-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbreakpoint_graph.py
executable file
·917 lines (867 loc) · 42.4 KB
/
breakpoint_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
# This software is Copyright 2017 The Regents of the University of California. All Rights Reserved. Permission to copy, modify, and distribute this software and its documentation for educational, research and non-profit purposes, without fee, and without a written agreement is hereby granted, provided that the above copyright notice, this paragraph and the following three paragraphs appear in all copies. Permission to make commercial use of this software may be obtained by contacting:
#
# Office of Innovation and Commercialization
#
# University of California
#
# La Jolla, CA 92093-0910
#
# (858) 534-5815
#
#
# This software program and documentation are copyrighted by The Regents of the University of California. The software program and documentation are supplied "as is", without any accompanying services from The Regents. The Regents does not warrant that the operation of the program will be uninterrupted or error-free. The end-user understands that the program was developed for research purposes and is advised not to rely exclusively on the program for any reason.
#
# IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
# Author: Viraj Deshpande
# Contact: [email protected]
# maintained by Jens Luebeck, [email protected]
import sys
from collections import defaultdict
import heapq
import logging
from abstract_graph import *
import ref_util as hg
cycle_logger = logging.getLogger('cycle')
class breakpoint_vertex(abstract_vertex):
"""Class representing breakpoint vertex derived from abstract_graph.abstract_vertex
Attributes:
chrom = chromosome name
pos = 1-based chromosomal location
strand = 1/-1 for forward/reverse strand
vid = (optional)id of vertex
graph = (optional) graph to which vertex belongs"""
def __init__(self, chrom='', pos=-2, strand=1, vid=0, graph=None):
"""2 ways to initialize:
1) chrom: breakpoint_vertex string in the format chrom:pos("+"/"-"")
2) chrom, pos, strand: name(STR), pos (INT), strand("+"/"-"")"""
if pos == -2:
vstring = chrom
chrom = vstring[:vstring.find(':')]
pos = int(vstring[vstring.find(':') + 1:-1])
strand = 1 if vstring[-1] == '+' else -1
if graph is not None and graph.has_vertex(chrom, pos, strand):
raise Exception('Duplicate vertex added')
abstract_vertex.__init__(self, vid, graph)
self.chrom = chrom
self.pos = pos
self.strand = strand
def __repr__(self):
"""String format chrom:pos(+/-)"""
if self.strand == 1:
return self.chrom + ':' + str(self.pos) + '+'
else:
return self.chrom + ':' + str(self.pos) + '-'
def __hash__(self):
return str(self).__hash__()
def __gt__(self, y):
"""Order vertices by absolute position (See hg19util.absPos) + strand"""
return hg.absPos(self.chrom, self.pos) + 0.4 * self.strand > hg.absPos(y.chrom, y.pos) + 0.4 * y.strand
class breakpoint_edge(abstract_edge):
"""Class representing breakpoint edge derived from abstract_graph.abstract_edge
Attributes:
v1 = breakpoint_vertex 1 of the edge (recommend using v2 > v1)
v2 = breakpoint_vertex 2 of the edge
edge_type = "discordant"/"breakpoint" or "concordant" : genomic connectivity or source; "sequence": genomic interval
eid = (optional) edge id
graph = (optional) graph to which edge belongs"""
def __init__(self, v1, v2=None, eid=0, graph=None, update_vertices=True, edge_type="discordant", hom=None,
hom_seq=None):
"""2 ways to initialize:
1) v1 = breakpoint_edge string in the format breakpoint_vertex1->breakpoint_vertex2
2) v1,v2 = breakpoint_point_vertices
Optional:
eid: edge id
graph: breakpoint_graph
update_vertices: True if vertices edge should be added to vertex neighbor list
edge_type: " = "discordant"/"breakpoint" or "concordant" : genomic connectivity or source; "sequence": genomic interval
Required:
If edge_type = "sequence": v1.chrom = v2.chrom, v1.pos > v2.pos else if equal v1.strand > v2.strand
If edge_type = "concordant": v1.chrom = v2.chrom, |v1.pos - v2.pos| = 1 and the smaller has strand = 1 else -1"""
if type(v1) == str:
estr = v1
v1 = breakpoint_vertex(estr.split('>')[0][:-1])
v2 = breakpoint_vertex(estr.split('>')[1])
abstract_edge.__init__(self, v1, v2, eid, graph, update_vertices)
if edge_type in ["concordant", "sequence"]:
if v1.chrom != v2.chrom:
raise Exception("Edge of type " + edge_type + " connects different chromosomes.")
if edge_type in ["concordant", "sequence"]:
if v1.strand == v2.strand:
raise Exception("Edge of type " + edge_type + " connects same strand.")
if edge_type == "concordant":
if ((v1.strand == 1 and v1.pos + 1 != v2.pos) or
(v2.strand == 1 and v2.pos + 1 != v1.pos)):
raise Exception("Edge of type " + edge_type + " connects non-adjacent positions.")
