Skip to content

Latest commit

 

History

History
38 lines (30 loc) · 3.35 KB

README.md

File metadata and controls

38 lines (30 loc) · 3.35 KB

Awesome Machine Learning Libraries

An incomplete list of Machine Learning frameworks or libraries written in JavaScript. All should run in browser context.

Traditional Machine Learning Algorithms

Name Description License
ml.js A compilation of Machine Learning tools in JavaScript MIT
machine_learning Implementations of multiple machine learning algorithms such as decision-tree MIT

Deep Neural Networks (DNNs)

Name Description License
webdnn DNN Running Framework that can be built with WebGPU, WebGL, or WebAssembly MIT
synaptic.js Generic neural network framework MIT
deeplearning.js Hardware-accelerated deep learning // machine learning // NumPy library for the web Apache License V2
kera.js Run Keras models in the browser, with GPU support using WebGL MIT
TensorFire Framework for running neural networks in the browser, accelerated by WebGL. To be open sourced
neurojs deep learning framework focused on reinforcement learning
deepforge open-source visual development environment for deep learning
neataptic Blazing fast neuro-evolution & backpropagation for the browser MIT
Feedforward Neural Networks An implementation of feedforward neural networks based on wildml implementation MIT
Kohonen Networks An implementation of Kohonen Networks / self-organizing map (SOM) MIT
ConvNetJS [UNMAINTAINED] Cmmon neural network modules, including Convolutional Neural Network MIT
Simple Feedforward Neural Networks [UNMAINTAINED] Simple feed-forward neural network MIT

Mathmatics Computation

Name Description License
gpu.js Perform GPU-accelerated matrix computation with graceful fallback to JS MIT
ml-matrix Matrix manipulation and computation library created by mljs MIT
math.js Extensive math library compatible with the JS built-in math library Apache License V2
weblas GPU Powered BLAS for Browsers MIT
web-dsp A client-side signal processing library built on WebAssembly MIT