This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcbc_interface.cc
547 lines (472 loc) · 18 KB
/
cbc_interface.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/strings/str_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/hash.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/timer.h"
#include "ortools/linear_solver/linear_solver.h"
#if defined(USE_CBC)
#undef PACKAGE
#undef VERSION
#include "CbcConfig.h"
#include "CbcMessage.hpp"
#include "CbcModel.hpp"
#include "CoinModel.hpp"
#include "OsiClpSolverInterface.hpp"
// Heuristics
namespace operations_research {
class CBCInterface : public MPSolverInterface {
public:
// Constructor that takes a name for the underlying glpk solver.
explicit CBCInterface(MPSolver* const solver);
~CBCInterface() override;
// ----- Reset -----
void Reset() override;
// Sets the optimization direction (min/max).
void SetOptimizationDirection(bool maximize) override;
// ----- Parameters -----
util::Status SetNumThreads(int num_threads) override {
CHECK_GE(num_threads, 1);
num_threads_ = num_threads;
return util::OkStatus();
}
// ----- Solve -----
// Solve the problem using the parameter values specified.
MPSolver::ResultStatus Solve(const MPSolverParameters& param) override;
// TODO(user): separate the solve from the model extraction.
virtual void ExtractModel() {}
// Query problem type.
bool IsContinuous() const override { return false; }
bool IsLP() const override { return false; }
bool IsMIP() const override { return true; }
// Modify bounds.
void SetVariableBounds(int var_index, double lb, double ub) override;
void SetVariableInteger(int var_index, bool integer) override;
void SetConstraintBounds(int row_index, double lb, double ub) override;
// Add constraint incrementally.
void AddRowConstraint(MPConstraint* const ct) override;
// Add variable incrementally.
void AddVariable(MPVariable* const var) override;
// Change a coefficient in a constraint.
void SetCoefficient(MPConstraint* const constraint,
const MPVariable* const variable, double new_value,
double old_value) override {
sync_status_ = MUST_RELOAD;
}
// Clear a constraint from all its terms.
void ClearConstraint(MPConstraint* const constraint) override {
sync_status_ = MUST_RELOAD;
}
// Change a coefficient in the linear objective.
void SetObjectiveCoefficient(const MPVariable* const variable,
double coefficient) override {
sync_status_ = MUST_RELOAD;
}
// Change the constant term in the linear objective.
void SetObjectiveOffset(double value) override { sync_status_ = MUST_RELOAD; }
// Clear the objective from all its terms.
void ClearObjective() override { sync_status_ = MUST_RELOAD; }
// Number of simplex iterations
int64 iterations() const override;
// Number of branch-and-bound nodes. Only available for discrete problems.
int64 nodes() const override;
// Best objective bound. Only available for discrete problems.
double best_objective_bound() const override;
// Returns the basis status of a row.
MPSolver::BasisStatus row_status(int constraint_index) const override {
LOG(FATAL) << "Basis status only available for continuous problems";
return MPSolver::FREE;
}
// Returns the basis status of a column.
MPSolver::BasisStatus column_status(int variable_index) const override {
LOG(FATAL) << "Basis status only available for continuous problems";
return MPSolver::FREE;
}
void ExtractNewVariables() override {}
void ExtractNewConstraints() override {}
void ExtractObjective() override {}
std::string SolverVersion() const override { return "Cbc " CBC_VERSION; }
// TODO(user): Maybe we should expose the CbcModel build from osi_
// instead, but a new CbcModel is built every time Solve is called,
// so it is not possible right now.
void* underlying_solver() override { return reinterpret_cast<void*>(&osi_); }
private:
// Reset best objective bound to +/- infinity depending on the
// optimization direction.
void ResetBestObjectiveBound();
// Set all parameters in the underlying solver.
void SetParameters(const MPSolverParameters& param) override;
// Set each parameter in the underlying solver.
void SetRelativeMipGap(double value) override;
void SetPrimalTolerance(double value) override;
void SetDualTolerance(double value) override;
void SetPresolveMode(int value) override;
void SetScalingMode(int value) override;
void SetLpAlgorithm(int value) override;
OsiClpSolverInterface osi_;
// TODO(user): remove and query number of iterations directly from CbcModel
int64 iterations_;
int64 nodes_;
double best_objective_bound_;
// Special way to handle the relative MIP gap parameter.
double relative_mip_gap_;
int num_threads_ = 1;
};
// ----- Solver -----
// Creates a LP/MIP instance with the specified name and minimization objective.
CBCInterface::CBCInterface(MPSolver* const solver)
: MPSolverInterface(solver),
iterations_(0),
nodes_(0),
best_objective_bound_(-std::numeric_limits<double>::infinity()),
relative_mip_gap_(MPSolverParameters::kDefaultRelativeMipGap) {
osi_.setStrParam(OsiProbName, solver_->name_);
osi_.setObjSense(1);
}
CBCInterface::~CBCInterface() {}
// Reset the solver.
void CBCInterface::Reset() {
osi_.reset();
osi_.setObjSense(maximize_ ? -1 : 1);
osi_.setStrParam(OsiProbName, solver_->name_);
ResetExtractionInformation();
}
void CBCInterface::ResetBestObjectiveBound() {
if (maximize_) {
best_objective_bound_ = std::numeric_limits<double>::infinity();
} else {
best_objective_bound_ = -std::numeric_limits<double>::infinity();
}
}
void CBCInterface::SetOptimizationDirection(bool maximize) {
InvalidateSolutionSynchronization();
if (sync_status_ == MODEL_SYNCHRONIZED) {
osi_.setObjSense(maximize ? -1 : 1);
} else {
sync_status_ = MUST_RELOAD;
}
}
namespace {
// CBC adds a "dummy" variable with index 0 to represent the objective offset.
int MPSolverVarIndexToCbcVarIndex(int var_index) { return var_index + 1; }
} // namespace
void CBCInterface::SetVariableBounds(int var_index, double lb, double ub) {
InvalidateSolutionSynchronization();
if (sync_status_ == MODEL_SYNCHRONIZED) {
osi_.setColBounds(MPSolverVarIndexToCbcVarIndex(var_index), lb, ub);
} else {
sync_status_ = MUST_RELOAD;
}
}
void CBCInterface::SetVariableInteger(int var_index, bool integer) {
InvalidateSolutionSynchronization();
// TODO(user) : Check if this is actually a change.
if (sync_status_ == MODEL_SYNCHRONIZED) {
if (integer) {
osi_.setInteger(MPSolverVarIndexToCbcVarIndex(var_index));
} else {
osi_.setContinuous(MPSolverVarIndexToCbcVarIndex(var_index));
}
} else {
sync_status_ = MUST_RELOAD;
}
}
void CBCInterface::SetConstraintBounds(int index, double lb, double ub) {
InvalidateSolutionSynchronization();
if (sync_status_ == MODEL_SYNCHRONIZED) {
osi_.setRowBounds(index, lb, ub);
} else {
sync_status_ = MUST_RELOAD;
}
}
void CBCInterface::AddRowConstraint(MPConstraint* const ct) {
sync_status_ = MUST_RELOAD;
}
void CBCInterface::AddVariable(MPVariable* const var) {
sync_status_ = MUST_RELOAD;
}
// Solve the LP/MIP. Returns true only if the optimal solution was revealed.
// Returns the status of the search.
MPSolver::ResultStatus CBCInterface::Solve(const MPSolverParameters& param) {
// CBC requires unique variable and constraint names. By using Lookup*, we
// generate variable and constraint indices and ensure the duplicate name
// crash will happen here with a readable error message.
if (!solver_->variables_.empty()) {
solver_->LookupVariableOrNull(solver_->variables_[0]->name());
}
if (!solver_->constraints_.empty()) {
solver_->LookupConstraintOrNull(solver_->constraints_[0]->name());
}
WallTimer timer;
timer.Start();
// Note that CBC does not provide any incrementality.
if (param.GetIntegerParam(MPSolverParameters::INCREMENTALITY) ==
MPSolverParameters::INCREMENTALITY_OFF) {
Reset();
}
// Special case if the model is empty since CBC is not able to
// handle this special case by itself.
if (solver_->variables_.empty() && solver_->constraints_.empty()) {
sync_status_ = SOLUTION_SYNCHRONIZED;
result_status_ = MPSolver::OPTIMAL;
objective_value_ = solver_->Objective().offset();
best_objective_bound_ = solver_->Objective().offset();
return result_status_;
}
// Finish preparing the problem.
