This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
entering_variable.cc
482 lines (432 loc) · 19.7 KB
/
entering_variable.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/glop/entering_variable.h"
#include <queue>
#include "ortools/base/timer.h"
#include "ortools/lp_data/lp_utils.h"
#include "ortools/port/proto_utils.h"
namespace operations_research {
namespace glop {
EnteringVariable::EnteringVariable(const VariablesInfo& variables_info,
random_engine_t* random,
ReducedCosts* reduced_costs,
PrimalEdgeNorms* primal_edge_norms)
: variables_info_(variables_info),
random_(random),
reduced_costs_(reduced_costs),
primal_edge_norms_(primal_edge_norms),
parameters_(),
rule_(GlopParameters::DANTZIG),
unused_columns_() {}
Status EnteringVariable::PrimalChooseEnteringColumn(ColIndex* entering_col) {
SCOPED_TIME_STAT(&stats_);
GLOP_RETURN_ERROR_IF_NULL(entering_col);
// For better redability of the templated function calls below.
const bool kNormalize = true;
const bool kNested = true;
const bool kSteepest = true;
switch (rule_) {
case GlopParameters::DANTZIG:
if (parameters_.use_nested_pricing()) {
if (unused_columns_.size() != variables_info_.GetNumberOfColumns()) {
ResetUnusedColumns();
}
if (parameters_.normalize_using_column_norm()) {
DantzigChooseEnteringColumn<kNormalize, kNested>(entering_col);
} else {
DantzigChooseEnteringColumn<!kNormalize, kNested>(entering_col);
}
if (*entering_col != kInvalidCol) {
unused_columns_.Clear(*entering_col);
return Status::OK();
}
ResetUnusedColumns();
if (parameters_.normalize_using_column_norm()) {
DantzigChooseEnteringColumn<kNormalize, kNested>(entering_col);
} else {
DantzigChooseEnteringColumn<!kNormalize, kNested>(entering_col);
}
} else {
if (parameters_.normalize_using_column_norm()) {
DantzigChooseEnteringColumn<kNormalize, !kNested>(entering_col);
} else {
DantzigChooseEnteringColumn<!kNormalize, !kNested>(entering_col);
}
}
return Status::OK();
case GlopParameters::STEEPEST_EDGE:
NormalizedChooseEnteringColumn<kSteepest>(entering_col);
return Status::OK();
case GlopParameters::DEVEX:
NormalizedChooseEnteringColumn<!kSteepest>(entering_col);
return Status::OK();
}
LOG(DFATAL) << "Unknown pricing rule: "
<< ProtoEnumToString<GlopParameters::PricingRule>(rule_)
<< ". Using steepest edge.";
NormalizedChooseEnteringColumn<kSteepest>(entering_col);
return Status::OK();
}
Status EnteringVariable::DualChooseEnteringColumn(
const UpdateRow& update_row, Fractional cost_variation,
std::vector<ColIndex>* bound_flip_candidates, ColIndex* entering_col,
Fractional* step) {
GLOP_RETURN_ERROR_IF_NULL(entering_col);
GLOP_RETURN_ERROR_IF_NULL(step);
const DenseRow& update_coefficient = update_row.GetCoefficients();
const DenseRow& reduced_costs = reduced_costs_->GetReducedCosts();
SCOPED_TIME_STAT(&stats_);
breakpoints_.clear();
breakpoints_.reserve(update_row.GetNonZeroPositions().size());
const Fractional threshold = parameters_.ratio_test_zero_threshold();
const DenseBitRow& can_decrease = variables_info_.GetCanDecreaseBitRow();
const DenseBitRow& can_increase = variables_info_.GetCanIncreaseBitRow();
const DenseBitRow& is_boxed = variables_info_.GetNonBasicBoxedVariables();
// Harris ratio test. See below for more explanation. Here this is used to
// prune the first pass by not enqueueing ColWithRatio for columns that have
// a ratio greater than the current harris_ratio.
const Fractional harris_tolerance =
parameters_.harris_tolerance_ratio() *
reduced_costs_->GetDualFeasibilityTolerance();
Fractional harris_ratio = std::numeric_limits<Fractional>::max();
for (const ColIndex col : update_row.GetNonZeroPositions()) {
// We will add ratio * coeff to this column with a ratio positive or zero.
