-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathseen_main.py
313 lines (281 loc) · 15.1 KB
/
seen_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import torch
import torch.nn as nn
import torchvision
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch.optim as optim
from torch.optim.lr_scheduler import ExponentialLR, StepLR
from torch.utils.data import DataLoader
# import torch.backends.cudnn as cudnn
# torch.autograd.set_detect_anomaly(True)
from tensorboardX import SummaryWriter
import numpy as np
import matplotlib.pyplot as plt
# import pdb
import json
import time
import datetime
import os
import cv2
import argparse
import logging
# import sys
# sys.path.append('.') # append pwd into system path so that it could find python modules
# print(os.getcwd())
import datasets.transforms as mytransforms
from datasets.AnimalPoseDataset.animalpose_dataset import AnnotationPrepare, AnnotationPrepareAndSplit, EpisodeGenerator, AnimalPoseDataset, save_episode_before_preprocess
from datasets.dataset_utils import draw_skeletons
from solver_gridms_multiple_kps_covar2 import FSLKeypointNet
############################################################################################
## main call
##
############################################################################################
# os.environ['CUDA_VISIBLE_DEVICES'] = "0, 1"
# print(torch.cuda.device_count())
# parser = argparse.ArgumentParser(description='Keypoint detection with few-shot learning')
# parser.add_argument('--num_episodes', type=int, default=1000, help='number of episodes')
# parser.add_argument('--use_fused_attention', type=str, default=None)
# args = parser.parse_args()
# print(args.num_episodes)
# print(args.use_fused_attention == None)
# exit(0)
config_str39 = 'image384-2048x12x12(f32)-modu2-gaussian2-x14-reg-adam-80000epochs-11way-dynamicorder-1s5q-all2dog-OneClassEpisode-adapt0-gridMSEx8-12-16-freeze6-0.5vs0.5-3kps6curves-saliency-triplet-covar-wsqa-N11L3S11'
opts = {
'num_episodes': 80000,
'N_way': 11,
'K_shot': 1,
'M_query': 5,
'square_image_length': 384, # 384, 368, 256, 192
'delete_old_files': False,
'save_model': False,
'save_model_root': './savemodel',
'save_model_postfix': '-%s.pt'%config_str39,
'load_trained_model': False,
'load_model_root': './savemodel', # './savemodel', '../MyKeypointDetectionV2-NCI/savemodel'
'load_model_postfix': '-%s.pt'%config_str39,
'set_eval': False,
'finetuning_steps': 0,
'sigma': 14, # 13, 14
'eval_method': 'method1', # 'method1' or 'method2'
'layer_to_freezing': 6, # 6, -1
'downsize_factor': 32, # 32 (12x12), 46 (8x8), 64 (6x6)
'grid_length': [8, 12, 16], # [8, 12, 16], [16, 18, 20]
'use_fused_attention': None, # 'L2-c', 'attmap', None
'use_domain_confusion': False,
'use_auxiliary_regressor': False,
'aux_grid_length': [8, 12, 16], # [8, 12, 16], [16, 18, 20]
'use_interpolated_kps': True,
'loss_weight': [0.5, 0.5, 0.5],
'interpolation_mode': 3,
'interpolation_knots': np.array([0.25, 0.5, 0.75]), # [0.25, 0.5, 0.75], [0.25, 0.375, 0.5, 0.625, 0.75], [0.5]
'auxiliary_path_mode': 'predefined', # 'predefined', 'exhaust', 'random'
'num_random_paths': 6, # only used when auxiliary_path_mode='random'
'hdf5_images_path': None, # '/home/changsheng/LabDatasets/AnimalPoseDataset-2019WS-CDA/Animal_Dataset_Combined/images.hdf5',
'saliency_maps_root': '/home/changsheng/LabDatasets/AnimalPoseDataset-2019WS-CDA/saliency_maps/Animal_Dataset_Combined', # None
'sample_times': 15, # 15, 30
'eval_compute_var': 0, # 0, don't compute var in eval; 1, uncorrelated var; 2, covar
'use_pum': True, # patches uncertainty module
