-
Notifications
You must be signed in to change notification settings - Fork 4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Nan in the resulting files #3
Comments
Hi Zhiqiang,
Thanks for your email, and I am glad that you are finding the software
useful.
By default, the script ignores SNPs with MAF<5%. This can be changed using
the --min_maf option. While that explains some of the NaNs, it does not
explain them all. I am surprised that some of the rows with NaNs seem to
have an entry for var_se but not for others. Are you getting any SNPs with
no NaN results?
Thanks,
Alex.
…On Mon, 6 Apr 2020 at 06:03, Zhiqiang Sha ***@***.***> wrote:
Hi there,
Thanks for developing such an amazing toolbox.
When I run the hlmm with simply linear model, rather than linear mixed
model, I found there were lots of nan in the resulting file, like this:
SNP n frequency likelihood add add_se add_t add_pval var var_se var_t
var_pval av_pval
rs62224609 32057 0.09890195589106904 nan nan nan nan nan nan 0.018897 nan
nan nan
rs376238049 28364 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs62224614 31900 0.09943573667711599 nan nan nan nan nan nan 0.018898 nan
nan nan
rs7286962 31742 0.0996314031882049 nan nan nan nan nan nan 0.018928 nan
nan nan
rs62224618 32256 0.10105096726190477 nan nan nan nan nan nan 0.018657 nan
nan nan
rs372511672 27602 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs2844853 27472 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs370772954 30458 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs3949130 31617 0.07600341588385995 nan nan nan nan nan nan 0.021283 nan
nan nan
rs200167968 31639 0.07527102626505262 nan nan nan nan nan nan 0.021369 nan
nan nan
rs79847867 32256 0.07783048115079365 nan nan nan nan nan nan 0.020848 nan
nan nan
rs200058026 31578 0.06846538729495218 nan nan nan nan nan nan 0.022361 nan
nan nan
rs200867508 28405 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs199576657 28348 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs202050260 28001 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs7284947 29177 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs131517 15518 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs131522 17386 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs131523 31749 0.30407256921477843 nan nan nan nan nan nan 0.012176 nan
nan nan
rs185518626 30875 0.01259919028340081 nan NaN NaN NaN NaN NaN NaN NaN NaN
nan
rs131525 31783 0.30829374193751374 nan nan nan nan nan nan 0.012122 nan
nan nan
rs131526 31845 0.04813942534149784 nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs131527 31854 0.05019777735920139 nan nan nan nan nan nan 0.025782 nan
nan nan
Any suggestions would be appreciated! Thanks.
Best,
Zhiqiang
—
You are receiving this because you are subscribed to this thread.
Reply to this email directly, view it on GitHub
<#3>, or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABQQS6JUT2YX7M4AZEFQMDTRLHHLPANCNFSM4MCIHEYQ>
.
|
What do the results look like for the mixed model? Do you not get NaNs
then?
…On Mon, 6 Apr 2020 at 11:44, Alexander Young ***@***.***> wrote:
Hi Zhiqiang,
Thanks for your email, and I am glad that you are finding the software
useful.
By default, the script ignores SNPs with MAF<5%. This can be changed using
the --min_maf option. While that explains some of the NaNs, it does not
explain them all. I am surprised that some of the rows with NaNs seem to
have an entry for var_se but not for others. Are you getting any SNPs with
no NaN results?
Thanks,
Alex.
On Mon, 6 Apr 2020 at 06:03, Zhiqiang Sha ***@***.***>
wrote:
> Hi there,
>
> Thanks for developing such an amazing toolbox.
> When I run the hlmm with simply linear model, rather than linear mixed
> model, I found there were lots of nan in the resulting file, like this:
> SNP n frequency likelihood add add_se add_t add_pval var var_se var_t
> var_pval av_pval
> rs62224609 32057 0.09890195589106904 nan nan nan nan nan nan 0.018897 nan
> nan nan
> rs376238049 28364 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
> rs62224614 31900 0.09943573667711599 nan nan nan nan nan nan 0.018898 nan
> nan nan
> rs7286962 31742 0.0996314031882049 nan nan nan nan nan nan 0.018928 nan
> nan nan
> rs62224618 32256 0.10105096726190477 nan nan nan nan nan nan 0.018657 nan
> nan nan
> rs372511672 27602 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
> rs2844853 27472 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
> rs370772954 30458 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
> rs3949130 31617 0.07600341588385995 nan nan nan nan nan nan 0.021283 nan
> nan nan
> rs200167968 31639 0.07527102626505262 nan nan nan nan nan nan 0.021369
> nan nan nan
> rs79847867 32256 0.07783048115079365 nan nan nan nan nan nan 0.020848 nan
> nan nan
> rs200058026 31578 0.06846538729495218 nan nan nan nan nan nan 0.022361
> nan nan nan
> rs200867508 28405 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
> rs199576657 28348 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
> rs202050260 28001 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
> rs7284947 29177 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
> rs131517 15518 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
> rs131522 17386 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
> rs131523 31749 0.30407256921477843 nan nan nan nan nan nan 0.012176 nan
> nan nan
> rs185518626 30875 0.01259919028340081 nan NaN NaN NaN NaN NaN NaN NaN NaN
> nan
> rs131525 31783 0.30829374193751374 nan nan nan nan nan nan 0.012122 nan
> nan nan
> rs131526 31845 0.04813942534149784 nan NaN NaN NaN NaN NaN NaN NaN NaN nan
> rs131527 31854 0.05019777735920139 nan nan nan nan nan nan 0.025782 nan
> nan nan
>
> Any suggestions would be appreciated! Thanks.
>
> Best,
> Zhiqiang
>
> —
> You are receiving this because you are subscribed to this thread.
> Reply to this email directly, view it on GitHub
> <#3>, or unsubscribe
> <https://github.com/notifications/unsubscribe-auth/ABQQS6JUT2YX7M4AZEFQMDTRLHHLPANCNFSM4MCIHEYQ>
> .
>
|
Hi Alex, Thanks for your reply. OK. I see. I just focus on the linear model, rather than the linear mixed model, as the manual said it's really slow for this model. I tried to set MAF with --min_maf 0.01. I found it still did not work. I just first tried the first 100 SNPs as an example. Following is the log: The results are as follows: Any suggestions? |
Hi Alex, Best, |
Hi Zhiqiang,
I am not sure what is happening. What phenotype are you using?
Alex.
…On Tue, 7 Apr 2020 at 12:49, Zhiqiang Sha ***@***.***> wrote:
Hi Alex,
Any thoughts about the nan values which was above-mentioned? Looking
forward to your reply.
Best,
Zhiqiang
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#3 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABQQS6JFKACIL3UHWGEO7OTRLN7TXANCNFSM4MCIHEYQ>
.
|
Hi Alex, |
I'm not sure what is going on, but it could be due to the phenotype. What
exactly is the cognitive function trait? Have you tried running the model
for height or BMI?
Thanks,
Alex.
…On Tue, 7 Apr 2020 at 13:53, Zhiqiang Sha ***@***.***> wrote:
Hi Alex,
I just just use cognitive function as an example. Does it have to do with
phenotype? Thanks.
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#3 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABQQS6IGYDL3BOR2O42L673RLOHDZANCNFSM4MCIHEYQ>
.
|
I just randomly picked an item, fluid intelligence. So you mean maybe some traits could fit well with HLMM, but not all of the traits fit well? OK, I will try to use BMI or height. |
I think there could be some issues caused by the fact that fluid
intelligence in UKB is measured as a score with a relatively small number
of discrete possible scores. I am not sure if this is the source of the
error, but if you run the method for height or BMI and also see lots of
NaNs, then we will know that it is not something specific to fluid
intelligence.
Thanks,
Alex.
…On Wed, 8 Apr 2020 at 10:35, Zhiqiang Sha ***@***.***> wrote:
I just randomly picked an item, fluid intelligence. So you mean maybe some
traits could fit well with HLMM, but not all of the traits fit well? OK, I
will try to use BMI or height.
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#3 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABQQS6MECJ236EH3FCWTRVDRLSYXRANCNFSM4MCIHEYQ>
.
|
OK. Agreed! I will try to use BMI as an example. If it happens again, I will let you know. |
Hi Alex and Zhiqiang, I was also finding that about a third of the SNPs (230,150 out of 670,131) I tested were NaN. My phenotype was a quantitative trait simulated using GCTA with 10 causal loci, of which four had opposite effects in men and women. I wasn't using UK Biobank (my cohort was French-Canadians) and my simulations are being conducted entirely on chromosome 1. There were no covariates (simulated or included in the model). I hadn't done any SNP QC prior to running my simulations. What I found when I went back and removed SNPs with low minor allele frequency was that most but not all of the problem was solved. Removing SNPs with less than a 99% genotyping rate took care of the remaining NaNs. I haven't played around to see if a lower threshold will work just as well. Maybe Alex can tell us if there's a threshold imposed by the script? -Holly |
Hi Holly, Thank you so much for your suggestions. Alex said I could set the MAF using --min_maf. I tried but still found these NaN and seem to get the same results. Based on the previously showed results, We can see a lot of SNPs with frequency >5% still have NaN. Still confused. Anyway, thanks for sharing your advice. Best, |
Hi Holly!
There is indeed a threshold imposed by the script that can be modified as a
user argument: https://hlmm.readthedocs.io/en/master/hlmm_chr.html
The two options --max_missing and --min_maf control the maximum missingness
of SNPs and the minimum MAF. The defaults are set at 5%, which is quite
conservative. I did this in part because variance test statistics have less
power and are more sensitive to errors in the data than mean test
statistics.
Thanks,
Alex.
…On Wed, 8 Apr 2020 at 12:04, trochet ***@***.***> wrote:
Hi Alex and Zhiqiang,
I was also finding that about a third of the SNPs (230,150 out of 670,131)
I tested were NaN. My phenotype was a quantitative trait simulated using
GCTA with 10 causal loci, of which four had opposite effects in men and
women. I wasn't using UK Biobank (my cohort was French-Canadians) and my
simulations are being conducted entirely on chromosome 1. There were no
covariates (simulated or included in the model).
I hadn't done any SNP QC prior to running my simulations. What I found
when I went back and removed SNPs with low minor allele frequency was that
most but not all of the problem was solved. Removing SNPs with less than a
99% genotyping rate took care of the remaining NaNs. I haven't played
around to see if a lower threshold will work just as well. Maybe Alex can
tell us if there's a threshold imposed by the script?
-Holly
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#3 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABQQS6IZHRWNAHIBUCIM4HTRLTDDHANCNFSM4MCIHEYQ>
.
|
Hi Alex, Yeah, I agreed with you about the maf. But based on the above results, we can see lots of maf >5% were still ignored. My trait values are like this, Best, |
Zhiquiang, You've responded to the part about MAF, but you seemed to have missed the discussion of SNP call rates. Have you tried filtering based on that? -Holly |
Hi Holly, Thanks for your reminder. My sample size is 32256. Based on the results, we can calculte the missing rate with n. So, we can see these kinds of SNPs have lower missing rate (lower than 5%), they still have nan. Little confused. SNP n frequency likelihood add add_se add_t add_pval var var_se var_t var_pval av_pval -Zhiqiang |
Hello, I met the same problem. I'm working on simulated data. After comparing my phenotype data with the example file, I found mine is 10-fold smaller than the example phenotype. i.e. mine is between 1e-3 ~ 1e-2. Once I multiple 10 my phenotype data, NaN disappeared. Could anyone give any suggestions for this situation please? Thanks, |
Hi Xiaopu,
What is the variance of the phenotype file you are inputting?
Thanks,
Alex.
…On Thu, 17 Mar 2022 at 09:19, Xiaopu Zhang ***@***.***> wrote:
Hello,
I met the same problem. I'm working on simulated data. After comparing my
phenotype data with the example file, I found mine is 10-fold smaller than
the example phenotype. i.e. mine is between 1e-3 ~ 1e-2. Once I multiple 10
my phenotype data, NaN disappeared.
Could anyone give any suggestions for this situation please?
Thanks,
Xiaopu
—
Reply to this email directly, view it on GitHub
<#3 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABQQS6MY2PEJU7FFIUPRUPTVANLSZANCNFSM4MCIHEYQ>
.
Triage notifications on the go with GitHub Mobile for iOS
<https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675>
or Android
<https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub>.