if edge_type == "sequence":
if v1.strand == -1 and v1.pos > v2.pos:
raise Exception(
"Start position for sequence edge greater than end position:" + str(v1) + '->' + str(v2))
if v1.strand == 1 and v2.pos > v1.pos:
raise Exception("Start position for sequence edge greater than end position")
self.edge_type = edge_type
self.hom = hom
self.hom_seq = hom_seq
def sequence(self, flank_size=-1):
if self.edge_type == 'sequence':
seq = hg.interval(self.v1.chrom, self.v1.pos, self.v2.pos).sequence()
if flank_size > 0:
seq = hg.interval(self.v1.chrom, self.v1.pos - flank_size + 1,
self.v1.pos).sequence() + seq + hg.interval(self.v2.chrom, self.v2.pos,
self.v2.pos + flank_size - 1).sequence()
else:
if self.hom == None:
seq = 'N' * 20
else:
seq = self.hom_seq
if flank_size == -1:
flank_size = 1000
if flank_size > 0:
if self.hom is not None and self.hom > 0:
hom = self.hom
else:
hom = 0
if self.edge_type == 'source':
if self.v2.strand == -1:
right_seq = hg.interval(self.v2.chrom, self.v2.pos + hom,
self.v2.pos + hom + flank_size - 1).sequence()
left_seq = ''
else:
left_seq = hg.interval(self.v2.chrom, self.v2.pos - hom - flank_size + 1,
self.v2.pos - hom).sequence()
right_seq = ''
elif self.v1.strand == 1:
left_seq = hg.interval(self.v1.chrom, self.v1.pos - hom - flank_size + 1,
self.v1.pos - hom).sequence()
if self.v2.strand == -1:
right_seq = hg.interval(self.v2.chrom, self.v2.pos + hom,
self.v2.pos + hom + flank_size - 1).sequence()
else:
right_seq = hg.interval(self.v2.chrom, self.v2.pos - hom - flank_size + 1, self.v2.pos - hom,
strand=-1).sequence()
else:
right_seq = hg.interval(self.v1.chrom, self.v1.pos + hom,
self.v1.pos + hom + flank_size - 1).sequence()
if self.v2.strand == -1:
left_seq = hg.interval(self.v2.chrom, self.v2.pos + hom, self.v2.pos + hom + flank_size - 1,
strand=-1).sequence()
else:
left_seq = hg.interval(self.v2.chrom, self.v2.pos - hom - flank_size + 1,
self.v2.pos - hom).sequence()
seq = left_seq + seq + right_seq
return seq
def kmer_homology(self, k=10, span=100):
"""Number of shared k-mers within "span" distance on either side of vertex positions"""
seq1 = ''.join([a.capitalize() for a in hg.interval(self.v1.chrom, max(1, self.v1.pos - span),
min(self.v1.pos + span,
hg.chrLen[hg.chrNum(self.v1.chrom)]),
self.v1.strand).sequence()])
seq2 = ''.join([a.capitalize() for a in hg.interval(self.v2.chrom, max(1, self.v2.pos - span),
min(self.v2.pos + span,
hg.chrLen[hg.chrNum(self.v2.chrom)]),
-1 * self.v2.strand).sequence()])
kset1 = set([seq1[i:i + 10] for i in range(len(seq1) - k + 1)])
kset2 = set([seq2[i:i + 10] for i in range(len(seq2) - k + 1)])
return len(kset1.intersection(kset2))
def type(self, min_insert=0, max_insert=500):
"""Determine type of "breakpoint"/"discordant edge
Output values:
"source": Contains v.pos = -1, indicates end of linear contig.
"interchromosomal": Different chromosomes.
"everted": Forward strand of larger position connected to reverse strand of reverse, indicated by outward orientation of read-pairs, may suggest tandem duplication.
