-
Notifications
You must be signed in to change notification settings - Fork 0
/
Measurement.py
575 lines (516 loc) · 27.1 KB
/
Measurement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import numpy as np
import numbers
import scipy.signal as s
def cyclic_correlate(a: np.ndarray, v: np.ndarray):
'''
description:
calculate the cyclic auto correlation funtion.
The length of the output will be the same as the length of the input
inputs:
a - The first function to be correlated. The lenth of
this function is the same as the lenth of the output
function
v - The second function to be correlated.
returns:
corr_function - The cyclically calculated auto correlation function
'''
a_size = np.shape(a)[0]
begin_of_seq = int(a_size/2)
end_of_seq = begin_of_seq + a_size-1
begin_of_constructed_array = begin_of_seq-int(len(v)/2)
end_of_constructed_array = end_of_seq+int(len(v)/2)+len(v)%2
constructed_array = np.tile(np.fft.fftshift(a), 2)\
[begin_of_constructed_array:end_of_constructed_array]
return np.correlate(constructed_array, v, mode = "valid")
def values_above(sequence: np.ndarray, threshold: numbers.Number):
'''
descrpition:
Find the longest consecutive chain of values above a threshold
in a sequence, containing the middle element
inputs:
sequence - The array of datapoints
threshold - The absolute threshold, the sequence is
tested against
returns:
max_val - the longest consecutive chain of ones
in the sequence
'''
#reorder array and mark values above the threhold as 1 and below as 0
bool_sequence = np.fft.fftshift(sequence > threshold)
count_poitive = 0
count_negative = 0
middle = int(len(sequence)/2)
#count values to the right of the maximum value
for idx, s in enumerate(bool_sequence):
if s <= threshold or idx == middle:
count_poitive = idx
break
#flip the array
bool_sequence = np.flip(bool_sequence)
#count values to the left of the maximum value
for idx, s in enumerate(bool_sequence):
if s <= threshold or idx == len(sequence)-middle:
count_negative = idx
break
#return the comined counting sequences
return count_poitive+count_negative
class Rx_power:
def __init__(self, power_dBFS: np.ndarray, time: np.ndarray):
'''
description:
Constructor of Rx_power class
inputs:
power_dBFS - A sequence of power level
time - The time axis that belong to the power sequence
'''
self.power_dBFS = power_dBFS
self.time = time
self.average = None
self.min = None
self.max = None
def set_avg_min_max(self):
'''
description:
Find average, min and max vaues of the sequence of power levels
'''
self.average = 10* np.log10(np.mean(10**(self.power_dBFS/10)))
self.min = np.min(self.power_dBFS)
self.max = np.max(self.power_dBFS)
class Impulse_response:
def __init__(self, h: np.ndarray, time: np.ndarray, delay : np.ndarray):
'''
description:
Constructor of Impulse_response class
inputs:
h - A 2D-sequence with the values of the impulse response
time - The time axis of h
delay - The delay axis of h
'''
self.h = h
self.time = time
self.delay = delay
class Transfer_function:
def __init__(self, T: np.ndarray, time: np.ndarray, frequency: np.ndarray):
'''
description:
Constructor of Transfer_function class
inputs:
T - A 2D-sequence with the values of the transfer function
time - The time axis of T
frequency - The frequency axis of T
'''
self.T = T
self.time = time
self.frequency = frequency
class Coherence_bandwidth:
def __init__(self, B_coh_classic: np.ndarray, B_coh_cyclic: np.ndarray, time: np.ndarray, threshold: numbers.Number):
'''
description:
Constructor of Coherence_bandwidth class
inputs:
B_coh_classic - The sequence of coherence bandwidths over time with classic correlation method
B_coh_cyclic - The sequence of coherence bandwidths over time with cyclic correlation method
time - The time axis of the coherence bandwidths
threshold - Threshold level the coherence bandwiths have been evaluated at
'''
self.B_coh_classic = B_coh_classic
self.B_coh_cyclic = B_coh_cyclic
self.time = time
self.treshold_level = threshold
self.average_classic = None
self.min_classic = None
self.max_classic = None
self.average_cyclic = None
self.min_cyclic = None
self.max_cyclic = None
def set_cyclic(self, B_coh_cyclic: np.ndarray, time: np.ndarray, threshold: numbers.Number):
'''
description:
set the coherence bandwith computed with cyclic correlation method
inputs:
B_coh_cyclic - A sequence with the coherence bandwidth values
time - The time axis of the coherence bandwidths
threshold - The threshold level of the coherence bandwidths
'''
