forked from photosynthesis-team/piq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
results_benchmark.py
374 lines (293 loc) · 16.9 KB
/
results_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
"""Code for computation of PLCC, SRCC and KRCC between
PIQ metrics predictions and ground truth scores from MOS databases.
"""
import piq
import tqdm
import torch
import argparse
import functools
import torchvision
import pandas as pd
from typing import List, Callable, Tuple
from pathlib import Path
from skimage.io import imread
from scipy.stats import spearmanr, kendalltau
from torch.utils.data import DataLoader, Dataset
from dataclasses import dataclass
from torch import nn
from itertools import chain
@dataclass
class Metric:
name: str
functor: Callable
category: str # FR - full-reference, NR - no-reference, DB - distribution-based
def __post_init__(self):
valid_categories = {'FR', 'NR', 'DB'}
assert self.category in valid_categories, f'Provided category [{self.category}] is invalid. ' \
f'Provide one of: {valid_categories}'
torch.multiprocessing.set_sharing_strategy('file_system')
METRICS = {
# Full-reference
"PSNR": Metric(name="PSNR", functor=functools.partial(piq.psnr, data_range=255., reduction='none'), category='FR'),
"SSIM": Metric(name="SSIM", functor=functools.partial(piq.ssim, data_range=255., reduction='none'), category='FR'),
"MS-SSIM": Metric(name="MS-SSIM", functor=functools.partial(piq.multi_scale_ssim, data_range=255.,
reduction='none'), category='FR'),
"IW-SSIM": Metric(name="IW-SSIM", functor=functools.partial(piq.information_weighted_ssim, data_range=255.,
reduction='none'), category='FR'),
"VIFp": Metric(name="VIFp", functor=functools.partial(piq.vif_p, data_range=255., reduction='none'), category='FR'),
"GMSD": Metric(name="GMSD", functor=functools.partial(piq.gmsd, data_range=255., reduction='none'), category='FR'),
"MS-GMSD": Metric(name="MS-GMSD", functor=functools.partial(piq.multi_scale_gmsd, data_range=255.,
reduction='none'), category='FR'),
"MS-GMSDc": Metric(name="MS-GMSDc", functor=functools.partial(piq.multi_scale_gmsd, data_range=255.,
chromatic=True, reduction='none'), category='FR'),
"FSIM": Metric(name="FSIM", functor=functools.partial(piq.fsim, data_range=255.,
chromatic=False, reduction='none'), category='FR'),
"FSIMc": Metric(name="FSIMc", functor=functools.partial(piq.fsim, data_range=255.,
chromatic=True, reduction='none'), category='FR'),
"VSI": Metric(name="VSI", functor=functools.partial(piq.vsi, data_range=255., reduction='none'), category='FR'),
"SR-SIM": Metric(name="SR-SIM", functor=functools.partial(piq.srsim, data_range=255.,
reduction='none'), category='FR'),
"SR-SIMc": Metric(name="SR-SIM", functor=functools.partial(piq.srsim, data_range=255.,
reduction='none', chromatic=True), category='FR'),
"HaarPSI": Metric(name="HaarPSI", functor=functools.partial(piq.haarpsi, data_range=255.,
reduction='none'), category='FR'),
"MDSI": Metric(name="MDSI", functor=functools.partial(piq.mdsi, data_range=255., reduction='none'), category='FR'),
"LPIPS-vgg": Metric(name="LPIPS-vgg", functor=piq.LPIPS(replace_pooling=False, reduction='none'), category='FR'),
"DISTS": Metric(name="DISTS", functor=piq.DISTS(reduction='none'), category='FR'),
"PieAPP": Metric(name="PieAPP", functor=piq.PieAPP(data_range=255., reduction='none'), category='FR'),
"Content": Metric(name="Content", functor=piq.ContentLoss(reduction='none'), category='FR'),
"Style": Metric(name="Style", functor=piq.StyleLoss(reduction='none'), category='FR'),
"DSS": Metric(name="DSS", functor=functools.partial(piq.dss, data_range=255., reduction='none'), category='FR'),
# No-reference
"BRISQUE": Metric(name="BRISQUE", functor=functools.partial(piq.brisque, data_range=255., reduction='none'),
category='NR'),
# Distribution-based
"IS": Metric(name="IS", functor=piq.IS(distance='l1'), category='DB'),
"FID": Metric(name="FID", functor=piq.FID(), category='DB'),
"GS": Metric(name="GS", functor=piq.GS(), category='DB'),
"KID": Metric(name="KID", functor=piq.KID(), category='DB'),
"MSID": Metric(name="MSID", functor=piq.MSID(), category='DB'),
"PR": Metric(name="PR", functor=piq.PR(), category='DB')
}
METRIC_CATEGORIES = {cat: [k for k, v in METRICS.items() if v.category == cat] for cat in ['FR', 'NR', 'DB']}
class TID2013(Dataset):
r""" A class to evaluate on the KADID10k dataset.
