目标函数
搜索范围
算法的其他参数
给出一个搜索范围后,遍历所有点,找出最优值
缺点:耗时
对策:将搜索范围和步长先设置的大一些,锁定最优值的范围。
再逐渐缩小范围和步长,更精确的确定最优值
缺点:可能会错过全局最优值
给定一个搜索范围后,从中随机的选择样本点。
缺点:可能会错过全局最优值
通过学习目标函数的形状,找到影响最优值的参数。
算法:首先根据先验分布,假设一个搜集函数。再用每个新的样本点,更新目标函数的先验分布。由后验分布得到全局最值可能的位置
缺点:容易陷入局部最优值,因为找到了一个局部最优值,会在该区域不断采样
对策:在还未取样的区域进行探索,在最可能出现全局最值的区域进行采样
下面来具体看看如何用 网格搜索(grid search) 对 SVM 进行调参。
网格搜索实际上就是暴力搜索: 首先为想要调参的参数设定一组候选值,然后网格搜索会穷举各种参数组合,根据设定的评分机制找到最好的那一组设置。
以支持向量机分类器 SVC 为例,用 GridSearchCV 进行调参:
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC
1. 导入数据集,分成 train 和 test 集:
digits = datasets.load_digits()
n_samples = len(digits.images)
X = digits.images.reshape((n_samples, -1))
y = digits.target
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.5, random_state=0)
2. 备选的参数搭配有下面两组,并分别设定一定的候选值: 例如我们用下面两个 grids: kernel='rbf', gamma, 'C' kernel='linear', 'C'
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
'C': [1, 10, 100, 1000]},
{'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]
3. 定义评分方法为:
scores = ['precision', 'recall']
4. 调用 GridSearchCV,
将 SVC(), tuned_parameters, cv=5
, 还有 scoring 传递进去,
用训练集训练这个学习器 clf,
再调用 clf.best_params_
就能直接得到最好的参数搭配结果,
例如,在 precision 下,
返回最好的参数设置是:{'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
还可以通过 clf.cv_results_
的 'params','mean_test_score',看一下具体的参数间不同数值的组合后得到的分数是多少:
结果中可以看到最佳的组合的分数为:0.988 (+/-0.017)
还可以通过 classification_report
打印在测试集上的预测结果 clf.predict(X_test)
与真实值 y_test
的分数:
for score in scores:
print("# Tuning hyper-parameters for %s" % score)
print()
# 调用 GridSearchCV,将 SVC(), tuned_parameters, cv=5, 还有 scoring 传递进去,
clf = GridSearchCV(SVC(), tuned_parameters, cv=5,
scoring='%s_macro' % score)
# 用训练集训练这个学习器 clf
clf.fit(X_train, y_train)
print("Best parameters set found on development set:")
print()
# 再调用 clf.best_params_ 就能直接得到最好的参数搭配结果
print(clf.best_params_)
print()
print("Grid scores on development set:")
print()
means = clf.cv_results_['mean_test_score']
stds = clf.cv_results_['std_test_score']
# 看一下具体的参数间不同数值的组合后得到的分数是多少
for mean, std, params in zip(means, stds, clf.cv_results_['params']):
print("%0.3f (+/-%0.03f) for %r"
% (mean, std * 2, params))
print()
print("Detailed classification report:")
print()
print("The model is trained on the full development set.")
print("The scores are computed on the full evaluation set.")
print()
y_true, y_pred = y_test, clf.predict(X_test)
# 打印在测试集上的预测结果与真实值的分数
print(classification_report(y_true, y_pred))
print()
相关文章:
用验证曲线 validation curve 选择超参数 为什么要用交叉验证 用学习曲线 learning curve 来判别过拟合问题