You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, I ran the code in jupyter notebook like the following !python3 train.py dummy.csv --num_class 5 --epochs 200 --batch_size 64
I got the following error:
Traceback (most recent call last):
File "train.py", line 219, in <module>
class_weight=params['class_weight']
File "/usr/local/lib/python3.6/dist-packages/keras/legacy/interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training.py", line 1732, in fit_generator
initial_epoch=initial_epoch)
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training_generator.py", line 42, in fit_generator
model._make_train_function()
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training.py", line 316, in _make_train_function
loss=self.total_loss)
File "/usr/local/lib/python3.6/dist-packages/keras/legacy/interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/keras/optimizers.py", line 622, in get_updates
p_t = p - lr_t * m_t / (u_t + self.epsilon)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py", line 888, in binary_op_wrapper
y, dtype_hint=x.dtype.base_dtype, name="y")
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py", line 1145, in convert_to_tensor_v2
as_ref=False)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py", line 1224, in internal_convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/constant_op.py", line 305, in _constant_tensor_conversion_function
return constant(v, dtype=dtype, name=name)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/constant_op.py", line 246, in constant
allow_broadcast=True)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/constant_op.py", line 284, in _constant_impl
allow_broadcast=allow_broadcast))
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/tensor_util.py", line 454, in make_tensor_proto
raise ValueError("None values not supported.")
ValueError: None values not supported.
I also tried to run the code step by step. After I got trainX and trainY, instead of using a generator, I just ran model.fit(x=trainX, y=trainY, epochs=1, verbose=1)
but the error is the same:
ValueError Traceback (most recent call last)
<ipython-input-8-57446bf71ca4> in <module>
----> 1 model.fit(x=trainX, y=trainY, epochs=1, verbose=1)
/usr/local/lib/python3.6/dist-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
1211 else:
1212 fit_inputs = x + y + sample_weights
-> 1213 self._make_train_function()
1214 fit_function = self.train_function
1215
/usr/local/lib/python3.6/dist-packages/keras/engine/training.py in _make_train_function(self)
314 training_updates = self.optimizer.get_updates(
315 params=self._collected_trainable_weights,
--> 316 loss=self.total_loss)
317 updates = self.updates + training_updates
318
/usr/local/lib/python3.6/dist-packages/keras/legacy/interfaces.py in wrapper(*args, **kwargs)
89 warnings.warn('Update your `' + object_name + '` call to the ' +
90 'Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper
/usr/local/lib/python3.6/dist-packages/keras/optimizers.py in get_updates(self, loss, params)
620 m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
621 u_t = K.maximum(self.beta_2 * u, K.abs(g))
--> 622 p_t = p - lr_t * m_t / (u_t + self.epsilon)
623
624 self.updates.append(K.update(m, m_t))
/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py in binary_op_wrapper(x, y)
886 try:
887 y = ops.convert_to_tensor_v2(
--> 888 y, dtype_hint=x.dtype.base_dtype, name="y")
889 except TypeError:
890 # If the RHS is not a tensor, it might be a tensor aware object
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py in convert_to_tensor_v2(value, dtype, dtype_hint, name)
1143 name=name,
1144 preferred_dtype=dtype_hint,
-> 1145 as_ref=False)
1146
1147
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py in internal_convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, ctx, accept_symbolic_tensors, accept_composite_tensors)
1222
1223 if ret is None:
-> 1224 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
1225
1226 if ret is NotImplemented:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/constant_op.py in _constant_tensor_conversion_function(v, dtype, name, as_ref)
303 as_ref=False):
304 _ = as_ref
--> 305 return constant(v, dtype=dtype, name=name)
306
307
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/constant_op.py in constant(value, dtype, shape, name)
244 """
245 return _constant_impl(value, dtype, shape, name, verify_shape=False,
--> 246 allow_broadcast=True)
247
248
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/constant_op.py in _constant_impl(value, dtype, shape, name, verify_shape, allow_broadcast)
282 tensor_util.make_tensor_proto(
283 value, dtype=dtype, shape=shape, verify_shape=verify_shape,
--> 284 allow_broadcast=allow_broadcast))
285 dtype_value = attr_value_pb2.AttrValue(type=tensor_value.tensor.dtype)
286 const_tensor = g.create_op(
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/tensor_util.py in make_tensor_proto(values, dtype, shape, verify_shape, allow_broadcast)
452 else:
453 if values is None:
--> 454 raise ValueError("None values not supported.")
455 # if dtype is provided, forces numpy array to be the type
456 # provided if possible.
ValueError: None values not supported.
Could you please help.
The text was updated successfully, but these errors were encountered:
Hi, I ran the code in jupyter notebook like the following
!python3 train.py dummy.csv --num_class 5 --epochs 200 --batch_size 64
I got the following error:
I also tried to run the code step by step. After I got trainX and trainY, instead of using a generator, I just ran
model.fit(x=trainX, y=trainY, epochs=1, verbose=1)
but the error is the same:
Could you please help.
The text was updated successfully, but these errors were encountered: