This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_assignment.h
1486 lines (1368 loc) · 62.1 KB
/
linear_assignment.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// An implementation of a cost-scaling push-relabel algorithm for the
// assignment problem (minimum-cost perfect bipartite matching), from
// the paper of Goldberg and Kennedy (1995).
//
//
// This implementation finds the minimum-cost perfect assignment in
// the given graph with integral edge weights set through the
// SetArcCost method.
//
// The running time is O(n*m*log(nC)) where n is the number of nodes,
// m is the number of edges, and C is the largest magnitude of an edge cost.
// In principle it can be worse than the Hungarian algorithm but we don't know
// of any class of problems where that actually happens. An additional sqrt(n)
// factor could be shaved off the running time bound using the technique
// described in http://dx.doi.org/10.1137/S0895480194281185
// (see also http://theory.stanford.edu/~robert/papers/glob_upd.ps).
//
//
// Example usage:
//
// #include "ortools/graph/graph.h"
// #include "ortools/graph/linear_assignment.h"
//
// // Choose a graph implementation (we recommend StaticGraph<>).
// typedef util::StaticGraph<> Graph;
//
// // Define a num_nodes / 2 by num_nodes / 2 assignment problem:
// const int num_nodes = ...
// const int num_arcs = ...
// const int num_left_nodes = num_nodes / 2;
// Graph graph(num_nodes, num_arcs);
// std::vector<operations_research::CostValue> arc_costs(num_arcs);
// for (int arc = 0; arc < num_arcs; ++arc) {
// const int arc_tail = ... // must be in [0, num_left_nodes)
// const int arc_head = ... // must be in [num_left_nodes, num_nodes)
// graph.AddArc(arc_tail, arc_head);
// arc_costs[arc] = ...
// }
//
// // Build the StaticGraph. You can skip this step by using a ListGraph<>
// // instead, but then the ComputeAssignment() below will be slower. It is
// // okay if your graph is small and performance is not critical though.
// {
// std::vector<Graph::ArcIndex> arc_permutation;
// graph.Build(&arc_permutation);
// util::Permute(arc_permutation, &arc_costs);
// }
//
// // Construct the LinearSumAssignment.
// ::operations_research::LinearSumAssignment<Graph> a(graph, num_left_nodes);
// for (int arc = 0; arc < num_arcs; ++arc) {
// // You can also replace 'arc_costs[arc]' by something like
// // ComputeArcCost(permutation.empty() ? arc : permutation[arc])
// // if you don't want to store the costs in arc_costs to save memory.
// a.SetArcCost(arc, arc_costs[arc]);
// }
//
// // Compute the optimum assignment.
// bool success = a.ComputeAssignment();
// // Retrieve the cost of the optimum assignment.
// operations_research::CostValue optimum_cost = a.GetCost();
// // Retrieve the node-node correspondence of the optimum assignment and the
// // cost of each node pairing.
// for (int left_node = 0; left_node < num_left_nodes; ++left_node) {
// const int right_node = a.GetMate(left_node);
// operations_research::CostValue node_pair_cost =
// a.GetAssignmentCost(left_node);
// ...
// }
//
// In the following, we consider a bipartite graph
// G = (V = X union Y, E subset XxY),
// where V denotes the set of nodes (vertices) in the graph, E denotes
// the set of arcs (edges), n = |V| denotes the number of nodes in the
// graph, and m = |E| denotes the number of arcs in the graph.
//
// The set of nodes is divided into two parts, X and Y, and every arc
// must go between a node of X and a node of Y. With each arc is
// associated a cost c(v, w). A matching M is a subset of E with the
// property that no two arcs in M have a head or tail node in common,
// and a perfect matching is a matching that touches every node in the
// graph. The cost of a matching M is the sum of the costs of all the
// arcs in M.
//
// The assignment problem is to find a perfect matching of minimum
// cost in the given bipartite graph. The present algorithm reduces
// the assignment problem to an instance of the minimum-cost flow
// problem and takes advantage of special properties of the resulting
// minimum-cost flow problem to solve it efficiently using a
// push-relabel method. For more information about minimum-cost flow
// see google3/ortools/graph/min_cost_flow.h
//
// The method used here is the cost-scaling approach for the
// minimum-cost circulation problem as described in [Goldberg and
// Tarjan] with some technical modifications:
// 1. For efficiency, we solve a transportation problem instead of
// minimum-cost circulation. We might revisit this decision if it
// is important to handle problems in which no perfect matching
// exists.
// 2. We use a modified "asymmetric" notion of epsilon-optimality in
// which left-to-right residual arcs are required to have reduced
// cost bounded below by zero and right-to-left residual arcs are
// required to have reduced cost bounded below by -epsilon. For
// each residual arc direction, the reduced-cost threshold for
// admissibility is epsilon/2 above the threshold for epsilon
// optimality.
// 3. We do not limit the applicability of the relabeling operation to
// nodes with excess. Instead we use the double-push operation
// (discussed in the Goldberg and Kennedy CSA paper and Kennedy's
// thesis) which relabels right-side nodes just *after* they have
// been discharged.
// The above differences are explained in detail in [Kennedy's thesis]
// and explained not quite as cleanly in [Goldberg and Kennedy's CSA
// paper]. But note that the thesis explanation uses a value of
// epsilon that's double what we use here.
//
// Some definitions:
// Active: A node is called active when it has excess. It is
// eligible to be pushed from. In this implementation, every active
// node is on the left side of the graph where prices are determined
// implicitly, so no left-side relabeling is necessary before
// pushing from an active node. We do, however, need to compute
// the implications for price changes on the affected right-side
// nodes.
// Admissible: A residual arc (one that can carry more flow) is
// called admissible when its reduced cost is small enough. We can
// push additional flow along such an arc without violating
// epsilon-optimality. In the case of a left-to-right residual
// arc, the reduced cost must be at most epsilon/2. In the case of
// a right-to-left residual arc, the reduced cost must be at
// most -epsilon/2. The careful reader will note that these thresholds
// are not used explicitly anywhere in this implementation, and
// the reason is the implicit pricing of left-side nodes.
// Reduced cost: Essentially an arc's reduced cost is its
// complementary slackness. In push-relabel algorithms this is
// c_p(v, w) = p(v) + c(v, w) - p(w),
// where p() is the node price function and c(v, w) is the cost of
// the arc from v to w. See min_cost_flow.h for more details.
// Partial reduced cost: We maintain prices implicitly for left-side
// nodes in this implementation, so instead of reduced costs we
// work with partial reduced costs, defined as
// c'_p(v, w) = c(v, w) - p(w).
//
// We check at initialization time for the possibility of arithmetic
// overflow and warn if the given costs are too large. In many cases
// the bound we use to trigger the warning is pessimistic so the given
// problem can often be solved even if we warn that overflow is
// possible.
//
// We don't use the interface from
// operations_research/algorithms/hungarian.h because we want to be
// able to express sparse problems efficiently.
//
// When asked to solve the given assignment problem we return a
// boolean to indicate whether the given problem was feasible.
//
// References:
// [ Goldberg and Kennedy's CSA paper ] A. V. Goldberg and R. Kennedy,
// "An Efficient Cost Scaling Algorithm for the Assignment Problem."
// Mathematical Programming, Vol. 71, pages 153-178, December 1995.
//
// [ Goldberg and Tarjan ] A. V. Goldberg and R. E. Tarjan, "Finding
// Minimum-Cost Circulations by Successive Approximation." Mathematics
// of Operations Research, Vol. 15, No. 3, pages 430-466, August 1990.
//
// [ Kennedy's thesis ] J. R. Kennedy, Jr., "Solving Unweighted and
// Weighted Bipartite Matching Problems in Theory and Practice."
// Stanford University Doctoral Dissertation, Department of Computer
// Science, 1995.
//
// [ Burkard et al. ] R. Burkard, M. Dell'Amico, S. Martello, "Assignment
// Problems", SIAM, 2009, ISBN: 978-0898716634,
// http://www.amazon.com/dp/0898716632/
//
// [ Ahuja et al. ] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, "Network Flows:
// Theory, Algorithms, and Applications," Prentice Hall, 1993,
// ISBN: 978-0136175490, http://www.amazon.com/dp/013617549X.
//
// Keywords: linear sum assignment problem, Hungarian method, Goldberg, Kennedy.
#ifndef OR_TOOLS_GRAPH_LINEAR_ASSIGNMENT_H_
#define OR_TOOLS_GRAPH_LINEAR_ASSIGNMENT_H_
#include <algorithm>
#include <cstdlib>
#include <deque>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/strings/str_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"
#include "ortools/graph/ebert_graph.h"
#include "ortools/util/permutation.h"
#include "ortools/util/zvector.h"
#ifndef SWIG
DECLARE_int64(assignment_alpha);
DECLARE_int32(assignment_progress_logging_period);
DECLARE_bool(assignment_stack_order);
#endif
namespace operations_research {
// This class does not take ownership of its underlying graph.
template <typename GraphType>
class LinearSumAssignment {
public:
typedef typename GraphType::NodeIndex NodeIndex;
typedef typename GraphType::ArcIndex ArcIndex;
// Constructor for the case in which we will build the graph
// incrementally as we discover arc costs, as might be done with any
// of the dynamic graph representations such as StarGraph or ForwardStarGraph.
LinearSumAssignment(const GraphType& graph, NodeIndex num_left_nodes);
// Constructor for the case in which the underlying graph cannot be
// built until after all the arc costs are known, as is the case
// with ForwardStarStaticGraph. In this case, the graph is passed to
// us later via the SetGraph() method, below.
LinearSumAssignment(NodeIndex num_left_nodes, ArcIndex num_arcs);
~LinearSumAssignment() {}
// Sets the graph used by the LinearSumAssignment instance, for use
// when the graph layout can be determined only after arc costs are
// set. This happens, for example, when we use a ForwardStarStaticGraph.
void SetGraph(const GraphType* graph) {
DCHECK(graph_ == nullptr);
graph_ = graph;
}
// Sets the cost-scaling divisor, i.e., the amount by which we
// divide the scaling parameter on each iteration.
void SetCostScalingDivisor(CostValue factor) { alpha_ = factor; }
// Returns a permutation cycle handler that can be passed to the
// TransformToForwardStaticGraph method so that arc costs get
// permuted along with arcs themselves.