// Define variables.
switch (sync_status_) {
case MUST_RELOAD: {
Reset();
CoinModel build;
// Create dummy variable for objective offset.
build.addColumn(0, nullptr, nullptr, 1.0, 1.0,
solver_->Objective().offset(), "dummy", false);
const int nb_vars = solver_->variables_.size();
for (int i = 0; i < nb_vars; ++i) {
MPVariable* const var = solver_->variables_[i];
set_variable_as_extracted(i, true);
const double obj_coeff = solver_->Objective().GetCoefficient(var);
if (var->name().empty()) {
build.addColumn(0, nullptr, nullptr, var->lb(), var->ub(), obj_coeff,
nullptr, var->integer());
} else {
build.addColumn(0, nullptr, nullptr, var->lb(), var->ub(), obj_coeff,
var->name().c_str(), var->integer());
}
}
// Define constraints.
int max_row_length = 0;
for (int i = 0; i < solver_->constraints_.size(); ++i) {
MPConstraint* const ct = solver_->constraints_[i];
set_constraint_as_extracted(i, true);
if (ct->coefficients_.size() > max_row_length) {
max_row_length = ct->coefficients_.size();
}
}
std::unique_ptr<int[]> indices(new int[max_row_length]);
std::unique_ptr<double[]> coefs(new double[max_row_length]);
for (int i = 0; i < solver_->constraints_.size(); ++i) {
MPConstraint* const ct = solver_->constraints_[i];
const int size = ct->coefficients_.size();
int j = 0;
for (const auto& entry : ct->coefficients_) {
const int index = MPSolverVarIndexToCbcVarIndex(entry.first->index());
indices[j] = index;
coefs[j] = entry.second;
j++;
}
if (ct->name().empty()) {
build.addRow(size, indices.get(), coefs.get(), ct->lb(), ct->ub());
} else {
build.addRow(size, indices.get(), coefs.get(), ct->lb(), ct->ub(),
ct->name().c_str());
}
}
osi_.loadFromCoinModel(build);
break;
}
case MODEL_SYNCHRONIZED: {
break;
}
case SOLUTION_SYNCHRONIZED: {
break;
}
}
// Changing optimization direction through OSI so that the model file
// (written through OSI) has the correct optimization duration.
osi_.setObjSense(maximize_ ? -1 : 1);
sync_status_ = MODEL_SYNCHRONIZED;
VLOG(1) << absl::StrFormat("Model built in %.3f seconds.", timer.Get());
ResetBestObjectiveBound();
// Solve
CbcModel model(osi_);
// Set log level.
CoinMessageHandler message_handler;
model.passInMessageHandler(&message_handler);
if (quiet_) {
message_handler.setLogLevel(0, 0); // Coin messages
message_handler.setLogLevel(1, 0); // Clp messages
message_handler.setLogLevel(2, 0); // Presolve messages
message_handler.setLogLevel(3, 0); // Cgl messages
} else {
message_handler.setLogLevel(0, 1); // Coin messages
message_handler.setLogLevel(1, 0); // Clp messages
message_handler.setLogLevel(2, 0); // Presolve messages
message_handler.setLogLevel(3, 1); // Cgl messages
}
// Time limit.
if (solver_->time_limit() != 0) {
VLOG(1) << "Setting time limit = " << solver_->time_limit() << " ms.";
model.setMaximumSeconds(solver_->time_limit_in_secs());
}
// And solve.
timer.Restart();
// Here we use the default function from the command-line CBC solver.
// This enables to activate all the features and get the same performance
// as the CBC stand-alone executable. The syntax is ugly, however.
SetParameters(param);
// Always turn presolve on (it's the CBC default and it consistently
// improves performance).
model.setTypePresolve(0);
// Special way to set the relative MIP gap parameter as it cannot be set
// through callCbc.
model.setAllowableFractionGap(relative_mip_gap_);
// NOTE: Trailing space is required to avoid buffer overflow in cbc.
int return_status =
num_threads_ == 1
? callCbc("-solve ", model)
: callCbc(absl::StrCat("-threads ", num_threads_, " -solve "), model);
const int kBadReturnStatus = 777;
CHECK_NE(kBadReturnStatus, return_status); // Should never happen according
// to the CBC source
VLOG(1) << absl::StrFormat("Solved in %.3f seconds.", timer.Get());
// Check the status: optimal, infeasible, etc.
int tmp_status = model.status();
VLOG(1) << "cbc result status: " << tmp_status;
/* Final status of problem
(info from cbc/.../CbcSolver.cpp,
See http://cs?q="cbc+status"+file:CbcSolver.cpp)
Some of these can be found out by is...... functions
-1 before branchAndBound
0 finished - check isProvenOptimal or isProvenInfeasible to see
if solution found
(or check value of best solution)
1 stopped - on maxnodes, maxsols, maxtime
2 difficulties so run was abandoned
(5 event user programmed event occurred)
*/
switch (tmp_status) {
case 0:
// Order of tests counts; if model.isContinuousUnbounded() returns true,
// then so does model.isProvenInfeasible()!