"forward": Both vertex/paired-reads map to forward strand
"reverse": Both vertex/paired-reads map to reverse strand
"discordant": Alignment distance larger/smaller than max/min insert, may indicate deletion
"concordant": Expected alignment length between min and max insert. NOTE: Different from edge_type
"""
if self.v1.pos == -1 or self.v2.pos == -1:
return "source"
elif self.v1.chrom != self.v2.chrom:
return "interchromosomal"
elif self.v1.pos <= self.v2.pos:
vmin = self.v1
vmax = self.v2
else:
vmin = self.v2
vmax = self.v1
if vmax.strand == 1 and vmin.strand == -1:
return "everted"
if vmax.pos == vmin.pos and vmax.strand != vmin.strand:
return "everted"
if vmax.strand == 1 and vmin.strand == 1:
return "forward"
if vmax.strand == -1 and vmin.strand == -1:
return "reverse"
if vmax.pos - vmin.pos > max_insert or vmax.pos - vmin.pos < min_insert:
return "discordant"
return "concordant"
def __repr__(self):
"""breakpoint_vertex1->breakpoint_vertex2"""
return str(self.v1) + '->' + str(self.v2)
def __lt__(self, other):
return min((self.v1.chrom, self.v1.pos), (self.v2.chrom, self.v2.pos)) < min((other.v1.chrom, self.v1.pos),
(other.v2.chrom, self.v2.pos))
class breakpoint_graph(abstract_graph):
"""Class representing breakpoint edge derived from abstract_graph.abstract_graph
"""
def __init__(self, graphfile=None):
"""Creates an empty graph if no graphfile provided
Loads graph from graph file in format defined in load_graphfile"""
abstract_graph.__init__(self)
self.vhash = {}
if graphfile is not None:
self.load_graphfile(graphfile)
def has_vertex(self, chrom, pos, strand):
vtemp = breakpoint_vertex(chrom, pos, strand)
if vtemp.__hash__() in self.vhash:
return self.vhash[vtemp.__hash__()]
else:
return None
def new_vertex(self, chrom, pos, strand):
"""Create, add and return new breakpoint_vertex if similar vertex not already present"""
v = self.has_vertex(chrom, pos, strand)
if v is not None:
return v
v = breakpoint_vertex(chrom, pos, strand, graph=self)
self.vhash[v.__hash__()] = v
return v
def new_edge(self, v1, v2, edge_type='discordant', hom=None, hom_seq=None):
"""Create, add and return breakpoint_edge to current graph. Recommend using "add_edge()". "new_edge()" may incorrectly add duplicate edges
Arguments:
v1,v2: breakpoint_vertex (These need to be vertices(objects) from current breakpoint graph)
edge_type = "breakpoint"/"discordant"/"concordant"/"source"/"sequence" """
return breakpoint_edge(v1, v2, graph=self, edge_type=edge_type, hom=hom, hom_seq=hom_seq)
def add_vertex(self, v):
"""Create and add new vertex to graph if no similar vertex exists"""
return self.new_vertex(v.chrom, v.pos, v.strand)
def add_edge(self, e, edge_type='discordant'):
"""Add and return edge similar e to the graph. If e(object) already belongs to graph, return e.
Checks if corresponding vertices already present else return None.
If edge_type not defined, then inherits e.edge_type.
"""
if e.edge_type is not None:
edge_type = e.edge_type
if e.graph is not self:
v1 = self.has_vertex(e.v1.chrom, e.v1.pos, e.v1.strand)
v2 = self.has_vertex(e.v2.chrom, e.v2.pos, e.v2.strand)
if v1 is None or v2 is None:
return None
return self.new_edge(v1, v2, edge_type=edge_type, hom=e.hom, hom_seq=e.hom_seq)
return e
def load_graphfile(self, graphfile):
"""Load breakpoint_graph from file
Format: edge_type edge_string edge_copycount
"""
graphfile_handle = open(graphfile)
ll = [l.strip().split() for l in graphfile_handle]
graphfile_handle.close()
self.copy_count = defaultdict(lambda: 0, {})
for l in ll:
if len(l) == 0:
continue
if l[0] == 'sequence':
v1 = self.add_vertex(breakpoint_vertex(l[1]))
v2 = self.add_vertex(breakpoint_vertex(l[2]))
e = self.new_edge(v1, v2, edge_type='sequence')
self.copy_count[e] = float(l[3])
if l[0] == 'concordant':
e = self.add_edge(breakpoint_edge(l[1], edge_type=l[0]))
self.copy_count[e] = float(l[2])
if l[0] == 'source' or l[0] == 'discordant' or l[0] == 'breakpoint':
e = self.add_edge(breakpoint_edge(l[1], edge_type='discordant'))
self.copy_count[e] = float(l[2])
return
def djikstra_distance(self, v1, v2, min_count=0):
"""Find shortest genomic path and distance between genomic locations (including strand) in the breakpoint graph with copy count = min_count.
