This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinteger_expr.cc
618 lines (550 loc) · 22.1 KB
/
integer_expr.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/integer_expr.h"
#include <algorithm>
#include <memory>
#include "absl/container/flat_hash_map.h"
#include "ortools/base/stl_util.h"
#include "ortools/util/sorted_interval_list.h"
namespace operations_research {
namespace sat {
IntegerSumLE::IntegerSumLE(const std::vector<Literal>& enforcement_literals,
const std::vector<IntegerVariable>& vars,
const std::vector<IntegerValue>& coeffs,
IntegerValue upper, Model* model)
: enforcement_literals_(enforcement_literals),
upper_bound_(upper),
trail_(model->GetOrCreate<Trail>()),
integer_trail_(model->GetOrCreate<IntegerTrail>()),
rev_integer_value_repository_(
model->GetOrCreate<RevIntegerValueRepository>()),
vars_(vars),
coeffs_(coeffs) {
// TODO(user): deal with this corner case.
CHECK(!vars_.empty());
max_variations_.resize(vars_.size());
// Handle negative coefficients.
for (int i = 0; i < vars.size(); ++i) {
if (coeffs_[i] < 0) {
vars_[i] = NegationOf(vars_[i]);
coeffs_[i] = -coeffs_[i];
}
}
// Literal reason will only be used with the negation of enforcement_literals.
for (const Literal literal : enforcement_literals) {
literal_reason_.push_back(literal.Negated());
}
// Initialize the reversible numbers.
rev_num_fixed_vars_ = 0;
rev_lb_fixed_vars_ = IntegerValue(0);
}
void IntegerSumLE::FillIntegerReason() {
integer_reason_.clear();
reason_coeffs_.clear();
const int num_vars = vars_.size();
for (int i = 0; i < num_vars; ++i) {
const IntegerVariable var = vars_[i];
if (!integer_trail_->VariableLowerBoundIsFromLevelZero(var)) {
integer_reason_.push_back(integer_trail_->LowerBoundAsLiteral(var));
reason_coeffs_.push_back(coeffs_[i]);
}
}
}
bool IntegerSumLE::Propagate() {
// Reified case: If any of the enforcement_literals are false, we ignore the
// constraint.
int num_unassigned_enforcement_literal = 0;
LiteralIndex unique_unnasigned_literal = kNoLiteralIndex;
for (const Literal literal : enforcement_literals_) {
if (trail_->Assignment().LiteralIsFalse(literal)) return true;
if (!trail_->Assignment().LiteralIsTrue(literal)) {
++num_unassigned_enforcement_literal;
unique_unnasigned_literal = literal.Index();
}
}
// Unfortunately, we can't propagate anything if we have more than one
// unassigned enforcement literal.
if (num_unassigned_enforcement_literal > 1) return true;
// Save the current sum of fixed variables.
if (is_registered_) {
rev_integer_value_repository_->SaveState(&rev_lb_fixed_vars_);
}
// Compute the new lower bound and update the reversible structures.
IntegerValue lb_unfixed_vars = IntegerValue(0);
const int num_vars = vars_.size();
for (int i = rev_num_fixed_vars_; i < num_vars; ++i) {
const IntegerVariable var = vars_[i];
const IntegerValue coeff = coeffs_[i];
const IntegerValue lb = integer_trail_->LowerBound(var);
const IntegerValue ub = integer_trail_->UpperBound(var);
if (lb != ub) {
max_variations_[i] = (ub - lb) * coeff;
lb_unfixed_vars += lb * coeff;
} else {
// Update the set of fixed variables.
std::swap(vars_[i], vars_[rev_num_fixed_vars_]);
std::swap(coeffs_[i], coeffs_[rev_num_fixed_vars_]);
std::swap(max_variations_[i], max_variations_[rev_num_fixed_vars_]);
rev_num_fixed_vars_++;
rev_lb_fixed_vars_ += lb * coeff;
}
}
// Conflict?
const IntegerValue slack =
upper_bound_ - (rev_lb_fixed_vars_ + lb_unfixed_vars);
if (slack < 0) {
FillIntegerReason();
integer_trail_->RelaxLinearReason(-slack - 1, reason_coeffs_,
&integer_reason_);
if (num_unassigned_enforcement_literal == 1) {
// Propagate the only non-true literal to false.