// cost_variation makes sure the leaving variable will be dual-feasible
// (its update coeff is sign(cost_variation) * 1.0).
const Fractional coeff = (cost_variation > 0.0) ? update_coefficient[col]
: -update_coefficient[col];
// In this case, at some point the reduced cost will be positive if not
// already, and the column will be dual-infeasible.
if (can_decrease.IsSet(col) && coeff > threshold) {
if (!is_boxed[col]) {
if (-reduced_costs[col] > harris_ratio * coeff) continue;
harris_ratio = std::min(
harris_ratio, (-reduced_costs[col] + harris_tolerance) / coeff);
harris_ratio = std::max(0.0, harris_ratio);
}
breakpoints_.push_back(ColWithRatio(col, -reduced_costs[col], coeff));
continue;
}
// In this case, at some point the reduced cost will be negative if not
// already, and the column will be dual-infeasible.
if (can_increase.IsSet(col) && coeff < -threshold) {
if (!is_boxed[col]) {
if (reduced_costs[col] > harris_ratio * -coeff) continue;
harris_ratio = std::min(
harris_ratio, (reduced_costs[col] + harris_tolerance) / -coeff);
harris_ratio = std::max(0.0, harris_ratio);
}
breakpoints_.push_back(ColWithRatio(col, reduced_costs[col], -coeff));
continue;
}
}
// Process the breakpoints in priority order as suggested by Maros in
// I. Maros, "A generalized dual phase-2 simplex algorithm", European Journal
// of Operational Research, 149(1):1-16, 2003.
// We use directly make_heap() to avoid a copy of breakpoints, benchmark shows
// that it is slightly faster.
std::make_heap(breakpoints_.begin(), breakpoints_.end());
// Harris ratio test. Since we process the breakpoints by increasing ratio, we
// do not need a two-pass algorithm as described in the literature. Each time
// we process a new breakpoint, we update the harris_ratio of all the
// processed breakpoints. For the first new breakpoint with a ratio greater
// than the current harris_ratio we know that:
// - All the unprocessed breakpoints will have a ratio greater too, so they
// will not contribute to the minimum Harris ratio.
// - We thus have the actual harris_ratio.
// - We have processed all breakpoints with a ratio smaller than it.
harris_ratio = std::numeric_limits<Fractional>::max();
*entering_col = kInvalidCol;
bound_flip_candidates->clear();
Fractional best_coeff = -1.0;
Fractional variation_magnitude = std::abs(cost_variation);
equivalent_entering_choices_.clear();
while (!breakpoints_.empty()) {
const ColWithRatio top = breakpoints_.front();
if (top.ratio > harris_ratio) break;
// If the column is boxed, we can just switch its bounds and
// ignore the breakpoint! But we need to see if the entering row still
// improve the objective. This is called the bound flipping ratio test in
// the literature. See for instance:
// http://www.mpi-inf.mpg.de/conferences/adfocs-03/Slides/Bixby_2.pdf
//
// For each bound flip, |cost_variation| decreases by
// |upper_bound - lower_bound| times |coeff|.
//
// Note that the actual flipping will be done afterwards by
// MakeBoxedVariableDualFeasible() in revised_simplex.cc.
if (variation_magnitude > threshold) {
if (is_boxed[top.col]) {
variation_magnitude -=
variables_info_.GetBoundDifference(top.col) * top.coeff_magnitude;
if (variation_magnitude > threshold) {
bound_flip_candidates->push_back(top.col);
std::pop_heap(breakpoints_.begin(), breakpoints_.end());
breakpoints_.pop_back();
continue;
}
}
}
// TODO(user): We want to maximize both the ratio (objective improvement)
// and the coeff_magnitude (stable pivot), so we have to make some
// trade-offs. Investigate alternative strategies.
if (top.coeff_magnitude >= best_coeff) {
// Update harris_ratio. Note that because we process ratio in order, the
// harris ratio can only get smaller if the coeff_magnitude is bigger
// than the one of the best coefficient.
harris_ratio = std::min(
harris_ratio, top.ratio + harris_tolerance / top.coeff_magnitude);
// If the dual infeasibility is too high, the harris_ratio can be
// negative. In this case we set it to 0.0, allowing any infeasible
// position to enter the basis. This is quite important because its
// helps in the choice of a stable pivot.
harris_ratio = std::max(harris_ratio, 0.0);
if (top.coeff_magnitude == best_coeff && top.ratio == *step) {
DCHECK_NE(*entering_col, kInvalidCol);
equivalent_entering_choices_.push_back(top.col);
} else {
equivalent_entering_choices_.clear();
best_coeff = top.coeff_magnitude;
*entering_col = top.col;
// Note that the step is not directly used, so it is okay to leave it
// negative.
*step = top.ratio;
}
}
// Remove the top breakpoint and maintain the heap structure.
// This is the same as doing a pop() on a priority_queue.
std::pop_heap(breakpoints_.begin(), breakpoints_.end());
breakpoints_.pop_back();
}
// Break the ties randomly.
if (!equivalent_entering_choices_.empty()) {
equivalent_entering_choices_.push_back(*entering_col);
*entering_col =
equivalent_entering_choices_[std::uniform_int_distribution<int>(
0, equivalent_entering_choices_.size() - 1)(*random_)];
IF_STATS_ENABLED(
stats_.num_perfect_ties.Add(equivalent_entering_choices_.size()));
}
if (*entering_col == kInvalidCol) return Status::OK();
// If the step is 0.0, we make sure the reduced cost is 0.0 so
// UpdateReducedCosts() will not take a step that goes in the wrong way (a few
// experiments seems to indicate that this is not a good idea). See comment
// at the top of UpdateReducedCosts().
//
// Note that ShiftCost() actually shifts the cost a bit more in order to do a
// non-zero step. This helps on degenerate problems. See the comment of
// ShiftCost() for more detail.
//
// TODO(user): Do not do that if we do not end up using this pivot?
if (*step <= 0.0) {
// In order to be mathematically consistent, we shift the cost of the
// entering column in such a way that its reduced cost is indeed zero. This
// is called cost-shifting or perturbation in the literature and it does
// really help on degenerate problems. The pertubation will be removed once
// the pertubed problem is solved to the optimal.
reduced_costs_->ShiftCost(*entering_col);
}
return Status::OK();
}
Status EnteringVariable::DualPhaseIChooseEnteringColumn(
const UpdateRow& update_row, Fractional cost_variation,
ColIndex* entering_col, Fractional* step) {
GLOP_RETURN_ERROR_IF_NULL(entering_col);
GLOP_RETURN_ERROR_IF_NULL(step);
const DenseRow& update_coefficient = update_row.GetCoefficients();
const DenseRow& reduced_costs = reduced_costs_->GetReducedCosts();
SCOPED_TIME_STAT(&stats_);
// List of breakpoints where a variable change from feasibility to
// infeasibility or the opposite.
breakpoints_.clear();
breakpoints_.reserve(update_row.GetNonZeroPositions().size());
// Ratio test.
const Fractional threshold = parameters_.ratio_test_zero_threshold();
const Fractional dual_feasibility_tolerance =
reduced_costs_->GetDualFeasibilityTolerance();
const DenseBitRow& can_decrease = variables_info_.GetCanDecreaseBitRow();
const DenseBitRow& can_increase = variables_info_.GetCanIncreaseBitRow();
const VariableTypeRow& variable_type = variables_info_.GetTypeRow();
for (const ColIndex col : update_row.GetNonZeroPositions()) {
// Boxed variables shouldn't be in the update position list because they
// will be dealt with afterwards by MakeBoxedVariableDualFeasible().
