-
Notifications
You must be signed in to change notification settings - Fork 103
/
mc_chain_nvt_cbmc_lj.f90
203 lines (159 loc) · 10 KB
/
mc_chain_nvt_cbmc_lj.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
! mc_chain_nvt_cbmc_lj.f90
! Monte Carlo, single chain, NVT, CBMC
PROGRAM mc_chain_nvt_cbmc_lj
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! Takes in a configuration of atom positions in a linear chain
! NO periodic boundary conditions, no box
! Conducts Monte Carlo, NVT ensemble using CBMC regrowth moves
! Uses no special neighbour lists
! Reads several variables and options from standard input using a namelist nml
! Leave namelist empty to accept supplied defaults
! Input configuration, output configuration, all calculations, and all results
! are given in simulation units defined by the model.
! E.g. for Lennard-Jones, atomic diameter sigma = 1, well-depth epsilon=1
! Configurational weights are calculated on the basis of the nonbonded interactions
! Despite the program name, there is nothing here specific to Lennard-Jones
! The model is defined in mc_module
USE, INTRINSIC :: iso_fortran_env, ONLY : input_unit, output_unit, error_unit, iostat_end, iostat_eor, &
& COMPILER_VERSION, COMPILER_OPTIONS
USE config_io_module, ONLY : read_cnf_atoms, write_cnf_atoms
USE averages_module, ONLY : run_begin, run_end, blk_begin, blk_end, blk_add
USE mc_module, ONLY : introduction, conclusion, allocate_arrays, deallocate_arrays, regrow, n, r
IMPLICIT NONE
! Most important variables
REAL :: temperature ! Temperature (specified, in units of well depth)
REAL :: bond ! Intramolecular bond length
REAL :: k_spring ! Strength of intramolecular bond springs
INTEGER :: m_max ! Maximum atoms in regrow
INTEGER :: k_max ! Number of random tries per atom in regrow
INTEGER :: blk, stp, nstep, nblock, ioerr
LOGICAL :: accepted
REAL :: m_ratio
CHARACTER(len=4), PARAMETER :: cnf_prefix = 'cnf.'
CHARACTER(len=3), PARAMETER :: inp_tag = 'inp'
CHARACTER(len=3), PARAMETER :: out_tag = 'out'
CHARACTER(len=3) :: sav_tag = 'sav' ! May be overwritten with block number
NAMELIST /nml/ nblock, nstep, m_max, k_max, temperature, k_spring
WRITE ( unit=output_unit, fmt='(a)' ) 'mc_chain_nvt_cbmc_lj'
WRITE ( unit=output_unit, fmt='(2a)' ) 'Compiler: ', COMPILER_VERSION()
WRITE ( unit=output_unit, fmt='(2a/)' ) 'Options: ', COMPILER_OPTIONS()
WRITE ( unit=output_unit, fmt='(a)' ) 'Monte Carlo, constant-NVT ensemble, CBMC, chain molecule'
WRITE ( unit=output_unit, fmt='(a)' ) 'Simulation uses full nonbonded potential (no cutoff)'
CALL introduction
CALL RANDOM_INIT ( .FALSE., .TRUE. ) ! Initialize random number generator
! Set sensible default run parameters for testing
nblock = 10 ! Number of blocks
nstep = 100000 ! Number of steps per block
m_max = 3 ! Maximum atoms in regrow
k_max = 32 ! Number of random tries per atom in regrow
temperature = 1.0 ! Temperature (in units of well depth)
k_spring = 400.0 ! Strength of intramolecular bond springs (same units)
! Read run parameters from namelist
! Comment out, or replace, this section if you don't like namelists
READ ( unit=input_unit, nml=nml, iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error reading namelist nml from standard input', ioerr
IF ( ioerr == iostat_eor ) WRITE ( unit=error_unit, fmt='(a)') 'End of record'
IF ( ioerr == iostat_end ) WRITE ( unit=error_unit, fmt='(a)') 'End of file'
STOP 'Error in mc_chain_nvt_cbmc_lj'
END IF
! Write out run parameters
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of blocks', nblock
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of steps per block', nstep
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Max atoms in regrow', m_max
