forked from alterzero/DBPN-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_gan.py
286 lines (237 loc) · 12 KB
/
main_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from __future__ import print_function
import argparse
from math import log10
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import models
import torch.backends.cudnn as cudnn
from dbpn_v1 import Net as DBPNLL
from dbpn import Net as DBPN
#from dbpn_iterative import Net as DBPNITER
from discriminator import Discriminator, FeatureExtractor, FeatureExtractorResnet
from data import get_training_set
from random import randrange
import pdb
import socket
import time
import utils
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
parser.add_argument('--upscale_factor', type=int, default=4, help="super resolution upscale factor")
parser.add_argument('--batchSize', type=int, default=1, help='training batch size')
parser.add_argument('--pretrained_iter', type=int, default=100, help='number of epochs to train for')
parser.add_argument('--pretrained', type=bool, default=False)
parser.add_argument('--nEpochs', type=int, default=2000, help='number of epochs to train for')
parser.add_argument('--snapshots', type=int, default=25, help='Snapshots')
parser.add_argument('--start_iter', type=int, default=1, help='Starting Epoch')
parser.add_argument('--lr', type=float, default=1e-4, help='Learning Rate. Default=0.01')
parser.add_argument('--gpu_mode', type=bool, default=True)
parser.add_argument('--threads', type=int, default=1, help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
parser.add_argument('--gpus', default=1, type=int, help='number of gpu')
parser.add_argument('--data_dir', type=str, default='./Dataset')
parser.add_argument('--data_augmentation', type=bool, default=True)
parser.add_argument('--hr_train_dataset', type=str, default='DIV2K_train_HR')
parser.add_argument('--model_type', type=str, default='DBPNLL')
parser.add_argument('--patch_size', type=int, default=60, help='Size of cropped HR image')
parser.add_argument('--pretrained_sr', default='dl00DBPNLLPIRM_pretrained_50.pth', help='sr pretrained base model')
parser.add_argument('--load_pretrained', type=bool, default=False)
parser.add_argument('--pretrained_D', default='dnnDBPNLLPIRM_RESNET_epoch_Discriminator_499.pth', help='sr pretrained base model')
parser.add_argument('--load_pretrained_D', type=bool, default=False)
parser.add_argument('--feature_extractor', default='VGG', help='Location to save checkpoint models')
parser.add_argument('--w1', type=float, default=1e-2, help='MSE weight')
parser.add_argument('--w2', type=float, default=1e-1, help='Perceptual weight')
parser.add_argument('--w3', type=float, default=1e-3, help='Adversarial weight')
parser.add_argument('--w4', type=float, default=10, help='Style weight')
parser.add_argument('--save_folder', default='weights/', help='Location to save checkpoint models')
parser.add_argument('--prefix', default='PIRM_VGG', help='Location to save checkpoint models')
opt = parser.parse_args()
gpus_list = range(opt.gpus)
hostname = str(socket.gethostname())
cuda = opt.gpu_mode
cudnn.benchmark = True
print(opt)
def train_pretrained(epoch):
epoch_loss = 0
model.train()
for iteration, batch in enumerate(training_data_loader, 1):
input, target = batch[0], batch[1]
minibatch = input.size()[0]
for j in range(minibatch):
input[j] = utils.norm(input[j],vgg=True)
target[j] = utils.norm(target[j],vgg=True)
if cuda:
input = Variable(input).cuda(gpus_list[0])
target = Variable(target).cuda(gpus_list[0])
optimizer.zero_grad()
sr = model(input)
loss = MSE_loss(sr, target)