You are receiving this because you commented.Message ID:
***@***.***>
|
Hi Alex, Thanks for your quick reply. I'm using residuals of adjusted DNA methylation data so it contains both positive and negative values but they are all small. Thanks, |
I think that this is probably a numerical issue caused by the phenotype
values being numerically small.
I would suggest normalizing the phenotypic variance to be 1. You can always
convert the effect estimates back onto the original scale.
…On Fri, 18 Mar 2022 at 02:14, Xiaopu Zhang ***@***.***> wrote:
Hi Xiaopu, What is the variance of the phenotype file you are inputting?
Thanks, Alex.
… <#m_-5515649743918291448_>
On Thu, 17 Mar 2022 at 09:19, Xiaopu Zhang *@*.*> wrote: Hello, I met the
same problem. I'm working on simulated data. After comparing my phenotype
data with the example file, I found mine is 10-fold smaller than the
example phenotype. i.e. mine is between 1e-3 ~ 1e-2. Once I multiple 10 my
phenotype data, NaN disappeared. Could anyone give any suggestions for this
situation please? Thanks, Xiaopu — Reply to this email directly, view it on
GitHub <#3 (comment)
<#3 (comment)>>,
or unsubscribe
https://github.com/notifications/unsubscribe-auth/ABQQS6MY2PEJU7FFIUPRUPTVANLSZANCNFSM4MCIHEYQ
<https://github.com/notifications/unsubscribe-auth/ABQQS6MY2PEJU7FFIUPRUPTVANLSZANCNFSM4MCIHEYQ>
. Triage notifications on the go with GitHub Mobile for iOS
https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675
<https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675>
or Android
https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub
<https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub>.
You are receiving this because you commented.Message ID: @.*>
Hi Alex,
Thanks for your quick reply.
I'm using residuals of adjusted DNA methylation data so it contains both
positive and negative values but they are all small.
Thanks,
Xiaopu
—
Reply to this email directly, view it on GitHub
<#3 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABQQS6PE2MAQVYIY7B6ZZYDVARCQFANCNFSM4MCIHEYQ>
.
Triage notifications on the go with GitHub Mobile for iOS
<https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675>
or Android
<https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub>.
You are receiving this because you commented.Message ID:
***@***.***>
|
Hi Alex,
Thanks for your quick response.
I'm using the variance of DNA methylation data which is measured by beta
value (0<=beta<=1)
Thanks,
Xiaopu
On Thu, 17 Mar 2022 at 21:13, Alexander Young ***@***.***>
wrote:
… Hi Xiaopu,
What is the variance of the phenotype file you are inputting?
Thanks,
Alex.
On Thu, 17 Mar 2022 at 09:19, Xiaopu Zhang ***@***.***> wrote:
> Hello,
>
> I met the same problem. I'm working on simulated data. After comparing my
> phenotype data with the example file, I found mine is 10-fold smaller
than
> the example phenotype. i.e. mine is between 1e-3 ~ 1e-2. Once I multiple
10
> my phenotype data, NaN disappeared.
>
> Could anyone give any suggestions for this situation please?
>
> Thanks,
> Xiaopu
>
> —
> Reply to this email directly, view it on GitHub
> <#3 (comment)>,
> or unsubscribe
> <
https://github.com/notifications/unsubscribe-auth/ABQQS6MY2PEJU7FFIUPRUPTVANLSZANCNFSM4MCIHEYQ
>
> .
> Triage notifications on the go with GitHub Mobile for iOS
> <
https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675
>
> or Android
> <
https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub
>.
>
> You are receiving this because you commented.Message ID:
> ***@***.***>
>
—
Reply to this email directly, view it on GitHub
<#3 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AS4TCOOLUSIEHTOC7JXKLVLVAOOAZANCNFSM4MCIHEYQ>
.
Triage notifications on the go with GitHub Mobile for iOS
<https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675>
or Android
<https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub>.
You are receiving this because you commented.Message ID:
***@***.***>
|
Have you tried scaling the phenotype to have variance 1?
…On Tue, 11 Oct 2022 at 02:27, Xiaopu Zhang ***@***.***> wrote:
Hi Alex,
Thanks for your quick response.