self.B_coh_cyclic = B_coh_cyclic
self.time = time
self.treshold_level = threshold
def set_classic(self, B_coh_classic: np.ndarray, time: np.ndarray, threshold: numbers.Number):
'''
description:
set the coherence bandwith computed with classic correlation method
inputs:
B_coh_classic - A sequence with the coherence bandwidth values
time - The time axis of the coherence bandwidths
threshold - The threshold level of the coherence bandwidths
'''
self.B_coh_classic = B_coh_classic
self.time = time
self.treshold_level = threshold
def set_avg_min_max_cyclic(self):
'''
description:
Find average, min and max vaues of the sequence of coherence bandwidths with the cyclic correlation method
'''
self.average_cyclic = np.mean(self.B_coh_cyclic)
self.min_cyclic = np.min(self.B_coh_cyclic)
self.max_cyclic = np.max(self.B_coh_cyclic)
def set_avg_min_max_classic(self):
'''
description:
Find average, min and max vaues of the sequence of coherence bandwidths with the classic correlation method
'''
self.average_classic = np.mean(self.B_coh_classic)
self.min_classic = np.min(self.B_coh_classic)
self.max_classic = np.max(self.B_coh_classic)
class Coherence_time:
def __init__(self, T_coh_classic: np.ndarray, T_coh_cyclic: np.ndarray,time: np.ndarray, \
threshold: numbers.Number, windowsize_in_sec: numbers.Number, \
points_per_window: numbers.Number):
'''
description:
Constructor of Coherence_time class
inputs:
T_coh_classic - A sequence of coherence times with classic correlation method
T_coh_cyclic - A sequence of coherence times with cyclic correlation method
time - The time axis of coherence times
threshold - The correlation threshold leve of the coherence times
windowsize_in_sec- determines the size of the window, that is used to
calculate the moving average function. This
parameter is only in use in the cyclic method
points_per_window- Determines the number of points of the T_coh
function. The number of points is the number
of windows that fit inside the function side
by side, muliplied with points_per_window
'''
self.T_coh_classic = T_coh_classic
self.T_coh_cyclic = T_coh_cyclic
self.time = time
self.thresold_level = threshold
self.windowsize_in_sec = windowsize_in_sec
self.points_per_window = points_per_window
self.average_classic = None
self.min_classic = None
self.max_classic = None
self.average_cyclic = None
self.min_cyclic = None
self.max_cyclic = None
def set_cyclic(self, T_coh_cyclic: np.ndarray,time: np.ndarray, \
threshold: numbers.Number, windowsize_in_sec: numbers.Number, \
points_per_window: numbers.Number):
'''
description:
set the coherence time for the cyclic correlation method
inputs:
T_coh_cyclic - A sequence of coherence times with cyclic correlation method
time - The time axis of coherence times
threshold - The correlation threshold leve of the coherence times
windowsize_in_sec- Determines the size of the window, that is used to
calculate the moving average function. This
parameter is only in use in the cyclic method
points_per_window- Determines the number of points of the T_coh
function. The number of points is the number
of windows that fit inside the function side
by side, muliplied with points_per_window
'''
self.T_coh_cyclic = T_coh_cyclic
self.time = time
self.thresold_level = threshold
self.windowsize_in_sec = windowsize_in_sec
self.points_per_window = points_per_window
def set_classic(self, T_coh_classic: np.ndarray, time: np.ndarray, \
threshold: numbers.Number, windowsize_in_sec: numbers.Number, \
points_per_window: numbers.Number):
'''
description:
set the coherence time for the classic correlation method
inputs:
T_coh_classic - A sequence of coherence times with classic correlation method
time - The time axis of coherence times
threshold - The correlation threshold leve of the coherence times
windowsize_in_sec- Determines the size of the window, that is used to
calculate the moving average function. This
parameter is only in use in the cyclic method
points_per_window- Determines the number of points of the T_coh
function. The number of points is the number
of windows that fit inside the function side
by side, muliplied with points_per_window
'''
self.T_coh_classic = T_coh_classic
self.time = time
self.thresold_level = threshold
self.windowsize_in_sec = windowsize_in_sec
self.points_per_window = points_per_window
def set_avg_min_max_cyclic(self):
'''
description:
Find average, min and max vaues of the sequence of coherence times with the cyclic correlation method
'''
self.average_cyclic = np.mean(self.T_coh_cyclic)