Note that the class is callable. The values are returned as a result of calling the __getitem__ method.
Args:
root: Root directory path.
Returns:
x: image with some kind of distortion in [0, 1] range
y: image without distortion in [0, 1] range
score: MOS score for this pair of images
"""
_filename = "mos_with_names.txt"
def __init__(self, root: Path = "datasets/tid2013") -> None:
assert root.exists(), \
"You need to download TID2013 dataset first. Check http://www.ponomarenko.info/tid2013"
df = pd.read_csv(
root / self._filename,
sep=' ',
names=['score', 'dist_img'],
header=None
)
df["ref_img"] = df["dist_img"].apply(lambda x: f"reference_images/{(x[:3] + x[-4:]).upper()}")
df["dist_img"] = df["dist_img"].apply(lambda x: f"distorted_images/{x}")
self.scores = df['score'].to_numpy()
self.df = df[["dist_img", 'ref_img', 'score']]
self.root = root
def __getitem__(self, index) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
x_path = self.root / self.df.iloc[index][0]
y_path = self.root / self.df.iloc[index][1]
score = self.scores[index]
# Load image and ref, convert to tensor.
x = torch.tensor(imread(x_path), dtype=torch.float32).permute(2, 0, 1)
y = torch.tensor(imread(y_path), dtype=torch.float32).permute(2, 0, 1)
return x, y, score
def __len__(self) -> int:
return len(self.df)
class KADID10k(TID2013):
r""" A class to evaluate on the KADID10k dataset.
One can get the dataset via the direct link: https://datasets.vqa.mmsp-kn.de/archives/kadid10k.zip.
Note that the class is callable. The values are returned as a result of calling the __getitem__ method.
Args:
root: Root directory path.
Returns:
x: image with some kind of distortion in [0, 1] range
y: image without distortion in [0, 1] range
score: MOS score for this pair of images
"""
_filename = "dmos.csv"
def __init__(self, root: Path = "datasets/kadid10k") -> None:
assert root.exists(), \
"You need to download KADID10K dataset first. " \
"Check http://database.mmsp-kn.de/kadid-10k-database.html " \
"or download via the direct link https://datasets.vqa.mmsp-kn.de/archives/kadid10k.zip"
# Read file mith DMOS
self.df = pd.read_csv(root / self._filename)
self.df.rename(columns={"dmos": "score"}, inplace=True)
self.scores = self.df["score"].to_numpy()
self.df = self.df[["dist_img", 'ref_img', 'score']]
self.root = root / "images"
class PIPAL(TID2013):
r""" A class to evaluate on the train set of the PIPAL dataset.
Note that the class is callable. The values are returned as a result of calling the __getitem__ method.
Args:
root: Root directory path.
Returns:
x: image with some kind of distortion in [0, 1] range
y: image without distortion in [0, 1] range
score: MOS score for this pair of images
"""
def __init__(self, root: Path = Path("data/raw/pipal")) -> None:
assert root.exists(), \
"You need to download PIPAL dataset. Check https://www.jasongt.com/projectpages/pipal.html"
assert (root / "Train_Dist").exists(), \
"Please place all distorted files into single folder named `Train_Dist`."
