forked from jixinya/EAMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
126 lines (94 loc) · 5.37 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import matplotlib
matplotlib.use('Agg')
import os, sys
import yaml
from argparse import ArgumentParser
from time import gmtime, strftime
from shutil import copy
from frames_dataset import MeadDataset, AudioDataset, VoxDataset
from modules.generator import OcclusionAwareGenerator
from modules.discriminator import MultiScaleDiscriminator
from modules.keypoint_detector import KPDetector, Audio_Feature, KPDetector_a
from modules.util import AT_net,Emotion_k,get_logger
import torch
from train import train_part1, train_part1_fine_tune, train_part2
from reconstruction import reconstruction
from animate import animate
if __name__ == "__main__":
if sys.version_info[0] < 3:
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")
parser = ArgumentParser()
parser.add_argument("--config", default="config/train_part1.yaml", help="path to config")# required=True
parser.add_argument("--mode", default="train_part1", choices=["train_part1", "train_part1_fine_tune", "train_part2"])
parser.add_argument("--log_dir", default='log', help="path to log into")
parser.add_argument("--checkpoint", default='124_52000.pth.tar', help="path to checkpoint to restore")
parser.add_argument("--audio_checkpoint", default=None, help="path to audio_checkpoint to restore")
parser.add_argument("--emo_checkpoint", default=None, help="path to audio_checkpoint to restore")
parser.add_argument("--device_ids", default="0", type=lambda x: list(map(int, x.split(','))),
help="Names of the devices comma separated.")
parser.add_argument("--verbose", dest="verbose", action="store_true", help="Print model architecture")
parser.set_defaults(verbose=False)
opt = parser.parse_args()
with open(opt.config) as f:
config = yaml.load(f)
name = os.path.basename(opt.config).split('.')[0]
if opt.checkpoint is not None:
log_dir = os.path.join(opt.log_dir, os.path.basename(opt.config).split('.')[0])
log_dir += ' ' + strftime("%d_%m_%y_%H.%M.%S", gmtime())
else:
log_dir = os.path.join(opt.log_dir, os.path.basename(opt.config).split('.')[0])
log_dir += ' ' + strftime("%d_%m_%y_%H.%M.%S", gmtime())
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if not os.path.exists(os.path.join(log_dir, os.path.basename(opt.config))):
copy(opt.config, log_dir)
# logger = get_logger(os.path.join(log_dir, "log.txt"))
generator = OcclusionAwareGenerator(**config['model_params']['generator_params'],
**config['model_params']['common_params'])
if torch.cuda.is_available():
generator.to(opt.device_ids[0])
if opt.verbose:
print(generator)
discriminator = MultiScaleDiscriminator(**config['model_params']['discriminator_params'],
**config['model_params']['common_params'])
if torch.cuda.is_available():
discriminator.to(opt.device_ids[0])
if opt.verbose:
print(discriminator)
kp_detector = KPDetector(**config['model_params']['kp_detector_params'],
**config['model_params']['common_params'])
kp_detector_a = KPDetector_a(**config['model_params']['kp_detector_params'],
**config['model_params']['audio_params'])
if torch.cuda.is_available():
kp_detector.to(opt.device_ids[0])
kp_detector_a.to(opt.device_ids[0])
audio_feature = AT_net()
emo_feature = Emotion_k(block_expansion=32, num_channels=3, max_features=1024,
num_blocks=5, scale_factor=0.25, num_classes=8)
if torch.cuda.is_available():
audio_feature.to(opt.device_ids[0])
emo_feature.to(opt.device_ids[0])
if opt.verbose:
print(kp_detector)
print(kp_detector_a)
print(audio_feature)
print(emo_feature)
# logger.info("Successfully load models.")
if config['dataset_params']['name'] == 'Vox':
dataset = VoxDataset(is_train=True, **config['dataset_params'])
test_dataset = VoxDataset(is_train=False, **config['dataset_params'])
elif config['dataset_params']['name'] == 'Lrw':
dataset = AudioDataset(is_train=True, **config['dataset_params'])
test_dataset = AudioDataset(is_train=False, **config['dataset_params'])
elif config['dataset_params']['name'] == 'MEAD':
dataset = MeadDataset(is_train=True, **config['dataset_params'])
test_dataset = MeadDataset(is_train=False, **config['dataset_params'])
if opt.mode == 'train_part1':
print("Training part1...")
train_part1(config, generator, discriminator, kp_detector, kp_detector_a,audio_feature, opt.checkpoint, opt.audio_checkpoint, log_dir, dataset, test_dataset,opt.device_ids, name)
elif opt.mode == 'train_part1_fine_tune':
print("Finetune part1...")
train_part1_fine_tune(config, generator, discriminator, kp_detector, kp_detector_a,audio_feature, opt.checkpoint, opt.audio_checkpoint, log_dir, dataset, test_dataset,opt.device_ids, name)
elif opt.mode == 'train_part2':
print("Training part2...")
train_part2(config, generator, discriminator, kp_detector, emo_feature,kp_detector_a,audio_feature, opt.checkpoint, opt.audio_checkpoint, opt.emo_checkpoint, log_dir, dataset,test_dataset,opt.device_ids, name)