-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtracking.py
190 lines (175 loc) · 7.18 KB
/
tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import cv2
import numpy as np
import math
def load_yolo():
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layers_names = net.getLayerNames()
output_layers = [layers_names[i[0]-1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
return net, classes, colors, output_layers
def detect_objects(img, net, outputLayers):
blob = cv2.dnn.blobFromImage(img, scalefactor=0.00392, size=(416, 416), mean=(0, 0, 0), swapRB=True, crop=False)
net.setInput(blob)
outputs = net.forward(outputLayers)
return blob, outputs
def get_box_dimensions(outputs, height, width):
boxes = []
confs = []
classes = [2,5,7]
class_ids = []
for output in outputs:
for detect in output:
scores = detect[5:]
#print(scores)
class_id = np.argmax(scores)
conf = scores[class_id]
if class_id in classes:
if conf > 0.3:
center_x = int(detect[0] * width)
center_y = int(detect[1] * height)
w = int(detect[2] * width)
h = int(detect[3] * height)
x = int(center_x - w/2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confs.append(float(conf))
class_ids.append(class_id)
return boxes, confs, class_ids
def draw_labels(boxes, confs, colors, class_ids, classes, img):
indexes = cv2.dnn.NMSBoxes(boxes, confs, 0.5, 0.4)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[i]
cv2.rectangle(img, (x,y), (x+w, y+h), color, 2)
cv2.putText(img, label, (x, y - 5), font, 1, color, 1)
img = cv2.resize(img, (640, 480))
cv2.imshow("Image", img)
def image_detect(img):
detect_l = 0
plate_detector = cv2.CascadeClassifier('haarcascade_russian_plate_number.xml')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
bxs = plate_detector.detectMultiScale(gray, scaleFactor=1.01, minNeighbors=6)
if len(bxs)==1:
detect_l = 1
for bx in bxs:
cv2.rectangle(img, (int(bx[0]), int(bx[1])), (int(bx[0]+bx[2]), int(bx[1]+bx[3])), (0, 0, 255), 2)
return img, detect_l
def start_video(video_path):
model, classes, colors, output_layers = load_yolo()
tracker = cv2.TrackerKCF_create()
images = []
cap = cv2.VideoCapture(video_path)
start_pos = 0
curr_pos = 0
frame_count = 0
d = 0
num_per_count = 0
init = False
while True:
if init:
_, frame = cap.read()
if frame is None:
break
frame = cv2.resize(frame, (416, 416))
#print(frame.shape)
success, target_box = tracker.update(frame)
frame_count += 1
num_per_count += 1
#print(success)
if success:
#print("SuCCEss")
(x, y, w, h) = [int(v) for v in target_box]
print("Centre coordinates: ", (x+w/2), (y+h/2))
curr_pos = [x+w/2, y+h/2]
d += math.dist(start_pos, curr_pos)
speed = d/frame_count
print("Distance Travelled: ", d)
print("Speed: ", speed)
print("Frame count: ", frame_count)
# if speed>3:
if num_per_count<3:
images.append(frame[y:y+h, x:x+w])
start_pos = [x+w/2, y+h/2]
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
else:
print("initED, nOt succESS")
height, width, channels = frame.shape
blob, outputs = detect_objects(frame, model, output_layers)
boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
indexes = cv2.dnn.NMSBoxes(boxes, confs, 0.5, 0.4)
#print(np.array(boxes).shape)
boxes = np.array(boxes)[indexes]
frame_count = 0
num_per_count = 0
d = 0
#print(boxes)
try:
boxes = sorted(boxes, key= lambda x: (x[0][2]*x[0][3]), reverse = True)
if boxes is not None:
target_box = boxes[0][0]
#print(target_box)
(x, y, w, h) = [int(v) for v in target_box]
start_pos = [x+w/2, y+h/2]
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
tracker = cv2.TrackerKCF_create()
#print(tracker)
success = tracker.init(frame, (x, y, w, h))
#print(success)
except:
boxes = sorted(boxes, key= lambda x: (x[2]*x[3]), reverse = True)
if boxes is not None:
target_box = boxes[0]
#print(target_box)
(x, y, w, h) = [int(v) for v in target_box]
start_pos = [x+w/2, y+h/2]
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
tracker = cv2.TrackerKCF_create()
#print(tracker)
success = tracker.init(frame, (x, y, w, h))
#print(success)
else:
#print("iNIt")
init = True
_, frame = cap.read()
frame = cv2.resize(frame, (416, 416))
height, width, channels = frame.shape
#print(frame.shape)
blob, outputs = detect_objects(frame, model, output_layers)
boxes, confs, class_ids = get_box_dimensions(outputs, height, width)
indexes = cv2.dnn.NMSBoxes(boxes, confs, 0.5, 0.4)
boxes = np.array(boxes)[indexes]
boxes = np.clip(boxes, 0, 416)
# print(boxes)
boxes = sorted(boxes, key= lambda x: (x[0][2]*x[0][3]), reverse = True)
if boxes is not None:
target_box = (boxes[0][0][0], boxes[0][0][1], boxes[0][0][2], boxes[0][0][3])
start_pos = [target_box[0]+target_box[2]/2, target_box[1]+target_box[3]/2]
frame_count = 0
num_per_count = 0
#print(target_box)
success = tracker.init(frame, target_box)
#print(success)
if frame is not None:
cv2.imshow("Image", frame)
#draw_labels(boxes, confs, colors, class_ids, classes, frame)
key = cv2.waitKey(1)
if key == 27:
break
cap.release()
return images
if __name__ == "__main__":
video_path = input("Provide video path: \n")
images = start_video(video_path)
for idx, img in enumerate(images):
img = cv2.resize(img, (160, 120))
img, l = image_detect(img)
if l == 1:
cv2.imshow(str(idx), img)
cv2.waitKey(0)
cv2.destroyAllWindows()