//
// Passes ownership of the cycle handler to the caller.
//
operations_research::PermutationCycleHandler<typename GraphType::ArcIndex>*
ArcAnnotationCycleHandler();
// Optimizes the layout of the graph for the access pattern our
// implementation will use.
//
// REQUIRES for LinearSumAssignment template instantiation if a call
// to the OptimizeGraphLayout() method is compiled: GraphType is a
// dynamic graph, i.e., one that implements the
// GroupForwardArcsByFunctor() member template method.
//
// If analogous optimization is needed for LinearSumAssignment
// instances based on static graphs, the graph layout should be
// constructed such that each node's outgoing arcs are sorted by
// head node index before the
// LinearSumAssignment<GraphType>::SetGraph() method is called.
void OptimizeGraphLayout(GraphType* graph);
// Allows tests, iterators, etc., to inspect our underlying graph.
inline const GraphType& Graph() const { return *graph_; }
// These handy member functions make the code more compact, and we
// expose them to clients so that client code that doesn't have
// direct access to the graph can learn about the optimum assignment
// once it is computed.
inline NodeIndex Head(ArcIndex arc) const { return graph_->Head(arc); }
// Returns the original arc cost for use by a client that's
// iterating over the optimum assignment.
CostValue ArcCost(ArcIndex arc) const {
DCHECK_EQ(0, scaled_arc_cost_[arc] % cost_scaling_factor_);
return scaled_arc_cost_[arc] / cost_scaling_factor_;
}
// Sets the cost of an arc already present in the given graph.
void SetArcCost(ArcIndex arc, CostValue cost);
// Completes initialization after the problem is fully specified.
// Returns true if we successfully prove that arithmetic
// calculations are guaranteed not to overflow. ComputeAssignment()
// calls this method itself, so only clients that care about
// obtaining a warning about the possibility of arithmetic precision
// problems need to call this method explicitly.
//
// Separate from ComputeAssignment() for white-box testing and for
// clients that need to react to the possibility that arithmetic
// overflow is not ruled out.
//
// FinalizeSetup() is idempotent.
bool FinalizeSetup();
// Computes the optimum assignment. Returns true on success. Return
// value of false implies the given problem is infeasible.
bool ComputeAssignment();
// Returns the cost of the minimum-cost perfect matching.
// Precondition: success_ == true, signifying that we computed the
// optimum assignment for a feasible problem.
CostValue GetCost() const;
// Returns the total number of nodes in the given problem.
NodeIndex NumNodes() const {
if (graph_ == nullptr) {
// Return a guess that must be true if ultimately we are given a
// feasible problem to solve.
return 2 * NumLeftNodes();
} else {
return graph_->num_nodes();
}
}
// Returns the number of nodes on the left side of the given
// problem.
NodeIndex NumLeftNodes() const { return num_left_nodes_; }
// Returns the arc through which the given node is matched.
inline ArcIndex GetAssignmentArc(NodeIndex left_node) const {
DCHECK_LT(left_node, num_left_nodes_);
return matched_arc_[left_node];
}
// Returns the cost of the assignment arc incident to the given
// node.
inline CostValue GetAssignmentCost(NodeIndex node) const {
return ArcCost(GetAssignmentArc(node));
}
// Returns the node to which the given node is matched.
