-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
47 lines (44 loc) · 1.81 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import streamlit as st
import pickle
import pandas as pd
import requests
def fetch_poster(movie_id):
response = requests.get('https://api.themoviedb.org/3/movie/{}?api_key=c2100333e202bcdf9a3673f9c344f17b'.format(movie_id))
data = response.json()
print(data)
return "https://image.tmdb.org/t/p/w500" + data['poster_path']
def recommend(movie):
movie_index = movies[movies['title'] == movie].index[0]
distance = similarity[movie_index]
movie_list = sorted(list(enumerate(distance)),reverse=True,key=lambda x:x[1])[1:6]# this code is actually coveerting tbe list into the tuple havinf first elemtn the index, then it sortd=s it in reverse order , and lambda function inspecifying that the sortinf should be done on the basis of second element only
recommended_movies = []
recommended_moviesposter = []
for i in movie_list:
movie_id = movies.iloc[i[0]].movie_id
recommended_movies.append(movies.iloc[i[0]].title)
recommended_moviesposter.append(fetch_poster(movie_id))
return recommended_movies , recommended_moviesposter
movies_dict=pickle.load(open('movie_dict.pkl','rb'))
movies = pd.DataFrame(movies_dict)
similarity=pickle.load(open('similarity.pkl','rb'))
st.title('Movie Recommender System')
selected_movie_name= st.selectbox(
'Select a Movie',movies['title'].values)
if st.button('Recommend'):
names,posters=recommend(selected_movie_name)
cols= st.columns(5)
with cols[0]:
st.text(names[0])
st.image(posters[0])
with cols[1]:
st.text(names[1])
st.image(posters[1])
with cols[2]:
st.text(names[2])
st.image(posters[2])
with cols[3]:
st.text(names[3])
st.image(posters[3])
with cols[4]:
st.text(names[4])
st.image(posters[4])