I'm using the variance of DNA methylation data which is measured by beta
value (0<=beta<=1)
Thanks,
Xiaopu
On Thu, 17 Mar 2022 at 21:13, Alexander Young ***@***.***>
wrote:
> Hi Xiaopu,
>
> What is the variance of the phenotype file you are inputting?
>
> Thanks,
>
> Alex.
>
> On Thu, 17 Mar 2022 at 09:19, Xiaopu Zhang ***@***.***> wrote:
>
> > Hello,
> >
> > I met the same problem. I'm working on simulated data. After comparing
my
> > phenotype data with the example file, I found mine is 10-fold smaller
> than
> > the example phenotype. i.e. mine is between 1e-3 ~ 1e-2. Once I
multiple
> 10
> > my phenotype data, NaN disappeared.
> >
> > Could anyone give any suggestions for this situation please?
> >
> > Thanks,
> > Xiaopu
> >
> > —
> > Reply to this email directly, view it on GitHub
> > <#3 (comment)
>,
> > or unsubscribe
> > <
>
https://github.com/notifications/unsubscribe-auth/ABQQS6MY2PEJU7FFIUPRUPTVANLSZANCNFSM4MCIHEYQ
> >
> > .
> > Triage notifications on the go with GitHub Mobile for iOS
> > <
>
https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675
> >
> > or Android
> > <
>
https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub
> >.
> >
> > You are receiving this because you commented.Message ID:
> > ***@***.***>
> >
>
> —
> Reply to this email directly, view it on GitHub
> <#3 (comment)>,
> or unsubscribe
> <
https://github.com/notifications/unsubscribe-auth/AS4TCOOLUSIEHTOC7JXKLVLVAOOAZANCNFSM4MCIHEYQ
>
> .
> Triage notifications on the go with GitHub Mobile for iOS
> <
https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675
>
> or Android
> <
https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub
>.
>
> You are receiving this because you commented.Message ID:
> ***@***.***>
>
—
Reply to this email directly, view it on GitHub
<#3 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABQQS6LXQBP7T5ICDJ7KIYLWCUXI3ANCNFSM4MCIHEYQ>
.
You are receiving this because you commented.Message ID:
***@***.***>
|
Hi there,
Thanks for developing such an amazing toolbox.
When I run the hlmm with simply linear model, rather than linear mixed model, I found there were lots of nan in the resulting file, like this:
SNP n frequency likelihood add add_se add_t add_pval var var_se var_t var_pval av_pval
rs62224609 32057 0.09890195589106904 nan nan nan nan nan nan 0.018897 nan nan nan
rs376238049 28364 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs62224614 31900 0.09943573667711599 nan nan nan nan nan nan 0.018898 nan nan nan
rs7286962 31742 0.0996314031882049 nan nan nan nan nan nan 0.018928 nan nan nan
rs62224618 32256 0.10105096726190477 nan nan nan nan nan nan 0.018657 nan nan nan
rs372511672 27602 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs2844853 27472 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs370772954 30458 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs3949130 31617 0.07600341588385995 nan nan nan nan nan nan 0.021283 nan nan nan
rs200167968 31639 0.07527102626505262 nan nan nan nan nan nan 0.021369 nan nan nan
rs79847867 32256 0.07783048115079365 nan nan nan nan nan nan 0.020848 nan nan nan
rs200058026 31578 0.06846538729495218 nan nan nan nan nan nan 0.022361 nan nan nan
rs200867508 28405 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs199576657 28348 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs202050260 28001 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs7284947 29177 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs131517 15518 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs131522 17386 nan nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs131523 31749 0.30407256921477843 nan nan nan nan nan nan 0.012176 nan nan nan
rs185518626 30875 0.01259919028340081 nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs131525 31783 0.30829374193751374 nan nan nan nan nan nan 0.012122 nan nan nan
rs131526 31845 0.04813942534149784 nan NaN NaN NaN NaN NaN NaN NaN NaN nan
rs131527 31854 0.05019777735920139 nan nan nan nan nan nan 0.025782 nan nan nan
Any suggestions would be appreciated! Thanks.
Best,
Zhiqiang
The text was updated successfully, but these errors were encountered: