-
Notifications
You must be signed in to change notification settings - Fork 276
/
Copy pathnl_map_save.py
39 lines (28 loc) · 1.03 KB
/
nl_map_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import torch.utils.data as Data
import torchvision
from lib.network import Network
from torch import nn
import numpy as np
test_data = torchvision.datasets.MNIST(root='./mnist/',
transform=torchvision.transforms.ToTensor(),
train=False)
test_loader = iter(Data.DataLoader(dataset=test_data, batch_size=1, shuffle=False))
net = Network()
if torch.cuda.is_available():
net = nn.DataParallel(net)
net.cuda()
net.load_state_dict(torch.load('weights/net.pth'))
img_batch, label_batch = test_loader.__next__()
img_batch = img_batch.cuda()
label_batch = label_batch.cuda()
torch.set_grad_enabled(False)
net.eval()
_, nl_mep_list = net.module.forward_with_nl_map(img_batch)
# (b, h1*w1, h2*w2)
nl_map_1 = nl_mep_list[0].cpu().numpy()
nl_map_2 = nl_mep_list[1].cpu().numpy()
img = torchvision.transforms.ToPILImage()(img_batch.cpu()[0])
img.save('nl_map_vis/sample.png')
np.save('nl_map_vis/nl_map_1', nl_map_1)
np.save('nl_map_vis/nl_map_2', nl_map_2)