'offset_learning': False, # offset learning net; only used for auxiliary kps
'data_parallel': False,
'use_body_part_protos': False, # used for building universal body part prototypes
'load_proto': False,
'memorize_fibers': True,
'proto_compute_method': 'm', # 'm': mean; 'ws': weighted_sum
'eval_with_body_part_protos': False, # only used in eval
}
if opts['delete_old_files']:
if os.path.exists('training.log'):
os.remove('training.log')
if os.path.exists('runs'):
import shutil
shutil.rmtree('runs')
# logging.basicConfig(
# level=logging.INFO,
# format='%(message)s',
# filename='training-%s.log'%config_str3,
# filemode='a'
# )
# logging.info('-----------time: {}-----------'.format(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')))
logging = None
writer_path = './runs/{}-{}'.format(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), config_str39)
# writer = SummaryWriter(writer_path)
writer = None
# AnimalPose_image_root = '/home/changsheng/LabDatasets/AnimalPoseDataset-2019WS-CDA/Animal_Dataset_Combined/images'
# AnimalPose_json_root = '/home/changsheng/LabDatasets/AnimalPoseDataset-2019WS-CDA/Animal_Dataset_Combined/gt'
local_json_root = './annotation_prepare'
# annotation preparing
# cat_anno_path = AnimalPose_json_root + '/cat.json'
# dog_anno_path = AnimalPose_json_root + '/dog.json'
# cow_anno_path = AnimalPose_json_root + '/cow.json'
# horse_anno_path = AnimalPose_json_root + '/horse.json'
# sheep_anno_path = AnimalPose_json_root + '/sheep.json'
# AnnotationPrepare([AnimalPose_image_root+'/cat'], [cat_anno_path], anno_save_root=local_json_root)
# AnnotationPrepare([AnimalPose_image_root+'/dog'], [dog_anno_path], anno_save_root=local_json_root)
# AnnotationPrepare([AnimalPose_image_root+'/cow'], [cow_anno_path], anno_save_root=local_json_root)
# AnnotationPrepare([AnimalPose_image_root+'/horse'], [horse_anno_path], anno_save_root=local_json_root)
# AnnotationPrepare([AnimalPose_image_root+'/sheep'], [sheep_anno_path], anno_save_root=local_json_root)
# exit(0)
split_ratio = 0.7
classes = ['cat', 'dog', 'cow', 'horse', 'sheep']
combine_train_path = 'animal%.2f.json'%split_ratio
combine_test_path = 'animal%.2f.json'%(1-split_ratio)
# AnnotationPrepareAndSplit([AnimalPose_image_root+'/cat'], [cat_anno_path], anno_save_root=local_json_root, split_ratio=split_ratio)
# AnnotationPrepareAndSplit([AnimalPose_image_root+'/dog'], [dog_anno_path], anno_save_root=local_json_root, split_ratio=split_ratio)
# AnnotationPrepareAndSplit([AnimalPose_image_root+'/cow'], [cow_anno_path], anno_save_root=local_json_root, split_ratio=split_ratio)
# AnnotationPrepareAndSplit([AnimalPose_image_root+'/horse'], [horse_anno_path], anno_save_root=local_json_root, split_ratio=split_ratio)
# AnnotationPrepareAndSplit([AnimalPose_image_root+'/sheep'], [sheep_anno_path], anno_save_root=local_json_root, split_ratio=split_ratio)
## combine subsets
# train_samples = []
# test_samples = []
# for each_class in classes:
# with open(local_json_root+'/'+each_class+('%.2f.json'%split_ratio), 'r') as fin:
# subset_samples = json.load(fin)
# fin.close()
# train_samples += subset_samples
# with open(local_json_root+'/'+each_class+('%.2f.json'%(1-split_ratio)), 'r') as fin:
# subset_samples2 = json.load(fin)
# fin.close()
# test_samples += subset_samples2
# with open(local_json_root+'/'+combine_train_path, 'w') as fout:
# json.dump(train_samples, fout)
# fout.close()
# with open(local_json_root+'/'+combine_test_path, 'w') as fout:
# json.dump(test_samples, fout)
# fout.close()
# exit(0)
# image_roots = [AnimalPose_image_root+'/cat',
