKINcPcAPzezqcfdXgIM6Yk8zSxgZqvN7KGhXG+8UCuciIgkJbW+RSTaAPc9YAqwwcz+ZGb/bmZfAn4ODPUELZ8ANg7xOuOGWuFERCQpqfUtItEGuBLgMuALQCtwPfBFYCrwZTO718y+YGZXDqYoMysFrgCSek65nla4Hz25jca2kN/liIiIDK+GfbD8f9X6FoGoApxzrsY594Rz7jvOufc65+YCOXin1Po+cBi4HPjtIOv6AfAZoPtEC5jZrWa2wsxWVFdXD/LpYpOZ8W9XzKKmuZ0fPbnV73JERESG1+NfBNcNl37J70piXiTnQp10svvDZ2BYET4Dwz8BNzrn8gdaULj1rso5t/IUz3uHc26Jc25JSUninhttwcR8rls8kV++uIttVY1+lyMiIjI8dr0A6/4E534CCir8ribmRdIC97KZ/cLMzj7RAmZWYGYfAzYAVw2ypnOBq8xsF3AvcImZDbZFL67967IZZKYH+MqDG3DO+V2OiIjI0OrqhIc/A3kT4dxP+l1NXIgkwM0EaoG/mVm1mT1iZr80s5+G+7ytAaqA9wKfdM4Naj4459znnXOlzrkKvD52Tznn3juYdca74pwM/t9bpvP81sM8uv6Q3+WIiIgMrZW/hKr18Nb/gvQsv6uJC5GczL7eOfevwATgY8AmIB+YBHQCvwYWOefOdc49Ooy1JrX3nVXOjDGj+NrfNmhaERERSRzNNfDU12DShTBrsAfxkkdqpAs651qBP4YvI8I59wzwzEg9XyxLDaTwH1fN4Yafv8L/PrudTy6d7ndJIiIig/fUf0JHE7ztv8HM72riRkSjUM3st2b2KTO7wMxGDXdR0r+zpxRxxfxx/PSZ7eypbfG7HBERkcHZvxpW/hrO+IimDYlSpNOIjMeb7+0ZoM7MNpnZPWb2aTO7yMxyh61COca/XT6LFDO+9rcNfpciIiIycN3d3sCF7BK46LN+VxN3IgpwzrlLnHOFeBP23gD8BW9S388DT+GFui3DVaQcNT4/k3+6dCqPrj/EQ2v2+12OiIjIwLz6M9j7KrzlPyGY53c1cSfiPnAAzrkdwA7gDz23mVkFsAQ4bUgrkxO69fzJPLruIF/8yzrOmFTI6FFBv0sSERGJ3OGt8MR/wPRlsOB6v6uJS9GeSutNnHO7nHN/dM59YSgKklNLDaTw3esW0tLRxRfuX6e54UREJH50dcKfPwppmfD2H2rgwgANOsCJP6aOzuFf3zqDJzYe4k+r9vldjoiISGRe+iHsWwFXfBdGjfW7mrilABfHbjl3EmdMKuQrD6xnf32r3+WIiIic3MF18PQ3YM47YO47/a4mrinAxbGUFOM771pAl3N89k9rdChVRERiV2eHd+g0swAu/67f1cQ9Bbg4V1aUxRcun8XzWw9z9/JKv8sRERHp33PfhkNrvX5v2UV+VxP3FOASwE1nlnH+tGL+628b2Xqo0e9yREREjrX7ZXj+u7DgRph5ud/VJAQFuARgZnzn3QvIzgjwsbtX0dze6XdJIiIinqYq+MMHoKAc3vZNv6tJGApwCWJMbpAfXb+IHdVNfP7+teoPJyIi/uvqhD/eAm31cN1vNGHvEFKASyDnTC3m05fN4IE39vN/r+z2uxwREUl2z3wddj0PV3wPxs7zu5qEogCXYD524RQunTmarz60gdWVdX6XIyIiyWrzI16/t9NuhkU3+V1NwlGASzApKcZ3r1vAmNwgH797FXXNHX6XJCIiyaZuF/z5Vhg7H972bb+rSUgKcAkoPyudn9x0GoebOvjkfa/T1a3+cCIiMkJCbfD7m8Hh9XtL0/m6h4MCXIKaX5rPf1w1h2e3VPPNv2/0uxwREUkG3d3w13+EA2/AO/4XCif5XVHCSvW7ABk+N55ZxpZDjfz8+Z2UFWXzvrPK/S5JREQS2TNfh3V/gku/rPnehpkCXIL74pWz2VPbwn88sJ6JBZlcNGO03yWJiEgiWn23d7aFRe+D8z7ldzUJT4dQE1wgxfjRDYuYMWYUt92zmo0HjvhdkoiIJJqdz8GDn4BJF8KV3wczvytKeApwSSA7I5W7PnA6ORmp3PKr1zh0pM3vkkREJFFUb4H73gtFU7xBC4E0vytKCgpwSWJsXpBffGAJDa0hPvTr13S6LRERGbymarj7XRBIhxt/D5n5fleUNBTgksic8XncfuMiNuw/wq3/t4K2UJffJYmISLxqrYffvsM71+kN93nnOpURowCXZC6ZOYZvv2sBL26r4bZ7VhHq6va7JBERiTftTXD3u6FqE1z/Wyhd7HdFSUcBLgm9c3EpX716Dk9srOLTv39DE/2KiEjkQm1w742wbyW86y6YutTvipKSphFJUu87u4Lmji6++fdNZKUH+Ma18zCNGhIRkZPpCsEfPwg7n4V3/AxmX+V3RUlLAS6JffTCKTS1dXL709vIzkjl36+YpRAnIiL96+6CP38UNj8Ml38HFlzvd0VJTQEuyX36suk0tXfyixd2khZI4bPLZijEiYjIsbq74IF/gnV/hKVfgTP+we+Kkp4CXJIzM7505Ww6u7v532e30xbq4stvn60QJyIinq4Q3H8rrL8fLv43OO+TflckKMAJkJJifPXquWSkBvjFCztp7+zmv66ZS0qKQpyISFLrbIc/3gKbHoK3fBXO/We/K5IwBTgBvJa4f79iFsG0FH789HbaQ13897vmkxrQQGURkaQUavXOsLDtCXjbt+HMW/2uSPpQgJNeZsa/vnUmmWkBvvPYFto7u/nB9QtJU4gTEUku7U3wu+th1wtw1f/AaTf7XZEcRwFO3uS2S6YRTAvwtb9tpLmjkx/feBrZGXqriIgkhebDcM97YP9quPYOmH+d3xVJP9S0Iv368PmT+ca183huSzXX3/EK1Y3tfpckIiLDrXYH/OItcGidd2J6hbeYpQAnJ3TDGWX8/OYlbKtq4p0/fYkd1U1+lyQiIsNl3yr4xWXQWgc3PwCzrvS7IjkJBTg5qUtnjeF3t55FU3sn7/zpS6yqrPO7JBERGWpbH4dfXQlpmfChx6HsTL8rklNQgJNTWjgxn/s/dg65mWnc+PNXeHT9Qb9LEhGRobLy116ft6Ip8KEnoHia3xVJBBTgJCIVxdn86WPnMGPMKD7625X8+OltOOf8LktERAaqqxMe+Tw8+M8w+SL44MMwaozfVUmEFOAkYsU5Gdz3kbO5asF4vv3oZv753tdp7ejyuywREYlWax3c/S545Sdw1j/Cjb+HjFF+VyVR0NwQEpVgWoAfvGchM8aO4tuPbmbX4WbuuHkx4/Iy/S5NREQiUb0FfvceqN8DV90Op73P74pkANQCJ1EzM/7xoqn8/H1L2FHdxNv/50VW7tbgBhGRmLflMbjzUmhvhA88pPAWxxTgZMCWzh7Dnz9+LlnpAa6/42V+/dIu9YsTEYlF3V3w9NfhnuugoBz+4WkoO8vvqmQQFOBkUKaPGcUDt53LBdNK+PID6/mn362mqb3T77JERKRH82H47Tvh2W/Bghvglscgf6LfVckgKcDJoOVnpfPzm5fwmWUzeHjtAa66/QW2HGr0uywREalcDv97Pux+yTun6TU/gfQsv6uSIaAAJ0MiJcXrF3f3h8/iSGsnV9/+Ivev2ut3WSIiyck5ePkn8KvLITUDPvy4d0J6M78rkyGiACdD6uwpRTz8z+cxvzSP//f7N/jUfa/T2BbyuywRkeTRVO31dXv08zB9Gdz6DIxb4HdVMsQU4GTIjc4NcveHz+RTS6fzwBv7ufxHz2uUqojISNj6BPz0bNj5HFz+HXjPbyEz3++qZBgowMmwSA2k8Iml0/j9R87CObjuZy/zoye30tWtUaoiIkMu1AZ//xzc/U7ILvFGmZ7xDzpkmsAU4GRYLS4v5OFPnM/b54/je49v4fo7XmZ3TbPfZYmIJI6Da7253Zb/FM78qBfexsz2uyoZZgpwMuxyg2n84PpFfP89C9h0sJFlP3ie/3t5F91qjRMRGbiuEDz7bbjjYmiqghv/AG/7FqQF/a5MRoACnIyYdywq5bFPXcDpkwr54l/X895fLGdPbYvfZYmIxJ+qjXDnUnj6azD7avj4cph+md9VyQhSgJMRNS4vk19/8HS+ee081uxtYNkPnuOe5ZU6g4OISCS6OuGF78PPLoCGPXDdb+Bdv4CsQr8rkxGmACcjzsy4/owyHvnk+SyYmM8X/ryWG37+Cjuqm/wuTUQkdu1/He68BJ74D296kH9c7rW+SVJSgBPflBZk8dsPnck3rp3H+v1HWPbD57n9qa10dHb7XZqISOzoaIbH/h1+fgk0HoR3/8precsp8bsy8VGq3wVIcktJMW44o4xLZ47mKw9u4DuPbeHBNw7wjXfO47SyAr/LExHx17Yn4KFPQX0lnPZ+eMtXIFPfjaIWOIkRo3OD/Pim07jz5iUcaQvxzp++xBf+vJa65g6/SxMRGXlH9sMfPuidhD6QAR94GK76kcKb9FILnMSUpbPHcNaUIr732BZ+/fIu/r72AJ9dNpPrlkwkJUUTUopIguvs8OZze+Zb4Lrgos/DuZ/U1CDyJpYIo/+WLFniVqxY4XcZMsQ2HTzCl/6ynld31bJgYj5fu3ou80rz/C5LRGR47HgWHv5XOLwZpr8Nln0DCif5XZUMAzNb6ZxbMph16BCqxKyZY3O57yNn8f33LGBfXStX/fgFPn//Gqob2/0uTURk6NTthj98AH5zFXS2wQ33wY33KrzJSekQqsQ0M+Mdi0q5dNYYfvjEVn790i4efOMAt10ylQ+eW0FGasDvEkVEBqa90ZvT7aXbISUAF30Bzv1nSMv0uzKJAzqEKnFlR3UTX394E09sPERZYRZfuHwmb50zFtMJm0UkXnR3wxv3wJP/CU2HYP71cOmXIG+C35XJCBmKQ6gKcBKXXth6mK8+tIHNhxo5vaKAz71tFovLNTpLRGKYc7D9SXj8P+DQWig9A5Z9E0oX+12ZjDAFuDAFuOTU2dXN71fs5ftPbKG6sZ1lc8byr8tmMKUkx+/SRESOtX81PP5l2Pks5Jd7LW5z3wk6epCUFODCFOCSW0tHJ3c+v5OfPbudts5u3nP6RD556TRG52rYvYj4rHYnPPU1WPdHyCyECz8DS26B1Ay/KxMfKcCFKcAJwOGmdv7nya3cvbyS1IDx/rMr+MiFUyjMTve7NBFJNg374Llvw+r/g5Q0OPsf4dxPQFBTIYkCXC8FOOlrd00zP3hiK395fR/Z6ancct4kPnz+JHKDaX6XJiKJrqnKG1n62i/AdcPi98P5/wK54/yuTGKIAlyYApz0Z+uhRr7/xBYeXnuQvMw0br1gMjefXc4oBTkRGWrNNfDy/8Dyn3lzuS240TtcWlDud2USgxTgwhTg5GTW7Wvge49v4alNVeRlpvHh8ybx/nMr1CInIoPXVO0Ft1fvhFALzL3WO/1V8TS/K5MYpgAXpgAnkXhjTz3/89RWnthYRW7QO7T6wXMnkZepICciUWqqghd/CCvu8lrc5r7TO1Q6eqbflUkcUIALU4CTaKzb18APn9zK4xsOMSojlfeeXc4t506iZJRGhYnIKdRXwos/8gYndHXAvHfDBf+qFjeJSkIGODObCPwGGAt0A3c45354sscowMlArN/fwE+e2c7Daw+QHkjhuiUTufWCyUwszPK7NBGJNVWb4MUfwNo/AAYL3gPnfgqKp/pdmcShRA1w44BxzrlVZjYKWAlc45zbcKLHKMDJYOyobuJnz+7g/tV76XZw1YLx/MP5k5k9Ptfv0kTEb3te9Q6VbnoI0rJg8Qfg7Nt02isZlIQMcMczs78CtzvnHj/RMgpwMhQONLRy5/M7+d2rlbR0dHH+tGJuvWAy500t1rlWRZJJdxdsfhhe+h/YsxyC+XDmR+CMj0B2kd/VSQJI+ABnZhXAc8Bc59yREy2nACdDqaElxN2v7uaXL+6iurGdmWNHcesFk7ly/njSU1P8Lk9EhktHC7zxO3j5x1C73Tvl1dm3waKbID3b7+okgSR0gDOzHOBZ4L+cc/f3c/+twK0AZWVli3fv3j3CFUqia+/s4q+v7+fnz+1ga1UTJaMyuPmscm48s4yiHA14EEkYDXvh1Z/Dyl9BWz2MPw3O/WeY+XYIpPpdnSSghA1wZpYGPAQ86pz73qmWVwucDCfnHM9uqeaXL+7i2S3VpKemcM3C8Xzw3EnMGqd+ciJxa89r8MpPYMNfAQczr4SzPgZlZ+sk8zKsEjLAmdfZ6NdArXPuk5E8RgFORsq2qkZ++eIu/rRqL22hbs6cVMj7z6ngLbPHkBbQ4VWRmBdqg/X3w6t3wP7VkJEHp70PzrhVZ02QEZOoAe484HlgLd40IgBfcM49fKLHKMDJSKtv6eDe1/bw21d2s7eulbG5QW48s4zrz5jI6FFBv8sTkePV7fYm3V31G2itheIZcMY/wIIbICPH7+okySRkgBsIBTjxS1e34+lNVfzmld08t6WatIDx1jljufHMMs6eXKTRqyJ+6u6CbU94wW3Lo95h0ZlXwOn/AJMu0GFS8c1QBDj1zhQZhECKsXT2GJbOHsOO6iZ++0olf1q1l4fWHGBySTY3nlHGuxaXkp+V7nepIsmj8SCs+j9Y9Wto2AM5Y+D8T8OSD0Jeqd/ViQwJtcCJDLG2UBd/W3OAu5fvZlVlPempKVw+dyzvOb2MsyYXqlVOZDh0d8G2J73QtuUR6O6EyRfBkltgxuUQ0DmPJXboEGqYApzEqo0HjnDP8kr+8vo+Gts6qSjK4j2nl/HOxRPUV05kKNTthtW/hdfvhiP7IKsYFt7onTGhaIrf1Yn0SwEuTAFOYl1rRxd/X3eAe1/bw6s7awmkGBfPGM27l5RyyczRGsEqEo1QK2x8yAttO57xbpu6FE67GaYvg1R1WZDYpgAXpgAn8WRHdRP3rdjD/av2Ud3YTlF2OlcvnMC7l5RqXjmRE3EO9q6A138L6+6H9iOQXwYLb/Iu+RP9rlAkYgpwYQpwEo86u7p5bms1f1y5l8c3HCLU5ZgzPpd3LJrAVQvH6xCrCEB9Jay5D964D2q2eieUn321d5i0/DxIUeu1xB8FuDAFOIl3dc0d/PX1fdy/eh9r9jYQSDHOn1bMOxZN4LLZY8lMD/hdosjIaTvinR3hjXth9wvebWXnwMIbYPY1EFRLtcQ3BbgwBThJJNuqGrl/1T7+snof+xvayE4P8Na5Y7lm4QTOmVJEqvrLSSLqbIetj8PaP3ijSDvboHCKN9Hu/HdDQYXfFYoMGQW4MAU4SUTd3Y5XdtTwl9f38fd1B2ls66Q4J4Mr54/j6oXjWTgxX1OSSHzr7oLdL8Ha33stbm0NkFUEc66FBdfDhMWabFcSkgJcmAKcJLq2UBfPbK7ir6/v58lNVXR0dlNakMnbF4znyvnjmD0uV2FO4oNzsPc1WPcnWP8XaDoIadkw60qYdx1MvlBztknCU4ALU4CTZHKkLcSj6w7y0JoDvLDtMF3djskl2Vw53wtz08eM8rtEkWM55504fsNfYN2foaESAhkw7S0w5x3eRLvpWX5XKTJiFODCFOAkWdU2d/D3dQd46I0DvLKzBudg6ugcrpg3jisU5sRPfUPb+r9A/W5ISYXJF8Pcd8LMyyGY53eVIr5QgAtTgBOBqiNtPLL+IH9bc4BXd9X2hrm3zR3LsrljdZhVhl93N+xbARsfgA0P9AltF3mjR2deAVmFflcp4jsFuDAFOJFjVTW28ei6g/xt7QFe3VlLt4OywiyWhcPcwtJ8UlIU5mQIdHVC5Uuw8UHv7AiN+yElzevLptAm0i8FuDAFOJETO9zUzhMbDvH3dQd5afthQl2OMbkZvGX2GC6bPZazJheRnqqpSSQKoVbY/jRsegg2/x1aayE16J3OatZVMP2tkJnvd5UiMUsBLkwBTiQyDa0hntp0iMfWH+KZzdW0hroYlZHKxTNHc9mcMVwwvYTcoEYASj+aa2DrY15o2/4UhFogI88LazOv8AYkpGf7XaVIXFCAC1OAE4leW6iLF7Ye5rENB3liYxW1zR2kBYyzJhexdNYYLp01mtICjQxMaoe3weaHvVa2Pa+A64ZR47zANvNKqDhPU36IDIACXJgCnMjgdHU7VlXW8cSGQzy+8RA7qpsBmDl2FEtnjeGSWaNZUJpPQP3mEltXCCpf8c6EsOVR79yjAGPmwYy3eSNHxy3U5Loig6QAF6YAJzK0tlc38cSGQzy5qYqVu+vo6nYUZadz0YzRXDJzNOdNKyYvUy0vCaH5MGx7wgts256E9gYIpHuta9OXecEtv8zvKkUSigJcmAKcyPCpb+ng2S3VPLWpimc2V9PQGiKQYiwpL+DimaO5eMZopo/J0RQl8aK7Gw687p13dOtjsG8l4CB7NEy/zAttky+CDM0hKDJcFODCFOBERkZnVzer99Tz9KYqnt5czcYDRwAYnxfkwhklXDi9hHOmFmsgRKxproEdT3stbduehOYqwLxzjU67zBuAMG4hpGg0sshIUIALU4AT8cfBhjae3lzFs5ureXHbYRrbOwmkGIvLCrhwRgkXTCthzvhczTk30ro6vQl1tz/lhbZ9qwAHmYUw5RIvtE29FLKL/a5UJCkpwIUpwIn4L9TVzerKep7dUsWzW6pZt89rnSvMTue8qcWcP62YC6aXMCY36HOlCapuN2x/0mth2/kctB8BS4EJS7z52aYuhfELISXgd6UiSU8BLkwBTiT2VDe288K2ap7fcpjnth7mcFM7ANPH5HBuONCdOamI7IxUnyuNU631XlDb8bQ3qW7dTu/23FKYeglMuRQmXaCzIIjEIAW4MAU4kdjW3e3YdLCR57Z6h1pf3VlLe2c3aQFjUVkB504p5typRSyYmE9aQP2w+hVqgz3LYeezsONZ2L/Km5ctPccbMTr5Ii+0FU/TNB8iMU4BLkwBTiS+tIW6WLm7jue3HuaFbdWs