epoch_loss += loss.data
loss.backward()
optimizer.step()
print("Epoch: [%2d] [%4d/%4d] G_loss_pretrain: %.8f"
% ((epoch), (iteration), len(training_data_loader), loss.data))
print("===> Epoch {} Complete: Avg. Loss: {:.4f}".format(epoch, epoch_loss / len(training_data_loader)))
def train(epoch):
G_epoch_loss = 0
D_epoch_loss = 0
feat_epoch_loss = 0
style_epoch_loss = 0
adv_epoch_loss = 0
mse_epoch_loss = 0
model.train()
D.train()
for iteration, batch in enumerate(training_data_loader, 1):
input, target = batch[0], batch[1]
minibatch = input.size()[0]
real_label = torch.ones(minibatch) #torch.rand(minibatch,1)*0.5 + 0.7
fake_label = torch.zeros(minibatch) #torch.rand(minibatch,1)*0.3
for j in range(minibatch):
input[j] = utils.norm(input[j],vgg=True)
target[j] = utils.norm(target[j],vgg=True)
if cuda:
input = Variable(input).cuda(gpus_list[0])
target = Variable(target).cuda(gpus_list[0])
real_label = Variable(real_label).cuda(gpus_list[0])
fake_label = Variable(fake_label).cuda(gpus_list[0])
# Reset gradient
D_optimizer.zero_grad()
# Train discriminator with real data
D_real_decision = D(target)
D_real_loss = BCE_loss(D_real_decision, real_label)
# Train discriminator with fake data
recon_image = model(input)
D_fake_decision = D(recon_image)
D_fake_loss = BCE_loss(D_fake_decision, fake_label)
D_loss = D_real_loss + D_fake_loss
# Back propagation
D_loss.backward()
D_optimizer.step()
# Reset gradient
optimizer.zero_grad()
# Train generator
recon_image = model(input)
D_fake_decision = D(recon_image)
# Adversarial loss
GAN_loss = opt.w3 * BCE_loss(D_fake_decision, real_label)
# Content losses
mse_loss = opt.w1 * MSE_loss(recon_image, target)
#Perceptual loss
x_VGG = Variable(batch[1].cuda())
recon_VGG = Variable(recon_image.data.cuda())
real_feature = feature_extractor(x_VGG)
fake_feature = feature_extractor(recon_VGG)
vgg_loss = opt.w2 * sum([ MSE_loss(fake_feature[i], real_feature[i].detach()) for i in range(len(real_feature))])
style_loss = opt.w4 * sum([ MSE_loss(utils.gram_matrix(fake_feature[i]), utils.gram_matrix(real_feature[i]).detach()) for i in range(len(real_feature))])
# Back propagation
G_loss = mse_loss + vgg_loss + GAN_loss + style_loss
G_loss.backward()
optimizer.step()
# log
G_epoch_loss += G_loss.data
D_epoch_loss += D_loss.data
feat_epoch_loss += (vgg_loss.data)
style_epoch_loss += (style_loss.data)
adv_epoch_loss += (GAN_loss.data)
mse_epoch_loss += (mse_loss.data)
print("Epoch: [%2d] [%4d/%4d] G_loss: %.8f, D_loss: %.8f, mse:%.8f, perceptual: %.8f, style: %.8f, adv: %.8f"
% ((epoch), (iteration), len(training_data_loader), G_loss.data, D_loss.data,mse_loss.data, vgg_loss.data, style_loss.data, GAN_loss.data))
print("===> Epoch {} Complete: Avg. Loss G: {:.4f} D: {:.4f} MSE: {:.4f} Perceptual: {:.4f} Style: {:.4f} Adv: {:.4f}".format(epoch, G_epoch_loss / len(training_data_loader), D_epoch_loss / len(training_data_loader), mse_epoch_loss/ len(training_data_loader), feat_epoch_loss/ len(training_data_loader),style_epoch_loss/ len(training_data_loader), adv_epoch_loss/ len(training_data_loader) ))
def test():
avg_psnr = 0
for batch in testing_data_loader:
input, target = Variable(batch[0]), Variable(batch[1])
if cuda:
input = input.cuda(gpus_list[0])
target = target.cuda(gpus_list[0])
prediction = model(input)
mse = criterion(prediction, target)
psnr = 10 * log10(1 / mse.data[0])
avg_psnr += psnr
print("===> Avg. PSNR: {:.4f} dB".format(avg_psnr / len(testing_data_loader)))
def checkpoint(epoch, pretrained_flag=False):
if pretrained_flag:
model_out_path = opt.save_folder+hostname+opt.model_type+opt.prefix+"_pretrained_{}.pth".format(epoch)