const Literal to_propagate = Literal(unique_unnasigned_literal).Negated();
std::vector<Literal> tmp = literal_reason_;
tmp.erase(std::find(tmp.begin(), tmp.end(), to_propagate));
integer_trail_->EnqueueLiteral(to_propagate, tmp, integer_reason_);
return true;
}
return integer_trail_->ReportConflict(literal_reason_, integer_reason_);
}
// We can only propagate more if all the enforcement literals are true.
if (num_unassigned_enforcement_literal > 0) return true;
// The lower bound of all the variables except one can be used to update the
// upper bound of the last one.
for (int i = rev_num_fixed_vars_; i < num_vars; ++i) {
if (max_variations_[i] <= slack) continue;
const IntegerVariable var = vars_[i];
const IntegerValue coeff = coeffs_[i];
const IntegerValue div = slack / coeff;
const IntegerValue new_ub = integer_trail_->LowerBound(var) + div;
const IntegerValue propagation_slack = (div + 1) * coeff - slack - 1;
if (!integer_trail_->Enqueue(
IntegerLiteral::LowerOrEqual(var, new_ub),
/*lazy_reason=*/[this, propagation_slack](
IntegerLiteral i_lit, int trail_index,
std::vector<Literal>* literal_reason,
std::vector<int>* trail_indices_reason) {
*literal_reason = literal_reason_;
trail_indices_reason->clear();
reason_coeffs_.clear();
const int size = vars_.size();
for (int i = 0; i < size; ++i) {
const IntegerVariable var = vars_[i];
if (PositiveVariable(var) == PositiveVariable(i_lit.var)) {
continue;
}
const int index =
integer_trail_->FindTrailIndexOfVarBefore(var, trail_index);
if (index >= 0) {
trail_indices_reason->push_back(index);
if (propagation_slack > 0) {
reason_coeffs_.push_back(coeffs_[i]);
}
}
}
if (propagation_slack > 0) {
integer_trail_->RelaxLinearReason(
propagation_slack, reason_coeffs_, trail_indices_reason);
}
})) {
return false;
}
}
return true;
}
void IntegerSumLE::RegisterWith(GenericLiteralWatcher* watcher) {
is_registered_ = true;
const int id = watcher->Register(this);
for (const IntegerVariable& var : vars_) {
watcher->WatchLowerBound(var, id);
}
for (const Literal literal : enforcement_literals_) {
// We only watch the true direction.
//
// TODO(user): if there is more than one, maybe we should watch more to
// propagate a "conflict" as soon as only one is unassigned?
watcher->WatchLiteral(Literal(literal), id);
}
watcher->RegisterReversibleInt(id, &rev_num_fixed_vars_);
}
MinPropagator::MinPropagator(const std::vector<IntegerVariable>& vars,
IntegerVariable min_var,
IntegerTrail* integer_trail)
: vars_(vars), min_var_(min_var), integer_trail_(integer_trail) {}
bool MinPropagator::Propagate() {
if (vars_.empty()) return true;
// Count the number of interval that are possible candidate for the min.
// Only the intervals for which lb > current_min_ub cannot.
const IntegerLiteral min_ub_literal =
integer_trail_->UpperBoundAsLiteral(min_var_);
const IntegerValue current_min_ub = integer_trail_->UpperBound(min_var_);
int num_intervals_that_can_be_min = 0;
int last_possible_min_interval = 0;
IntegerValue min = kMaxIntegerValue;
for (int i = 0; i < vars_.size(); ++i) {
const IntegerValue lb = integer_trail_->LowerBound(vars_[i]);
min = std::min(min, lb);
if (lb <= current_min_ub) {
++num_intervals_that_can_be_min;
last_possible_min_interval = i;
}
}
// Propagation a)
if (min > integer_trail_->LowerBound(min_var_)) {
integer_reason_.clear();
for (const IntegerVariable var : vars_) {
integer_reason_.push_back(IntegerLiteral::GreaterOrEqual(var, min));
}
if (!integer_trail_->Enqueue(IntegerLiteral::GreaterOrEqual(min_var_, min),
{}, integer_reason_)) {
return false;
}
}
// Propagation b)
if (num_intervals_that_can_be_min == 1) {
const IntegerValue ub_of_only_candidate =
integer_trail_->UpperBound(vars_[last_possible_min_interval]);
if (current_min_ub < ub_of_only_candidate) {
integer_reason_.clear();
// The reason is that all the other interval start after current_min_ub.
// And that min_ub has its current value.
integer_reason_.push_back(min_ub_literal);
for (const IntegerVariable var : vars_) {
if (var == vars_[last_possible_min_interval]) continue;
integer_reason_.push_back(
IntegerLiteral::GreaterOrEqual(var, current_min_ub + 1));
}
if (!integer_trail_->Enqueue(
IntegerLiteral::LowerOrEqual(vars_[last_possible_min_interval],
current_min_ub),
{}, integer_reason_)) {
return false;
}
}
}
// Conflict.