Return none if not found
Return format:
(distance, path, traversal_copy_count)
distance: INT describing number of base-pairs in intermediate region
path: list of alternating (sequence edge, strand(1/-1)) and (breakpoint edge, strand(1,-1)) such that sequence edges in first/last entries contain v1/v2
"""
for e in self.es.values():
if e.v1.chrom == v1.chrom and e.v1.pos <= v1.pos and v1.pos <= e.v2.pos:
e1 = e
if e.v1.chrom == v2.chrom and e.v1.pos <= v2.pos and v2.pos <= e.v2.pos:
e2 = e
if self.copy_count[e1] < min_count or self.copy_count[e2] < min_count:
return None
if v1.strand == v2.strand and e1 == e2 and (v2.pos - v1.pos) * v1.strand > 0:
return (abs(v1.pos - v2.pos - 1), [(e1, v1.strand)], self.copy_count[e1])
if v1.strand == 1:
distance = e1.v2.pos - v1.pos
else:
distance = v1.pos - e1.v1.pos
a = [(distance, [(e1, v1.strand)], self.copy_count[e1])]
heapq.heapify(a)
while len(a) > 0:
d, path, cc = heapq.heappop(a)
e, s = path[-1]
if s == 1:
e_new = e.v2.elist
v = e.v2
else:
e_new = e.v1.elist
v = e.v1
e_new = [e_next for e_next in e_new if e_next.edge_type != 'sequence']
e_search = []
for en in e_new:
min_c = min(cc, self.copy_count[en])
if min_c < min_count:
continue
if v == en.v1:
en_strand = 1
v_seq = en.v2
else:
en_strand = -1
v_seq = en.v1
if (en, en_strand) in path:
continue
if (en, -1 * en_strand) in path:
min_c = min(min_c, self.copy_count[en] / 2.0)
if min_c < min_count:
continue
en_seq, en_seqstrand = \
[(es, 1 if v_seq == es.v1 else -1) for es in v_seq.elist if es.edge_type == 'sequence'][0]
min_c = min(min_c, self.copy_count[en_seq])
if min_c < min_count:
continue
if (en_seq, en_seqstrand) in path and not (en_seq == e1 and e1 == e2 and en_seqstrand == v1.strand):
continue
if (en_seq, -1 * en_seqstrand) in path:
min_c = min(self.copy_count[en_seq] / 2.0, min_c)
if min_c < min_count:
continue
if en_seq == e2 and v2.strand == en_seqstrand:
if v2.strand == 1:
dd = d + v2.pos - e2.v1.pos
else:
dd = d + e2.v2.pos - v2.pos
return (dd, path + [(en, en_strand), (en_seq, en_seqstrand)], min_c)
heapq.heappush(a, (
d + en_seq.v2.pos - en_seq.v1.pos + 1, path + [(en, en_strand), (en_seq, en_seqstrand)], min_c))
return None
def cycle_decomposition(self, w, s):
"""
Decompose breakpoint_graph into 'simple' cycles.
Simple cycles may contain a sequence edge atmost once along each strand.
Reports maximum parsimonious cycles starting from thickest cycle until 80% of genomic content is covered.
w is dict containing weights (counts) of edges
s is source vertex, this vertex has the exception of not having a sequence edge attached"""
def thickest_cycle(hce, wehc):
# print hce, wehc
v1 = hce[1].v1
a = [(-1 * hce[0], v1)]
heapq.heapify(a)
hdict = {v1: (hce[0], [hce[1]], None, set())}
seenSet = set()
seenEdges = set()
completed = False
while len(a) > 0 and not completed:
# print len(a), str(a[0]), str(hdict[a[0][1]])
v1w, v1 = heapq.heappop(a)
if v1 == hce[1].v1 and v1 in seenSet:
completed = True
break
for e in v1.elist:
if e.edge_type == 'sequence':
continue
else:
v2 = e.neighbor(v1)
if v2 == s:
v3 = v2
if e in hdict[v1][3]:
nw = min(hdict[v1][0], wehc[e] / 2)
else:
nw = min(hdict[v1][0], wehc[e])
if not v3 in hdict or hdict[v3][2] is None or hdict[v3][0] < nw:
nhdict = hdict[v1][3].copy()
nhdict.add(e)
hdict[v3] = (nw, [e], v1, nhdict)
seenEdges.add(e)
else:
for e2 in v2.elist:
if e2.edge_type == 'sequence':
se = e2
v3 = e2.neighbor(v2)
break
if e in hdict[v1][3]:
# print 'e is seen', e, seenEdges
nw = min(hdict[v1][0], wehc[e] / 2)
elif se in hdict[v1][3]:
# print 'se is seen', se, seenEdges
nw = min(hdict[v1][0], wehc[e], wehc[se] / 2)
else:
nw = min(hdict[v1][0], wehc[e])
if not v3 in hdict or hdict[v3][2] is None or hdict[v3][0] < nw:
nhdict = hdict[v1][3].copy()
nhdict.add(e)
nhdict.add(se)
