diff --git a/README.md b/README.md index a264a915..ce1c699a 100644 --- a/README.md +++ b/README.md @@ -7,7 +7,7 @@ Build your next agent with evals, observability, and replay analytics. Agentops [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) ## Latest Release 📦 -`version: 0.0.3` +`version: 0.0.4` This is an alpha release for early testers. Agentops is still in closed alpha. You can sign up for an API key [here](https://forms.gle/mFAP4XEoaiKXb2Xh9). diff --git a/agentops/__init__.py b/agentops/__init__.py index d39a5a0f..55aaf02b 100755 --- a/agentops/__init__.py +++ b/agentops/__init__.py @@ -2,3 +2,4 @@ from .event import Event, EventState from .session import SessionState from .logger import AgentOpsLogger +from .helpers import Models, ActionType diff --git a/agentops/client.py b/agentops/client.py index c3bbe62c..9695fdcb 100644 --- a/agentops/client.py +++ b/agentops/client.py @@ -6,11 +6,13 @@ """ from .event import Event, EventState +from .helpers import Models, ActionType from .session import Session, SessionState from .worker import Worker from uuid import uuid4 from typing import Optional, List import functools +import logging import inspect import atexit import signal @@ -50,8 +52,26 @@ def __init__(self, api_key: str, tags: Optional[List[str]] = None, signal.signal(signal.SIGINT, self.signal_handler) signal.signal(signal.SIGTERM, self.signal_handler) + # Override sys.excepthook + sys.excepthook = self.handle_exception + self.start_session(tags) + def handle_exception(self, exc_type, exc_value, exc_traceback): + """ + Handle uncaught exceptions before they result in program termination. + + Args: + exc_type (Type[BaseException]): The type of the exception. + exc_value (BaseException): The exception instance. + exc_traceback (TracebackType): A traceback object encapsulating the call stack at the point where the exception originally occurred. + """ + # Perform cleanup + self.cleanup() + + # Then call the default excepthook to exit the program + sys.__excepthook__(exc_type, exc_value, exc_traceback) + def signal_handler(self, signal, frame): """ Signal handler for SIGINT (Ctrl+C) and SIGTERM. Ends the session and exits the program. @@ -60,11 +80,13 @@ def signal_handler(self, signal, frame): signal (int): The signal number. frame: The current stack frame. """ - print('Signal SIGTERM or SIGINT detected. Ending session...') + logging.info('Signal SIGTERM or SIGINT detected. Ending session...') self.end_session(end_state=EventState.FAIL) sys.exit(0) - def record(self, event: Event): + def record(self, event: Event, + action_type: ActionType = ActionType.ACTION, + model: Optional[Models] = None): """ Record an event with the AgentOps service. @@ -76,13 +98,53 @@ def record(self, event: Event): self.worker.add_event( {'session_id': self.session.session_id, **event.__dict__}) else: - print("This event was not recorded because the previous session has been ended. Start a new session to record again.") + logging.info("This event was not recorded because the previous session has been ended" + + " Start a new session to record again.") - def record_action(self, event_name: str, tags: Optional[List[str]] = None): + def record_action(self, event_name: str, + action_type: ActionType = ActionType.ACTION, + model: Optional[Models] = None, + tags: Optional[List[str]] = None): """ Decorator to record an event before and after a function call. + Usage: + - Actions: Records function parameters and return statements of the + function being decorated. Specify the action_type = 'action' + + - LLM Calls: Records prompt, model, and output of a function that + calls an LLM. Specify the action_type = 'llm' + Note: This requires that the function being decorated is passed a "prompt" + parameter when either defined or called. For example: + ``` + # Decorate function definition + @ao_client.record_action(..., action_type='llm') + def openai_call(prompt): + ... + + openai_call(prompt='...') + ``` + For decorated functions without the "prompt" params, this decorator + grants an overloaded "prompt" arg that automatically works. For example: + + ``` + # Decorate function definition + @ao_client.record_action(..., action_type='llm') + def