//
// TODO(user): Not sure this code is useful since this will be detected
// by the fact that the [lb, ub] of the min is empty. It depends on the
// propagation order though, but probably the precedences propagator would
// propagate before this one. So change this to a CHECK?
if (num_intervals_that_can_be_min == 0) {
integer_reason_.clear();
// Almost the same as propagation b).
integer_reason_.push_back(min_ub_literal);
for (const IntegerVariable var : vars_) {
integer_reason_.push_back(
IntegerLiteral::GreaterOrEqual(var, current_min_ub + 1));
}
return integer_trail_->ReportConflict(integer_reason_);
}
return true;
}
void MinPropagator::RegisterWith(GenericLiteralWatcher* watcher) {
const int id = watcher->Register(this);
for (const IntegerVariable& var : vars_) {
watcher->WatchLowerBound(var, id);
}
watcher->WatchUpperBound(min_var_, id);
}
PositiveProductPropagator::PositiveProductPropagator(
IntegerVariable a, IntegerVariable b, IntegerVariable p,
IntegerTrail* integer_trail)
: a_(a), b_(b), p_(p), integer_trail_(integer_trail) {}
namespace {
// The maximum value of x such that x * b <= p with b > 0 and p >= 0;
IntegerValue MaxValue(IntegerValue b, IntegerValue p) {
CHECK_GT(b, 0);
CHECK_GE(p, 0);
return p / b;
}
// The minimum value of x such that x * b >= p with b > 0 and p >= 0;
IntegerValue MinValue(IntegerValue b, IntegerValue p) {
CHECK_GT(b, 0);
CHECK_GE(p, 0);
return (p + b - 1) / b;
}
} // namespace
bool PositiveProductPropagator::Propagate() {
// Copy because we will swap them.
IntegerVariable a = a_;
IntegerVariable b = b_;
IntegerValue min_a = integer_trail_->LowerBound(a);
IntegerValue max_a = integer_trail_->UpperBound(a);
IntegerValue min_b = integer_trail_->LowerBound(b);
IntegerValue max_b = integer_trail_->UpperBound(b);
IntegerValue min_p = integer_trail_->LowerBound(p_);
IntegerValue max_p = integer_trail_->UpperBound(p_);
// TODO(user): support these cases.
CHECK_GE(min_a, 0);
CHECK_GE(min_b, 0);
const IntegerValue zero(0); // For convenience.
bool may_propagate = true;
while (may_propagate) {
may_propagate = false;
if (max_a * max_b < max_p) {
may_propagate = true;
max_p = max_a * max_b;
if (!integer_trail_->Enqueue(IntegerLiteral::LowerOrEqual(p_, max_p), {},
{integer_trail_->UpperBoundAsLiteral(a),
integer_trail_->UpperBoundAsLiteral(b),
IntegerLiteral::GreaterOrEqual(a, zero),
IntegerLiteral::GreaterOrEqual(b, zero)})) {
return false;
}
}
if (min_a * min_b > min_p) {
may_propagate = true;
min_p = min_a * min_b;
if (!integer_trail_->Enqueue(IntegerLiteral::GreaterOrEqual(p_, min_p),
{},
{integer_trail_->LowerBoundAsLiteral(a),
integer_trail_->LowerBoundAsLiteral(b)})) {
return false;
}
}
// This helps to check the validity of the test below.
CHECK_GE(min_p, 0);
CHECK_GE(max_p, min_p);
for (int i = 0; i < 2; ++i) {
if (max_a * min_b > max_p) {
may_propagate = true;
max_a = MaxValue(min_b, max_p);
if (!integer_trail_->Enqueue(
IntegerLiteral::LowerOrEqual(a, max_a), {},
{integer_trail_->LowerBoundAsLiteral(b),
integer_trail_->UpperBoundAsLiteral(p_)})) {
return false;
}
} else if (max_a * min_b < min_p) {
may_propagate = true;
min_b = MinValue(max_a, min_p);
if (!integer_trail_->Enqueue(
IntegerLiteral::GreaterOrEqual(b, min_b), {},
{integer_trail_->UpperBoundAsLiteral(a),
IntegerLiteral::GreaterOrEqual(b, zero),
integer_trail_->LowerBoundAsLiteral(p_)})) {
return false;
}
}
// Same thing with a and b swapped.