hdict[v3] = (nw, [e, se], v1, nhdict)
# print 'seen edges', e, se, v3, hdict[v3]
seenEdges.add(e)
seenEdges.add(se)
if v3 in seenSet:
continue
seenSet.add(v3)
heapq.heappush(a, (-1 * hdict[v3][0], v3))
if len(a) == 0 and not completed:
print("NOT COMPLETED", hce[1].v1)
s2Set = set()
tc = hdict[hce[1].v1][1]
v2 = hdict[hce[1].v1][2]
while v2 != hce[1].v1: # and not v2 in s2Set:
# print hce[1].v1, v2, s2Set
s2Set.add(v2)
if v2 not in hdict:
print(str(v2), str(hce[1].v1), str(tc))
for ee in hce[1].v1.elist:
print(str(ee), wehc[ee])
tc = hdict[v2][1] + tc
v2 = hdict[v2][2]
s2Set.add(v2)
# print v2, tc
return tc, hdict[hce[1].v1][0]
total_amplicon_content = sum([(e.v2.pos - e.v1.pos) * w[e] for e in w if e.edge_type == 'sequence'])
amplicon_content_covered = 0
w2 = w.copy()
cycle_number = 1
cycle_list = []
while max(w2.values()) > 0.1:
we = [(w2[e], e) for e in w2]
we.sort()
wer = we[::-1]
we = wer
wei = 0
tcwmax = -1
tcmax = None
tchwmax = -1
tchmax = None
tchw = -1
# print "EEEEEEEEEEEEEE", len(w2)
# for e in w2:
# print "EEEEEEEEEEEE", str(e), e.edge_type, w2[e]
# print "EEEEEEEEE========================"
while wei < len(we): # and (tcwmax == -1 or we[wei][0] >= tcwmax / 2.0):
# if we[wei][1].edge_type == 'sequence':
# wei += 1
# continue
if w2[we[wei][1]] < 0.1:
wei += 1
continue
tc, tcw = thickest_cycle(we[wei], w2)
if len(tc) < 2:
print(str(tc[0]))
exit()
if tcw > tcwmax:
tcmax = tc
tcwmax = tcw
# sumlen = sum([abs(e.v1.pos - e.v2.pos) for e in tc if e.edge_type == 'sequence'])
# if sumlen * tcw > tchwmax:
# tchwmax = sumlen * tcw
# tchmax = tc
# tchw = tcw
wei += 1
if tcwmax == -1:
break
tc = tcmax
tcw = tcwmax
# tc = tchmax
# tcw = tchw
if -1 in [e.v1.pos for e in tc] + [e.v2.pos for e in tc]:
csource = 0
for ci in range(len(tc) - 1):
if -1 in [tc[ci].v1.pos, tc[ci].v2.pos] and -1 in [tc[ci + 1].v1.pos, tc[ci + 1].v2.pos]:
csource = ci + 1
tc = tc[ci + 1:] + tc[0:ci + 1]
break
if tc[0].v1 == tc[1].v1 or tc[0].v1 == tc[1].v2:
v2 = tc[0].v1
v1 = tc[0].v2
else:
v2 = tc[0].v2
v1 = tc[0].v1
for ci in range(len(tc)):
if tc[ci].v1.pos == v1.pos:
v2 = tc[ci].v2
else:
v2 = tc[ci].v1
if tc[ci].edge_type == 'sequence':
if v1.pos > v2.pos:
tc = tc[::-1]
break
v1 = v2
else:
if tc[0].v1 == tc[1].v1 or tc[0].v1 == tc[1].v2:
v2 = tc[0].v1
v1 = tc[0].v2
else:
v2 = tc[0].v2
v1 = tc[0].v1
for ci in range(len(tc)):
if tc[ci].v1.pos == v1.pos:
v2 = tc[ci].v2
else:
v2 = tc[ci].v1
if tc[ci].edge_type == 'sequence':
if v1.pos > v2.pos:
tc = tc[ci::-1] + tc[:ci:-1]
break
v1 = v2
ci = 0
while tc[ci].type() == 'concordant' or tc[ci - 1].type() == 'concordant':
ci -= 1
tc = tc[ci:] + tc[: ci]
if tcw == 0:
print("tcw is 0")
break
print("Cycle ", cycle_number, ": Copy count = ", tcw, tc)
cycle_edge_list = []
ci = 1
v0 = None
v0c = None
if tc[0].v1 == tc[1].v1 or tc[0].v1 == tc[1].v2:
v2 = tc[0].v1
v1 = tc[0].v2
else:
v2 = tc[0].v2
v1 = tc[0].v1
if tc[0].edge_type == 'sequence':
v0 = v1
v0c = v2
elif v1.pos == -1 or v2.pos == -1:
print(v1, "->", v2)
cycle_edge_list.append((v1, v2))
v1 = v2
while ci < len(tc):
if (tc[ci].v1.chrom, tc[ci].v1.pos, tc[ci].v1.strand) == (v1.chrom, v1.pos, v1.strand):
v2 = tc[ci].v2
else:
v2 = tc[ci].v1
if v1.pos == -1 or v2.pos == -1:
if v0 is not None:
print(v0, "->", v0c)
cycle_edge_list.append((v0, v0c))
print(v1, "->", v2)
cycle_edge_list.append((v1, v2))
v0 = None
v0c = None
elif tc[ci].edge_type == 'sequence':
if v0 is None:
v0 = v1
v0c = v2
else:
v0c = v2
elif tc[ci].type() != 'concordant':
if v0 is not None:
print(v0, "->", v0c)
cycle_edge_list.append((v0, v0c))
v0 = None
v0c = None
v1 = v2
ci += 1
if v0 is not None:
print(v0, "->", v0c)
cycle_edge_list.append((v0, v0c))
if amplicon_content_covered <= 0.9 * total_amplicon_content or (tcw > 0.2 * cycle_list[0][1]):