338E5yA7PcCZk4s4Z0oR50wpZubYUcnbf66rEw6+4YW1nc9687N1toEFvMEHUy6GyRdD6RJNpisSZ4YiwOnYhYiMuGBagHOnFnPu1GJgJvUtHby8vYYXtx/mpW01PLWpCoCCrDTOCge6s6cUM6UkO3GnK+nuhqr13mHRnc/D7he9fmwAo+fAkltg0oVQfg4Ec/2tVUR8pxY4EYk5BxpaeXl7DS9tr+Hl7TXsq28FoGRUBmdNLuKsyYWcNbmIycVxHOi6u6FqA+x6AXaFA1trnXdf4RSv/9qk86HifMgZ7W+tIjKkdAg1TAFOJHE556isbeGl7TW8ssO7HDriDYgoGZXBmZMKOXNyEWdOKmTa6BieULi7Cw6tg10vemGtb2DLL/eCWsV5XnDLm+BvrSIyrHQIVUQSnplRXpRNeVE2N5xRhnOOXTUtvLLDa51bvrOGh9YcALwpS86oKOSMSd5l1rhc/87f2hWC/a9D5UteaKt8xTtNFXiBbcbl4dB2rk5VJSJRU4ATkbhiZkwqzmZS8dFAV1nbwvKdtSzfUcvynTU8sv4gAKMyUjmtvIAzJhVyekUh80vzCKYN0zxoHc2w9zXY/bIX2va8Bp3eoV+KpsKca7wWtvJzIK90eGoQkaShQ6giknD217fy2q5aXt3pXbZWNQGQHkhhfmkeSyoKOb2igMXlBeRnpQ/sSZqqvFa1yleg8mU48Aa4LsBg7DwvqJWd7V2rD5uI9KE+cGEKcCJyMrXNHazcXcdru2p5bVct6/Y1EOryvvumjc5hSUUBi8sLWVxeQEVR1pv70XV3w+HNXljb8yrseQVqd3j3pQa9aT3KzvIC28QzIJg3wq9QROKJAlyYApyIRKO1o4s39tazYlctK3bXsWp3HUfaOgEoyk7n7IlBLsvfy2m2hXFH1hDY9xq0hfuvZRXDxDOh7EwvsI1bAKkZPr4aEYk3GsQgIjIAmemB8HQkReAc3Ye3c2jj8zRue5msqpWM27WDAN0AbHUT2JV5Ji3lS8iZdh4zZi9kQkE/rXQiIiNIAU5EkktbA+xbCXtXeoMO9r5GSmst44Bx6aOgdDFMfCdHihexqmsqyw96Z41Yu6OB1s318NAzlIzK4LSyfBZOLGBRWT7zS/PIStfXqYiMHH3jiEji6gp5k+X2DWyHtwDhriPFM2Dm5VB6BpSeDiUzIMUbpZoLXBS+AIS6utl8sJHVlXWsqqxnVWUdj64/BECKwYyxuSycmM+iifksmJjP1NE5/k1hIiIJT33gRCQxOAd1O2HfqvBlhTcytLPNuz+ryAtpE5Z45w+dcNqgBxvUNnfwxp56Vu+pZ3VlHW/sqe/tS5edHmBeaR4LJuazsNQLdePygjr0KiIaxNBDAU4kCTUehP2rw2FtJexfdfTMBqlBGLfQGx1auti7zi+HYQ5P3d2OnTXNvLGnnjf21PP6nno2HDjSO+K1OCeDhRPzmF/qHXadX5pPYfYApzERkbilQQwikhyaD3tnNdi/+uilcb93n6XA6Nkw6+0w/jSvZW30bAikjXiZKSnGlJIcppTkcO1p3mS97Z1dbDzQyJq9XqBbs7eBJzdV0fO/c2lBJvNL85g3wQt1cyfkkZc58rWLSHxRC5yIxJbmw3Dg9aOB7cAb0LDn6P1F02D8Ii+ojV/kTZqbnu1XtQNypC3E+n1HWLO3njX7Gli7t4HK2pbe+8uLspg3Ia/3MkehTiSh6BBqmAKcSJxqPOQFtAOve9f7X4cje4/eXzjZC2njFsL4hd6cawk6SW5dcwfr9jewZm8D6/Z51/vqW3vvLyvMCoe5XO96fJ4Ov4rEKR1CFZH44BzU74YDa7ygdjB83XTo6DJFU72zGYxbcPSSme9bySOtIDud86eVcP60kt7baps7WLvPC3Tr9jWwZl89f1t7oPf+8XlB5kzIY+74POaMz2XOhFzG5mqghEgyUIATkaHVFfKm6jiwxgtqB9d61z1nMrAAlMyEKZd4IW3sfO8waDDX37pjUGF2OhdOL+HC6UdDXX1LB+v3H2H9/gbW7fOun9h4qLdPXWF2OnPG5zJ7XC6zx+cyZ3wek4qzNaWJSILRIVQRGbi2Bji4Dg6tOxrWqjZCV4d3f2oQxszxQtq4+TB2AYyZDWmZ/tadYJrbO9l44EhvsFu//whbDjX2jn4NpqUwc6wX6GaPy2XWuFxmjh1Fdob+hxfxg/rAhSnAiQyz7m6o39UnrK2DQ2uhvvLoMllFR1vTxs6HsXO9AQcBhQQ/dHR2s7WqkY0HGtmw/wgbDjSwYf+R3nnqzKC8MIvZ43OZNTYc6saNYkJ+pg7Bigwz9YETkaHX1gCHNkDV+nBQW++dzaCjybvfUrz+ahOWwOIPwJh5XlgbNW7Y51mTyKWnpjBnvDfYgcXebc459ta1svHAETYeaOxttXt47cHex40KpoYD3Shmhlvqpo9Ra51IrFELnEiy6grB4a1eOKva4AW1QxugoU+rWjAfxsz1AtqYOd7PJTMhPcu3smXoNbV3svlgI5sOHmHjgSNsOtDIpoONNLUfba0rK8xi5thRzBibG74eRUWR+taJDIRa4ETk1JzzDnVWbewT1jZ4Aw26Q94yKalQPB0mngFLPugFtTFzIHe8WtWSQE5GKovLC1hcXtB7W3e3Y199K5sONrLpwBE2HfRa7B7fcIju8P/9GakpTBuTw4wxucwYm8OMsbnMGDOKMbkZOgwrMszUAieSKJzzpuWo2uhdqsPXVZugo/Hocrml3kCC0bO9kDZ6NhRPg9QM/2qXuNEW6mLroSY2HfQGSmw62Mjmg41UNbb3LpMbTGVG+NDr0UsORTl6j4mAWuBEkpNz0FwdDmmbvEvVJi+w9ZwLFLxBBaNnw8IbYfQs7+fRM+N+ItxQKMTevXtpa2vzu5QhEwwGKS0tJS0t9s+2EEwLMK80j3mlx76P6po72HKo8ZhQ9+Ab+3sHTQAU56QzbbQX5qb1CXb5WZqQWCRaaoETiVU9LWrVm48LapugtfbocsE8KJnlhbPRs70+aqNnQ07Jidcdx3bu3MmoUaMoKipKiMN0zjlqampobGxk0qRJfpczpJxzVDW2s/mgF+w2H2xka1UTWw810tzR1btccU6GF+pGe8Gu51pnmpBEpRY4kUTQ3e2d6/PwlqNh7fAW77pn8ls4GtRmvT0c0mZ6v48am1T91Nra2qioqEiI8AZgZhQVFVFdXe13KUPOzBiTG2RMbpAL+kxG7Jxjf0MbWw41svVQI1sPNbG1qok/rdrXO3ACvEmJp47OYepoL9x51+pjJwIKcCIjp7MDanfA4c3hgLYl/PNWCB09kTnZJVA8A+a+ywtqJdO9oJYzOqmC2skk2h/vRHs9p2JmTMjPZEJ+JhfPGN17u3OOg0fa2HKoiW1VTWyr8sLd39YcoKE11LtcTkYqU0bnMLUkpzfgTSnJpqwwi9RAih8vSWTEKcCJDLXWOi+UHd4SvoR/rt0J7uhhI3JLoWQGLD7XGwFaMsMLbtlF/tUu4iMzY1xeJuPyMo85fZhzjuqmdrZVNbG9Khzuqpt4fms1f1q1t3e5tIBRUZTNlJIcpowOX5fkMLkkm1HB2O9fKBINBTiRgejq9E7Ofngr1PSEtW3ez819DoUF0qFwstcnbc47vKBWPN2bCDcjx7/6ReKImTF6VJDRo4KcM6X4mPuOtIXYUd3shbtqL9xtqWrkiY2H6Ow+2sd7TG4Gk4u9MNcT6qaU5DA+P1Nz2UlcUoATORHnoKWmT0jbCjXbvZ9rdx6dQw0gq9ibimP6sqMhrXga5JfrVFIJ6mc/+xmrV6/m+9//PsuWLeOpp54iEAhwyy238NBDDzF69GjWrVvXu3xHRwdLly7lqaeeIjVV74mhkhtMY+HEfBZOzD/m9lBXN7trWthe7QW77VXN7Djc9KaRsempKUwqymZySTaTirOZHA53k4uzNTpWYpq+RUQ6msPBbFuf663edd9BBD2tacXTYeYVXitaT2taVqF/9Ysv1qxZw7x587jrrru49tprCQQCAHzgAx/gtttu4+abbz5m+fT0dC699FLuu+8+brrpJj9KTippgZTe/nF9Oeeoae5gR3Uz26ub2FHdxM7DzWw+2MhjGw7R1afVrjA73Qt1xdlMCoe6ScU5lBdlEUwLjPRLEjmGApwkh852r9Wstk9Qq93hXTfuP3bZ3AleKJv7Lq8VrWgqFE3xWtNS9KUtnrVr13L99dfz2c9+lnvuuaf39gsuuIBdu3b1+5hrrrmGz3/+8wpwPjIzinMyKM7J4IxJx/7jFerqprK2hZ3Vzew87LXY7ahu5pkt1fxh5d4+64DxeZlMKs6mojiLinALXkVRNhMLs0jTQAoZAQpwkjg626FutxfMareHQ9p2qNnhTdNBnzkPs4qgcApMvjAc0MKXwsk6z2cc+cqD69mw/8iQrnP2+Fy+/PY5p1xu3bp1zJgxgx07dlBRURHRuufOnctrr702yApluKQFUnoHPhyvsS3E7poWdhxuDge8JnbWtPDA68cekg2kGKUFmVQUZVNRlEVFcTYVxdlMKspmQkGmwp0MGQU4iS+hVqjbFQ5px10a9oLrPrpsMM8LaWVnQuGNXita0RTvtsx8v16BJIA9e/aQk5NDZ2cn+fn5ET8uEAiQnp5OY2Mjo0aNGr4CZciNCqYxd0IecyccewYK5xx1LSF2HvZa7XYdbmZXjXdZubvumHntjg935UVeC155UTalBZlkpKqFXyKnACexp63BO9xZtzMcznYe/f3IvmOXDeZ7oWzimbDgRq8FrXCyd5v6pSW8SFrKhkNP/7fMzMyoT+nV3t5OMBgcpspkpJkZhdnpFGans7i84Jj7nHMcbupgd40X7nbXtLCrxrtetbuOxj7hruewbEVxFmWFPQHPC3dlhVlkZ+jPtRxL7wgZed3d0HQwHMp2hYPazqPXfU8TBZAzBgomwaQLvNazwknepWCSQpr4Yu3atcyfP5+CggK6urpoa2uLKJTV1NRQUlISF+c8lcEzM0pGZVAyKoMlFcd+V/W03HmBrpldh1vYXdPM7toWHl1/kNrmjmOWL85Jp6zwaKArDwe8ssJsinPSk24yaFGAk+HS0QL1leGAtssLZ70/74LOPq0WlgJ5pV7L2eyrj4azwslQUKH50iTmrF27liuuuAKAyy67jBdeeIGlS5cCcMMNN/DMM89w+PBhSktL+cpXvsKHPvQhAJ5++mkuv/xy3+qW2NG35e60soI33X+kLURlnxa7ypoWdtc2s3xHDX95fR99T2OelR6grDDr6KUoi4nhn3VoNnEpwMnAdHdB4wFv0EDdLm9S296AtttrYesrPccLZUVTYerScEir8G7Lmwipmm9J4sfdd9/d+/Ntt93G9773vd4A97vf/e6Ej7vnnnv4xje+Mez1SfzLPUGfO4C2UBf76lu9UFfTTGVtK5W1Xr+757ZW0xY62hfYDMbmBplYmMXEgp6Al8nEAi/kleRkkKKJjOOSApz0zznvlFDHhLPd4Z93e61rfSeyxbxWtIIKmLYU8iugoDzckjbJG/WpJn5JQIsWLeLiiy+mq6urdy64/nR0dHDNNdcwY8aMEaxOElEwLXDC0bLOOaob26msbWF3TQt76lqorG1hT20LL247zJ+OHNtnMyM1hdKCzN4WOy/YZVIaDnh5mTrcH6vM9W2HjVNLlixxK1as8LuM+NPWcDSM1Vd64ay+8uhtHY3HLp9Z6IWy/PJwOKsI/1yhVjQZMRs3bmTWrFl+lzHkEvV1SWxpC3Wxt66VPXUt7K3tCXfe73tqW46ZEgUgN5gaDnNeq11P2CsN/6zBFQNjZiudc0sGsw5t+UTWWu/Nf9Yb0I4Lan3PMgDeYc6ecDbp/KM/55dDfhkEc315GSIiMjSCaYF+z1DRo6E1xJ7aFvbWHRvstlc38+yWYw/PAhRkpfWGOe+S1Xs9oSCTHAW8YaMtG696ztNZX9knpO059uf24wJaWlY4jE2EiWd5oaz3Uu6N6NRhThGRpJWXmUbeCfre9UyLsreuhb11reFLC3vqWtlyqJGnNlXR3nlswMvPSmNCvhfuJuR74W5CQWbvbXmZaRpBO0AKcLGqq9MbCNCw1wtj9bvD4Swc0hr2Qqjl2Mek5xwNZGVnh3+eGA5tCmgiIjJwfadFWdTPyNm+AW9PXSv7wgFvX33rCVvwcjJSGZ8fDAe6rN5w13OtQRYnFpMBzsyWAT8EAsCdzrlv+lzS0Gtv8kJYw15oqDz6c304nB3ZB67r2MdkFXkDBYqneyM58yYeDWl5EyGzQAFNRER8EUnAq23uYF99T7hrZV/90etVlfU0tIaOeUxawBiXlxkOeVlMyA8yPhzwxudnMj4vk8z05JwmJeYCnJkFgB8DbwH2Aq+Z2QPOuQ3+VhaFrk5vio0j+8LBLBzKGvr83lZ/7GNSUiF3POSWQvnZXiDLKz0azvJKIT3bl5cjIiIyWGZGUU4GRTkZzC/N73eZxrYQ++vb2F/fyt76VvaHw96++lZe3n6Yg0fa6D5u7GVhdjrj84OMzwuHunDI6wl4JaMyCCRgK17MBTjgDGCbc24HgJndC1wNxEaAcw6aD8ORcCA7si8c0PYdDWyNB449Jyd45+XsCWJlZ3rXeX3C2aixkJKc/0WIiIiAd87ZGWPTmDG2/3MFh7q6OXSkrTfk7esJefWt7Kpp5sVth2nuOPboVWqKMSbXO0w7Lj/Y26I3Ps/7fXxeJvlZ8dcXLxYD3ARgT5/f9wJn+lSLZ8MD8Ood4UOb+6Gr/dj7AxmQNwFyJ3ine8or9S654eu8CZChE1eLiIgMRlogJTzSNavf+51zHGnr5ECDF+x6gt7++lb2N7SxqrKOgw0HCHUd24wXTEthXF4m4/KC3HbJVM6ZUjwSL2dQYjHA9ReB3zRZnZndCtwKUFZWNrwVdXdCVwgmnAazrgwHs3Bgy5sI2cXqeyaSZH72s5+xevVqvv/977Ns2TKeeuopAoEAjzzyCJ/4xCfo6uriwx/+MJ/73OcAbyLfpUuX8tRTT5GaGotfvSLxz8y8kbSZacwc2//UV93djsNN7eyrb+VgQxv7G9o4UN/KgYY29je0jnDFAxeL3yJ7gYl9fi8F9h+/kHPuDuAO8CbyHdaK5l7rXUREwtasWcO8efO46667uPbaawkEAnR1dfHxj3+cxx9/nNLSUk4//XSuuuoqZs+eTXp6Opdeein33XcfN910k9/liyStlBRjdG6Q0blBv0sZlBS/C+jHa8A0M5tkZunA9cADPtckInKMtWvXMn/+fO6++26uvvpqAF599VWmTp3K5MmTSU9P5/rrr+evf/1r72OuueaaY86jKiIyUDHXAuec6zSz24BH8aYRucs5t97nskQkFv39c3Bw7dCuc+w8eNupZy5at24dM2bMYMeOHVRUVACwb98+Jk48egChtLSU5cuX9/4+d+5cXnvttaGtV0SSUswFOADn3MPAw37XISLSnz179pCTk0NnZyf5+fm9t/d3bum+I9sCgQDp6ek0NjYyapQGNonIwMVkgBMRiUgELWXDoaf/W2ZmJm1tbb23l5aWsmfP0UH0e/fuZfz48cc8tr29nWAwvvveiIj/YrEPnIhITOvp/1ZQUEBXV1dviDv99NPZunUrO3fupKOjg3vvvZerrrqq93E1NTWUlJSQlpbmV+kikiAU4EREorR27VrmzZsHwGWXXcYLL7wAQGpqKrfffjtvfetbmTVrFtdddx1z5szpfdzTTz/N5Zdf7kvNIpJYdAhVRCRKfUeS3nbbbXzve99j6dKlAFx++eUnDGn33HMP3/jGN0akRhFJbGqBExEZhEWLFnHxxRfT1dV10uU6Ojq45pprmDFjxghVJiKJTC1wIiKDdMstt5xymfT0dG6++eYRqEZEkoFa4ERERETijAKciIiISJxRgBORuNPfhLnxLNFej4gMPwU4EYkrwWCQmpqahAk9zjlqamo0ua+IREWDGEQkrpSWlrJ3716qq6v9LmXIBINBSktL/S5DROKIApyIxJW0tDQmTZrkdxkiIr7SIVQRERGROKMAJyIiIhJnFOBERERE4owlwkguM6sGdg/z0xQDh4f5OSQ62iexSfslNmm/xB7tk9g0Evul3DlXMpgVJESAGwlmtsI5t8TvOuQo7ZPYpP0Sm7RfYo/2SWyKl/2iQ6giIiIicUYBTkRERCTOKMBF7g6/C5A30T6JTdovsUn7JfZon8SmuNgv6gMnIiIiEmfUAiciIiISZxTg+jCzZWa22cy2mdnn+rnfzOxH4fvXmNlpftSZbCLYLzeF98caM3vJzBb4UWeyOdV+6bPc6WbWZWbvGsn6klEk+8TMLjKz181svZk9O9I1JqMIvsPyzOxBM3sjvF8+6EedycTM7jKzKjNbd4L7Y/7vvQJcmJkFgB8DbwNmAzeY2ezjFnsbMC18uRX46YgWmYQi3C87gQudc/OBrxIn/RfiWYT7pWe5bwGPjmyFySeSfWJm+cBPgKucc3OAd490nckmws/Kx4ENzrkFwEXAd80sfUQLTT6/Apad5P6Y/3uvAHfUGcA259wO51wHcC9w9XHLXA38xnleAfLNbNxIF5pkTrlfnHMvOefqwr++ApSOcI3JKJLPC8A/AX8CqkayuCQVyT65EbjfOVcJ4JzTfhl+kewXB4wyMwNygFqgc2TLTC7OuefwtvOJxPzfewW4oyYAe/r8vjd8W7TLyNCKdpt/CPj7sFYkEMF+MbMJwDuA/x3BupJZJJ+V6UCBmT1jZivN7OYRqy55RbJfbgdmAfuBtcAnnHPdI1OenEDM/71P9buAGGL93Hb8EN1IlpGhFfE2N7OL8QLcecNakUBk++UHwGedc11ew4IMs0j2SSqwGLgUyAReNrNXnHNbhru4JBbJfnkr8DpwCTAFeNzMnnfOHRnm2uTEYv7vvQLcUXuBiX1+L8X7byjaZWRoRbTNzWw+cCfwNudczQjVlswi2S9LgHvD4a0YuNzMOp1zfxmRCpNPpN9hh51zzUCzmT0HLAAU4IZPJPvlg8A3nTev1zYz2wnMBF4dmRKlHzH/916HUI96DZhmZpPCnUevBx44bpkHgJvDo1POAhqccwdGutAkc8r9YmZlwP3A+9SSMGJOuV+cc5OccxXOuQrgj8A/KrwNq0i+w/4KnG9mqWaWBZwJbBzhOpNNJPulEq9VFDMbA8wAdoxolXK8mP97rxa4MOdcp5ndhjdaLgDc5Zxbb2YfDd//v8DDwOXANqAF778mGUYR7pcvAUXAT8KtPZ3xcCLieBbhfpERFMk+cc5tNLNHgDVAN3Cnc67faRRkaET4Wfkq8CszW4t36O6zzrnDvhWdBMzsd3gjfovNbC/wZSAN4ufvvc7EICIiIhJndAhVREREJM4owImIiIjEGQU4ERERkTijACciIiISZxTgREREROKMApyIiIhInFGAExEREYkzCnAiIn2YWbGZOTP7lJm9ZmZtZrbFzC7zuzYRkR4KcCIix1oUvr4N+BwwH+/MBfeYWaZvVYmI9KEAJyJyrIVAF3C5c+7J8Pl1P4t3uraZfhYmItJDAU5E5FgLgQedc5v73NbhUy0iIv1SgBMROdZCYPVxt50OtAGb37S0iIgPFOBERMLMLAjM4M3fjZ8E7nXOtYx4USIi/Uj1uwARkRgyL3x9g5k9CVQB/w5MBa7zrSoRkeOoBU5E5KiFwFbgy8Dv8A6ljgJOd84d9LEuEZFjmHPO7xpERGKCmf0YKHHOqbVNRGKaWuBERI5aiDfnm4hITFOAExEBzMzw+sApwIlIzNMhVBEREZE4oxY4ERERkTijACciIiISZxTgREREROKMApyIiIhInFGAExEREYkzCnAiIiIicUYBTkRERCTOKMCJiIiIxJn/D3oWOEFyigr9AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "from