This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sat_decision.cc
362 lines (322 loc) · 13.8 KB
/
sat_decision.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/sat_decision.h"
#include "ortools/sat/util.h"
namespace operations_research {
namespace sat {
SatDecisionPolicy::SatDecisionPolicy(Model* model)
: parameters_(*(model->GetOrCreate<SatParameters>())),
trail_(model->GetOrCreate<Trail>()),
random_(model->GetOrCreate<ModelRandomGenerator>()) {}
void SatDecisionPolicy::IncreaseNumVariables(int num_variables) {
const int old_num_variables = activities_.size();
DCHECK_GE(num_variables, activities_.size());
activities_.resize(num_variables, parameters_.initial_variables_activity());
tie_breakers_.resize(num_variables, 0.0);
num_bumps_.resize(num_variables, 0);
pq_need_update_for_var_at_trail_index_.IncreaseSize(num_variables);
weighted_sign_.resize(num_variables, 0.0);
var_polarity_.resize(num_variables);
var_use_phase_saving_.resize(num_variables, parameters_.use_phase_saving());
ResetInitialPolarity(/*from=*/old_num_variables);
// Update the priority queue. Note that each addition is in O(1) because
// the priority is 0.0.
var_ordering_.Reserve(num_variables);
if (var_ordering_is_initialized_) {
for (BooleanVariable var(old_num_variables); var < num_variables; ++var) {
var_ordering_.Add({var, 0.0, activities_[var]});
}
}
}
void SatDecisionPolicy::ResetDecisionHeuristic() {
const int num_variables = activities_.size();
variable_activity_increment_ = 1.0;
activities_.assign(num_variables, parameters_.initial_variables_activity());
tie_breakers_.assign(num_variables, 0.0);
num_bumps_.assign(num_variables, 0);
var_ordering_.Clear();
ResetInitialPolarity(/*from=*/0);
var_use_phase_saving_.assign(num_variables, parameters_.use_phase_saving());
num_conflicts_ = 0;
num_conflicts_stack_.clear();
var_ordering_is_initialized_ = false;
}
void SatDecisionPolicy::ResetInitialPolarity(int from) {
// Sets the initial polarity.
//
// TODO(user): The WEIGHTED_SIGN one are currently slightly broken because the
// weighted_sign_ is updated after this has been called. It requires a call
// to ResetDecisionHeuristic() after all the constraint have been added. Fix.
// On another hand, this is only used with SolveWithRandomParameters() that
// does call this function.
const int num_variables = activities_.size();
for (BooleanVariable var(from); var < num_variables; ++var) {
switch (parameters_.initial_polarity()) {
case SatParameters::POLARITY_TRUE:
var_polarity_[var] = true;
break;
case SatParameters::POLARITY_FALSE:
var_polarity_[var] = false;
break;
case SatParameters::POLARITY_RANDOM:
var_polarity_[var] = std::uniform_int_distribution<int>(0, 1)(*random_);
break;
case SatParameters::POLARITY_WEIGHTED_SIGN:
var_polarity_[var] = weighted_sign_[var] > 0;
break;
case SatParameters::POLARITY_REVERSE_WEIGHTED_SIGN:
var_polarity_[var] = weighted_sign_[var] < 0;
break;
}
// TODO(user): this is the only non-const operation done by this class
// on the trail. Try to remove it?
trail_->SetLastPolarity(var, var_polarity_[var]);
}
}
void SatDecisionPolicy::InitializeVariableOrdering() {
const int num_variables = activities_.size();
// First, extract the variables without activity, and add the other to the
// priority queue.
var_ordering_.Clear();
std::vector<BooleanVariable> variables;
for (BooleanVariable var(0); var < num_variables; ++var) {
if (!trail_->Assignment().VariableIsAssigned(var)) {
if (activities_[var] > 0.0) {
var_ordering_.Add(
{var, static_cast<float>(tie_breakers_[var]), activities_[var]});
} else {
variables.push_back(var);
}
}
}
// Set the order of the other according to the parameters_.
// Note that this is just a "preference" since the priority queue will kind
// of randomize this. However, it is more efficient than using the tie_breaker
// which add a big overhead on the priority queue.
//
// TODO(user): Experiment and come up with a good set of heuristics.
switch (parameters_.preferred_variable_order()) {
case SatParameters::IN_ORDER:
break;
case SatParameters::IN_REVERSE_ORDER:
std::reverse(variables.begin(), variables.end());
break;
case SatParameters::IN_RANDOM_ORDER:
std::shuffle(variables.begin(), variables.end(), *random_);
break;
}
// Add the variables without activity to the queue (in the default order)
for (const BooleanVariable var : variables) {
var_ordering_.Add({var, static_cast<float>(tie_breakers_[var]), 0.0});
}
// Finish the queue initialization.
pq_need_update_for_var_at_trail_index_.ClearAndResize(num_variables);
pq_need_update_for_var_at_trail_index_.SetAllBefore(trail_->Index());
var_ordering_is_initialized_ = true;
}
void SatDecisionPolicy::SetAssignmentPreference(Literal literal,
double weight) {
if (!parameters_.use_optimization_hints()) return;
DCHECK_GE(weight, 0.0);
DCHECK_LE(weight, 1.0);
var_use_phase_saving_[literal.Variable()] = false;
var_polarity_[literal.Variable()] = literal.IsPositive();
// The tie_breaker is changed, so we need to reinitialize the priority queue.
// Note that this doesn't change the activity though.
tie_breakers_[literal.Variable()] = weight;
var_ordering_is_initialized_ = false;
}
std::vector<std::pair<Literal, double>> SatDecisionPolicy::AllPreferences()
const {
std::vector<std::pair<Literal, double>> prefs;
for (BooleanVariable var(0); var < var_polarity_.size(); ++var) {
// TODO(user): we currently assume that if the tie_breaker is zero then
// no preference was set (which is not 100% correct). Fix that.
const double value = var_ordering_.GetElement(var.value()).tie_breaker;
if (value > 0.0) {
prefs.push_back(std::make_pair(Literal(var, var_polarity_[var]), value));
}
}
return prefs;
}
void SatDecisionPolicy::UpdateWeightedSign(
const std::vector<LiteralWithCoeff>& terms, Coefficient rhs) {
for (const LiteralWithCoeff& term : terms) {
const double weight = static_cast<double>(term.coefficient.value()) /
static_cast<double>(rhs.value());
weighted_sign_[term.literal.Variable()] +=
term.literal.IsPositive() ? -weight : weight;
}
}
void SatDecisionPolicy::BumpVariableActivities(
const std::vector<Literal>& literals) {
if (parameters_.use_erwa_heuristic()) {
for (const Literal literal : literals) {
// Note that we don't really need to bump level 0 variables since they
// will never be backtracked over. However it is faster to simply bump
// them.
++num_bumps_[literal.Variable()];
}
return;
}
const double max_activity_value = parameters_.max_variable_activity_value();
for (const Literal literal : literals) {
const BooleanVariable var = literal.Variable();
const int level = trail_->Info(var).level;
if (level == 0) continue;
activities_[var] += variable_activity_increment_;
pq_need_update_for_var_at_trail_index_.Set(trail_->Info(var).trail_index);
if (activities_[var] > max_activity_value) {
RescaleVariableActivities(1.0 / max_activity_value);
}
}
}
void SatDecisionPolicy::RescaleVariableActivities(double scaling_factor) {
variable_activity_increment_ *= scaling_factor;
for (BooleanVariable var(0); var < activities_.size(); ++var) {
activities_[var] *= scaling_factor;
}
// When rescaling the activities of all the variables, the order of the
// active variables in the heap will not change, but we still need to update
// their weights so that newly inserted elements will compare correctly with
// already inserted ones.
//
// IMPORTANT: we need to reset the full heap from scratch because just
// multiplying the current weight by scaling_factor is not guaranteed to
// preserve the order. This is because the activity of two entries may go to
// zero and the tie-breaking ordering may change their relative order.
//
// InitializeVariableOrdering() will be called lazily only if needed.
var_ordering_is_initialized_ = false;
}
void SatDecisionPolicy::UpdateVariableActivityIncrement() {
variable_activity_increment_ *= 1.0 / parameters_.variable_activity_decay();
}
Literal SatDecisionPolicy::NextBranch() {
// Lazily initialize var_ordering_ if needed.
if (!var_ordering_is_initialized_) {
InitializeVariableOrdering();
}
// Choose the variable.