openai_call(foo): + ... + + # This will work + openai_call(foo='...', prompt='...') + ``` + - API Calls: Records input, headers, and response status for API calls. + TOOD: Currently not implemented, coming soon. Args: event_name (str): The name of the event to record. + action_type (ActionType, optional): The type of the event being recorded. + Events default to 'action'. Other options include 'api' and 'llm'. + model (Models, optional): The model used during the event if an LLM is used (i.e. GPT-4). + For models, see the types available in the Models enum. + If a model is set but an action_type is not, the action_type will be coerced to 'llm'. + Defaults to None. tags (List[str], optional): Any tags associated with the event. Defaults to None. """ def decorator(func): @@ -97,6 +159,26 @@ def wrapper(*args, **kwargs): # Update with positional arguments arg_values.update(dict(zip(arg_names, args))) arg_values.update(kwargs) + + # Get prompt from function arguments + prompt = arg_values.get('prompt') + + # 1) Coerce action type to 'llm' if model is set + # 2) Throw error if no prompt is set. This is required for + # calculating price + action = action_type + if bool(model): + action = ActionType.LLM + if not bool(prompt): + raise ValueError( + "Prompt is required when model is provided.") + + # Throw error if action type is 'llm' but no model is specified + if action == ActionType.LLM and not bool(model): + raise ValueError( + f"`model` is a required parameter if `action_type` is set as {ActionType.LLM}. " + + f"Model can be set as: {list([mod.value for mod in Models])}") + try: returns = func(*args, **kwargs) @@ -108,7 +190,10 @@ def wrapper(*args, **kwargs): self.record(Event(event_type=event_name, params=arg_values, returns=returns, - result="Success", + result=EventState.SUCCESS, + action_type=action, + model=model, + prompt=prompt, tags=tags)) except Exception as e: @@ -116,7 +201,10 @@ def wrapper(*args, **kwargs): self.record(Event(event_type=event_name, params=arg_values, returns=None, - result='Fail', + result=EventState.FAIL, + action_type=action, + model=model, + prompt=prompt, tags=tags)) # Re-raise the exception @@ -133,13 +221,15 @@ def start_session(self, tags: Optional[List[str]] = None): Start a new session for recording events. Args: - tags (List[str], optional): Tags that can be used for grouping or sorting later. Examples could be ["GPT-4"]. + tags (List[str], optional): Tags that can be used for grouping or sorting later. + e.g. ["test_run"]. """ self.session = Session(str(uuid4()), tags) self.worker = Worker(self.config) self.worker.start_session(self.session) - def end_session(self, end_state: SessionState = SessionState.INDETERMINATE, rating: Optional[str] = None): + def end_session(self, end_state: SessionState = SessionState.INDETERMINATE, + rating: Optional[str] = None): """ End the current session with the AgentOps service. @@ -155,7 +245,7 @@ def end_session(self, end_state: SessionState = SessionState.INDETERMINATE, rati self.session.end_session(end_state, rating) self.worker.end_session(self.session) else: - print("Warning: The session has already been ended.") + logging.info("Warning: The session has already been ended.") def cleanup(self): # Only run cleanup function if session is created diff --git a/agentops/event.py b/agentops/event.py index de71acf8..a56f91d3 100644 --- a/agentops/event.py +++ b/agentops/event.py @@ -4,7 +4,7 @@ Classes: Event: Represents discrete events to be recorded. """ -from .helpers import get_ISO_time +from .helpers import get_ISO_time, ActionType, Models from typing import Optional, List @@ -23,7 +23,13 @@ class Event: params (str, optional): The parameters passed to the operation. returns (str, optional): The output of the operation. result (str, optional): Result of the operation, e.g., "Success", "Fail", "Indeterminate". - tags (List[str], optional): Tags that can be used for grouping or sorting later. e.g. ["GPT-4"]. + action_type (ActionType, optional): Type of action of the evnet e.g. 