cycle_list.append([cycle_number, tcw, tc, cycle_edge_list])
acc = tcw * sum([abs(e[1].pos - e[0].pos) for e in cycle_edge_list if -1 not in [e[0].pos, e[1].pos]])
amplicon_content_covered += acc
cycle_number += 1
# print tcw, tc
for e in tc:
w2[e] = w2[e] - tcw
# if w2[e] == 0.0:
# w2.pop(e)
if amplicon_content_covered > total_amplicon_content:
break
segment_list = []
for c in cycle_list:
max_segment = c[3][0]
max_orientation = '+'
max_segi = 0
segi = 0
for e in c[3]:
if (-1 in (max_segment[0].pos, max_segment[1].pos) and -1 not in (e[0].pos, e[1].pos)) or (
abs(e[0].pos - e[1].pos) >= abs(max_segment[0].pos - max_segment[1].pos)):
max_segment = e
max_segi = segi
if e[0].pos + 0.4 * e[0].strand <= e[1].pos + 0.4 * e[1].strand:
max_orientation = '+'
else:
max_orientation = '-'
if e[0].pos + 0.4 * e[0].strand <= e[1].pos + 0.4 * e[1].strand:
if e not in segment_list:
segment_list.append(e)
else:
if (e[1], e[0]) not in segment_list:
segment_list.append((e[1], e[0]))
segi += 1
if max_orientation == '+':
c[3] = c[3][max_segi:] + c[3][:max_segi]
else:
c[3] = [(e[1], e[0]) for e in c[3][:max_segi + 1][::-1] + c[3][max_segi + 1:][::-1]]
segment_list.sort()
segi = 1
segment_index = {}
for s in [ss for ss in segment_list if ss[0].pos != -1 and ss[1].pos != -1]:
segment_index[s] = segi
segi += 1
cycle_logger.info('List of cycle segments')
for s in [ss for ss in segment_list if ss[0].pos == -1 or ss[1].pos == -1]:
segment_index[s] = 0
for s in [ss for ss in segment_list if ss[0].pos != -1 and ss[1].pos != -1]:
cycle_logger.info(
'Segment\t' + '\t'.join([str(segment_index[s]), s[0].chrom, str(s[0].pos), str(s[1].pos)]))
for c in cycle_list:
seglist = []
orientation_list = []
for e in c[3]:
if e in segment_index:
seglist.append(segment_index[e])
orientation_list.append('+')
else:
seglist.append(segment_index[(e[1], e[0])])
orientation_list.append('-')
cycle_logger.info("Cycle=" + str(c[0]) + ";Copy_count=" + str(c[1]) + ";Segments=" + ','.join(
[str(e[0]) + str(e[1]) for e in zip(seglist, orientation_list)]))
return None
def __repr__(self):
return '/n'.join(map(str, self.vs.values() + self.es.values())) + '\n'
class graph_decomposition(object):
"""Class represents decomposition of a breakpoint_graph with balanced edge counts into cycles/walks
Provides methods to merge and modify cycles into larger walks to represent architecture of complex rearrangements.
"""
def __init__(self, segment_list=None, cycle_list=None, ilist=None, file=None, file_content=None):
if file is not None or file_content is not None:
self.segment_list = hg.interval_list([])
self.segment_dict = {}
self.cycle_dict = {}
self.ilist = hg.interval_list([])
if file_content:
lines = file_content.split('\n')
else:
lines = str(open(file).read().decode()).split('\n')
ll = [l.strip().split() for l in lines if len(l.strip()) > 0]
for l in ll:
if 'Segment' == l[0]:
s = hg.interval(l[2], int(l[3]), int(l[4]), info=[l[1]])
self.segment_dict[l[1]] = s
self.segment_list.append(s)
elif 'Cycle=' in l[0]:
ls = l[0].split(';')
ci = ls[0].split('=')[1]
cn = float(ls[1].split('=')[1])
cl = []
for s in ls[2].split('=')[1].split(','):
if s[-1] == '+':
cl.append((s[:-1], 1))
else:
cl.append((s[:-1], -1))
self.cycle_dict[ci] = (ci, cn, cl)
elif 'Interval' == l[0]:
self.ilist.append(hg.interval(l[2], int(l[3]), int(l[4]), info=[l[1]]))
elif cycle_list is None:
segment_set = hg.interval_list(
[hg.interval(ss[0], ss[1], ss[2]) for ss in {(s.chrom, s.start, s.end) for s in segment_list}])
segment_set.sort()
self.segment_list = segment_set
self.segment_dict = {}
seg_id = {}
cl = []
for s in enumerate(segment_set):
self.segment_dict[str(s[0] + 1)] = s[1]
seg_id[(s[1].chrom, s[1].start, s[1].end)] = str(s[0] + 1)
for s in segment_list:
cl.append((seg_id[(s.chrom, s.start, s.end)], s.strand))
