forked from jixinya/EAMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
566 lines (426 loc) · 22.2 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 6 20:57:27 2021
@author: thea
"""
import matplotlib
matplotlib.use('Agg')
import os,sys
import yaml
from argparse import ArgumentParser
from tqdm import tqdm
from skimage import io, img_as_float32
import imageio
import numpy as np
from skimage.transform import resize
from skimage import img_as_ubyte
import torch
from filter1 import OneEuroFilter
import torch.utils
from torch.autograd import Variable
from modules.generator import OcclusionAwareGenerator
from modules.keypoint_detector import KPDetector, KPDetector_a
from modules.util import AT_net, Emotion_k, Emotion_map, AT_net2
from augmentation import AllAugmentationTransform
from scipy.spatial import ConvexHull
import python_speech_features
from pathlib import Path
import dlib
import cv2
import librosa
from skimage import transform as tf
#from audiolm.models import AT_emoiton
#from audiolm.utils import plot_flmarks
if sys.version_info[0] < 3:
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.6")
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('./shape_predictor_68_face_landmarks.dat')
def load_checkpoints(opt, checkpoint_path, audio_checkpoint_path, emo_checkpoint_path, cpu=False):
with open(opt.config) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
generator = OcclusionAwareGenerator(**config['model_params']['generator_params'],
**config['model_params']['common_params'])
if not cpu:
generator.cuda()
kp_detector = KPDetector(**config['model_params']['kp_detector_params'],
**config['model_params']['common_params'])
if not cpu:
kp_detector.cuda()
kp_detector_a = KPDetector_a(**config['model_params']['kp_detector_params'],
**config['model_params']['audio_params'])
audio_feature = AT_net2()
if opt.type.startswith('linear'):
emo_detector = Emotion_k(block_expansion=32, num_channels=3, max_features=1024,
num_blocks=5, scale_factor=0.25, num_classes=8)
elif opt.type.startswith('map'):
emo_detector = Emotion_map(block_expansion=32, num_channels=3, max_features=1024,
num_blocks=5, scale_factor=0.25, num_classes=8)
if not cpu:
kp_detector_a.cuda()
audio_feature.cuda()
emo_detector.cuda()
if cpu:
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
audio_checkpoint = torch.load(audio_checkpoint_path, map_location=torch.device('cpu'))
emo_checkpoint = torch.load(emo_checkpoint_path, map_location=torch.device('cpu'))
else:
checkpoint = torch.load(checkpoint_path)
audio_checkpoint = torch.load(audio_checkpoint_path)
emo_checkpoint = torch.load(emo_checkpoint_path)
generator.load_state_dict(checkpoint['generator'])
kp_detector.load_state_dict(checkpoint['kp_detector'])
audio_feature.load_state_dict(audio_checkpoint['audio_feature'])
kp_detector_a.load_state_dict(audio_checkpoint['kp_detector_a'])
emo_detector.load_state_dict(emo_checkpoint['emo_detector'])
if not cpu:
generator = generator.cuda()
kp_detector = kp_detector.cuda()
audio_feature = audio_feature.cuda()
kp_detector_a = kp_detector_a.cuda()
emo_detector = emo_detector.cuda()
generator.eval()
kp_detector.eval()
audio_feature.eval()
kp_detector_a.eval()
emo_detector.eval()
return generator, kp_detector, kp_detector_a, audio_feature, emo_detector
def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False,
use_relative_movement=False, use_relative_jacobian=False):
if adapt_movement_scale:
source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume
driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume
adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
else:
adapt_movement_scale = 1
kp_new = {k: v for k, v in kp_driving.items()}
if use_relative_movement:
kp_value_diff = (kp_driving['value'] - kp_driving_initial['value'])
kp_value_diff *= adapt_movement_scale
kp_new['value'] = kp_value_diff + kp_source['value']
if use_relative_jacobian:
jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian']))
kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian'])
return kp_new
def shape_to_np(shape, dtype="int"):
# initialize the list of (x, y)-coordinates
coords = np.zeros((shape.num_parts, 2), dtype=dtype)
# loop over all facial landmarks and convert them
# to a 2-tuple of (x, y)-coordinates
for i in range(0, shape.num_parts):
coords[i] = (shape.part(i).x, shape.part(i).y)
# return the list of (x, y)-coordinates
return coords
def get_aligned_image(driving_video, opt):
aligned_array = []
video_array = np.array(driving_video)
source_image=video_array[0]
# aligned_array.append(source_image)
source_image = np.array(source_image * 255, dtype=np.uint8)
gray = cv2.cvtColor(source_image, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 1) #detect human face
for (i, rect) in enumerate(rects):
template = predictor(gray, rect) #detect 68 points
template = shape_to_np(template)
if opt.emotion == 'surprised' or opt.emotion == 'fear':
template = template-[0,10]
for i in range(len(video_array)):
image=np.array(video_array[i] * 255, dtype=np.uint8)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 1) #detect human face
for (j, rect) in enumerate(rects):
shape = predictor(gray, rect) #detect 68 points
shape = shape_to_np(shape)
pts2 = np.float32(template[:35,:])
pts1 = np.float32(shape[:35,:]) #eye and nose
# pts2 = np.float32(np.concatenate((template[:16,:],template[27:36,:]),axis = 0))
# pts1 = np.float32(np.concatenate((shape[:16,:],shape[27:36,:]),axis = 0)) #eye and nose
# pts1 = np.float32(landmark[17:35,:])
tform = tf.SimilarityTransform()
tform.estimate( pts2, pts1) #Set the transformation matrix with the explicit parameters.
dst = tf.warp(image, tform, output_shape=(256, 256))
dst = np.array(dst, dtype=np.float32)
aligned_array.append(dst)
return aligned_array
def get_transformed_image(driving_video, opt):
video_array = np.array(driving_video)
with open(opt.config) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
transformations = AllAugmentationTransform(**config['dataset_params']['augmentation_params'])
transformed_array = transformations(video_array)
return transformed_array
def make_animation_smooth(source_image, driving_video, transformed_video, deco_out, kp_loss, generator, kp_detector, kp_detector_a, emo_detector, opt, relative=True, adapt_movement_scale=True, cpu=False):
with torch.no_grad():
predictions = []
source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
if not cpu:
source = source.cuda()
driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
transformed_driving = torch.tensor(np.array(transformed_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
kp_source = kp_detector(source)
kp_driving_initial = kp_detector_a(deco_out[:,0])
emo_driving_all = []
features = []
kp_driving_all = []
for frame_idx in tqdm(range(len(deco_out[0]))):
driving_frame = driving[:, :, frame_idx]
transformed_frame = transformed_driving[:, :, frame_idx]
if not cpu:
driving_frame = driving_frame.cuda()
transformed_frame = transformed_frame.cuda()
kp_driving = kp_detector_a(deco_out[:,frame_idx])
kp_driving_all.append(kp_driving)
if opt.add_emo:
value = kp_driving['value']
