This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cslinearprogramming.cs
176 lines (151 loc) · 7.12 KB
/
cslinearprogramming.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using System;
using Google.OrTools.LinearSolver;
public class CsLinearProgramming
{
private static void RunLinearProgrammingExample(String solverType)
{
Solver solver = Solver.CreateSolver("IntegerProgramming", solverType);
if (solver == null)
{
Console.WriteLine("Could not create solver " + solverType);
return;
}
// x1, x2 and x3 are continuous non-negative variables.
Variable x1 = solver.MakeNumVar(0.0, double.PositiveInfinity, "x1");
Variable x2 = solver.MakeNumVar(0.0, double.PositiveInfinity, "x2");
Variable x3 = solver.MakeNumVar(0.0, double.PositiveInfinity, "x3");
// Maximize 10 * x1 + 6 * x2 + 4 * x3.
Objective objective = solver.Objective();
objective.SetCoefficient(x1, 10);
objective.SetCoefficient(x2, 6);
objective.SetCoefficient(x3, 4);
objective.SetMaximization();
// x1 + x2 + x3 <= 100.
Constraint c0 = solver.MakeConstraint(double.NegativeInfinity, 100.0);
c0.SetCoefficient(x1, 1);
c0.SetCoefficient(x2, 1);
c0.SetCoefficient(x3, 1);
// 10 * x1 + 4 * x2 + 5 * x3 <= 600.
Constraint c1 = solver.MakeConstraint(double.NegativeInfinity, 600.0);
c1.SetCoefficient(x1, 10);
c1.SetCoefficient(x2, 4);
c1.SetCoefficient(x3, 5);
// 2 * x1 + 2 * x2 + 6 * x3 <= 300.
Constraint c2 = solver.MakeConstraint(double.NegativeInfinity, 300.0);
c2.SetCoefficient(x1, 2);
c2.SetCoefficient(x2, 2);
c2.SetCoefficient(x3, 6);
Console.WriteLine("Number of variables = " + solver.NumVariables());
Console.WriteLine("Number of constraints = " + solver.NumConstraints());
Solver.ResultStatus resultStatus = solver.Solve();
// Check that the problem has an optimal solution.
if (resultStatus != Solver.ResultStatus.OPTIMAL) {
Console.WriteLine("The problem does not have an optimal solution!");
return;
}
Console.WriteLine("Problem solved in " + solver.WallTime() +
" milliseconds");
// The objective value of the solution.
Console.WriteLine("Optimal objective value = " +
solver.Objective().Value());
// The value of each variable in the solution.
Console.WriteLine("x1 = " + x1.SolutionValue());
Console.WriteLine("x2 = " + x2.SolutionValue());
Console.WriteLine("x3 = " + x3.SolutionValue());
Console.WriteLine("Advanced usage:");
double[] activities = solver.ComputeConstraintActivities();
Console.WriteLine("Problem solved in " + solver.Iterations() +
" iterations");
Console.WriteLine("x1: reduced cost = " + x1.ReducedCost());
Console.WriteLine("x2: reduced cost = " + x2.ReducedCost());
Console.WriteLine("x3: reduced cost = " + x3.ReducedCost());
Console.WriteLine("c0: dual value = " + c0.DualValue());
Console.WriteLine(" activity = " + activities[c0.Index()]);
Console.WriteLine("c1: dual value = " + c1.DualValue());
Console.WriteLine(" activity = " + activities[c1.Index()]);
Console.WriteLine("c2: dual value = " + c2.DualValue());
Console.WriteLine(" activity = " + activities[c2.Index()]);
}
private static void RunLinearProgrammingExampleNaturalApi(
String solverType, bool printModel)
{
Solver solver = Solver.CreateSolver("IntegerProgramming", solverType);
if (solver == null)
{
Console.WriteLine("Could not create solver " + solverType);
return;
}
// x1, x2 and x3 are continuous non-negative variables.
Variable x1 = solver.MakeNumVar(0.0, double.PositiveInfinity, "x1");
Variable x2 = solver.MakeNumVar(0.0, double.PositiveInfinity, "x2");
Variable x3 = solver.MakeNumVar(0.0, double.PositiveInfinity, "x3");
solver.Maximize(10 * x1 + 6 * x2 + 4 * x3);
Constraint c0 = solver.Add(x1 + x2 + x3 <= 100);
Constraint c1 = solver.Add(10 * x1 + x2 * 4 + 5 * x3 <= 600);
Constraint c2 = solver.Add(2 * x1 + 2 * x2 + 6 * x3 <= 300);
Console.WriteLine("Number of variables = " + solver.NumVariables());
Console.WriteLine("Number of constraints = " + solver.NumConstraints());
if (printModel) {
string model = solver.ExportModelAsLpFormat(false);
Console.WriteLine(model);
}
Solver.ResultStatus resultStatus = solver.Solve();
// Check that the problem has an optimal solution.
if (resultStatus != Solver.ResultStatus.OPTIMAL) {
Console.WriteLine("The problem does not have an optimal solution!");
return;
}
Console.WriteLine("Problem solved in " + solver.WallTime() +
" milliseconds");
// The objective value of the solution.
Console.WriteLine("Optimal objective value = " +
solver.Objective().Value());
// The value of each variable in the solution.
Console.WriteLine("x1 = " + x1.SolutionValue());
Console.WriteLine("x2 = " + x2.SolutionValue());
Console.WriteLine("x3 = " + x3.SolutionValue());
Console.WriteLine("Advanced usage:");
double[] activities = solver.ComputeConstraintActivities();
Console.WriteLine("Problem solved in " + solver.Iterations() +
" iterations");
Console.WriteLine("x1: reduced cost = " + x1.ReducedCost());
Console.WriteLine("x2: reduced cost = " + x2.ReducedCost());
Console.WriteLine("x3: reduced cost = " + x3.ReducedCost());
Console.WriteLine("c0: dual value = " + c0.DualValue());
Console.WriteLine(" activity = " + activities[c0.Index()]);
Console.WriteLine("c1: dual value = " + c1.DualValue());
Console.WriteLine(" activity = " + activities[c1.Index()]);
Console.WriteLine("c2: dual value = " + c2.DualValue());
Console.WriteLine(" activity = " + activities[c2.Index()]);
}
static void Main()
{
Console.WriteLine("---- Linear programming example with GLOP ----");
RunLinearProgrammingExample("GLOP_LINEAR_PROGRAMMING");
Console.WriteLine("---- Linear programming example with GLPK ----");
RunLinearProgrammingExample("GLPK_LINEAR_PROGRAMMING");
Console.WriteLine("---- Linear programming example with CLP ----");
RunLinearProgrammingExample("CLP_LINEAR_PROGRAMMING");
Console.WriteLine(
"---- Linear programming example (Natural API) with GLOP ----");
RunLinearProgrammingExampleNaturalApi("GLOP_LINEAR_PROGRAMMING", true);
Console.WriteLine(
"---- Linear programming example (Natural API) with GLPK ----");
RunLinearProgrammingExampleNaturalApi("GLPK_LINEAR_PROGRAMMING", false);
Console.WriteLine(
"---- Linear programming example (Natural API) with CLP ----");
RunLinearProgrammingExampleNaturalApi("CLP_LINEAR_PROGRAMMING", false);
}
}