DCHECK_NE(variable_type[col], VariableType::UPPER_AND_LOWER_BOUNDED);
// Fixed variable shouldn't be in the update position list.
DCHECK_NE(variable_type[col], VariableType::FIXED_VARIABLE);
// Skip if the coeff is too small to be a numerically stable pivot.
if (std::abs(update_coefficient[col]) < threshold) continue;
// We will add ratio * coeff to this column. cost_variation makes sure
// the leaving variable will be dual-feasible (its update coeff is
// sign(cost_variation) * 1.0).
//
// TODO(user): This is the same in DualChooseEnteringColumn(), remove
// duplication?
const Fractional coeff = (cost_variation > 0.0) ? update_coefficient[col]
: -update_coefficient[col];
// Only proceed if there is a transition, note that if reduced_costs[col]
// is close to zero, then the variable is supposed to be dual-feasible.
if (std::abs(reduced_costs[col]) <= dual_feasibility_tolerance) {
// Continue if the variation goes in the dual-feasible direction.
if (coeff > 0 && !can_decrease.IsSet(col)) continue;
if (coeff < 0 && !can_increase.IsSet(col)) continue;
// Note that here, a variable which is already dual-infeasible will still
// have a positive ratio. This may sounds weird, but the idea is to put
// first in the sorted breakpoint list a variable which has a reduced
// costs close to zero in order to minimize the magnitude of a step in the
// wrong direction.
} else {
// If the two are of the same sign, there is no transition, skip.
if (coeff * reduced_costs[col] > 0) continue;
}
// We are sure there is a transition, add it to the set of breakpoints.
breakpoints_.push_back(
ColWithRatio(col, std::abs(reduced_costs[col]), std::abs(coeff)));
}
// Process the breakpoints in priority order.
std::make_heap(breakpoints_.begin(), breakpoints_.end());
// Because of our priority queue, it is easy to choose a sub-optimal step to
// have a stable pivot. The pivot with the highest magnitude and that reduces
// the infeasibility the most is chosen.
Fractional pivot_magnitude = 0.0;
// Select the last breakpoint that still improves the infeasibility and has a
// numerically stable pivot.
*entering_col = kInvalidCol;
*step = -1.0;
Fractional improvement = std::abs(cost_variation);
while (!breakpoints_.empty()) {
const ColWithRatio top = breakpoints_.front();
// We keep the greatest coeff_magnitude for the same ratio.
DCHECK(top.ratio > *step ||
(top.ratio == *step && top.coeff_magnitude <= pivot_magnitude));
if (top.ratio > *step && top.coeff_magnitude >= pivot_magnitude) {
*entering_col = top.col;
*step = top.ratio;
pivot_magnitude = top.coeff_magnitude;
}
improvement -= top.coeff_magnitude;
// If the variable is free, then not only do we loose the infeasibility
// improvment, we also render it worse if we keep going in the same
// direction.
if (can_decrease.IsSet(top.col) && can_increase.IsSet(top.col) &&
std::abs(reduced_costs[top.col]) > threshold) {
improvement -= top.coeff_magnitude;
}
if (improvement <= 0.0) break;
std::pop_heap(breakpoints_.begin(), breakpoints_.end());
breakpoints_.pop_back();
}
return Status::OK();
}
void EnteringVariable::SetParameters(const GlopParameters& parameters) {
parameters_ = parameters;
}
void EnteringVariable::SetPricingRule(GlopParameters::PricingRule rule) {
rule_ = rule;
}
DenseBitRow* EnteringVariable::ResetUnusedColumns() {
SCOPED_TIME_STAT(&stats_);
const ColIndex num_cols = variables_info_.GetNumberOfColumns();
if (unused_columns_.size() != num_cols) {
unused_columns_.ClearAndResize(num_cols);
}
// Invert the set of unused columns, minus the basis.