inline NodeIndex GetMate(NodeIndex left_node) const {
DCHECK_LT(left_node, num_left_nodes_);
ArcIndex matching_arc = GetAssignmentArc(left_node);
DCHECK_NE(GraphType::kNilArc, matching_arc);
return Head(matching_arc);
}
std::string StatsString() const { return total_stats_.StatsString(); }
class BipartiteLeftNodeIterator {
public:
BipartiteLeftNodeIterator(const GraphType& graph, NodeIndex num_left_nodes)
: num_left_nodes_(num_left_nodes), node_iterator_(0) {}
explicit BipartiteLeftNodeIterator(const LinearSumAssignment& assignment)
: num_left_nodes_(assignment.NumLeftNodes()), node_iterator_(0) {}
NodeIndex Index() const { return node_iterator_; }
bool Ok() const { return node_iterator_ < num_left_nodes_; }
void Next() { ++node_iterator_; }
private:
const NodeIndex num_left_nodes_;
typename GraphType::NodeIndex node_iterator_;
};
private:
struct Stats {
Stats() : pushes_(0), double_pushes_(0), relabelings_(0), refinements_(0) {}
void Clear() {
pushes_ = 0;
double_pushes_ = 0;
relabelings_ = 0;
refinements_ = 0;
}
void Add(const Stats& that) {
pushes_ += that.pushes_;
double_pushes_ += that.double_pushes_;
relabelings_ += that.relabelings_;
refinements_ += that.refinements_;
}
std::string StatsString() const {
return absl::StrFormat(
"%d refinements; %d relabelings; "
"%d double pushes; %d pushes",
refinements_, relabelings_, double_pushes_, pushes_);
}
int64 pushes_;
int64 double_pushes_;
int64 relabelings_;
int64 refinements_;
};
#ifndef SWIG
class ActiveNodeContainerInterface {
public:
virtual ~ActiveNodeContainerInterface() {}
virtual bool Empty() const = 0;
virtual void Add(NodeIndex node) = 0;
virtual NodeIndex Get() = 0;
};
class ActiveNodeStack : public ActiveNodeContainerInterface {
public:
~ActiveNodeStack() override {}
bool Empty() const override { return v_.empty(); }
void Add(NodeIndex node) override { v_.push_back(node); }
NodeIndex Get() override {
DCHECK(!Empty());
NodeIndex result = v_.back();
v_.pop_back();
return result;
}
private:
std::vector<NodeIndex> v_;
};
class ActiveNodeQueue : public ActiveNodeContainerInterface {
public:
~ActiveNodeQueue() override {}
bool Empty() const override { return q_.empty(); }
void Add(NodeIndex node) override { q_.push_front(node); }
NodeIndex Get() override {
DCHECK(!Empty());
NodeIndex result = q_.back();
q_.pop_back();
return result;
}
private:
std::deque<NodeIndex> q_;
};
#endif
// Type definition for a pair
// (arc index, reduced cost gap)
// giving the arc along which we will push from a given left-side
// node and the gap between that arc's partial reduced cost and the
// reduced cost of the next-best (necessarily residual) arc out of
// the node. This information helps us efficiently relabel
// right-side nodes during DoublePush operations.
typedef std::pair<ArcIndex, CostValue> ImplicitPriceSummary;
// Returns true if and only if the current pseudoflow is
// epsilon-optimal. To be used in a DCHECK.
bool EpsilonOptimal() const;
// Checks that all nodes are matched.
// To be used in a DCHECK.
bool AllMatched() const;
// Calculates the implicit price of the given node.
// Only for debugging, for use in EpsilonOptimal().
inline CostValue ImplicitPrice(NodeIndex left_node) const;
// For use by DoublePush()
inline ImplicitPriceSummary BestArcAndGap(NodeIndex left_node) const;
// Accumulates stats between iterations and reports them if the
// verbosity level is high enough.
void ReportAndAccumulateStats();
// Utility function to compute the next error parameter value. This
// is used to ensure that the same sequence of error parameter
// values is used for computation of price bounds as is used for
// computing the optimum assignment.
CostValue NewEpsilon(CostValue current_epsilon) const;
// Advances internal state to prepare for the next scaling
// iteration. Returns false if infeasibility is detected, true
// otherwise.
bool UpdateEpsilon();
// Indicates whether the given left_node has positive excess. Called
// only for nodes on the left side.
inline bool IsActive(NodeIndex left_node) const;
// Indicates whether the given node has nonzero excess. The idea
// here is the same as the IsActive method above, but that method
// contains a safety DCHECK() that its argument is a left-side node,
// while this method is usable for any node.
// To be used in a DCHECK.
inline bool IsActiveForDebugging(NodeIndex node) const;
// Performs the push/relabel work for one scaling iteration.
bool Refine();
// Puts all left-side nodes in the active set in preparation for the
// first scaling iteration.
void InitializeActiveNodeContainer();
// Saturates all negative-reduced-cost arcs at the beginning of each
// scaling iteration. Note that according to the asymmetric
// definition of admissibility, this action is different from
// saturating all admissible arcs (which we never do). All negative
// arcs are admissible, but not all admissible arcs are negative. It
// is alwsys enough to saturate only the negative ones.
void SaturateNegativeArcs();
// Performs an optimized sequence of pushing a unit of excess out of
// the left-side node v and back to another left-side node if no
// deficit is cancelled with the first push.
bool DoublePush(NodeIndex source);
// Returns the partial reduced cost of the given arc.
inline CostValue PartialReducedCost(ArcIndex arc) const {
return scaled_arc_cost_[arc] - price_[Head(arc)];
}
// The graph underlying the problem definition we are given. Not
// owned by *this.
const GraphType* graph_;
// The number of nodes on the left side of the graph we are given.
NodeIndex num_left_nodes_;
// A flag indicating, after FinalizeSetup() has run, whether the
// arc-incidence precondition required by BestArcAndGap() is
// satisfied by every left-side node. If not, the problem is
// infeasible.
bool incidence_precondition_satisfied_;
// A flag indicating that an optimal perfect matching has been computed.
bool success_;
// The value by which we multiply all the arc costs we are given in
// order to be able to use integer arithmetic in all our
// computations. In order to establish optimality of the final
// matching we compute, we need that
// (cost_scaling_factor_ / kMinEpsilon) > graph_->num_nodes().
const CostValue cost_scaling_factor_;
// Scaling divisor.
CostValue alpha_;
// Minimum value of epsilon. When a flow is epsilon-optimal for
// epsilon == kMinEpsilon, the flow is optimal.
static const CostValue kMinEpsilon;
// Current value of epsilon, the cost scaling parameter.
CostValue epsilon_;
// The following two data members, price_lower_bound_ and
// slack_relabeling_price_, have to do with bounds on the amount by
// which node prices can change during execution of the algorithm.
// We need some detailed discussion of this topic because we violate
// several simplifying assumptions typically made in the theoretical
// literature. In particular, we use integer arithmetic, we use a
// reduction to the transportation problem rather than min-cost
// circulation, we provide detection of infeasible problems rather
// than assume feasibility, we detect when our computations might
// exceed the range of representable cost values, and we use the
// double-push heuristic which relabels nodes that do not have
// excess.
//
// In the following discussion, we prove the following propositions:
// Proposition 1. [Fidelity of arithmetic precision guarantee] If
// FinalizeSetup() returns true, no arithmetic
// overflow occurs during ComputeAssignment().
// Proposition 2. [Fidelity of feasibility detection] If no
// arithmetic overflow occurs during
// ComputeAssignment(), the return value of
// ComputeAssignment() faithfully indicates whether
// the given problem is feasible.
//
// We begin with some general discussion.
//
// The ideas used to prove our two propositions are essentially
// those that appear in [Goldberg and Tarjan], but several details
// are different: [Goldberg and Tarjan] assumes a feasible problem,
// uses a symmetric notion of epsilon-optimality, considers only
// nodes with excess eligible for relabeling, and does not treat the
// question of arithmetic overflow. This implementation, on the
// other hand, detects and reports infeasible problems, uses
// asymmetric epsilon-optimality, relabels nodes with no excess in
// the course of the double-push operation, and gives a reasonably
// tight guarantee of arithmetic precision. No fundamentally new
// ideas are involved, but the details are a bit tricky so they are
// explained here.
//
// We have two intertwined needs that lead us to compute bounds on
// the prices nodes can have during the assignment computation, on
// the assumption that the given problem is feasible:
// 1. Infeasibility detection: Infeasibility is detected by
// observing that some node's price has been reduced too much by
// relabeling operations (see [Goldberg and Tarjan] for the
// argument -- duplicated in modified form below -- bounding the
// running time of the push/relabel min-cost flow algorithm for
// feasible problems); and
// 2. Aggressively relabeling nodes and arcs whose matching is
// forced: When a left-side node is incident to only one arc a,
// any feasible solution must include a, and reducing the price
// of Head(a) by any nonnegative amount preserves epsilon-
// optimality. Because of this freedom, we'll call this sort of
// relabeling (i.e., a relabeling of a right-side node that is
// the only neighbor of the left-side node to which it has been
// matched in the present double-push operation) a "slack"
// relabeling. Relabelings that are not slack relabelings are
// called "confined" relabelings. By relabeling Head(a) to have
// p(Head(a))=-infinity, we could guarantee that a never becomes
// unmatched during the current iteration, and this would prevent
// our wasting time repeatedly unmatching and rematching a. But
// there are some details we need to handle:
// a. The CostValue type cannot represent -infinity;
// b. Low node prices are precisely the signal we use to detect
// infeasibility (see (1)), so we must be careful not to
// falsely conclude that the problem is infeasible as a result
// of the low price we gave Head(a); and
// c. We need to indicate accurately to the client when our best
// understanding indicates that we can't rule out arithmetic
// overflow in our calculations. Most importantly, if we don't
// warn the client, we must be certain to avoid overflow. This
// means our slack relabelings must not be so aggressive as to
// create the possibility of unforeseen overflow. Although we
// will not achieve this in practice, slack relabelings would
// ideally not introduce overflow unless overflow was
// inevitable were even the smallest reasonable price change
// (== epsilon) used for slack relabelings.
// Using the analysis below, we choose a finite amount of price
// change for slack relabelings aggressive enough that we don't
// waste time doing repeated slack relabelings in a single
// iteration, yet modest enough that we keep a good handle on
// arithmetic precision and our ability to detect infeasible
// problems.
//
// To provide faithful detection of infeasibility, a dependable
// guarantee of arithmetic precision whenever possible, and good
// performance by aggressively relabeling nodes whose matching is
// forced, we exploit these facts:
// 1. Beyond the first iteration, infeasibility detection isn't needed
// because a problem is feasible in some iteration if and only if
// it's feasible in all others. Therefore we are free to use an
// infeasibility detection mechanism that might work in just one
// iteration and switch it off in all other iterations.
// 2. When we do a slack relabeling, we must choose the amount of
// price reduction to use. We choose an amount large enough to
// guarantee putting the node's matching to rest, yet (although
// we don't bother to prove this explicitly) small enough that
// the node's price obeys the overall lower bound that holds if
// the slack relabeling amount is small.
//
// We will establish Propositions (1) and (2) above according to the
// following steps:
// First, we prove Lemma 1, which is a modified form of lemma 5.8 of
// [Goldberg and Tarjan] giving a bound on the difference in price
// between the end nodes of certain paths in the residual graph.
