This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbitset.h
840 lines (742 loc) · 26.1 KB
/
bitset.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Various utility functions on bitsets.
#ifndef OR_TOOLS_UTIL_BITSET_H_
#define OR_TOOLS_UTIL_BITSET_H_
#include <string.h>
#include <algorithm>
#include <vector>
#include "ortools/base/basictypes.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
namespace operations_research {
// Basic bit operations
// Useful constants: word and double word will all bits set.
static const uint64 kAllBits64 = GG_ULONGLONG(0xFFFFFFFFFFFFFFFF);
static const uint64 kAllBitsButLsb64 = GG_ULONGLONG(0xFFFFFFFFFFFFFFFE);
static const uint32 kAllBits32 = 0xFFFFFFFFU;
// Returns a word with only bit pos set.
inline uint64 OneBit64(int pos) { return GG_ULONGLONG(1) << pos; }
inline uint32 OneBit32(int pos) { return 1U << pos; }
// Returns the number of bits set in n.
inline uint64 BitCount64(uint64 n) {
const uint64 m1 = GG_ULONGLONG(0x5555555555555555);
const uint64 m2 = GG_ULONGLONG(0x3333333333333333);
const uint64 m4 = GG_ULONGLONG(0x0F0F0F0F0F0F0F0F);
const uint64 h01 = GG_ULONGLONG(0x0101010101010101);
n -= (n >> 1) & m1;
n = (n & m2) + ((n >> 2) & m2);
n = (n + (n >> 4)) & m4;
n = (n * h01) >> 56;
return n;
}
inline uint32 BitCount32(uint32 n) {
n -= (n >> 1) & 0x55555555UL;
n = (n & 0x33333333) + ((n >> 2) & 0x33333333UL);
n = (n + (n >> 4)) & 0x0F0F0F0FUL;
n = n + (n >> 8);
n = n + (n >> 16);
return n & 0x0000003FUL;
}
// Returns a word with only the least significant bit of n set.
inline uint64 LeastSignificantBitWord64(uint64 n) { return n & ~(n - 1); }
inline uint32 LeastSignificantBitWord32(uint32 n) { return n & ~(n - 1); }
// Returns the least significant bit position in n.
// Discussion around lsb computation:
// De Bruijn is almost as fast as the bsr/bsf-instruction-based intrinsics.
// Both are always much faster than the Default algorithm.
#define USE_DEBRUIJN true // if true, use de Bruijn bit forward scanner.
#if defined(__GNUC__) || defined(__llvm__)
#define USE_FAST_LEAST_SIGNIFICANT_BIT true // if true, use fast lsb.
#endif
#if defined(USE_FAST_LEAST_SIGNIFICANT_BIT)
inline int LeastSignificantBitPosition64Fast(uint64 n) {
return n == 0 ? 0 : __builtin_ctzll(n);
}
#endif
inline int LeastSignificantBitPosition64DeBruijn(uint64 n) {
static const uint64 kSeq = GG_ULONGLONG(0x0218a392dd5fb34f);
static const int kTab[64] = {
// initialized by 'kTab[(kSeq << i) >> 58] = i
0, 1, 2, 7, 3, 13, 8, 19, 4, 25, 14, 28, 9, 52, 20, 58,
5, 17, 26, 56, 15, 38, 29, 40, 10, 49, 53, 31, 21, 34, 59, 42,
63, 6, 12, 18, 24, 27, 51, 57, 16, 55, 37, 39, 48, 30, 33, 41,
62, 11, 23, 50, 54, 36, 47, 32, 61, 22, 35, 46, 60, 45, 44, 43,
};
return kTab[((n & (~n + 1)) * kSeq) >> 58];
}
inline int LeastSignificantBitPosition64Default(uint64 n) {
if (n == 0) return 0;
int pos = 63;
if (n & 0x00000000FFFFFFFFLL) {
pos -= 32;
} else {
n >>= 32;
}
if (n & 0x000000000000FFFFLL) {
pos -= 16;
} else {
n >>= 16;
}
