This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_constraint.h
148 lines (124 loc) · 5.35 KB
/
linear_constraint.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_SAT_LINEAR_CONSTRAINT_H_
#define OR_TOOLS_SAT_LINEAR_CONSTRAINT_H_
#include <vector>
#include "ortools/sat/integer.h"
#include "ortools/sat/model.h"
namespace operations_research {
namespace sat {
// One linear constraint on a set of Integer variables.
// Important: there should be no duplicate variables.
//
// We also assume that we never have integer overflow when evaluating such
// constraint. This should be enforced by the checker for user given
// constraints, and we must enforce it ourselves for the newly created
// constraint. We requires:
// - sum_i max(0, max(c_i * lb_i, c_i * ub_i)) < kMaxIntegerValue.
// - sum_i min(0, min(c_i * lb_i, c_i * ub_i)) > kMinIntegerValue
// so that in whichever order we compute the sum, we have no overflow. Note
// that this condition invoves the bounds of the variables.
//
// TODO(user): Add DCHECKs for the no-overflow property? but we need access
// to the variable bounds.
struct LinearConstraint {
IntegerValue lb;
IntegerValue ub;
std::vector<IntegerVariable> vars;
std::vector<IntegerValue> coeffs;
LinearConstraint() {}
LinearConstraint(IntegerValue _lb, IntegerValue _ub) : lb(_lb), ub(_ub) {}
void AddTerm(IntegerVariable var, IntegerValue coeff) {
vars.push_back(var);
coeffs.push_back(coeff);
}
std::string DebugString() const {
std::string result;
if (lb.value() > kMinIntegerValue) {
absl::StrAppend(&result, lb.value(), " <= ");
}
for (int i = 0; i < vars.size(); ++i) {
const IntegerValue coeff =
VariableIsPositive(vars[i]) ? coeffs[i] : -coeffs[i];
absl::StrAppend(&result, i > 0 ? " " : "", coeff.value(), "*X",
vars[i].value() / 2);
}
if (ub.value() < kMaxIntegerValue) {
absl::StrAppend(&result, " <= ", ub.value());
}
return result;
}
bool operator==(const LinearConstraint other) const {
if (this->lb != other.lb) return false;
if (this->ub != other.ub) return false;
if (this->vars != other.vars) return false;
if (this->coeffs != other.coeffs) return false;
return true;
}
};
// Allow to build a LinearConstraint while making sure there is no duplicate
// variables.
class LinearConstraintBuilder {
public:
// We support "sticky" kMinIntegerValue for lb and kMaxIntegerValue for ub
// for one-sided constraints.
LinearConstraintBuilder(const Model* model, IntegerValue lb, IntegerValue ub)
: assignment_(model->Get<Trail>()->Assignment()),
encoder_(*model->Get<IntegerEncoder>()),
lb_(lb),
ub_(ub) {}
// Adds var * coeff to the constraint.
void AddTerm(IntegerVariable var, IntegerValue coeff);
// Add literal * coeff to the constaint. Returns false and do nothing if the
// given literal didn't have an integer view.
ABSL_MUST_USE_RESULT bool AddLiteralTerm(Literal lit, IntegerValue coeff);
// Builds and return the corresponding constraint in a canonical form.
// All the IntegerVariable will be positive and appear in increasing index
// order.
//
// TODO(user): this doesn't invalidate the builder object, but if one wants
// to do a lot of dynamic editing to the constraint, then then underlying
// algorithm needs to be optimized of that.
LinearConstraint Build();
private:
const VariablesAssignment& assignment_;
const IntegerEncoder& encoder_;
IntegerValue lb_;
IntegerValue ub_;
IntegerValue offset_;
// Initially we push all AddTerm() here, and during Build() we merge terms
// on the same variable.
std::vector<std::pair<IntegerVariable, IntegerValue>> terms_;
};
// Returns the activity of the given constraint. That is the current value of
// the linear terms.
double ComputeActivity(const LinearConstraint& constraint,
const gtl::ITIVector<IntegerVariable, double>& values);
// Returns sqrt(sum square(coeff)).
double ComputeL2Norm(const LinearConstraint& constraint);
// Returns the maximum absolute value of the coefficients.
IntegerValue ComputeInfinityNorm(const LinearConstraint& constraint);
// Returns the scalar product of given constraint coefficients. This method
// assumes that the constraint variables are in sorted order.
double ScalarProduct(const LinearConstraint& constraint1,
const LinearConstraint& constraint2);
// Computes the GCD of the constraint coefficient, and divide them by it. This
// also tighten the constraint bounds assumming all the variables are integer.
void DivideByGCD(LinearConstraint* constraint);
// Removes the entries with a coefficient of zero.
void RemoveZeroTerms(LinearConstraint* constraint);
// Makes all coefficients positive by transforming a variable to its negation.
void MakeAllCoefficientsPositive(LinearConstraint* constraint);
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_LINEAR_CONSTRAINT_H_