// Second, we prove Lemma 2, which is technical lemma to establish
// reachability of certain "anchor" nodes in the residual graph from
// any node where a relabeling takes place.
// Third, we apply the first two lemmas to prove Lemma 3 and Lemma
// 4, which give two similar bounds that hold whenever the given
// problem is feasible: (for feasibility detection) a bound on the
// price of any node we relabel during any iteration (and the first
// iteration in particular), and (for arithmetic precision) a bound
// on the price of any node we relabel during the entire algorithm.
//
// Finally, we note that if the whole-algorithm price bound can be
// represented precisely by the CostValue type, arithmetic overflow
// cannot occur (establishing Proposition 1), and assuming no
// overflow occurs during the first iteration, any violation of the
// first-iteration price bound establishes infeasibility
// (Proposition 2).
//
// The statement of Lemma 1 is perhaps easier to understand when the
// reader knows how it will be used. To wit: In this lemma, f' and
// e_0 are the flow and error parameter (epsilon) at the beginning
// of the current iteration, while f and e_1 are the current
// pseudoflow and error parameter when a relabeling of interest
// occurs. Without loss of generality, c is the reduced cost
// function at the beginning of the current iteration and p is the
// change in prices that has taken place in the current iteration.
//
// Lemma 1 (a variant of lemma 5.8 from [Goldberg and Tarjan]): Let
// f be a pseudoflow and let f' be a flow. Suppose P is a simple
// path from right-side node v to right-side node w such that P is
// residual with respect to f and reverse(P) is residual with
// respect to f'. Further, suppose c is an arc cost function with
// respect to which f' is e_0-optimal with the zero price function
// and p is a price function with respect to which f is e_1-optimal
// with respect to p. Then
// p(v) - p(w) >= -(e_0 + e_1) * (n-2)/2. (***)
//
// Proof: We have c_p(P) = p(v) + c(P) - p(w) and hence
// p(v) - p(w) = c_p(P) - c(P).
// So we seek a bound on c_p(P) - c(P).
// p(v) = c_p(P) - c(P).
// Let arc a lie on P, which implies that a is residual with respect
// to f and reverse(a) is residual with respect to f'.
// Case 1: a is a forward arc. Then by e_1-optimality of f with
// respect to p, c_p(a) >= 0 and reverse(a) is residual with
// respect to f'. By e_0-optimality of f', c(a) <= e_0. So
// c_p(a) - c(a) >= -e_0.
// Case 2: a is a reverse arc. Then by e_1-optimality of f with
// respect to p, c_p(a) >= -e_1 and reverse(a) is residual
// with respect to f'. By e_0-optimality of f', c(a) <= 0.
// So
// c_p(a) - c(a) >= -e_1.
// We assumed v and w are both right-side nodes, so there are at
// most n - 2 arcs on the path P, of which at most (n-2)/2 are
// forward arcs and at most (n-2)/2 are reverse arcs, so
// p(v) - p(w) = c_p(P) - c(P)
// >= -(e_0 + e_1) * (n-2)/2. (***)
//
// Some of the rest of our argument is given as a sketch, omitting
// several details. Also elided here are some minor technical issues
// related to the first iteration, inasmuch as our arguments assume
// on the surface a "previous iteration" that doesn't exist in that
// case. The issues are not substantial, just a bit messy.
//
// Lemma 2 is analogous to lemma 5.7 of [Goldberg and Tarjan], where
// they have only relabelings that take place at nodes with excess
// while we have only relabelings that take place as part of the
// double-push operation at nodes without excess.
//
// Lemma 2: If the problem is feasible, for any node v with excess,
// there exists a path P from v to a node w with deficit such that P
// is residual with respect to the current pseudoflow, and
// reverse(P) is residual with respect to the flow at the beginning
// of the current iteration. (Note that such a path exactly
// satisfies the conditions of Lemma 1.)
//
// Let the bound from Lemma 1 with p(w) = 0 be called B(e_0, e_1),
// and let us say that when a slack relabeling of a node v occurs,
// we will change the price of v by B(e_0, e_1) such that v tightly
// satisfies the bound of Lemma 1. Explicitly, we define
// B(e_0, e_1) = -(e_0 + e_1) * (n-2)/2.
//
// Lemma 1 and Lemma 2 combine to bound the price change during an
// iteration for any node with excess. Viewed a different way, Lemma
// 1 and Lemma 2 tell us that if epsilon-optimality can be preserved
// by changing the price of a node by B(e_0, e_1), that node will
// never have excess again during the current iteration unless the
// problem is infeasible. This insight gives us an approach to
// detect infeasibility (by observing prices on nodes with excess
// that violate this bound) and to relabel nodes aggressively enough
// to avoid unnecessary future work while we also avoid falsely
// concluding the problem is infeasible.
//
// From Lemma 1 and Lemma 2, and taking into account our knowledge
// of the slack relabeling amount, we have Lemma 3.
//
// Lemma 3: During any iteration, if the given problem is feasible
// the price of any node is reduced by less than
// -2 * B(e_0, e_1) = (e_0 + e_1) * (n-2).
