This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhamiltonian_path.h
1020 lines (876 loc) · 37.8 KB
/
hamiltonian_path.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_GRAPH_HAMILTONIAN_PATH_H_
#define OR_TOOLS_GRAPH_HAMILTONIAN_PATH_H_
// Solves the Shortest Hamiltonian Path Problem using a complete algorithm.
// The algorithm was first described in
// M. Held, R.M. Karp, A dynamic programming approach to sequencing problems,
// J. SIAM 10 (1962) 196-210
//
// The Shortest Hamiltonian Path Problem (SHPP) is similar to the Traveling
// Salesperson Problem (TSP).
// You have to visit all the cities, starting from a given one and you
// do not need to return to your starting point. With the TSP, you can start
// anywhere, but you have to return to your start location.
//
// By complete we mean that the algorithm guarantees to compute the optimal
// solution. The algorithm uses dynamic programming. Its time complexity is
// O(n^2 * 2^(n-1)), where n is the number of nodes to be visited, and '^'
// denotes exponentiation. Its space complexity is O(n * 2 ^ (n - 1)).
//
// Note that the naive implementation of the SHPP
// exploring all permutations without memorizing intermediate results would
// have a complexity of (n - 1)! (factorial of (n - 1) ), which is much higher
// than n^2 * 2^(n-1). To convince oneself of this, just use Stirling's
// formula: n! ~ sqrt(2 * pi * n)*( n / exp(1)) ^ n.
// Because of these complexity figures, the algorithm is not practical for
// problems with more than 20 nodes.
//
// Here is how the algorithm works:
// Let us denote the nodes to be visited by their indices 0 .. n - 1
// Let us pick 0 as the starting node.
// Let d(i,j) denote the distance (or cost) from i to j.
// f(S, j) where S is a set of nodes and j is a node in S is defined as follows:
// f(S, j) = min (i in S \ {j}, f(S \ {j}, i) + cost(i, j))
// (j is an element of S)
// Note that this formulation, from the original Held-Karp paper is a bit
// different, but equivalent to the one used in Caseau and Laburthe, Solving
// Small TSPs with Constraints, 1997, ICLP
// f(S, j) = min (i in S, f(S \ {i}, i) + cost(i, j))
// (j is not an element of S)
//
// The advantage of the Held and Karp formulation is that it enables:
// - to build the dynamic programming lattice layer by layer starting from the
// subsets with cardinality 1, and increasing the cardinality.
// - to traverse the dynamic programming lattice using sequential memory
// accesses, making the algorithm cache-friendly, and faster, despite the large
// amount of computation needed to get the position when f(S, j) is stored.
// - TODO(user): implement pruning procedures on top of the Held-Karp algorithm.
//
// The set S can be represented by an integer where bit i corresponds to
// element i in the set. In the following S denotes the integer corresponding
// to set S.
//
// The dynamic programming iteration is implemented in the method Solve.
// The optimal value of the Hamiltonian path starting at 0 is given by
// min (i in S, f(2 ^ n - 1, i))
// The optimal value of the Traveling Salesman tour is given by f(2 ^ n, 0).
// (There is actually no need to duplicate the first node, as all the paths
// are computed from node 0.)
//
// To implement dynamic programming, we store the preceding results of
// computing f(S,j) in an array M[Offset(S,j)]. See the comments about
// LatticeMemoryManager::BaseOffset() to see how this is computed.
//
// Keywords: Traveling Salesman, Hamiltonian Path, Dynamic Programming,
// Held, Karp.
#include <math.h>
#include <stddef.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <memory>
#include <stack>
#include <type_traits>
#include <utility>
#include <vector>
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/util/bitset.h"
#include "ortools/util/saturated_arithmetic.h"
#include "ortools/util/vector_or_function.h"
namespace operations_research {
// TODO(user): Move the Set-related classbelow to util/bitset.h
// Iterates over the elements of a set represented as an unsigned integer,
// starting from the smallest element. (See the class Set<Integer> below.)
template <typename Set>
class ElementIterator {
public:
explicit ElementIterator(Set set) : current_set_(set) {}
bool operator!=(const ElementIterator& other) const {
return current_set_ != other.current_set_;
}
// Returns the smallest element in the current_set_.
int operator*() const { return current_set_.SmallestElement(); }
// Advances the iterator by removing its smallest element.
const ElementIterator& operator++() {
current_set_ = current_set_.RemoveSmallestElement();
return *this;
}
private:
// The current position of the iterator. Stores the set consisting of the
// not-yet iterated elements.
Set current_set_;
};
template <typename Integer>
class Set {
public:
// Make this visible to classes using this class.
typedef Integer IntegerType;
// Useful constants.
static const Integer One = static_cast<Integer>(1);
static const Integer Zero = static_cast<Integer>(0);
static const int MaxCardinality = 8 * sizeof(Integer); // NOLINT
// Construct a set from an Integer.
explicit Set(Integer n) : value_(n) {
static_assert(std::is_integral<Integer>::value, "Integral type required");
static_assert(std::is_unsigned<Integer>::value, "Unsigned type required");
}
// Returns the integer corresponding to the set.
Integer value() const { return value_; }
static Set FullSet(Integer card) {
return card == 0 ? Set(0) : Set(~Zero >> (MaxCardinality - card));
}
// Returns the singleton set with 'n' as its only element.
static Set Singleton(Integer n) { return Set(One << n); }
// Returns a set equal to the calling object, with element n added.
// If n is already in the set, no operation occurs.
Set AddElement(int n) const { return Set(value_ | (One << n)); }
// Returns a set equal to the calling object, with element n removed.
// If n is not in the set, no operation occurs.
Set RemoveElement(int n) const { return Set(value_ & ~(One << n)); }
// Returns true if the calling set contains element n.
bool Contains(int n) const { return ((One << n) & value_) != 0; }
// Returns true if 'other' is included in the calling set.
bool Includes(Set other) const {
return (value_ & other.value_) == other.value_;
}
// Returns the number of elements in the set. Uses the 32-bit version for
// types that have 32-bits or less. Specialized for uint64.
int Cardinality() const { return BitCount32(value_); }
// Returns the index of the smallest element in the set. Uses the 32-bit
// version for types that have 32-bits or less. Specialized for uint64.
int SmallestElement() const { return LeastSignificantBitPosition32(value_); }
// Returns a set equal to the calling object, with its smallest
// element removed.
Set RemoveSmallestElement() const { return Set(value_ & (value_ - 1)); }
// Returns the rank of an element in a set. For the set 11100, ElementRank(4)
// would return 2. (Ranks start at zero).
int ElementRank(int n) const {
DCHECK(Contains(n)) << "n = " << n << ", value_ = " << value_;
return SingletonRank(Singleton(n));
}
// Returns the set consisting of the smallest element of the calling object.
Set SmallestSingleton() const { return Set(value_ & -value_); }
// Returns the rank of the singleton's element in the calling Set.
int SingletonRank(Set singleton) const {
DCHECK_EQ(singleton.value(), singleton.SmallestSingleton().value());
return Set(value_ & (singleton.value_ - 1)).Cardinality();
}
// STL iterator-related member functions.
ElementIterator<Set> begin() const {
return ElementIterator<Set>(Set(value_));
}
ElementIterator<Set> end() const { return ElementIterator<Set>(Set(0)); }
bool operator!=(const Set& other) const { return value_ != other.value_; }
private:
// The Integer representing the set.
Integer value_;
};
template <>
inline int Set<uint64>::SmallestElement() const {
return LeastSignificantBitPosition64(value_);
}
template <>
inline int Set<uint64>::Cardinality() const {
return BitCount64(value_);
}
// An iterator for sets of increasing corresponding values that have the same
// cardinality. For example, the sets with cardinality 3 will be listed as
// ...00111, ...01011, ...01101, ...1110, etc...
template <typename SetRange>
class SetRangeIterator {
public:
// Make the parameter types visible to SetRangeWithCardinality.
typedef typename SetRange::SetType SetType;
typedef typename SetType::IntegerType IntegerType;
explicit SetRangeIterator(const SetType set) : current_set_(set) {}
// STL iterator-related methods.
SetType operator*() const { return current_set_; }
bool operator!=(const SetRangeIterator& other) const {
return current_set_ != other.current_set_;
}
// Computes the next set with the same cardinality using Gosper's hack.
// ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-239.pdf ITEM 175
// Also translated in C https://www.cl.cam.ac.uk/~am21/hakmemc.html
const SetRangeIterator& operator++() {
const IntegerType c = current_set_.SmallestSingleton().value();
const IntegerType a = current_set_.value();
const IntegerType r = c + current_set_.value();
// Dividing by c as in HAKMEMC can be avoided by taking into account
// that c is the smallest singleton of current_set_, and using a shift.
const IntegerType shift = current_set_.SmallestElement();
current_set_ = r == 0 ? SetType(0) : SetType(((r ^ a) >> (shift + 2)) | r);
return *this;
}
private:
// The current set of iterator.
SetType current_set_;
};
template <typename Set>
class SetRangeWithCardinality {
public:
typedef Set SetType;
// The end_ set is the first set with cardinality card, that does not fit
// in max_card bits. Thus, its bit at position max_card is set, and the
// rightmost (card - 1) bits are set.
SetRangeWithCardinality(int card, int max_card)
: begin_(Set::FullSet(card)),
end_(Set::FullSet(card - 1).AddElement(max_card)) {
DCHECK_LT(0, card);
DCHECK_LT(0, max_card);
DCHECK_EQ(card, begin_.Cardinality());
DCHECK_EQ(card, end_.Cardinality());
}
// STL iterator-related methods.
SetRangeIterator<SetRangeWithCardinality> begin() const {
return SetRangeIterator<SetRangeWithCardinality>(begin_);
}
SetRangeIterator<SetRangeWithCardinality> end() const {
return SetRangeIterator<SetRangeWithCardinality>(end_);
}
private:
// Keep the beginning and end of the iterator.
SetType begin_;
SetType end_;
};
// The Dynamic Programming (DP) algorithm memorizes the values f(set, node) for
// node in set, for all the subsets of cardinality <= max_card_.
// LatticeMemoryManager manages the storage of f(set, node) so that the
// DP iteration access memory in increasing addresses.
template <typename Set, typename CostType>
class LatticeMemoryManager {
public:
LatticeMemoryManager() : max_card_(0) {}
// Reserves memory and fills in the data necessary to access memory.
void Init(int max_card);
// Returns the offset in memory for f(s, node), with node contained in s.
uint64 Offset(Set s, int node) const;
// Returns the base offset in memory for f(s, node), with node contained in s.
// This is useful in the Dynamic Programming iterations.
// Note(user): inlining this function gains about 5%.
// TODO(user): Investigate how to compute BaseOffset(card - 1, s \ { n })
// from BaseOffset(card, n) to speed up the DP iteration.
inline uint64 BaseOffset(int card, Set s) const;
// Returns the offset delta for a set of cardinality 'card', to which
// node 'removed_node' is replaced by 'added_node' at 'rank'
uint64 OffsetDelta(int card, int added_node, int removed_node,
int rank) const {
return card *
(binomial_coefficients_[added_node][rank] - // delta for added_node
binomial_coefficients_[removed_node][rank]); // for removed_node.
}
// Memorizes the value = f(s, node) at the correct offset.
// This is favored in all other uses than the Dynamic Programming iterations.
void SetValue(Set s, int node, CostType value);
// Memorizes 'value' at 'offset'. This is useful in the Dynamic Programming
// iterations where we want to avoid compute the offset of a pair (set, node).
void SetValueAtOffset(uint64 offset, CostType value) {
memory_[offset] = value;
}
// Returns the memorized value f(s, node) with node in s.
// This is favored in all other uses than the Dynamic Programming iterations.
CostType Value(Set s, int node) const;
// Returns the memorized value at 'offset'.
// This is useful in the Dynamic Programming iterations.
CostType ValueAtOffset(uint64 offset) const { return memory_[offset]; }
private:
// Returns true if the values used to manage memory are set correctly.
// This is intended to only be used in a DCHECK.
bool CheckConsistency() const;
// The maximum cardinality of the set on which the lattice is going to be
// used. This is equal to the number of nodes in the TSP.
int max_card_;
// binomial_coefficients_[n][k] contains (n choose k).
std::vector<std::vector<uint64>> binomial_coefficients_;
// base_offset_[card] contains the base offset for all f(set, node) with
// card(set) == card.
std::vector<int64> base_offset_;
// memory_[Offset(set, node)] contains the costs of the partial path
// f(set, node).
std::vector<CostType> memory_;
};
template <typename Set, typename CostType>
void LatticeMemoryManager<Set, CostType>::Init(int max_card) {
DCHECK_LT(0, max_card);
DCHECK_GE(Set::MaxCardinality, max_card);
if (max_card <= max_card_) return;
max_card_ = max_card;
binomial_coefficients_.resize(max_card_ + 1);
// Initialize binomial_coefficients_ using Pascal's triangle recursion.
for (int n = 0; n <= max_card_; ++n) {
binomial_coefficients_[n].resize(n + 2);
binomial_coefficients_[n][0] = 1;
for (int k = 1; k <= n; ++k) {
binomial_coefficients_[n][k] = binomial_coefficients_[n - 1][k - 1] +
binomial_coefficients_[n - 1][k];
}
// Extend to (n, n + 1) to minimize branchings in LatticeMemoryManager().
// This also makes the recurrence above work for k = n.
binomial_coefficients_[n][n + 1] = 0;
}
base_offset_.resize(max_card_ + 1);
base_offset_[0] = 0;
// There are k * binomial_coefficients_[max_card_][k] f(S,j) values to store
// for each group of f(S,j), with card(S) = k. Update base_offset[k]
// accordingly.
for (int k = 0; k < max_card_; ++k) {
base_offset_[k + 1] =
base_offset_[k] + k * binomial_coefficients_[max_card_][k];
}
memory_.resize(0);
memory_.shrink_to_fit();
memory_.resize(max_card_ * (1 << (max_card_ - 1)));
DCHECK(CheckConsistency());
}
template <typename Set, typename CostType>
bool LatticeMemoryManager<Set, CostType>::CheckConsistency() const {
for (int n = 0; n <= max_card_; ++n) {
int64 sum = 0;
for (int k = 0; k <= n; ++k) {
sum += binomial_coefficients_[n][k];
}
DCHECK_EQ(1 << n, sum);
}
DCHECK_EQ(0, base_offset_[1]);
DCHECK_EQ(max_card_ * (1 << (max_card_ - 1)),
base_offset_[max_card_] + max_card_);
return true;
}
template <typename Set, typename CostType>
uint64 LatticeMemoryManager<Set, CostType>::BaseOffset(int card,
Set set) const {
DCHECK_LT(0, card);
DCHECK_EQ(set.Cardinality(), card);
uint64 local_offset = 0;
int node_rank = 0;
for (int node : set) {
// There are binomial_coefficients_[node][node_rank + 1] sets which have
// node at node_rank.
local_offset += binomial_coefficients_[node][node_rank + 1];
++node_rank;
}
DCHECK_EQ(card, node_rank);
// Note(user): It is possible to get rid of base_offset_[card] by using a 2-D
// array. It would also make it possible to free all the memory but the layer
// being constructed and the preceding one, if another lattice of paths is
// constructed.
// TODO(user): Evaluate the interest of the above.
// There are 'card' f(set, j) to store. That is why we need to multiply
// local_offset by card before adding it to the corresponding base_offset_.
return base_offset_[card] + card * local_offset;
}
template <typename Set, typename CostType>
uint64 LatticeMemoryManager<Set, CostType>::Offset(Set set, int node) const {
DCHECK(set.Contains(node));
return BaseOffset(set.Cardinality(), set) + set.ElementRank(node);
}
template <typename Set, typename CostType>
CostType LatticeMemoryManager<Set, CostType>::Value(Set set, int node) const {
DCHECK(set.Contains(node));
return ValueAtOffset(Offset(set, node));
}
template <typename Set, typename CostType>
void LatticeMemoryManager<Set, CostType>::SetValue(Set set, int node,
CostType value) {
DCHECK(set.Contains(node));
SetValueAtOffset(Offset(set, node), value);
}
// Deprecated type.
typedef int PathNodeIndex;
template <typename CostType, typename CostFunction>
class HamiltonianPathSolver {
// HamiltonianPathSolver computes a minimum Hamiltonian path starting at node
// 0 over a graph defined by a cost matrix. The cost function need not be
// symmetric.
// When the Hamiltonian path is closed, it's a Hamiltonian cycle,
// i.e. the algorithm solves the Traveling Salesman Problem.
// Example:
// std::vector<std::vector<int>> cost_mat;
// ... fill in cost matrix
// HamiltonianPathSolver<int, std::vector<std::vector<int>>>
// mhp(cost_mat); // no computation done
// printf("%d\n", mhp.TravelingSalesmanCost()); // computation done and
// stored
public:
// In 2010, 26 was the maximum solvable with 24 Gigs of RAM, and it took
// several minutes. With this 2014 version of the code, one may go a little
// higher, but considering the complexity of the algorithm (n*2^n), and that
// there are very good ways to solve TSP with more than 32 cities,
// we limit ourselves to 32 cites.
// This is why we define the type NodeSet to be 32-bit wide.
// TODO(user): remove this limitation by using pruning techniques.
typedef uint32 Integer;
typedef Set<Integer> NodeSet;
explicit HamiltonianPathSolver(CostFunction cost);
HamiltonianPathSolver(int num_nodes, CostFunction cost);
// Replaces the cost matrix while avoiding re-allocating memory.
void ChangeCostMatrix(CostFunction cost);
void ChangeCostMatrix(int num_nodes, CostFunction cost);
// Returns the cost of the Hamiltonian path from 0 to end_node.
CostType HamiltonianCost(int end_node);
// Returns the shortest Hamiltonian path from 0 to end_node.
std::vector<int> HamiltonianPath(int end_node);
// Returns the end-node that yields the shortest Hamiltonian path of
// all shortest Hamiltonian path from 0 to end-node (end-node != 0).
int BestHamiltonianPathEndNode();
// Deprecated API. Stores HamiltonianPath(BestHamiltonianPathEndNode()) into
// *path.
void HamiltonianPath(std::vector<PathNodeIndex>* path);
// Returns the cost of the TSP tour.