# Read files with labels and merge them into single DF
dfs = []
for filename in (root / "Train_Label").glob("*.txt"):
df = pd.read_csv(filename, index_col=None, header=None, names=['dist_img', 'score'])
dfs.append(df)
df = pd.concat(dfs, axis=0, ignore_index=True)
df["ref_img"] = df["dist_img"].apply(lambda x: f"Train_Ref/{x[:5] + x[-4:]}")
df["dist_img"] = df["dist_img"].apply(lambda x: f"Train_Dist/{x}")
self.scores = df["score"].to_numpy()
self.df = df[["dist_img", 'ref_img', 'score']]
self.root = root
DATASETS = {
"tid2013": TID2013,
"kadid10k": KADID10k,
"pipal": PIPAL,
}
def eval_metric(loader: DataLoader, metric: Metric, device: str, feature_extractor: str) \
-> Tuple[torch.Tensor, torch.Tensor]:
r"""Evaluate metric on a given dataset.
Args:
loader: PyTorch dataloader that returns batch of distorted images, reference images and scores.
metric: General metric that satisfies the Metric interface.
device: Computation device.
feature_extractor: name of the neural network to be used to extract features from images
Returns:
gt_scores: A tensor of ground truth values.
metric_scores: A tensor of predicted values.
"""
assert isinstance(loader, DataLoader), "Expect loader to be DataLoader class"
assert isinstance(metric, Metric), f"Expected metric to be an instance of Metric, got {type(metric)} instead!"
gt_scores = []
metric_scores = []
compute_function = determine_compute_function(metric_category=metric.category)
for distorted_images, reference_images, scores in tqdm.tqdm(loader, ncols=50):
distorted_images, reference_images = distorted_images.to(device), reference_images.to(device)
gt_scores.append(scores.cpu())
metric_score: torch.Tensor = \
compute_function(metric.functor, distorted_images, reference_images, device, feature_extractor)
if metric_score.dim() == 0:
metric_score = metric_score.unsqueeze(0)
metric_scores.append(metric_score.cpu())
return torch.cat(gt_scores), torch.cat(metric_scores)
def determine_compute_function(metric_category: str) -> Callable:
return {
'FR': compute_full_reference,
'NR': compute_no_reference,
'DB': compute_distribution_based
}[metric_category]
def get_feature_extractor(feature_extractor_name: str, device: str) -> nn.Module:
r""" A factory to initialize feature extractor from its name. """
if feature_extractor_name == "vgg16":
return torchvision.models.vgg16(pretrained=True, progress=True).features.to(device)
elif feature_extractor_name == "vgg19":
return torchvision.models.vgg19(pretrained=True, progress=True).features.to(device)
elif feature_extractor_name == "inception":
return piq.feature_extractors.InceptionV3(
resize_input=False, use_fid_inception=True, normalize_input=True).to(device)
else:
raise ValueError(f"Wrong feature extractor name {feature_extractor_name}")
def compute_full_reference(metric_functor: Callable, distorted_images: torch.Tensor,
reference_images: torch.Tensor, _, __) -> torch.Tensor:
return metric_functor(distorted_images, reference_images).cpu()
def compute_no_reference(metric_functor: Callable, distorted_images: torch.Tensor, _, __, ___) -> torch.Tensor:
return metric_functor(distorted_images).cpu()
def extract_features(distorted_patches: torch.Tensor, feature_extractor: nn.Module, feature_extractor_name: str,
reference_patches: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
distorted_features, reference_features = [], []
with torch.no_grad():
if feature_extractor_name == "inception":
reference_features.append(feature_extractor(reference_patches)[0].squeeze())
distorted_features.append(feature_extractor(distorted_patches)[0].squeeze())
elif feature_extractor_name in ["vgg16", "vgg19"]:
reference_features.append(torch.nn.functional.avg_pool2d(feature_extractor(reference_patches), 3).squeeze())
distorted_features.append(torch.nn.functional.avg_pool2d(feature_extractor(distorted_patches), 3).squeeze())
else:
