Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Node2VecSkipGramEnsmallen lacks num_walks parameter #48

Open
abbynewbury opened this issue Jul 12, 2023 · 3 comments
Open

Node2VecSkipGramEnsmallen lacks num_walks parameter #48

abbynewbury opened this issue Jul 12, 2023 · 3 comments

Comments

@abbynewbury
Copy link

Hi,

I am using the Node2VecSkipGramEnsmallen function and noticed that it does not take a num_walks parameter to represent the number of walks per node. The parameters that I see that are available are:
mappingproxy({'embedding_size': <Parameter "embedding_size: int = 100">,
'epochs': <Parameter "epochs: int = 30">,
'clipping_value': <Parameter "clipping_value: float = 6.0">,
'number_of_negative_samples': <Parameter "number_of_negative_samples: int = 10">,
'walk_length': <Parameter "walk_length: int = 128">,
'iterations': <Parameter "iterations: int = 10">,
'window_size': <Parameter "window_size: int = 5">,
'return_weight': <Parameter "return_weight: float = 0.25">,
'explore_weight': <Parameter "explore_weight: float = 4.0">,
'max_neighbours': <Parameter "max_neighbours: Optional[int] = 100">,
'learning_rate': <Parameter "learning_rate: float = 0.01">,
'learning_rate_decay': <Parameter "learning_rate_decay: float = 0.9">,
'central_nodes_embedding_path': <Parameter "central_nodes_embedding_path: Optional[str] = None">,
'contextual_nodes_embedding_path': <Parameter "contextual_nodes_embedding_path: Optional[str] = None">,
'normalize_by_degree': <Parameter "normalize_by_degree: bool = False">,
'stochastic_downsample_by_degree': <Parameter "stochastic_downsample_by_degree: Optional[bool] = False">,
'normalize_learning_rate_by_degree': <Parameter "normalize_learning_rate_by_degree: Optional[bool] = False">,
'use_scale_free_distribution': <Parameter "use_scale_free_distribution: Optional[bool] = True">,
'random_state': <Parameter "random_state: int = 42">,
'dtype': <Parameter "dtype: str = 'f32'">,
'ring_bell': <Parameter "ring_bell: bool = False">,
'enable_cache': <Parameter "enable_cache: bool = False">,
'verbose': <Parameter "verbose: bool = True">})
I was wondering if iterations is the equivalent to num_walks? Thanks!

@zommiommy
Copy link
Collaborator

zommiommy commented Jul 12, 2023

Hi! If I recall correctly, there is no equivalent of that parameter because we compute new random walks on the fly for instead of pre-computing them.

In our experiments this lead to better performance

@LucaCappelletti94
Copy link
Member

No, @zommiommy, the parameter @abbynewbury is looking for is the one called iterations.

@abbynewbury
Copy link
Author

Okay, thank you!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants