-
Notifications
You must be signed in to change notification settings - Fork 2
/
project.py
78 lines (53 loc) · 2.06 KB
/
project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
import pandas as pd
df=pd.read_csv("Churn_Modelling.csv")
X=df.iloc[:,3:13]
y=df.iloc[:,13]
#create dummy variables
geography=pd.get_dummies(X["Geography"],drop_first=True)
gender=pd.get_dummies(X['Gender'],drop_first=True)
## Concatenate the Data Frames
X=pd.concat([X,geography,gender],axis=1)
## Drop Unnecessary columns
X=X.drop(['Geography','Gender'],axis=1)
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# scaling the features
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Part 2 - Now let's make the ANN!
# Importing the Keras libraries and packages
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LeakyReLU,PReLU,ELU
from keras.layers import Dropout
# Initialising the ANN
classifier = Sequential()
# Adding the input layer and the first hidden layer
classifier.add(Dense(output_dim = 6, init = 'he_uniform',activation='relu',input_dim = 11))
# Adding the second hidden layer
classifier.add(Dense(output_dim = 6, init = 'he_uniform',activation='relu'))
# Adding the output layer
classifier.add(Dense(output_dim = 1, init = 'glorot_uniform', activation = 'sigmoid'))
# Compiling the ANN
classifier.compile(optimizer = 'Adamax', loss = 'binary_crossentropy', metrics = ['accuracy'])
# Fitting the ANN to the Training set
model_history=classifier.fit(X_train, y_train,validation_split=0.33, batch_size = 10, nb_epoch = 100)
# Part 3 - Making the predictions and evaluating the model
# Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
# Calculate the Accuracy
from sklearn.metrics import accuracy_score
score=accuracy_score(y_pred,y_test)