if (n & 0x00000000000000FFLL) {
pos -= 8;
} else {
n >>= 8;
}
if (n & 0x000000000000000FLL) {
pos -= 4;
} else {
n >>= 4;
}
if (n & 0x0000000000000003LL) {
pos -= 2;
} else {
n >>= 2;
}
if (n & 0x0000000000000001LL) {
pos -= 1;
}
return pos;
}
inline int LeastSignificantBitPosition64(uint64 n) {
DCHECK_NE(n, 0);
#ifdef USE_FAST_LEAST_SIGNIFICANT_BIT
return LeastSignificantBitPosition64Fast(n);
#elif defined(USE_DEBRUIJN)
return LeastSignificantBitPosition64DeBruijn(n);
#else
return LeastSignificantBitPosition64Default(n);
#endif
}
#if defined(USE_FAST_LEAST_SIGNIFICANT_BIT)
inline int LeastSignificantBitPosition32Fast(uint32 n) {
return n == 0 ? 0 : __builtin_ctzl(n);
}
#endif
inline int LeastSignificantBitPosition32DeBruijn(uint32 n) {
static const uint32 kSeq = 0x077CB531U; // de Bruijn sequence
static const int kTab[32] = {// initialized by 'kTab[(kSeq << i) >> 27] = i
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20,
15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19,
16, 7, 26, 12, 18, 6, 11, 5, 10, 9};
return kTab[((n & (~n + 1)) * kSeq) >> 27];
}
inline int LeastSignificantBitPosition32Default(uint32 n) {
if (n == 0) return 0;
int pos = 31;
if (n & 0x0000FFFFL) {
pos -= 16;
} else {
n >>= 16;
}
if (n & 0x000000FFL) {
pos -= 8;
} else {
n >>= 8;
}
if (n & 0x0000000FL) {
pos -= 4;
} else {
n >>= 4;
}
if (n & 0x00000003L) {
pos -= 2;
} else {
n >>= 2;
}
if (n & 0x00000001L) {
pos -= 1;
}
return pos;
}
inline int LeastSignificantBitPosition32(uint32 n) {
DCHECK_NE(n, 0);
#ifdef USE_FAST_LEAST_SIGNIFICANT_BIT
return LeastSignificantBitPosition32Fast(n);
#elif defined(USE_DEBRUIJN)
return LeastSignificantBitPosition32DeBruijn(n);
#else
return LeastSignificantBitPosition32Default(n);
#endif
}
// Returns the most significant bit position in n.
#if USE_FAST_LEAST_SIGNIFICANT_BIT
inline int MostSignificantBitPosition64Fast(uint64 n) {
// __builtin_clzll(1) should always return 63. There is no penalty in
// using offset, and the code looks more like its uint32 counterpart.
const int offset = __builtin_clzll(1);
return n == 0 ? 0 : (offset - __builtin_clzll(n));
}
#endif
inline int MostSignificantBitPosition64Default(uint64 n) {
int b = 0;
if (0 != (n & (kAllBits64 << (1 << 5)))) {
b |= (1 << 5);
n >>= (1 << 5);
}
if (0 != (n & (kAllBits64 << (1 << 4)))) {
b |= (1 << 4);
n >>= (1 << 4);
}
if (0 != (n & (kAllBits64 << (1 << 3)))) {
b |= (1 << 3);
n >>= (1 << 3);
}
if (0 != (n & (kAllBits64 << (1 << 2)))) {
b |= (1 << 2);
n >>= (1 << 2);
}
if (0 != (n & (kAllBits64 << (1 << 1)))) {
b |= (1 << 1);
n >>= (1 << 1);
}
if (0 != (n & (kAllBits64 << (1 << 0)))) {
b |= (1 << 0);
}
return b;
}
inline int MostSignificantBitPosition64(uint64 n) {
#ifdef USE_FAST_LEAST_SIGNIFICANT_BIT
return MostSignificantBitPosition64Fast(n);
#else
return MostSignificantBitPosition64Default(n);
#endif
}
#if USE_FAST_LEAST_SIGNIFICANT_BIT
inline int MostSignificantBitPosition32Fast(uint32 n) {
// The constant here depends on whether we are on a 32-bit or 64-bit machine.
// __builtin_clzl(1) returns 63 on a 64-bit machine and 31 on a 32-bit
// machine.
const int offset = __builtin_clzl(1);
return n == 0 ? 0 : (offset - __builtin_clzl(n));
}
#endif
inline int MostSignificantBitPosition32Default(uint32 n) {
int b = 0;
if (0 != (n & (kAllBits32 << (1 << 4)))) {
b |= (1 << 4);
n >>= (1 << 4);
}
if (0 != (n & (kAllBits32 << (1 << 3)))) {
b |= (1 << 3);
n >>= (1 << 3);
}
if (0 != (n & (kAllBits32 << (1 << 2)))) {
b |= (1 << 2);
n >>= (1 << 2);
}
if (0 != (n & (kAllBits32 << (1 << 1)))) {
b |= (1 << 1);
n >>= (1 << 1);
}
if (0 != (n & (kAllBits32 << (1 << 0)))) {
b |= (1 << 0);
}
return b;
}
inline int MostSignificantBitPosition32(uint32 n) {
#ifdef USE_FAST_LEAST_SIGNIFICANT_BIT
return MostSignificantBitPosition32Fast(n);
#else
return MostSignificantBitPosition32Default(n);
#endif
}
#undef USE_DEBRUIJN
#undef USE_FAST_LEAST_SIGNIFICANT_BIT
// Returns a word with bits from s to e set.
inline uint64 OneRange64(uint64 s, uint64 e) {
DCHECK_LE(s, 63);
DCHECK_LE(e, 63);
DCHECK_LE(s, e);
return (kAllBits64 << s) ^ ((kAllBits64 - 1) << e);
}
inline uint32 OneRange32(uint32 s, uint32 e) {
DCHECK_LE(s, 31);
DCHECK_LE(e, 31);
DCHECK_LE(s, e);
return (kAllBits32 << s) ^ ((kAllBits32 - 1) << e);
}
// Returns a word with s least significant bits unset.
inline uint64 IntervalUp64(uint64 s) {
DCHECK_LE(s, 63);
return kAllBits64 << s;
}
inline uint32 IntervalUp32(uint32 s) {
DCHECK_LE(s, 31);
return kAllBits32 << s;
}
// Returns a word with the s most significant bits unset.
inline uint64 IntervalDown64(uint64 s) {
DCHECK_LE(s, 63);
return kAllBits64 >> (63 - s);
}
inline uint32 IntervalDown32(uint32 s) {
DCHECK_LE(s, 31);
return kAllBits32 >> (31 - s);
}
// ----- Bitset operators -----
// Bitset: array of uint32/uint64 words
// Bit operators used to manipulates bitsets.
// Returns the bit number in the word computed by BitOffsetXX,
// corresponding to the bit at position pos in the bitset.
// Note: '& 63' is faster than '% 64'
// TODO(user): rename BitPos and BitOffset to something more understandable.
inline uint32 BitPos64(uint64 pos) { return (pos & 63); }
inline uint32 BitPos32(uint32 pos) { return (pos & 31); }
// Returns the word number corresponding to bit number pos.
inline uint64 BitOffset64(uint64 pos) { return (pos >> 6); }
inline uint32 BitOffset32(uint32 pos) { return (pos >> 5); }
// Returns the number of words needed to store size bits.
inline uint64 BitLength64(uint64 size) { return ((size + 63) >> 6); }
inline uint32 BitLength32(uint32 size) { return ((size + 31) >> 5); }
// Returns the bit number in the bitset of the first bit of word number v.
inline uint64 BitShift64(uint64 v) { return v << 6; }
inline uint32 BitShift32(uint32 v) { return v << 5; }
// Returns true if the bit pos is set in bitset.
inline bool IsBitSet64(const uint64* const bitset, uint64 pos) {
return (bitset[BitOffset64(pos)] & OneBit64(BitPos64(pos)));
}
inline bool IsBitSet32(const uint32* const bitset, uint32 pos) {
return (bitset[BitOffset32(pos)] & OneBit32(BitPos32(pos)));
}
// Sets the bit pos to true in bitset.
inline void SetBit64(uint64* const bitset, uint64 pos) {
bitset[BitOffset64(pos)] |= OneBit64(BitPos64(pos));
}
inline void SetBit32(uint32* const bitset, uint32 pos) {
bitset[BitOffset32(pos)] |= OneBit32(BitPos32(pos));
}
// Sets the bit pos to false in bitset.