else:
model_out_path = opt.save_folder+hostname+opt.model_type+opt.prefix+opt.feature_extractor+"_epoch_{}.pth".format(epoch)
model_out_path_D = opt.save_folder+hostname+opt.model_type+opt.prefix+opt.feature_extractor+"_epoch_Discriminator_{}.pth".format(epoch)
torch.save(model.state_dict(), model_out_path)
torch.save(D.state_dict(), model_out_path_D)
print("Checkpoint saved to {}".format(model_out_path))
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
print('===> Loading datasets')
train_set = get_training_set(opt.data_dir, opt.hr_train_dataset, opt.upscale_factor, opt.patch_size, opt.data_augmentation)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)
print('===> Building model ', opt.model_type)
if opt.model_type == 'DBPNLL':
model = DBPNLL(num_channels=3, base_filter=64, feat = 256, num_stages=10, scale_factor=opt.upscale_factor)
#elif opt.model_type == 'DBPN-RES-MR64-3':
# model = DBPNITER(num_channels=3, base_filter=64, feat = 256, num_stages=3, scale_factor=opt.upscale_factor)
else:
model = DBPN(num_channels=3, base_filter=64, feat = 256, num_stages=7, scale_factor=opt.upscale_factor)
model = torch.nn.DataParallel(model, device_ids=gpus_list)
###Discriminator
D = Discriminator(num_channels=3, base_filter=64, image_size=opt.patch_size*opt.upscale_factor)
D = torch.nn.DataParallel(D, device_ids=gpus_list)
###Feature Extractor
if opt.feature_extractor=='VGG':
feature_extractor = FeatureExtractor(models.vgg19(pretrained=True))
else:
feature_extractor = FeatureExtractorResnet(models.resnet152(pretrained=True))
###LOSS
MSE_loss = nn.MSELoss()
BCE_loss = nn.BCELoss()
print('---------- Generator architecture -------------')
utils.print_network(model)
print('---------- Discriminator architecture ---------')
utils.print_network(D)
print('-----------------------------------------------')
if opt.load_pretrained:
model_name = os.path.join(opt.save_folder + opt.pretrained_sr)
if os.path.exists(model_name):
#model= torch.load(model_name, map_location=lambda storage, loc: storage)
model.load_state_dict(torch.load(model_name, map_location=lambda storage, loc: storage))
print('Pre-trained SR model is loaded.')
if opt.load_pretrained_D:
D_name = os.path.join(opt.save_folder + opt.pretrained_D)
if os.path.exists(D_name):
#model= torch.load(model_name, map_location=lambda storage, loc: storage)
D.load_state_dict(torch.load(D_name, map_location=lambda storage, loc: storage))
print('Pre-trained Discriminator model is loaded.')
if cuda:
model = model.cuda(gpus_list[0])
D = D.cuda(gpus_list[0])
feature_extractor = feature_extractor.cuda(gpus_list[0])
MSE_loss = MSE_loss.cuda(gpus_list[0])
BCE_loss = BCE_loss.cuda(gpus_list[0])
optimizer = optim.Adam(model.parameters(), lr=opt.lr, betas=(0.9, 0.999), eps=1e-8)
D_optimizer = optim.Adam(D.parameters(), lr=opt.lr, betas=(0.9, 0.999), eps=1e-8)
##PRETRAINED
if opt.pretrained:
print('Pre-training starts.')
for epoch in range(1, opt.pretrained_iter + 1):
train_pretrained(epoch)
print('Pre-training finished.')
checkpoint(epoch, pretrained_flag=True)
###GAN Training
for epoch in range(opt.start_iter, opt.nEpochs + 1):
train(epoch)
#test()
# learning rate is decayed by a factor of 10 every half of total epochs
if (epoch+1) % (opt.nEpochs/2) == 0:
for param_group in optimizer.param_groups:
param_group['lr'] /= 10.0
print('G: Learning rate decay: lr={}'.format(optimizer.param_groups[0]['lr']))
for param_group in D_optimizer.param_groups:
param_group['lr'] /= 10.0
print('D: Learning rate decay: lr={}'.format(D_optimizer.param_groups[0]['lr']))
if (epoch+1) % (opt.snapshots) == 0:
checkpoint(epoch)