raise ValueError(f'Unknown feature extractor {feature_extractor_name} is selected. '
f'Please choose on of supported feature extractors: [inception, vgg16, vgg19]')
distorted_features = torch.cat(distorted_features, dim=0)
reference_features = torch.cat(reference_features, dim=0)
return distorted_features, reference_features
def normalize_tensor(tensor: torch.Tensor) -> torch.Tensor:
r""" Map tensor values to [0, 1] """
return (tensor - tensor.min()) / (tensor.max() - tensor.min())
def compute_distribution_based(metric_functor: Callable, distorted_images: torch.Tensor,
reference_images: torch.Tensor, device: str, feature_extractor_name: str) \
-> torch.Tensor:
feature_extractor = get_feature_extractor(feature_extractor_name=feature_extractor_name, device=device)
if feature_extractor_name == 'inception':
distorted_images = normalize_tensor(distorted_images)
reference_images = normalize_tensor(reference_images)
# Create patches
distorted_patches = crop_patches(distorted_images, size=96, stride=32)
reference_patches = crop_patches(reference_images, size=96, stride=32)
# Extract features from distorted images
distorted_patches = distorted_patches.view(-1, *distorted_patches.shape[-3:])
reference_patches = reference_patches.view(-1, *reference_patches.shape[-3:])
distorted_features, reference_features = extract_features(distorted_patches, feature_extractor,
feature_extractor_name, reference_patches)
return metric_functor(distorted_features, reference_features).cpu()
def crop_patches(images: torch.Tensor, size: int = 64, stride: int = 32) -> torch.Tensor:
r"""Crop input images into smaller patches.
Args:
images: Tensor of images with shape (batch x 3 x H x W)
size: size of a square patch
stride: Step between patches
Returns:
A tensor on cropped patches of shape (-1, 3, size, size)
"""
patches = images.data.unfold(1, 3, 3).unfold(2, size, stride).unfold(3, size, stride)
patches = patches.reshape(-1, 3, size, size)
return patches
def main(dataset_name: str, path: Path, metrics: List[str], batch_size: int, device: str, feature_extractor: str) \
-> None:
# Init dataset and dataloader
dataset = DATASETS[dataset_name](root=path)
loader = DataLoader(dataset, batch_size=batch_size, num_workers=4)
# If category of metrics is selected instead of a list of metrics, take all metrics from this category
if metrics[0] in METRIC_CATEGORIES:
metrics = METRIC_CATEGORIES[metrics[0]]
if metrics[0] == 'all':
metrics = list(chain(*METRIC_CATEGORIES.values()))
for metric_name in metrics:
metric: Metric = METRICS[metric_name]
gt_scores, metric_scores = eval_metric(loader, metric, device=device, feature_extractor=feature_extractor)
gt_scores, metric_scores = gt_scores.numpy(), metric_scores.numpy()
print(f"{metric_name}: SRCC {abs(spearmanr(gt_scores, metric_scores)[0]):0.3f}",
f"KRCC {abs(kendalltau(gt_scores, metric_scores)[0]):0.3f}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Benchmark PIQ metrics")
parser.add_argument("--dataset", type=str, help="Dataset name", choices=list(DATASETS.keys()))
parser.add_argument("--path", type=Path, help="Path to dataset")
parser.add_argument('--metrics', nargs='+', default=[], help='Metrics to benchmark',
choices=list(METRICS.keys()) + list(METRIC_CATEGORIES.keys()) + ['all'])
parser.add_argument('--batch_size', type=int, default=1, help='Batch size')
device_choice = ['cpu', 'cuda'] + [f'cuda:{i}' for i in range(torch.cuda.device_count())]
parser.add_argument('--device', default='cuda', choices=device_choice, help='Computation device')
parser.add_argument('--feature_extractor', default='inception', choices=['inception', 'vgg16', 'vgg19'],
help='Select a feature extractor. For distribution-based metrics only')
args = parser.parse_args()
print(f"Parameters used for benchmark: {args}")
main(
dataset_name=args.dataset,
path=args.path,
metrics=args.metrics,
batch_size=args.batch_size,
device=args.device,
feature_extractor=args.feature_extractor
)