-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreprocessing.py
222 lines (203 loc) · 8.28 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
__author__ = '[email protected]'
"""
预处理
"""
import sys
import yaml
import pickle
import codecs
import numpy as np
from collections import defaultdict
from utils import create_dictionary, load_embed_from_txt
def build_vocabulary(path_data, path_vocs_dict, min_counts_dict, columns,
sequence_len_pt=98, use_char_featrue=False, word_len_pt=98):
"""
构建字典
Args:
path_data: str, 数据路径
path_vocs_dict: dict, 字典存放路径
min_counts_dict: dict, item最少出现次数
columns: list of str, 每一列的名称
sequence_len_pt: int,句子长度百分位
use_char_featrue: bool,是否使用字符特征(针对英文)
word_len_pt: int,单词长度百分位
Returns:
voc_size_1, voc_size_2, ...: int
sequence_length: 序列最大长度
"""
print('building vocs...')
file_data = codecs.open(path_data, 'r', encoding='utf-8')
line = file_data.readline()
sequence_length_list = [] # 句子长度
# 计数items
feature_item_dict_list = [defaultdict(int) for i in range(len(columns))]
# char feature
if use_char_featrue:
char_dict = defaultdict(int)
word_length_list = [] # 单词长度
sequence_length = 0
sentence_count = 0 # 句子数
while line:
line = line.rstrip()
if not line:
sentence_count += 1
sys.stdout.write('当前处理句子数: %d\r' % sentence_count)
sys.stdout.flush()
line = file_data.readline()
sequence_length_list.append(sequence_length)
sequence_length = 0
continue
items = line.split('\t')
sequence_length += 1
for i in range(len(columns)-1):
feature_item_dict_list[i][items[i]] += 1
# label
feature_item_dict_list[-1][items[-1]] += 1
# char feature
if use_char_featrue:
for c in items[0]:
char_dict[c] += 1
word_length_list.append(len(items[0]))
line = file_data.readline()
file_data.close()
# last instance
if sequence_length != 0:
sentence_count += 1
sys.stdout.write('当前处理句子数: %d\r' % sentence_count)
sequence_length_list.append(sequence_length)
print()
# 写入文件
voc_sizes = []
if use_char_featrue: # char feature
size = create_dictionary(
char_dict, path_vocs_dict['char'], start=2,
sort=True, min_count=min_counts_dict['char'], overwrite=True)
voc_sizes.append(size)
for i, name in enumerate(columns):
start = 1 if i == len(columns) - 1 else 2
# print feature_item_dict_list[i], path_vocs_dict[name], min_counts_dict[name]
size = create_dictionary(
feature_item_dict_list[i], path_vocs_dict[name], start=start,
sort=True, min_count=min_counts_dict[name], overwrite=True)
print('voc: %s, size: %d' % (path_vocs_dict[name], size))
voc_sizes.append(size)
print('句子长度分布:')
sentence_length = -1
option_len_pt = [90, 95, 98, 100]
if sequence_len_pt not in option_len_pt:
option_len_pt.append(sequence_len_pt)
for per in sorted(option_len_pt):
tmp = int(np.percentile(sequence_length_list, per))
if per == sequence_len_pt:
sentence_length = tmp
print('%3d percentile: %d (default)' % (per, tmp))
else:
print('%3d percentile: %d' % (per, tmp))
if use_char_featrue:
print('单词长度分布:')
word_length = -1
option_len_pt = [90, 95, 98, 100]
if word_len_pt not in option_len_pt:
option_len_pt.append(word_len_pt)
for per in sorted(option_len_pt):
tmp = int(np.percentile(word_length_list, per))
if per == word_len_pt:
word_length = tmp
print('%3d percentile: %d (default)' % (per, tmp))
else:
print('%3d percentile: %d' % (per, tmp))
print('done!')
lengths = [sentence_length]
if use_char_featrue:
lengths.append(word_length)
return voc_sizes, lengths
def main():
print('preprocessing...')