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Random tries per atom in regrow', k_max
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Temperature/well depth', temperature
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Bond spring strength', k_spring
! Read in initial configuration and allocate necessary arrays
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, bond ) ! First call is just to get n and bond
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of particles', n
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Bond length (in sigma units)', bond
CALL allocate_arrays
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, bond, r ) ! Second call gets r
! Initialize arrays for averaging and write column headings
m_ratio = 0.0
CALL run_begin ( calc_variables() )
DO blk = 1, nblock ! Begin loop over blocks
CALL blk_begin
DO stp = 1, nstep ! Begin loop over steps
CALL regrow ( temperature, m_max, k_max, bond, k_spring, accepted )
IF ( accepted ) THEN
m_ratio = 1.0
ELSE
m_ratio = 0.0
END IF
! Calculate and accumulate quantities for this step
CALL blk_add ( calc_variables() )
END DO ! End loop over steps
CALL blk_end ( blk ) ! Output block averages
IF ( nblock < 1000 ) WRITE(sav_tag,'(i3.3)') blk ! Number configuration by block
CALL write_cnf_atoms ( cnf_prefix//sav_tag, n, bond, r ) ! Save configuration
END DO ! End loop over blocks
CALL run_end ( calc_variables() ) ! Output run averages
CALL write_cnf_atoms ( cnf_prefix//out_tag, n, bond, r )
CALL deallocate_arrays
CALL conclusion
CONTAINS
FUNCTION calc_variables ( ) RESULT ( variables )
USE mc_module, ONLY : potential, spring_pot, potential_type
USE averages_module, ONLY : variable_type, msd
IMPLICIT NONE
TYPE(variable_type), DIMENSION(4) :: variables ! The 4 variables listed below
! This function returns all variables of interest in an array, for use in the main program
TYPE(variable_type) :: m_r, e_x, r_g, c_x
TYPE(potential_type) :: total
REAL, DIMENSION(3) :: rcm
REAL :: spr, rsq
! Preliminary calculations
total = potential ( ) ! Nonbonded potential with overlap flag
IF ( total%ovr ) THEN ! Overlap test (might happen with initial configuration)
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in configuration'
STOP 'Error in mc_chain_nvt_cbmc_lj/calculate'
END IF ! End overlap test
spr = spring_pot ( bond, k_spring ) ! Total spring potential energy
rcm = SUM ( r, dim=2 ) / REAL(n) ! Centre of mass
rsq = SUM ( ( r - SPREAD(rcm,dim=2,ncopies=n) ) ** 2 ) / REAL(n) ! Mean-squared distance from CM
! Variables of interest, of type variable_type, containing three components:
! %val: the instantaneous value
! %nam: used for headings
! %method: indicating averaging method
! If not set below, %method adopts its default value of avg
! The %nam and some other components need only be defined once, at the start of the program,
! but for clarity and readability we assign all the values together below
! Move acceptance ratio
m_r = variable_type ( nam = 'Regrow ratio', val = m_ratio, instant = .FALSE. )
! Total potential energy per atom (excess, without ideal gas contribution)
! Total PE of bond springs plus total LJ PE (not cut, nor shifted) divided by N
e_x = variable_type ( nam = 'PE/N', val = (spr+total%pot)/REAL(n) )
! Radius of gyration
r_g = variable_type ( nam = 'Rg', val = SQRT(rsq) )
! Heat Capacity per atom (excess, without ideal gas contribution)
! MSD of PE / (sqrt(N)*T)
! Total PE of bond springs plus total LJ PE (not cut, nor shifted), divided by T
c_x = variable_type ( nam = 'Cv(ex)/N', val = (spr+total%pot)/(SQRT(REAL(n))*temperature), &
& method = msd, instant = .FALSE. )
! Collect together for averaging
variables = [ m_r, e_x, r_g, c_x ]
END FUNCTION calc_variables
END PROGRAM mc_chain_nvt_cbmc_lj