//
// Proof: Straightforward, omitted for expedience.
//
// In the case where e_0 = e_1 * alpha, we can express the bound
// just in terms of e_1, the current iteration's value of epsilon_:
// B(e_1) = B(e_1 * alpha, e_1) = -(1 + alpha) * e_1 * (n-2)/2,
// so we have that p(v) is reduced by less than 2 * B(e_1).
//
// Because we use truncating division to compute each iteration's error
// parameter from that of the previous iteration, it isn't exactly
// the case that e_0 = e_1 * alpha as we just assumed. To patch this
// up, we can use the observation that
// e_1 = floor(e_0 / alpha),
// which implies
// -e_0 > -(e_1 + 1) * alpha
// to rewrite from (***):
// p(v) > 2 * B(e_0, e_1) > 2 * B((e_1 + 1) * alpha, e_1)
// = 2 * -((e_1 + 1) * alpha + e_1) * (n-2)/2
// = 2 * -(1 + alpha) * e_1 * (n-2)/2 - alpha * (n-2)
// = 2 * B(e_1) - alpha * (n-2)
// = -((1 + alpha) * e_1 + alpha) * (n-2).
//
// We sum up the bounds for all the iterations to get Lemma 4:
//
// Lemma 4: If the given problem is feasible, after k iterations the
// price of any node is always greater than
// -((1 + alpha) * C + (k * alpha)) * (n-2)
//
// Proof: Suppose the price decrease of every node in the iteration
// with epsilon_ == x is bounded by B(x) which is proportional to x
// (not surpisingly, this will be the same function B() as
// above). Assume for simplicity that C, the largest cost magnitude,
// is a power of alpha. Then the price of each node, tallied across
// all iterations is bounded
// p(v) > 2 * B(C/alpha) + 2 * B(C/alpha^2) + ... + 2 * B(kMinEpsilon)
// == 2 * B(C/alpha) * alpha / (alpha - 1)
// == 2 * B(C) / (alpha - 1).
// As above, this needs some patching up to handle the fact that we
// use truncating arithmetic. We saw that each iteration effectively
// reduces the price bound by alpha * (n-2), hence if there are k
// iterations, the bound is
// p(v) > 2 * B(C) / (alpha - 1) - k * alpha * (n-2)
// = -(1 + alpha) * C * (n-2) / (alpha - 1) - k * alpha * (n-2)
// = (n-2) * (C * (1 + alpha) / (1 - alpha) - k * alpha).
//
// The bound of lemma 4 can be used to warn for possible overflow of
// arithmetic precision. But because it involves the number of
// iterations, k, we might as well count through the iterations
// simply adding up the bounds given by Lemma 3 to get a tighter
// result. This is what the implementation does.
// A lower bound on the price of any node at any time throughout the
// computation. A price below this level proves infeasibility; this
// value is used for feasibility detection. We use this value also
// to rule out the possibility of arithmetic overflow or warn the
// client that we have not been able to rule out that possibility.
//
// We can use the value implied by Lemma 4 here, but note that that
// value includes k, the number of iterations. It's plenty fast if
// we count through the iterations to compute that value, but if
// we're going to count through the iterations, we might as well use
// the two-parameter bound from Lemma 3, summing up as we go. This
// gives us a tighter bound and more comprehensible code.
//
// While computing this bound, if we find the value justified by the
// theory lies outside the representable range of CostValue, we
// conclude that the given arc costs have magnitudes so large that
// we cannot guarantee our calculations don't overflow. If the value
// justified by the theory lies inside the representable range of
// CostValue, we commit that our calculation will not overflow. This
// commitment means we need to be careful with the amount by which
// we relabel right-side nodes that are incident to any node with
// only one neighbor.
CostValue price_lower_bound_;
// A bound on the amount by which a node's price can be reduced
// during the current iteration, used only for slack
// relabelings. Where epsilon is the first iteration's error
// parameter and C is the largest magnitude of an arc cost, we set
// slack_relabeling_price_ = -B(C, epsilon)
// = (C + epsilon) * (n-2)/2.
//
// We could use slack_relabeling_price_ for feasibility detection
// but the feasibility threshold is double the slack relabeling
// amount and we judge it not to be worth having to multiply by two
// gratuitously to check feasibility in each double push
// operation. Instead we settle for feasibility detection using
// price_lower_bound_ instead, which is somewhat slower in the
// infeasible case because more relabelings will be required for
// some node price to attain the looser bound.
CostValue slack_relabeling_price_;
// Computes the value of the bound on price reduction for an
// iteration, given the old and new values of epsilon_. Because the
// expression computed here is used in at least one place where we
// want an additional factor in the denominator, we take that factor
// as an argument. If extra_divisor == 1, this function computes of
// the function B() discussed above.
//
// Avoids overflow in computing the bound, and sets *in_range =
// false if the value of the bound doesn't fit in CostValue.
inline CostValue PriceChangeBound(CostValue old_epsilon,
CostValue new_epsilon,
bool* in_range) const {
const CostValue n = graph_->num_nodes();
// We work in double-precision floating point to determine whether
// we'll overflow the integral CostValue type's range of
// representation. Switching between integer and double is a
// rather expensive operation, but we do this only twice per
// scaling iteration, so we can afford it rather than resort to
// complex and subtle tricks within the bounds of integer
// arithmetic.
