-
Notifications
You must be signed in to change notification settings - Fork 276
/
Copy pathdemo_MNIST_train.py
79 lines (60 loc) · 2.38 KB
/
demo_MNIST_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
import torch.utils.data as Data
import torchvision
from lib.network import Network
from torch import nn
import time
train_data = torchvision.datasets.MNIST(root='./mnist', train=True,
transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.MNIST(root='./mnist/',
transform=torchvision.transforms.ToTensor(),
train=False)
train_loader = Data.DataLoader(dataset=train_data, batch_size=128, shuffle=True)
test_loader = Data.DataLoader(dataset=test_data, batch_size=128, shuffle=False)
train_batch_num = len(train_loader)
test_batch_num = len(test_loader)
net = Network()
if torch.cuda.is_available():
net = nn.DataParallel(net)
net.cuda()
opt = torch.optim.Adam(net.parameters(), lr=0.001)
loss_func = nn.CrossEntropyLoss()
for epoch_index in range(10):
st = time.time()
torch.set_grad_enabled(True)
net.train()
for train_batch_index, (img_batch, label_batch) in enumerate(train_loader):
if torch.cuda.is_available():
img_batch = img_batch.cuda()
label_batch = label_batch.cuda()
predict = net(img_batch)
loss = loss_func(predict, label_batch)
net.zero_grad()
loss.backward()
opt.step()
print('(LR:%f) Time of a epoch:%.4fs' % (opt.param_groups[0]['lr'], time.time()-st))
torch.set_grad_enabled(False)
net.eval()
total_loss = []
total_acc = 0
total_sample = 0
for test_batch_index, (img_batch, label_batch) in enumerate(test_loader):
if torch.cuda.is_available():
img_batch = img_batch.cuda()
label_batch = label_batch.cuda()
predict = net(img_batch)
loss = loss_func(predict, label_batch)
predict = predict.argmax(dim=1)
acc = (predict == label_batch).sum()
total_loss.append(loss)
total_acc += acc
total_sample += img_batch.size(0)
mean_acc = total_acc.item() * 1.0 / total_sample
mean_loss = sum(total_loss) / total_loss.__len__()
print('[Test] epoch[%d/%d] acc:%.4f%% loss:%.4f\n'
% (epoch_index, 10, mean_acc * 100, mean_loss.item()))
# weight_path = 'weights/net.pth'
# print('Save Net weights to', weight_path)
# net.cpu()
# torch.save(net.state_dict(), weight_path)