jacobian = kp_driving['jacobian']
if opt.type == 'linear_3':
emo_driving,_ = emo_detector(transformed_frame,value,jacobian)
features.append(emo_detector.feature(transformed_frame).data.cpu().numpy())
emo_driving_all.append(emo_driving)
features = np.array(features)
if opt.add_emo:
one_euro_filter_v = OneEuroFilter(mincutoff=1, beta=0.2, dcutoff=1.0, freq=100)#1 0.4
one_euro_filter_j = OneEuroFilter(mincutoff=1, beta=0.2, dcutoff=1.0, freq=100)#1 0.4
for j in range(len(emo_driving_all)):
emo_driving_all[j]['value']=one_euro_filter_v.process(emo_driving_all[j]['value'].cpu()*100)/100
emo_driving_all[j]['value'] = emo_driving_all[j]['value'].cuda()
emo_driving_all[j]['jacobian']=one_euro_filter_j.process(emo_driving_all[j]['jacobian'].cpu()*100)/100
emo_driving_all[j]['jacobian'] = emo_driving_all[j]['jacobian'].cuda()
one_euro_filter_v = OneEuroFilter(mincutoff=0.05, beta=8, dcutoff=1.0, freq=100)
one_euro_filter_j = OneEuroFilter(mincutoff=0.05, beta=8, dcutoff=1.0, freq=100)
for j in range(len(kp_driving_all)):
kp_driving_all[j]['value']=one_euro_filter_v.process(kp_driving_all[j]['value'].cpu()*10)/10
kp_driving_all[j]['value'] = kp_driving_all[j]['value'].cuda()
kp_driving_all[j]['jacobian']=one_euro_filter_j.process(kp_driving_all[j]['jacobian'].cpu()*10)/10
kp_driving_all[j]['jacobian'] = kp_driving_all[j]['jacobian'].cuda()
for frame_idx in tqdm(range(len(deco_out[0]))):
if opt.check_add:
kp_driving = kp_detector_a(deco_out[:,0])
else:
kp_driving = kp_driving_all[frame_idx]
# kp_driving_real = kp_detector(driving_frame)
# kp_driving['value'] = (1-opt.weight)*kp_driving['value'] + opt.weight*kp_driving_real['value']
# kp_driving['jacobian'] = (1-opt.weight)*kp_driving['jacobian'] + opt.weight*kp_driving_real['jacobian']
if opt.add_emo:
emo_driving = emo_driving_all[frame_idx]
if opt.type == 'linear_3':
kp_driving['value'][:,1] = kp_driving['value'][:,1] + emo_driving['value'][:,0]*0.2
kp_driving['jacobian'][:,1] = kp_driving['jacobian'][:,1] + emo_driving['jacobian'][:,0]*0.2
kp_driving['value'][:,4] = kp_driving['value'][:,4] + emo_driving['value'][:,1]
kp_driving['jacobian'][:,4] = kp_driving['jacobian'][:,4] + emo_driving['jacobian'][:,1]
kp_driving['value'][:,6] = kp_driving['value'][:,6] + emo_driving['value'][:,2]
kp_driving['jacobian'][:,6] = kp_driving['jacobian'][:,6] + emo_driving['jacobian'][:,2]
# kp_driving['value'][:,8] = kp_driving['value'][:,8] + emo_driving['value'][:,3]
# kp_driving['jacobian'][:,8] = kp_driving['jacobian'][:,8] + emo_driving['jacobian'][:,3]
kp_norm = normalize_kp(kp_source=kp_source, kp_driving=kp_driving,
kp_driving_initial=kp_driving_initial, use_relative_movement=relative,
use_relative_jacobian=relative, adapt_movement_scale=adapt_movement_scale)
out = generator(source, kp_source=kp_source, kp_driving=kp_norm)
predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
return predictions, features
def test_auido(example_image, audio_feature, all_pose, opt):
with open(opt.config) as f:
para = yaml.load(f, Loader=yaml.FullLoader)
# encoder = audio_feature()
if not opt.cpu:
audio_feature = audio_feature.cuda()
audio_feature.eval()
# decoder.eval()
test_file = opt.in_file
pose = all_pose[:,:6]
if len(pose) == 1:
pose = np.repeat(pose,100,0)
elif opt.smooth_pose:
one_euro_filter = OneEuroFilter(mincutoff=0.004, beta=0.7, dcutoff=1.0, freq=100)
for j in range(len(pose)):
pose[j]=one_euro_filter.process(pose[j])
# pose[j]=pose[0]
example_image = np.array(example_image, dtype='float32').transpose((2, 0, 1))