//
// You will want to read the comments above about
// price_lower_bound_ and slack_relabeling_price_, and have a
// pencil handy. :-)
const double result =
static_cast<double>(std::max<CostValue>(1, n / 2 - 1)) *
(static_cast<double>(old_epsilon) + static_cast<double>(new_epsilon));
const double limit =
static_cast<double>(std::numeric_limits<CostValue>::max());
if (result > limit) {
// Our integer computations could overflow.
if (in_range != nullptr) *in_range = false;
return std::numeric_limits<CostValue>::max();
} else {
// Don't touch *in_range; other computations could already have
// set it to false and we don't want to overwrite that result.
return static_cast<CostValue>(result);
}
}
// A scaled record of the largest arc-cost magnitude we've been
// given during problem setup. This is used to set the initial value
// of epsilon_, which in turn is used not only as the error
// parameter but also to determine whether we risk arithmetic
// overflow during the algorithm.
//
// Note: Our treatment of arithmetic overflow assumes the following
// property of CostValue:
// -std::numeric_limits<CostValue>::max() is a representable
// CostValue.
// That property is satisfied if CostValue uses a two's-complement
// representation.
CostValue largest_scaled_cost_magnitude_;
// The total excess in the graph. Given our asymmetric definition of
// epsilon-optimality and our use of the double-push operation, this
// equals the number of unmatched left-side nodes.
NodeIndex total_excess_;
// Indexed by node index, the price_ values are maintained only for
// right-side nodes.
//
// Note: We use a ZVector to only allocate a vector of size num_left_nodes_
// instead of 2*num_left_nodes_ since the right-side node indices start at
// num_left_nodes_.
ZVector<CostValue> price_;
// Indexed by left-side node index, the matched_arc_ array gives the
// arc index of the arc matching any given left-side node, or
// GraphType::kNilArc if the node is unmatched.
std::vector<ArcIndex> matched_arc_;
// Indexed by right-side node index, the matched_node_ array gives
// the node index of the left-side node matching any given
// right-side node, or GraphType::kNilNode if the right-side node is
// unmatched.
//
// Note: We use a ZVector for the same reason as for price_.
ZVector<NodeIndex> matched_node_;
// The array of arc costs as given in the problem definition, except
// that they are scaled up by the number of nodes in the graph so we
// can use integer arithmetic throughout.
std::vector<CostValue> scaled_arc_cost_;
// The container of active nodes (i.e., unmatched nodes). This can
// be switched easily between ActiveNodeStack and ActiveNodeQueue
// for experimentation.
std::unique_ptr<ActiveNodeContainerInterface> active_nodes_;
// Statistics giving the overall numbers of various operations the
// algorithm performs.
Stats total_stats_;
// Statistics giving the numbers of various operations the algorithm
// has performed in the current iteration.
Stats iteration_stats_;
DISALLOW_COPY_AND_ASSIGN(LinearSumAssignment);
};
// Implementation of out-of-line LinearSumAssignment template member
// functions.
template <typename GraphType>
const CostValue LinearSumAssignment<GraphType>::kMinEpsilon = 1;
template <typename GraphType>
LinearSumAssignment<GraphType>::LinearSumAssignment(
const GraphType& graph, const NodeIndex num_left_nodes)
: graph_(&graph),
num_left_nodes_(num_left_nodes),
success_(false),
cost_scaling_factor_(1 + num_left_nodes),
alpha_(FLAGS_assignment_alpha),
epsilon_(0),
price_lower_bound_(0),
slack_relabeling_price_(0),
largest_scaled_cost_magnitude_(0),
total_excess_(0),
price_(num_left_nodes, 2 * num_left_nodes - 1),
matched_arc_(num_left_nodes, 0),
matched_node_(num_left_nodes, 2 * num_left_nodes - 1),
scaled_arc_cost_(graph.max_end_arc_index(), 0),
active_nodes_(FLAGS_assignment_stack_order
? static_cast<ActiveNodeContainerInterface*>(
new ActiveNodeStack())
: static_cast<ActiveNodeContainerInterface*>(
new ActiveNodeQueue())) {}
template <typename GraphType>
LinearSumAssignment<GraphType>::LinearSumAssignment(
const NodeIndex num_left_nodes, const ArcIndex num_arcs)
: graph_(nullptr),
num_left_nodes_(num_left_nodes),
success_(false),
cost_scaling_factor_(1 + num_left_nodes),
alpha_(FLAGS_assignment_alpha),
epsilon_(0),
price_lower_bound_(0),
slack_relabeling_price_(0),
largest_scaled_cost_magnitude_(0),
total_excess_(0),
price_(num_left_nodes, 2 * num_left_nodes - 1),
matched_arc_(num_left_nodes, 0),
matched_node_(num_left_nodes, 2 * num_left_nodes - 1),