std::swap(a, b);
std::swap(min_a, min_b);
std::swap(max_a, max_b);
}
}
return true;
}
void PositiveProductPropagator::RegisterWith(GenericLiteralWatcher* watcher) {
const int id = watcher->Register(this);
watcher->WatchIntegerVariable(a_, id);
watcher->WatchIntegerVariable(b_, id);
watcher->WatchIntegerVariable(p_, id);
}
SquarePropagator::SquarePropagator(IntegerVariable x, IntegerVariable s,
IntegerTrail* integer_trail)
: x_(x), s_(s), integer_trail_(integer_trail) {}
bool SquarePropagator::Propagate() {
bool may_propagate = true;
while (may_propagate) {
may_propagate = false;
IntegerValue min_x = integer_trail_->LowerBound(x_);
IntegerValue max_x = integer_trail_->UpperBound(x_);
IntegerValue min_s = integer_trail_->LowerBound(s_);
IntegerValue max_s = integer_trail_->UpperBound(s_);
// TODO(user): support this case.
CHECK_GE(min_x, 0);
// Propagation from x to s: s in [min_x*min_x, max_x*max_x].
if (min_x * min_x > min_s) {
may_propagate = true;
min_s = min_x * min_x;
if (!integer_trail_->Enqueue(
IntegerLiteral::GreaterOrEqual(s_, min_s), {},
{IntegerLiteral::GreaterOrEqual(x_, min_x)})) {
return false;
}
}
if (max_x * max_x < max_s) {
may_propagate = true;
max_s = max_x * max_x;
if (!integer_trail_->Enqueue(IntegerLiteral::LowerOrEqual(s_, max_s), {},
{IntegerLiteral::LowerOrEqual(x_, max_x)})) {
return false;
}
}
// Propagation from s to x: x in [ceil(sqrt(min_s)), floor(sqrt(max_s))].
if (max_x * max_x > max_s) {
may_propagate = true;
// TODO(user): O(log(max_x)) version or someone will be unhappy.
while (max_x * max_x > max_s) max_x--;
if (!integer_trail_->Enqueue(IntegerLiteral::LowerOrEqual(x_, max_x), {},
{IntegerLiteral::LowerOrEqual(
s_, (max_x + 1) * (max_x + 1) - 1)})) {
return false;
}
}
if (min_x * min_x < min_s) {
may_propagate = true;
// TODO(user): O(log(min_x)) version or someone will be unhappy.
while (min_x * min_x < min_s) min_x++;
if (!integer_trail_->Enqueue(IntegerLiteral::GreaterOrEqual(x_, min_x),
{},
{IntegerLiteral::GreaterOrEqual(
s_, (min_x - 1) * (min_x - 1) + 1)})) {
return false;
}
}
}
return true;
}
void SquarePropagator::RegisterWith(GenericLiteralWatcher* watcher) {
const int id = watcher->Register(this);
watcher->WatchIntegerVariable(x_, id);
watcher->WatchIntegerVariable(s_, id);
}
DivisionPropagator::DivisionPropagator(IntegerVariable a, IntegerVariable b,
IntegerVariable c,
IntegerTrail* integer_trail)
: a_(a), b_(b), c_(c), integer_trail_(integer_trail) {}
bool DivisionPropagator::Propagate() {
const IntegerValue min_a = integer_trail_->LowerBound(a_);
const IntegerValue max_a = integer_trail_->UpperBound(a_);
const IntegerValue min_b = integer_trail_->LowerBound(b_);
const IntegerValue max_b = integer_trail_->UpperBound(b_);
IntegerValue min_c = integer_trail_->LowerBound(c_);
IntegerValue max_c = integer_trail_->UpperBound(c_);
// TODO(user): support these cases.
CHECK_GE(min_a, 0);
CHECK_GT(min_b, 0); // b can never be zero.
bool may_propagate = true;
while (may_propagate) {
may_propagate = false;
if (max_a / min_b < max_c) {
may_propagate = true;
max_c = max_a / min_b;
if (!integer_trail_->Enqueue(IntegerLiteral::LowerOrEqual(c_, max_c), {},
{integer_trail_->UpperBoundAsLiteral(a_),
integer_trail_->LowerBoundAsLiteral(b_)})) {
return false;
}
}
if (min_a / max_b > min_c) {
may_propagate = true;
min_c = min_a / max_b;
if (!integer_trail_->Enqueue(IntegerLiteral::GreaterOrEqual(c_, min_c),
{},
{integer_trail_->LowerBoundAsLiteral(a_),
integer_trail_->UpperBoundAsLiteral(b_)})) {
return false;
}
}
// TODO(user): propagate the bounds on a and b from the ones of c.