'action', 'llm', 'api' + model (Models, optional): The model used during the event if an LLM is used (i.e. GPT-4). + For models, see the types available in the Models enum. + If a model is set but an action_type is not, the action_type will be coerced to 'llm'. + Defaults to None. + prompt (str, optional): The input prompt for an LLM call when an LLM is being used. + tags (List[str], optional): Tags that can be used for grouping or sorting later. e.g. ["my_tag"]. Attributes: @@ -34,6 +40,9 @@ def __init__(self, event_type: str, params: Optional[str] = None, returns: Optional[str] = None, result: EventState = EventState.INDETERMINATE, + action_type: Optional[ActionType] = ActionType.ACTION, + model: Optional[Models] = None, + prompt: Optional[str] = None, tags: Optional[List[str]] = None ): self.event_type = event_type @@ -41,4 +50,7 @@ def __init__(self, event_type: str, self.returns = returns self.result = result self.tags = tags + self.action_type = action_type + self.model = model + self.prompt = prompt self.timestamp = get_ISO_time() diff --git a/agentops/helpers.py b/agentops/helpers.py index f8752c82..e77d983b 100644 --- a/agentops/helpers.py +++ b/agentops/helpers.py @@ -1,5 +1,27 @@ +from enum import Enum import time from datetime import datetime + def get_ISO_time(): - return datetime.fromtimestamp(time.time()).isoformat(timespec='milliseconds') + 'Z' \ No newline at end of file + return datetime.fromtimestamp(time.time()).isoformat(timespec='milliseconds') + 'Z' + + +class Models(Enum): + GPT_3_5_TURBO = "gpt-3.5-turbo" + GPT_3_5_TURBO_0301 = "gpt-3.5-turbo-0301" + GPT_3_5_TURBO_0613 = "gpt-3.5-turbo-0613" + GPT_3_5_TURBO_16K = "gpt-3.5-turbo-16k" + GPT_3_5_TURBO_16K_0613 = "gpt-3.5-turbo-16k-0613" + GPT_4_0314 = "gpt-4-0314" + GPT_4 = "gpt-4" + GPT_4_32K = "gpt-4-32k" + GPT_4_32K_0314 = "gpt-4-32k-0314" + GPT_4_0613 = "gpt-4-0613" + TEXT_EMBEDDING_ADA_002 = "text-embedding-ada-002" + + +class ActionType: + LLM = "llm" + API = "api" + ACTION = "action" diff --git a/pyproject.toml b/pyproject.toml index f3bb81ca..67bb38ee 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta" [project] name = "agentops" -version = "0.0.3" +version = "0.0.4" authors = [ { name="Alex Reibman", email="areibman@gmail.com" }, { name="Shawn Qiu", email="siyangqiu@gmail.com" } diff --git a/tests/test_session.py b/tests/test_session.py index 9be0d15c..eeab3696 100644 --- a/tests/test_session.py +++ b/tests/test_session.py @@ -129,3 +129,65 @@ def add_three(x, y, z=3): assert request_json['events'][0]['returns'] == 6 assert request_json['events'][0]['result'] == EventState.SUCCESS assert request_json['events'][0]['tags'] == ['foo', 'bar'] + + def test_llm_call(self, mock_req): + # Arrange + prompt = 'prompt' + + @self.client.record_action(event_name=self.event_type, action_type='llm', model='gpt-4') + def llm_call(prompt=prompt): + return 'output' + + # Act + llm_call() + time.sleep(0.1) + + # Assert + assert len(mock_req.request_history) == 1 + request_json = mock_req.last_request.json() + assert request_json['events'][0]['action_type'] == 'llm' + assert request_json['events'][0]['prompt'] == prompt + assert request_json['events'][0]['returns'] == 'output' + assert request_json['events'][0]['result'] == EventState.SUCCESS + + def test_llm_call_no_prompt(self, mock_req): + # Arrange + @self.client.record_action(event_name=self.event_type, + action_type='llm', model='gpt-4') + def llm_call(): + return 'output' + + # Act and Assert + with pytest.raises(ValueError): + llm_call() + + def test_llm_call_no_model(self, mock_req): + # Arrange + prompt = 'prompt' + + @self.client.record_action(event_name=self.event_type, action_type='llm') + def llm_call(prompt=prompt): + return 'output' + + # Act and Assert + with pytest.raises(ValueError): + llm_call() + + def test_llm_call_no_action_type(self, mock_req): + # Arrange + prompt = 'prompt' + + @self.client.record_action(event_name=self.event_type, model='gpt-4') + def llm_call(prompt=prompt): + return 'output' + + llm_call() + time.sleep(0.1) + + # Assert + assert len(mock_req.request_history) == 1 + request_json = mock_req.last_request.json() + assert request_json['events'][0]['action_type'] == 'llm' + assert request_json['events'][0]['prompt'] == prompt + assert request_json['events'][0]['returns'] == 'output' + assert request_json['events'][0]['result'] == EventState.SUCCESS