-
Notifications
You must be signed in to change notification settings - Fork 1
/
target_bim.py
36 lines (33 loc) · 1.36 KB
/
target_bim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import math
import paddle
import paddle.nn as nn
class BIMTargetAttack(object):
def __init__(self, model, img, label, eps, alpha, criterion=None):
self.model = model
if criterion is not None:
self.criterion = criterion
else:
self.criterion = nn.CosineSimilarity()
self.img = img
self.label = label
self.epsilon = eps
self.alpha = alpha
self.num_iters = math.ceil(min(self.epsilon + 4, 1.25 * self.epsilon))
def attack(self):
origin_tensor_img = paddle.to_tensor(self.img)
tensor_img = paddle.to_tensor(self.img)
tensor_label = paddle.to_tensor(self.label)
for step in range(self.num_iters):
tensor_img.stop_gradient = False
predict = self.model(tensor_img)
loss = self.criterion(predict, tensor_label)
for param in self.model.parameters():
param.clear_grad()
loss.backward(retain_graph=True)
grad = paddle.to_tensor(tensor_img.grad)
delta = self.alpha * paddle.sign(grad)
tensor_img = tensor_img + delta
clip_delta = paddle.clip(tensor_img - origin_tensor_img, -self.epsilon, self.epsilon)
tensor_img = origin_tensor_img + clip_delta
tensor_img = paddle.to_tensor(tensor_img.detach().numpy())
return tensor_img