BooleanVariable var;
const double ratio = parameters_.random_branches_ratio();
auto zero_to_one = [this]() {
return std::uniform_real_distribution<double>()(*random_);
};
if (ratio != 0.0 && zero_to_one() < ratio) {
while (true) {
// TODO(user): This may not be super efficient if almost all the
// variables are assigned.
std::uniform_int_distribution<int> index_dist(0,
var_ordering_.Size() - 1);
var = var_ordering_.QueueElement(index_dist(*random_)).var;
if (!trail_->Assignment().VariableIsAssigned(var)) break;
pq_need_update_for_var_at_trail_index_.Set(trail_->Info(var).trail_index);
var_ordering_.Remove(var.value());
}
} else {
// The loop is done this way in order to leave the final choice in the heap.
DCHECK(!var_ordering_.IsEmpty());
var = var_ordering_.Top().var;
while (trail_->Assignment().VariableIsAssigned(var)) {
var_ordering_.Pop();
pq_need_update_for_var_at_trail_index_.Set(trail_->Info(var).trail_index);
DCHECK(!var_ordering_.IsEmpty());
var = var_ordering_.Top().var;
}
}
// Choose its polarity (i.e. True of False).
const double random_ratio = parameters_.random_polarity_ratio();
if (random_ratio != 0.0 && zero_to_one() < random_ratio) {
return Literal(var, std::uniform_int_distribution<int>(0, 1)(*random_));
}
return Literal(var, var_use_phase_saving_[var]
? trail_->Info(var).last_polarity
: var_polarity_[var]);
}
void SatDecisionPolicy::PqInsertOrUpdate(BooleanVariable var) {
const WeightedVarQueueElement element{
var, static_cast<float>(tie_breakers_[var]), activities_[var]};
if (var_ordering_.Contains(var.value())) {
// Note that the new weight should always be higher than the old one.
var_ordering_.IncreasePriority(element);
} else {
var_ordering_.Add(element);
}
}
void SatDecisionPolicy::Untrail(int target_trail_index) {
DCHECK_LT(target_trail_index, trail_->Index());
if (parameters_.use_erwa_heuristic()) {
// The ERWA parameter between the new estimation of the learning rate and
// the old one. TODO(user): Expose parameters for these values.
const double alpha = std::max(0.06, 0.4 - 1e-6 * num_conflicts_);
// This counts the number of conflicts since the assignment of the variable
// at the current trail_index that we are about to untrail.
int num_conflicts = 0;
int next_num_conflicts_update =
num_conflicts_stack_.empty() ? -1
: num_conflicts_stack_.back().trail_index;
int trail_index = trail_->Index();
while (trail_index > target_trail_index) {
if (next_num_conflicts_update == trail_index) {
num_conflicts += num_conflicts_stack_.back().count;
num_conflicts_stack_.pop_back();
next_num_conflicts_update =
num_conflicts_stack_.empty()
? -1
: num_conflicts_stack_.back().trail_index;
}
const BooleanVariable var = (*trail_)[--trail_index].Variable();
// TODO(user): This heuristic can make this code quite slow because
// all the untrailed variable will cause a priority queue update.
const int64 num_bumps = num_bumps_[var];
double new_rate = 0.0;
if (num_bumps > 0) {
DCHECK_GT(num_conflicts, 0);
num_bumps_[var] = 0;
new_rate = static_cast<double>(num_bumps) / num_conflicts;
}
activities_[var] = alpha * new_rate + (1 - alpha) * activities_[var];
if (var_ordering_is_initialized_) PqInsertOrUpdate(var);
}
if (num_conflicts > 0) {
if (!num_conflicts_stack_.empty() &&
num_conflicts_stack_.back().trail_index == trail_->Index()) {
num_conflicts_stack_.back().count += num_conflicts;
} else {
num_conflicts_stack_.push_back({trail_->Index(), num_conflicts});
}
}
} else {
if (!var_ordering_is_initialized_) return;
// Trail index of the next variable that will need a priority queue update.
int to_update = pq_need_update_for_var_at_trail_index_.Top();
while (to_update >= target_trail_index) {
DCHECK_LT(to_update, trail_->Index());
PqInsertOrUpdate((*trail_)[to_update].Variable());
pq_need_update_for_var_at_trail_index_.ClearTop();
to_update = pq_need_update_for_var_at_trail_index_.Top();
}
}
// Invariant.
if (DEBUG_MODE && var_ordering_is_initialized_) {
for (int trail_index = trail_->Index() - 1;
trail_index > target_trail_index; --trail_index) {
const BooleanVariable var = (*trail_)[trail_index].Variable();
CHECK(var_ordering_.Contains(var.value()));
CHECK_EQ(activities_[var], var_ordering_.GetElement(var.value()).weight);
}
}
}
} // namespace sat
} // namespace operations_research