inline void ClearBit64(uint64* const bitset, uint64 pos) {
bitset[BitOffset64(pos)] &= ~OneBit64(BitPos64(pos));
}
inline void ClearBit32(uint32* const bitset, uint32 pos) {
bitset[BitOffset32(pos)] &= ~OneBit32(BitPos32(pos));
}
// Returns the number of bits set in bitset between positions start and end.
uint64 BitCountRange64(const uint64* const bitset, uint64 start, uint64 end);
uint32 BitCountRange32(const uint32* const bitset, uint32 start, uint32 end);
// Returns true if no bits are set in bitset between start and end.
bool IsEmptyRange64(const uint64* const bitset, uint64 start, uint64 end);
bool IsEmptyRange32(const uint32* const bitset, uint32 start, uint32 end);
// Returns the first bit set in bitset between start and max_bit.
int64 LeastSignificantBitPosition64(const uint64* const bitset, uint64 start,
uint64 end);
int LeastSignificantBitPosition32(const uint32* const bitset, uint32 start,
uint32 end);
// Returns the last bit set in bitset between min_bit and start.
int64 MostSignificantBitPosition64(const uint64* const bitset, uint64 start,
uint64 end);
int MostSignificantBitPosition32(const uint32* const bitset, uint32 start,
uint32 end);
// Unsafe versions of the functions above where respectively end and start
// are supposed to be set.
int64 UnsafeLeastSignificantBitPosition64(const uint64* const bitset,
uint64 start, uint64 end);
int32 UnsafeLeastSignificantBitPosition32(const uint32* const bitset,
uint32 start, uint32 end);
int64 UnsafeMostSignificantBitPosition64(const uint64* const bitset,
uint64 start, uint64 end);
int32 UnsafeMostSignificantBitPosition32(const uint32* const bitset,
uint32 start, uint32 end);
// Returns a mask with the bits pos % 64 and (pos ^ 1) % 64 sets.
inline uint64 TwoBitsFromPos64(uint64 pos) {
return GG_ULONGLONG(3) << (pos & 62);
}
// This class is like an ITIVector<IndexType, bool> except that it provides a
// more efficient way to iterate over the positions set to true. It achieves
// this by caching the current uint64 bucket in the Iterator and using
// LeastSignificantBitPosition64() to iterate over the positions at 1 in this
// bucket.
template <typename IndexType = int64>
class Bitset64 {
public:
Bitset64() : size_(), data_(), end_(*this, /*at_end=*/true) {}
explicit Bitset64(IndexType size)
: size_(Value(size) > 0 ? size : IndexType(0)),
data_(BitLength64(Value(size_))),
end_(*this, /*at_end=*/true) {}
// Returns how many bits this Bitset64 can hold.
IndexType size() const { return size_; }
// Appends value at the end of the bitset.
void PushBack(bool value) {
++size_;
data_.resize(BitLength64(Value(size_)), 0);
Set(size_ - 1, value);
}
// Resizes the Bitset64 to the given number of bits. New bits are sets to 0.
void Resize(IndexType size) {
DCHECK_GE(Value(size), 0);
size_ = Value(size) > 0 ? size : IndexType(0);
data_.resize(BitLength64(Value(size_)), 0);
}
// Changes the number of bits the Bitset64 can hold and set all of them to 0.
void ClearAndResize(IndexType size) {
DCHECK_GE(Value(size), 0);
size_ = Value(size) > 0 ? size : IndexType(0);
// Memset is 4x faster than data_.assign() as of 19/03/2014.
// TODO(user): Ideally if a realloc happens, we don't need to copy the old
// data...
const size_t bit_length = static_cast<size_t>(BitLength64(Value(size_)));
const size_t to_clear = std::min(data_.size(), bit_length);
data_.resize(bit_length, 0);
memset(data_.data(), 0, to_clear * sizeof(int64));
}
// Sets all bits to 0.
void ClearAll() { memset(data_.data(), 0, data_.size() * sizeof(int64)); }
// Sets the bit at position i to 0.
void Clear(IndexType i) {
DCHECK_GE(Value(i), 0);
DCHECK_LT(Value(i), Value(size_));
data_[BitOffset64(Value(i))] &= ~OneBit64(BitPos64(Value(i)));
}
// Sets bucket containing bit i to 0.
