-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdeploy_trainers.sh
executable file
·106 lines (101 loc) · 3.13 KB
/
deploy_trainers.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#default
training_file="training_code/train_dist_genper_regularized.py"
ip_config_file="/root/EAT-DistGNN/training_code/ip_config1234_30054.txt"
num_epochs=100
batch_size=1000
hidden=512
num_layers=2
dropout=0.5
n_classes=40
fanout="25,25"
lr=0.0001
gamma=0
lambda=0.00001
genper_ratio=1.0
early_stop=0
sampler=0
graph_name="flickr"
partition_type="metis"
version=0
tune=0
stopping_criteria=1
#args
while getopts T:I:G:S:P:e:b:h:l:d:n:f:r:g:p:s:v:m:t:c: flag
do
case "${flag}" in
T) training_file=${OPTARG};;
I) ip_config_file=${OPTARG};;
G) graph_name=${OPTARG};;
S) sampler=${OPTARG};;
P) partition_type=${OPTARG};;
e) num_epochs=${OPTARG};;
b) batch_size=${OPTARG};;
h) hidden=${OPTARG};;
l) num_layers=${OPTARG};;
d) dropout=${OPTARG};;
n) n_classes=${OPTARG};;
f) fanout=${OPTARG};;
r) lr=${OPTARG};;
g) gamma=${OPTARG};;
p) genper_ratio=${OPTARG};;
s) early_stop=${OPTARG};;
v) version=${OPTARG};;
m) lambda=${OPTARG};;
t) tune=${OPTARG};;
c) stopping_criteria=${OPTARG};;
esac
done
gp=0
if (( $(echo "$genper_ratio < 1" |bc -l) )); then
gp=1
fi
partition_path="partitions/$graph_name/$partition_type/$graph_name.json"
exp_name="${partition_type}_${version}"
mkdir -p "experiments/$graph_name/$exp_name/results"
metrics_path="experiments/$graph_name/$exp_name/results"
# source /home/ubuntu/miniconda3/bin/activate; conda activate envforgnn
# source /etc/profile.d/modules.sh; module load anaconda3
python3.9 training_code/launch_training.py \
--workspace $(pwd) \
--num_trainers 1 \
--num_samplers 0 \
--num_servers 1 \
--num_omp_threads 1 \
--part_config ${partition_path} \
--ip_config ${ip_config_file} \
"python3.9 $training_file \
--graph_name $graph_name \
--ip_config $ip_config_file \
--num_epochs $num_epochs \
--batch_size $batch_size \
--num_hidden $hidden \
--num_layers $num_layers \
--dropout $dropout \
--n_classes $n_classes \
--fan_out $fanout \
--lr $lr \
--gamma $gamma \
--llambda $lambda \
--genper_ratio $genper_ratio \
--early_stop $early_stop \
--sampler $sampler \
--metrics_path $metrics_path \
--tune $tune \
--stopping_criteria $stopping_criteria" > "experiments/$graph_name/$exp_name/logs.txt"
hf="experiments/$graph_name/$exp_name/hyperparams.txt"
touch $hf
echo "num_layers=$num_layers" >> "$hf"
echo "num_epochs=$num_epochs" >> "$hf"
echo "batch_size=$batch_size" >> "$hf"
echo "num_hidden=$hidden" >> "$hf"
echo "dropout=$dropout" >> "$hf"
echo "n_classes=$n_classes" >> "$hf"
echo "fanout=$fanout" >> "$hf"
echo "lr=$lr" >> "$hf"
echo "gamma=$gamma" >> "$hf"
echo "lambda=$lambda" >> "$hf"
echo "genper_ratio=$genper_ratio" >> "$hf"
echo "early_stop=$early_stop" >> "$hf"
echo "stopping_criteria=$stopping_criteria" >> "$hf"
echo "Sampler=$sampler" >> "$hf"
echo "Partition=$partition_code" >> "$hf"