# # AnimalPose_image_root+'/dog',
# AnimalPose_image_root+'/cow',
# AnimalPose_image_root+'/horse',
# AnimalPose_image_root+'/sheep'
# ]
# annotation_paths = [cat_anno_path,
# # dog_anno_path,
# cow_anno_path,
# horse_anno_path,
# sheep_anno_path
# ]
# AnnotationPrepare(image_roots, annotation_paths, anno_save_root='./annotation_prepare', anno_save_name='all_wo_dog.json')
# image_roots = [# AnimalPose_image_root+'/cat',
# AnimalPose_image_root+'/dog',
# AnimalPose_image_root+'/cow',
# AnimalPose_image_root+'/horse',
# AnimalPose_image_root+'/sheep'
# ]
# annotation_paths = [# cat_anno_path,
# dog_anno_path,
# cow_anno_path,
# horse_anno_path,
# sheep_anno_path
# ]
# AnnotationPrepare(image_roots, annotation_paths, anno_save_root='./annotation_prepare', anno_save_name='all_wo_cat.json')
training_kp_category_set = [
# 'l_eye',
# 'r_eye',
'l_ear',
'r_ear',
'nose',
# 'throat',
# 'withers',
# 'tail',
'l_f_leg',
'r_f_leg',
'l_b_leg',
'r_b_leg',
# 'l_f_knee',
# 'r_f_knee',
# 'l_b_knee',
# 'r_b_knee',
'l_f_paw',
'r_f_paw',
'l_b_paw',
'r_b_paw'
]
testing_kp_category_set = [
'l_eye',
'r_eye',
# 'l_ear',
# 'r_ear',
# 'nose',
# 'throat',
# 'withers',
# 'tail',
# 'l_f_leg',
# 'r_f_leg',
# 'l_b_leg',
# 'r_b_leg',
'l_f_knee',
'r_f_knee',
'l_b_knee',
'r_b_knee',
# 'l_f_paw',
# 'r_f_paw',
# 'l_b_paw',
# 'r_b_paw'
]
s_kp_num = 3 # 3 or 2 or 4 or above
q_kp_num = 3 # 3 or 2 or 4 or above
order_fixed = True # True
episode_type = "one_class" # "one_class", "mix_class"
#----------------- For seen kps -----------------
# N_way1 = len(training_kp_category_set)
if opts['N_way'] > len(training_kp_category_set):
N_way1 = len(training_kp_category_set)
else:
N_way1 = opts['N_way']
episode_generator = EpisodeGenerator(os.path.join(local_json_root, combine_train_path), N_way=N_way1, K_shot=opts['K_shot'], M_queries=opts['M_query'],
kp_category_set=training_kp_category_set, order_fixed=order_fixed, vis_requirement='partial_visible', least_support_kps_num=s_kp_num, least_query_kps_num=q_kp_num, episode_type=episode_type) # partial_visible full_visible
print('Number of training images: {} / valid: {}'.format(len(episode_generator.samples), episode_generator.num_valid_image))
episode_generator_test = EpisodeGenerator(os.path.join(local_json_root, combine_test_path), N_way=N_way1, K_shot=opts['K_shot'], M_queries=opts['M_query'],
kp_category_set=training_kp_category_set, order_fixed=order_fixed, vis_requirement='partial_visible', least_support_kps_num=s_kp_num, least_query_kps_num=q_kp_num, episode_type=episode_type)
print('Number of testing images: {} / valid: {}'.format(len(episode_generator_test.samples), episode_generator_test.num_valid_image))
episode_generator_test_list = [] # test for base kps
for each_class in classes:
ann_name_temp = each_class + '%.2f.json'%(1-split_ratio)
episode_generator_temp = EpisodeGenerator(os.path.join(local_json_root, ann_name_temp), N_way=N_way1, K_shot=opts['K_shot'], M_queries=opts['M_query'],
kp_category_set=training_kp_category_set, order_fixed=order_fixed, vis_requirement='partial_visible', least_support_kps_num=s_kp_num, least_query_kps_num=q_kp_num, episode_type=episode_type)
episode_generator_test_list.append(episode_generator_temp)
print('Class {}, Number of testing images: {} / valid: {}'.format(each_class, len(episode_generator_temp.samples), episode_generator_temp.num_valid_image))
#----------------- For unseen kps -----------------
N_way2 = len(testing_kp_category_set)
episode_generator_test2 = EpisodeGenerator(os.path.join(local_json_root, combine_test_path), N_way=N_way2, K_shot=opts['K_shot'], M_queries=opts['M_query'],
kp_category_set=testing_kp_category_set, order_fixed=order_fixed, vis_requirement='partial_visible', least_support_kps_num=s_kp_num, least_query_kps_num=q_kp_num, episode_type=episode_type)
print('Number of testing images: {} / valid: {}'.format(len(episode_generator_test2.samples), episode_generator_test2.num_valid_image))
episode_generator_test_list2 = [] # test for novel kps
for each_class in classes:
ann_name_temp = each_class + '%.2f.json'%(1-split_ratio)
episode_generator_temp = EpisodeGenerator(os.path.join(local_json_root, ann_name_temp), N_way=N_way2, K_shot=opts['K_shot'], M_queries=opts['M_query'],
kp_category_set=testing_kp_category_set, order_fixed=order_fixed, vis_requirement='partial_visible', least_support_kps_num=s_kp_num, least_query_kps_num=q_kp_num, episode_type=episode_type)
episode_generator_test_list2.append(episode_generator_temp)
print('Class {}, Number of testing images: {} / valid: {}'.format(each_class, len(episode_generator_temp.samples), episode_generator_temp.num_valid_image))
keypointnet = FSLKeypointNet(None, opts, logging, writer, episode_generator_test, episode_generator_test2)
# keypointnet.train() # training by using single episode generator
keypointnet.train(episode_generator) # using the multiple
print('******final tests******')
keypointnet.opts['load_trained_model'] = True
keypointnet.opts['load_model_postfix'] = keypointnet.opts['save_model_postfix']
keypointnet.load_model()
print('==============================Test1-seen kps======================================')
keypointnet.validate(episode_generator, 100, eval_method=opts['eval_method'])
print('==============================Test2-seen kps======================================')
keypointnet.validate(episode_generator_test, 100, eval_method=opts['eval_method'])
keypointnet.validate(episode_generator_test, 100, eval_method=opts['eval_method'], using_crop=False)
keypointnet.validate(episode_generator_test, 100, eval_method='method2')
keypointnet.validate(episode_generator_test, 100, eval_method='method2', using_crop=False)
for i, each_class in enumerate(classes):
print('==============================Test2-seen kps + %s======================================'%each_class)
keypointnet.validate(episode_generator_test_list[i], 100, eval_method=opts['eval_method'])
keypointnet.validate(episode_generator_test_list[i], 100, eval_method=opts['eval_method'], using_crop=False)
keypointnet.validate(episode_generator_test_list[i], 100, eval_method='method2')
keypointnet.validate(episode_generator_test_list[i], 100, eval_method='method2', using_crop=False)
print('==============================Test3-unseen kps====================================')
keypointnet.validate(episode_generator_test2, 100, eval_method=opts['eval_method'])
keypointnet.validate(episode_generator_test2, 100, eval_method=opts['eval_method'], using_crop=False)
keypointnet.validate(episode_generator_test2, 100, eval_method='method2')
keypointnet.validate(episode_generator_test2, 100, eval_method='method2', using_crop=False)
for i, each_class in enumerate(classes):
print('==============================Test3-unseen kps + %s===================================='%each_class)
keypointnet.validate(episode_generator_test_list2[i], 100, eval_method=opts['eval_method'])
keypointnet.validate(episode_generator_test_list2[i], 100, eval_method=opts['eval_method'], using_crop=False)
keypointnet.validate(episode_generator_test_list2[i], 100, eval_method='method2')
keypointnet.validate(episode_generator_test_list2[i], 100, eval_method='method2', using_crop=False)