self.min_cyclic = np.min(self.T_coh_cyclic)
self.max_cyclic = np.max(self.T_coh_cyclic)
def set_avg_min_max_classic(self):
'''
description:
Find average, min and max vaues of the sequence of coherence times with the classic correlation method
'''
self.average_classic = np.mean(self.T_coh_classic)
self.min_classic = np.min(self.T_coh_classic)
self.max_classic = np.max(self.T_coh_classic)
class Measurement:
def __init__(self, name: str, capture_date: str, capture_time: str, raw_data: np.ndarray, \
capture_interval_in_seconds: numbers.Number, batchsize: numbers.Number, \
fs_in_Hz: numbers.Number, fc_in_Hz: numbers.Number, zadoff_chu_sequence: np.ndarray):
'''
description:
Construcor of Measurement class
inputs:
name - Name of the measurement
capture_date - Date of the capture
capture_time - Time of the capture
raw_data - A sequence containing the raw measurement data
capture_interval_in_seconds - The used capture interval in seconds
batchsize - The size of a single batch in samples
fs_in_Hz - The sampling frequency in Hz
fc_in_Hz - The carrier frequency in Hz
zadoff_chu_sequence - A sequence containing the sent zadoff-chu-sequence
'''
self.name = name
self.caputre_date = capture_date
self.capture_time = capture_time
self.raw_data = raw_data
self.capture_interval = capture_interval_in_seconds
self.batchsize = batchsize
self.fs = fs_in_Hz
self.fc = fc_in_Hz
self.zadoff_chu_sequence = zadoff_chu_sequence
self.length_zadoff_chu_sequence = np.shape(self.zadoff_chu_sequence)[0]
if not np.shape(self.raw_data)[0] % self.batchsize == 0:
raise ValueError("The length of the captured measutement is not a multiple of the batchsize. \
It is likely that something went wrong with the measutement!")
self.number_of_batches = int(round(np.shape(self.raw_data)[0]/self.batchsize))
self.batches = np.reshape(self.raw_data, (self.number_of_batches, self.batchsize))
self.dft_resolution = self.fs/self.length_zadoff_chu_sequence
self.rx_power = Rx_power(power_dBFS=None, time=None)
self.impulse_response = Impulse_response(h=None, time=None, delay=None)
self.transfer_function = Transfer_function(T=None, time=None, frequency=None)
self.coherence_bandwidths = Coherence_bandwidth(B_coh_classic=None, time=None, threshold=None, B_coh_cyclic=None)
self.coherence_times = Coherence_time(T_coh_classic=None, time=None, threshold=None, T_coh_cyclic=None, windowsize_in_sec=None, points_per_window=None)
self.correlation_coefficient_B_coh_rx_power_classic = None
self.correlation_coefficient_B_coh_rx_power_cyclic = None
@classmethod
def from_filepath(cls, path_to_file: str, path_to_zc_sequence: str):
'''
description:
Alternative constructor that uses a file path to create the class. The name of the file must contain the meta data of the measurement
in the following format: { Name }_{ Date }_{ Time }_{ fc }MHz_{ fs }MSps_{ capture_interval }ms.dat
inputs:
path_to_file - the path to the file containing the raw measurement data
path_to_zc_sequence - the path to the file containing the sent zadoff-chu-sequence
'''
try:
filename = path_to_file.split("/")[-1]
str = filename.split('_')
name_ = str[0]
date_ = str[1]
time_ = str[2]
fc_ = int( str[3][0:str[3].find('MHz')] ) * 1e6
fs_ = int( str[4][0:str[4].find('MSps')] ) * 1e6
batchsize_ = int( str[5][0:str[5].find('S')] )
capture_interval_ = int( str[6][0:str[6].find('ms')] ) * 1e-3
raw_data = np.fromfile(open(f"{path_to_file}"), dtype=np.complex64)
zadoff_chu_sequence=np.load(f'{path_to_zc_sequence}')
return cls(name=name_, capture_date=date_, capture_time=time_, raw_data=raw_data,\
capture_interval_in_seconds=capture_interval_, batchsize=batchsize_, \
fs_in_Hz=fs_, fc_in_Hz=fc_, zadoff_chu_sequence=zadoff_chu_sequence)
except(IndexError):
raise NameError (f"Illegal file name detected: '{filename}'."+ " Format of file should be: { Name }_{ Date }_{ Time }_{ fc }MHz_{ fs }MSps_{ capture_interval }ms.dat")
def compute_rx_power(self):
'''
description:
computes the recieved power in dBFS from the raw measurement data
'''
#compute recieved power in a linear scale
recieved_power = np.sum(abs(self.batches**2), axis = 1) / self.batchsize
#convert to log scale
power_dBFS = 10 * np.log10(recieved_power)
#create time axis
time = np.array([i*self.capture_interval for i in range(self.number_of_batches)])
self.rx_power = Rx_power(power_dBFS, time)
self.rx_power.set_avg_min_max()
def compute_impulse_response(self):
'''
description:
compute the impulse response from the raw measurement data.
A sampling time offset correction(STO correction) is performed for more accurate results.
'''
##correlate batches with zc sequence
corr = np.zeros(np.shape(self.batches), dtype = np.complex64)
for idx,c in enumerate(self.batches):
# correlate every batch with zc-sequence
c = cyclic_correlate(c, self.zadoff_chu_sequence)/self.batchsize
corr[idx] = c
# rearrange into 3D-array
corr = np.reshape(corr, (self.number_of_batches,
int(round(self.batchsize/self.length_zadoff_chu_sequence )), self.length_zadoff_chu_sequence))
##sto correction
upsample_factor = 10
corrected_corr = np.zeros(np.shape(corr), dtype =np.complex64)
for idx_batch, batch in enumerate(corr.copy()): # for every batch:
for idx_seq, seq in enumerate(batch): #for every sequence in a batch:
# Perform sinc interpolation
upsampled_sequence = s.resample(seq, self.length_zadoff_chu_sequence * upsample_factor)
offset = np.argmax(abs(upsampled_sequence)) % upsample_factor
#create axis for downsampling
resampled_axis = np.array([(offset + i*upsample_factor) \
% len(upsampled_sequence-1) for i in range(self.length_zadoff_chu_sequence)])
# resample the data
resampled_sequence = upsampled_sequence[resampled_axis]
# crop the function at the end, if its too long
if len(resampled_sequence) >self.length_zadoff_chu_sequence:
resampled_sequence = resampled_sequence[:self.length_zadoff_chu_sequence]
# add 0s to the beginning of the function, if it's too short
if len(resampled_sequence) < self.length_zadoff_chu_sequence:
resampled_sequence = np.pad(resampled_sequence, \
(0,self.length_zadoff_chu_sequence - len(resampled_sequence)), 'constant')
corrected_corr[idx_batch][idx_seq] = resampled_sequence
alignment_sequence = np.zeros(self.length_zadoff_chu_sequence, dtype = np.complex64)
# Allign all maximums of the impulse responses
for idx_batch, batch in enumerate(corrected_corr.copy()):
for idx_response, response in enumerate(batch):
if idx_response == 0:
alignment_sequence = response
corrected_corr[idx_batch, idx_response] = response
continue
cross_corr = abs(cyclic_correlate(alignment_sequence, response))
shift = np.argmax(cross_corr)
response = np.roll(response, int(self.length_zadoff_chu_sequence/2)+shift)
corrected_corr[idx_batch, idx_response] = response
## get impulse response
# average over the multiple impulse responses
h = np.mean(corrected_corr, axis = 1)
#data allocation
corrected_h = np.zeros(np.shape(h),dtype = np.complex64)
alignment_sequence = np.zeros(self.length_zadoff_chu_sequence ,dtype = np.complex64)
#pick a batch and allign the rest to this batch
for idx_h, h_ in enumerate(h):
if idx_h == 0:
alignment_sequence = h_
corrected_h[idx_h] = h_
continue
cross_corr = abs(cyclic_correlate(alignment_sequence, h_))
shift = np.argmax(cross_corr)
h_ = np.roll(h_, int(self.length_zadoff_chu_sequence/2)+shift)
corrected_h[idx_h] = h_
h = corrected_h
time = np.array([i*self.capture_interval for i in range(self.number_of_batches)])
delay = np.array([i/self.fs for i in range(np.shape(h)[1])])
self.impulse_response = Impulse_response(h=h, time=time, delay=delay)
def compute_transfer_function(self):
'''
description:
Compute the transfer function from the impulse response
'''
# timevariant transfer function
T = np.zeros(np.shape(self.impulse_response.h),dtype = np.complex64)
for idx_h, h_ in enumerate(self.impulse_response.h):
T[idx_h] = np.fft.fftshift(np.fft.fft(h_, norm = "ortho")) # fft
# cut away lowpass effect
self.transfer_function.T = T[:,3:-3]
self.transfer_function.time = np.array([i*self.capture_interval for i in range(self.number_of_batches)])
cutoff_frequency = (1 - ( (1-np.shape(self.transfer_function.T)[1]) / np.shape(self.impulse_response.h)[1] ) *self.fs)/2
self.transfer_function.frequency = np.linspace( -cutoff_frequency, cutoff_frequency, np.shape(self.transfer_function.T)[1])
def compute_coherence_bandwidth(self, threshold, correlation_method):
'''
description:
compute the coherence bandwidth over time from the transfer function
inputs:
threshold - The threshold value as a factor to the maximum
value of the autocorrelation function up
to which the function is still considered coherent
correlation_method - calculate B_coh either with autocorrelation
function ("classic") or the cyclic corelation
function ("cyclic")
'''
if not 0<=threshold<=1:
raise ValueError("When calculating B_coh: threshold value \
has to be between 0 and 1")
if not correlation_method in ["classic", "cyclic"]:
raise ValueError("Correlation_method is required to either be 'classic' or 'cyclic'!")