for ii in range(len(self.segment_list)):
s = self.segment_list[ii]
s.info = [seg_id[(s.chrom, s.start, s.end)]]
self.cycle_dict = {'1': ('1', 1, cl)}
self.ilist = hg.interval_list([s[0] for s in segment_set.merge_clusters(extend=1)])
for ii in range(len(self.ilist)):
self.ilist[ii].info = [str(ii)]
else:
self.segment_list = segment_list
self.segment_dict = {s.info[0]: s for s in segment_list}
self.cycle_dict = {c[0]: c for c in cycle_list}
if ilist is not None:
self.ilist = ilist
else:
self.ilist = hg.interval_list([s[0] for s in segment_list.merge_clusters(extend=1)])
for ii in range(len(self.ilist)):
self.ilist[ii].info = [str(ii)]
def next_seg_id(self):
mi = 0
for i in self.segment_dict:
if int(i) > mi:
mi = int(i)
return str(mi + 1)
def next_cycle_id(self):
mi = 1
while str(mi) in self.cycle_dict:
mi += 1
return str(mi)
def merge(self, c1, c2, si1, si2):
cycle1 = self.cycle_dict[c1]
cycle2 = self.cycle_dict[c2]
# check if atmost 1 cycle has source vertex
if '0' in [s[0] for s in cycle1[2]] and '0' in [s[0] for s in cycle2[2]]:
raise Exception("Cannot merge 2 cycles with source vertices")
# if cycle2 has source vertex, exchange c1,c2
if '0' in [s[0] for s in cycle2[2]]:
(c1, c2, si1, si2, cycle1, cycle2) = (c2, c1, si2, si1, cycle2, cycle1)
if si1 == 0 or si1 == len(cycle1[2]) - 1:
raise Exception("Cannot use source segment for merging")
# check if segments overlap
if not self.segment_dict[cycle1[2][si1][0]].intersects(self.segment_dict[cycle2[2][si2][0]]):
raise Exception("Segments do not overlap" + str(self.segment_dict[cycle1[2][si1][0]]) + " " + str(
self.segment_dict[cycle2[2][si2][0]]))
# cnlist: (merged cn, cycle1cn, cycle2cn)
if cycle1[1] == 0 or cycle2[1] == 0:
raise Exception("Cycle copy numbers should be > 0 to merge")
if cycle1[1] > cycle2[1]:
cnlist = (cycle2[1], cycle1[1] - cycle2[1], 0.0)
else:
cnlist = (cycle1[1], 0.0, cycle2[1] - cycle1[1])
seg1 = self.segment_dict[cycle1[2][si1][0]]
seg2 = self.segment_dict[cycle2[2][si2][0]]
seg1_found = False
seg2_found = False
for i in self.segment_list:
if cycle1[2][si1][1] == 1 and (i.chrom, i.start, i.end) == (seg1.chrom, seg1.start, seg2.end):
seg1_found = True
ns1 = i.info[0]
overlap1 = (ns1, cycle1[2][si1][1])
elif cycle1[2][si1][1] == -1 and (i.chrom, i.start, i.end) == (seg1.chrom, seg2.start, seg1.end):
seg1_found = True
ns1 = i.info[0]
overlap1 = (ns1, cycle1[2][si1][1])
if cycle1[2][si1][1] == 1 and (i.chrom, i.start, i.end) == (seg1.chrom, seg2.start, seg1.end):
seg2_found = True
ns2 = i.info[0]
overlap2 = (ns2, cycle1[2][si1][1])
elif cycle1[2][si1][1] == -1 and (i.chrom, i.start, i.end) == (seg1.chrom, seg1.start, seg2.end):
seg2_found = True
ns2 = i.info[0]
overlap2 = (ns2, cycle1[2][si1][1])
if not seg1_found:
ns1 = self.next_seg_id()
overlap1 = (ns1, cycle1[2][si1][1])
if cycle1[2][si1][1] == 1:
self.segment_dict[ns1] = hg.interval(seg1.chrom, seg1.start, seg2.end, info=[ns1])
else:
self.segment_dict[ns1] = hg.interval(seg1.chrom, seg2.start, seg1.end, info=[ns1])
self.segment_list.append(self.segment_dict[ns1])
if not seg2_found:
ns2 = self.next_seg_id()
overlap2 = (ns2, cycle1[2][si1][1])
if cycle1[2][si1][1] == 1:
self.segment_dict[ns2] = hg.interval(seg1.chrom, seg2.start, seg1.end, info=[ns2])
else:
self.segment_dict[ns2] = hg.interval(seg1.chrom, seg1.start, seg2.end, info=[ns2])
self.segment_list.append(self.segment_dict[ns2])
cycle1_init = cycle1[2][:si1]
if not cycle1[2][si1][1]:
(overlap1, overlap2, ns1, ns2) = (overlap2, overlap1, ns2, ns1)
if cycle1[2][si1][1] == cycle2[2][si2][1]:
cycle2_span = cycle2[2][si2 + 1:] + cycle2[2][:si2]
else:
cycle2_span = [(s[0], -1 * s[1]) for s in cycle2[2][:si2][::-1] + cycle2[2][si2 + 1:][::-1]]
cycle1_final = cycle1[2][si1 + 1:]
