-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtax_summary_heatmap.r
executable file
·304 lines (246 loc) · 12.6 KB
/
tax_summary_heatmap.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
library(Heatplus)
library(RColorBrewer)
library("gplots")
get_command_args <- function() {
args=(commandArgs(TRUE))
if(length(args)!=3 ){
#quit with error message if wrong number of args supplied
print('Usage example : Rscript --vanilla tax_summary_heatmap.r num_profiles=20 moniker=R1_combined_repset_otu_table_L7 datafolder=/dataset/public_invermay_scratch/scratch/UW_Calf_microbiome/qiime_bowtie2_analysis/R1uclust')
print('args received were : ')
for (e in args) {
print(e)
}
q()
}else{
print("Using...")
# seperate and parse command-line args
for (e in args) {
print(e)
ta <- strsplit(e,"=",fixed=TRUE)
switch(ta[[1]][1],
"datafolder" = datafolder <<- ta[[1]][2],
"moniker" = moniker <<- ta[[1]][2],
"num_profiles" = num_profiles <<- as.integer(ta[[1]][2])
)
}
}
}
get_data <- function(moniker) {
data<-read.table(paste(moniker, ".txt",sep=""), header=TRUE, row.names=1, sep="\t")
return(data)
}
get_proportions <- function(data) {
proportions <- data[,FALSE]
for(column_number in sequence(ncol(data))) {
total_count = sum(data[,column_number])
proportions <- cbind(proportions , sapply(data[,column_number], "/", total_count))
}
colnames(proportions) <- colnames(data)
return(proportions)
}
get_self_information <- function(data) {
self_information <- data[,FALSE]
for(column_number in sequence(ncol(data))) {
total_count = sum(data[,column_number])
approx_zero = min(subset(data, data[,column_number] > 0, select = column_number))/2.0
self_information <- cbind(self_information, -log(sapply(data[,column_number],"max",approx_zero)/total_count, 2))
}
colnames(self_information) <- colnames(data)
return(self_information)
}
draw_heatmap <- function(datamatrix, num_clust) {
# want to plot num_clust broad taxonomy profiles - so cluster the profiles (if necessary)
if(nrow(datamatrix) > 1.5 * num_clust) {
clustering <<- kmeans(datamatrix, num_clust, iter.max=500)
# label each profile with the name of the species whose profile
# is closest to the center of each cluster - so find these
closest_dists = rep(NA,nrow(clustering$centers))
closest_rownums = rep(NA,nrow(clustering$centers))
for (center_num in sequence(nrow(clustering$centers))) {
v_center = as.numeric(clustering$centers[center_num,])
for (row_num in sequence(nrow(datamatrix))) {
# only consider this row as potentially supplying a name for the cluster if it is in the cluster
# (sometimes a point not in the cluster can be closer to the center than a point that is in the cluster)
if ( clustering$cluster[row_num] == center_num ) {
v_data = as.numeric(datamatrix[row_num,])
# calculate the distance from the center and update the closest_dists data structure
d = (v_center - v_data) %*% (v_center - v_data)
if(is.na(closest_dists[center_num])) {
closest_dists[center_num] = d
closest_rownums[center_num] = row_num
}
else if( d < closest_dists[center_num] ) {
closest_dists[center_num] = d
closest_rownums[center_num] = row_num
}
}
}
}
# assign the labels to the clustered data
rownames=rownames(datamatrix)[closest_rownums]
clustered_data = clustering$centers
rownames(clustered_data) = rownames
}
else {
clustered_data = datamatrix
clustering <<- NA
}
# ref for configuring plot
#http://stackoverflow.com/questions/15351575/moving-color-key-in-r-heatmap-2-function-of-gplots-package
#1 Heatmap,
#2 Row dendrogram,
#3 Column dendrogram,
#4 Key
# draw the heatmap in the usual way
#cm<-brewer.pal(11,"Spectral") # a diverging palette
cm<-brewer.pal(9,"OrRd") # a sequential palette
cm <- rev(cm)
# set up a vector which will index the labels that are to be blanked out so that
# only every nth col is labelled,
# the rest empty strings, n=col_label_interval.
number_of_column_labels=40
col_label_interval=max(1, floor(ncol(clustered_data)/number_of_column_labels)) # 1=label every location 2=label every 2nd location etc
colLabels <- colnames(as.matrix(clustered_data))
colBlankSelector <- sequence(length(colLabels))
colBlankSelector <- subset(colBlankSelector, colBlankSelector %% col_label_interval != 0)
# e.g. will get (2,3, 5,6, 8,9, ..)
# so we will only label rows 1,4,7,10,13 etc)
# initial plot to get the column re-ordering
jpeg(filename = paste(moniker, ".jpg",sep="") , width=830, height=1200) # with dendrograms
hm<-heatmap.2(as.matrix(clustered_data), scale = "none",
#hm<-heatmap.2(as.matrix(datamatrix), scale = "none",
dendrogram = "col",
trace="none",
#trace = "none", breaks = -2 + 4/9*seq(0,11),
col = cm , key=FALSE, density.info="none",
#keysize=1.0, margin=c(17,25), cexRow=1.5, cexCol=1.6,
keysize=1.0, margin=c(17,28), cexRow=1.5, cexCol=1.6,
lmat=rbind( c(4,3,0 ), c(2, 1, 0) ), lwid=c(.2, .6, 0 ), lhei=c(.5, 3))
dev.off()
# edit the re-ordered vector of col labels, obtained from the heatmap object, so that only
# every nth label on the final plot has a non-empty string
# this is for the internal distance matrix
indexSelector <- hm$colInd[length(hm$colInd):1]
indexSelector <- indexSelector[colBlankSelector]
colLabels[indexSelector] = rep('',length(indexSelector))
jpeg(filename = paste(moniker, ".jpg",sep=""), width=1400, height=1000) # with dendrograms
hm<-heatmap.2(as.matrix(clustered_data), scale = "none",
dendrogram = "col",
trace="none",
#trace = "none", breaks = -2 + 4/9*seq(0,11),
col = cm , key=FALSE, density.info="none",
#keysize=1.0, margin=c(17,25), cexRow=1.5, cexCol=1.6,
#keysize=1.0, margin=c(27,28), cexRow=1.2, cexCol=1.2,
#keysize=1.0, margin=c(27,48), cexRow=1.2, cexCol=1.2,
keysize=1.0, margin=c(27,78), cexRow=1.3, cexCol=1.3,
#lmat=rbind( c(4,3,0 ), c(2, 1, 0) ), lwid=c(.2, .6, 0 ), lhei=c(.25, 3),labCol=colLabels)
lmat=rbind( c(4,3,0), c(2,1,0)), lwid=c(.1, 1.2, 0), lhei=c(.25, 3 ),labCol=colLabels)
# the column labels on the plots are usually too crowded so supply a file with the
# column names ordered as per the plot
write.table(colnames(as.matrix(clustered_data))[hm$colInd[1:length(hm$colInd)]] , file=paste(moniker, "_samplenames_ordered.dat",sep=""),row.names=TRUE,sep="\t")
# the row labels on the plots may be truncated so supply a file with the
# row names ordered as per the plot
write.table(rownames(as.matrix(clustered_data))[hm$rowInd[length(hm$rowInd):1]] , file=paste(moniker, "_taxnames_ordered.dat",sep=""),row.names=TRUE,sep="\t")
if ( ! is.na( clustering ) ) {
# supply the tax clusters
write.table(clustering$cluster, file=paste(moniker, "_tax_clusters.dat",sep=""),row.names=TRUE,sep="\t")
# supply the names given to the tax clusters
write.table(rownames, file=paste(moniker, "_tax_cluster_names.dat",sep=""),row.names=TRUE,sep="\t")
}
#
clust = as.hclust(hm$colDendrogram)
sink(paste(moniker, "_heatmap_clustering_support.txt",sep=""))
print("clust$merge:")
print(clust$merge)
print("clust$height:")
print(clust$height)
print("clust$order")
print(clust$order)
print("clust$labels")
print(clust$labels)
sink()
write.table(cutree(clust, 1:dim(clustered_data)[2]),file=paste(moniker, "_heatmap_clusters.txt",sep=""),row.names=TRUE,sep="\t") # ref https://stackoverflow.com/questions/18354501/how-to-get-member-of-clusters-from-rs-hclust-heatmap-2
dev.off()