void ClearBucket(IndexType i) {
DCHECK_GE(Value(i), 0);
DCHECK_LT(Value(i), Value(size_));
data_[BitOffset64(Value(i))] = 0;
}
// Clears the bits at position i and i ^ 1.
void ClearTwoBits(IndexType i) {
DCHECK_GE(Value(i), 0);
DCHECK_LT(Value(i), Value(size_));
data_[BitOffset64(Value(i))] &= ~TwoBitsFromPos64(Value(i));
}
// Returns true if the bit at position i or the one at position i ^ 1 is set.
bool AreOneOfTwoBitsSet(IndexType i) const {
DCHECK_GE(Value(i), 0);
DCHECK_LT(Value(i), Value(size_));
return data_[BitOffset64(Value(i))] & TwoBitsFromPos64(Value(i));
}
// Returns true if the bit at position i is set.
bool IsSet(IndexType i) const {
DCHECK_GE(Value(i), 0);
DCHECK_LT(Value(i), Value(size_));
return data_[BitOffset64(Value(i))] & OneBit64(BitPos64(Value(i)));
}
// Same as IsSet().
bool operator[](IndexType i) const { return IsSet(i); }
// Sets the bit at position i to 1.
void Set(IndexType i) {
DCHECK_GE(Value(i), 0);
DCHECK_LT(Value(i), size_);
data_[BitOffset64(Value(i))] |= OneBit64(BitPos64(Value(i)));
}
// If value is true, sets the bit at position i to 1, sets it to 0 otherwise.
void Set(IndexType i, bool value) {
if (value) {
Set(i);
} else {
Clear(i);
}
}
// Copies bucket containing bit i from "other" to "this".
void CopyBucket(const Bitset64<IndexType>& other, IndexType i) {
const uint64 offset = BitOffset64(Value(i));
data_[offset] = other.data_[offset];
}
// Copies "other" to "this". The bitsets do not have to be of the same size.
// If "other" is smaller, high order bits are not changed. If "other" is
// larger, its high order bits are ignored. In any case "this" is not resized.
template <typename OtherIndexType>
void SetContentFromBitset(const Bitset64<OtherIndexType>& other) {
const int64 min_size = std::min(data_.size(), other.data_.size());
if (min_size == 0) return;
const uint64 last_common_bucket = data_[min_size - 1];
memcpy(data_.data(), other.data_.data(), min_size * sizeof(uint64));
if (data_.size() >= other.data_.size()) {
const uint64 bitmask = kAllBitsButLsb64
<< BitPos64(other.Value(other.size() - 1));
data_[min_size - 1] &= ~bitmask;
data_[min_size - 1] |= (bitmask & last_common_bucket);
}
}
// Same as SetContentFromBitset where "this" and "other" have the same size.
template <typename OtherIndexType>
void SetContentFromBitsetOfSameSize(const Bitset64<OtherIndexType>& other) {
DCHECK_EQ(Value(size()), other.Value(other.size()));
memcpy(data_.data(), other.data_.data(), data_.size() * sizeof(uint64));
}
// Sets "this" to be the intersection of "this" and "other". The
// bitsets do not have to be the same size. If other is smaller, all
// the higher order bits are assumed to be 0.
void Intersection(const Bitset64<IndexType>& other) {
const int min_size = std::min(data_.size(), other.data_.size());
for (int i = 0; i < min_size; ++i) {
data_[i] &= other.data_[i];
}
for (int i = min_size; i < data_.size(); ++i) {
data_[i] = 0;
}
}
// Sets "this" to be the union of "this" and "other". The
// bitsets do not have to be the same size. If other is smaller, all
// the higher order bits are assumed to be 0.
void Union(const Bitset64<IndexType>& other) {
const int min_size = std::min(data_.size(), other.data_.size());
for (int i = 0; i < min_size; ++i) {
data_[i] |= other.data_[i];
}
}
// Class to iterate over the bit positions at 1 of a Bitset64.