CostType TravelingSalesmanCost();
// Returns the TSP tour in the vector pointed to by the argument.
std::vector<int> TravelingSalesmanPath();
// Deprecated API.
void TravelingSalesmanPath(std::vector<PathNodeIndex>* path);
// Returns true if there won't be precision issues.
// This is always true for integers, but not for floating-point types.
bool IsRobust();
// Returns true if the cost matrix verifies the triangle inequality.
bool VerifiesTriangleInequality();
private:
// Saturated arithmetic helper class.
template <typename T,
bool = true /* Dummy parameter to allow specialization */>
// Returns the saturated addition of a and b. It is specialized below for
// int32 and int64.
struct SaturatedArithmetic {
static T Add(T a, T b) { return a + b; }
static T Sub(T a, T b) { return a - b; }
};
template <bool Dummy>
struct SaturatedArithmetic<int64, Dummy> {
static int64 Add(int64 a, int64 b) { return CapAdd(a, b); }
static int64 Sub(int64 a, int64 b) { return CapSub(a, b); }
};
// TODO(user): implement this natively in saturated_arithmetic.h
template <bool Dummy>
struct SaturatedArithmetic<int32, Dummy> {
static int32 Add(int32 a, int32 b) {
const int64 a64 = a;
const int64 b64 = b;
const int64 min_int32 = kint32min;
const int64 max_int32 = kint32max;
return static_cast<int32>(
std::max(min_int32, std::min(max_int32, a64 + b64)));
}
static int32 Sub(int32 a, int32 b) {
const int64 a64 = a;
const int64 b64 = b;
const int64 min_int32 = kint32min;
const int64 max_int32 = kint32max;
return static_cast<int32>(
std::max(min_int32, std::min(max_int32, a64 - b64)));
}
};
template <typename T>
using Saturated = SaturatedArithmetic<T>;
// Returns the cost value between two nodes.
CostType Cost(int i, int j) { return cost_(i, j); }
// Does all the Dynamic Progamming iterations.
void Solve();
// Computes a path by looking at the information in mem_.
std::vector<int> ComputePath(CostType cost, NodeSet set, int end);
// Returns true if the path covers all nodes, and its cost is equal to cost.
bool PathIsValid(const std::vector<int>& path, CostType cost);
// Cost function used to build Hamiltonian paths.
MatrixOrFunction<CostType, CostFunction, true> cost_;
// The number of nodes in the problem.
int num_nodes_;
// The cost of the computed TSP path.
CostType tsp_cost_;
// The cost of the computed Hamiltonian path.
std::vector<CostType> hamiltonian_costs_;
bool robust_;
bool triangle_inequality_ok_;
bool robustness_checked_;
bool triangle_inequality_checked_;
bool solved_;
std::vector<int> tsp_path_;
// The vector of smallest Hamiltonian paths starting at 0, indexed by their
// end nodes.
std::vector<std::vector<int>> hamiltonian_paths_;
// The end node that gives the smallest Hamiltonian path. The smallest
// Hamiltonian path starting at 0 of all
// is hamiltonian_paths_[best_hamiltonian_path_end_node_].
int best_hamiltonian_path_end_node_;
LatticeMemoryManager<NodeSet, CostType> mem_;
};
// Utility function to simplify building a HamiltonianPathSolver from a functor.
template <typename CostType, typename CostFunction>
HamiltonianPathSolver<CostType, CostFunction> MakeHamiltonianPathSolver(
int num_nodes, CostFunction cost) {
return HamiltonianPathSolver<CostType, CostFunction>(num_nodes,
std::move(cost));
}
template <typename CostType, typename CostFunction>
HamiltonianPathSolver<CostType, CostFunction>::HamiltonianPathSolver(
CostFunction cost)
: HamiltonianPathSolver<CostType, CostFunction>(cost.size(), cost) {}
template <typename CostType, typename CostFunction>
HamiltonianPathSolver<CostType, CostFunction>::HamiltonianPathSolver(
int num_nodes, CostFunction cost)
: cost_(std::move(cost)),
num_nodes_(num_nodes),
tsp_cost_(0),
hamiltonian_costs_(0),
robust_(true),
triangle_inequality_ok_(true),
robustness_checked_(false),
triangle_inequality_checked_(false),
solved_(false) {
CHECK_GE(NodeSet::MaxCardinality, num_nodes_);
CHECK(cost_.Check());
}
template <typename CostType, typename CostFunction>
void HamiltonianPathSolver<CostType, CostFunction>::ChangeCostMatrix(
CostFunction cost) {
ChangeCostMatrix(cost.size(), cost);
}
template <typename CostType, typename CostFunction>
void HamiltonianPathSolver<CostType, CostFunction>::ChangeCostMatrix(
int num_nodes, CostFunction cost) {
robustness_checked_ = false;
triangle_inequality_checked_ = false;
solved_ = false;
cost_.Reset(cost);
num_nodes_ = num_nodes;
CHECK_GE(NodeSet::MaxCardinality, num_nodes_);
CHECK(cost_.Check());
}
template <typename CostType, typename CostFunction>
void HamiltonianPathSolver<CostType, CostFunction>::Solve() {
if (solved_) return;
if (num_nodes_ == 0) {
tsp_cost_ = 0;
tsp_path_ = {0};
hamiltonian_paths_.resize(1);
hamiltonian_costs_.resize(1);
best_hamiltonian_path_end_node_ = 0;
hamiltonian_costs_[0] = 0;
hamiltonian_paths_[0] = {0};
return;
}
mem_.Init(num_nodes_);
// Initialize the first layer of the search lattice, taking into account
// that base_offset_[1] == 0. (This is what the DCHECK_EQ is for).