if (model.isProvenOptimal()) {
result_status_ = MPSolver::OPTIMAL;
} else if (model.isContinuousUnbounded()) {
result_status_ = MPSolver::UNBOUNDED;
} else if (model.isProvenInfeasible()) {
result_status_ = MPSolver::INFEASIBLE;
} else {
LOG(FATAL) << "Unknown solver status! Secondary status: "
<< model.secondaryStatus();
}
break;
case 1:
if (model.bestSolution() != nullptr) {
result_status_ = MPSolver::FEASIBLE;
} else {
result_status_ = MPSolver::NOT_SOLVED;
}
break;
default:
result_status_ = MPSolver::ABNORMAL;
break;
}
if (result_status_ == MPSolver::OPTIMAL ||
result_status_ == MPSolver::FEASIBLE) {
// Get the results
objective_value_ = model.getObjValue();
VLOG(1) << "objective=" << objective_value_;
const double* const values = model.bestSolution();
if (values != nullptr) {
// if optimal or feasible solution is found.
for (int i = 0; i < solver_->variables_.size(); ++i) {
MPVariable* const var = solver_->variables_[i];
const int var_index = MPSolverVarIndexToCbcVarIndex(var->index());
const double val = values[var_index];
var->set_solution_value(val);
VLOG(3) << var->name() << "=" << val;
}
} else {
VLOG(1) << "No feasible solution found.";
}
}
iterations_ = model.getIterationCount();
nodes_ = model.getNodeCount();
best_objective_bound_ = model.getBestPossibleObjValue();
VLOG(1) << "best objective bound=" << best_objective_bound_;
sync_status_ = SOLUTION_SYNCHRONIZED;
return result_status_;
}
// ------ Query statistics on the solution and the solve ------
int64 CBCInterface::iterations() const {
if (!CheckSolutionIsSynchronized()) return kUnknownNumberOfNodes;
return iterations_;
}
int64 CBCInterface::nodes() const {
if (!CheckSolutionIsSynchronized()) return kUnknownNumberOfIterations;
return nodes_;
}
double CBCInterface::best_objective_bound() const {
if (!CheckSolutionIsSynchronized() || !CheckBestObjectiveBoundExists()) {
return trivial_worst_objective_bound();
}
return best_objective_bound_;
}
// ----- Parameters -----
// The support for parameters in CBC is intentionally sparse. There is
// a memory leak in callCbc that prevents to pass parameters through
// it, so handling parameters would require an comprehensive rewrite
// of the code. I will improve the parameter support only if there is
// a relevant use case.
void CBCInterface::SetParameters(const MPSolverParameters& param) {
SetCommonParameters(param);
SetMIPParameters(param);
}
void CBCInterface::SetRelativeMipGap(double value) {
relative_mip_gap_ = value;
}
void CBCInterface::SetPrimalTolerance(double value) {
// Skip the warning for the default value as it coincides with
// the default value in CBC.
if (value != MPSolverParameters::kDefaultPrimalTolerance) {
SetUnsupportedDoubleParam(MPSolverParameters::PRIMAL_TOLERANCE);
}
}
void CBCInterface::SetDualTolerance(double value) {
// Skip the warning for the default value as it coincides with
// the default value in CBC.
if (value != MPSolverParameters::kDefaultDualTolerance) {
SetUnsupportedDoubleParam(MPSolverParameters::DUAL_TOLERANCE);
}
}
void CBCInterface::SetPresolveMode(int value) {
switch (value) {
case MPSolverParameters::PRESOLVE_ON: {
// CBC presolve is always on.
break;
}
default: {
SetUnsupportedIntegerParam(MPSolverParameters::PRESOLVE);
}
}
}
void CBCInterface::SetScalingMode(int value) {
SetUnsupportedIntegerParam(MPSolverParameters::SCALING);
}
void CBCInterface::SetLpAlgorithm(int value) {
SetUnsupportedIntegerParam(MPSolverParameters::LP_ALGORITHM);
}
MPSolverInterface* BuildCBCInterface(MPSolver* const solver) {
return new CBCInterface(solver);
}
} // namespace operations_research
#endif // #if defined(USE_CBC)