speech, sr = librosa.load(test_file, sr=16000)
# mfcc = python_speech_features.mfcc(speech ,16000,winstep=0.01)
speech = np.insert(speech, 0, np.zeros(1920))
speech = np.append(speech, np.zeros(1920))
mfcc = python_speech_features.mfcc(speech,16000,winstep=0.01)
print ('=======================================')
print ('Start to generate images')
ind = 3
with torch.no_grad():
fake_lmark = []
input_mfcc = []
while ind <= int(mfcc.shape[0]/4) - 4:
t_mfcc =mfcc[( ind - 3)*4: (ind + 4)*4, 1:]
t_mfcc = torch.FloatTensor(t_mfcc).cuda()
input_mfcc.append(t_mfcc)
ind += 1
input_mfcc = torch.stack(input_mfcc,dim = 0)
if (len(pose)<len(input_mfcc)):
gap = len(input_mfcc)-len(pose)
n = int((gap/len(pose)/2)) +2
pose = np.concatenate((pose,pose[::-1,:]),axis = 0)
pose = np.tile(pose, (n,1))
if(len(pose)>len(input_mfcc)):
pose = pose[:len(input_mfcc),:]
if not opt.cpu:
example_image = Variable(torch.FloatTensor(example_image.astype(float)) ).cuda()
example_image = torch.unsqueeze(example_image,0)
pose = Variable(torch.FloatTensor(pose.astype(float)) ).cuda()
pose = pose.unsqueeze(0)
input_mfcc = input_mfcc.unsqueeze(0)
deco_out = audio_feature(example_image,input_mfcc,pose,para['train_params']['jaco_net'],1.6)
return deco_out
def save(path, frames, format):
if format == '.png':
if not os.path.exists(path):
os.makedirs(path)
for j, frame in enumerate(frames):
imageio.imsave(path+'/'+str(j)+'.png',frame)
# imageio.imsave(os.path.join(path, str(j) + '.png'), frames[j])
else:
print ("Unknown format %s" % format)
exit()
class VideoWriter(object):
def __init__(self, path, width, height, fps):
fourcc = cv2.VideoWriter_fourcc(*'XVID')
self.path = path
self.out = cv2.VideoWriter(self.path, fourcc, fps, (width, height))
def write_frame(self, frame):
self.out.write(frame)
def end(self):
self.out.release()
def concatenate(number, imgs, save_path):
width, height = imgs.shape[-3:-1]
imgs = imgs.reshape(number,-1,width,height,3)
if number == 2:
left = imgs[0]
right = imgs[1]
im_all = []
for i in range(len(left)):
im = np.concatenate((left[i],right[i]),axis = 1)
im_all.append(im)
if number == 3:
left = imgs[0]
middle = imgs[1]
right = imgs[2]
im_all = []
for i in range(len(left)):
im = np.concatenate((left[i],middle[i],right[i]),axis = 1)
im_all.append(im)
if number == 4:
left = imgs[0]
left2 = imgs[1]
right = imgs[2]
right2 = imgs[3]
im_all = []
for i in range(len(left)):
im = np.concatenate((left[i],left2[i],right[i],right2[i]),axis = 1)
im_all.append(im)
if number == 5:
left = imgs[0]
left2 = imgs[1]
middle = imgs[2]
right = imgs[3]
right2 = imgs[4]
im_all = []
for i in range(len(left)):
im = np.concatenate((left[i],left2[i],middle[i],right[i],right2[i]),axis = 1)
im_all.append(im)
imageio.mimsave(save_path, [img_as_ubyte(frame) for frame in im_all], fps=25)
def add_audio(video_name=None, audio_dir = None):
command = 'ffmpeg -i ' + video_name + ' -i ' + audio_dir + ' -vcodec copy -acodec copy -y ' + video_name.replace('.mp4','.mov')
print (command)
os.system(command)
def crop_image(source_image):
template = np.load('./M003_template.npy')
image= cv2.imread(source_image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 1) #detect human face
if len(rects) != 1:
return 0
for (j, rect) in enumerate(rects):
shape = predictor(gray, rect) #detect 68 points
shape = shape_to_np(shape)
pts2 = np.float32(template[:47,:])
pts1 = np.float32(shape[:47,:]) #eye and nose
# pts1 = np.float32(landmark[17:35,:])
tform = tf.SimilarityTransform()
tform.estimate( pts2, pts1) #Set the transformation matrix with the explicit parameters.