for (int dest = 0; dest < num_nodes_; ++dest) {
DCHECK_EQ(dest, mem_.BaseOffset(1, NodeSet::Singleton(dest)));
mem_.SetValueAtOffset(dest, Cost(0, dest));
}
// Populate the dynamic programming lattice layer by layer, by iterating
// on cardinality.
for (int card = 2; card <= num_nodes_; ++card) {
// Iterate on sets of same cardinality.
for (NodeSet set : SetRangeWithCardinality<Set<uint32>>(card, num_nodes_)) {
// Using BaseOffset and maintaining the node ranks, to reduce the
// computational effort for accessing the data.
const uint64 set_offset = mem_.BaseOffset(card, set);
// The first subset on which we'll iterate is set.RemoveSmallestElement().
// Compute its offset. It will be updated incrementaly. This saves about
// 30-35% of computation time.
uint64 subset_offset =
mem_.BaseOffset(card - 1, set.RemoveSmallestElement());
int prev_dest = set.SmallestElement();
int dest_rank = 0;
for (int dest : set) {
CostType min_cost = std::numeric_limits<CostType>::max();
const NodeSet subset = set.RemoveElement(dest);
// We compute the offset for subset from the preceding iteration
// by taking into account that prev_dest is now in subset, and
// that dest is now removed from subset.
subset_offset += mem_.OffsetDelta(card - 1, prev_dest, dest, dest_rank);
int src_rank = 0;
for (int src : subset) {
min_cost = std::min(
min_cost, Saturated<CostType>::Add(
Cost(src, dest),
mem_.ValueAtOffset(subset_offset + src_rank)));
++src_rank;
}
prev_dest = dest;
mem_.SetValueAtOffset(set_offset + dest_rank, min_cost);
++dest_rank;
}
}
}
const NodeSet full_set = NodeSet::FullSet(num_nodes_);
// Get the cost of the tsp from node 0. It is the path that leaves 0 and goes
// through all other nodes, and returns at 0, with minimal cost.
tsp_cost_ = mem_.Value(full_set, 0);
tsp_path_ = ComputePath(tsp_cost_, full_set, 0);
hamiltonian_paths_.resize(num_nodes_);
hamiltonian_costs_.resize(num_nodes_);
// Compute the cost of the Hamiltonian paths starting from node 0, going
// through all the other nodes, and ending at end_node. Compute the minimum
// one along the way.
CostType min_hamiltonian_cost = std::numeric_limits<CostType>::max();
const NodeSet hamiltonian_set = full_set.RemoveElement(0);
for (int end_node : hamiltonian_set) {
const CostType cost = mem_.Value(hamiltonian_set, end_node);
hamiltonian_costs_[end_node] = cost;
if (cost <= min_hamiltonian_cost) {
min_hamiltonian_cost = cost;
best_hamiltonian_path_end_node_ = end_node;
}
DCHECK_LE(tsp_cost_, Saturated<CostType>::Add(cost, Cost(end_node, 0)));
// Get the Hamiltonian paths.
hamiltonian_paths_[end_node] =
ComputePath(hamiltonian_costs_[end_node], hamiltonian_set, end_node);
}
solved_ = true;
}
template <typename CostType, typename CostFunction>
std::vector<int> HamiltonianPathSolver<CostType, CostFunction>::ComputePath(
CostType cost, NodeSet set, int end_node) {
DCHECK(set.Contains(end_node));
const int path_size = set.Cardinality() + 1;
std::vector<int> path(path_size, 0);
NodeSet subset = set.RemoveElement(end_node);
path[path_size - 1] = end_node;
int dest = end_node;
CostType current_cost = cost;
for (int rank = path_size - 2; rank >= 0; --rank) {
for (int src : subset) {
const CostType partial_cost = mem_.Value(subset, src);
const CostType incumbent_cost =
Saturated<CostType>::Add(partial_cost, Cost(src, dest));
// Take precision into account when CosttType is float or double.
