-
Notifications
You must be signed in to change notification settings - Fork 0
/
tpot_exported_pipeline.py
37 lines (34 loc) · 1.35 KB
/
tpot_exported_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline, make_union
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
from tpot.builtins import StackingEstimator
from sklearn.preprocessing import FunctionTransformer
from copy import copy
# NOTE: Make sure that the class is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1).values
training_features, testing_features, training_target, testing_target = \
train_test_split(features, tpot_data['target'].values, random_state=42)
# Average CV score on the training set was:0.951388888888889
exported_pipeline = make_pipeline(
make_union(
FunctionTransformer(copy),
make_union(
FunctionTransformer(copy),
make_union(
FunctionTransformer(copy),
make_union(
FunctionTransformer(copy),
FunctionTransformer(copy)
)
)
)
),
StandardScaler(),
LinearSVC(C=25.0, dual=False, loss="squared_hinge", penalty="l2", tol=1e-05)
)
exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)