//
// IMPORTANT: Because the iterator "caches" the current uint64 bucket, this
// will probably not do what you want if Bitset64 is modified while iterating.
class Iterator {
public:
explicit Iterator(const Bitset64& data_)
: bitset_(data_), index_(0), base_index_(0), current_(0) {
if (bitset_.data_.empty()) {
index_ = -1;
} else {
current_ = bitset_.data_[0];
Next();
}
}
// Returns true if the Iterator is at a valid position.
bool Ok() const { return index_ != -1; }
// Returns the current position of the iterator.
IndexType Index() const {
DCHECK(Ok());
return IndexType(index_);
}
// Moves the iterator the the next position at 1 of the Bitset64.
void Next() {
DCHECK(Ok());
if (current_ == 0) {
int bucket = BitOffset64(base_index_);
const int size = bitset_.data_.size();
do {
bucket++;
} while (bucket < size && bitset_.data_[bucket] == 0);
if (bucket == size) {
index_ = -1;
return;
}
current_ = bitset_.data_[bucket];
base_index_ = BitShift64(bucket);
}
// Computes the index and clear the least significant bit of current_.
index_ = base_index_ + LeastSignificantBitPosition64(current_);
current_ &= current_ - 1;
}
// STL version of the functions above to support range-based "for" loop.
Iterator(const Bitset64& data_, bool at_end)
: bitset_(data_), index_(0), base_index_(0), current_(0) {
if (at_end || bitset_.data_.empty()) {
index_ = -1;
} else {
current_ = bitset_.data_[0];
Next();
}
}
bool operator!=(const Iterator& other) const {
return index_ != other.index_;
}
IndexType operator*() const { return IndexType(index_); }
void operator++() { Next(); }
private:
const Bitset64& bitset_;
int index_;
int base_index_;
uint64 current_;
};
// Allows range-based "for" loop on the non-zero positions:
// for (const IndexType index : bitset) {}
// instead of:
// for (Bitset64<IndexType>::Iterator it(bitset); it.Ok(); it.Next()) {
// const IndexType index = it.Index();
Iterator begin() const { return Iterator(*this); }
Iterator end() const { return end_; }
// Cryptic function!
// This is just an optimized version of a given piece of code and has probably
// little general use. Sets the bit at position i to the result of
// (other1[i] && use1) XOR (other2[i] && use2).
void SetBitFromOtherBitSets(IndexType i, const Bitset64<IndexType>& other1,
uint64 use1, const Bitset64<IndexType>& other2,
uint64 use2) {
DCHECK_EQ(data_.size(), other1.data_.size());
DCHECK_EQ(data_.size(), other2.data_.size());
DCHECK(use1 == 0 || use1 == 1);
DCHECK(use2 == 0 || use2 == 1);
const int bucket = BitOffset64(Value(i));
const int pos = BitPos64(Value(i));
data_[bucket] ^= ((1ull << pos) & data_[bucket]) ^
((use1 << pos) & other1.data_[bucket]) ^
((use2 << pos) & other2.data_[bucket]);
}
// Returns a 0/1 std::string representing the bitset.
std::string DebugString() const {
std::string output;
for (IndexType i(0); i < size(); ++i) {
output += IsSet(i) ? "1" : "0";
}
return output;
}
private:
// Returns the value of the index type.
// This function is specialized below to work with IntType and int64.
int64 Value(IndexType input) const;
IndexType size_;
std::vector<uint64> data_;
// It is faster to store the end() Iterator than to recompute it every time.
// Note that we cannot do the same for begin().
const Iterator end_;
template <class OtherIndexType>
friend class Bitset64;
DISALLOW_COPY_AND_ASSIGN(Bitset64);
};
// Specialized version of Bitset64 that allows to query the last bit set more
// efficiently.
class BitQueue64 {
public:
BitQueue64() : size_(), top_(-1), data_() {}
explicit BitQueue64(int size)
: size_(size), top_(-1), data_(BitLength64(size), 0) {}
void IncreaseSize(int size) {
CHECK_GE(size, size_);
size_ = size;
data_.resize(BitLength64(size), 0);
}
void ClearAndResize(int size) {
top_ = -1;
size_ = size;
data_.assign(BitLength64(size), 0);
}
void Set(int i) {
DCHECK_GE(i, 0);
DCHECK_LT(i, size_);
top_ = std::max(top_, i);
data_[BitOffset64(i)] |= OneBit64(BitPos64(i));
}
// Sets all the bits from 0 up to i-1 to 1.
