From 3c9315bcc9674a27c41aa281e168cf0207ccf4be Mon Sep 17 00:00:00 2001 From: Alexander Nikitin <1243786+AlexanderVNikitin@users.noreply.github.com> Date: Sat, 30 Mar 2024 19:54:35 +0200 Subject: [PATCH] add dtw to readme --- README.md | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 502bb6f..9138160 100644 --- a/README.md +++ b/README.md @@ -125,9 +125,10 @@ TSGM provides a number of time series augmentations. | ------------- | ------------- | ------------- | | Gaussian Noise / Jittering | `tsgm.augmentations.GaussianNoise` | - | | Slice-And-Shuffle | `tsgm.augmentations.SliceAndShuffle` | - | -| Shuffle features | `tsgm.augmentations.Shuffle` | - | -| Magnitude warping | `tsgm.augmentations.MagnitudeWarping` | [Data Augmentation of Wearable Sensor Data for Parkinson’s Disease Monitoring using Convolutional Neural Networks](https://dl.acm.org/doi/pdf/10.1145/3136755.3136817) | -| Window warping | `tsgm.augmentations.WindowWarping` | [Data Augmentation for Time Series Classification using Convolutional Neural Networks](https://shs.hal.science/halshs-01357973/document) | +| Shuffle Features | `tsgm.augmentations.Shuffle` | - | +| Magnitude Warping | `tsgm.augmentations.MagnitudeWarping` | [Data Augmentation of Wearable Sensor Data for Parkinson’s Disease Monitoring using Convolutional Neural Networks](https://dl.acm.org/doi/pdf/10.1145/3136755.3136817) | +| Window Warping | `tsgm.augmentations.WindowWarping` | [Data Augmentation for Time Series Classification using Convolutional Neural Networks](https://shs.hal.science/halshs-01357973/document) | +| DTW Barycentric Averaging | `tsgm.augmentations.DTWBarycentricAveraging` | [A global averaging method for dynamic time warping, with applications to clustering.](https://www.sciencedirect.com/science/article/pii/S003132031000453X) | ## Contributing