#data allocation
B_coh = np.zeros(np.shape(self.transfer_function.T)[0])
for idx_t, T_ in enumerate(self.transfer_function.T):
freq_corr_function = []
#compute frequency correlation function for a point in time
if correlation_method == "cyclic":
freq_corr_function = cyclic_correlate(T_, T_)
if correlation_method == "classic":
freq_corr_function = np.correlate(T_,T_,mode = "full")
#max value of frequency correlation function
freq_corr_max = abs( np.max(freq_corr_function) )
#counts all values above the given threshold level
bandwidth_count = values_above(abs(freq_corr_function), \
threshold * freq_corr_max)
#computes the coherence bandwidth
B_coh[idx_t] = bandwidth_count/2 * self.dft_resolution
time = np.array([i*self.capture_interval for i in range(self.number_of_batches)])
if correlation_method == "classic":
self.coherence_bandwidths.set_classic(B_coh_classic=B_coh, time=time, threshold=threshold)
self.coherence_bandwidths.set_avg_min_max_classic()
else:
self.coherence_bandwidths.set_cyclic(B_coh_cyclic=B_coh, time=time, threshold=threshold)
self.coherence_bandwidths.set_avg_min_max_cyclic()
def compute_coherence_time(self, threshold, correlation_method, windowsize_in_sec, points_per_window):
'''
description:
compute the coherence time over time from the transfer function
inputs:
threshold - The threshold value as a factor to the maximum
value of the autocorrelation function up
to which the function is still considered coherent
correlation_method - calculate T_coh either with autocorrelation
function("classic") or the cyclic corelation
function ("cyclic")
windowsize_in_sec - determines the size of the window, that is used to
calculate the moving average function and that
slices the transfer function into parts
points_per_window - Determines the number of points of the T_coh
function. The number of points is the number
of windows that fit inside the function side
by side, muliplied with points_per_window
'''
if not 0<=threshold<=1:
raise ValueError("When calculating B_coh: threshold value \
has to be between 0 and 1")
if not correlation_method in ["classic", "cyclic"]:
raise ValueError("Correlation_method is required to either be 'classic' or 'cyclic'!")
batches_in_window = int(round(windowsize_in_sec/self.capture_interval))
T = np.swapaxes(self.transfer_function.T,0,1)
increment = batches_in_window/points_per_window
evaluation_points = np.array([ int(round(i*increment)) \
for i in range(int((self.number_of_batches-batches_in_window)/increment)+1)])
T_coh = np.zeros(len(evaluation_points))
for idx_t, t in enumerate(evaluation_points):
T_coh_f = np.zeros(np.shape(T)[0])
for idx_f, f in enumerate(T):
time_corr_max = 0
time_corr_function = []
if correlation_method == "classic":
time_corr_function = np.correlate( f[t:t+batches_in_window], \
f[t:t+batches_in_window], mode = "full" )
time_corr_max = abs(np.max(time_corr_function))
if correlation_method == "cyclic":
time_corr_function = cyclic_correlate(f[t:t+batches_in_window],\
f[t:t+batches_in_window])
time_corr_max = abs( np.max(time_corr_function) )
time_count = values_above(abs(time_corr_function),\
threshold * time_corr_max)
T_coh_f[idx_f]=time_count/2*self.capture_interval
T_coh[idx_t] = np.mean(T_coh_f)
time = evaluation_points * self.capture_interval + 0.5*windowsize_in_sec*np.ones(np.shape(evaluation_points))
if correlation_method == "classic":
self.coherence_times.set_classic(T_coh_classic=T_coh, time=time, threshold=threshold, windowsize_in_sec=windowsize_in_sec, points_per_window=points_per_window )
self.coherence_times.set_avg_min_max_classic()
else:
self.coherence_times.set_cyclic(T_coh_cyclic=T_coh, time=time, threshold=threshold, windowsize_in_sec=windowsize_in_sec, points_per_window=points_per_window )
self.coherence_times.set_avg_min_max_cyclic()