-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
49 lines (38 loc) · 1.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Step 1: Import Libraries and Load the Model
import numpy as np
import tensorflow as tf
from tensorflow.keras.datasets import imdb
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.models import load_model
# Load the IMDB dataset word index
word_index = imdb.get_word_index()
reverse_word_index = {value: key for key, value in word_index.items()}
# Load the pre-trained model with ReLU activation
model = load_model('simple_rnn_imdb.h5')
# Step 2: Helper Functions
# Function to decode reviews
def decode_review(encoded_review):
return ' '.join([reverse_word_index.get(i - 3, '?') for i in encoded_review])
# Function to preprocess user input
def preprocess_text(text):
words = text.lower().split()
encoded_review = [word_index.get(word, 2) + 3 for word in words]
padded_review = sequence.pad_sequences([encoded_review], maxlen=500)
return padded_review
import streamlit as st
## streamlit app
# Streamlit app
st.title('IMDB Movie Review Sentiment Analysis')
st.write('Enter a movie review to classify it as positive or negative.')
# User input
user_input = st.text_area('Movie Review')
if st.button('Classify'):
preprocessed_input=preprocess_text(user_input)
## MAke prediction
prediction=model.predict(preprocessed_input)
sentiment='Positive' if prediction[0][0] > 0.5 else 'Negative'
# Display the result
st.write(f'Sentiment: {sentiment}')
st.write(f'Prediction Score: {prediction[0][0]}')
else:
st.write('Please enter a movie review.')