// Note however that what we did is enough to enforce the constraint when
// all the values are fixed.
}
return true;
}
void DivisionPropagator::RegisterWith(GenericLiteralWatcher* watcher) {
const int id = watcher->Register(this);
watcher->WatchIntegerVariable(a_, id);
watcher->WatchIntegerVariable(b_, id);
watcher->WatchIntegerVariable(c_, id);
}
FixedDivisionPropagator::FixedDivisionPropagator(IntegerVariable a,
IntegerValue b,
IntegerVariable c,
IntegerTrail* integer_trail)
: a_(a), b_(b), c_(c), integer_trail_(integer_trail) {}
bool FixedDivisionPropagator::Propagate() {
const IntegerValue min_a = integer_trail_->LowerBound(a_);
const IntegerValue max_a = integer_trail_->UpperBound(a_);
IntegerValue min_c = integer_trail_->LowerBound(c_);
IntegerValue max_c = integer_trail_->UpperBound(c_);
CHECK_GT(b_, 0);
if (max_a / b_ < max_c) {
max_c = max_a / b_;
if (!integer_trail_->Enqueue(IntegerLiteral::LowerOrEqual(c_, max_c), {},
{integer_trail_->UpperBoundAsLiteral(a_)})) {
return false;
}
} else if (max_a / b_ > max_c) {
const IntegerValue new_max_a =
max_c >= 0 ? max_c * b_ + b_ - 1
: IntegerValue(CapProd(max_c.value(), b_.value()));
CHECK_LT(new_max_a, max_a);
if (!integer_trail_->Enqueue(IntegerLiteral::LowerOrEqual(a_, new_max_a),
{},
{integer_trail_->UpperBoundAsLiteral(c_)})) {
return false;
}
}
if (min_a / b_ > min_c) {
min_c = min_a / b_;
if (!integer_trail_->Enqueue(IntegerLiteral::GreaterOrEqual(c_, min_c), {},
{integer_trail_->LowerBoundAsLiteral(a_)})) {
return false;
}
} else if (min_a / b_ < min_c) {
const IntegerValue new_min_a =
min_c > 0 ? IntegerValue(CapProd(min_c.value(), b_.value()))
: min_c * b_ - b_ + 1;
CHECK_GT(new_min_a, min_a);
if (!integer_trail_->Enqueue(IntegerLiteral::GreaterOrEqual(a_, new_min_a),
{},
{integer_trail_->LowerBoundAsLiteral(c_)})) {
return false;
}
}
return true;
}
void FixedDivisionPropagator::RegisterWith(GenericLiteralWatcher* watcher) {
const int id = watcher->Register(this);
watcher->WatchIntegerVariable(a_, id);
watcher->WatchIntegerVariable(c_, id);
}
std::function<void(Model*)> IsOneOf(IntegerVariable var,
const std::vector<Literal>& selectors,
const std::vector<IntegerValue>& values) {
return [=](Model* model) {
IntegerTrail* integer_trail = model->GetOrCreate<IntegerTrail>();
IntegerEncoder* encoder = model->GetOrCreate<IntegerEncoder>();
CHECK(!values.empty());
CHECK_EQ(values.size(), selectors.size());
std::vector<int64> unique_values;
absl::flat_hash_map<int64, std::vector<Literal>> value_to_selector;
for (int i = 0; i < values.size(); ++i) {
unique_values.push_back(values[i].value());
value_to_selector[values[i].value()].push_back(selectors[i]);
}
gtl::STLSortAndRemoveDuplicates(&unique_values);
integer_trail->UpdateInitialDomain(var, Domain::FromValues(unique_values));
if (unique_values.size() == 1) {
model->Add(ClauseConstraint(selectors));
return;
}
// Note that it is more efficient to call AssociateToIntegerEqualValue()
// with the values ordered, like we do here.
for (const int64 v : unique_values) {
const std::vector<Literal>& selectors = value_to_selector[v];
if (selectors.size() == 1) {
encoder->AssociateToIntegerEqualValue(selectors[0], var,
IntegerValue(v));
} else {
const Literal l(model->Add(NewBooleanVariable()), true);
model->Add(ReifiedBoolOr(selectors, l));
encoder->AssociateToIntegerEqualValue(l, var, IntegerValue(v));
}
}
};
}
} // namespace sat
} // namespace operations_research