-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalg_heuristic.py
235 lines (197 loc) · 7.21 KB
/
alg_heuristic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from copy import deepcopy
from enum import Flag
from math import sqrt
from statistics import mean
from time import time
from config.config import get_config as init
from env.env import env as myenv
import numpy as np
import random
def AlgGreedy(seed=0):
config = init()
np.random.seed(seed)
random.seed(seed)
env = myenv(config)
done = False
while not done:
energy_all_nodes = env.get_node_energy()
_, done = env.interval_step(energy_all_nodes.index(max(energy_all_nodes)))
print(f"Greedy: {env.cnt_transmit}")
print(env.get_node_energy())
# print(env.send_consomed_en)
# print(env.recv_consomed_en)
return env.cnt_transmit
def AlgGreedy_With_Minimize_Sum_Energy_Consume(seed=0, flag_save_total_energy=False):
config = init()
np.random.seed(seed)
random.seed(seed)
env = myenv(config)
env_tmp = deepcopy(env)
done = False
while not done:
energy_all_nodes = np.array(env.get_node_energy())
if flag_save_total_energy:
with open("Greedy_total_energy",'a+') as f:
f.write(str(np.sum(energy_all_nodes)) + "\n")
min_energy_consume = 10000
min_idx = -1
for idx in range(env.num_node):
for node_idx in range(env.num_node):
env_tmp.node[node_idx].energy = env.node[node_idx].energy
_,_ = env_tmp.interval_step(idx)
energy_next = np.array(env_tmp.get_node_energy())
if min_energy_consume > sum(energy_all_nodes - energy_next):
min_energy_consume = sum(energy_all_nodes - energy_next)
min_idx = idx
# print(min_idx)
# route = env.proc_inter.get_route(env.node, min_idx)
# route_sort = [-1 for _ in range(20)]
# for i in range(19):
# route_sort[route[i][0]] = route[i][1]
# print(route_sort)
_, done = env.interval_step(min_idx)
print(f"AlgGreedy_With_Minimize_Sum_Energy_Consume: {env.cnt_transmit}")
print(env.get_node_energy())
return env.cnt_transmit
def AlgRandom(seed=0, flag_save_total_energy=False):
config = init()
np.random.seed(seed)
random.seed(seed)
env = myenv(config)
done = False
avg_time = 0
a = []
while not done:
energy_all_nodes = np.array(env.get_node_energy())
if flag_save_total_energy:
with open("Random_total_energy",'a+') as f:
f.write(str(np.sum(energy_all_nodes)) + "\n")
t1 = time()
center_node = random.randint(0,19)
avg_time += time()-t1
_, done = env.interval_step(center_node)
a.append(sum(energy_all_nodes) - sum(env.get_node_energy()))
print(min(a))
print(max(a))
print(f"Random: {env.cnt_transmit}")
print(avg_time/int(env.cnt_transmit/10))
print(env.get_node_energy())
return env.cnt_transmit
def AlgMaxEnergy(seed=0, flag_save_total_energy=False):
config = init()
np.random.seed(seed)
random.seed(seed)
env = myenv(config)
done = False
avg_time = 0
a = []
while not done:
energy_all_nodes = env.get_node_energy()
center_node = energy_all_nodes.index(max(energy_all_nodes))
energy_all_nodes = np.array(energy_all_nodes)
if flag_save_total_energy:
with open("MaxEnergy_total_energy",'a+') as f:
f.write(str(np.sum(energy_all_nodes)) + "\n")
t1 = time()
avg_time += time()-t1
_, done = env.interval_step(center_node)
a.append(sum(energy_all_nodes) - sum(env.get_node_energy()))
print(min(a))
print(max(a))
print(f"MaxEnergy: {env.cnt_transmit}")
# print(avg_time/int(env.cnt_transmit/10))
print(env.get_node_energy())
return env.cnt_transmit
def AlgLeach_F(seed=0):
config = init()
np.random.seed(seed)
random.seed(seed)
env = myenv(config)
done = False
idx = 0
while not done:
_, done = env.interval_step(idx)
idx = (idx+1)%20
print(f"LEACH-F: {env.cnt_transmit}")
return env.cnt_transmit
def AlgStatic(seed=0, node=-1, flag_save_total_energy=False):
config = init()
ret = []
if node != -1:
np.random.seed(seed)
random.seed(seed)
env = myenv(config)
done = False
while not done:
energy_all_nodes = np.array(env.get_node_energy())
if flag_save_total_energy:
with open(f"Static_n{node}_total_energy",'a+') as f:
f.write(str(np.sum(energy_all_nodes)) + "\n")
_, done = env.interval_step(node-1)
print(f"Static Node{node}: {env.cnt_transmit}")
ret.append(env.cnt_transmit)
else:
for idx in range(20):
np.random.seed(seed)
random.seed(seed)
env = myenv(config)
done = False
while not done:
_, done = env.interval_step(idx)
print(f"Static Node{idx}: {env.cnt_transmit}")
ret.append(env.cnt_transmit)
return ret
def AlgRotate(seed=0):
config = init()
ret = []
env = myenv(config)
count = [0, 18, 18, 19, 17, 17, 16, 12, 13, 1, 1, 15, 13, 13, 2, 3, 18, 17, 19, 19]
pi = np.array(count)/sum(count)
idx_list = np.array([i for i in range(env.num_node)])
for seed in range(10):
env.reset()
np.random.seed(seed)
random.seed(seed)
done = False
while not done:
_, done = env.interval_step(np.random.choice(idx_list, p=pi))
ret.append(env.cnt_transmit)
print(f"Rotate: {env.cnt_transmit}")
if __name__ == '__main__':
# AlgRotate()
AlgRandom(0,False)
# t1 = time()
# # AlgGreedy_With_Minimize_Sum_Energy_Consume(0,True)
AlgGreedy_With_Minimize_Sum_Energy_Consume(0,False)
# AlgMaxEnergy(0,False)
# print('程序运行时间:%s毫秒' % ((time() - t1)*1000))
# t1 = time()
# AlgGreedy()
# print('程序运行时间:%s毫秒' % ((time() - t1)*1000))
# t1 = time()
# AlgRandom(0,True)
# print('程序运行时间:%s毫秒' % ((time() - t1)*1000))
# t1 = time()
# AlgLeach_F()
# print('程序运行时间:%s毫秒' % ((time() - t1)*1000))
# t1 = time()
# AlgStatic()
# print('程序运行时间:%s毫秒' % ((time() - t1)*1000))
# AlgStatic(0,13,True)
# result = [[],[],[],[],[]]
# for seed in range(10):
# result[0].append(AlgGreedy_With_Minimize_Sum_Energy_Consume(seed))
# # result[1].append(AlgGreedy(seed))
# result[2].append(AlgRandom(seed))
# result[3].append(AlgMaxEnergy(seed))
# result[4].append(AlgStatic(seed))
# print(" \n")
# print(result)
# print(" \n")
# print(f"AlgGreedy_With_Minimize_Sum_Energy_Consume, mean: {mean(result[0])}, max: {max(result[0])}, min: {min(result[0])}")
# # print(f"Greedy, mean: {mean(result[1])}, max: {max(result[1])}, min: {min(result[1])}")
# print(f"Random, mean: {mean(result[2])}, max: {max(result[2])}, min: {min(result[2])}")
# print(f"AlgMaxEnergy, mean: {mean(result[3])}, max: {max(result[3])}, min: {min(result[3])}")
# result_static = np.array(result[4])
# print(f"Static, mean: {result_static.mean(axis=0)}, max: {result_static.max(axis=0)}, min: {result_static.min(axis=0)}")
# print("")