const DenseBitRow& is_basic = variables_info_.GetIsBasicBitRow();
for (ColIndex col(0); col < num_cols; ++col) {
if (unused_columns_.IsSet(col)) {
unused_columns_.Clear(col);
} else {
if (!is_basic.IsSet(col)) {
unused_columns_.Set(col);
}
}
}
return &unused_columns_;
}
template <bool normalize, bool nested_pricing>
void EnteringVariable::DantzigChooseEnteringColumn(ColIndex* entering_col) {
DenseRow dummy;
const DenseRow& matrix_column_norms =
normalize ? primal_edge_norms_->GetMatrixColumnNorms() : dummy;
const DenseRow& reduced_costs = reduced_costs_->GetReducedCosts();
SCOPED_TIME_STAT(&stats_);
Fractional best_price(0.0);
*entering_col = kInvalidCol;
for (const ColIndex col : reduced_costs_->GetDualInfeasiblePositions()) {
if (nested_pricing && !unused_columns_.IsSet(col)) continue;
const Fractional unormalized_price = std::abs(reduced_costs[col]);
if (normalize) {
if (unormalized_price > best_price * matrix_column_norms[col]) {
best_price = unormalized_price / matrix_column_norms[col];
*entering_col = col;
}
} else {
if (unormalized_price > best_price) {
best_price = unormalized_price;
*entering_col = col;
}
}
}
}
// TODO(user): Here we could fill a priority queue with the normalized
// reduced cost of the top n candidate columns. This makes it possible
// - To respond right away after each bound flip iteration.
// - To return the top-n choices if we want to consider multiple candidates in
// the other parts of the simplex algorithm.
template <bool use_steepest_edge>
void EnteringVariable::NormalizedChooseEnteringColumn(ColIndex* entering_col) {
const DenseRow& weights = use_steepest_edge
? primal_edge_norms_->GetEdgeSquaredNorms()
: primal_edge_norms_->GetDevexWeights();
const DenseRow& reduced_costs = reduced_costs_->GetReducedCosts();
SCOPED_TIME_STAT(&stats_);
Fractional best_price(0.0);
*entering_col = kInvalidCol;
equivalent_entering_choices_.clear();
for (const ColIndex col : reduced_costs_->GetDualInfeasiblePositions()) {
if (use_steepest_edge) {
// Note that here the weights are squared.
const Fractional squared_reduced_cost = Square(reduced_costs[col]);
if (squared_reduced_cost >= best_price * weights[col]) {
if (squared_reduced_cost == best_price * weights[col]) {
equivalent_entering_choices_.push_back(col);
continue;
}
equivalent_entering_choices_.clear();
best_price = squared_reduced_cost / weights[col];
*entering_col = col;
}
} else {
const Fractional positive_reduced_cost = std::abs(reduced_costs[col]);
if (positive_reduced_cost >= best_price * weights[col]) {
if (positive_reduced_cost == best_price * weights[col]) {
equivalent_entering_choices_.push_back(col);
continue;
}
equivalent_entering_choices_.clear();
best_price = positive_reduced_cost / weights[col];
*entering_col = col;
}
}
}
// Break the ties randomly.
if (!equivalent_entering_choices_.empty()) {
equivalent_entering_choices_.push_back(*entering_col);
*entering_col =
equivalent_entering_choices_[std::uniform_int_distribution<int>(
0, equivalent_entering_choices_.size() - 1)(*random_)];
IF_STATS_ENABLED(
stats_.num_perfect_ties.Add(equivalent_entering_choices_.size()));
}
}
} // namespace glop
} // namespace operations_research