-
Notifications
You must be signed in to change notification settings - Fork 103
/
bd_nvt_lj.py
executable file
·245 lines (192 loc) · 10.5 KB
/
bd_nvt_lj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python3
# bd_nvt_lj.py
#------------------------------------------------------------------------------------------------#
# This software was written in 2016/17 #
# by Michael P. Allen <[email protected]>/<[email protected]> #
# and Dominic J. Tildesley <[email protected]> ("the authors"), #
# to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), #
# published by Oxford University Press ("the publishers"). #
# #
# LICENCE #
# Creative Commons CC0 Public Domain Dedication. #
# To the extent possible under law, the authors have dedicated all copyright and related #
# and neighboring rights to this software to the PUBLIC domain worldwide. #
# This software is distributed without any warranty. #
# You should have received a copy of the CC0 Public Domain Dedication along with this software. #
# If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. #
# #
# DISCLAIMER #
# The authors and publishers make no warranties about the software, and disclaim liability #
# for all uses of the software, to the fullest extent permitted by applicable law. #
# The authors and publishers do not recommend use of this software for any purpose. #
# It is made freely available, solely to clarify points made in the text. When using or citing #
# the software, you should not imply endorsement by the authors or publishers. #
#------------------------------------------------------------------------------------------------#
"""Brownian dynamics, NVT ensemble."""
def calc_variables ( ):
"""Calculates all variables of interest.
They are collected and returned as a list, for use in the main program.
"""
from averages_module import msd, VariableType
from lrc_module import potential_lrc, pressure_lrc
import numpy as np
import math
# Preliminary calculations (n,v,f,total are taken from the calling program)
vol = box**3 # Volume
rho = n / vol # Density
kin = 0.5*np.sum(v**2) # Kinetic energy
fsq = np.sum ( f**2 ) # Total squared force
# Variables of interest, of class VariableType, containing three attributes:
# .val: the instantaneous value
# .nam: used for headings
# .method: indicating averaging method
# If not set below, .method adopts its default value of avg
# The .nam and some other attributes need only be defined once, at the start of the program,
# but for clarity and readability we assign all the values together below
# Internal energy (cut-and-shifted) per atom
# Total KE plus total cut-and-shifted PE divided by N
e_s = VariableType ( nam = 'E/N cut&shifted', val = (kin+total.pot)/n )
# Internal energy (full, including LRC) per atom
# LRC plus total KE plus total cut (but not shifted) PE divided by N
e_f = VariableType ( nam = 'E/N full', val = potential_lrc(rho,r_cut) + (kin+total.cut)/n )
# Pressure (cut-and-shifted)
# Ideal gas contribution plus total virial divided by V
p_s = VariableType ( nam = 'P cut&shifted', val = rho*temperature + total.vir/vol )
# Pressure (full, including LRC)
# LRC plus ideal gas contribution plus total virial divided by V
p_f = VariableType ( nam = 'P full', val = pressure_lrc(rho,r_cut) + rho*temperature + total.vir/vol )
# Kinetic temperature
# Momentum is not conserved, hence 3N degrees of freedom
t_k = VariableType ( nam = 'T kinetic', val = 2.0*kin/(3*n) )
# Configurational temperature
# Total squared force divided by total Laplacian
t_c = VariableType ( nam = 'T config', val = fsq/total.lap )
# Heat capacity (cut-and-shifted)
# Total energy divided by temperature and sqrt(N) to make result intensive
c_s = VariableType ( nam = 'Cv/N cut&shifted', val = (kin+total.pot)/(temperature*math.sqrt(n)),
method = msd, instant = False )
# Heat capacity (full)
# Total energy divided by temperature and sqrt(N) to make result intensive; LRC does not contribute
c_f = VariableType ( nam = 'Cv/N full', val = (kin+total.cut)/(temperature*math.sqrt(n)),
method = msd, instant = False )
# Collect together into a list for averaging
return [ e_s, p_s, e_f, p_f, t_k, t_c, c_s, c_f ]
def a_propagator ( t ):
"""A: drift step propagator.
t is the time over which to propagate (typically dt/2).
r, v, and box are accessed from the calling program.
"""
global r
import numpy as np
r = r + t * v / box # Positions in box=1 units
r = r - np.rint ( r ) # Periodic boundaries
def b_propagator ( t ):
"""B: kick step propagator.
t is the time over which to propagate (typically dt/2).
v is accessed from the calling program.
"""
global v
v = v + t * f
def o_propagator ( t ):
"""O: friction and random contributions propagator.
t is the time over which to propagate (typically dt).
v, n, temperature, and gamma are accessed from the calling program.