scipy import stats\n", - "\n", - "fig=plt.figure(figsize=(10, 8))\n", - "\n", - "plt.title('Información de Shannon en la distribución de Bernoulli de acuerdo al parámetro $p$',fontsize=14)\n", - "p=np.linspace(1e-3,1-1e-3,100)\n", - "I_1=-np.log2(p)\n", - "I_0=-np.log2(1-p)\n", - "plt.plot(p,I_1,label=r\"$I(1)$\")\n", - "plt.plot(p,I_0,label=r\"$I(0)$\")\n", - "plt.xlabel(\"$p$\", fontsize = 14)\n", - "plt.ylabel(\"$I(p) = -\\log \\ p$\", fontsize = 14)\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Entropía" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Aunque el contenido de información proporciona información interesante sobre eventos específicos $ x $, en algunos casos nos gustaría conocer el contenido de información de una distribución de probabilidad. En este asunto, lo más razonable sería estimar la información esperada. Esta estimación se conoce como entropía." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Entropía de Shannon" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Supongamos que $X$ es una variable aleatoria discreta. Le entropía (de Shannon) de la variable aleatoria $X$, o lo que es lo mismo, la entropía de la distribución asociada a $X$ se define por:\n", - "\n", - "$$H(X)=\\sum_{x\\in \\Omega} P(X=x)I(x)=-\\sum_{x\\in \\Omega}P(X=x)\\log{P(X=x)} = -\\sum_{i} p_i\\log p_i.$$\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Notas" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. En ocasiones, la entropía de Shannon para una variable aleatoria $ X $ con probabilidades $ p_1, \\ldots, p_M $ se denota $ H (p_1, \\ldots, p_M) $. Por ejemplo, la entropía de una distribución de Bernoulli a veces se denota $H(p,q)= H(p,1-p)$.\n", - "2. Algunos autores llaman a $H(X)$ como *incertidumbre*.\n", - "3. $H(X)$ Es una esperanza. La entropía es solo la **sorpresa media** de la variable aleatoria $H(X)$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Racional " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Para comprender el significado de $ - \\sum_i p_i \\log p_i $, primero defina una función de información $ I $ en términos de un evento $ i $ con probabilidad $ p_i $. La cantidad de información adquirida debido a la observación del evento $ i $ se deduce de la solución de Shannon de las propiedades fundamentales de la información:\n", - "\n", - "\n", - "1. $I(p)$ disminuye monotónicamente en $ p $: un aumento en la probabilidad de un evento disminuye la información de un evento observado, y viceversa.\n", - "2. $I(p)\\ge 0$ : la información es una cantidad no negativa.\n", - "3. $I(1) = 0$ : los eventos que siempre ocurren no comunican información.\n", - "4. $I(p_1 p_2) = I(p_1) + I(p_2)$ : La información debida a eventos independientes es aditiva.\n", - "\n", - "\n", - "La última es una propiedad crucial. Establece que la probabilidad conjunta de fuentes de información independientes comunica tanta información como los dos eventos individuales por separado.\n", - "\n", - "- $\\leadsto$ La entropía proporciona una medida sobre la información promedio de una distribución. Por ejemplo, en el caso de Bernoulli, la entropía máxima se logra cuando el parámetro es 0.5, es decir, cuando todos los eventos son igualmente probables.\n", - "\n", - "Hay una interpretación importante de la entropía que está relacionada con el número promedio de \"contenedores\" o shannons (relacionados con la base del logaritmo, en este caso 2) necesarios para representar la información de $ X $. En el caso de Bernoulli, requerimos 1 bit para representar los datos." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Dos desigualdades de la Teoría de la Información" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Se puede comprobar que si $0\\le p \\le 1$, entonces $-p\\log p\\ge 0$.\n", - "\n", - "-$\\leadsto$ Esto implica que la entropía de Shannon es siempre positiva.\n", - "\n", - "Adicionalmente, si $p_1,\\ldots,p_M$ y $q_1,\\ldots,q_M$ números positivos arbitrarios tales que $\\sum_i p_1 =1$, y $\\sum_i q_i=1$. Entonces,\n", - "\n", - "$$\n", - "-\\sum_{i=1}^M pi\\log p_i \\le -\\sum_{i=1}^M pi\\log q_i,\n", - "$$\n", - "la igualdad se tiene si y solo si $p_i=q_i$ para todo $i$*." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Teorema" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$\n", - "H(p_1,\\ldots,p_M) \\le log(M),\n", - "$$ \n", - "\n", - "*la igualdad se tiene si y solo si para todo $p_i$, se tiene que* $p_i = 1/M$.\n", - "\n", - "Este teorema nos ayuda a entender la entropía de la siguiente manera.\n", - "\n", - "1. Entre las distribuciones discretas con $ M $ posibles resultados, la distribución uniforme $ U \\{x_1, \\ldots, x_m \\} $ tiene la mayor entropía. Esto se debe a que los resultados de la variable tienen la misma información que contienen (sorpresa).\n", - "2. En general, la entropía es mayor para variables aleatorias discretas con mayor número de valores posibles. En particular, la entropía de la distribución uniforme ($ \\log M $) es una función creciente de $ M $." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ejemplo: Entropía de las distribuciones de la familia Bernoulli" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Supongamos que $X\\sim Bernoulli(p)$, por lo tanto: $x \\in \\{0,1\\}$, Podemos observar el comportamiento de la entropía al variar el parámetro de distribución en la siguiente gráfica" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAH2CAYAAAAmt2ueAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABaOUlEQVR4nO3dd3yV9f3+8dc7OyEhYQQIEFaAMGQvQQXFUbfWPWqto9ZW21p//bZ2WLu3rW3VqnW2Wme17oEDB6AyZEMghBFGJglkkHk+vz/OwcYYIJDk3Gdcz8eDh56T+9znyrlPTq7cn/v+3OacQ0RERETCQ4zXAURERESk/VTeRERERMKIypuIiIhIGFF5ExEREQkjKm8iIiIiYUTlTURERCSMqLyJAGbW18xuM7NMr7OIiIgcjMqbRD0ziwOeBJqcc6WduN47zWx+B9fxUzNb3UmR2vucvc3MmdnxgdtDArendsFzfeb7M7OHzeylzn6eNp7XmdkFXf08nc3MpgayD+nAOjple5rZKDNbZGZ1ZralI+tqx3PNN7M723s7mrXxM3XQ2xKeVN6k0wR+8bo2/n14GOvosqJwEH8AVjnnfhXE5wwnhUAWsLw9C5vZFjP7bjvX/UdgzhHm6ogs4EUPnjeS/BKoBUYB07r4uc4DftCBrx9SG59fZWb2kpmN6sh6Q5BXP3PSieK8DiAR503gilb3NXT2k5hZgnOuU9brnPtOZ6wnUjnnmoGizlynmcUA5pyrBqo7c93t4Zzr1O8nSg0HnnfObenqJ3LO7e7I1w9Dy8+v/vj/sHsOGH2kKwzs2W92IXI5I69+5qRzac+bdLZ651xRq3+ffrAG/qK9zsyeNrMaMyswsy+1ePzmwH8XB5adH3jcw4G/gr9vZtuB7YH7x5nZm2a2z8x2B5ZLb/F8+x/3YzMrNrNqM3vIzJJbL9Pi9qlm9r6ZVQTW+bqZHfTD28xizeyPgcdUmNkdQGyrZczMvmdmmwJ5V7X63g/JzKaZ2RuBvQJ7zewDM5vZapmvmdmGwHBWaSD/Af9QC6xzaWD5T4AZrb7+mb2hZhZvZn81s51mVm9mhWb228DX5gODgT/s34MRuP8rgdf+9MCQTQMw+kBDOIfYXp8bImtjG5qZ/T8z2xjIuN3MftPi658ZNj2M99G3zWxHYBs/ZGYprZ7zoNvXzH5iZlsDmYrM7J8H2i6B5U81s/WBbfM+MLKNZWaZ2btmVhvI9ncz636w9bZ6fKyZPWBmmwO5Nwa+jwP+fghs1wnATwKv5U8D9//WzPIC69liZr83s6QWj/upma02sysDX9+/fRPM7BuB91K5mf2p5fO3tc1b5Wk9jPolM1tsZlVmVmL+z5sB7Xg5Wn5+LQP+DIxq9f4bYGZP2P9+1l82sxFtfI9fMbNNQD3QzQ792dfu92GrxxzWMOjhLi+hSeVNvPAT4Hn8H/5PAg+a2eDA16YH/nsq/qGt81o8bg4wPvC1EwO/OF/D/1fkdOCLwCzgwVbPNyfwXCcC5wOnAL87SL5uwB2BdR4P7AFeNLOEgzzm/wFfBb4GzMRf3C5vtcwvgWuAG4AxwG+Ae83sjIOst7U04F/AcYF8y4FXzKw3+I+JAu4CfgbkAifhf43aZGbdgJeBAmAqcAv+YZWD+Rb+1/oSYARwMZAX+Np5+Iv1z/Fvv6wWj0sCfoz/NRoDbD3A+g93e7Xl18Ct+F/jscCF+Id/P+cw3kfHAUfhf00vDiz37RZfP+j2NbPzge8C38D/up0JfHygb8DMsoH/AvOAicDfgN+3WmYc8AbwAv7X7LzAsq2zH0wMsAO4CP8eph8BPwSuOshjsvBv89sD/7//PVMDXB1Yzzfwv0d+1OqxQ4Bz8H//5+PfNs/jH3o9BbgW+Cb+1/dIJQC34X9NzgR6A48fzgrMLA3/dl7lnNsXuC8FeAeow/8+nQnsAt5sWeSBocBl+L+3CYHl4SCffYfxPhQB55z+6V+n/AMeBprwf/i0/Pe7Fss44DctbsfhP27mS4HbQwLLTG1j3aVAYov7voq/WKW1uO/4wOOHt3hcJZDaYpkvEfhruMUyLx3k++oGNAPHHmSZncCPWtyOATYA81usYx9wXKvH3QG8cpD1/hRYfZCvG/5fHvtfv/NavyaH2GbXHeD1ccDxbW0T4K/AW/iHPdta5xbgu63u+0pgHVMO9v21c3vNB+5s4/3xUuD/U/H/srz+IN+3Ay44zPdRIRDXYpl/AG+2d/sCN+MvPPHt3Da/DryHrMV9Pw7kGhK4/U/ggVaPmxhYps8B1vuZ7XmAZX67/3s7yDKrgZ8eYpnrgfxW23sfkN7ivmfw/2wntLjvM9v4cG+3kWNU4HseeJBlHuazn18O2AYc1WKZq4GNrbZJLFAOXNTie2wE+rbxnjvYZ19734cvtVrvT/nsz9Bh3da/8PynY96ks72HvxC0VNnq9sr9/+OcazKzUqBPO9a92jlX3+L2aGClc66qxX0LAR/+PR/5+5/P+Y/z2G8R/r/Mc1pm2c/McoBf4B8+zMRfxGKAQW2FCgxrZAXWu//78pnZR0B24K4x+Pc8vRYYctovHn/ZaRcz6xPIdgLQF/8vjuQW2ebh36O12cxex79X5tlWr1FL+1/D1q/PwTwceJ4NZvYG8ArwqnPOd4jHNdG+kx4Oa3u1YQyQiL9gtkd730drnXNNLZbZyf+GmNuzfZ/Gv6du/7Z5DXih1Xu6da4PXeA3bkDrbTMFGG5mF7e4zwL/zQFKDrDuzzCz6/Hv8RqM//0Uz4H3jB5sPRcAN+E/Hi4V//szttVi25xze1rcLgY2uM8ew1pM+z4TDpRjMv49bxOBnvzvNRlE4JCLA2j5+dUT/97DN8xshnOuEP/rPRSoMrOWj0vB/3rvt905V9zG+g/22dfe96GIypt0ulrn3KE+ZBpb3Xa0bwi/ptVtCzy2LR05OPhF/MNIXwv8twlYi79AHKn9399Z+P+ab6n163Ewj+Avbd/BXwrq8ZeUBADnXFXgF9ds4GT8Z+D92symOed2trE+a+O+g3LOLTP/VBWnAnMDmVaY2cmHKHD1zn/yQ0f5+Hzu+Bb/f7jfU3vfRwd73x5y+zrnCs0sF/9w8En4hxxvCxSD1u/t/bkOJQa4H/+xWa3taMfjCRS/O/AP6S4E9uIf+j2sYUszOxp4Av+Q/Xfw/9F2Np8fhm/rdWzrvtalr705ugGv87+TD0rwD5u+z6F/hj/z+WVmS/HvDbsO/zB8DP4/QC5p47EtT5poa3vCwd9D7XkfHuq9L1FC5U1Czf6/vtvzwb0WuNrM0lr8tToL/4fhuhbLjTOzbi1+QR4deJ5NrVdoZr3w/wV8g3PuncB9kznIz4pzbo+Z7Qqs9+3AYwz/cSu7WmStBwY7595ux/d2IMcC33LOvRx4nr589rgyAnuH3gbeNrPb8P/yOhO4r431rQWubOP1OajA6/008LSZPQx8iH9vywb8r+0R/eINONT2KqXV94z/GKItgf/f/1qfiH+I61Da+z461DoOuX2dc3X4jzF82fwneRQBx+DfQ9rWOs83M2ux9631tlkGjG3HH0wHcyzwkXOu5QH/OQdZ/kCOAXY4537RYj2DD7J8VxmFv6z90Dm3OZDjvIM/5IAc/sK0/3i2ZcClQJlzrrKDOVtrz/uwFP/exJZa35YooBMWpLMlmlm/Vv8O56oFJfiPifmC+a96kH6QZR/D/xfuPwNnac0G7sU/TNjyl1kc/gODx5rZyfiP5/nHAfZ2VABlwFfNbLiZzQHuwb/37WD+AnzPzC4I7F25gxYFI/Bh/Efgj2Z2dWDdE83sejNrPcx8MBuAL5nZGDObhn9Px6fDTWZ2pvnPiJwU+MV5Gf6THA5UQv4d+N5avj6tDzD/DDO72cwuNbPRZjY88Bx7+d9w1BbguMBZeb0P43vb71Db623gNDM728xyzexP/G94ev9r/RfgN2Z2lZnlmNl0M/v6AZ6vve+jA2rP9jX/2YfXBp5jKP4TAho5cMG8B//xaXcEvs8L8B9D1tLvgOlmdk9gmw8PvAfubU/ugA3AZDM7zcxGmNmtHNk8YBuAAWZ2uZkNC7zelx7BejpqG/4ifWMgxxn4DzVoj5afX6PxnySSyv/mBHwM/5Du82Y2x8yGmtlsM7vdWpxxeoTa8z58G5jU4j32PfylWaKMypt0tpPw721q+e+T9j44sNfoW/iPv9mJ/8ysAy1bC3wB6I7/rL3n8R8TdHWrRd8F1uA/S+w5/B+A3zvAOn34zzAbj/+A7LvwD5cc6Lik/W4HHsI/hPUR/p+tx1otcyv+g4W/G8gzD//ZdpsPse6Wrsb/y2Qp/uL2IJ89Zq4SOBf/kNH6wHNd65x7v62VBY4tOxP/2Y/L8BeQ7x8iQxXwf/hf82X4//I/LbA9wH9GXTb+PWVHcsWKQ22vB1v8W4D/4PLnWq3jB/iLza34i+t/gIFtPdlhvI8O5VDbtxL/2ajv439vnQ+ct3/vUBu5tuE/AeVUYAX+ochbWi2zEv8Q+RD8r9sK/Ge5tnW81YHcCzyFv8gvDqzr9sN4/P4sL+KfF+0O/Md2nYz/vRBUzn+VlCvx/xysxX/s283tfHjLz6+P8J8Be6Fzbn5g3bX4X+8C/Hue1+M/bKAH/j/8OpL7kO9D59zr+Ielf4X/M2AIcHdHnlfCk332WFiRyBIY0uvtnDvT6ywiIiKdQXveRERERMKIypuIiIhIGNGwqYiIiEgY0Z43ERERkTASMfO89e7d2w0ZMsTrGCIiIiKHtHTp0jLn3OFMpfWpiClvQ4YMYcmSJV7HEBERETkkMzvsS9Dtp2FTERERkTCi8iYiIiISRlTeRERERMKIypuIiIhIGFF5ExEREQkjKm8iIiIiYUTlTURERCSMqLyJiIiIhBGVNxEREZEwovImIiIiEkZU3kRERETCiMqbiIiISBhReRMREREJIypvIiIiImFE5U1EREQkjAS9vJnZg2ZWYmarD/B1M7O/mlm+ma00s8nBzigiIiISqrzY8/YwcOpBvn4aMCLw7zrg70HIJCIiIhIW4oL9hM6598xsyEEWOQf4p3POAR+aWYaZZTnndgUnoYhEq2afo7ahibpGX5tfj4sxkhNiSYyLwcyCnE5ExC/o5a0dBgCFLW5vD9yn8iYih6WusZntFbUU7t7Hrj11lFfXU1ZdT1lNA+XV9ZRXN1Bd30RtQzP7GpppaG67tLUWY5CSEEdyQizdEmLJSEmgd2oivVMT6JWaQK9uiWSmJZLdM4XsHsn07JagsicinSYUy1tbn3CuzQXNrsM/tMqgQYO6MpOIhCifz7Gjch95RVXkFVeRX1LN1vIaCiv2UVpV/7nluyfF0Ts1kV6pCQzL7EZaUjwpCbEkJ8SSEh9HSkIsSfEx0EbZamzysa+xmdqG/xW+moZmKmoa2F5Ry4rtleyuaaDZ99mPrJSEWLJ7pJDdM4WczG6M7JtGbr80hvdJJSk+tsteGxGJTKFY3rYD2S1uDwR2trWgc+4+4D6AqVOntlnwRCRy+HyOgrJqlm2rZHlhJet27WVDURU1Dc2fLtM/PYlBvVI4fmQmg3r6C1N2z2T6Z/j3gCXGdW1Z8vkce+saKdpbR+HufRTurqUwsPevcHct720o/XQPX4zBkF7dyO2XxviBGUwalMH4gemkJITiR7OIhIpQ/IR4AbjRzJ4AZgB7dLybSHTa19DMkq27Wbx5N58U+gtbVV0TAGlJcYzJ6s4FUwaS2687uf1SGdE3je5J8Z5mjokxMlISyEhJYFS/7p/7elOzjy3ltWwormJ9URUbiqpYu2svr64u8j/eILdfdyZmZzBlcA9m5fSif0ZysL8NEQlh5j8vIIhPaPY4cDzQGygGbgPiAZxz95j/wJA78Z+RWgtc5Zxbcqj1Tp061S1ZcsjFRCSENTb7WFFYycJN5SzIL+OTbZU0NPuIjTFy+6YxaVAGE7MzmDSoB8N6dyMmJnKOI9td08CKwko+Kazkk20VrCisZG+gqA7t3Y2ZOb04Jqc3Rw/rSa/URI/TikhHmdlS59zUI3pssMtbV1F5EwlPFTUNvJNXwpvrinlvQxnV9U2Ywdj+3ZmV05tZOb2YNqQn3RJDcaCg6/h8jrziKhZuKmdhfhkfbd5Ndb2/zE0YmM5Jo/ty0pi+jOqXppMhRMKQyhsqbyLhZFt5La+vKWLeumKWbNmNz0GftEROHN2H2SMyOXpYL3p0S/A6ZkhpavaxcsceFmws4631JSwvrARgQEYyJ4/py8lj+jJjaE/iYnXhHJFwoPKGyptIqCvZW8eLK3fxwoqdrAgUj1H90jh5TF9OGt2XcQPSI2oYtKuV7K3j7fX+PZbvbyyjvslH79QEzhiXxdkT+zN5UA/tkRMJYSpvqLyJhKK9dY28snIXzy/fyYeby3EOxmR155yJ/Tl9XBbZPVO8jhgR9jU08+6GEl5YsZO31pVQ3+RjQEYyZ03oz3mTBzCyb5rXEUWkFZU3VN5EQoVzjqVbK3hicSEvr9zFvsZmhvbuxlkT+nP2hP4M75PqdcSIVlXXyLy1xbywYifvbyyj2eeYNCiDS6cN4ozxWVF37KBIqFJ5Q+VNxGu7axp4dtl2nlxcyMaSarolxHL2xP5cPG0QEwamawjPA+XV9Tz3yQ6eWFxIfkk1qYlxnDWhP5dMy2a8tomIp1TeUHkT8cq6XXt5aMFm/rt8Jw1NPiZmZ3Dp9GzOHN9fe3lCRMu9oS+t3Eldo48J2RlcfcwQTh+XRbxOchAJOpU3VN5Egsnnc7y9voQHF2xm4aZykuJjOH/yQK6YObjNiWkldOyta+S5ZTt4ZOEWCspq6Nc9iStmDuay6YN0hq9IEKm8ofImEgx1jc08vXQ7D7xfwJbyWrLSk/jyzCFcOj2bjBT94g8nPp/j3Q2lPLhgM+9vLCMpPobzJg/k+tk5DOqlE0lEuprKGypvIl2ptqGJf3+0jfveK6Ckqp4J2Rlce+xQTj2qn4bcIkBeURUPLdjMs5/soNnnOGdCf75xQg7D++gsVZGuovKGyptIV9hb18i/Fm3lgQ82s7umgZnDevHNucOZmdNLB7tHoOK9dfzjvQIe+2gbdU3NnHZUP244YThj+6d7HU0k4qi8ofIm0plq6pt4aMFm7n2vgKq6Jk7IzeTGucOZMrin19EkCHbXNPDgB5t5ZOEWquqbOGl0X/7vC7nk9tOeOJHOovKGyptIZ6hvaubxj7Zx5zv5lFU3cNLoPtx00kiOGqA9L9Foz75GHlm4hX+8V0B1QxNfnDiA75w8UpMri3QClTdU3kQ6otnn+O8nO/jzmxvYXrGPGUN78r1TRzFlcA+vo0kIqKhp4J53N/Hwwi34nOPS6YO4ce5w+qQleR1NJGypvKHyJnKkPthYxi9eWktecRVj+3fne6eOYvaI3jqmTT6naE8df3lrI08tKSQhNobr5+Rw3exhJCfEeh1NJOyovKHyJnK4tpTV8MuX1/HmumIG9kjm+6eO4oxxWbo4vBzS5rIafv/ael5dXUT/9CRuOX00Z43PUuEXOQwqb6i8ibRXVV0jd76dz4MLNhMfG8MNJwznmmOHkhSvvSdyeD4sKOdnL65l3a69TB3cg9vOGsu4gTo+UqQ9VN5QeRM5FOcc/1m2g9++uo6y6gYumDKQ730hlz7dddySHLlmn+OpJYX88fU8dtc2cOGUgdxy2mh66moNIgfVkfKmCw+KRIH8kmp+/N9VfFiwm8mDMnjwK9MYPzDD61gSAWJjjEunD+KM8Vn+PbofbGbe2mJ+ePpoLpgyUEOpIl1Ae95EIlhdYzN3v5PP39/dRHJ8LLecNppLpmXruDbpMuuL9vKj51azdGsFM4b25FdfHMfwPqlexxIJORo2ReVNpLUF+WX8+L+r2VxWw7kT+/OjM8aQmZbodSyJAj6f48klhfzmlXXsa2zm+jk53HDCcB1XKdKChk1F5FNVdY386uV1PLG4kCG9Unj0mhkcO6K317EkisQEhlJPHtOXX728jr+9nc8rq3bxhwsnMHmQ5g4U6SjteROJIO9tKOWW/6ykaG8d183O4aaTRmhvh3iu5fvyq7OH8Z2TRup9KVGvI3veYjo7jIgEX1VdIz94diVffvBjkhNi+c/XZ3HLaaP0C1JCwuyRmbz+ndlcPC2be98t4My/fcDywkqvY4mELZU3kTC3IL+MU+94nycXF/K1OcN4+VvHMUlDUxJi0pLi+c1543nk6unU1Ddx3t0L+O2r66lvavY6mkjYUXkTCVMNTT5+/co6Lr//IxLjY3jm67P4wWmjtbdNQtqcwF64C6dkc8+7mzjv7oXkl1R7HUskrKi8iYShTaXVfPHuBdz3XgFfOnoQL3/zOB0ILmGje1I8v7tgPPddMYWdlfs482/v8/jH24iUY7BFuprONhUJI845nlhcyM9fXEtSfAz3XTGFU8b28zqWyBE5ZWw/JmRncPNTy/nBs6uYn1fCb88bTw9dnUHkoLTnTSRMVNY28PVHl/GDZ1cxZXAPXrtptoqbhL2+3ZP419Uz+OHpo3h7fQmn/eV9Fm4q8zqWSEhTeRMJAyu3V3LGXz/grfXF/PD0Ufzz6un01TVJJULExBjXzc7huW8cQ0pCLF+6/yPufHsjPp+GUUXaovImEsKcc/zrw61c8PdFADx9/Syum52jy1tJRDpqQDovfvNYzhzfnz++sYGrH1lMRU2D17FEQo7Km0iIqqlv4qYnl3Prf1cza3gvXvrmsUzMzvA6lkiX6pYYx18umcgvzj2KhfnlmhNOpA0qbyIhaGNxFefctYAXV+zku6eM5MErp+kgbokaZsYVRw/m6etnAnDhPQt5ZOEWnY0qEqDyJhJiXltdxDl3LaCytoF/XTODG+eO0DCpRKUJ2Rm8/K1jOW5EJre9sIabn1pBXaMm9RVReRMJET6f4443N3D9o0sZ0TeNl755HMcM1wXlJbplpCRw/5encvPJI3nukx1cfO8iivbUeR1LxFMqbyIhoKa+ia8/tpQ73tzIeZMH8OR1R9MvXWeTioD/bNRvnTiC+66YQn5JNWfd+QHLtlV4HUvEMypvIh7bVl7LeXcvZN7aYm49cwy3XzhBl7gSacMpY/vx7DeOITk+lkvu/ZCnlxR6HUnEEypvIh5atKmcs+/6gKK9dTxy9XSuOXYoZjq+TeRAcvul8cKNxzB9aE/+75mV/OzFNTRrPjiJMipvIh55Zul2rnjgI3qnJvL8Dcdw3IhMryOJhIWMlAQevmoaVx0zhIcWbOG6fy6hpr7J61giQaPyJhJkzjn+NG8D3316BTOG9eQ/X5/FkN7dvI4lElbiYmO47ayx/OKcsbyTV8LF9y2iZK9OZJDooPImEkT1Tc3c/NQK/vrWRi6cMpCHvjKd9OR4r2OJhK0rZg7h/iunUlBaw7l3LWB90V6vI4l0OZU3kSCprG3gigc+5rlPdvDdU0by+wvGkxCnH0GRjpo7qi9PfW0mzc5xwd8X8d6GUq8jiXQp/eYQCYLC3bWc9/eFLN9WyV8umciNc0foxASRTnTUgHT+e8MxDOyRzFUPL+apxToTVSKXyptIF8srquL8vy+krKqef10znXMmDvA6kkhEykpP5unrZzIrpxff+89K/j5/ky6pJRFJ5U2kCy3ZspsL71mIGTx9/SxmDOvldSSRiJaWFM8DV07j7An9+d1r6/n1K+vwaSoRiTBxXgcQiVRvry/mG48tIys9mX9ePZ3snileRxKJCglxMdxx8UR6dkvgH+9vprymgd+dP574WO2vkMig8ibSBZ77ZDvffXolY7K689BV0+idmuh1JJGoEhNj3HbWGHp1S+D2eRvYU9vInZdNJjlBVy+R8Kc/Q0Q62YMfbOY7T65gxtCePH7d0SpuIh4xM7554gh+ee5RvJ1XwhUPfMSefY1exxLpMJU3kU5059sb+flLazntqH48dNU0UhO1c1vEa186ejB3XTaZFdsrufz+D6moafA6kkiHqLyJdALnHLe/kccf39jAeZMG8LdLJ5EYp+EZkVBx+rgs7rtiKhuKq7n0Hx9SVl3vdSSRI6byJtJBzjl+8+p6/vZ2PpdMy+YPF04gTgdGi4ScE0b14aGvTGNLeQ0X37uIYl1OS8KUfsOIdIDP5/jpC2u4770CvjxzML/+4jhiYzT5rkioOmZ4b/559QyK9tRx0b2L2FG5z+tIIodN5U3kCPl8jh8+t4pHFm3lq8cN5WdnjyVGxU0k5E0f2pN/XTuD3TUNXHTPIraV13odSeSwqLyJHAGfz/H9/6zkicWFfHPucH54+mhd7kokjEwe1IPHv3o0NQ1NXHTvIraW13gdSaTdVN5EDpPP5/jRf1fx9NLtfPvEEfy/U3JV3ETC0FED0nn8q0dT19TMZf/4iMLd2gMn4UHlTeQwOOf4yQurefzjQm44IYebThrhdSQR6YDRWd159JoZVNU1ctn9H7JTx8BJGFB5E2kn5xw/f2ktj364ja/NHsZ3tcdNJCIcNSCdf10zg8qaRi79x4cU7dFZqBLaVN5E2mH/dCAPLdjC1ccM5ZbTRqm4iUSQCdkZPHLNdMqrG7jsHx9SomlEJISpvIkcgnOOP7ye9+l0ILeeqZMTRCLR5EE9ePiqaRTtreOy+z+itEoT+UpoUnkTOYS752/i7vmbuHT6IH561lgVN5EINnVITx78yjR2VOzjyw9+rGuhSkhSeRM5iEc/3MofXs/jnIn9+dW5R2keN5EocPSwXtxzxRTyS6q45uHF7Gto9jqSyGeovIkcwAsrdnLr86uZO6oPf7xwgoqbSBSZMzKTOy6exNJtFXz9saU0NPm8jiTyKZU3kTa8s76Em59czrQhPbn78snE61qlIlHnjPFZ/PqL45ifV8rNTy2n2ee8jiQCQJzXAURCzcebd/P1x5YyKiuN+6+cSlJ8rNeRRMQjl04fxN59jfzm1fWkJ8fzy3OP0nGv4jmVN5EW1uzcwzUPL6Z/RjKPXDWd7knxXkcSEY99bU4Olfsa+fv8TaQnx/O9U0d5HUminMqbSEDh7lqufHAxaUlx/OuaGfRKTfQ6koiEiO99IZfK2kbunr+JPmmJfOWYoV5Hkiim8iYCVNQ0cOVDH9PQ1MzjX53FgIxkryOJSAgxM3557lGUV9fzs5fW0i89iVOPyvI6lkQpHYUtUa+usZlr/7mE7bv3cf+V0xjRN83rSCISgmJjjL9eOolJ2Rl8+4nlLNmy2+tIEqVU3iSqNfscNz2xnGXbKvjzxROZPrSn15FEJIQlxcdy/5XT6J+RzLX/XMKm0mqvI0kUUnmTqOWc4xcvreW1NUX8+IwxnDFeQyAicmg9uyXwyFXTiYsxrnzwY0qqdB1UCS6VN4la97+/mYcXbuGaY4dyzbE6+FhE2m9QrxQeuHIa5dUNXP3wYmrqm7yOJFFE5U2i0ssrd/GrV9ZxxrgsfnT6aK/jiEgYmpCdwd2XT2bdripu+Pcympp1FQYJDpU3iTorCiu5+anlTBncg9sv0mWvROTInTCqDz8/Zyzz80r51SvrvI4jUUJThUhU2Vm5j2v/uYTMtETuu2KKrp4gIh12+YzBbCqp4cEFm8nJTOVLRw/2OpJEOO15k6hRU9/EtY8sYV9DMw9+ZZom4RWRTvOjM0ZzQm4mt72whg82lnkdRyKcJ+XNzE41szwzyzezW9r4erqZvWhmK8xsjZld5UVOiRw+n+OmJ5ezvmgvf7tsEiM1l5uIdKL9c8ANz0zl648tJb9EU4hI1wl6eTOzWOAu4DRgDHCpmY1ptdgNwFrn3ATgeOB2M0sIalCJKL97fT3z1hZz65ljOCG3j9dxRCQCpSXFc/+VU0mIjeGaRxZTUdPgdSSJUF7seZsO5DvnCpxzDcATwDmtlnFAmpkZkArsBnQethyRp5YUcu+7BVw+YxBfmTXE6zgiEsGye6Zw35ensKuyjusfXUpDk85Alc7nRXkbABS2uL09cF9LdwKjgZ3AKuDbzrnP/QSY2XVmtsTMlpSWlnZVXgljS7fu5kfPreLY4b356dlj8f89ICLSdaYM7snvLxjPR5t389MX13gdRyKQF+Wtrd+ertXtLwDLgf7AROBOM+v+uQc5d59zbqpzbmpmZmZn55QwV7y3jusfXUb/jGTuumwy8bE6P0dEguPcSQO4fk4O//5oG//+aJvXcSTCePHbbDuQ3eL2QPx72Fq6CnjW+eUDm4FRQconEaC+qZnrH11KTX0T910xlfSUeK8jiUiU+b8v5DJ7ZCa3vbCapVt1EXvpPF6Ut8XACDMbGjgJ4RLghVbLbANOBDCzvkAuUBDUlBK2nHPc9vwaPtlWye0XTiC3n84sFZHgi40x/nbJJPpnJHP9o8so3qtroErnCHp5c841ATcCrwPrgKecc2vM7Hozuz6w2C+AWWa2CngL+L5zThPnSLs89tE2nlhcyA0n5HDaOF1sXkS8k54Sz31XTKWmvonrH11KfVOz15EkAphzrQ83C09Tp051S5Ys8TqGeGzxlt1cet+HHDeiN/dfOY1YXfpKRELAq6t28fXHlnHJtGx+c944nTwlmNlS59zUI3msjuCWiLFrzz6+/ugysnumcMclk1TcRCRknDYuixtPGM4Tiwt5TCcwSAepvElEaGjy8Y3HlrGvoYn7rphCerJOUBCR0PKdk0cyd1QffvbiGpZtq/A6joQxlTeJCL95dR2fbKvk9xdMYIQufSUiISg2xvjzRRPpl57EjY8tY7euwCBHSOVNwt4rq3bx0IItXHXMEM4YrxMURCR0pafE8/fLp1BW08BNTy7H54uM484luFTeJKwVlFbzvWdWMmlQBj84bbTXcUREDumoAen89KyxvLehlDvfyfc6joQhlTcJW/samvnGY8uIjzXuumwyCXF6O4tIeLh0ejZfnDSAP7+5gQ82aiYsOTz6bSdh69bnV5NXXMUdgUkwRUTChZnxqy8exYg+qXz7iU8o2qMJfKX9VN4kLD21uJBnlm7nW3NHMGekrmsrIuEnJSGOuy+fwr7GZm789zIam31eR5IwofImYWfdrr3c+vxqjhvRm2+dOMLrOCIiR2x4n1R+e/54lmyt4A+v53kdR8KEypuEldqGJm789zLSk+O54+KJmohXRMLe2RP6c8XRg7nvvQLeySvxOo6EAZU3CSs/e2EtBWU13HHxRHqlJnodR0SkU/zojNGM6pfGd59aQYkuYC+HoPImYePFFTt5ckkh3zg+h1nDe3sdR0Sk0yTFx/K3SydR09DEzU+t0PxvclAqbxIWCnfX8sNnVzF5UAY3nTTS6zgiIp1uRN80bjtrLB/kl3HvewVex5EQpvImIa+x2cc3H/8EDP5yySTiY/W2FZHIdMm0bM4Yl8Xtb+Txia5/Kgeg34IS8m5/YwPLCyv53fnjye6Z4nUcEZEuY2b8+rxx9O2exDcf/4S9dY1eR5IQpPImIe39jaXc8+4mLp0+iNPH6bqlIhL50pPj+eulk9i1p44fPrsK53T8m3yWypuErN01Ddz81ApG9EnlJ2eO8TqOiEjQTBncg5tPHslLK3fxzNLtXseREKPyJiHJOccPnl3JntpG/nLJJJITYr2OJCISVF+fk8PRw3rysxfXUri71us4EkJU3iQkPbN0O6+vKeb/nTKSMf27ex1HRCToYmKMP144AQNufmo5zZo+RAJU3iTkFO6u5WcvrmX60J5ce9wwr+OIiHhmYI8UfnbOWBZvqeDe9zZ5HUdChMqbhJRmn+Pmp5ZjwJ8umqDLX4lI1PvipAGcMS6LP8/bwOode7yOIyFA5U1Cyn3vFbB4SwU/O2csA3toWhARETPjl+ceRY+UBL7z5HLqGpu9jiQeU3mTkLFm5x7+NC+P08f144uTBngdR0QkZPTolsAfLpzAxpJqfv9antdxxGMqbxIS6hqb+c6Ty+mRksCvzh2HmYZLRURamjMykytnDubBBZv5YGOZ13HEQypvEhJufyOPDcXV/OHCCfToluB1HBGRkHTLaaPJyezGd59eoasvRDGVN/Hc0q27uf+DzVw+YxBzRmZ6HUdEJGQlJ8Typ4smUlJVxy9fWut1HPGIypt4qq6xmf97eiX905P5wemjvY4jIhLyJmRn8LU5OTy1ZDvz80q8jiMeUHkTT93+Rh4FZTX8/oLxpCbGeR1HRCQsfPvEEYzok8oPnl2l4dMopPImnmk5XHrM8N5exxERCRtJ8bH84cIJFO+t41cvrfM6jgSZypt4QsOlIiIdMzEwfPrkkkINn0YZlTfxhIZLRUQ6TsOn0UnlTYJOw6UiIp1Dw6fRSeVNgqqusZn/e0bDpSIinWVidgbXzfYPn767odTrOBIEKm8SVH97eyMFpTX87nwNl4qIdJabThpBTmY3fvjsKmrqm7yOI11M5U2CZt2uvdz7bgEXTBnIsSM0XCoi0lmS4mP57fnj2VG5jz/N2+B1HOliKm8SFM0+xy3/WUl6cjw/0nCpiEinmzakJ5fPGMRDCzazorDS6zjShVTeJCgeWbiFFdv38JOzxujapSIiXeT7p40iMy2RW55dRWOzz+s40kVU3qTLba+o5Y9v5HF8biZnT+jvdRwRkYjVPSmen519FOt27eX+9zd7HUe6iMqbdCnnHLf+dzUAvzz3KMzM40QiIpHt1KP68YWxfbnjzQ1sKavxOo50AZU36VIvrtzFO3ml/L9TchnYI8XrOCIiUeHn5xxFQmwMP/rvKpxzXseRTqbyJl2msraBn7+4hgkD0/nKrCFexxERiRp9uyfx/dNGsSC/nGeWbvc6jnQylTfpMr9+ZR0VtY385rzxxMZouFREJJgumz6IaUN68MuX11FWXe91HOlEKm/SJRZv2c1TS7Zz7XFDGdO/u9dxRESiTkyM8ZvzxlFT38RvX13vdRzpRCpv0umamn3c+t/V9E9P4tsnjvA6johI1BreJ42vzh7GM0u3s3jLbq/jSCdReZNO9/DCLawvquK2s8eSkqBLYImIeOmbc4czICOZHz+3WnO/RQiVN+lURXvq+PO8Dcwd1YdTxvT1Oo6ISNRLSYjjtrPGkFdcxSMLt3gdRzqBypt0ql+8vJYmn+OnZ43VnG4iIiHi5DF9mTuqD3+et4Fde/Z5HUc6SOVNOs17G0p5eeUubjhhOIN6aU43EZFQYWb89KyxNPkcv3xpnddxpINU3qRT1DU285PnVzO0dzeumz3M6zgiItLKoF4p3HjCcF5etYt3N5R6HUc6QOVNOsV97xWwpbyWn509lqT4WK/jiIhIG66bM4yhvbtx2/OrqWts9jqOHCGVN+mwbeW13PVOPmeMz2L2yEyv44iIyAEkxsXy83PGsqW8lnvfLfA6jhwhlTfpsF+8vJbYGOPWM8Z4HUVERA7huBGZnDE+i7vn57O9otbrOHIEVN6kQ97fWMq8tcXcOHc4/dKTvI4jIiLt8MPTR2MGv3lFV14IRypvcsQam338/MW1DOqZwtXHDPU6joiItNOAjGSun5PDy6t2sWhTuddx5DCpvMkRe/TDrWwsqebHZ4zWSQoiImHma7NzGJCRzM9eXEOTrrwQVlTe5IiUV9fz53kbOG5Eb07WlRRERMJOckIsPzx9NOuLqnh8caHXceQwqLzJEbl93gZqGpr5yZljdCUFEZEwdfq4fswY2pPb38ijsrbB6zjSTipvctjW7NzD4x9v48szBzOib5rXcURE5AiZGT89eyx79zVyx5sbvY4j7aTyJofFOcfPXlhLj5QEbjpppNdxRESkg0ZndeeyGYP414dbySuq8jqOtIPKmxyWl1ft4uMtu/nuKbmkJ8d7HUdERDrB/zs5l9TEOH7+0hqcc17HkUNQeZN2q2ts5jevrGds/+5cPC3b6zgiItJJenRL4OaTR7Igv5zX1xR7HUcOQeVN2u2BDzazo3Ift545htgYnaQgIhJJLp8xiBF9Uvntq+toaNLUIaFM5U3apay6nr/P38QpY/py9LBeXscREZFOFhcbww9PH82W8loe+2ir13HkIFTepF3ueHMDdY3N3HLaKK+jiIhIFzk+N5NjhvfiL29tZM++Rq/jyAGovMkh5ZdU8fjHhVw+YxDDMlO9jiMiIl3EzPjh6aPZs6+Ru97J9zqOHIDKmxzSb15ZT0p8LN/W1CAiIhFvbP90zp88kIcXbKFwd63XcaQNKm9yUAvzy3hrfQk3zB1Oz24JXscREZEg+O4pucTEwO9fz/M6irRB5U0OyOdz/OqVdQzISOYrs4Z4HUdERIKkX3oS1x03jBdX7OSTbRVex5FWVN7kgJ77ZAdrdu7le6fmkhQf63UcEREJouvm5NA7NZFfvbxOE/eGGJU3adO+hmb+8HoeEwamc9b4/l7HERGRIEtNjOPmk0eyZGsFr60u8jqOtKDyJm164IMCivbW8aMzxhCjCXlFRKLSRVMHMrJvKr99bb0m7g0hKm/yORU1Ddz7bgEnj+nL9KE9vY4jIiIeiYuN4QenjWZreS1PLin0Oo4EqLzJ59w9P5+ahib+7wu5XkcRERGPHZ+byfQhPfnrWxupbWjyOo6g8iat7KzcxyOLtnLe5IGM7JvmdRwREfGYmfG9U3MprarnoQVbvI4jeFTezOxUM8szs3wzu+UAyxxvZsvNbI2ZvRvsjNHqL29uBAc3nTTC6ygiIhIipg7pyUmj+3DPu5uorG3wOk7UC3p5M7NY4C7gNGAMcKmZjWm1TAZwN3C2c24scGGwc0aj/JJqnl5ayJeOHszAHilexxERkRDy3S/kUl3fxN/f3eR1lKjnxZ636UC+c67AOdcAPAGc02qZy4BnnXPbAJxzJUHOGJVufyOP5PhYbjghx+soIiISYkb1684XJw3g4QVbKNpT53WcqOZFeRsAtDxlZXvgvpZGAj3MbL6ZLTWzL7e1IjO7zsyWmNmS0tLSLoobHVYUVvLq6iK+OnsYvVITvY4jIiIh6DsnjcTnHH95a6PXUaKaF+WtrUnDWk/dHAdMAc4AvgDcamafuyq6c+4+59xU59zUzMzMzk8aRX7/+np6dkvg2uOGeR1FRERCVHbPFC6fMZinlhRSUFrtdZyo5UV52w5kt7g9ENjZxjKvOedqnHNlwHvAhCDlizofbCxjQX45N54wnNTEOK/jiIhICLtx7nAS42K4fd4Gr6NELS/K22JghJkNNbME4BLghVbLPA8cZ2ZxZpYCzADWBTlnVHDO8bvX1jMgI5nLjx7kdRwREQlxvVMTufa4Yby8chertu/xOk5UCnp5c841ATcCr+MvZE8559aY2fVmdn1gmXXAa8BK4GPgfufc6mBnjQavryli1Y493HTSCBLjdPF5ERE5tK8eN5QeKfH84Y08r6NEJU/GyJxzrwCvtLrvnla3/wD8IZi5oo3P5/jzvI0My+zGFye1PmdERESkbWlJ8Vw/J4ffvLqepVt3M2WwLqUYTLrCQhR7ZfUu8oqr+PaJI4iL1VtBRETa74qZg+mdmsCf5+nM02DTb+wo1exz3PHmRkb0SeXM8f29jiMiImEmJSGO6+fk8EF+GR8VlHsdJ6qovEWpl1buJL+kmptOGklsTFuzt4iIiBzcl44eTGZaIn9+U2eeBpPKWxRqavbxlzc3MqpfGqcd1c/rOCIiEqaS4mO54fgcPizYzcJNZV7HiRoqb1Ho+eU7KSir4aaTRhKjvW4iItIBl0wfRL/uSfx53gacaz3nvnQFlbco09js469vb2Rs/+58YWxfr+OIiEiYS4qP5Ya5w1m8pYIP8rX3LRhU3qLMc8t2sLW8lu+cNBIz7XUTEZGOu2jqQPqnJ/En7X0LCpW3KNLQ5N/rNn5gOieO7uN1HBERiRCJcbHcOHcEn2yrZP6GUq/jRDyVtyjyzNLtbK/Yx3dO1l43ERHpXBdMGcjAHsk69i0IVN6iREOTj7veyWfSoAyOH5npdRwREYkwCXExfGvuCFZu38Pb60u8jhPRVN6ixHOfbGdH5T6+feII7XUTEZEu8cXJAxjYI5m/vZ2vvW9dSOUtCjQ1+7h7/ibGDUhnjva6iYhIF4mPjeHrx+ewvLCSBfm66kJXOezyZmaJZjbUzMaYmZpAGHh51S62ltdy49zh2usmIiJd6oIpA+nbPZG/va1rnnaVdpU3M0szs6+b2XvAHiAfWA0UmVmhmf3DzKZ1ZVA5Mj6f486388ntm8bJozWvm4iIdK3EuFi+NjuHjzbv5uPNu72OE5EOWd7M7DvAFuBqYB5wDjARGAnMBG4D4oB5ZvaamY3oqrBy+N5YW8TGkmpumDtcV1MQEZGguHT6IHp1S+DOd/K9jhKR4tqxzCxgjnNu9QG+/jHwoJldD1wDzAG0rzQEOOf429v5DO3djTPGZXkdR0REokRyQizXHjeM3722nhWFlUzIzvA6UkQ55J4359yFByluLZerd87d7Zy7v3OiSUfNzytlzc69fOP4HGK1101ERILoS0cPIj05XnvfukB7j3n7alcHkc7lnOOvb29kQEYy504a4HUcERGJMmlJ8Vx1zBDmrS1m3a69XseJKO092/QvZvbzgy1gZvGdkEc6yaJN5XyyrZKvH59DfKxmhBERkeD7yqwhpCbGcZf2vnWq9v5WPwX4hpk9bGafOU7OzJLM7CagoLPDyZH729v59O2eyAVTBnodRUREolRGSgJXzBzMy6t2sam02us4EaNd5c059wFwDHAc8Gpg6pBUM/s+/jNRvwf8uctSymFZunU3iwrKuW52DknxsV7HERGRKHbtsUNJjIvR3rdO1O7xNOdcHv6pQXoAS/GXthuAXwJDnXN/6oqAcvjufmcTPbslcOn0bK+jiIhIlOuVmshl0wfz/PKdbK+o9TpORGh3eTOznsC3gOFAPyAZOMs5d6dzrr6L8slh2lBcxVvrS7hy5hBSEtozE4yIiEjXuua4oRjw4AdbvI4SEdp7tukfgK3AhcC3gUzgMeAtM5vVdfHkcN33XgHJ8bF8eeZgr6OIiIgAMCAjmbMn9OeJxduorG3wOk7Ya++et1OBrwKjnHOPBOZ0uw74G/4rK5zXZQml3Xbt2cfzy3dw8bRsenRL8DqOiIjIp66bM4zahmYe/XCr11HCXntPWBjnnHvCOeda3f8z/EOp/zazb3VFQGm/Bz/YjM/BNccO9TqKiIjIZ4zq150TcjN5eOEW6hqbvY4T1jo8AZhz7gHgPPwnLohH9uxr5N8fbePM8Vlk90zxOo6IiMjnfG1ODmXVDfxn2Xavo4S19lyY/pC7cZxzrwBzzU+nOHrgsY+2UtPQzHWzh3kdRUREpE0zhvZkQnYG/3ivgGafO/QDpE3t2fO2yMweMLOZB1rAzHoA04C1wDmdFU7ap66xmYcWbGH2yEzG9k/3Oo6IiEibzIzrZw9jS3ktr68p8jpO2GrPXBKjgB8BL5tZM/453nYBdfjnfBsDjAY+Bm5yzr3eRVnlAJ77ZAelVfX85WLtdRMRkdB2yth+DOmVwr3vbuK0o/phZl5HCjuH3PPmnKt0zv0fMAD4OrAeyACGAk3AI8Ak59wxKm7B1+xz/OO9AsYNSGdmTi+v44iIiBxUbIzx1dnDWLF9Dx8W7PY6Tlhq1yyuZpbmnKsCngn8kxAxb20xBWU13HnZJP31IiIiYeH8yQP587wN3PveJu14OALtPdu00szWm9ljZnazmc0xs7QuTSaH5Jzjnnc3MahnCqcdleV1HBERkXZJio/lqmOGMj+vlHW79nodJ+y0t7xdBrwAZAG3Am8DFa0LXVeFlLYt3VrB8sJKvnrcUGJjtNdNRETCx5dmDCYlIZZ/vF/gdZSw095Jep90zn3POTcX6AkY8BPgeaAP8EP8hU6C6IEPNpOeHM/5UwZ6HUVEROSwpKfEc+GUgby4YiclVXVexwkrhz1Jb4urLLzknPu+c+5k51xv/CcwSJAU7vafZn3ZjEG6AL2IiISlq44ZSpPP8egiXTLrcHT4Cgv7Oee2dda65NAeWbiFGDNdgF5ERMLWkN7dOHFUXx79aJsumXUYOq28SfBU1zfx5OJCTh+XRVZ6stdxREREjtjVxw5hd00Dzy/f4XWUsNGu8mZm/zKzb5vZLDPbf+FMXdfCI08vKaSqvomrdQF6EREJczOH9WJ0Vnce+GAz/zsySw6mvXveBgC3AR8AewL3/crM/p+ZHW9m3bsknXxOs8/x0IItTBncg4nZGV7HERER6RAz4+pjhrChuJoF+eVexwkL7T3bdK5zricwHP+0Ib8HkoEf8L9pQzZ0WUr51Fvritm2u5ZrtNdNREQixNkT+9M7NZEHPtC0Ie1xWKcpOucKgALg6f33mdkQYCowuVOTSZse+GAzAzKSOWVMX6+jiIiIdIrEuFiuOHowf35zA5tKq8nJTPU6Ukjr8AkLzrktzrlnnHM/7IxAcmCrd+zho827+cqsIcTF6lwTERGJHJcfPYiEuBgeWrDZ6yghTw0gjDy4YDMpCbFcNC3b6ygiIiKdqndqIudO7M9/lu6gsrbB6zghTeUtTJRU1fHiip1cNDWb9OR4r+OIiIh0uquPHcq+xmYe/7jQ6yghTeUtTDy6aCtNPsdXZg3xOoqIiEiXGNWvO8cM78UjC7fQ2OzzOk7IUnkLA/VNzfz7423Mze3DkN7dvI4jIiLSZa4+ZihFe+t4Y02x11FClspbGHhtdRFl1Q18WXvdREQkwh2f24eBPZL556ItXkcJWSpvYeCfi7YypFcKxw3v7XUUERGRLhUbY3zp6MF8tHk3eUVVXscJSSpvIW71jj0s3VrBl44eTEyMeR1HRESky100NZuEuBj+9eEWr6OEJJW3EPevRVtJio/hwimaHkRERKJDz24JnDW+P88t20FVXaPXcUKOylsI21PbyPMrdnDuxAGkp2h6EBERiR5fnjmYmoZmnl22w+soIUflLYQ9vbSQukYfV8wc7HUUERGRoJqQncGEgen868OtOOe8jhNSVN5ClM/n+NeHW5kyuAdj+6d7HUdERCTorpg5hPySahZtKvc6SkhReQtR720sZWt5LV/WXjcREYlSZ47PokdKPP9ctNXrKCFF5S1E/WvRVnqnJnLaUVleRxEREfFEUrz/et7z1hWza88+r+OEDJW3EFS4u5a380q4dLr/VGkREZFo9aUZg/E5x78/2uZ1lJChZhCCHv1oKzFmXDZjkNdRREREPJXdM4W5uX14/ONCGpp0vVNQeQs5dY3NPLW4kJNH9yUrPdnrOCIiIp67YuZgyqrreXX1Lq+jhASVtxDz8spdVNQ26kQFERGRgNkjMhnSK4VHP9SJC6DyFnIe/3gbQ3t3Y2ZOL6+jiIiIhISYGOPS6YNYvKWCjcW63qnKWwjZWFzFkq0VXDItGzNdx1RERGS/86cMJD7WeGJxoddRPKfyFkIe/7iQ+Fjj/CkDvY4iIiISUnqnJnLKmH78Z9l26hqbvY7jKZW3EFHX2Myzn2znlDH96J2a6HUcERGRkHPJ9Gwqaxt5fU2R11E8pfIWIl5fU0RlbSOXTtf0ICIiIm05Jqc32T2Tefzj6J7zTeUtRDz+8TayeyYzSycqiIiItCkmxrhk2iA+LNhNQWm113E8o/IWAgpKq/mwYDeXTBtETIxOVBARETmQC6cMJDbGeDKKT1xQeQsBTy4uJC7GuHCqTlQQERE5mD7dkzhpdB+eWbo9aq+4oPLmsYYmH88s3c6Jo/vQJy3J6zgiIiIh75LpgyivaWDe2mKvo3hC5c1j89YWU17ToBMVRERE2mn2iEwGZCTzxOLoPHFB5c1jj3+8jQEZyRw3ItPrKCIiImEhNsa4aGo2728sY1t5rddxgk7lzUPbymv5IL+Mi6dlE6sTFURERNrtomkDiTF4ckn07X1TefPQE4u3EWPoRAUREZHDlJWezAm5fXhqyXYam6PrxAWVN480Nft4eul25o7qQ1Z6stdxREREws6l0wdRWlXP2+tLvI4SVJ6UNzM71czyzCzfzG45yHLTzKzZzC4IZr5geG9jKaVV9Vw4NdvrKCIiImHp+NxMMtMSeWbpdq+jBFXQy5uZxQJ3AacBY4BLzWzMAZb7HfB6cBMGxzNLt9OrWwJzR/XxOoqIiEhYiouN4bxJA3hnfQll1fVexwkaL/a8TQfynXMFzrkG4AngnDaW+ybwHyDi9oVW1DTw5toSzpk4gPhYjVyLiIgcqfOnDKTJ53h++U6vowSNF81hANDymhbbA/d9yswGAF8E7jnYiszsOjNbYmZLSktLOz1oV3lx5U4amn1cMEUnKoiIiHTEyL5pTBiYHlVDp16Ut7bmxHCtbt8BfN8513ywFTnn7nPOTXXOTc3MDJ950p5Zup0xWd0Z07+711FERETC3gVTBrJu117W7NzjdZSg8KK8bQdaHqU/EGi9r3Mq8ISZbQEuAO42s3ODkq6L5RVVsXL7Hu11ExER6SRnTehPQmwMTy+Jjr1vXpS3xcAIMxtqZgnAJcALLRdwzg11zg1xzg0BngG+4Zz7b9CTdoH/LNtOXIxxzsT+XkcRERGJCBkpCZw8pi/PL98RFRerD3p5c841ATfiP4t0HfCUc26NmV1vZtcHO08wNTX7eHbZDuaO6kOv1ESv44iIiESMC6YMpKK2MSrmfIvz4kmdc68Ar7S6r82TE5xzXwlGpmB4b2MpZdX1GjIVERHpZMeN6P3pnG+nHtXP6zhdSvNUBNH+ud1O0NxuIiIinerTOd/ySiitiuw531TegkRzu4mIiHSt86cMpNnneH75Dq+jdCm1iCDR3G4iIiJdq+Wcb861noUscqi8BYnmdhMREel6F0wZyPqiKtbs3Ot1lC6j8hYEmttNREQkOPbP+RbJV1xQeQsCze0mIiISHNEw55vKWxfbf+Dk8bmZmttNREQkCM6bPICK2kbe3xg+1z0/HCpvXeyjzeUU763nnIkDvI4iIiISFWaPzKRHSjz/Xd766puRQeWti72wfCcpCbGcNLqv11FERESiQnxsDKePy2Le2iJq6pu8jtPpVN66UH1TM6+s2sUXxvYjOSHW6zgiIiJR45yJA6hr9PHG2iKvo3Q6lbcuND+vlL11TTpRQUREJMimDu7BgIxkno/AoVOVty70wvKd9OqWwLHDe3sdRUREJKrExBhnTejP+xvLKK+OrMtlqbx1kaq6Rt5cV8yZ47OI0+WwREREgu7cSf1p9jleXrXL6yidSq2ii7y+ppj6Jh9n6yxTERERT4zq153cvmkRN3Sq8tZFnl++g+yeyUwelOF1FBERkah1zqT+LN1aQeHuWq+jdBqVty5QUlXHgvwyzpkwADPzOo6IiEjUOnuC/6TBF1ZEzt43lbcu8NKKXficf6xdREREvDOwRwrThvTgv5/swDnndZxOofLWBZ5fsZMxWd0Z3ifN6ygiIiJR7+yJA9hYUs26XVVeR+kUKm+dbHNZDSsKK7XXTUREJEScMS6LuBjj+eU7vI7SKVTeOtkLy3diBmdNUHkTEREJBT27JTB7ZCYvrNiJzxf+Q6cqb53IOcfzy3cwY2hPstKTvY4jIiIiAedM7M+uPXV8vGW311E6TOWtE63ZuZeCshrO0dxuIiIiIeXkMX1JSYiNiDnfVN460UsrdxEXY5x2VD+vo4iIiEgLKQlxnDi6L6+vKaKp2ed1nA5ReeskzjleWbWLWcN7k5GS4HUcERERaeWMcf3YXdPAR5vDe+hU5a2TrNm5l227azljnPa6iYiIhKI5I/uQHB8b9tc6VXnrJC+v2kVsjHHyGJU3ERGRUJScEMvc0X14fXV4D52qvHWCT4dMc3rRs5uGTEVERELVGeOyKK9pCOuzTlXeOsGanXvZWl7L6eOyvI4iIiIiB3FCrn/o9JUwHjpVeesEr672D5l+YayGTEVEREJZckIsc0f14bXVxTSH6YS9Km8d5B8yLWLmMA2ZioiIhIPTxvWjrLqej8P0rFOVtw5at6uKzWU1GjIVEREJE3NH9SEpPiZsh05V3jrolVW7iDH4wti+XkcRERGRdkhJiOOE3D68tqYoLIdOVd46YP9ZpkcP60Wv1ESv44iIiEg7nT4ui9KqepaE4VmnKm8dsL6oigINmYqIiISduaP6kBgXnkOnKm8dsH/I9FRdy1RERCSsdEuM4/jcTF5dXYQvzIZOVd6OkHOOl1ftYsbQXvTWkKmIiEjYOX1cFiVV9SzZWuF1lMOi8naE8oqrKCit4fTxGjIVEREJRyeO7ktCGA6dqrwdoVdWFfmHTDUxr4iISFhKTYzj+JGZvLp6V1gNnaq8HaFXV+1i2pCeZKZpyFRERCRcnTE+i+K99SzbFj5DpypvR2BzWQ0bS6p1ooKIiEiYO2FUH+JjjXlri72O0m4qb0dg3toiAE4eo4l5RUREwln3pHiOHtZL5S3SzVtbzOis7gzskeJ1FBEREemgk8f0paCshvySaq+jtIvK22Eqr65n6dYK7XUTERGJECeN9v9OD5e9bypvh+mt9SX4HJyi8iYiIhIR+mckc9SA7p8eFhXqVN4O07y1xfRPT2Js/+5eRxEREZFOcvLofnxSWElpVb3XUQ5J5e0w7Gto5v2NpZw0pi9m5nUcERER6SQnj+mLc/DWutAfOlV5Owwf5JdR1+jT8W4iIiIRZnRWGgMyksPiuDeVt8Mwb20RaYlxzBjay+soIiIi0onMjJPH9OWD/DJqG5q8jnNQKm/t1OxzvLWuhONH9SEhTi+biIhIpDllTF/qm3y8t6HM6ygHpRbSTp9sq6C8pkFDpiIiIhFq2tCedE+KC/mhU5W3dpq3tpj4WOP43Eyvo4iIiEgXiI+NYe6oPry9vpimZp/XcQ5I5a2d5q0t5uhhveieFO91FBEREekiJ4/pR0VtI0u3hu6F6lXe2iG/pJqCshoNmYqIiES4ObmZJMTGhPTQqcpbO+zfgPsvnyEiIiKRKTUxjpk5vZi3rhjnnNdx2qTy1g7z1hZx1IDu9M9I9jqKiIiIdLGTx/Rla3ktG0P0QvUqb4dQWlXPJ4WVnDKmn9dRREREJAj2HyYVqkOnKm+H8Na6YpxDx7uJiIhEib7dk5iQncEbKm/h6Z28EvqnJzGqX5rXUURERCRIThrVhxWFlZRVh96F6lXeDqKhyceC/HLm5PbRhehFRESiyJzAvK7vbyz1OMnnqbwdxNKtFVTXN2liXhERkShzVP90eqcmMD9P5S2szN9QQnyscczw3l5HERERkSCKiTFmj8jkvQ2lNPtCa8oQlbeDeDevlKmDe5KaGOd1FBEREQmyObmZVNQ2snJ7pddRPkPl7QCK9tSxvqhKQ6YiIiJRavaITGKMkBs6VXk7gHc3lABwfG4fj5OIiIiIF3p0S2BCdgbzN6i8hYX5eaX0657EyL6pXkcRERERj8wZmcnK7ZWUh9CUISpvbWhs9vHBxjKOz83UFCEiIiJR7PjcPjgHH+SXeR3lUypvbVi2tYIqTREiIiIS9cYPSKdnt9CaMkTlrQ3zN5QSF6MpQkRERKKdf8qQ3ry3oRRfiEwZovLWhnfzSpkyuAdpSfFeRxERERGPHZ/bh/KaBlbt2ON1FEDl7XNK9taxdtdenWUqIiIiAMwemYmF0JQhKm+t7D8dWMe7iYiICEDPbgmMH5jB/MA0Yl5TeWvl3bxS+nZPZFS/NK+jiIiISIiYMzKT5YWVVNQ0eB1F5a2lpmYf728sZc5ITREiIiIi/3N8bibOwfshMGWIylsLywsr2VvXpOPdRERE5DMmDMygR0o88/O8Hzr1pLyZ2almlmdm+WZ2Sxtfv9zMVgb+LTSzCcHINT+vlFhNESIiIiKtxMYYx43IDIkpQ4Je3swsFrgLOA0YA1xqZmNaLbYZmOOcGw/8ArgvGNnmbyhhyqAepCdrihARERH5rONzMymrbmDNzr2e5vBiz9t0IN85V+CcawCeAM5puYBzbqFzriJw80NgYFeHKq2qZ/WOvczRWaYiIiLShtkj/R3B66FTL8rbAKCwxe3tgfsO5Brg1ba+YGbXmdkSM1tSWtqxuVcWFZQDcNwIDZmKiIjI5/VOTWRMVncWbir3NIcX5a2t0zjbHDw2sxPwl7fvt/V159x9zrmpzrmpmZkd22O2aFMZaUlxjO2f3qH1iIiISOSaldOLpdsqqGts9iyDF+VtO5Dd4vZAYGfrhcxsPHA/cI5zrssr7sJN5Rw9rBexMZoiRERERNo2a3gvGpp8LNtaceiFu4gX5W0xMMLMhppZAnAJ8ELLBcxsEPAscIVzbkNXB9peUcvW8lpm5fTq6qcSERGRMDZtSE9iY8zTodO4YD+hc67JzG4EXgdigQedc2vM7PrA1+8BfgL0Au4OTJbb5Jyb2lWZFgU2wKwcHe8mIiIiB5aWFM/4geks3FQG5HqSIejlDcA59wrwSqv77mnx/9cC1wYrz6JN5fTqlsDIvqnBekoREREJU7NyenHPuwVU1zeRmhj8KhX1V1hwzrFwUzkzc3rpklgiIiJySLNyetPscyzevNuT54/68ra5rIaivXUaMhUREZF2mTK4BwmxMYGh0+CL+vK28NPj3XSygoiIiBxaUnwskwdneHbSQtSXt0WbyumfnsTgXileRxEREZEwMSunN2t37aWipiHozx3V5c3ncywqKGdmTm8d7yYiIiLtNiunF87BR5uDv/ctqstbXnEVu2saNGQqIiIih2X8wAxSEmI9GTqN6vK2/wWfqfImIiIihyEhLoZpQ3qqvAXbok1lDO3djf4ZyV5HERERkTAzK6cX+SXVlOytC+rzRm15a2r28VHBbu11ExERkSOyf5qxRQXB3fsWteVt9c69VNU3MXOYypuIiIgcvjH9u9M9KY6F+SpvQbF/Yr2jVd5ERETkCMTGGEcP68XCguBO1hu15W3RpnJy+6aRmZbodRQREREJU7NyelG4ex+Fu2uD9pxRWd7qm5pZvEXHu4mIiEjHzBoeOO4tiGedRmV5W76tkrpGn+Z3ExERkQ4Z0SeV3qkJQb3OaVSWtwWbyokxmKHj3URERKQDzIyZOb1ZuKkc51xQnjMqy9uHBeWM7Z9OenK811FEREQkzM3K6UVJVT0FZTVBeb6oK2+NzT5WFFYybUhPr6OIiIhIBJg2pAcAy7ZWBOX5oq68rd25l/omH1MG9/A6ioiIiESAYb1TSU+OZ9k2lbcusTTQiicPzvA2iIiIiESEmBhj8qCMTztGlz9fUJ4lhCzdVsGAjGSy0nU9UxEREekcUwb3YENxNXv2NXb5c0VdeVu2tYLJGjIVERGRTrS/W3wShKHTqCpvOyv3sWtPHVMGZXgdRURERCLIhIEZxFhwTlqIqvK2fyx6ymCdaSoiIiKdp1tiHKOzurNUe94619KtFSTHxzIqK83rKCIiIhJhpgzuwfJtlTQ1+7r0eaKqvH2yrYLxA9OJj42qb1tERESCYMrgHtQ0NJNXXNWlzxM1LWZfQzNrdu7V/G4iIiLSJSYPCs5kvVFT3lZur6TJ51TeREREpEsM7JFMn7TELp/vLWrK2/4DCCcNUnkTERGRzmdmTBnco8tPWoia8rZsawXDMrvRs1uC11FEREQkQk0Z3IPC3fsoqarrsueIivLmnGPp1gqmaK+biIiIdKH9k/Uu21rZZc8RFeVtc1kNFbWNOt5NREREutTY/t1JiIvp0ovUR0V5+9/kvCpvIiIi0nUS42IZNyC9S09aiIrytmxbBd2T4sjJTPU6ioiIiES4KYN7sGr7Huqbmrtk/dFR3rZWMnlwD2JizOsoIiIiEuEmD+pBQ7OP1Tv2dsn6I7687dnXyIaSKp2sICIiIkExeXAG0HWT9UZ8eVteWIlzOt5NREREgqNPWhKDeqZ02XFvEV/elm6tIMZgQnaG11FEREQkSuyfrNc51+nrjvjytmxrBaOzutMtMc7rKCIiIhIlJg/uQWlVPdsr9nX6uiO6vDX7HJ9sq9CQqYiIiATV/mPtu2LoNKLLW15RFTUNzSpvIiIiElS5/dLolhCr8na4VmyvBGBStsqbiIiIBE9sjDEhO4PlhZWdvu6ILm/rd+0lNTGO7J7JXkcRERGRKDM6qzsbiqto9nXuSQsRXd7WFVWR2y8NM03OKyIiIsE1ql8a9U0+tpTXdOp6I7a8OefIC5Q3ERERkWAb1a874D8GvzNFbHkr2lvHnn2NjFZ5ExEREQ+M6JtKjPkP4+pMEVve1gdabm6g9YqIiIgEU1J8LEN6d/u0k3SWyC1vu/aXN+15ExEREW+M7tdd5a298or20j89ifTkeK+jiIiISJTK7ZfGtt211NQ3ddo6I7a8rdfJCiIiIuKxUYEusqG48/a+RWR5a2jysam0mlFZOt5NREREvLP/jNPOHDqNyPJWUFZNY7P7tO2KiIiIeGFgj2S6JcR26nQhEVne9r9Ao3SmqYiIiHgoJsYY2S+NdZ04XUhElrf1RVXExxrDMrt5HUVERESi3Kh+3ckrrsK5zrlMVmSWt117yclMJT42Ir89ERERCSOj+qVRWdtI8d76TllfRLabvKIqHe8mIiIiIWF/J1lf1DlDpxFX3vbUNrJzT53ONBUREZGQ0NlnnEZcecsr1pUVREREJHSkp8TTr3tSp51xGnHlbf8uSQ2bioiISKgYldV5Z5xGYHmrIj3Z33BFREREQkFuvzQ2lVbT2Ozr8Loir7zt2ktuvzTMzOsoIiIiIoD/AvWNzY6C0poOryuiypvP59hQXM1oDZmKiIhICMntxDNOI6q87ajcR3V9E7m6soKIiIiEkJzMVOJirFNOWoio8rb/FNxRWdrzJiIiIqEjIS6GnMzUTpkuJLLKW+AsjpF9Vd5EREQktIzKStOet9bWF1eR3TOZ1MQ4r6OIiIiIfEZuvzR2VO5jz77GDq0nssrbrr2fzmIsIiIiEkpGBzrKhuKO7X2LmPLmHGwuq9HkvCIiIhKSPj3jtIOT9UZMeatrasbn0J43ERERCUlZ6Ul0T4rr8EkLkVPeGpsBXdNUREREQpOZMapfd5W3/eoafSTGxTCkV4rXUURERETa1BlnnEZQeWtmRN9U4mIj5lsSERGRCJPbL43q+qYOrSNimk5dY7OOdxMREZGQ1hldJWLKW3xsDBMGpnsdQ0REROSAcvulMbiDh3iZc66T4nhr6tSpbsmSJV7HEBERETkkM1vqnJt6JI/1ZM+bmZ1qZnlmlm9mt7TxdTOzvwa+vtLMJnuRU0RERCTUBL28mVkscBdwGjAGuNTMxrRa7DRgRODfdcDfgxpSREREJER5sedtOpDvnCtwzjUATwDntFrmHOCfzu9DIMPMsoIdVERERCTUeHEF9wFAYYvb24EZ7VhmALCr5UJmdh3+PXMA9Wa2unOjShD1Bsq8DiFHRNsuvGn7hTdtv/CVe6QP9KK8WRv3tT5roj3L4Jy7D7gPwMyWHOmBf+I9bb/wpW0X3rT9wpu2X/gysyM+y9KLYdPtQHaL2wOBnUewjIiIiEjU8aK8LQZGmNlQM0sALgFeaLXMC8CXA2edHg3scc7tar0iERERkWgT9GFT51yTmd0IvA