dst = tf.warp(image, tform, output_shape=(256, 256))
dst = np.array(dst * 255, dtype=np.uint8)
return dst
def smooth_pose(pose_file, pose_long):
start = np.load(pose_file)
video_pose = np.load(pose_long)
delta = video_pose - video_pose[0,:]
print(len(delta))
pose = np.repeat(start,len(delta),axis = 0)
all_pose = pose + delta
return all_pose
def test(opt, name):
all_pose = np.load(opt.pose_file).reshape(-1,7)
if opt.pose_long:
all_pose = smooth_pose(opt.pose_file,opt.pose_given)
# source_image = img_as_float32(io.imread(opt.source_image))
source_image = img_as_float32(crop_image(opt.source_image))
source_image = resize(source_image, (256, 256))[..., :3]
reader = imageio.get_reader(opt.driving_video)
fps = reader.get_meta_data()['fps']
driving_video = []
try:
for im in reader:
driving_video.append(im)
except RuntimeError:
pass
reader.close()
driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
driving_video = get_aligned_image(driving_video, opt)
transformed_video = get_transformed_image(driving_video, opt)
transformed_video = np.array(transformed_video)
generator, kp_detector,kp_detector_a, audio_feature, emo_detector = load_checkpoints(opt=opt, checkpoint_path=opt.checkpoint, audio_checkpoint_path=opt.audio_checkpoint, emo_checkpoint_path = opt.emo_checkpoint, cpu=opt.cpu)
deco_out = test_auido(source_image, audio_feature, all_pose, opt)
if len(driving_video) < len(deco_out[0]):
driving_video = np.resize(driving_video,(len(deco_out[0]),256,256,3))
transformed_video = np.resize(transformed_video,(len(deco_out[0]),256,256,3))
else:
driving_video = driving_video[:len(deco_out[0])]
opt.add_emo = False
predictions, _ = make_animation_smooth(source_image, driving_video, transformed_video, deco_out, opt.kp_loss, generator, kp_detector, kp_detector_a, emo_detector, opt, relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
imageio.mimsave(os.path.join(opt.result_path,'neutral.mp4'), [img_as_ubyte(frame) for frame in predictions], fps=fps)
predictions = np.array(predictions)
opt.add_emo = True
predictions1,_ = make_animation_smooth(source_image, driving_video, transformed_video, deco_out, opt.kp_loss, generator, kp_detector, kp_detector_a, emo_detector, opt, relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
imageio.mimsave(os.path.join(opt.result_path,'emotion.mp4'), [img_as_ubyte(frame) for frame in predictions1], fps=fps)
add_audio(os.path.join(opt.result_path,'emotion.mp4'),opt.in_file)
predictions1 = np.array(predictions1)
all_imgs = np.concatenate((driving_video,predictions,predictions1),axis = 0)
save_path = os.path.join(opt.result_path, 'all.mp4')
concatenate(3, all_imgs, save_path)
add_audio(save_path,opt.in_file)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--config", default ='config/MEAD_emo_video_aug_delta_4_crop_random_crop.yaml', help="path to config")#required=True default ='config/vox-256.yaml'
parser.add_argument("--audio_checkpoint", default='log/1-6000.pth.tar', help="path to checkpoint to restore")
parser.add_argument("--checkpoint", default='log/124_52000.pth.tar', help="path to checkpoint to restore")
# parser.add_argument("--emo_checkpoint", default='ablation/ablation/ten/10-6000.pth.tar', help="path to checkpoint to restore")
parser.add_argument("--emo_checkpoint", default='log/5-3000.pth.tar', help="path to checkpoint to restore")
parser.add_argument("--source_image", default='test/image/21.png', help="path to source image")
parser.add_argument("--driving_video", default='test/video/disgusted.mp4', help="path to driving video")#data/M030/video/M030_angry_
parser.add_argument('--in_file', type=str, default='test/audio/sample1.mov')
parser.add_argument('--pose_file', type=str, default='test/pose/21.npy')
parser.add_argument('--pose_given', type=str, default='test/pose_long/0zn70Ak8lRc_Daniel_Auteuil_0zn70Ak8lRc_0002.npy')
parser.add_argument("--result_path", default='result/', help="path to output")#'/media/thea/新加卷/fomm/Exp/'+emotion+'.mp4'
parser.add_argument("--relative", dest="relative", action="store_true", help="use relative or absolute keypoint coordinates")
parser.add_argument("--adapt_scale", dest="adapt_scale", action="store_true", help="adapt movement scale based on convex hull of keypoints")
parser.add_argument("--cpu", dest="cpu", action="store_true", help="cpu mode.")
parser.add_argument("--kp_loss", default=0, help="keypoint loss.")
parser.add_argument("--smooth_pose", default=True, help="cpu mode.")
parser.add_argument("--pose_long", default=False, help="use given long poses.")
parser.add_argument("--weight", default=0, help="cpu mode.")
parser.add_argument("--add_emo", default=False, help="add emotion.")
parser.add_argument("--check_add", default=False, help="check emotion displacement.")
parser.add_argument("--type", default='linear_3', help="add emotion type.")
parser.add_argument("--emotion", default='disgusted', help="emotion category, 'angry', 'contempt','disgusted','fear','happy','neutral','sad','surprised'.")
parser.set_defaults(relative=False)
parser.set_defaults(adapt_scale=False)
opt = parser.parse_args()
# opt.cpu = True
test(opt,'test')