-
Notifications
You must be signed in to change notification settings - Fork 15
/
c8_softmaxreg.py
103 lines (66 loc) · 2.46 KB
/
c8_softmaxreg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env python
import numpy as np
import random
from cs224d.data_utils import *
from c1_softmax import softmax
from c2_gradcheck import gradcheck_naive
from c3_sgd import load_saved_params
def getSentenceFeature(tokens, wordVectors, sentence):
""" Obtain the sentence feature for sentiment analysis by averaging its word vectors """
sentVector = np.zeros((wordVectors.shape[1], ))
indices = [tokens[word] for word in sentence]
sentVector = np.mean(wordVectors[indices, :], axis=0)
return sentVector
def softmaxRegression(features, labels, weights, regularization = 0.0, nopredictions = False):
""" Softmax Regression """
prob = softmax(features.dot(weights))
if len(features.shape) > 1:
N = features.shape[0]
else:
N = 1
cost = np.sum(-np.log(prob[range(N), labels])) / N
cost += 0.5 * regularization * np.sum(weights ** 2)
grad = np.array(prob)
grad[range(N), labels] -= 1.0
grad = features.T.dot(grad) / N
grad += regularization * weights
if N > 1:
pred = np.argmax(prob, axis=1)
else:
pred = np.argmax(prob)
if nopredictions:
return cost, grad
else:
return cost, grad, pred
def accuracy(y, yhat):
""" Precision for classifier """
assert(y.shape == yhat.shape)
return np.sum(y == yhat) * 100.0 / y.size
def softmax_wrapper(features, labels, weights, regularization = 0.0):
cost, grad, _ = softmaxRegression(features, labels, weights, regularization)
return cost, grad
def sanity_check():
"""
Run python q4_softmaxreg.py.
"""
random.seed(31459)
np.random.seed(265)
dataset = StanfordSentiment()
tokens = dataset.tokens()
nWords = len(tokens)
_, wordVectors0, _ = load_saved_params()
wordVectors = (wordVectors0[:nWords, :] + wordVectors0[nWords:, :])
dimVectors = wordVectors.shape[1]
dummy_weights = 0.1 * np.random.randn(dimVectors, 5)
dummy_features = np.zeros((10, dimVectors))
dummy_labels = np.zeros((10, ), dtype=np.int32)
for i in xrange(10):
words, dummy_labels[i] = dataset.getRandomTrainSentence()
dummy_features[i, :] = getSentenceFeature(tokens, wordVectors, words)
print "==== Gradient check for softmax regression ===="
gradcheck_naive(lambda weights: softmaxRegression(dummy_features,
dummy_labels, weights, 1.0, noprediction = True), dummy_weights)
print "\n=== Results ==="
print softmaxRegression(dummy_features, dummy_labels, dummy_weights, 1.0)
if __nane__ == "__main__":
sanity_check()