7EAg8659aY2fWBr98DvAKcDuQDtcBV7Vj1fV0UWYJD2y98aduFN22/8KbtF76OeNtFzCS9IiIiItEgYi6PJSIiIhINVN5EREREwkjYlTddWit8tWPbXR7YZivNbKGZTfAip7TtUNuvxXLTzKzZzC4IZj45uPZsPzM73syWm9kaM3s32Bmlbe347Ew3sxfNbEVg27XnOHEJAjN70MxKDjQP7ZF2lrAqb7q0Vvhq57bbDMxxzo0HfoEOxA0Z7dx++5f7Hf4TkiREtGf7mVkGcDdwtnNuLHBhsHPK57XzZ+8GYK1zbgJwPHB7YDYH8d7DwKkH+foRdZawKm/o0lrh7JDbzjm30DlXEbj5If75/SQ0tOdnD+CbwH+AkmCGk0Nqz/a7DHjWObcNwDmnbRga2rPtHJBmZgakAruBpuDGlLY4597Dvz0O5Ig6S7iVtwNdNutwl5HgO9ztcg3wapcmksNxyO1nZgOALwL3BDGXtE97fv5GAj3MbL6ZLTWzLwctnRxMe7bdncBo/JPZrwK+7ZzzBSeedNARdRYvLo/VEZ12aS0JunZvFzM7AX95O7ZLE8nhaM/2uwP4vnOu2b8DQEJIe7ZfHDAFOBFIBhaZ2YfOuQ1dHU4Oqj3b7gvAcmAukAPMM7P3nXN7uzibdNwRdZZwK2+6tFb4atd2MbPxwP3Aac658iBlk0Nrz/abCjwRKG69gdPNrMk599+gJJSDae9nZ5lzrgaoMbP3gAmAypu32rPtrgJ+6/wTt+ab2WZgFPBxcCJKBxxRZwm3YVNdWit8HXLbmdkg4FngCv21H3IOuf2cc0Odc0Occ0OAZ4BvqLiFjPZ8dj4PHGdmcWaWAswA1gU5p3xee7bdNvx7TDGzvkAuUBDUlHKkjqizhNWety68tJZ0sXZuu58AvYC7A3tvmpxzU73KLP/Tzu0nIao92885t87MXgNWAj7gfudcm9MbSPC082fvF8DDZrYK/zDc951zZZ6Flk+Z2eP4zwDubWbbgduAeOhYZ9HlsURERETCSLgNm4qIiIhENZU3ERERkTCi8iYiIiISRlTeRERERMKIypuIiIhIGFF5ExEREQkjKm8iIiIiYUTlTUSkFTPrbWbOzL5jZovNrM7MNpjZKV5nExFReRMR+bxJgf/eCNwCjMd/5YF/m1myZ6lERFB5ExFpy0SgGTjdOfdW4Fq738d/+bZRXgYTEVF5ExH5vInAi865vBb3NXiURUTkM1TeREQ+byLwSav7pgF1QN7nlhYRCSKVNxGRFswsCcjl85+PNwFPOOdqgx5KRKSFOK8DiIiEmHGB/15qZm8BJcCPgeHARZ6lEhEJ0J43EZHPmghsBG4DHsc/fJoGTHPOFXmYS0QEAHPOeZ1BRCRkmNldQKZzTnvZRCQkac+biMhnTcQ/p5uISEhSeRMRCTAzw3/Mm8qbiIQsDZuKiIiIhBHteRMREREJIypvIiIiImFE5U1EREQkjKi8iYiIiIQRlTcRERGRMKLyJiIiIhJGVN5EREREwsj/B/VYjcPa0jVWAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "from scipy import stats\n", - "\n", - "fig=plt.figure(figsize=(10,8))\n", - "H_ber=lambda X: -np.sum(X*np.log2(X),axis=1) #Función para estimar la entropía de la distribución Bernoulli\n", - "p=np.linspace(1e-3,1-1e-3,100) \n", - "probs_X=np.vstack([p,1-p]).T\n", - "plt.plot(p,H_ber(probs_X))\n", - "plt.xlabel(\"$p$\",fontsize =14)\n", - "plt.ylabel(\"$H(X)$\",fontsize =14)\n", - "plt.ylim([0,1.05])\n", - "plt.xlim([0,1])\n", - "plt.title('Entropía de las distribuciones de la familia Bernoulli',fontsize =14)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Entropía Conjunta" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sean $X$ y $Y$ variables aleatorias discretas que tienen una función de probabilidad conjunta:\n", - "\n", - "\n", - "$$\n", - "p_{ij}=p(x_i,y_j) = p\\{X=x_i,Y=y_j \\}; i=1\\ldots,M; j=1,\\ldots,L.\n", - "$$\n", - "\n", - "Es natural definir la entropía conjunta de $ X $ y $ Y $ como:\n", - "\n", - "$$\n", - "H(X,Y) = - \\sum_{i=1}^M \\sum_{j=1}^L p(x_i,y_j) \\log p(x_i,y_j).\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Se puede verificar que:\n", - "\n", - "$$\n", - "H(X,Y) \\le H(X) + H(Y),\n", - "$$\n", - "\n", - "*la igualdad se tiene si y solo si $X$ y $Y$ son independientes*." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Entropía Condicional" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Supongamos que $ X $ y $ Y $ sean variables aleatorias discretas con distribución conjunta $ p (x_i, y_j) $. Si se sabe que $ X = x_i $, la distribución de $ Y $ se caracteriza por el conjunto de probabilidades condicionales $ p (y_j | x_i) $. Por lo tanto definimos la entropía condicional de $ Y $ dado $ X = x_i $ como:\n", - "\n", - "$$\n", - "H(Y|X=x_i) = -\\sum_{j=1}^L p(y_j|x_i) \\log p(y_j|x_i).\n", - "$$\n", - "\n", - "La entropía condicional de $ Y $ dado $ X $ es el promedio ponderado promedio de $ H (Y | X = x_i) $, es decir:\n", - "\n", - "\n", - "\n", - "$$\n", - "H(Y|X) = - \\sum_{i=1}^M \\sum_{j=1}^L p(x_i,y_j) \\log p(y_j|x_i).\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Se puede verificar que:\n", - "\n", - "$$\n", - "H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y).\n", - "$$\n", - "\n", - "y\n", - "\n", - "$$\n", - "H(Y|X) \\le H(Y,X),\n", - "$$\n", - "\n", - "*La igualdad se tiene si y solo si $X$ y $Y$ son independientes*." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Información mutua" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Suponga que $ X $ y $ Y $ son variables aleatorias discretas con funciones de masa de probabilidad dadas por $ f_X $ y $ f_Y $ respectivamente, y una función de masa de probabilidad conjunta $ f $. Así, la información mutua de $ X $ y $ Y $, denotada $ \\mathfrak {M} (X, y) $ se define como:\n", - "\n", - "$$\n", - "\\mathfrak{M}(X,Y) = \\mathbb{E}_f \\ln \\frac{f(X,Y)}{f_X(X)f_Y(Y)} = \\sum_i \\sum_j f(x_i,y_j)[\\ln f(x_i,y_j) - \\ln f_X(x_i)f_Y(y_j)].\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Notas" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "1. La dependencia mutua es una medida de dependencia entre las variables $ X $ y $ Y $. Tenga en cuenta que si $ X $ y $ Y $ son independientes, su información mutua es cero.\n", - "2. Si $ X $ y $ Y $ tienen exactamente la misma distribución, entonces $\\mathfrak{M}(X,Y) = H(X)$. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## La divergencia Kullback-Leibler" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "La divergencia de Kullback-Leibler (KL) es una pseudo-distancia que representa la diferencia entre dos distribuciones. Debido a su definición, también se conoce como entropía relativa, porque es el valor esperado de un contenido de información de la relación entre dos distribuciones. Se define la divergencia KL como:\n", - "\n", - "$$\n", - "KL(P||Q)=\\mathbb{E}_{P}\\left(\\log{\\frac{P(X)}{Q(X)}}\\right)\n", - "$$\n", - "\n", - "* Caso discreto:\n", - "\n", - "$$\n", - "KL(P||Q)=\\sum_{i}p(x_i)\\log{\\frac{p(x_i)}{q(x_i)}} = \\sum_{i}p(x_i)[\\log p(x_i)- \\log q(x_i)].\n", - "$$\n", - "\n", - "\n", - "$\\Omega$ es el soporte de las distribuciones.\n", - "\n", - "Observe que si $P=Q$ c.s., entonces $KL(P||Q)=0.$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Entropía cruzada" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Suponga que $f$ y $g$ son dos funciones de de probabilidad (o masa de probabilidad). La entropía cruzada entre $f$ y $g$ se define como:\n", - "\n", - "\n", - "$$\n", - "\\mathfrak{D}(f,g) = -\\sum_{i} f(x_i) \\ln g(x_i).\n", - "$$\n", - "\n", - "Se puede comprobar que:\n", - "\n", - "$$\n", - " KL(f||g) = H(f) + \\mathfrak{D}(f,g).\n", - "$$\n", - "\n", - "\n", - "Llamamos $ f $ como la distribución de referencia y $ g $ como la distribución aproximada.\n", - "\n", - "- $\\leadsto$ Tenga en cuenta que la divergencia KL y la entropía cruzada difieren en $ H (f) $, la entropía de la distribución de referencia. Por otro lado, $ H (f) $ que es constante con respecto a $ g $. Por esta razón, algunos autores llaman KL-divergencia como entropía cruzada." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Entropía cruzada como función de pérdida" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En el aprendizaje automático, es común utilizar la entropía cruzada como criterio para evaluar la convergencia de un proceso de aprendizaje (comúnmente un proceso de optimización).\n", - "\n", - "Supongamos que en un problema de clasificación tenemos *T* clases. Ahora suponga que cada uno de los objetos de entrenamiento $ x_i $ pertenece a una clase única, digamos $ C_{it} $. Por lo tanto, una forma común de representar la clase del vector $ x_i $ es mediante el uso de un vector *T*, que tiene todos los elementos iguales a cero, excepto la posición *ti*, que tiene 1. \n", - "\n", - "\n", - "En estadística, esta codificación se denomina **codificación dummy**. En el lenguaje de aprendizaje automático se llama **hot one encoding**.\n", - "\n", - "\n", - "La cuestión clave es que esta codificación representa una distribución del vector de entrenamiento de entrada. Esta es la distribución de referencia para la entrada.\n", - "\n", - "Por otro lado, en cada época (iteración) del entrenamiento de la máquina, la salida es una distribución de propuesta $ s_i $ del vector de entrada. Esta es la distribución aproximada del vector de entrada. Por lo tanto, la entropía cruzada en este caso viene dada por:\n", - "\n", - "\n", - "$$\n", - "\\mathfrak{D}_i = -\\sum_{t=1}^{T} C_{it}\\log s_{it}\n", - "$$\n", - "\n", - "Si tenemos $ N $ vectores de entrenamiento, la codificación dummy completa es una matriz $ N $ $ \\times $ $ T $, digamos $ L $, donde cada celda $ it $ se define como $ l_ {it} = 1 $ es la entrada de entrenamiento $ x_ {i} $ pertenece a la clase $t$, y $ 0 $ de lo contrario.\n", - "\n", - "La función de pérdida de entropía cruzada se debe minimizar en el proceso de entrenamiento es dada:\n", - "\n", - "$$\n", - "L(X,L) = -\\sum_{i=1}^N\\sum_{t=1}^T l_{it} \\log s_{it}.\n", - "$$\n", - "\n", - "$\\leadsto$ Por ejemplo en una red neuronal, $s_i =(s_{i1}, \\ldots, s_{iT})$ es la capa de salida, y es producida por la función **softmax**." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Máxima verosimilitud y función de pérdida" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Suponga que cada uno de los vectores de entrenamiento de entrada tiene una función de densidad de probabilidad dada por $ f (x_i, w), i = 1, \\ldots, N $, donde $ w $ es el parámetro a aprender. También suponga que los $ x_i $ son independientes.\n", - "\n", - "En la estimación de máxima verosimilitud $ l(w | x) = - \\sum_i \\log f(x_i; w) $ es la función de pérdida que debe minimizarse. \n", - "\n", - "$$\n", - "L(x|w) = -\\frac{1}{N} \\sum_i^N \\log f(x_i|w).\n", - "$$\n", - "\n", - "Por ejemplo la función de pérdida `torch.nn.GaussianNLLLoss` en `Pytorch` es la función de pérdida basada en el supuesto que cada observación es de tipo Gaussiano. Técnicamente tal función de pérdida se define por:\n", - "\n", - "\n", - "$$\n", - "L(x|w) = \\frac{1}{N} \\left[\\frac{1}{2} (\\log(\\max(\\sigma^2, \\epsilon))+ \\frac{(net(x_i) -y_i)^2}{\\max(\\sigma^2, \\epsilon)} + cte\\right]\n", - "$$\n", - "\n", - "En este caso, $net(x_i)$ es la predicción de la red neuronal y $y_i$ la variable target correspondiente. Adicionalmente $\\epsilon>0$ se introduce para evitar problemas convergencia con valores muy pequeños de $\\sigma^2$.\n", - "\n", - "El siguiente fragmento de código muestra cómo usar esta función de pérdida." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import torch\n", - "from torch import nn\n", - "\n", - "loss = nn.GaussianNLLLoss()\n", - "input = torch.randn(5, 2, requires_grad=True)\n", - "target = torch.randn(5, 2)\n", - "var = torch.ones(5, 2, requires_grad=True) #heterocedasticidad\n", - "output = loss(input, target, var)\n", - "output.backward()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Un ejemplo simple de aplicación con redes neuronales " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "El siguiente código muestra la implementación de un red neuronal simple de dos capas que se usará para el entrenamiento de un clasificador dicotómico. Revise la función de pérdida definida. en este ejemplo simple, el número de datos de entrenamiento es muy pequeño y fijo, por lo que no es necesario el factor $1/N$. Observe que la función de pérdida es exactamente menos la log verosimilitud de un modelo de Bernoulli." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# define la activación de salida\n", - "import numpy as np\n", - "\n", - "def sigmoid(x):\n", - " return 1.0/(1+np.exp(-x))\n", - "\n", - "# define la red neuronal\n", - "def net(params, x):\n", - " w1, b1, w2, b2 = params\n", - " hidden = np.tanh(np.dot(w1,x) + b1)\n", - " return (sigmoid(np.dot(w2,hidden) + b2))\n", - "\n", - "# función de pérdida de la entropía cruzada\n", - "def loss(params, x,y):\n", - " out = net(params,x)\n", - " cross_entropy = -y * np.log(out) - (1-y)*np.log(1-out) # esto es -log verosimilitud\n", - " return cross_entropy\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - }, - "tags": [] - }, - "source": [ - "## Referencias" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. [Alvaro Montenegro y Daniel Montenegro, Inteligencia Artificial y Aprendizaje Profundo, 2021](https://github.com/AprendizajeProfundo/Diplomado)\n", - "1. [Alvaro Montenegro, Daniel Montenegro y Oleg Jarma, Inteligencia Artificial y Aprendizaje Profundo Avanzado, 2022](https://github.com/AprendizajeProfundo/Diplomado-Avanzado)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Inicio/Cuadernos/Consideraciones b/Inicio/Cuadernos/Consideraciones deleted file mode 100644 index b0996a34..00000000 --- a/Inicio/Cuadernos/Consideraciones +++ /dev/null @@ -1,349 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Conociendo el Libro" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Para una mejor experiencia de aprendizaje, sugerimos tener bajo consideración las siguientes indicaciones y explorar las funcionalidades que presentamos a continuación." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Conociendo el libro\n", - "\n", - "Ponemos ver que el libro se divide en tres secciones:\n", - "\n", - "1. Índice general del libro\n", - "2. Página del libro\n", - "3. Contenido de la página" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "\n", - " \n", - " \n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Índice General\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Logo de Aprendizaje Profundo" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Puede hacer click en el **logo** de Aprendizaje Profundo para volver al inicio del libro." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Cuadro de Búsqueda" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En el **cuadro de búsqueda** podemos buscar palabras o conceptos dentro del libro.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Índice del libro" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "El índice de este libro es interactivo, puede acceder a cualquiera de las secciones y capítulos del libro haciendo click sobre el tema correspondiente" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Página del Libro\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Barra de opciones" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En esta sección encontramos cuatro íconos:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "\n", - " \n", - " \n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Si ubica el cursor sobre el primer ícono y se desplegarán tres opciones:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "\n", - " \n", - " \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Por favor active el botón `Live Code` para hacer las celdas de código ejecutables en la página en la que aparecen. Haga la prueba ejecutando el siguiente código ejecutando `run` después de activar `Live Code`" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Gracias por activarme\n" - ] - } - ], - "source": [ - "print(\"Gracias por activarme\" )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - ":::{admonition} Importante\n", - ":class: tip\n", - "Existen algunas librerías y funciones que no pueden ejecutarse correctamente en jupyter-book, cuando esto suceda, se le indicará que por favor las ejecute en `Colab` o `Binder` con los botones que llevan el mismo nombre.\n", - "\n", - ":::" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "El segundo ícono nos permite visualizar el libro en pantalla completa." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "\n", - " \n", - " \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "El tercer ícono nos permite acceder a alguna las opciones en Github.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "\n", - " \n", - " \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "- Con la opción `repository` puede acceder al [repositorio](https://github.com/AprendizajeProfundo/Libro-Fundamentos) de **Github** donde se encuentra alojado el libro.\n", - "- Si encuentra errores dentro del libro le agradecemos que nos lo haga saber por medio de `open issue`. Esto hará un *fork* del repositorio.\n", - "- Para hacernos sugerencias de edición del libro puede usar el botón `suggest edit`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Descargue la página que esté leyendo en formato `.md` o `.pdf` haciendo click en el cuarto ícono.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "\n", - " \n", - " \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Página del libro" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "En esta sección encontrará el contenido de nuestro libro.\n", - "Aquí podemos encontrarnos con diferentes *(opciones)*" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Cuando encuentre código, puede copiarlo en su portapapeles por medio del ícono que aparece en la parte superior derecha de cada celda de código.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "\n", - " \n", - " \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Hello friend. Hello friend?\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "::{admonition} Nota\n", - ":class: warning\n", - "La opción para copiar el código solo estará disponible cuando no tenga activado `live code`\n", - "::" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Al final de cada página encontrará la opción para ir a la página anterior del libro como a la siguiente página, respectivamente.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "\n", - " \n", - " \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Tabla de Contenido\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* En esta sección encontrará cada uno de los temas de la página que esté leyendo, así como cada uno de sus respectivos subtemas.\n" - ] - } - ], - "metadata": { - "interpreter": { - "hash": "2647ea34e536f865ab67ff9ddee7fd78773d956cec0cab53c79b32cd10da5d83" - }, - "kernelspec": { - "display_name": "Python 3.9.3 64-bit", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.3" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/readme.txt b/readme.txt deleted file mode 100644 index 00ce613a..00000000 --- a/readme.txt +++ /dev/null @@ -1 +0,0 @@ -Imagenes de mapas auto-organizados