void SetAllBefore(int i) {
DCHECK_GE(i, 0);
DCHECK_LT(i, size_);
top_ = std::max(top_, i - 1);
int bucket_index = static_cast<int>(BitOffset64(i));
data_[bucket_index] |= OneBit64(BitPos64(i)) - 1;
for (--bucket_index; bucket_index >= 0; --bucket_index) {
data_[bucket_index] = kAllBits64;
}
}
// Returns the position of the highest bit set in O(1) or -1 if no bit is set.
int Top() const { return top_; }
// Clears the Top() bit and recomputes the position of the next Top().
void ClearTop() {
DCHECK_NE(top_, -1);
int bucket_index = static_cast<int>(BitOffset64(top_));
uint64 bucket = data_[bucket_index] &= ~OneBit64(BitPos64(top_));
while (!bucket) {
if (bucket_index == 0) {
top_ = -1;
return;
}
bucket = data_[--bucket_index];
}
// Note(user): I experimented with reversing the bit order in a bucket to
// use LeastSignificantBitPosition64() and it is only slightly faster at the
// cost of a lower Set() speed. So I prefered this version.
top_ = static_cast<int>(BitShift64(bucket_index) +
MostSignificantBitPosition64(bucket));
}
private:
int size_;
int top_;
std::vector<uint64> data_;
DISALLOW_COPY_AND_ASSIGN(BitQueue64);
};
// The specialization of Value() for IntType and int64.
template <typename IntType>
inline int64 Bitset64<IntType>::Value(IntType input) const {
DCHECK_GE(input.value(), 0);
return input.value();
}
template <>
inline int64 Bitset64<int64>::Value(int64 input) const {
DCHECK_GE(input, 0);
return input;
}
// A simple utility class to set/unset integer in a range [0, size).
// This is optimized for sparsity.
template <typename IntegerType = int64>
class SparseBitset {
public:
SparseBitset() {}
explicit SparseBitset(IntegerType size) : bitset_(size) {}
IntegerType size() const { return bitset_.size(); }
void SparseClearAll() {
for (const IntegerType i : to_clear_) bitset_.ClearBucket(i);
to_clear_.clear();
}
void ClearAll() {
bitset_.ClearAll();
to_clear_.clear();
}
void ClearAndResize(IntegerType size) {
// As of 19/03/2014, experiments show that this is a reasonable threshold.
const int kSparseThreshold = 300;
if (to_clear_.size() * kSparseThreshold < size) {
SparseClearAll();
bitset_.Resize(size);
} else {
bitset_.ClearAndResize(size);
to_clear_.clear();
}
}
void Resize(IntegerType size) {
if (size < bitset_.size()) {
int new_index = 0;
for (IntegerType index : to_clear_) {
if (index < size) {
to_clear_[new_index] = index;
++new_index;
}
}
to_clear_.resize(new_index);
}
bitset_.Resize(size);
}
bool operator[](IntegerType index) const { return bitset_[index]; }
void Set(IntegerType index) {
if (!bitset_[index]) {
bitset_.Set(index);
to_clear_.push_back(index);
}
}
void Clear(IntegerType index) { bitset_.Clear(index); }
int NumberOfSetCallsWithDifferentArguments() const {
return to_clear_.size();
}
const std::vector<IntegerType>& PositionsSetAtLeastOnce() const {
return to_clear_;
}
// Tells the class that all its bits are cleared, so it can reset to_clear_
// to the empty vector. Note that this call is "unsafe" since the fact that
// the class is actually all cleared is only checked in debug mode.
//
// This is useful to iterate on the "set" positions while clearing them for
// instance. This way, after the loop, a client can call this for efficiency.
void NotifyAllClear() {
if (DEBUG_MODE) {
for (IntegerType index : to_clear_) CHECK(!bitset_[index]);
}
to_clear_.clear();
}
private:
Bitset64<IntegerType> bitset_;
std::vector<IntegerType> to_clear_;
DISALLOW_COPY_AND_ASSIGN(SparseBitset);
};
} // namespace operations_research
#endif // OR_TOOLS_UTIL_BITSET_H_