mcycle = cycle1_init + [overlap1] + cycle2_span + [overlap2] + cycle1_final
mcycle_id = self.next_cycle_id()
self.cycle_dict[mcycle_id] = (mcycle_id, cnlist[0], mcycle)
self.cycle_dict[c1] = (c1, cnlist[1], cycle1[2])
self.cycle_dict[c2] = (c2, cnlist[2], cycle2[2])
return
def pivot(self, c1, si1, si2):
cycle1 = self.cycle_dict[c1]
# check if segments overlap
if not self.segment_dict[cycle1[2][si1][0]].intersects(self.segment_dict[cycle1[2][si2][0]]):
raise Exception("Segments do not overlap")
# check if segments have opposite orientation
if cycle1[2][si1][1] == cycle1[2][si2][1]:
raise Exception("Segments should be in opposite orientation")
seg1 = self.segment_dict[cycle1[2][si1][0]]
seg2 = self.segment_dict[cycle1[2][si2][0]]
seg1_found = False
seg2_found = False
for i in self.segment_list:
if (i.chrom, i.start, i.end) == (seg1.chrom, seg1.start, seg2.end):
seg1_found = True
ns1 = i.info[0]
overlap1 = (ns1, cycle1[2][si1][1])
if (i.chrom, i.start, i.end) == (seg1.chrom, seg2.start, seg1.end):
seg2_found = True
ns2 = i.info[0]
overlap2 = (ns2, cycle1[2][si2][1])
if not seg1_found:
ns1 = self.next_seg_id()
overlap1 = (ns1, cycle1[2][si1][1])
self.segment_dict[ns1] = hg.interval(seg1.chrom, seg1.start, seg2.end, info=[ns1])
self.segment_list.append(self.segment_dict[ns1])
if not seg2_found:
ns2 = self.next_seg_id()
overlap2 = (ns2, cycle1[2][si2][1])
self.segment_dict[ns2] = hg.interval(seg1.chrom, seg2.start, seg1.end, info=[ns2])
self.segment_list.append(self.segment_dict[ns2])
cycle1_init = cycle1[2][:si1]
if cycle1[2][si1][1] == -1:
(overlap1, overlap2, ns1, ns2) = (
(overlap2[0], -1 * overlap2[1]), (overlap1[0], -1 * overlap1[1]), ns2, ns1)
cycle1_span = [(s[0], -1 * s[1]) for s in cycle1[2][si1 + 1:si2][::-1]]
cycle1_final = cycle1[2][si2 + 1:]
mcycle = cycle1_init + [overlap1] + cycle1_span + [overlap2] + cycle1_final
mcycle_id = self.next_cycle_id()
self.cycle_dict[mcycle_id] = (mcycle_id, cycle1[1], mcycle)
self.cycle_dict[c1] = (c1, 0.0, cycle1[2])
return
def fasta_sequence(self, cycle_list=None, outfasta=None):
if cycle_list is None:
ccnlist = [(c[1], c[0]) for c in self.cycle_dict.values()]
ccnlist.sort(reverse=True)
print(ccnlist)
cycle_list = [c[1] for c in ccnlist]
fseq = ''
if outfasta is not None:
outfile = open(outfasta, 'w')
for c in cycle_list:
if outfasta is None:
fseq += '>Cycle' + c + " Copy_count=" + str(self.cycle_dict[c][1]) + ";Segments=" + ','.join(
[seg[0] + ('+' if seg[1] == 1 else '-') for seg in self.cycle_dict[c][2]]) + '\n'
else:
outfile.write('>Cycle' + c + " Copy_count=" + str(self.cycle_dict[c][1]) + ";Segments=" + ','.join(
[seg[0] + ('+' if seg[1] == 1 else '-') for seg in self.cycle_dict[c][2]]) + '\n')
for s in self.cycle_dict[c][2]:
if s[0] == '0':
continue
if s[1] == 1:
if outfasta is None:
fseq += self.segment_dict[s[0]].sequence(new_fa_file=self.fa_file)
else:
outfile.write(self.segment_dict[s[0]].sequence(new_fa_file=self.fa_file))
else:
if outfasta is None:
fseq += hg.reverse_complement(self.segment_dict[s[0]].sequence(new_fa_file=self.fa_file))
else:
outfile.write(hg.reverse_complement(self.segment_dict[s[0]].sequence(new_fa_file=self.fa_file)))
if outfasta is None:
fseq += '\n'
else:
outfile.write('\n')
if outfasta is not None:
outfile.close()
return fseq
def __repr__(self):
s = ""
for i in self.ilist:
s += '\t'.join(["Interval", i.info[0], i.chrom, str(i.start), str(i.end)]) + '\n'
for i in self.segment_list:
s += '\t'.join(["Segment", i.info[0], i.chrom, str(i.start), str(i.end)]) + '\n'
ccnlist = [(c[1], c[0]) for c in self.cycle_dict.values()]
ccnlist.sort(reverse=True)
for c in ccnlist:
s += "Cycle=" + c[1] + ";Copy_count=" + str(c[0]) + ";Segments=" + ','.join(
[seg[0] + ('+' if seg[1] == 1 else '-') for seg in self.cycle_dict[c[1]][2]]) + '\n'
return s