-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumDerivative24.m
53 lines (48 loc) · 2.07 KB
/
numDerivative24.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
function [ ddy ] = numDerivative24(x, y)
% numDerivative14 dy = numDerivative14(x, y)
% calculate 2 order numerical derivative with 4 order uncertainty
%
% Copyright 2017 Wenjie Liao
%
% Licensed under the Apache License, Version 2.0 (the "License");
% you may not use this file except in compliance with the License.
% You may obtain a copy of the License at
%
% http://www.apache.org/licenses/LICENSE-2.0
%
% Unless required by applicable law or agreed to in writing, software
% distributed under the License is distributed on an "AS IS" BASIS,
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
% See the License for the specific language governing permissions and
% limitations under the License.
%---------------------------------------------------%
% Basic input data processing
x = isValidData(obj, x, 'increasing');
y = isValidData(obj, y);
[x, y] = isSameLength(obj, x, y);
flag_even = isEvenlyDistributed(x);
if ~flag_even
error('Invalid Data Type.');
end
dh = mean(diff(x));
nData = length(x);
%---------------------------------------------------%
% First Order Direct Numerical Derivative Functions
centralFiniteDiff2 = @(y) (-1*y(1) + 16*y(2) - 30*y(3) + 16*y(4) - 1*y(5))./ (12.*dh.^2);
forwardFiniteDiff2 = @(y) (35*y(1) - 104*y(2) + 114*y(3) - 56*y(4) + 11*y(5))./ (12.*dh.^2);
backwardFiniteDiff2 = @(y) (11*y(1) - 56*y(2) + 114*y(3) - 104*y(4) + 35*y(5))./ (12.*dh.^2);
%---------------------------------------------------%
% Derivatie Calculation
ddy = zeros([nData,1]);
for idx = 1 : 1 : nData
if (idx>=3 && idx<=(nData-2))
ddy(idx)= centralFiniteDiff2(y(idx-2 : idx+2));
elseif (idx<=2)
ddy(idx)= forwardFiniteDiff2(y(idx : idx+4));
elseif (idx>=(nData-2))
ddy(idx)= backwardFiniteDiff2(y(idx-4 : idx));
else
error('\nIndex problem happened when calculating numerical differentiation\n');
end
end
end