// There is no visible penalty in the case CostType is an integer type.
if (std::abs(Saturated<CostType>::Sub(current_cost, incumbent_cost)) <=
std::numeric_limits<CostType>::epsilon() * current_cost) {
subset = subset.RemoveElement(src);
current_cost = partial_cost;
path[rank] = src;
dest = src;
break;
}
}
}
DCHECK_EQ(0, subset.value());
DCHECK(PathIsValid(path, cost));
return path;
}
template <typename CostType, typename CostFunction>
bool HamiltonianPathSolver<CostType, CostFunction>::PathIsValid(
const std::vector<int>& path, CostType cost) {
NodeSet coverage(0);
for (int node : path) {
coverage = coverage.AddElement(node);
}
DCHECK_EQ(NodeSet::FullSet(num_nodes_).value(), coverage.value());
CostType check_cost = 0;
for (int i = 0; i < path.size() - 1; ++i) {
check_cost =
Saturated<CostType>::Add(check_cost, Cost(path[i], path[i + 1]));
}
DCHECK_LE(std::abs(Saturated<CostType>::Sub(cost, check_cost)),
std::numeric_limits<CostType>::epsilon() * cost)
<< "cost = " << cost << " check_cost = " << check_cost;
return true;
}
template <typename CostType, typename CostFunction>
bool HamiltonianPathSolver<CostType, CostFunction>::IsRobust() {
if (std::numeric_limits<CostType>::is_integer) return true;
if (robustness_checked_) return robust_;
CostType min_cost = std::numeric_limits<CostType>::max();
CostType max_cost = std::numeric_limits<CostType>::min();
// We compute the min and max for the cost matrix.
for (int i = 0; i < num_nodes_; ++i) {
for (int j = 0; j < num_nodes_; ++j) {
if (i == j) continue;
min_cost = std::min(min_cost, Cost(i, j));
max_cost = std::max(max_cost, Cost(i, j));
}
}
// We determine if the range of the cost matrix is going to
// make the algorithm not robust because of precision issues.
robust_ =
min_cost >= 0 && min_cost > num_nodes_ * max_cost *
std::numeric_limits<CostType>::epsilon();
robustness_checked_ = true;
return robust_;
}
template <typename CostType, typename CostFunction>
bool HamiltonianPathSolver<CostType,
CostFunction>::VerifiesTriangleInequality() {
if (triangle_inequality_checked_) return triangle_inequality_ok_;
triangle_inequality_ok_ = true;
triangle_inequality_checked_ = true;
for (int k = 0; k < num_nodes_; ++k) {
for (int i = 0; i < num_nodes_; ++i) {
for (int j = 0; j < num_nodes_; ++j) {
const CostType detour_cost =
Saturated<CostType>::Add(Cost(i, k), Cost(k, j));
if (detour_cost < Cost(i, j)) {
triangle_inequality_ok_ = false;
return triangle_inequality_ok_;
}
}
}
}
return triangle_inequality_ok_;
}
template <typename CostType, typename CostFunction>
int HamiltonianPathSolver<CostType,
CostFunction>::BestHamiltonianPathEndNode() {
Solve();
return best_hamiltonian_path_end_node_;
}
template <typename CostType, typename CostFunction>
CostType HamiltonianPathSolver<CostType, CostFunction>::HamiltonianCost(
int end_node) {
Solve();
return hamiltonian_costs_[end_node];
}
template <typename CostType, typename CostFunction>
std::vector<int> HamiltonianPathSolver<CostType, CostFunction>::HamiltonianPath(
int end_node) {
Solve();
return hamiltonian_paths_[end_node];
}
template <typename CostType, typename CostFunction>
void HamiltonianPathSolver<CostType, CostFunction>::HamiltonianPath(
std::vector<PathNodeIndex>* path) {
*path = HamiltonianPath(best_hamiltonian_path_end_node_);
}
template <typename CostType, typename CostFunction>
CostType
HamiltonianPathSolver<CostType, CostFunction>::TravelingSalesmanCost() {
Solve();
return tsp_cost_;
}
template <typename CostType, typename CostFunction>
std::vector<int>
HamiltonianPathSolver<CostType, CostFunction>::TravelingSalesmanPath() {
Solve();
return tsp_path_;
}
template <typename CostType, typename CostFunction>
void HamiltonianPathSolver<CostType, CostFunction>::TravelingSalesmanPath(
std::vector<PathNodeIndex>* path) {
*path = TravelingSalesmanPath();
}
template <typename CostType, typename CostFunction>
class PruningHamiltonianSolver {
// PruningHamiltonianSolver computes a minimum Hamiltonian path from node 0
// over a graph defined by a cost matrix, with pruning. For each search state,
// PruningHamiltonianSolver computes the lower bound for the future overall
// TSP cost, and stops further search if it exceeds the current best solution.