}
draw_abundant_heatmap <- function(datamatrix) {
# want to plot the 40 most abdundant taxa (no clustering).
# order the data by the total of each row (append the row totals
# as a column and sort on that)
sdatamatrix <- cbind(datamatrix, rowSums(datamatrix))
sdatamatrix <- sdatamatrix[order(sdatamatrix[,ncol(sdatamatrix)]),] # nb here smaller means more abundant as these are self-information measures
sdatamatrix <- head(sdatamatrix, 40) # take the first 40
sdatamatrix <- sdatamatrix[, sequence(ncol(sdatamatrix)-1)] # drop the totals column
# draw the heatmap in the usual way
#cm<-brewer.pal(11,"Spectral") # a diverging palette
cm<-brewer.pal(9,"OrRd") # a sequential palette
cm <- rev(cm)
# set up a vector which will index the labels that are to be blanked out so that
# only every nth col is labelled,
# the rest empty strings, n=col_label_interval.
number_of_column_labels=40
col_label_interval=max(1, floor(ncol(sdatamatrix)/number_of_column_labels)) # 1=label every location 2=label every 2nd location etc
colLabels <- colnames(as.matrix(sdatamatrix))
colBlankSelector <- sequence(length(colLabels))
colBlankSelector <- subset(colBlankSelector, colBlankSelector %% col_label_interval != 0)
# e.g. will get (2,3, 5,6, 8,9, ..)
# so we will only label rows 1,4,7,10,13 etc)
# initial plot to get the column re-ordering
jpeg(filename = "hm_internal.jpg" , width=830, height=1300) # with dendrograms
hm<-heatmap.2(as.matrix(sdatamatrix), scale = "none",
dendrogram = "col",
trace="none",
#trace = "none", breaks = -2 + 4/9*seq(0,11),
col = cm , key=FALSE, density.info="none",
#keysize=1.0, margin=c(17,25), cexRow=1.5, cexCol=1.6,
keysize=1.0, margin=c(17,28), cexRow=1.5, cexCol=1.6,
lmat=rbind( c(4,3,0 ), c(2, 1, 0) ), lwid=c(.2, .6, 0 ), lhei=c(.5, 3))
dev.off()
# edit the re-ordered vector of col labels, obtained from the heatmap object, so that only
# every nth label on the final plot has a non-empty string
# this is for the internal distance matrix
indexSelector <- hm$colInd[length(hm$colInd):1]
indexSelector <- indexSelector[colBlankSelector]
colLabels[indexSelector] = rep('',length(indexSelector))
jpeg(filename = paste(moniker, "_abundant.jpg",sep=""), width=1400, height=1000) # with dendrograms
hm<-heatmap.2(as.matrix(sdatamatrix), scale = "none",
dendrogram = "col",
trace="none",
#trace = "none", breaks = -2 + 4/9*seq(0,11),
col = cm , key=FALSE, density.info="none",
#keysize=1.0, margin=c(17,25), cexRow=1.5, cexCol=1.6,
keysize=1.0, margin=c(27,78), cexRow=1.3, cexCol=1.3,
lmat=rbind( c(4,3,0 ), c(2, 1, 0) ), lwid=c(.1, 1.2, 0 ), lhei=c(.25, 3),labCol=colLabels)
title(main="40 most abundant taxa")
# the column labels on the plots are usually too crowded so supply a file with the
# column names ordered as per the plot
write.table(colnames(as.matrix(sdatamatrix))[hm$colInd[1:length(hm$colInd)]] , file=paste(moniker, "_abundant_samplenames_ordered.dat",sep=""),row.names=TRUE,sep="\t")
# the row labels on the plots may be truncated so supply a file with the
# row names ordered as per the plot
write.table(rownames(as.matrix(sdatamatrix))[hm$rowInd[length(hm$rowInd):1]] , file=paste(moniker, "_abundant_taxnames_ordered.dat",sep=""),row.names=TRUE,sep="\t")
dev.off()
#
clust = as.hclust(hm$colDendrogram)
sink(paste(moniker, "_abundant_heatmap_clustering_support.txt",sep=""))
print("clust$merge:")
print(clust$merge)
print("clust$height:")
print(clust$height)
print("clust$order")
print(clust$order)
print("clust$labels")
print(clust$labels)
sink()
write.table(cutree(clust, 1:dim(sdatamatrix)[2]),file=paste(moniker, "_abundant_heatmap_clusters.txt",sep=""),row.names=TRUE,sep="\t") # ref https://stackoverflow.com/questions/18354501/how-to-get-member-of-clusters-from-rs-hclust-heatmap-2
}
main <- function() {
get_command_args()
setwd(datafolder)
data <- get_data(moniker)
props <- get_proportions(data)
self_info <- get_self_information(data)
write.table(props,file=paste(moniker,"_proportions.dat",sep=""),row.names=TRUE,sep="\t")
write.table(self_info,file=paste(moniker, "_self_information.dat",sep=""),row.names=TRUE,sep="\t")
draw_heatmap(self_info, num_profiles)
draw_abundant_heatmap(self_info)
}
main()