This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
theta_tree.h
222 lines (195 loc) · 9.11 KB
/
theta_tree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_SAT_THETA_TREE_H_
#define OR_TOOLS_SAT_THETA_TREE_H_
#include <vector>
#include "ortools/base/logging.h"
#include "ortools/sat/integer.h"
namespace operations_research {
namespace sat {
// The Theta-Lambda tree can be used to implement several scheduling algorithms.
//
// This template class is instantiated only for IntegerValue and int64.
//
// The tree structure itself is a binary tree coded in a vector, where node 0 is
// unused, node 1 is the root, node 2 is the left child of the root, node 3 its
// right child, etc.
//
// The API gives access to rightmost events that realize a given envelope.
//
// See:
// _ (0) Petr Vilim's PhD thesis "Global Constraints in Scheduling".
// _ (1) Petr Vilim "Edge Finding Filtering Algorithm for Discrete Cumulative
// Resources in O(kn log n)"
// _ (2) Petr Vilim "Max energy filtering algorithm for discrete cumulative
// resources".
// _ (3) Wolf & Schrader "O(n log n) Overload Checking for the Cumulative
// Constraint and Its Application".
// _ (4) Kameugne & Fotso "A cumulative not-first/not-last filtering algorithm
// in O(n^2 log n)".
// _ (5) Ouellet & Quimper "Time-table extended-edge-finding for the cumulative
// constraint".
//
// Instead of providing one declination of the theta-tree per possible filtering
// algorithm, this generalization intends to provide a data structure that can
// fit several algorithms.
// This tree is based around the notion of events. It has events at its leaves
// that can be present or absent, and present events come with an
// initial_envelope, a minimal and a maximal energy.
// All nodes maintain values on the set of present events under them:
// _ sum_energy_min(node) = sum_{leaf \in leaves(node)} energy_min(leaf)
// _ envelope(node) =
// max_{leaf \in leaves(node)}
// initial_envelope(leaf) +
// sum_{leaf' \in leaves(node), leaf' >= leaf} energy_min(leaf').
//
// Thus, the envelope of a leaf representing an event, when present, is
// initial_envelope(event) + sum_energy_min(event).
//
// We also maintain envelope_opt with is the maximum envelope a node could take
// if at most one of the events were at its maximum energy.
// _ energy_delta(leaf) = energy_max(leaf) - energy_min(leaf)
// _ max_energy_delta(node) = max_{leaf \in leaves(node)} energy_delta(leaf)
// _ envelope_opt(node) =
// max_{leaf \in leaves(node)}
// initial_envelope(leaf) +
// sum_{leaf' \in leaves(node), leaf' >= leaf} energy_min(leaf') +
// max_{leaf' \in leaves(node), leaf' >= leaf} energy_delta(leaf');
//
// Most articles using theta-tree variants hack Vilim's original theta tree
// for the disjunctive resource constraint by manipulating envelope and
// energy:
// _ in (0), initial_envelope = start_min, energy = duration
// _ in (3), initial_envelope = C * start_min, energy = demand * duration
// _ in (5), there are several trees in parallel:
// initial_envelope = C * start_min or (C - h) * start_min
// energy = demand * duration, h * (Horizon - start_min),
// or h * (end_min).
// _ in (2), same as (3), but putting the max energy instead of min in lambda.
// _ in OscaR's TimeTableOverloadChecker,
// initial_envelope = C * start_min -
// energy of mandatory profile before start_min,
// energy = demand * duration
//
// There is hope to unify the variants of these algorithms by abstracting the
// tasks away to reason only on events.
// The minimal value of an envelope, for instance the envelope the empty set.
template <typename IntegerType>
constexpr IntegerType IntegerTypeMinimumValue() {
return std::numeric_limits<IntegerType>::min();
}
template <>
constexpr IntegerValue IntegerTypeMinimumValue() {
return kMinIntegerValue;
}
template <typename IntegerType>
class ThetaLambdaTree {
public:
// Builds a reusable tree. Initialization is done with Reset().
ThetaLambdaTree();
// Initializes this class for events in [0, num_events) and makes all of them
// absent. Instead of allocating and de-allocating trees at every usage, i.e.
// at every Propagate() of the scheduling algorithms that uses it, this class
// allows to keep the same memory for each call.
void Reset(int num_events);
// Makes event present and updates its initial envelope and min/max energies.