"""
global v
import numpy as np
x = gamma*t
c = -np.expm1(-2*x) # 1-exp(-2*x), preserving accuracy for small x
c = np.sqrt(c)
v = v*np.exp(-x) + c*np.sqrt(temperature)*np.random.randn(n,3)
# Takes in a configuration of atoms (positions, velocities)
# Cubic periodic boundary conditions
# Conducts molecular dynamics using BAOAB algorithm of BJ Leimkuhler and C Matthews
# Appl. Math. Res. eXpress 2013, 34–56 (2013); J. Chem. Phys. 138, 174102 (2013)
# Uses no special neighbour lists
# Reads several variables and options from standard input using JSON format
# Leave input empty "{}" to accept supplied defaults
# Positions r are divided by box length after reading in and we assume mass=1 throughout
# However, input configuration, output configuration, most calculations, and all results
# are given in simulation units defined by the model
# For example, for Lennard-Jones, sigma = 1, epsilon = 1
# Despite the program name, there is nothing here specific to Lennard-Jones
# The model is defined in md_lj_module
import json
import sys
import numpy as np
import math
from platform import python_version
from config_io_module import read_cnf_atoms, write_cnf_atoms
from averages_module import run_begin, run_end, blk_begin, blk_end, blk_add
from md_lj_module import introduction, conclusion, force, PotentialType
cnf_prefix = 'cnf.'
inp_tag = 'inp'
out_tag = 'out'
sav_tag = 'sav'
print('bd_nvt_lj')
print('Python: '+python_version())
print('NumPy: '+np.__version__)
print()
print('Brownian dynamics, constant-NVT ensemble')
print('Particle mass=1 throughout')
introduction()
np.random.seed()
# Read parameters in JSON format
try:
nml = json.load(sys.stdin)
except json.JSONDecodeError:
print('Exiting on Invalid JSON format')
sys.exit()
# Set default values, check keys and typecheck values
defaults = {"nblock":10, "nstep":1000, "r_cut":2.5, "dt":0.005, "temperature":1.0, "gamma":1.0}
for key, val in nml.items():
if key in defaults:
assert type(val) == type(defaults[key]), key+" has the wrong type"
else:
print('Warning', key, 'not in ',list(defaults.keys()))
# Set parameters to input values or defaults
nblock = nml["nblock"] if "nblock" in nml else defaults["nblock"]
nstep = nml["nstep"] if "nstep" in nml else defaults["nstep"]
r_cut = nml["r_cut"] if "r_cut" in nml else defaults["r_cut"]
dt = nml["dt"] if "dt" in nml else defaults["dt"]
temperature = nml["temperature"] if "temperature" in nml else defaults["temperature"]
gamma = nml["gamma"] if "gamma" in nml else defaults["gamma"]
# Write out parameters
print( "{:40}{:15d} ".format('Number of blocks', nblock) )
print( "{:40}{:15d} ".format('Number of steps per block', nstep) )
print( "{:40}{:15.6f}".format('Potential cutoff distance', r_cut) )
print( "{:40}{:15.6f}".format('Time step', dt) )
print( "{:40}{:15.6f}".format('Friction coefficient', gamma) )
print( "{:40}{:15.6f}".format('Specified temperature', temperature) )
print( "{:40}{:15.6f}".format('Ideal diffusion coefft', temperature/gamma) )
# Read in initial configuration
n, box, r, v = read_cnf_atoms ( cnf_prefix+inp_tag, with_v=True)
print( "{:40}{:15d} ".format('Number of particles', n) )
print( "{:40}{:15.6f}".format('Box length', box) )
print( "{:40}{:15.6f}".format('Density', n/box**3) )
r = r / box # Convert positions to box units
r = r - np.rint ( r ) # Periodic boundaries
# Initial forces, potential, etc plus overlap check
total, f = force ( box, r_cut, r )
assert not total.ovr, 'Overlap in initial configuration'
# Initialize arrays for averaging and write column headings
run_begin ( calc_variables() )
for blk in range(1,nblock+1): # Loop over blocks
blk_begin()
for stp in range(nstep): # Loop over steps
b_propagator ( dt/2 ) # B kick half-step
a_propagator ( dt/2 ) # A drift half-step
o_propagator ( dt ) # O random velocities and friction step
a_propagator ( dt/2 ) # A drift half-step
total, f = force ( box, r_cut, r ) # Force evaluation
assert not total.ovr, 'Overlap in configuration'
b_propagator ( dt/2 ) # B kick half-step
blk_add ( calc_variables() )
blk_end(blk) # Output block averages
sav_tag = str(blk).zfill(3) if blk<1000 else 'sav' # Number configuration by block
write_cnf_atoms ( cnf_prefix+sav_tag, n, box, r*box, v ) # Save configuration
run_end ( calc_variables() )
total, f = force ( box, r_cut, r ) # Force evaluation
assert not total.ovr, 'Overlap in final configuration'
write_cnf_atoms ( cnf_prefix+out_tag, n, box, r*box, v ) # Save configuration
conclusion()