// For the heuristics to determine future lower bound over visited nodeset S
// and last visited node k, the cost of minimum spanning tree of (V \ S) ∪ {k}
// is calculated and added to the current cost(S). The cost of MST is
// guaranteed to be smaller than or equal to the cost of Hamiltonian path,
// because Hamiltonian path is a spanning tree itself.
// TODO(user): Use generic map-based cache instead of lattice-based one.
// TODO(user): Use SaturatedArithmetic for better precision.
public:
typedef uint32 Integer;
typedef Set<Integer> NodeSet;
explicit PruningHamiltonianSolver(CostFunction cost);
PruningHamiltonianSolver(int num_nodes, CostFunction cost);
// Returns the cost of the Hamiltonian path from 0 to end_node.
CostType HamiltonianCost(int end_node);
// TODO(user): Add function to return an actual path.
// TODO(user): Add functions for Hamiltonian cycle.
private:
// Returns the cost value between two nodes.
CostType Cost(int i, int j) { return cost_(i, j); }
// Solve and get TSP cost.
void Solve(int end_node);
// Compute lower bound for remaining subgraph.
CostType ComputeFutureLowerBound(NodeSet current_set, int last_visited);
// Cost function used to build Hamiltonian paths.
MatrixOrFunction<CostType, CostFunction, true> cost_;
// The number of nodes in the problem.
int num_nodes_;
// The cost of the computed TSP path.
CostType tsp_cost_;
// If already solved.
bool solved_;
// Memoize for dynamic programming.
LatticeMemoryManager<NodeSet, CostType> mem_;
};
template <typename CostType, typename CostFunction>
PruningHamiltonianSolver<CostType, CostFunction>::PruningHamiltonianSolver(
CostFunction cost)
: PruningHamiltonianSolver<CostType, CostFunction>(cost.size(), cost) {}
template <typename CostType, typename CostFunction>
PruningHamiltonianSolver<CostType, CostFunction>::PruningHamiltonianSolver(
int num_nodes, CostFunction cost)
: cost_(std::move(cost)),
num_nodes_(num_nodes),
tsp_cost_(0),
solved_(false) {}
template <typename CostType, typename CostFunction>
void PruningHamiltonianSolver<CostType, CostFunction>::Solve(int end_node) {
if (solved_ || num_nodes_ == 0) return;
// TODO(user): Use an approximate solution as a base target before solving.
// TODO(user): Instead of pure DFS, find out the order of sets to compute
// to utilize cache as possible.
mem_.Init(num_nodes_);
NodeSet start_set = NodeSet::Singleton(0);
std::stack<std::pair<NodeSet, int>> state_stack;
state_stack.push(std::make_pair(start_set, 0));
while (!state_stack.empty()) {
const std::pair<NodeSet, int> current = state_stack.top();
state_stack.pop();
const NodeSet current_set = current.first;
const int last_visited = current.second;
const CostType current_cost = mem_.Value(current_set, last_visited);
// TODO(user): Optimize iterating unvisited nodes.
for (int next_to_visit = 0; next_to_visit < num_nodes_; next_to_visit++) {
// Let's to as much check possible before adding to stack.
// Skip if this node is already visited.
if (current_set.Contains(next_to_visit)) continue;
// Skip if the end node is prematurely visited.
const int next_cardinality = current_set.Cardinality() + 1;
if (next_to_visit == end_node && next_cardinality != num_nodes_) continue;
const NodeSet next_set = current_set.AddElement(next_to_visit);
const CostType next_cost =
current_cost + Cost(last_visited, next_to_visit);
// Compare with the best cost found so far, and skip if that is better.
const CostType previous_best = mem_.Value(next_set, next_to_visit);
if (previous_best != 0 && next_cost >= previous_best) continue;
// Compute lower bound of Hamiltonian cost, and skip if this is greater
// than the best Hamiltonian cost found so far.
const CostType lower_bound =
ComputeFutureLowerBound(next_set, next_to_visit);
if (tsp_cost_ != 0 && next_cost + lower_bound >= tsp_cost_) continue;
// If next is the last node to visit, update tsp_cost_ and skip.
if (next_cardinality == num_nodes_) {
tsp_cost_ = next_cost;
continue;
}
// Add to the stack, finally.
mem_.SetValue(next_set, next_to_visit, next_cost);
state_stack.push(std::make_pair(next_set, next_to_visit));
}
}