// The initial_envelope must be >= ThetaLambdaTreeNegativeInfinity().
// This updates the tree in O(log n).
void AddOrUpdateEvent(int event, IntegerType initial_envelope,
IntegerType energy_min, IntegerType energy_max);
// Adds event to the lambda part of the tree only.
// This will leave GetEnvelope() unchanged, only GetOptionalEnvelope() can
// be affected. This is done by setting envelope to IntegerTypeMinimumValue(),
// energy_min to 0, and initial_envelope_opt and energy_max to the parameters.
// This updates the tree in O(log n).
void AddOrUpdateOptionalEvent(int event, IntegerType initial_envelope_opt,
IntegerType energy_max);
// Makes event absent, compute the new envelope in O(log n).
void RemoveEvent(int event);
// Returns the maximum envelope using all the energy_min in O(1).
// If theta is empty, returns ThetaLambdaTreeNegativeInfinity().
IntegerType GetEnvelope() const;
// Returns the maximum envelope using the energy min of all task but
// one and the energy max of the last one in O(1).
// If theta and lambda are empty, returns ThetaLambdaTreeNegativeInfinity().
IntegerType GetOptionalEnvelope() const;
// Computes the maximum event s.t. GetEnvelopeOf(event) > envelope_max.
// There must be such an event, i.e. GetEnvelope() > envelope_max.
// This finds the maximum event e such that
// initial_envelope(e) + sum_{e' >= e} energy_min(e') > target_envelope.
// This operation is O(log n).
int GetMaxEventWithEnvelopeGreaterThan(IntegerType target_envelope) const;
// Returns initial_envelope(event) + sum_{event' >= event} energy_min(event'),
// in time O(log n).
IntegerType GetEnvelopeOf(int event) const;
// Computes a pair of events (critical_event, optional_event) such that
// if optional_event was at its maximum energy, the envelope of critical_event
// would be greater than target_envelope.
//
// This assumes that such a pair exists, i.e. GetOptionalEnvelope() should be
// greater than target_envelope. More formally, this finds events such that:
// initial_envelope(critical_event) +
// sum_{event' >= critical_event} energy_min(event') +
// max_{optional_event >= critical_event} energy_delta(optional_event)
// > target envelope.
//
// For efficiency reasons, this also fills available_energy with the maximum
// energy the optional task can take such that the optional envelope of the
// pair would be target_envelope, i.e.
// target_envelope - GetEnvelopeOf(event) + energy_min(optional_event).
//
// This operation is O(log n).
void GetEventsWithOptionalEnvelopeGreaterThan(
IntegerType target_envelope, int* critical_event, int* optional_event,
IntegerType* available_energy) const;
// Getters.
IntegerType EnergyMin(int event) const {
return tree_[GetLeafFromEvent(event)].sum_of_energy_min;
}
private:
int GetLeafFromEvent(int event) const;
int GetEventFromLeaf(int leaf) const;
// Propagates the change of leaf energies and envelopes towards the root.
void RefreshNode(int node);
// Finds the maximum leaf under node such that
// initial_envelope(leaf) + sum_{leaf' >= leaf} energy_min(leaf')
// > target_envelope.
// Fills extra with the difference.
int GetMaxLeafWithEnvelopeGreaterThan(int node, IntegerType target_envelope,
IntegerType* extra) const;
// Returns the leaf with maximum energy delta under node.
int GetLeafWithMaxEnergyDelta(int node) const;
// Finds the leaves and energy relevant for
// GetEventsWithOptionalEnvelopeGreaterThan().
void GetLeavesWithOptionalEnvelopeGreaterThan(
IntegerType target_envelope, int* critical_leaf, int* optional_leaf,
IntegerType* available_energy) const;
// Number of events of the last Reset().
int num_events_;
int num_leaves_;
int power_of_two_;
// Envelopes and energies of nodes.
struct TreeNode {
IntegerType envelope;
IntegerType envelope_opt;
IntegerType sum_of_energy_min;
IntegerType max_of_energy_delta;
};
std::vector<TreeNode> tree_;
};
// Explicit instantiations in theta_Tree.cc.
extern template class ThetaLambdaTree<IntegerValue>;
extern template class ThetaLambdaTree<int64>;
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_THETA_TREE_H_