# 加载配置文件
with open('./config.yml') as file_config:
config = yaml.load(file_config)
# 构建字典(同时获取词表size,序列最大长度)
columns = config['model_params']['feature_names'] + ['label']
# print "colums:",columns
min_counts_dict, path_vocs_dict = defaultdict(int), dict()
feature_names = config['model_params']['feature_names']
for feature_name in feature_names:
min_counts_dict[feature_name] = \
config['data_params']['voc_params'][feature_name]['min_count']
path_vocs_dict[feature_name] = \
config['data_params']['voc_params'][feature_name]['path']
path_vocs_dict['label'] = \
config['data_params']['voc_params']['label']['path']
# char feature
min_counts_dict['char'] = config['data_params']['voc_params']['char']['min_count']
path_vocs_dict['char'] = config['data_params']['voc_params']['char']['path']
sequence_len_pt = config['model_params']['sequence_len_pt']
use_char_feature = config['model_params']['use_char_feature']
word_len_pt = config['model_params']['word_len_pt']
voc_sizes, lengths = build_vocabulary(
path_data=config['data_params']['path_train'], columns=columns,
min_counts_dict=min_counts_dict, path_vocs_dict=path_vocs_dict,
sequence_len_pt=sequence_len_pt, use_char_featrue=use_char_feature,
word_len_pt=word_len_pt)
print voc_sizes, lengths
if not use_char_feature:
sequence_length = lengths[0]
else:
sequence_length, word_length = lengths[:]
# 构建embedding表
feature_dim_dict = dict() # 存储每个feature的dim
for i, feature_name in enumerate(feature_names): # i:0,feature_name:f1
path_pre_train = config['model_params']['embed_params'][feature_name]['path_pre_train']
if not path_pre_train:
if i == 0:
feature_dim_dict[feature_name] = 64
else:
feature_dim_dict[feature_name] = 32
continue
path_pkl = config['model_params']['embed_params'][feature_name]['path']
path_voc = config['data_params']['voc_params'][feature_name]['path']
with open(path_voc, 'rb') as file_r:
voc = pickle.load(file_r)
embedding_dict, vec_dim = load_embed_from_txt(path_pre_train)
print feature_name, "dim_num:", vec_dim
feature_dim_dict[feature_name] = vec_dim
embedding_matrix = np.zeros((len(voc.keys())+2, vec_dim), dtype='float32')
for item in voc:
print item,voc[item]
if item in embedding_dict:
embedding_matrix[voc[item], :] = embedding_dict[item]
else:
embedding_matrix[voc[item], :] = np.random.uniform(-0.25, 0.25, size=(vec_dim))
with open(path_pkl, 'wb') as file_w:
pickle.dump(embedding_matrix, file_w)
# 修改config中各个特征的shape,embedding大小默认为[64, 32, 32, ...]
if use_char_feature:
char_voc_size = voc_sizes.pop(0)
label_size = voc_sizes[-1]
voc_sizes = voc_sizes[:-1]
# 修改nb_classes
config['model_params']['nb_classes'] = label_size + 1
# 修改embedding表的shape
for i, feature_name in enumerate(feature_names):
if i == 0:
config['model_params']['embed_params'][feature_name]['shape'] = \
[voc_sizes[i], feature_dim_dict[feature_name]]
else:
config['model_params']['embed_params'][feature_name]['shape'] = \
[voc_sizes[i], feature_dim_dict[feature_name]]
# 修改char表的embedding
if use_char_feature:
# 默认16维,根据任务调整
config['model_params']['embed_params']['char']['shape'] = \
[char_voc_size, 16]
config['model_params']['word_length'] = word_length
# 修改句子长度
config['model_params']['sequence_length'] = sequence_length
# 写入文件
with codecs.open('./config.yml', 'w', encoding='utf-8') as file_w:
yaml.dump(config, file_w)
print('all done!')
if __name__ == '__main__':
main()